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Abstrac t

A major purpose of the paper is to discuss the various wave types (inertial waves, thermal waves, Ross -
by waves) that appear in the baroclinic atmosphere . The interaction between these wave types will also
be treated, and the relations between the calculated waves and the observed waves will be discussed . For
simplicity and clarity the wave types will also be discussed one by one.

A second purpose is to discuss the general structure of the most important weather-related waves .
This will be done by using a greatly simplified model including for some purposes both external heatin g
and dissipation of the kinetic energy leading to a general description of the structure of the model waves .

An expanded study of inertial motion will be handled using the spherical equations, and the therma l
wave will be discussed in details using a vertical model of these waves which does not depend on th e
horizontal scale .
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1 . Introduction

The atmosphere contains a variety of phenomena . Some of these are of a local
nature such as the land and sea breeze that may be described in a simple way b y
considering the changes in the daily variations of the heating over land and ove r
water. Other types are of a global kind appearing everywhere in the atmosphere
although differences may be observed depending on the latitude and the distribu-
tion of continents and oceans . The analyses of the global atmosphere at many ver -
tical levels, made possible due to expansions of the network of meteorologica l
observations supplemented by information from special Earth-observing satellites ,
indicate that the motion of the atmosphere in middle latitudes has a wave-like char-
acter . The wavelength may vary greatly from very long waves with a maximum
wavelength equal to the length of the latitude circle to shorter waves with a wave-
length of, say, 1000 km. The very long waves appear to consist of a stationary part
and a moving part . The stationary part is related to the differences in atmospheri c
behavior over the continents and over the oceans (Smagorinsky, 1953) and to the
existence of major mountain ranges such as the Rocky Mountains in Nort h
America and the Himalayas in Asia (Charney and Eliassen, 1949) . The transient
waves which will be included in the present study may be long or short waves . The
analyses of the observed kinetic energy as a function of the wavelength (Wiin -
Nielsen, 1967, 1999 and 2000) show that the maximum kinetic energy of the tran-
sient waves is found for wavelengths between 4000 and 7000 km corresponding in
the middle latitudes to wave numbers 7 and 4 .

These facts may to some extent be explained by the theories of the stability of th e
zonal flow when this flow is disturbed by small disturbances . Such investigation s
were initiated by Charney (1947), and numerous studies of this kind, too many t o
list all of them, have been carried out since then .

The atmosphere is analysed from observations twice a day, normally at 0 and 1 2
UTC. The analyses are presented using surfaces in which the pressure is constant .
Operationally, such analyses are made at the pressure surfaces 1000, 850, 700, 500 ,
300, 200 and 100 hPa, but analyses at even lower pressure levels may be included .
For each pressure surface we find analyses of the geopotential (g*z, where g is the
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(constant) gravity), the temperature, the humidity and the two components of th e
horizontal wind .

In middle and high latitudes it is observed that the horizontal wind has a stron g
tendency to be directed as a tangent to the isolines for the geopotential . If this rela-
tion was exact, the atmospheric horizontal wind would be called a geostrophic
wind which is defined as the wind that will exist if the horizontal pressure force i s
balanced by the Coriolis force . Since the pressure force is perpendicular to isoline s
for the geopotential, and since the Coriolis force in the northern hemisphere point s
to the right of the horizontal wind, it follows that the geostrophic wind will blow
along the isolines for the geopotential . The described tendency is not exact . We talk
therefore about the quasi-geostrophic state of the atmosphere in the middle lati-
tudes .

The first numerical predictions were carried out in 1949-50 (Charney et al . ,
1950). The model was the most simple one level model assuming horizonta l
geostrophic flow at 500 hPa. The integration of the model equations took man y
hours on one of the first ` electronic computers' as they were called at the time .
During the following two decades a number of more advanced models were devel -
oped. These models were based on the quasi-geostrophic concept . The number of
levels in the vertical direction was mostly restricted to two or three levels, but oper-
ational models with many more levels have been used later in the development o f
numerical weather prediction . The quasi-geostrophic models predicted only on e
parameter, the geopotential, which is proportional to the height of the isobaric sur -
faces relative to the surface of the Earth . However, the multilevel models permit a
calculation of the mean temperature of the layers and the vertical velocity a t
selected levels . Later models have predicted the total collection of atmospheri c
parameters, i .e . the three components of the three-dimensional atmospheric wind ,
the pressure, the temperature, the density and the humidity . Models of this kind are
based on the so-called primitve equations . During the first decade or so no heating
and no dissipation were used in the prediction models, but some models had a ter m
measuring the effect of the large-scale mountains on the atmospheric flow .

Parallel with these developments, models of a different kind were developed.
The purpose was to simulate the major aspects of the atmospheric state as a n
average of the integrations of the model over many days . These models, which later
were called `climate models', did not make predictions for individual days, but th e
purpose was to simulate the averaged state of the atmosphere . The verification wa s
therefore a comparison of the model climate with the real climate . The first experi-
ment of this kind was carried out by Phillips (1956) based on a two-level, quasi-
geostrophic model with a prescribed forcing in the meridional direction resulting i n
heating in the low latitudes and cooling in the high latitudes . The heating was linear
with respect to the south-north direction and at each point constant during the
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whole integration . No heating was prescribed in the west-east direction . After an
integration using only the zonal equations, a state of zonal winds and temperature s
were developed . Superimposing small, random perturbations in each gridpoint th e
integrations were continued using now the full equations . The output was a devel-
opment of moving atmospheric waves . The result was in schematic agreement with
the atmospheric wave behavior . Another two-level model based on the primitive
equations was developed by Smagorinsky (1963) . This model represents the first
serious attempt to use the general equations . The experiment started from a state o f
rest. The results could be described as those by Phillips (1956), but the numerical
experiment showed that also the primitive equations could be integrated over man y
days .

After these pioneering experiments, the models for the numerical weather pre -
dictions and for the simulations of the climate have gradually become very simila r
to each other with respect both to the use of the full equations and the incorporatio n
of both simulated heating and frictional dissipation in the model atmosphere . No
significant differences exist between the two kinds of models, but the application s
of the models are still quite different . One kind is used to make the best possibl e
weather predictions for the coming few days, while the other kind is used for simu-
lations of the present climate and simulations of possible changes in the climate .
While this summary of the developments of atmospheric models for half a centur y
is quite schematic, it should be sufficient to serve as a background for the discus-
sion of the various types 'of waves which are incorporated in the most genera l
models .

The purpose of the paper is to investigate the creation and the development of th e
atmospheric waves in middle latitudes . The latitude of 45 degrees north will b e
used in all calculations . To keep the theoretical considerations at a simple level th e
space dimensions will be the west-east direction and pressure in the vertical direc-
tion . This does not mean that the variations in the south-north direction are unim-
portant, and these variations will be used in some of the model experiments to
verify the results of the simpler model which is treated analytically .

2. Wave type s

In this section we will consider the various wave types which may be obtained fro m
simplified cases of the atmospheric equations . The speed of the particular wave
will be determined, and it will be discussed if such waves have been observed in
the atmosphere . If this is the case, the question is : Do these waves influence the
weather? By combining the applied simplified equations we may construct les s
simplified models containing several types of waves . The general equations will
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naturally contain all the wave types, and as long as we stay with a set of linea r
equations we may recognize all the wave types . It should furthermore be possibl e
to investigate whether or not the models will arrive in a state of quasi-geostrophi c
balance as is observed in the real atmosphere . This is to be expected due to recen t
studies of the geostrophic adjustment problem (Wiin-Nielsen, 2000) . As the mos t
general, but still simple, model for long term integrations we apply a low order
spectral model developed recently by Marcussen and Wiin-Nielsen (1999) . The
zonal flow is described by two trigonometric functions, while the eddies have twice
as many components to permit moving waves . The total number of components i s
12, and this is the minimal number of components in a model if we want to describ e
both the eddy transports of sensible heat and of momentum .

2a. Inertial waves

As a first example we shall consider the inertial waves which are the waves tha t
will exist if the only force is the Coriolis force . Disregarding any basic motion the
governing equations are given in (2 .1) .

öv f
8t - °u

In these equations u and v are the horizontal wind components and fo the Coriolis
parameter at a given latitude .

As usual we shall consider perturbations of the type given in (2 .2) .

b = b°e` k(x-°

	

(2 .2 )

In this equation for the perturbations b is an arbitrary scalar variable and b a the
amplitude, while k is the wave number and c the phase velocity . By introducing
(2 .2) in (2 .1) we obtain the phase speed for the inertial waves as given in (2 .3) .

27rc1 =±k; k= L

where L is the wavelength . The phase velocity being proportional to the wave-
length can be very large for the long waves . If L = 28000 km and the latitude is 45

(2 .1 )

(2.3)
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degrees, the magnitude of the wave speed is about 446 m per s . On the other hand ,
for L=1000 km we find the positive wave speed to be cI =15 .9 m per s . To find pure
inertial waves in the atmosphere is very difficult since they require a vanishin g
pressure gradient . However, inertial waves have been observed in a few cases
where the pressure gradient is small . The influence of the inertial waves will there -
fore in general be in combination with other wave types .

Only the most simple case using a constant value of the Coriolis ' parameter (f0 )
is treated above . The more detailed analysis of inertial waves using spherical geom -
etry is found in Section 6 of the present paper.

2b . Thermal wave s

This wave type is obtained when we disregard the Coriolis force, but maintain the
pressure force in the equation of motion . In addition, we need the thermal equation
and the continuity equation to close the system . Considered in one dimensional
space we get the equations as listed in (2 .4) .

8u 60 _
8t + 8x

- 0

8t ( 8p
)+ßco= 0

8u &o
8x + 8p = 0

To avoid too much mathematics for our purpose it is convenient to solve the equa-
tions by employing a two-level model . We apply the equation of motion and the
continuity equation at 250 and 750 hPa, while the thermodynamic equation i s
applied at 500 hPa. Adding and subtracting the dynamic equations in the usual wa y
we find that only the thermal terms give non-vanishing contributions . After a little
algebra we find the set of equations listed in (2 .5) .

(2 .4 )

(2 .5 )

8u T w
8x + p =0
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In these equations P is half the standard value of the surface pressure (p o = 10 5

'Pascal) . The system (2.5) is a closed system with three dependent variables . Intro-
ducing the wave form given in (2 .2) we find after evaluation of the determinant that
the speed of the thermal waves is as given in (2 .6) .

( ~P2 )cT_

	

2

We notice that the thermal wave speed is independent of the wavelength . Using a
standard value of o we find that the thermal wave speed is about 190 m per s . It
appears that the thermal waves in a pure form are not observed in the atmosphere .

A more general investigation of thermal waves is carried out in Section 7 of the
present paper.

2c. Mixed inertial and thermal waves

It is also easy to formulate a system which contains waves of the two types treate d
in 2a and 2b . The basic equations for such a system are given in (2.7) .

6u 60
8t + 8x -.f~

v= 0

S + fu = 0

St ( SØ)+6w = 0

8u 8w
8x

+ Sp = O

We shall also in this case use a two level model for the determination of the wav e
speeds . As in the previous case we apply-the technique of adding and subtractin g
the equations valid at 250 and 750 hPa . The equation for the 500 hPa level has onl y
the trivial wave speed c = 0, while the determinant for the thermal variable leads t o
a cubic equation with the roots c = 0 and the two phase speeds listed in (2 .8) .

c=± (cl+cT)

(2 .7 )

(2 .8)
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2d. Rossby waves

The Rossby waves with wavelengths of a few thousand kilometers are observe d
in the atmosphere . They appear as solutions of the barotropic vorticity equation
shown in (2 .9) .

sÇ + s~
st ß=

o
Sx

The well known solution of this equation using the same expression for the pertur-
bation is shown in (2 .10) .

(2 .9 )

(2 .10)

Just as the inertial waves, the Rossby waves give very large negative values fo r
large values of the wavelength . The Rossby waves are observed in the atmosphere ,
particularly for smaller values of the wavelength, while Rossby waves with th e
large negative speeds for long waves are unobserved .

2e. The general case

The two level model will be used in the general case . To include the beta-effect we
need to use the vorticity equation, the divergence equation and the continuity equa-
tion at the levels 250 and 750 hPa, while the thermodynamic equation will be
applied at the middle level, 500 hPa . After the addition and subtractions of th e
equations applied at 250 and 750 hPa we obtain the equations valid at 500 hPa and
for the layer between 250 and 750 hPa . The equations contain no advection terms
and are linear. The equations applicable at 500 hPa are with no basic current trivia l
and permit only c = - CR . The equations for the thermal parameters are given i n
(2.11) .

ik (c+CR) VT - foxT = O

foVIT + ik (c + CR) XT - ØT = 0

ikcØT 2w= 0

kZ xT + P w =0

(2 .11)
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Evaluating the determinant for the system (2 .11) and setting it equal to zero we fin d
equation (2 .12) for the phase speeds .

(C + C R ) 3- CR (C +CR) z-(CJ+Ci) (C + C R) + CjCR =0

	

(2 .12)

It is seen that (2 .12), which is the most general equation for the system under con-

sideration, contains the three wave velocities found in the simple cases investigated
in the previous subsections . The equations valid in the subsections can as a matte r
of fact be obtained by setting one or two of the three velocities CR, CT and cI equal t o

zero . Equation (2 .12), being of the third degree, could be solved in a closed form ,

but since the interest is in solutions as a function of the wavelength, it is more con -

venient to obtain the solutions by applying a root-finding numerical program . From

the equation itself it can be shown that only real roots are present, since the deter -
minant is negative for all wavelengths . This statement is confirmed by the numer-
ical determination which also provides the imaginary part of the root . They are zero
in all cases .

The three solutions of (2 .12) are two wave velocities, one positve and the othe r

200
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5 3025

Fig. 1 : Wave speeds for the three waves, two fast waves moving in opposite directions and a slow wave.
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Fig. 2 : Wave speed for the slow wave for n = 1 .

negative, with numerically large values for all wavelengths and one velocity wit h
moderate values for all wavelengths . Figure 1 shows all three wave speeds as a
function of wavelength, while Figure 2 shows the slowly moving wave component .
From observational studies of the velocities of long transient waves it is eviden t
that they move with speeds much smaller than those displayed in Figure 1 . For
comparative reasons we may consider the wave velocities in special cases. One
may naturally consider special cases with c I = 0 or cT = 0, but no new infounation
is obtained from these special cases .

It is these facts that created the desire to construct the so-called quasi-geo-
strophic or quasi-nondivergent models that dominated the operational numerical
forecasting in the 1950s and 1960s . However, the Rossby type of wave solution s
should not be filtered out, and we therefore still have a problem with respect to th e
velocity of the very long waves . It should be recalled that observational studies o f
very long waves show that these waves are partly stationary waves created by
mountains and planetary heat sources and partly retrograde transient waves wit h
velocities smaller than the Rossby velocity .

One reason for the very large velocities found in this study could be the neglec t
of the meridional scale, the missing mountain and heating effects and the simpl e

-
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lower boundary condition . While the condition that the vertical p-velocity vanishe s
at the top of the atmosphere is correct, it is doubtful if the same condition at th e
bottom of the atmosphere is sufficiently accurate . At 1000 hPa we may more cor-
rectly say that the vertical p-velocity may be written in the form shown in equatio n
(2 .13) .

SpSp Sz
ws ~

St v & St

Using the hydrostatic equation and replacing the height by the streamfunction w e
find the expression given in (2 .14) . This expression, valid at the 1000 hPa surface ,
has to be related to the streamfunction at 500 hPa in a barotropic model .

fn _ .fa
(-Stp a ~°

^
R.

A term as estimated in (2 .14) was added to the barotropic vorticity equation in the
early days of numerical weather prediction with the purpose of making the wav e
speed of the very long waves numerically smaller . The coefficient in the term i s
estimated in (2 .15) .

z
C =

RT

O . 1x10 -1z m -z
0

With the above value we get a reduction of the wave speed for the very long wave s
(L= 28000 km) from -314 to about -105 m per s . The latter value is still much larger
than the observed retrogression of the very long waves. However, in numerica l
forecasting in the 1950's and 1960's, a term of this kind was added to the barotropi c
vorticity equation, but the coefficient C . was not given the value estimated above ,
but determined empirically by making a number of forecasts using various value s
of the coefficient and selecting the one that on average gave the smallest errors in
the forecast . The selected value is larger than the estimate given in (2 .15) as seen
from Cressman (1958) and Wiin-Nielsen (1959). The procedure described abov e
may naturally also be incorporated in baroclinic models . We shall in the following
consider the standard two-level model changed in such a way that the lowe r
boundary condition (w = 0) is replaced by a more realistic condition .

We start from the relation given in (2 .14) . The streamfunction at 1000 hPa i s
replaced by the expression given in (2 .16) .

(2 .13)

(2 .14)

(2 .15)

yro = W# -2~r T

	

(2 .16)
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In the vorticity equation at level 3 (750 hPa) we have to add a term on the righ t
hand side as given in (2 .17) .

Îo

	

_ IL S(~. - 2 IM
2P

0)4 _
RT,

	

& (2.17 )

A determination of the real and complex wave speed is carried out for the mode l
with the nonzero vertical p-velocity at the lower boundary . From the evaluation it i s
seen that for this model we also get for the very long waves a reduction of the wav e
speed to a little more than -100 m per s which is almost the same as in the one-leve l
model considered above .

This section of the paper has presented the various types of waves which hav e
been discussed in very simple atmospheric models having no zonal motion . The
question of the importance of the lower boundary condition on w has been deter-
mined with the classical two-level quasi-nondivergent model . A basic zonal motio n
with horizontal and/or vertical variations are necessary to discuss atmospheri c
instabilities . Additional problems of this type will be discussed in other parts of th e
paper.

3 . Baroclinic instabilitie s

To investigate the baroclinic instabilities that may be present in the models we shal l
add the advective terms in the equations . This can be done while we at the same
time limit the wave specification to have a dependence on the west-east coordinat e
(x) and time (t) . One possibility would be to select the standard two level model as
was done in Section 2, where vorticities and divergencies are used at an upper level
(250 hPa) and a lower level (750 hPa), while the thermodynamic equation i s
applied at the middle level (500 hPa) . When this model is used, we have only on e
temperature level in the model, and any measure of the vertical variation of th e
temperature can only be included as a standard value_ The vertical p-velocity is pre -
sent at 500 hPa only .

A second possibility may be considered. In a two-level model formulated origi-
nally by Gates (1961) the thermodynamic equation is applied at the upper (25 0
hPa) and the lower (750 hPa) levels giving two temperatures in each vertica l
column . In such a model we also need the vertical velocities at these two levels . It
is assumed that both of them are a fraction (say 1/2) of the vertical velocity at 50 0
hPa level . Gates (1961) assumed further in his analysis of baroclinic stability that
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General model, Ut=25 m per s
35

30

25

20

1 5

10

2

	

3

	

4

	

5

	

6

	

7

	

8

	

9

	

10

	

1 1
Wavelength, 1000 k m

Fig . 3 : The general model : Stability analysis for medium-range waves .

the static stability is constant . However, this simplification was not introduced i n
the model for the baroclinic stability analysis by the author (Wiin-Nielsen, 1962) .
We shall therefore be able to analyse both models and determine the difference in
the stabilities of the two models . To distinguish between the two models we shal l
name the first model the `general model', while the model with a constant stati c
stability will be called the balanced model . The detailed perturbation equations
may be found in the paper by Wiin-Nielsen (1962) .

The results of the baroclinic stability analysis for the general model may b e
found in Figure 3 for the medium-range waves assuming that the vertical winds -
hear in the basic state is 25 m per s . The same value will be used in all the compar-
isons in the present section. Instability is found for wavelengths between abou t
2000 km and 11000 km with an e-folding time as short as half a day due to th e
rather large value of U T. Figure 4 shows the wave speeds for the same model . We
notice that the large negative values of the wave speed for long waves (the beta-
effect) are present. Turning to the very long waves we see from Figure 5 that als o
the long waves are unstable with e-folding times which are larger than for the shor t
waves . All e-folding times are in fact larger than two days .

Figure 6 gives the e-folding time for the balanced model . We notice that th e
smallest e-folding time are still of the order of half a day . In addition, the instability
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General model, Ut=25 m per s
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Fig . 5 : The general model : Stability analysis for the very long waves .
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Fig,4 : The general model : Wave speeds, m per s as a function of the wavelength .
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Fig . 6 : The balanced model: E-folding times in days .

Balanced model, Wave speeds of the three waves
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Fig . 7 : Waves speeds, m per s, for the three waves in the model.

25

20

15 -

10

5 -

0 -

-5 -

- 1 0

-15 -

-20

-

	

25
0 8

	

9

	

10



MfM 48 17

Simple model of the Gates' type
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Fig . 8 : E-folding times, days, for UT = 25 m per s .

starts at slightly smaller values of the wavelength . Another important point is that
no instabilities are found for the very long waves . Figure 7 shows the wave speeds
for the three waves that may be present in the model .

We may compare the instabilities in the two models described above with th e
instability in the most simple model of the Gates type . Figure 8 gives the e-folding
times for U T = 25 m per s . It is seen that the smallest e-folding times are 0 .5 days ,
and that the region of instability is about the same as in the balanced model . Thi s
statement is seen more clearly in Figure 9 where we display the e-folding time fo r
the most general and the most simple model . The e-folding times for the classical
2-level, quasi-nondivergent model is given in Figure 10 for comparison . The rela -
tive position of the thermal streamfunction, the streamfunction for the 500 hPa
level and the vertical velocity (omega) are shown in Figure 11 in such a way tha t
the amplitudes of the streamfunctions and the vertical p-velocity are normalized to
unity. It is seen that the maximum of the thermal streamfunction is lagging behin d
the streamfunction at 500 hPa in agreement with the observed structure of atmos-
pheric waves . The wavelength used in these calculations is 5000 km .
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Comparison between the simple and the general mode l
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Fig . 9 : E-folding time, days, for the general and the simple models .
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Fig. 10 : E-folding time, days, for the standard two-level model .
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Fig . 11 : The relative positions of the streamfunctions for the thermal field and the field at 500 hPa .
Amplitudes are normalized to unity .

4 . Consideration of the nonlinear aspect s

As mentioned earlier the stability studies can only give the growth tendency in th e
unstable cases . The e-folding times are indicators of the speed of growth .

Observational studies of atmospheric energetics have shown that most of th e
time the energy flows from the zonal available to the eddy available potentia l
energy. The eddy available potential energy is converted to eddy kinetic energy ,
and from the latter energy reservoir one finds a conversion to zonal kinetic energy.
An exception to the described energy flow is the blocking situations, where th e
energy conversion between the eddy kinetic and the zonal kinetic energy in genera l
changes direction . The conversion between the zonal available potential energy an d
the zonal kinetic energy is on average very small .

In the stability studies treated in Section 3 the basic zonal state is constant, an d
the growing disturbances will continue to grow . This is of course an unrealistic
treatment, and we shall in this section consider a more realistic approach . Since it
requires the use of nonlinear equations, we can no longer use an analytical
approach and obtain the solutions in a closed form, but we have to use numerica l
integrations . In reality the growing waves will draw the energy from the zonal state .
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In the general case they may receive the energy from the zonal available potentia l
energy and the zonal kinetic energy, when we consider cases in which we observe a
mixture of barotropic and baroclinic instability . This means naturally that these tw o
forms of energy may decrease, but in the case treated in Section 3 the basic zona l
state is constant, and the growing disturbances will continue to grow.

To be realistic the model should have variations of the tempeature and win d
fields in the basic state with both pressure and respect to the meridional coordinate .
One could use a model similar to the one designed by Phillips (1956), but sinc e
long integrations are required it may be a too slow process to make many long in-
tegrations of a grid point model . It was therefore decided to use an already existing
low order model designed by Marcussen and Wiin-Nielsen (1999) . The model use s
the beta-plane, and it is a two-level model . The zonal state contains the winds a s
specified by two trigonometric components with wave numbers 2 and 4, while th e
eddies are defined by two meridional components with wave number 1 and 3 . Thi s
choice gives interactions between the components . The eddy components have a
variation in the west-east direction characterized by the sine and cosine compo-
nents with a single west-east wave number, which may vary from case to case . Th e
model may therefore be called a twelve component model . The reader may find the
details in the publication mentioned above including the equations .

In the general case the model has both heating and dissipation which may act on
all components . On the other hand, the user may also select to have heating in th e
meridional direction only. It was decided to investigate the cases of interest b y
defining the heating and dissipation and to make integrations of the model equa-
tions by starting from the state of rest. We would then expect that the zonal heatin g
with heating to the south and cooling to the north will increase the temperature gra-
dient in the meridional direction and thus also create an increasing wind field wit h
both horizontal and vertical variations . When the critical level has been passed w e
should expect that the waves would start to grow drawing the energy from the zona l
state and thus decreasing the zonal energies for both the available potential energ y
and the kinetic energy. At some point the conditions for wave growth will vanish ,
and as the eddy energies decrease we will expect that the zonal energies increase
again to a state where wave growth can start once more . The experiments will thus
also give an estimate of the order of magnitude of the life time of a wave with a
specified wavelength .

After some experiments it was seen that a useful answer can be obtained by
making integrations for 50 to 100 days . In the remaining part of this section w e
shall consider some examples .

Figure 12 shows the time variation of the zonal available potential energy and
the zonal kinetic energy over 100 days in an experiment with forcing on the larges t
meridional scale only ( h2 = 8 .0x10 -3 J per kg and sec) . We notice that these energies
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Fig . 12 : The zonal available potential energy and the zonal kinetic energy as function of time .

increase for the first part of the integration, and that they are essentially in phas e
with each other. Later in the integration when they grow again we observe that the y
gradually come out of phase . Figure 13 shows the variation in time of the tw o
forms of eddy energy . The upper line is the eddy available potential energy and th e
lower the eddy kinetic energy . In the beginning we notice a moderate growth where
the maximum in the eddy kinetic energy appears a little after the maximum in th e
eddy available potential energy. When the development of the waves become mor e
intense after more than 100 days of integration one can see that the growth of the
eddy kinetic energy comes after the growth of the eddy available potential energ y
by a few days (not included in the figure) .

While all the energy generations, conversions and dissipations may be compute d
it will suffice for the present purpose to note that an agreement exists between the
energetics of the model and the energetics based on observational studies (Wiin -
Nielsen and Chen, 1993) with respect to directions and orders of magnitude . The
result of the long nonlinear integration may be seen in Figure 14 showing th e
streamfunctions at the upper (250 hPa) and the lower (750 hPa) levels for a wave -
length of 5000 km . It is seen from this figure that the final shape of the wave ha s
the typical 'SY shape indicating a wave of the blocking type, and that the wave
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Fig . 13 : The eddy available potential energy and the eddy kinetic energy as functions of time .
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Streamfunction at upper and lower level after 60 days
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has a vertical slope from east to west which is also characteristic for the observe d
wave .

A second experiment is undertaken in which the heating as before is limited to
have a variation on the largest scale in the meridional direction only (h 2 = 3 .4x10- 3
J per kg and sec) . The purpose of the experiment is to describe the development of
the first waves, to determine the time scale for this wave and to use the computa-
tions of the standard energy conversions to test whether or not they agree with the
results of observational studies .

Figure 15 contains the streamfunctions at the two levels after an integration fo r
60 days. The solid line is the streamfunction at the upper level (250 hPa), while th e
dotted curve is for the lower level (750 hPa) . One notices the slope from east to
west in the vertical direction, and also that closed isolines are present at the lowe r
level, but not at the upper level . The phase difference is clearly seen on the figure .
The similarity with the typical structure of the waves in the troposphere is apparent .

5 . The stability analysis of the primitive three level model

A three-level model based on the primitive equations can be formulated . To includ e
the beta-effect it is necessary to use the vorticity equation and the divergence equa-
tions . In addition we need the thermodynamic equation and the continuity equation .
The basic variables are the streamfunction, the velocity potential, the geopotential
and the vertical velocity . In the three level model we use the vorticity and the diver-
gence equations at levels 1, 3 and 5 and the remaining equations at the levels 2 an d

øøø .

y

Fig . 15 : As Figure 14,
but at 60 days .
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4 . As a final step we may add the equation for the vertical velocity at the 1000 hPa

level as discussed earlier, or it may be assumed that co = 0 at level 6 .

In this section we shall disregard heating and friction . The equations are lin-

earized using a basic state in which the three zonal winds (U,, U 3 , U5 ) and the two

static stability parameters ( s2 , s4) depend on pressure only. It is convenient to define

the two thermal winds in the model by UT2 = U, - U3 and UT4 = U3 - U5 . The sta-

bility analysis is carried out, and it is then possible to determine the e-folding tim e

as a measure of the instability. The results for various cases will be discussed

below.

In the first examples we use U T2 = UT4 = 10 m per s and s2 = 5 .31x10-6 and s4 =
1 .91x10-6 both measured in the unit : m4 s2 kg-22 . Figure 16 shows the e-folding time s

for the short waves in an interval from 2400 km to 6300 km with e-folding times a s

low as 2 days . Figure 17 is concerned with the long waves . Instability is found fro m

8000 km to 28000 km, but the e-folding times are large with a minimum of about 8

days . It should be mentioned that three instabilities are present for the long waves .

The e-folding times for all three instabilities are shown in Figure 18 . In the text to

follow only the largest instability, i .e . the lower curve, will be considered .

Primitive equations, UT2=Ut4=10 m per s
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Fig . 16 : The e-folding times in days for the shorter waves using the primitive equation model .
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Primitive equations, UT2=Ut4=10 m per s
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Fig . 17 : As Figure 16, but for long waves .

Primitive equations, UT2=Ut4=10 m per s
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Fig . 18 : The e-folding time in days for the very long waves including all unstable waves .
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Primitive equations,UT2=30 m per s,UT4=10 m per s
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Fig . t9 : The e-folding time in days for the case with UT, = 30 m per s and U T4 = 10 m per s.

Figure 19 is based on a basic state with the same values of s 2 and s 4 as given
above, but with U T2 = 30 m per s and U T4 = 10 m per s . The larger wind shear in th e
upper layer results in instability from about 3000 km to 28000 km, but the discon-
tinuities in the slope of the e-folding curve indicate that different mechamisms ma y
be at work . In Figure 20 we have used UT2 = 10 m per s and UT4 = 30 m per s and
no change in the static stability parameters . Once again, the instability covers a
large region from about 2000 km to 28000 km, but for this less realistic variation of
the zonal wind in the basic state the e-folding times are very small for the shorter
waves. The very long waves have also smaller e-folding times (about 3 .2 days) .
The reason for this behavior is that the larger wind shear appears together with th e
smaller static stability parameter.

In the next experiment we use a value of 10 m per s for the vertical wind shears
and replace the two different values of s 2 and s4 by a single numerical value of
3 .61x10-6 m4 s 2 kg- 2 which is the average of the first numerical values of the stati c
stability parameters . Figure 21 shows the complete result . Instability is found onl y
at the shorter waves from 4000 to 6300 km . It appears therefore that the vertical
variation of the static stability parameter is a necessity for instability of longe r
waves. In the following section we shall investigate this tentative conclusion using
a quasi-nondivergent model .
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Primitive equations, UT2=10 m per s, UT4=30 m per s
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Fig . 20 : The e-folding time in days for the case with UT2 = 10 m per s and U T, = 30 in per s .

Primitive equations, UT2=UT4=10 m pers, si2=si4=3 .61
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Fig . 21 : The e-folding times, when the two stability parameters are equal to 3 .61x70-6 m4 s2 kg2 . Insta-
bility is present only for the shorter waves .
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6 . Three-level, quasi-nondivergent model

It has been seen that only the so-called general model with a vertical variation o f
the static stability parameter shows baroclinic instability for very long waves, whil e
the so-called balanced model shows baroclinic instability for the shorter wave s
only. One may therefore ask if the instability of the very long waves requires a vari -
ation with respect to pressure of the static stability parameter . The standard two-
level, quasi-nondivergent model with a constant value of the stability measure ha s
only instability for the shorter waves . The most simple model permitting a vertical
change of the stability measure is thus the three-level, quasi-nondivergent model .
This model has been investigated for baroclinic instability by the author. The basic
equations for the model may be found in the paper by Wiin-Nielsen (1989) . The
parameter in question is for quasi-geostrophic models defined as given in (6 .1) .

(6 .1 )

The vertical variation of a has been investigated (Wiin-Nielsen, 1991) . The sta-
bility parameters have the same values as used in Section 5 . We shall first demon -
strate that the quasi-nondivergent model has instabilities similar to the model base d
on the primitive equations .

Figure 22 shows the computed e-folding time as a function of wavelength for th e
shorter waves in a model with UT2 = 30 m per s and UT4 = 10 m pers . Instability i s
found from 2300 km to almost 9000 km . Figure 23 indicates that instability of a
weak nature is present for the long waves from about 12600 km . In the next calcu-
lation with UT2 = 10 m per s and U T4 = 30 m per s we find for the shorter waves
instabilities from 2000 to 9000 km (se Figure 24) . For the long waves the e-foldin g
time are shown in Figure 25 . Weak instabilities are present . After these preparation s
confirming that also the quasi-nondivergent model indicates instabilities for the
long waves we turn to the special case where the values of both s 2 and s4 are equa l
to 3 .61x10-6 m4 s 2 kg-22 . Figure 26 shows also for the quasi-nondivergent model tha t
the instabilities are restricted to the shorter waves .

In section 2b we have applied the two-level model to get an estimate of th e
velocity of the thermal wave and found that the order of magnitude is 190 m per s .
While dealing with three-level models we may use the model to determine the
velocities of the thermal waves . As in the simple case of two levels we need the
equations of motion, the thermodynamic equations and the continuity equations .
Applying the equations of motion at the three levels marked 1, 3 and 5 we get th e
equations listed in (6 .2) .
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Quasi-nondigergent 3 level model, s2=5.31,s4=1 .91, Ut2=30 m per s, Ut4=10 m per s
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Fig. 22: The e-folding times in days for the three level quasi-nondivergent model for the shorter waves .

Quasi-nondivergent 3 level model,s2=5 .31,s4=1 .91,Ut2=30 m/s,Ut4=10 m/s
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Fig . 23 : The e-folding times in days for the three level quasi-nondivergent model for the longer waves .
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Quasi-nondivergent 3 level model,s2=5 .31,s4=1 .191,t2=10 m/s,Ut4=30 m/s
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Fig . 24 : As Figure 22, but with UT2 = 10 m per s and UT4 = 30 m per s .

Quasi-nondivergent 3 level model,s2=5 .31,s4=1 .191,t2=10 m/s,Ut4=30 m/s
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Fig . 25 : As Figure 23, but with UT2 = 10 m per s and UT4 = 30 m per s .
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Quasi-nondivergent 3 level model, s2=s4=3 .6 1
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Fig . 26 : E-folding time (days) for the case where s 2 = s4 = 3 .61 .
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The thermodynamic equation is used at levels 2 and 4 with the result given in (6 .3) .

St

	

+(3-2P02 = 0

St

	

+64PC04 = O

We apply finally the continuity equation at level 1, 3 and 5 with the results show n
in (6 .4) .

6 . 5

(6 .2 )

S(Ø,-Ø3)

(6 .3)

S(Ø3-Ø5)
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Sul + - = 0
Sx P

Sua + O)4-(02
= 0

Sx
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P
O=

By adding the three equations in (6 .4) we get zero which of course says that the ver-
tical average of the divergence vanishes in agreement with the boundary condition s
that the vertical p-velocity in the model is zero at the top and the bottom of the
atmosphere .

The eight equations are reduced to three equations by first eliminating the ver-
tical p-velocities, i .e . substituting from (6 .4) into (6 .3) . Thereafter we eliminate the
geopotentials . The final three equations are given in (6 .5) .

S2u i

	

b2 u3

	

2	 &Il l
3t2 -
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2	 SZU S

St2

	

St2 -
64P Sx2

Su, 6u 3
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Sx + Sx + Sx -
0

The normal form of the perturbations are introduced in (6 .5) resulting in three
linear equations . Setting the determinant equal to zero we obtain the fourth degree
equation given in (6 .6) .

3c4-2 (02P2 + a4P2) c2 + a2a4P4 = 0

	

(6 .6 )

The solutions of (6.6) are calculated using the same values of the two static stabili-
ties as employed in the previous program recalling also that P = '/3 105 P. The
numerical values are 72 .9 m per s and 42 .1 m per s . It is thus seen that the thermal
waves will move with considerable speeds in the models permitting a vertical vari-
ation of the static stability.

7 . General description of inertial motio n

The very brief description of inertial waves found in Section 2a uses a constan t

(6 .4 )

(6 .5)
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value of the Coriolis parameter. If this assumption is maintained, the trajectory of a
particle influenced only by the Coriolis force will be a circle as demonstrated i n
elementary meteorological textbooks (see for example Wiin-Nielsen, 1973) wher e
it also is found that the radius of the circle becomes V olt where V o is the initial
velocity. It was pointed out in Section 2 that inertial motion seldom is seen in th e
real atmosphere because it requires a vanishing pressure force . However, inertial
motion is important for many other applications where a calculation of the path o f
a body in the gravity field of the Earth is required. It may thus be of interest to
determine such trajectories .

Assume for example that a particle at the initial time starts from a given point o n
the spherical Earth with a velocity V 0 from south to north . As it moves to the north
it will experience an increasing Coriolis force (f = 2 Q sin ((p)) . The particle will
therefore turn more to the right than at the initial time . When it goes through the ini -
tial latitude, it will start to experience a smaller Coriolis force, and it will then turn
less to the right . This means that the particle will not return to the original longi-
tude, but will have moved to the west . This qualitative description can be verifie d
by integrating the equations of motion on the sphere . The equations of motion for
the problem are shown in (7 .1) together with the equations necessary to provide th e
new positions in longitude and latitude .

du

	

u
dt = vsin ((p) (2 + cos (cp)

dv

	

( gyp) (2 +

	

u
dt

= usin

	

cos ((p) )

dX

	

u
dt - cos (cp )

dcp
= v

d t

The four equations are integrated numerically. Figure 27 shows an example wher e
the initial position is at longitude 0 and latitude 45 with an initial velocity fro m
south to north of 20 m per s . It is seen that the spiral motion gradually moves the
particle further to the west. Figure 28 shows another case where the particle start s
at the equator with a northward velocity of 20 m per s . The change in sign of the
Coriolis parameter at the equator is apparent. Figure 29 shows the very special cas e
where the particle comes back to the original position on the equator .

It is also possible to calculate the trajectory for three-dimensional, inertia l

(7 .1)
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Fig . 27: Inertial motion starting from X = 0, 9 = 25, v= 20 m per s .

motion. An example will be shown . We consider a particle leaving the surface o f
the Earth at time t = 0 with an initial vertical velocity of 1000 m per s . We use in
this example cartesian coordinates . In the equations for the vertical components o f
the velocity and the position we pay attention to gravity, (g = 9.807 m per s 2) . The
three equations of motion are given in (7 .2) .

du _
dt- - Li; - e aw

dv _
d t- - -f°u

dw
dt- = eau - g

fa = 2Qsin ((pa) ; ea = 2SZcos ((pa)

(7 .2)
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Fig . 28 : Inertial motion starting from X, = 0, cp = 0, v=20 m per s .

Inertial motion starting from equator with u=-20 m/s, v=22.9m/s
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Fig . 29 : Inertial motion starting from A. = 0, cp = 0, u= - 20 m per s and v = 22 .9 m per s .

86



36

	

MfM 48

Three dimensional inertial motio n
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Fig . 30 : The horizontal projection of the trajectory of the three-dimensional inertial motion starting fro m
x=y=z=O,u=v=0,w=1000mpers .
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Fig . 31 : The (x,z) trajectory for the case illustrated in Figure 30 .
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In addition we have the definitions of the three velocity components giving six
equations to integrate . The integrations are continued to the time when the particle
has landed on the Earth .

Before the presentations of the result one may consider the type of three-dime-
sional trajectory that can be expected . First of all, during the flight of the particle
the Earth will move from west to east indicating that the particle will hit the surfac e
of the Earth to the west of the starting point . However, the Coriolis force will a s
usual get the particle to turn to the right in the Northern Hemisphere, so the particle
should land to the north of the starting position .

Figure 30 shows the (x,y)-trajectory with both coordinates given in m . The par-
ticle returns to the surface of the Earth a little more than 700 m to the west and
about 7 .5 meters to the north. Figure 31 shows the height of the particle as a func-
tion of time . It is seen that the particle comes to a height of more than 50 km, bu t
the Earth is reached again after about 200 s or a little more than 3 minutes .

The case has also been treated in spherical coordinates, but the results are essen-
tially the same due to a very small displacement in the meridional direction .

8 . General determination of the thermal wave spee d

It is of interest to investigate a more general case than the two- or three-leve l
models for the determination of the thermal wave speed. It has been pointed ou t
that the static stability parameter according to observational studies in the tropo-
sphere varies as given in (8 .1) .

PZ6= 6op
2

The expression in (8 .1) is approximately in agreement with an atmosphere with a
constant lapse rate . Evaluating the static stability parameter by using the gas equa-
tion and the definition of the potential temperature the expression in (8 .2) i s
obtained .

8(logØ) R2 T
6=-a

	

_
SP

	

SPZ (Y,r-Y)

Since the variation of temperature in the vertical direction is much smaller than th e
variation of p 2 , (8 .2) is in reasonable agreement with (8 .1) . On the other hand, (8 .1 )
cannot be used at the top of the atmosphere because the static stability goes to
infinity as the pressure approaches 0 . To obtain a more accurate determination o f

(8 .1 )

(8 .2)
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the higher components of the thermal speed, it was decided to use (8.1) for the tro-
posphere only with the assumption that the vertical p-velocity vanishes at the top
pressure level (say, 250 hPa) and at 1000 hPa . Under these assumptions we may
obtain an equation for the vertical p-velocity by eliminating all the other variable s
from the perturbation equations . This equation is given in (8 .3) .

z
p2 d~+ 6 w= 0

p

We shall use the notation introduced in (8 .4) .

A = 6op o
c 2

B = (4A-1) ' '2

The solution of the differential equation in (8 .3) may then be expressed as shown i n
(8 .5) .

w =

	

(Cleos (Blog (p)) + C2 sin (Blog (p))

	

(8 .5 )

We use first the boundary conditions that the vertical p-velocity is zero for p = PT
and p = po . After some derivations it is found that the phase speed c is determined
by the relation shown in (8 .6) .

2
cz =	 46op o

2 ~t'n
1+	

2

ln

	

)(pT

It is also possible to investigate the changes if the simple boundary condition of a
vanishing vertical p-velocity at 1000 hPa is replaced by the boundary conditio n
given in (8 .7) .

_ po SØ
(D

	

RT, St

Substituting from the thermodynamic equation we may write (8 .7) in the form
shown in (8 .8) and valid at 1000 hPa .

~p=RTo 6ow

(8 .3 )

(8 .4 )

(8 .6)

(8 .7)

(8 .8)
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The basic solution of the omega-equation is the same as before, but applying (8 .8 )
as the boundary condition we obtain a different expression from which the thermal
wave speed may be determined . This equation is obtained by using (8 .7) at the
lower boundary, while the boundary condition at p = p T is oo = 0 as before. The new
equation for the phase speed may be written in the form shown in (8 .9) .

(1-2r°) sin (Bln (po)) -2Bcos (Bln (I )) = 0

	

(8 .9 )
r° -

RT°

The notation in (8 .4) has been introduced in equation (8 .9) . The problem is thus t o
solve (8 .9) for B whereafter the phase speed is determined . The solution of (8 .9)
has been obtained by numerical methods .

The positive values of the thermal wave speeds are shown in Figure 32 for th e
two boundary conditions discussed above and as a function of n . It is seen that the
thermal wave speeds are quite small for the components with the larger values of n ,
and that the more correct boundary condition results in a slower motion of th e
thermal waves in analogy with the results obtained in section 2e .

Comparison between two boundary condition s
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Fig . 32 : Comparison between calculations using the two boundary conditions w = 0 and to = O .
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9. The shape of the wave s

Most of the sections in the present paper contain the dependence on time of th e
amplitudes for the various wave components . In the present section we shall con-
sider the behavior in space and time for the most general model without any basi c
zonal velocity. No instabilities are present in such a model . As before we consider
the two level model with the lower boundary condition that o) = 0 at po = 1000 hPa
giving six equations, i .e . the vorticity equation at 500 hPa and the vorticity equatio n
for the thermal flow, the divergence equations corresponding to the vorticity equa-
tions, and the geopotential at 500 hPa and for the thermal flow .

The six linear equations were integrated with respect to time from initia l
geostrophic conditions relating the streamfunction to the geopotential and a
velocity potential computed from the solution of the quasi-geostrophic equation for
the vertical p-velocity as discussed in section 8 .

Figures 33, 34 and 35 show the two components of the streamfunction, the
velocity potential and the geopotential as a function of time for 960 hours (4 0
days) . Considering these figures it should be recalled that the streamfunction value s
are divided by 10', the velocity potentials by 10 6 and the geopotentials by 10 3 . It i s
seen that weak numerical noise appears in the velocity potential .
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Fig . 33 : The variation of the two components of the scaled streamfunction as a function of time (hours) .
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Fig . 34 : As figure 33, but for the scaled velocity potential .
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Fig. 35 : As Figure 33, but for the geopotential .
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Figure 36 shows the streamfunction, the velocity potential and the geopotentia l
at 50 hours . It is seen that the geostrophic relation is present since the curves for th e
scaled streamfunction and the scaled geopotential coincide. The maximum value of
the geopotential can easily be converted to a vertical p-velocity using the continuit y
equation. For a wavelength of 5000 km it is found that the magnitude of thé vertical
p-velocity is about 0 .5 Pas-' which is equal to a vertical velocity of about 7 cm s-' .
Figure 37 contains the same information as Figure 36, but at the time of 100 hours .
It is clearly seen that the wave moves from east to west, i .e . c is negative . The dis -
tance between the maxima at 50 and 100 hours gives a measure of the negativ e
wave speed. For L = 5000 km we find an averaged wave speed of -4 .4 m pers-' .

10. The boundary condition at p = po

The boundary condition at p = p o has been used in some of the problems in the pre -
sent paper . The purpose of this section is to discuss the importance of this boundar y
condition. Needless to say, it is generally easier to handle the mathematics if one i s

Relations at 50 hours
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Fig . 36 : Variations of the scaled velocity potential (dotted curve), the scaled streamfunction and th e
scaled geopotential as a function of x, the west-east coordinate, after integration over 50 hours .
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Relations at 100 hours

x
Fig . 37 : As Figure 36, but after integration of 100 hours .

permitted to use the simple boundary condition : co = 0 at p = po . However, one
cannot justify the simple condition in all cases . To illustrate this matter we return to
the general case treated in Section 2 . We use as before the primitive equations of
motion supplemented by the thermodynamic equation and the continuity equation .
The dependent variables are therefore the three components of the three-dimen-
sional wind vector and the geopotential . As we have seen the perturbation equa-
tions without any basic velocity can be reduced to an equation for the vertical p -
velocity in the form given in (10 .1) .

dp +i
B2 w = 0

	

(10 .1 )

The independent variable p . is the nondimensional pressure p/p o . The dependen t
variable is the amplitude of the vertical p-velocity and the factor B 2 is defined as
given in equation (10 .2) .

B2=	 CT (C+CR)
c ((c + CRY - cÎ

0.2 0 .4 0.6 0 .8 1

(10 .2)
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The solution satisfying the upper boundary condition w = 0 is given in (10 .3) .

w = Esin (Bpi)

	

(10 .3 )

When the solution has to satisfy the simple boundary condition w = 0 at p, = 1 w e
find B = n it . The equation for the phase speed is then as given in (10 .4) . This cubic
equation has been solved earlier for c using the value C T2 = 3 .61x104 m2 s-2 giving
a real speed for all values of the wavelength .

Ci

	

ic3 + 2CR C2 + (CR - C;-
(n7c)z) c

Cx (n )2 =
0

	

(10 .4 )

The more correct boundary condition at pLL = 1 is w = 0 . As we have found this
boundary condition may be written in the form displayed in (10 .5) .

dp* CTB2w = 0

P. = 1

To determine B in this case one has to solve the equation given in (10 .6) .

cos(B) - CT Bsin(B)= 0

The equation in (10.6) has been solved numerically . The first 10 roots are : B(0) =
0.6164, B(l) = 3 .2742, B(2) = 6 .3518, B(3) = 9 .4709, B(4) = 12 .6010, B(5) =
15 .7357, B(6) = 18 .8727, B(7) = 22.0110, B(8) = 25.1501, B(9) = 28 .2898 . We may
compare these numerical values with the numbers nit which are the equivalen t
numbers for the boundary condition w = 0 . It is seen that B(n) is close to n it for the
larger values of n . The approximation is acceptable for n>l because B(2)/(2 7t) =
1 .01. For n = 1 we have B(1)/n = 1 .04. With this value one will notice a real differ-
ence between the two profiles at p :,: = 1 . The solution B(0) = 0 .6164 has no equiva-
lent solution if the simple boundary condition is used . It is a very special solution
starting by being zero at the top of the atmosphere and increasing to a maximu m
value of 0 .58 at p . = 1 .

It should be mentioned that the results given above are based on a basic state o f
rest . When a zonal current in the basis state is introduced we may experience baro-
clinic instabilities, but the fast waves will still be present .

(10 .5 )

(10 .6)
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11 . Geostrophic adjustmen t

The observed horizontal wind in middle and high latitudes is almost geostrophic .
The reasons for this fact have been investigated by many meteorological author s
from Rossby (1938) to Kuo (1997) . All these investigations do not consider forcing
and dissipation . A different approach to the problem of geostrophic adjustment ha s
been presented by Wiin-Nielsen (2001) . It is the purpose to simulate geostrophi c
adjustment in a model containing both forcing and dissipation . Starting from a state
of rest the forcing will create atmospheric motion . The question is if the winds in
the model will approach a state of quasi-geostrophy .

An example of quasi-geostrophic motion can be obtained by adopting a model of
a homogeneous fluid which is disturbed by addition of fluid in some areas an d
removal of fluid in other areas in such a way that the net addition of fluid is zero .
The equation of the experiment are given in (11 .1) .

Su

	

Su

	

Su

	

ô Ø
St

+ u
Sx

+ v
~y

= -
bx

+ ft-eu

Sv

	

Sv

	

Sv

	

ôØ
bt

+u
Sx

+v - =-
cSy

+fu-sv

SØ S(Øu S((Pv )

St + öx + Sj, = ( ØF-Ø)

The above equations are integrated with respect to time in a rectangular region. It i s
assumed that the northern and the southern boundaries behave like walls resulting
in v = 0 at the wall . Periodic conditions are applied at the western and easter n
boundaries . It is assumed that the grid size is 280 km . A timestep of 5 minutes i s
used in the integration . The dimensions are (0,31) in the x-direction and (0,17) i n
the y-direction. The forcing function is defined in (11 .2) .

Ø F = Ou sin (n	 j.-1 ) sin (27c	 i-1)

	

(11 .2)
Jni 1

	

lm l
ØQ = 2000m Z S 2

At the end of a time integration the geostrophic wind components were calculated
from the predicted geopotential field . The magnitudes of the model wind and the
geostrophic wind were also calculated after the time integration . Figure 38 show s
the comparison between the model wind and the geostrophic wind after an integra-
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Geostrophic adjustment
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Fig. 38 : A comparison between the predicted winds in the model based on the primitive equations and
the calculated geostrophic winds at the same time .

Lion over 51 hours . This particular time is selected because the winds at t = 51 hour s
are at a maximum in the central part of the region . It is seen that the model winds
have become almost geostrophic during the integration .

12. The vertical velocity

The vertical velocity is an important parameter in meteorology, because it has a
major influence on the formation and disappearence of clouds and precipitation . In
addition it determines the conversion from available potential energy to linetic
energy . In spite of its importance it does not belong to the parameters which can b e
observed with the present procedures for local and global routine observations . Due
to its importance it is a necessity to provide procedures by which the vertica l
velocity can be computed from the other observed quantities .

Using the pressure as the vertical coordinate it would be natural to compute th e
vertical p-velocity from the continuity equation as given in (12 .1) .
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Su Sv Sw
Sx

+ S + S = O
Y P

(12 .1 )

Considering a vertical column the horizontal divergence can in principle be calcu-
lated from the partial derivatives of u and v. Integrating from the top where the ver -
tical p-velocity is zero at p = 0 one can then integrate equation (12 .1) and calculate
the vertical p-velocity at the required levels . Such calculations have bee n
attempted. It turns out that the values of u and v are so inaccurate that the errors i n
the calculation of the horizontal divergence are too large to provide an acceptabl e
values of the vertical p-velocity.

It turns out that a better procedure is to use the fact that the observed state of th e
atmosphere is quasi-geostrophic . The valid equations are thus the quasi-geo-
strophic vorticity equation and the thermodynamic equation. These equations are
given in (12 .2) where we for simplicity have disregarded the heating and the dis-
sipation . In addition, we have introduced the ordinary simplifications in the vor -
ticity equation such as disregarding the relative vorticity as compared to the Corio -
lis parameter.

Sc S~ S _ Sw
+u+ vSt

	

åx

	

SY

	

SP

St(Sp)+u Sx (Sp)+v Sy
(Sp)+ßw =0

	

(12 .2 )

SZ tv 62 ly
W f ~

Sx2
+ Syt

The time derivatives are eliminated by differentiation of the vorticity with respect
to p, taking the Laplacian of the thermodynamic equation and subtracting th e
resulting equations . The result is the so-called omega-equation which afte r
rearrangement is shown in (12 .3) .

fo S~ +
6v2 w = G

P

G = .Îo[S-Sp(u Ç+v~+ßbx)

	

(u~ (Sp) +v~y(Sp)) ]
The right hand side of the equation in (12 .3) may be calculated from fields of th e
geopotential . The equation may then be solved for the vertical p-velocity by numer -
ical procedures . For the present purpose we shall be satisfied by obtaining solution s

(12.3)
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for relatively simple specifications of the streamfunction . The static stability para-
meter appearing in (12 .3) as a factor in front of the Laplacian may either be
assumed to be a constant or increasing with decreasing values of the pressure . Cal-
culations of the static stability parameter from observations show that the para -
meter is inversely proportional to the square of the pressure . When this relation is
introduced in the omega-equation in (12 .3) we get an equation as shown in (12 .4) .

z
.1=E' Sp*

+ fp° 7z w = plf

	

(12 .4)

The evaluation of the function G is based on the assumption that both the basi c
zonal wind and the streamfunction of a wave with a single wave number increas e
linearly from the surface of the Earth to the tropopause, assumed to be at 250 hPa,
whereafter they decrease linearly to the value 0 at the top of the atmosphere . Under
these simple conditions the equation (12 .4) may be solved analytically. The result i s
shown in Figure 39 which indicates that the vertical p-velocity has opposite sign s
in the stratosphere and the troposphere .
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Fig . 39 : The vertical p-velocity as a function of non-dimensional pressure . The zonal wind and the eddy
streamfunction increases linearly from the surface to the tropopause and decrease linearly to the top o f
the atmosphere .



MfM 48

	

49

Simpler models using finite differences in the vertical direction may also be used .
In the two-level model we have only one vertical velocity at 500 hPa in each vertica l
column . Figure 40 shows the streamfunction at 500 hPa and for the thermal flow . A s
is typical for the atmosphere, the therntal streamfunction (dotted curve) is located t o
the west of the streamfunction at 500 hPa (solid curve) . The vertical p-velocity i s
shown in Figure 41 together with the thermal streamfunction (dotted curve) . We no -
tice the fact that the omega curve is mostly positive where the thermal streamfunc-
tion is negative . This means of course that on average the warm air is rising and th e
cold air is sinking . Another conclusion from this fact is that the contribution from th e
vertical p-velocity and the thermal streamfunction to the energy conversion from
eddy available potential energy to eddy kinetic energy is positive .

We turn next to the three-level model . Figure 42 shows the three streamfunction s
for the levels in the model . They are also in this case selected in such a way that th e
wave is tilting from east to west as the presuure is decreasing in the vertical direc-
tion. Figure 43 shows the computed vertical velocities at the pressure levels po /3
and 2 pß/3 . We notice again from Figure 40 and 41 the fact that on average the
warm air is rising and the cold air is sinking .
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Fig . 40 : The 500 hPa streamfunction (solid curve) and the thermal streamfunction (dotted cureve) in th e
two level model .
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2-level model
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Fig . 41 : The vertical p-velocity (solic curve) computed from the specification in Figure 40 . The dotted
curve is the thermal streamfunction .
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Fig . 42: The three streamfunctions in the three-level model indicating a single wave sloping from east to
west as the pressure decreases .
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Fig . 43 : The vertical p-velocities computed from the streamfunctions as shown in Figure 42 .

13. Concluding remarks

The nature of the early work in dynamic meteorology was hampered by the nonlin-
earity in the equations of motion . Any closed solutions of rather general problem s
were impossible . The early theoretical work in dynamic meteorology was of neces-
sity limited to problems of balance as for example the geostrophic and gradien t
winds as well as the vertical variations of these winds . For other problems of a the-
oretical nature one used mainly the perturbation technique to provide answers to
many problems such as the questions of stability of atmospheric waves resulting in
the investigations of the stability of baroclinic and barotropic flows .

As fast computers became available in the middle of the 20'th century with a
rapid increase in both capacity and speed, it became possible to develop a series of
so-called quasi-geostrophic atmospheric models ranging from the barotropic mode l
to baroclinic models with increasing resolution in both the horizontal and the ver -
tical directions . These models have been important for both the numerical weather
predictions and for the simulation of the climate of the Earth, primarily after a quit e
realistic inclusion of the heating and the dissipation . The meteorological publica-
tions from the second half of the 20'th century contain a multitude of studies docu-
menting the advances in both weather predictability and climate simulations .
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The great emphasis on these studies has apparently resulted in a declinin g
interest in theoretical studies of the nonlinear problems in dynamic meteorology .
The present study is an attempt to consider the well known stability studies o f
atmospheric flows using not only the perturbation method, but also a numerical
treatment of the nonlinear equations for an extremely simple model using only a
single wavelength and a simple specification of the heating and the dissipation. In
addition, several of the stability studies are based on the primitive equations and
not only on quasi-nondivergent models .

The results obtained in this way are an expansion of the classical stability studie s
to the nonlinear domain using numerical integrations. In the most general case w e
use the vorticity and divergence equations coupled with the thermodynamic and the
continuity equations. The treatment provides not only the growth of unstable
waves, but also the development of the shape of the atmospheric waves through the
exchanges of energy between the zonal state and the eddies including the asymp-
totic approach to a steady state. The general model develops waves with both
momentum and sensible heat transports by the waves and an energetics which i s
similar to the observed diagrams with respect to directions and in reasonable agree -
ment with the magnitudes recalling that the model contains one wavelength only.
The only major difference between the model and the atmosphere is the relatively
large negative velocity of the very long waves .

The paper contains also an analysis of the three-level quasi-nondivergent mode l
in order to show that also this model with vertical variation of the static stability i s
unstable for the very long waves . Some general cases of two- and three-dimen-
sional trajectories for inertial motion are included in the study. In Section 8 the
thermal wave speeds for a tropospheric continuous model are determined under the
conditions that the vertical p- velocity vanishes at the pressure levels p = PT and p =
p o , where p T is larger than zero .

Numerical experiments with an atmospheric model indicate the time it takes fo r
the model, starting from rest, to reach a quasi-geostrophic state . It happens in 2 to 3
days .

In the investigations of the various wave types it has been emphasized that ver y
large values of the phase speed are present for the thermal waves and for the lon g
waves from both the inertial and the Rossby waves . At the end of the paper w e
should mention that these large wave speeds create no serious problems when care
is taken to start from a state in quasi-geostrophic balance, see Machenhauer (1977 )
and Kuo (1997) .
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