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Abstract

A two level, quasi-nondivergent model is used to investigate the distribution of wind and temperature in

the meridional plane under influence of the exchange processes between the eddies and the zonall y

averaged state . The model incorporates heating and friction, and the transports of potential vorticit y

and sensible heat by the eddies are parameterized using exchange coefficients which depend on th e

vertical and the meridional coordinates . The steady state problem is solved using low order representa-

tions of the streamfunction. The beta plane case and the spherical case are treated separately.

In both cases it is found that the models can account for the main characteristics of the zonall y

averaged state of the atmosphere . The region of validity of the parameterization schemes is determine d

by experiment in each case . It turns out that the validity is determined by the intensity of the heating.

Dr . A . C . WIIN NIELSEN

Solbakken 6

DK-3230 Græste d

Denmark

© Det Kongelige Danske Videnskabernes Selskab 1988

Printed in Denmark by Special-Trykkeriet Viborg a- s

ISSN 0023-3323 ISBN 87-7304-185-8



1 . Introduction

About 300 years ago the famous British astronomer Edmund Halley (1686) mad e

the first detailed survey of what was then known about the winds in the lower

latitudes in three separate oceans . Halley is remembered today mainly because hi s

name was given to a comet which visited our part of the solar system a short time

ago, but in the meterological community he stands as the first scientist who sys-
tematically mapped the winds and sought a common cause for them . He was the

first to point out that the northeasterly trade winds north of the equator and th e

southeasterly trades on the south side blow as they do because the equator is th e

most strongly heated region. The maximum heat source at the equator creates a

general rising motion and for continuity reasons the upgoing air must be replace d

by essentially horizontal currents streaming in toward the equator. These winds d o
not come straight from the north and the south in the two hemispheres because o f

the deflecting force due to the earth rotation which in the northern part deflects t o

the right resulting in a northeasterly wind while the deflection is to the left in th e

southern hemisphere resulting in the southeasterly trade winds .

Half a century later George Hadley (1735) returned to the subject in a famou s
paper where he discussed the cause of the general trade winds . His opening words

are : "I think the causes of the General Trade-Winds have not been fully explaine d

by any of those who have wrote on that subject . . ." As late as two decades ag o
Edward N. Lorenz (1967) stated in his book on the nature and theory of the

general atmospheric circulation that these words "seem to afford an apt descriptio n

of the state of the same subject today." He states further : "Yet not in any of th e
thousand or more excellent works which have appeared since that time, nor in an y

combination of the works, is a full explanation of the distribution of easterly and

westerly winds to be found ." The author of the present contribution to the subjec t

can agree with Lorenz's statement although new ideas and theories have appeare d
in recent years . As we shall see, these theories do not answer all questions . In spite
of the incomplete nature of the new approaches it seems worthwhile to present a n

account of present thinking with the purpose of formulating strengths and weak-
nesses which may result in further improvements .
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The classical problem is that an explanation of the typical wind distribution with

easterlies in the low latitudes, westerlies in the middle latitudes and weak easterlie s

in the high latitudes is required . The present formulation is broader . We seek an

answer to the above question which is in agreement with what we know now abou t

the windsystems in the whole atmosphere and the transport processes which ar e

required to maintain the winds and are observed in the atmosphere . In a sense it i s

much more difficult to produce an acceptable theory today simply because we have

increased our knowledge of the temperature and wind distributions in the majo r

part of the atmosphere through the global network of surface and upper air obser-

vations which have been developed since World War II . It is as a matter of fact
relatively easy to discard some earlier theories since they do not agree with presen t

knowledge of the transport processes . In this connection it is illustrating to revie w

briefly the classical approach to the problem .

Common to all investigations before this century are that solutions were sough t
within the framework of the axi-symmetrical circulations or solutions which can be

represented in a meridional plane from the South Pole to the North Pole of the

earth . It is not the purpose of this paper to review all the various proposals which

have been made of this kind. They have mainly historical interest and are furthe r

described in an excellent manner by Lorenz (1967) in his chapter on former

theories of the general circulation . However, it is pertinent to mention that they

consisted of a number of mean meridional cells of circulation . The most commo n

scheme has a thermally direct tropical cell, the Hadley circulation, with risin g
motion at and near to the equator and descending motion in the area of th e

subtropics, say 30°N . The middle latitudes have a neighboring cell with the jus t

mentioned sinking motion, but connected to a rising motion in the higher middl e

latitudes, say 60°N for simplicity . This cell, normally called the Ferrel cell after the

American scientist, is thermally indirect because the warmer air is sinking and the

cooler air is rising. Finally, the polar cell is again thermally direct with sinkin g

motion in the region of the pole . With this arrangement one can account for the
surface winds since the deflecting force, hereafter called the Coriolis force, wil l

give easterlies and westerlies in the correct latitudes at the surface, but the descrip-

tion will fail miserably aloft where it will give easterlies when westerlies are ob -

served . In addition, the existence of these meridional circulations are postulate s

and not the results of physical reasoning .

An additional test to which one should put any proposed scheme is to investigat e

whether or not the circulations can satisfy the general balance requirements for th e

atmosphere . It is of course known that the earth for astronomical reasons is heate d

at the equator and cooled at the poles . Since the temperatures in these regions are

not steadily increasing and decreasing, it is required that a heat transport takes

place from equator to pole in each hemisphere. Similarly, due to the friction
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between the atmosphere and the surface of the earth, the westerly momentum wil l

decrease in a region of surface westerlies, while the easterly momentum will de -

crease, i.e . the westerly momentum will increase, in a region of surface easterlies .

The requirement for balance is therefore that westerly momentum is transported

from the low and high latitudes into the middle latitudes where westerly momen-

tum is lost . Regardless of whether or not a proposed circulation scheme is correct it

must satisfy such balance requirements . A further balance requirement exists for

the moisture in the atmosphere . It requires that moisture is transported into a

latitudinal zone when the precipitation exceeds the evaporation, but the late r

description of the present calculations will not include moisture .
As stated before, the former theories, i.e . before this century, attempted to solv e

the problem by using axi-symmetrical models . The required transports are then to

be carried out by the proposed mean meridional circulations . A first question is ,

naturally, if this is a realistic approach, or, in other words : Are the transports in th e

real atmosphere carried out by mean meridional circulations or by other mechan -

isms? A novel attempt to break the deadlock concerning the old theories was made
by Albert Defant (1921) . At that time one had drawn weather maps for quite a

number of years and was familiar with the motion from day to day of the atmos-

pheric waves, the low and high pressure centers, etc . Defant's idea was to conside r

all these disturbances on the zonal current as macro-turbulence' elements knowing

of course that the empirical description of turbulence, especially the concept o f
exchange coefficients, was developed for turbulence elements on a minute scale .
The concept of the exchange (or Austausch) coefficient is based on the so-called

mixing length description and says that the transport of a conservative quantity i s
from a region of high values to a region of low values . Mathematically the principle
says that :

Av - - xvtt

	

(1 .1 )

where the overbar means an average value .

Applied to the northward transport of heat (1 .1) may be written in the form :

Tv = _ .K
aT

ay

when T is the absolute temperature, v the meridional velocity component, y is th e
ordinate pointing northward and K the exchange coefficient . Defant found that th e
exchange coefficient was about 7 x 106m2s' applying the mixing length descrip-
tion. Considering a column from the surface to the top of the atmosphere we hav e
from the steady-state thermodynamic equation that :
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1
=

	

Q (1 .3)

or using (1 .2) that :

dy

	

CP

d 2 T

	

Q
(1 .4 )

dy 2

	

CPK

(1 .5)

Q is the average heating per unit mass and unit time . Assuming that

Q = QA cos (7r )W

where W is the distance from equator to pole, i .e . W = 107 m we may solve, (1 .4 )
and obtain :

AT -
KC
"2 cos 1 7f )

	

(1 .6)
P

	

\

Using QA = 10-210 is1 we find that AT„uL, is about 14°K or a temperature differ-

ence from pole to equator of 28°K in reasonable agreement with observations .
Based on calculations of this kind Defant concluded that the large-scale circulatio n
could be considered as a form of turbulence .

The idea of considering the atmospheric waves as macro-turbulence was no t

taken up again for many years . Defant is, however, the first to suggest that th e
required heat transport may be carried out by the atmospheric waves rather than

by the mean meriodional circulations . If this is so, it follows also that the zonall y

averaged circulation cannot be explained without paying attention to the interac-

tion between the zonally averaged quantities and the waves .

A similar conclusion was reached by Jeffreys (1926) with respect to angula r

momentum. He found that the balance requirements for momentum could not be
satisfied by a mean-meridional circulation because the amounts were too small ,

and he concluded the cyclones and anti-cyclones gave a major contribution to th e

total transport .

At the time of the investigations by Defant and Jeffreys it was not possible to tes t
their ideas by a direct calculation of the transports of sensible heat and angula r

momentum since a global observation network did not exist, and since observa-

tions from the upper part of the troposphere were not yet available . The direct

calculations became possible around 1950 when upper air observations becam e
available from the radiosonde network which had sufficient coverage to permi t
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calculations over the greater part of the Northern Hemisphere . Many investiga-
tions have given valuable contributions through such diagnostic calculations based
on the standard data over the last few decades, but the original proposals and th e
basic framework were provided by Starr (1948), Bjerknes (1948) and Priestle y
(1949) . The main results of all the investigations have once again been summerize d
by Lorenz (1967) . For our purposes it will suffice to say that the results of th e
diagnostic studies confirm that the transport carried out by the eddies in all cases
(i.e . for momentum, heat and moisture) give a very significant contribution to
satisfying the required balance requirements . On the other hand, it would be
incorrect to say that the contributions from the mean meridional circulation in al l
cases and at all latitudes are insignificant . In particular, it seems as if the mea n
meridional circulations play a larger role in the tropics than in middle latitudes .

We may in any case conclude that the questions posed earlier in this sectio n
cannot be answered without considering the interaction between the zonally-aver-

aged state and the eddies . The crucial question is how one can incorporate the
interactions in a given model . One way to do this experimentally is to formulate a
model of the total atmosphere incorporating properly formulated heat sources and
sinks as well as dissipations, secure a sufficient horizontal and vertical resolution o f
the atmospheric parameters, formulate a stable and accurate time-integration sys -
tem, and finally use the model to simulate the general circulation of the atmos-
phere. The total results of such simulations may subsequently be used to investi -
gate how the zonally-averaged circulation and other budgets are maintained in th e
model .

Very interesting and illuminating experiments of this kind have been carried ou t
by a large number of investigators following the pioneering work by Phillips (1956 )
and Smagorinsky (1963) . All experiments have shown that the simulations are i n
essential agreement with the observed behavior of the atmosphere with respect t o
the zonally-averaged structure . One may, however, say that these experiment s
confirm that we know the equations applicable to the atmosphere and that ou r
knowledge of the driving and dissipating forces for the atmosphere is good enoug h
to reproduce some essential features of the general circulation . On the other hand ,
experiments do not replace theory, and a theory is still wanted .

In the following sections an attempt will be made to present a theory for th e
zonally-averaged state of the atmosphere . It will be based on the assumption tha t
the larger-scale eddies in the atmosphere in their interaction with the zonally -
averaged state will behave as macroscopic turbulence elements . It will be assumed
that conservative properties are transported in agreement with an exchange coeffi-
cient relation of the type (1 .2) . The theory may thus be considered as an expansion
of the ideas of Defant (1921) and is similar to, but not identical with ideas expres-
sed by Green (1970) and White and Green (1984) . The theory will in contrast to the
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just quoted references be formulated as a steady-state theory and will furthermor e

differ with respect to the treatment of the heat transports and the transport o f

potential vorticity .

2 . On larger-scale exchange and transport processe s

The modeling of the large-scale processes in terms of exchange processes is far

from obvious. One wants a description of the transport processes expressed in

terms of the zonally-averaged quantities, an example of a so-called parameteriza-

tion prescription . Severe difficulties appear immediately if we want to use prescrip-

tions of the type (1 .2), the exchange coefficient approach . While this approach i s

reasonable with respect to the transport of heat as shown by Defant (1921) and

confirmed later by all tropospheric, but not stratospheric, diagnostic calculations, i t

is clear from the diagnostic calculations of the momentum transports that these ar e

by and large from the low to the high regions of the momentum itself . An exchange

coefficient approach is therefore out of the question for the momentum transpor t

unless one wants to use such unphysical quantities as negative diffusion coeffi-

cients. We shall abstain although not everyone has done so . A different solutio n

must be found for the momentum transport .

The author was working on this problem in the late 1960's (Wiin-Nielsen, 1968 )

when a brief note was presented, not even by the author himself, at a symposium i n

Tokyo, Japan (Green, 1968) . The main idea by Green was that the exchange'

coefficient approach is physically justified only for quantities which are conserva -

tive for a particle or at least conserved in an approximate way if other processe s

which may change them work on a much larger time-scale . For the larger-scal e

processes two conservative quantities exist, namely the potential temperature ,

which is influenced by the slowly working diabatic heating, and the quasi-nondiver -

gent potential vorticity, which is influenced also by the slowly working dissipation .

For the first quantity we may write the first law of thermodynamics in the form :

d(eno) _ i
dt

	

C F T

in which O is the potential vorticity, C, the specific heat for constant pressure, T
the temperature and Q the heating per unit mass and unit time . The potential

temperature e is defined by :

O = T
(

P

	

;po = 100c b
po
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The quasi-nondivergent potential vorticity is a quantity which is applicable to a
class of atmospheric models which rest on the following assumptions :

• the horizontal wind can be considered as non-divergent for advection pur-
poses, i .e . V = K x V tp where tp is the stream functio n

• the vertical advection of momentum is negligible as compared to the horizon -
tal advection

• the relative vorticity is negligible compared to the earth's vorticity whe n
appearing undifferentiate d

With these approximations which may be justified for the larger-scale flow by a
detailed scale-analysis (Phillips, 1963) we may write the vorticity equation for the
earth's atmosphere in the form :

at+v .v(f+s) = foa
p

	

P
W + 9K . vXå

T

in which ç = V 2tp is the vorticity, f = 252sin cp is the Coriolis parameter, Q the
angular velocity of the earth, 99 latitude, w = dp/dt is the vertical velocity in a
system with pressure (p) as a vertical velocity, g is the gravity, K a vertical uni t
vector and r the frictional stress . We shall now combine (2 .1) and (2.3) by eliminat-
ing the vertical velocity w . Writing out (2 .1) we obtain :

aene

	

aerie

	

i
_

	

+ V vene+ w

	

=~

	

, Z Q (2 .4)
ät

	

P

	

n

Using (2 .2) and the gas equation

pa = RT (2.5)

in which a is the specific volume we obtain

O_ R 1åt + V• va+waa

	

Q

P

	

C, P

In this equation we introduce the hydrostatic equatio n

=-fo a0 and v=-a aene
a= - Ø

(2 .6 )

(2.7)
ap

	

ap

	

ap

with the result that
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a( 80 )0
+v

.v (a?P) a

	

R
Q atap

	

(np) fo w -c n fo p

It is now a straightforward matter to solve (2 .8) for co and introduce the result in
(2 .3) . After some rearrangements we find :

dt at +v . ve = 9 K .vxåT Rfa
Q

p

	

a

	

p p ~

in which :

a

	

ll= f +v2 ~ +ap
(a~ ap l

is the quasi-nondivergent potential vorticity which from (2 .9) is seen to be con-
served in the horizontal flow in the adiabatic, nonviscous case .

(2 .9), (2 .10) may also be written in a different form . Going back to (2 .4) and
multiplying by a standard value of a, say ao we obtain after rearrangement :

w at(aoenO ) +V .v(~en0)-~ Q

	

(2 .11 )
P ap

Differentiation with respect to pressure and substitution in (2 .3) yields again (2 .9)
where the potential vorticity is :

d~ a

(2 .10)

f +v 2~-ap (aao eno) (2 .12)

The reason for this results is that potential vorticity appears only differentiate d
with respect to time or the horizontal coordinates . We may for example obtain th e
result directly from the thermal wind relation . Starting from :

V = K x VO

	

(2 .13 )

we find :

~v =Kxv= -lKxva=-aKx Vene KxvaoenOl (2 .14)
P

	

p

	

fo

	

fo

	

(Jo

	

/

showing that :
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a-~

	

aoQn0ap

	

fo

The idea put forward by Green (1968, 1970) can now be explained . As mentioned

it rests on the facts that the potential temperature is conserved for a particle in it s

three dimensional motion while the potential vorticity is conserved for a particle i n

its horizontal (or more strictly, its isobaric) motion . The assumption is that th e

transport of such quantities may be realistically approximated by a diffusion ap-

proximation .

Let us first explore the formal aspects of this assumption . For the potentia l

vorticity we obtain :

a
= -K(y, P) ay

From (2 .10) we obtain :

a ĳ

	

a 2 21

	

a

	

2 au
ay = P- ay2 ap (a åp )

while (2 .12) after multiplication by v, the meridional velocity, and averaging in th e

x- or west-east direction :

Ev = Sv -
ôp

( c ofce )

where 5v is the transport of relative vorticity. (2.18) gives therefore a relatio n
between the meridional transports of potential vorticity, relative vorticity and th e

heat transport . It is thus already clear that (2 .18) gives a possibility for parameteri -

zation of the relative vorticity transports because the remaining transports in (2 .18 )

may be approximated by exchange coefficients . For the heat transport we write :

en0

	

&a() po

	

aen0
V2 33 = -L(y,p) ay + W L3(y,P) ay

The factor where po = 100cb and W = 107m, the distance from equator to pole, is

introduced to obtain the same dimensions for L and L 3 .

In (2.19) we introduce :

(2 .15)

(2 .16 )

(2 .17)

(2 .18)

(2 .19)
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av, ao aen0

	

atne
,u- -ao-

ap fo ay

	

ap

and obtain :

a
fn.() v=

	

L ail - L 3
a o o

	

p

	

o

Introducing (2 .21) in (2 .18) we find finally :

- x
åy

=V+
a

[L
f

a
+L3

fwo
]

	

(2 .22 )

where V = ç is the transport of relative vorticity. (2.22) contains the key to th e
parameterization of the momentum transport because :

	

au

	

au

	

auv

	

av

	

au

	

auv
V = SV=(

av

	

ax-d

	

v= -Vd =--a + 1L a =-

	

-u,= - a

	

(2 .23 )

	

y

	

By

	

y

	

y

	

ay

	

ax

	

y

In deriving (2 .23) we have used the assumption that the horizontal wind is nondi -

vergent, i .e . :

(2 .20 )

(2 .21 )

au av
ax + d y

(2.24)

The use of (2.22) in our calculations to be reported later are eased by introducin g

nondimensional coordinates . We use :

y = w17, t= E-1T, p = po p -

	

(2 .25 )

where e is a dissipation time to be introducted later . The nondimensional quantitie s

will be denoted by an accent (') . In this way we get :

V = _k( - a2

a
/

+K 	
a(A2 aû1	 a	 [L a2 	

aû +L o- Jl A2 = fô 2 ~,y z
an

	

ap .

	

apk ) a p_

	

ap.

	

3 _

	

c p0

(2 .26) is the key expression in the parameterization prescription because it relate s

the transport of relative vorticity, and thus also the momentum transport, to th e

zonally-averaged flow. The derived expression is slightly more general than th e
equivalent expression used by Green (1970) and White and Green (1984) becaus e

(2 .26)
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we have not assumed from the beginning that exchange coefficients for potentia l

vorticity and for heat are identical . If they were, (2 .26) would become somewha t

simpler because of cancellations . (2 .26) would be changed to :

=-K
a2TL

	

A2
aü ak fo aî3

-) -	
an2

	

av- al) *

	

E av -

As has been mentioned before it is a fact that the transport of sensible heat in the

troposphere is from south to north or from the warmer to colder regions and thus
satisfying a necessary condition for the use of our assumption . The transport of

potential vorticity have been investigated by Wiin-Nielsen and Sela (1971) usin g

atmospheric data. It was found that the horizontal transport is from north to sout h

in the troposphere above the lowest layers say above 80 cb, where the potentia l

vorticity below this level may be less conservative due to the strong dissipation i n

the atmospheric boundary layer. The negative sign of the transport is in goo d

agreement with the exchange coefficient approach because dldy in general i s

positive due to the contribution from the beta term, ß = df/dy . It was then possible

to calculate numerical values of K as a function of latitude and height . K(y,p) i s

positive in the troposphere, has a maximum in middle latitudes and decreases i n

general with decreasing pressure. The same investigation includes an investigatio n

of the transports of sensible heat and a similar evaluation of the exchange coeffi-

cient (L) . This coefficient has also a maximum in middle latitudes and graduall y

decreasing values with decreasing pressures . No evaluation of L3 from data is

known to the author . The parameterizations formulated above have been used i n
various ways . They were used by Sela and Wiin-Nielsen (1971) to simulate the

annual energy cycle, by Wiin-Nielsen (1971) to formulate a simplified theory of th e

annual variation of the general circulation, by Wiin-Nielsen (1972) to investigat e
the annual variation of the zonally-averaged state of the atmosphere, and b y

Fuenzalida and Wiin-Nielsen (1975) to simulate the axisymmetric circulation .

Furthermore, the concept has naturally been used by Green (1970), White and

Green (1983, 1984) and by Wu and White (1986) . In spite of these applications it is

still worthwhile to investigate the concepts partly because we want to test th e
present somewhat broader formulation, partly due to the emphasis which Gree n

and White (1982) put on the integral constraints, and partly because we want to

solve the steady-state problem .

The integral constraint just mentioned refers to the fact that :

Jo
i aMv(n)dv =-

n
drl = o

	

(2 .28 )
0

(2 .27)
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when M is the nondimensional momentum transport, i .e . M = ûv . While (2 .28) i s

not new, but has been used since the invention of the parameterization scheme ,

(see Wiin-Nielsen, 1971) it turns out that White and Green (1982) have proposed a

new way of satisfying it .

It may be of interest before we apply the results of this section to a full model t o

give some simple examples of how the indirect momentum transport prescriptio n
(2 .26) with the constraint (2 .28) may work in practice . For this purpose and for

simplicity we divide the atmosphere in an upper part, (subscript 1), and lower part

(subscript 3) . We find from (2 .26) :

qq a2û1

	

2

	

Îo
17'1 = -K1

C
N -

a~2) + 16a Lr ûr + 2
E

L 3

('j

	

s \

in which L t are û, are defined as :

V =
-k3d7723 /

+ 16a 2 L r -2 °L3

	

(2 .30)

aL

(2 .29)

and :

3 -11 1

ap . 2

_ L3 - L 1
= 4Lr ;

ap .
= --4û r

	

(2 .31)
aû

(see Fig . 1)

p { =0	 	 0

0

	 K . - Kr i L ; - Lr ,

	

tl . +TL r

VI = V. + Vr

	

1

, L3 ; u :

	 K.+Kr ; L .+Lr ;

	

u -ur

V3 = V, - Vr

	

3

1	 	 0

4

3
4

V=

	

2

4
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Adding and subtracting (2.29) and (2 .30) and using again Fig . 1 we find introducing

the momentum transport the following equations :

aM

	

a 2 û.

	

a 2 û

a~ = Kx
(,s

ß - (9 77 2 ~ + Kr a ~ 2 (2.32 )- 16 A 2 L û r

am,
=-Kr(/j- an~) -

877 2

za
zr +2

o
L 3

n (2.33 )

For simplicity we assume :

= U.(0) - U.(2) cos 27rr1

ûr = U r (0) - Ur(2) cos 27rz7

	

(2 .34)

giving :

am.
an

= ßK . - 16 A 2 LrUr(0 )

(K : U..(2) - KT U r (2)) - 16 A 2 Lr(„T(2)) cos 27rrl

= -QKr+2~-° L 3 +47 2 (Kr U,,(2)-K,Ur (2)) cos 27rr)

To secure that the integral constraints are satisfied it is necessary that :

ßK - 16a 2 Lr Ur(0) = o

-OK, + 2 f-L3 = 0
E

The two equations in (2.37) can be used to calculate LT and L3 from k. and k7 and
the other parameters. By integrations of (2.35) and (2 .36) we find :

aMr
an

(2.35 )

(2.36 )

(2 .37)
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M. = [ 1
27r

2 L r Ur (2) + 27r(KrUr(2) - Kk U:(2)] sin(27rn)

	

(2 .38 )

Mr = 27r [K r U: (2) - K~U r (2) ] sin(27r77)

	

(2 .39 )

If (2 .38) and (2 .39) shall correspond to conditions in the atmosphere it is necessar y

that the quantities in the factors to the sine-functions are positive . These consider-

ations lead to the inequalities :

k,
U r (2) < U(2) < K r Ur(2) +

4 2 UT
(

0)
(2 .40 )

The momentum parameterization is thus such that it may or may not result in an

agreement with atmospheric conditions . On the other hand if realistic values of

U* (2) and Ur(2) are obtained there is a rather large interval for U* (2) . If we select

reasonable mean values for Uß(0) and Ur(2) being 0 .45 (- 9ms -l ) and 0.3 (- 6ms-i )
respectively we find that :

0 .7 < U,e (2) < 4 .5 7

or, in ms-1 :

14 < U* (2) < 91 .46

	

(2 .42)

We stress, however, after this illustration that we are not free to select the values o f

the wind components . They should be determind from a properly formulated

model .

3. A two-level model

In this section we shall formulate a closed model of the atmosphere includin g

heating and dissipation. We shall form the zonally-averaged equations in th e

steady state, apply the parameterization for the momentum transports develope d

in section 2 and seek solutions to these equations . The purpose will then be to see i f

these solutions bear any resemblance to the observed flow in the atmosphere .
Deliberately we make the model as simple as possible to explore the solutions i n

this case . Under the assumption that the dissipation in the planetary boundar y

layer is larger than above this layer we shall use the surface stress only.

(2 .41)



MfM 42:2 1 7

The zonally-averaged first equation of motion is :

=

	

; M= ûv ; V= -fv+ g ôp

	

d
å
M (3 .1)

Applying this equation at levels 1 and 3 as described in section 2 we find under th e

assumption made above :

-VI = + fv l

-V3 = + f 3 + 2

	

4 , x
Po

From the continuity equation applied at the same levels we find :

ai-) I

	

2
= - - W 2

P o

dv 3

	

2
= +-W 2

dy

	

P o

Adding the two equations in (3 .3) and noting that :

v i = v 3 = 0

at the boundaries to the north and to the south we see that :

vi +v3 = 0

and we need only compute one of them . The procedure is then to obtain wZ from

the thermodynamic equation and find, say vl , by integrating the first equation i n

(3 .3) . From (2.21) we know that :

eeo	 	 dv

	

Poa

fo
lnBv=-L dP

-L3 Wfo

and the zonally-averaged thermodynamic equation gives :

d y

+ ô L
du

+L3
Po a

ay

	

dP 2

	

W fo -

a

	

R 1
+ -W2 -= Q 2

fo

	

cF, P2fo
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When (3.6) is evaluated and made nondimensional we obtain :

E
(+J2 =

	

- ,2
fo

{_4LÛT + ~~ ~2 L3 - 2 Q 2
a

where :

Q2 = R. 'Îo E2W2 Q z

(3 .7) is then integrated to obtain G, with the result that :

f

	

(3 .7 )

= 2 ,z [_4LûT + f0 -z L 3 - 2 (jr Q 2 d ~
f0

	

E ~

	

J o

In (3.2) we write in the usual way :

9
2

	

T4 y = -2EtL 4
Po

and (3 .2) becomes then by addition and subtraction ;

- = -w4

(3.11 )

fo
-VT =

	

v] + û 4
E

After all these preparations it is possible to write the final equations using (2.32 )

and (2.33) . We find :

8 2 '

a~ + IfT 	
0712

T - 10, 2 L T U T = - (U* 2UT )

	

(3.12 )

(3.10 )

°l

2

K T p- a~
n

1

2

- K=	
~sT + 2 E 3 = (3 .13)

0

-8,2 L * ÛT + 2 fÔ L3 -4, 2

	

Q2d~1+(Û* -2ÛT )
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In the derivations leading to this system we have made one additional assumption .

We have assumed that the expression in the parenthesis after ô/8ri in (3 .7) is zero

for rl = 0 . This assumption is definitely satisfied if L. and L 3 are zero for ij = 0, bu t

can satisfied also if Û~ and L 3 are zero for r) = O . The system (3 .12) (3 .13) is in

general nonlinear because the coefficient, k., k,,L * ,Lr,and L3 , are functions of ri .

Diagnostic studies show that they normally have a maximum in middle latitudes

(Wiin-Nielsen and Seta, 1971) with smaller values at the North Pole and toward s

the Equator. The system of equations is written in such a way that the left hand

sides are the derivatives d ll1 * /dry and dM~ldri . The integral constraints are there -

fore that these expressions when integrated from wall to wall, i . e. from 0 to 1 with

respect to i, should vanish .

To satisfy the assumptions made in the derivations we shall assume that all th e

exchange coefficients are zero at the two boundaries and that they have a maxi -

mum in the middle of the channel . Many specifications of this kind are possible ,
but since we later on shall solve the equations in the spectral domain it is an

advantage to use trigonometric functions . We adopt :

(k, L) = (K, L) sin e (7rn) = 1(K, L) (1 - cos 27rn)

	

(3.14)

We shall further expand the velocities in Fourier series of the form :

(U., U T , Û4 ) = j (U,(n), U T (n), U 4 (n)) sin(?rnn)

	

(3 .15)

The functions sin(srp7) are orthogonal over the interval 0 S < 1 because :

f l s in(7rpn) sin(7rqn) dn = (3.16 )

The expressions (3 .14) and (3 .15) are introduced in (3.12) and (3.13) whereafte r

the spectral equations are derived in the usual way . We must, however, pay special

attention to the integral constraint (2.28) which applies to V . as well as VT. . This

means that the left hand sides of (3 .12) and (3.13) should integrate to zero across

the channel . It follows then that so must the right hand sides of the same equations .

In this part of the investigation we shall use a low order system restricting th e

investigation to the largest scales . On the other hand, it will be necessary to include
a sufficient number of components to allow the typical wind changes with latitud e
which we are looking for. It is easily seen that restriction of n in (3 .15) to the values
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1 and 3 is a minimum system . If it is adopted, it is evident also that we shall obtai n

solutions which are simple and schematic . On balance it would seem desirable t o

investigate if the theory works under these conditions .

We decide therefore to restrict the components to the two mentioned above .

When (3.14) and (3 .15) are inserted in the left hand sides of (3 .12) and (3 .13) w e
obtain after integration from 0 to 1 with respect to ij the two integral constraint s

which guarantee that the transport of relative vorticity has a vanshing mean value .

We obtain :

.

	

7r
F K, (a+

15
(5U,(1) -9U,(3)) - KT

85
(5U T (1) - 9UT (3))

/

- b~r
a 2 LT (5UT( 1 ) - UT( 3 )) = 0

-

	

7r
G =KT

C
/3 + 85 (5U,(1) - 9U,(3)) - K„

85
{ 5UT (1) - 9UT(3)) I

- f-~L3 = 0
E

Since the left hand sides of (3 .12) and (3 .13) integrate to zero as described abov e

the same must hold for the right sides . We obtain from the right hand sides :

U,(1) - 2U T (1) +
3

(U .(3) - 2U T (3)) = 0

	

(I )

7r

	

f
A2

	

1
UT( 1 ) + 3 UT(3) =

2a 2 L,
( Eo

L 3 + 2

	

A H !

	

(II)

In the derivation of (II) we have assumed that the heating is specified in the simpl e

form that Q = AH cos(srj) . The next two equations are obtained by multiplyin g

(3 .12) and (3 .13) by since and thereafter integrating from 0 to 1 with respect to 11 .

If additional components are included we would go on multiplying by sinkni and

integrating and so on . We find :

(I .C.1)

(I .C.2)
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3 1.2

	

\

	

9 7r 2

	

3~r 2

	

3
(1 +	

4
	 K.1 U.(1) +

4
Kk Uf (3) + (2 +	

4
	 KT +

2
a 2 Lr UT (1 )

	

(
9	

2

	

4	 KT + 2 A' L T UT(3)
37r

ß K .

	

(III )

342

KT I U.(1) + 9 4 2 Kt U.(3) +(2+ 342 K. + .1 2 L . ) UT( 1 )

9~r 2
-

4 K
. UT( 3 )

	

A 2

	

8 ( 1
= A~2 x + 3T ~

KT
E

L af o

The system (I .C.1), (I .C.2), (I), (II), (III) and (IV) describes the selected low -

order system . It is seen that it is a nonlinear system because of the products of the

exchange coefficients and the velocity components . The solution is in each case

obtained by assuming fixed tropospheric values for AH ,K * ,KT andL * . The following

iterative procedure is adopted . We make a guess of the quantities LT and L 3 . The

system (I) - (IV) is solved forU* (1),U*(3),UT (1),andUr (3) . The values Fand G are
computed from (I .C .l) and (I .C.2) . If these functions are different from zero w e

calculate new values of LT and L3 from the formulas :

LV+') = L( n ) + b L r (3 .17)

L(,' +i*) = L3'' ) + 6 L 3 (3 .18)

where :

6L r =
F (n)

(3 .19)

6 L3 =

15a
A2 (5U(1)( n ) - Ur (3)(n ) )

G(n)
(3 .20)
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With the new values of LP+l) L 3(n+li we solve the system (I)-(IV) obtaining th e

values U * (1) (n+1) U* (3) (n+1) Ur(1)(n+1),UT(3)(n+i) which in turn lead to new values

LP'') ,LT'') and so on . The iterations are continued until both F and G satisfy th e

inequalities :

IF! < Er, IGI < Er

	

(3 .21 )

where Er is specified as a sufficiently small number.

The iterative procedure converges for realistic values of AH ,K * ,Kr and L * , and

the results will be described below. It was also found that no convergence could b e

obtained for small values of AH for fixed values of K* ,Kt and L* . We may interpret

this finding in the following way . For sufficiently small values of AH , we obtain a

meridional temperature gradient or, equivalently, a vertical windshear which is too

small for baroclinic instability to occur. The present parameterization of the merid-

ional transports of heat and potential vorticity assumes that waves are present, bu t

this assumption will not be satisfied if the heating contrast is too small .

The diagnostic calculations carried out by Lawniczak (1969) lead to :

Q

	

4 x 10-3 cos (7rr))

	

(3 .22)

where Q is measured in k~f ls-1 . Using (3 .8) we find that AH = 0 .03 . White and

Green (1984) use a value which corrèsponds to AH = 0.05 .
Regarding the transfer coefficients Wiin-Nielsen (1971) finds average values of

K* and K, . In nondimensional form they correspond to K* = 0.006 and KT =-

0 .0025 . The coefficients entering the equations should then in view of (3 .14) hav e

the values 0.012 and 0 .005, respectively . From the same source we find L* = 0 .014

while the values of L, and L 3 are determined by the solutions . We present first the

details of the solution for this standard case .

Fig . 1 shows the wind distributions at the upper level (25 cb) and the lower leve l

(75 cb) . Both distributions are characterized by very flat maxima of 40ms-1 and
15ms -1 , respectively. The wind at 100 cb, or approximately the surface wind, is als o

shown in Fig . 1 . It has a maximum of 2ms-1 in the middle of the channel with

easterlies in the polar and equatorial regions . The maximum easterlies is about

1 .2ms-1 . We may thus conclude that the parameterizations of the meridional trans -

ports of quasi-nondivergent potential vorticity and sensible haet, and thus indirect -

ly of the meridional transport of momentum, can give solutions which in terms o f

the wind distributions describe the gross-features of the observed circulations with

reasonable magnitudes .

As can be seen from a combination of (2.32) and (3 .12) we have :
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atLf.
= -Û4 (3 .23)a n

indicating that the 100cb wind profile is determined by the divergence of th e
vertically intregrated momentum transport . It is thus possible to obtain an essen -
tially correct profile U4 = U4(1)) without having a correct distribution of M =
M(ri,p*) . It is thus of importance to investigate how the transports are distributed
vertically.

Fig. 2 shows the transport of sensible heat as a function of the north-south
coordinate . We find again a broad maximum with a maximum value of 300 0
kym -l s -l cb -1 . Fig . 2 shows the transport of sensible heat as a function of the north -
south coordinate . We find again a broad maximum with a maximum value of 300 0
k9m 1 s- 1cb-1 . In comparison we note that Wiin-Nielsen et al . (1963) found values
which may be converted to about 2200 kdm -1s1 cb-1 . The momentum transports M1
and M3 are also shown in Fig . 2 in the units m 2s-2 . They show at both levels a
northward transport in the region 0 < rl < 0.5 and a southward transport for 0 .5 <

< 1 . At both levels we find therefore a convergence in the middle of the channe l
and divergence in the region close to the boundary.

The zonally-averaged vertical velocity is shown in Fig . 3 . It is converted into Tv-
and measured in mms-1 . It shows the typical three cell pattern with two direc t
(Hadley) cells surrounding the direct (Ferrell) cell in the middle . The maximum
value is about 2 .7 mms1 .

The results shown in Fig . 2 and Fig . 3 indicate that the adopted parameteriza-
tions give qualitatively correct results for both the heat and momentum transport s
and the meridional circulation . Quantitatively, they are all of the correct order o f
magnitude except the transports of momentum which are considerably smaller tha n
observed . One may speculate on the reasons for this failure of the model . One of
the causes could be the low order nature of the model in both horizontal an d
vertical directions . In the present model we have a linear variation of the momen-
tum transport because :

M, = M: + M, ; M3 = M, - MT

	

(3 .24)

while such a linear variation is absent in observational studies . Similarly, the
asymmetric distribution around the center of the channel is not observed in th e
atmosphere where the northward momentum transport extends to much highe r
latitudes . Both of these considerations would call for increased resolution in th e
vertical and horizontal directions .

It is of interest to investigate the sensitivity of the model to the intensity of the
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heating . The solutions were therefore obtained for a series of heating values ex -

pressed this time in the unit : deg dåÿ-' which can be obtained from the previously

used non-dimensional unit . Various quantities are shown in Fig . 4 as a function o f

the heating . The maxima of the heat flux and of the zonal winds increase with the

intensity of the heating . The same is true for the 100 cb wind, but it is seen that th e
increase is much smaller, and the û4,,,, m seems to reach an asymptotic value of abou t

2.6ms- 1 . A similar tendency is observed for the calculated values of M,, max and

M3 , max. For the sake of completeness we mention that those experiments wer e

carried out with the same values of the exchange coefficients as in the main experi -
ment, i.e . K * = 0 .012,K, = 0 .005,L * = 0 .014 . Fig . 5 shows how L, and L3 vary with

the heating intensity in the experiments . Both of these decrease as the heatin g

increases, but L L decreases at a larger rate than L 3 . It looks as if L L might go to

infinity for a fixed value of H . When no solution is found for very small values of H
it could be because a sufficiently large value of Lt could not be found to satisfy the

heat transport requirement .
A series of experiments with smaller values of the specified exchange coefficient s

were also carried out . In this set of calculations we used K. = 0.008,K, = 0 .0035
and L * = 0 .0093 . The distributions with respect to z7 are similar to those shown i n

Fig . 1 and Fig . 2 for the values of the heating included in the various calculations .

The results are therefore shown in Fig . 6 in the same form as in Fig . 4 . A compari-

son between these figures show that the solutions included in Fig. 6 are more
unrealistic because the maximum zonal velocities are too large for realistic value s
of the heating . We notice also somewhat smaller maximum values of U4 and of M 1

and M3 .

As mentioned before no solution can be obtained for small values of the heating .
Fig . 7 shows the type of solution which is obtained when the heating is slightl y

above critical value. The solution displayed in Fig. 7 is calculated for AH = 0.9 deg

day-1 , K * = 0.008, Kr = 0 .0035 and L * = 0.0093 . The zonal velocities, Ul and U3 ,
have double maxima of 21ms-1 and 7ms-1 . U4 is extremely small, just a few cros-1 ,
with westerlies close to the boundaries and weak easterlies in the middle of the

channel . The heat transport is small, and the momentum transports are both ex -

tremely small and of the opposite sign compared to the other solutions shown s o

far.
The model employed so far is the so-called quasi-nondivergent two level model .

A similar, vertically integrated, two parameter model can also be used as done by

White and Green (1984) . The final equations for such a model can be compared
with the system (I .C.1, 2) (I-IV) . The two systems differ only in the numerical

values of some coefficients .

We shall not go through the two-parameter model at this point . It will suffice to

show a single example . The parameters are : AH = 0.5degday- 1,Ø = 80, fa = 50, X.2 =
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100,K. = 0.012,K, = 0 .005,L * = 0.014,4. = 0 .0506,L3 = 0.00397. Fig . 8 shows the

wind profiles U1i U3 ,andU4 , in ms -1 . It is seen that the easterlies in this case exten d

to high levels, and that U4 is somewhat stronger than in the two-level case . The

mean meridional circulation, seen in Fig . 9, is also stronger, particularly in the

Ferrel cell . The transport of sensible heat, shown in the same figure, is concen-

trated in the middle of the channel in agreement with the strong temperatur e

gradient, shown to the right in Fig . 9 .

The momentum transports M1 and M3 are larger than in the previous cases as one

would expect from the larger surface velocities . In this case it is also true that M 1
> M3 I, but the difference is so small that we have drawn M1 only.

The difference between this and the previous cases may be explained by the fact

that the transport of relative vorticity with the present parameterization is a rela-

tively small difference between the transports of potential vorticity and heat as they

enter the formulas . The numerical coefficients are determined by the assumption s

made for the functions which enter the specifications of the type :

V=V, A(p.)Vr

in the parameter model .

4 . The spherical cas e

The model treated in Sections 2 and 3 is on the so-called beta plane . Experience

shows that such models in general contain the main mechanisms, but the solutions

are somewhat schematic . For this reason it may be worthwhile to make a similar

model on the sphere . In this case we treat the Coriolis parameter correctly, avoi d

the unrealistic boundary conditions and shall work with the Legendre polynominal s
which are the natural set of functions for the zonally-averaged case . We shall

introduce a new mechanism of internal dissipation, following Charney (1959), a s

compared with the model used earlier in this paper .
As in the previous case we start with the first equation of motion in the zonally -

averaged form for the levels 1 and 3 :

-VI = f v l + 2-9 Tz 2
P o

9

	

9
- Va = fvl-2Po 7 x,2+ 2 Po x, 9

V1 and V3 are the vorticity transports at the two-levels . It is easy to show that
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V-

	

1

	

8 M cos2

	

(4 .2 )
a cos 2 cp

	

8Ç0

where M = (ul v s ), a is the radius of the earth and cp is latitude. Note also that we

have already introduced the fact that v3 = -vs in (4 .1) . This relation is . obtained

from the continuity equation which at the upper level (1) i s

L = 0 • P = 50cb

	

(4 .3 )
acos p8p P

At level 3 we get

8v3. cos V

	

GJ 2

a cos sp 8~p

	

P

	

0

We introduce

v 1 =v,+v.r

v3=v„-vr

Adding and subtracting (4 .3) and (4 .4) we find :

8v, coscp -

a cos cpacp

8v r cos (p

	

W 2

acos(p8(p + P

	

0

It follows from (4.6) that v* = 0 and thus vs = -v3 . In (4 .1) we introduce also

following Charney (1959) that

92 - Ty 2 = -AU,
Po

2 - - Z 4 = - 2 E U q
P o

8vl cos cp

	

W 2

and
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The standard estimates are that A = 6 x 10 -7s1 and E = 2 x 10-6s1 . Finally, adding

and subtracting the two equations in (4 .1) we obtai n

-E tL 4

-Vr = f Vr-A7Lr +E 1Gg

	

(4 .9)

The further derivations follow the previous model . V. and Vr are obtained fro m

the parameterization prescriptions, w2 is obtained from the thermo-dynamic equa-

tion, VT. from (4.7), and we have then a closed system .

Since the difference between the spherical model and the beta plane model ,

according to experience, does not produce any new physical insight as long as th e

physical processes are the same it would hardly be justified to repeat the complete

calculation without changing the description of the physical processes which ente r

the model . We have already introduced an internal friction by specifying the stres s
at level 2 in terms of the vertical windshear, ii while this process was neglected i n

the beta-plane model . We shall also reconsider the parameterization of the trans-

ports of quasi-nondivergent potential vorticity and sensible heat .

In the beta-plane model we formulated the prescriptions in such a way that the

processes in the two-level formulations were characterized by the exchange coeffi-
cients K* and Kr for the potential vorticity and L* , Lr and L3 for the sensible heat .
The introduction of L., and L3 is not really consistent with the two-level formulation

as used here although the formulation is correct in principle for a vertically inte -

grated model or a model with higher vertical resolution . The fact is that the two-
level model in the present formulation contains only one temperature, T2 at level 2 ,
in each vertical column. Strictly speaking we are therefore only capable of calculat -

ing the horizontal transport of sensible heat at this level . The introduction of L,
goes therefore beyond the normal formulation, but could be justified in a different

formulation carrying temperatures at levels 1 and 3 . Furthermore, the two-leve l

formulation with only one temperature at level 2 does not permit a vertical stabilit y

which varies with pressure and time . The static stability is therefore in the two-leve l
formulation characterized by a constant value of a which is defined as follows :

aen a
o- = -a

a

	

= const .
P

The introduction of L 3 , see (2.19), which is used to describe the vertical edd y
transport of heat, is thus only consistent with the model structure if a can vary wit h

(4 .10)
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pressure and time as in a model which goes beyond the quasi-geostrophic theory .

In the model used in Section 3 we can see the role played by L 3 by an inspection o f
the equations, I .C . 1, 2, I - IV where L 3 appears with a constant factor everywhere .
This means that the vertical transport of sensible heat by the eddies is completel y

prescribed by the assumed specifications of L 3 as a function of latitude, and it is not

in any way related to the distribution of temperature or the winds in the model .

One may conclude that the vertical heat transport in the two level, quasi-nondiver -
gent model is somewhat artificial, and that a more realistic description requires a

model based on the primitive equations . A truly consistent model with two-level s
and based on quasi-geostrophic theory permits therefore only the exchange coeffi-

cients K * , Kr and L * . When we nevertheless have used Lr and L3 in sections 2 and

3 it is due to the fact that the two level model is very similar to and can be

considered as a special case of the vertically integrated two-parameter model .

Retaining only K* , K, and L . and recalling that two of these are determined b y
the integral constraints we decrease the number of parameters which can be deter-

mined numerically in advance . The empirical elements in the theory are thu s

reduced .

The quasi-conserved potential vorticities in the two-level model at levels 1 and 3
are

~i = f+ Si -84 2 ~T

~

q2=
Raa p a (4 .11 )

S3 = f + ç3 + ôg 2

from which we get :

e l v i = Vl - 8 q2 4'T v 2

e3v3 =V3 +8g 2 ~irv 2

	

(4 .12)

According to our assumptions we have
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a	 1	 a (cos a )

	

g 2 a 7%rll
ap{cospap

	

p ap ~- q
aa(p !

1 a

	

1

	

a (cos ao1')}
+

	

2 a -0 ,

a3 a p {l cos cp a p

	

p
a p

	

8 4 a a p

Or v2 = - L,~

	

r
= L, ti r¢

a p

(4 .13 )

Introducing µ = sin we obtain by combining (4 .12) and (4 .13 )

	

Vi cos cp =- Ki [ 2

	

(1 - g2 ) + 1 ( 1 - u2) _ {

	

[ ( 1 _ 2 )) a ~G1

~ Î

	

L a

	

a 3

	

ag ag

	

a µ

- 8 q2
1 (1 - g2) aT~rl _ 8 q 2 L .(1 _ g 2 ) a0 r

	

a

	

agJ

	

a g

V3 cos(p =- K3[-(1-g2)+ 3 (1-g2)
a

{
a

[(1 -g2)a~3] }

	

a

	

a

	

ag ag

	

a g

+ 8 q2 1 (1 - 2) a-]- 8 g 2 L . (1 - 2)

a1P r

	

a

	

ag

	

a g

In these equations we use the following transformations to obtain nondimensiona l

quantities

V =a S2 2 V, K =a2 f2K, ~i = a2 f2~

	

(4 .15)

The two equations in (4 .14) are added and subtracted using the notations :

y1 = ~Ÿ* + Wr

	

K l = K, - Kr

aEi

	

r2 S2

	

1
=-Kl

¢ a
--Ki la cos cp + ~3~

e3v 3 = -K3 ¢ a3

	

-K3
[2a

cos cp +(p
_

(4 .14)

Y'3 =- tNr

	

K3 = K * + Kr

(4 .16 )

The result is :
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coscp = - 2K.(1-g2)(1-g2)a i
a
	

[(1-g2)a=] }g g

	

a g

+Kr(1-g2)åg}åg[(1-g2) a ;] }

Vr cos ~p =2Kr(1- g 2 ) +Kr(1-g2)åg} ~[(1-g2) aµ* ] }

- K+(1g2)~gl~g [(I 42) ~~r ] }

- 8a 2 E * (1 - µ2) a 1/-, T

ag (4 .17)

where :

A2 = a2 q 2 (4 .18 )

The remaining step is to obtain the mean meridional circulation . From the ther-
modynamic equation in its steady state form we find using the parameterization of
the horizontal heat transport

a Ew 2 = -4a2
ag -g2) agr]

- Q2 (4 .19)

in which we have used

W2=Po1-1w2,
Q2-2 R

pSZa PôQ 2

Using the continuity equation

a Vr cos (p

a

	

= -20) 2

we obtain by integration from u = -1 to p

(4 .20)

(4 .21)
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"vr cos (p = 8À 2

	

(1 - µ2) aar + 2 H(µ)

	

(4 .22 )
Îy

where :

H(k) = f Q2 d

	

(4 .23 )

We have now expressed all processes in terms of the zonally averaged quantities

and have consequently closed the system . The basis equations are those given i n

(4 .9) . We may write these equations in the form

V, cos = - E(1 -
µ2) a( P

-a
µ 2~r )

Vr cos ~p =- 8a 2 L- (1- µ 2 ) 00r -2µH(µ) - k(1 - ) ~~r

+ E(1 - µ2) a ~Ÿa

The left hand sides of (4 .24) are given by the system (4 .18) We have furthermor e

introduced the notations :

(4 .24)

aµ

A
E = -n ;k=

12
(4 .25)

The remaining part of this section will deal with the solution of the nonlinea r
system (4 .18), (4 .25) . The system is nonlinear because the unknown stream func-

tions lp * (y) and lp r (u) appear multiplied with the unknown exchange coefficient s

k and L .
There are several ways in which one might seek solutions to (4 .18), (4 .25) but the

form of the various terms suggest immediately that a natural way is to use a spectra l

respresentation of the stream function, which is written as a series of Legendre
polynomials . In the preliminary study we shall restrict ourselves to low orde r

systems. We want to study the case of symmetry around the equator, meaning that

the heating shall consist of a sum of even Legendre functions . To obtain such a
solution it is known that the streamfunction must be expressed as a sum of od d

Legendre functions . We start therefore by setting
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b̂ . (u) = T. (1) Pi (u) + ~• (3) P3 (u) (4.26)

and

tGr (u) = * r( 1 ) Pi (u) + 'FT(3) P3 (u) (4.27)

Using the properties of the Legendre functions it is straightforward to express the

terms containing the stream functions in the system . However, we need also to

specify the exchange coefficients . Guided once again by the diagnostic studie s

based on data we select the form

{ K (u), L(u)} = { A , B } G ., (u)

	

(4 .28 )

where

G~ = sin2 Ç0 cos2 rp = µ 2 ( 1 - µ 2 ) (4.29 )

Due to the form of G . (p) it is seen that when (4.27)-(4.30) are substituted in the

system (4.18), or (4.25) we shall obtain terms of the for m

u 2 Pn (u) ; u 4 Pn. (u)

	

(4 .30 )

These terms can be handled in at least two ways . One may either, particularly in a
low-order system, use the specific expressions for P I (p) and P3 (p) or one may

make repeated use of the relatio n

u Pn. (µ) = 2n + 1 ((n + 1)Pn+1 (u) + n P,,_1 (u))

	

(4.31)

deriving formulas where p2 P,,, and p4 P71 are expressed as sums of Legendre

functions . A third possibility is to express G * (p) as a sum of Legendre functions .

The final system consists in our case of six nonlinear equations . Two of them are

derived from (4 .18) by using the integral constraints tha t

/ +1

	

+ i

J

	

V, k cos p d µ =0 ; J

	

VT cos ;c, dp.= 0
i

	

i

The resulting equations are :

(4.32)
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F =A . (1 - 4i .(1) - 6W.(3) )

+ Ar [(1 + 8A 2 ) T r (1) + (6 + 8A 2 ) ‘Ifr(3)] = 0

	

(I .C .1 ' )

G =Ar (1 - 4J .(1) - 64f .(3) )

+ A. [(1 + 8A 2 ) r(1) + (6 + 8A 2 ) 1Y 7 (3) ,

- 8 A 2 B H [‘I'T( 1 ) + *T(3)] = o

	

(I .C.2' )

The next two equations come from the fact that the right hand side of the equation s

in (4.25) must also integrate to zero . The final two equations in the system are

obtained by multiplying both sides of the equations (4 .25) by P2 (u) followed by a n

integration from -1 to +1 with respect to u. The right hand side of the first

equation in (4 .25) gives a particularly simple contribution

I1 4 (1) = W.(1) - 2W r(1) = 0 (h)

The remaining three equations may be written in the form

(Il l )all WT(1) + aie 4f * (3) + a 13 4/T(3) = b 1

a 21 °Ir T(1) + a22 * .(3) + a23 TT(3) = b 2 (III))

an TT ( 1 ) + a 32 ‘P .(3) + a 33 `I'T (3) = b3 (Iv)

where :

all = 35k + 64A 2 BH a 12 = 0 a 13 = 64A 2 B H

an = 0 a 22 = 99E + 120A * an = -(198E + 120A T + 160A 2 A T )
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a 31 = - 77k

	

a 32 = -(198E + 240AT ) a 33 = 396E + 198k + (240 + 320A 2 )A ~

	

b i = 711(2)

	

62 =0

	

b3 = 11 (H(2) + H(4))

(4 .33)

We should explain that the heating is specified in such a way that

Qz = H(2 ) P2 (A) + H ( 4 ) P9(N)

	

(4 .34 )

The coefficients H(2) and H(4) are calculated in such a way that the heating at th e

equator is numerically equal to the cooling at the poles . If Q2 (0) is the heating a t

the equator we find

H(2) = - 77-11 Q 2 (0)

	

(4 .35)

H( 4 ) = 7 Q2(0)

The system (I .C.1 1 - 2 1 , I 1 - IV') is similar to the analogous system treated i n

Section 3, but it is more difficult to locate the steady state solution for the fou r
stream function amplitudes and the exchange coefficients AT and BH supposedl y

because the coefficients to AT and B H in (I .C .1 1 - 2 1 ) both depend on the stream-

function amplitudes . A more primitive method of obtaining the steady state solu-

tions, if they exist, were therefore adopted .

We may consider AT and BH as the major unknows . Selecting a set (A T ,B H) we
may solve (I 1-IV') in the usual way and then compute F and G from (I .C .1 1-2 1 )

The goal is, of course, to select (A T,BH) in such a way that F = G = O . A first
indication of the solution for (A T,BH) is obtained simply by calculating the F and G
values in a two-dimensional grid in the (A T,BH) - plane restricting the region to 0 s
AT < A * and 0 S BH s 2A,, . From the calculated values of F and G one may dra w

the curves F = 0 and G = 0 in the diagram . The intersection of the two curves is a

good guess of the solution . Having thus obtained guesses on AT and BH we calcu-
late the corresponding values of the stream function amplitutes from (I 1-IV 1 ) .

These six values are finally used as input to a general computer program which ca n
find zeros of a set of nonlinear equations if the first guess is good .

In the following section we shall describe the solutions so obtained in a numbe r

of cases .
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5 . Results from the spherical mode l

As a first example we have selected a case with the following parameters :
'S 2

= 6.25, k = 0.0082, E = 0 .0274, A. = 0 .003554, H(2) = -1 .375 x 10-3 and

H(4) = 5 x10 -4 . The values of the six unknowns are :

A T = 0 .003294

B H = 0.000528 3

III i* (1) = -0.0316 6

T T (1) = -0.0158 3

C.(3) = -0 .02386

W T (3) = -0.00821 8

On the basis of this solution we have computed a number of interesting quantitie s

related to the zonal state and to the eddies .

Fig . 11 shows the velocities at level 1 and level 3 as a function of µ = sin (p . The

plotted quantities are il cos q' and u3 cos cp in ms1 . The maxima are at about 45° N

corresponding to annual mean conditions . The order of magnitude, giving 41

max = 41ms -1 , is in good agreement with the various estimates shown by Loren z

(1967) . To the right in Fig . 11 we find the curve û 4 cos cp which shows the easterlie s

in the low latitudes with a strength of about 5rns-1 and middle latitude westerlies o f

a little more than 4ms-1 . There is no indication of any polar easterlies . The heating

and the zonally averaged vertical velocity are seen in Fig . 12 . The vertical velocity
is quite small but indicates the three cell configuration .

In Fig. 13 is shown the momentum transports at levels 1 and 3 converted into the

unit : 1025 gcm 2s2/l00mb to make comparisons easy with the various estimates col-
lected by Lorenz (loc . cib .) .

The maximum in M 1 is at about 25°N, with the observed maxima in the various

estimates seem to be slightly more to the north . The computed maximum in our

example is 8 x 1025 gcm2s2/100mb which is in excellent agreement with the results
obtained by Mintz (1955) and somewhat larger than the estimates presented by

Holopainen (1966) and Buch (1954) .

The northward transport of sensible heat is given also Fig . 13 in the unit of 10 1 4

Watts . Compared to Peixoto's (1960) estimate we find that both of them have
maxima around 50W, but that the computed maximum is about half of the ob -

served .
The value of Q2 used in this calculation Q2,max = 8.75 x 10-4 corresponding to
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Q2 - 3 .6 x 10-3kjt 1s1 . This value is slightly smaller than the value quoted i n

(3 .22) and obtained from a diagnostic study. We may conclude that the theory

proposed for the zonally averaged circulation and based on the parameterizatio n

of the potential vorticity transport and the transport of sensible heat as exchang e

processes give results which are in good qualitative agreement with the result s

obtained from observations . The main difference is in the transport of sensible heat

which is smaller in the model than in the atmosphere .

While there are similarities between this theory and the one presented by Whit e

and Green (1984), because both theories are based on a common parameterizatio n

idea, there are also differences . The calculation in this section is first of all on the

sphere . Secondly, our model is characterized by just three exchange coefficient s

A * , A T and AH of which only A is given, while AT and ÂH are determined by the

integral constraints . Thirdly, our model has a basis resolution just enough to give

the required profiles, and, fourthly, we solve a steady-state problem, while thei r

calculation is based on a time-integration with possibilities for a "climatic drift" a s

is often observed in long-term climate integrations .

It is obviously quite important to investigate the range of validity af the theory.

Such an investigation can be done in various ways . We have selected to explore th e

range of Q2 which gives physically acceptable solutions . Based on the experience

with the betaplane model we would expect that no solution can be found when Q 2 i s

sufficiently small . Similarly, a very large value of the heating may give solutions

which do not agree with observed conditions .

Fig. 14 shows the isolines for F and G in the above experimen t

(Q 2 = 8.75 x 1044) as functions of AT and B H . The intersection of the two zer o

lines gives the values of AT and B H satisfying the integral constraints (points on th e

diagram) from which we find the numerical values . The first part of the experiment

was to increase Q2 from the above value and examine the solution in each case . I t

turns out that mT • (1 - µ2) is the most sensitive part of the solution . By experiment

we determined the value of Q2 for which m * (1 - ,u2) and mT (1 - ,u2 ) were about

equally large and found :

Q 2 =1.3x10-a

If Q2 were larger than this value there would still be a solution, but the momentu m

transport at the lower level would be from north to south .

The next series of experiments consisted of gradually decreasing the value of th e

heating . The solution will then show decreasing values of the sensible heat trans -

port, i .e . decreasing values of BH. When B H = 0 there is a vanishing heat transpor t

by the eddies, and this level has been taken as the lower limit for the validity of th e

parameterization scheme .
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It happens when

Q 2

	

3 .7x10 4

In summary, we may then say that the model gives physically acceptable results fo r

the following values

3 .7x10-4 <Q2 <13x10_
4

which corresponds t o

1 .5 x 10 3 k~t i s -1 < Q 2 < 5 .4 x 10 3 k~t -l s- 1

Considering that the value of Q2 obtained from Lawniczak 's (1970) diagnostic

study is about 4 x 10-3ky-ls 1 we may conclude that the region of validity of the

theory is satisfactory.
We mention finally that the numerical values given above are obtained for a

value of the exchange coefficient K. which corresponds to a meridional average k'

of

K * = 1,3 x 10a •m, 2 s- 1

corresponding to the mean value obtained from diagnostic studies . This value of

k. is the best guess available from data studies at the moment, but the solution wil l

change if K* changes .

Fig . 15 summarizes the main results of these experiments . In this figure we hav e

shown the maximum values of U1 , U3 , the maximum surface westerlies U4 ,W and

the maximum surface easterlies U4,E . Only a very small variation in the location i s
found in these wind maxima . It is seen that the wind maxima are rather insensitiv e

to the intensity of the heating . On the other hand, the maximum heat transpor t

and, above all, the momentum transports show a large change as the heatin g

changes . It is the larger sensitivity of the momentum transport to the heating whic h
limits the interval, in which the parameterizations give physically meaningful re -

sults .

6 . Conclusions

The main purpose of the investigation has been to explore if one can account fo r
the major features of the zonally-averaged wind and temperature field by a theory
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which parameterizes the transport of potential vorticity and sensible heat in term s

of zonally averaged quantities . The prescriptions for the two transports and thei r

parameterization give an indirect way of calculating the divergence of the momen-

tum transports and thus the transport itself.

The parameterization idea was first proposed by Green (1970) and has later

been used by him and his co-workers to explore many questions, including a n

investigation of the zonally-averaged winds and temperature fields . Since the firs t

proposal of the parameterization scheme it has been realized that a constraint o n

the expression for the divergence transport should be that it integrates to zer o

across the meridional plane or across the channel if the beta-plane geometry i s

used. (Wiin-Nielsen, 1971) .
The present investigation differs from the study by White and Green (1982) i n

several important ways . The first is that our study applies to a steady-state whil e

they treat the timedependent case . They used a beta-plane geometry while w e
include also the spherical case, but the major difference is probably in the models

adopted for the study and in the way in which the parameterization prescription i s

carried out .

One may conclude from the investigation that the parameterization can accoun t

for the typical surface wind distribution . In fact, since the surface wind in th e

adopted models depends on the vertically integrated divergence of the momentum

transport alone, it is obvious that one may obtain an essentially correct surfac e

wind distribution with an erroneous vertical distribution of the momentum trans -

port . It is this property of the model which makes studies such as the one carried

out by White and Wu (1986) rather unsatisfactory because they investigate th e

surface wind in isolation without telling the reader anything about the correspond -
ing vertical distribution of the momentum transport .

The major conclusion from this study is that one can account for the majo r

aspect of the wind and temperature distributions in the meridional plane from th e

present theory, and, in addition, that the momentum transports and the hea t
transports as computed from the parameterization scheme are in reasonable agree -

ment with observations although the heat transport is too small . This statement i s

true provided the heating intensity is within an interval containing the presen t

estimate of the heating. The lower limit of the interval is determined by the heatin g

intensity which results in a zero-value of the exchange coefficient for the hea t

transport . The upper limit on the other hand indicates the heating intensity fo r

which the momentum transport at the lower level reverses its sign . The momentum
transport in the troposphere below 50 cb is small compared with the momentu m

transport in the higher levels below the troposphere .
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Figures
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Fig . 1 . The winds at leveli (25 cb) ,

level 3 (75 cb) and level 4 (100 cb) as

functions of the south-north coordi -

nate . Unit : ms-1 .

Fig . 2 . The sensible heat

transport by the eddies

(left) as a function of the

south-north coordinate .

Unit : k,)m1slcb-1 ; and

the momentum transport

at the upper level M1 an d

the lower level M3 . Unit :
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Fig . 3 . The vertical velocity at th e

middle level (50 cb) as a function of

the south-north coordinate . Unit :

mms" 1

Fig. 4 . The maximum trans-

port of sensible heat as a

function of the intensity of

the heating . The unit for the

heat transport is :

k~m1s 1cb_1,
while the unit

for the heating is degday- l

(upper left) . The momentum

transport maxima at the up-

per and lower levels (mes2)
as a function of the heating

(lower left) . The maximum

surface wind in ms-1 as a func-

tion of the heating (upper

right) . The maximum winds

at levels 1 and 3 in ms-1 as a

function of the heating (lowe r

right) .
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Fig. 5 . The exchange coefficients L~ and L 3

as a function of the heating . L, and L3 are

expressed in non-dimensional units time s

103 . The heating unit is degdaÿ-' .
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Fig . 7. A solution ob-

tained for a slightly super -

critical value of the heat -

ing (0.9 deg day -1 ) . al ,
u , and u4 have double

maxima, and 04 is very

small.
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Fig . 8 . The wind profiles o f

al, a i and ü4 in a verticall y

integrated model with K =

0 .012,Kî =0 .005 and L„ =

0 .014. Unit : ms' .
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Fig . 9 . The vertical veloc-

ity, the heat transport and

the heating for the cas e

displayed in Fig . 8 . Unit :

mms ' .mms l
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Fig . 10 . The momentum transports

M 1 = M3 . . Same case as Fig . 8 and

Fig . 9 . Unit : m es-2 .
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Fig . 11 . The wind profiles a
cos Ø, ü3 cos q), and ü4 cos q2

for spherical case . Unit : ms' .
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Fig . 12 . The vertical velocity

and the heating . The same

case as in Fig . 11 . Units :
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Fig . 13 . The angular momen-

tum transports Ml and M3
(Unit : 10ngcm2s- 2/10cb) and

the heat transport (Unit :

10 14W) . Same case as Fig. 1 1

and Fig . 12 .

0.00053

Fig . 14. The isolines for

the two functions F and

G as functions of A T and
BH . S denotes the stead y

states .
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