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I . Introduction

The improved experimental technique for determining phonon dispersio n

curves in crystals has made it possible to investigate them in great detail . The

experiments have also revealed many interesting features of these curves ,

particularly in metals [1], [2], which (at low temperatures) are believed mostl y

to be effects from the conduction electrons . A proper understanding of thes e

effects may, therefore, give valuable information about the microscopic pro -

cesses in these crystals .

The theoretical situation, however, is not so encouraging . The origin of
of the major difficulty seems to be the splitting of the electrons into two physic -
ally quite different groups of either core electrons or conduction electrons ,

which already makes the electron problem difficult to treat in any kind o f
approximation. And since the energy associated with a lattice wave is a ver y
tiny quantity (in the electr on energy scale), the prospect of getting an accurat e

estimate of it is very uncertain . For instance, an extension to the lattice dyna-

mics of commonly used theoretical techniques [3] for calculating the electro n
band structure in the perfect lattice becomes very complicated . For that reaso n

it seems to be inevitable that when doing phonon calculations, we have t o

rely on the construction of models at the very start, which generally is a ver y
delicate problem indeed . An outstanding exception from this rule, however ,
is the so called simple metals [4] . In these metals the core electrons form

closed shells around the nuclei and the radii of these shells are so small tha t

the nuclei plus the closed shells can be treated in this problem as rigid point
particles- the ions . The only dynamically important electrons in the problem
are then the conduction electrons . This simplification has, however, to b e

paid for in terms of a complicated interaction between the ions and th e
electrons [5] . Still, it is possible in simple cases accurately to replace thi s
complicated interaction by a suitable chosen local potential [6], [7] . Although
a purely formal device, this potential can be constructed to reproduce th e
essential properties of the conduction bands .
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In section II we briefly discuss the dynamical matrix for normal metal s

with simple lattices in this model, i . e . we assume that the ion-electron inter -
action is given by a local potential ve(r) = ve(- r) . A more complete discussio n

of this model can be found in [8], [9] . The response-function for the electrons

is expanded in section III and the most important terms in the dynamical
matrix are discussed for the case where the effective periodic potential in th e

lattice is weak. In IV the R. P. A. - or Hartree - approximation of the polari-

zation operator is discussed and the first corrections to the Lindhard free par -

ticle expression are derived . The paper is concluded in section V with a

brief discussion of the characteristic functions for these corrections .

II. The Dynamical Matrix

The Hamiltonian for the metal consists of three parts . First we have a

purely ionic part for point ions with mass M and charge Ze interacting via

a potential Ze2 Vi (r) .

P2
Hi = - + Z2 e 2 Vi(R + u (R, t) - R '- u (R ', t) )

R 2M

	

R R '

where R and R denote the R-th ion with the mean position at the lattice poin t

R and u(R,t) is the instantaneous position relative to this lattice point .

means exclusion of the term R = R ' in the sum .
The second part in the Hamiltonian is a purely electronic part (h = 1 )

2 •He = dr
o y+(r, t) o y(r, t) +

e
yp+(r't) y(r, t) v(Ir r' I )

2m

	

2

	

(2)

• p (r, t) p (r ' t) dr dr'

	

J

where yp (r, t) is the field operator for the dynamically important electron s

and e 2u(Ir - r' I) is their interaction, typically equal to Ir - r ' 1-1.e2

Finally we have the interaction between the electrons and ions given b y

Hie = - Ze2

	

f dr ve(R + u(R, t) - r) Q (r, t)
R

in this approximation . (Q (r, t) = y+(r, t)y(r, t)) .
The total Hamiltonian is the sum of the three parts

(3)

H = Hi +He+Hi e . (4)

(1 )
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Standard methods [9] give the following equation of motion for the R-th ion .

Mü(R, t) = (Z2e2 Ti(R - R ' ) Ze 2fdr Te(R - r)e(r,t)} u(R, t) +
l

	

R'

	

. (5 )
+ Z 2 e 2

	

Ti(R -R')u(R',t)+Ze2 f dr te (R - r)e(r , t)
R'

where in terms depending explicitly on the ionic displacements we only kept
terms linear in u .

In Eq. (5) mean s

Ti(r) = o 7 Vi(r ) ; te(r) = 7 Re(r) ; Te(r) = 0 y Re(r) .

In order to get a consistent equation for the harmonic motion we have t o
find the electron density operator e(r, t) up to terms linear in the displace-
ments u(R, t) also. This is formally easily done with use of response technique s
[10], [11] . When the ions are moving the term He in the Hamiltonian causes
an external time-depending perturbation on the electron syste m

åU(r,t) = - Ze2 {Re(R+u(R,t)- r) -Re(R -r)}
R

to terms linear in u(R, t) .
This perturbation gives to linear terms in u a response in e(r, t )

	

åe(r , t ) = P(r , t ) eo(r, t) =

	

iZe 2 Jdr' dt' [o(r, t), o( r' , t')
]R

	

(7)
te(r ' -R) u(R,t ')

where eo(r,t) is the density operator in the case all u(R ,1) = 0, i .e . in the
ideal lattice .

By multiplying Eq . (5) from the right with u(Ro, to) and forming the
statistical average, we arrive at the following equation

d2

	

iM- <u(R , t) u(Ro , to)» =

= - {Z2 e 2 'Ti(R- R ') - Ze 2 f dr Te(R - r) <eo (r)> }
R'

	

J

	

<u(R, t) u(Ro, to)> + Z2 e 2

	

Ti(R - R') <u(R' , t) u(Ro, to)> +

	

(8)
R '

+ Z 2e 4 f dr dr' dl' te(R - r) h (r , t ; r ' , t') te(r' - R ' ) }
R'

<u(R', t ') u(Ro, to)»

= Ze2 te (r - R)•u(R,t)

	

(6)

R



G

	

Nr . 9

to terms linear in u . In Eq . (8) we have used the fact tha t

p
te(R - r) <co(r)> dr = 0

from the lattice symmetry. In Eq . (8) we have also introduced the linear re-

sponse function in the ideal lattic e

h (r, t ; r ' , t ' )

	

i <[9o(r, t), eo(r ' , ")I> 0(t - 1' )

1 . x > 0 A

	

(9 )
(0(x)

0 ;x < O f

Since h(r, t, r', t') is a quantity determined in the ideal lattice it is a function
only of the time difference t - t and has the full symmetry of the lattice i n
its spatial indices. In particular this means tha t

h(r+R,r' +R) = h(r,r') .

	

(10)

Before leaving this point we want to stress one property of the electro n

system which is important in practical applications . Since the change in th e
electron density is generally governed by Eq. (7), we get in particular for an
infinitely slow uniform translation of all ions a (small) distance u

= ~Ze2 rdr'dt'h(r,t ;r',t')•te(r'-R)•u

	

(11 )

R

	

J

which implies

v <Poi = - Ze2

	

dr' dt'h(r, t ; r', t ' ) te(r ' R) .

	

(12)
R.

By the aid of this expression the second term on the R .H .S. in Eq . (8)
can be transformed t o

J dr Te(R r) <eo(r)) = - e 2 f te(R - r) h(r,t ; r', t') •
R'

te(r ' -R') drdr'dt' .

In case <co(r)> is independent of r, its gradient is equal zero, which mean s
completely vanishing of this term . ToyA has demonstrated [12] that this i s
a quite reasonable approximation in the simpler alkali metals . An inclusion
of the effect from the periodic electron distribution gives only minor corrections
in these cases [13] . In a more general simple metal, however, there is no hop e

<e(r)> <°o(r)i = -uv <eo (r)i =
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of expecting that it is so. When estimating this effect it is, then, important t o
fulfil Eq . (13) in order to get sensible results .

By Fourier transforming Eq. (8) and by using the property of <u(R,t u(Ro ,
to)> to be a function of t- t and R - R only one obtains the equation

[cu ll -

	

D(q,w)] <u(q,w) u(q,w)> = 0

	

(14)

where D(q,w) is the dimensionless dynamical matrix . It is naturally spli t
into hvo parts .

D (q , w ) = DI(q , w)+ DE( q , w )

	

(15)

where D I stands for the part due to the direct ion-ion interaction and is in -
dependent of cu, since we assumed an instantaneous ion-ion interaction .

DI( q) °

	

1 Ti(R R') e iq(R- R') Ti(R -R')} _
47rNR '

_
1
_Vi (K+ q)(K -I- q) (K + q) - Vi (K) KK}

K

with K a vector in the reciprocal lattice. The term Vi(K)KK with K = 0 in
Eq. (16) is so far not defined, but we can think of it as the limit q -~ 0 of Vi(q)gq .
We shall later see that it is exactly cancelled by a corresponding term i n

4a.Z 2e 2 N
DE(q,w) . In Eq. (16) N is the ion density and cup = --

M

	

is the classica l

plasma frequency for the ions . With the ion-ion interaction known, this part
of the dynamical matrix is readily calculated and no particular attention i s
paid to it in the following .

Similarly the electronic part of D(q, w) is written

DE (q, w)
= - 47N

R, Jdrdr ' {e
}

iq(R-R') te(R - r)h(r,r',w) te(r ' - R') -

	

(17)
- te(R - r) h (r, r', 0) te(r ' - R') }

where h(r,r',w) is the Fourier transform in time of the response function h .
For subsequent use we introduce the functio n

Ø (r, r' , t)

	

<[9o(r,t),eo(r',0)1>

	

,
do) (r,r,w)e iwc

	

(18)

It is readily seen that Ø(r,r ' ,w) is real, odd in w and symmetric in its spatia l
indices . From the spectral representation of the stepfunction

(16)
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0(t)
dw é Zw c

=
(a - 0+)

(19)zc 2acw+ib
and the formal identity

1 1
(20)P~

	

iacå(w) ,-
w I iå

=

where P means the Cauhy principal value, the function Ø(r,r ' ,w) enables
us to write the response-function h(r,r',w) in the following for m

dw ' 0(r, r' , w)
h(r,r',w) = P

	

----

	

-

	

(r,r ' ,w) .

	

(21)
lac w - w '

	

2

For real w we have in Eq . (21) h(r,r ' ,w) written in a real part even in w
and an imaginary part odd in w .

When dealing with the strongly screening electron system it is in practic e
convenient to introduce another response-function H instead of h . This can
be done by defining the effective potential åUe ff acting on the electron syste m

åUeff = 8U+e2 vå< > (22 )

and by defining H from

å<e> = HôUefr = hàU, (23 )
which implies

h = H{I - 01).71 Y-1 . (24)

ImH(w) = Im H(- w)

	

(26)

H(r, r') = H(r ' , r) = H(r + R, r' + R) .

	

j

In order to preserve the symmetric form of D E(q,w) in Eq. (17), we shal l
make a small adjustment in Eq. (24) . By writing

v = Q•Q

	

(27 )

= - QHQ

	

(28)

So defined, H(r,r',w) is related to the local polarizability of the electro n
system and the dielectric operator of the system (with the ions fixed at thei r
lattice sites) is given by

s(r,r',w) = I - e 2vH(r,r',w) .

	

(25 )

The properties of h found earlier and the symmetry of v give to H the
following feature s

Re H(w) = Re H(- w)

and
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(the minus sign is only for convenience) Eq . (24) is transformed t o

:e2m
h

-Q_

	

~

DE(q,w) can now be written in the symmetric form

D E(q,w) = -
1

	

~ve(K + q) (K + q)

41G K, K'

	

Vv(K ,- q)

. <K+ q 	 e2x(w) IK, +q,	 ve(K'+g)(K +4)
1 + e 2x(w)

	

Vv(K ' + q)

ve(K)K

	

e 2x(0)

	

ve(K')K'
lK 1v(K)

	

1 + e 2x(0) K> 1/v (K')

where again we may define the terms containing q = 0 ; K and/or K' = 0 by
a limiting procedure . We have in Eq. (30) used Eq . (10), which tells us that
h (and x) has the following form in Fourier spac e

h(r,r' ) =

	

dq
<K+ q(hIK' + q> ei x+s)r i (x'+ 4)r

	

(31 )

K,
x(2:7) 3

where the integration is only over the first Brillouin zone .
In metals we expect the element <qIH(0) I q> to be finite when q tends

toward zero. This gives a singularity of order 2 in the element <glx(0)Ig j

1

	

q
and of order - in the elements <K+gIx(0)Iq) (K+0), all other elements

q
staying finite . Clearly this is a manifestation of the complete screening of a

static, macroscopic long wave external perturbation we have in a metal .

1
The singularity of order

42
in <qIx(0)Iq> is seen to give one eigenvalue ho o f

1
the matrix x(0) of order

2
and the corresponding eigenfunction yo quo el"

This result implies that all terms in the second sum in Eq . (30) with K = 0 ,
K' + 0 or vice versa are equal to zero, since all other factors stay finite whe n
q tends toward zero . The term with both K and K' equal to zero, however ,

e2 x (0)
gives lim <ql	 !q> = 1 and since all potentials (including Vi) have

q-0

	

1+e2x(0)

(29)
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4y
Fourier-transforms tending to s for small q, we get from this term a con -q 2

tribution to DE equal 1 which exactly cancels the corresponding contributio n

to DI in Eq. (16) .
If we try to find non-trivial solutions to Eq . (14) as it stands, we observe

two disturbing difficulties not present in a Born- von Karmån treatment o f
this problem. Primarily, we have the dynamical matrix in Eq . (14) not
Hermitian and it also depends on the eigenvalue we are trying to find in the

equation . Our solutions are no longer the three real roots in a cubic algebrai c

equation . We know, however, that in actual cases there are three solution s
to Eq . (14) which we associate with the phonon vibrations . Now, the obviou s
way of obtaining only three solutions to Eq . (14) is to completely neglect th e
co-dependency in D E(q,w) and thus to discard all possible other solutions t o
it . But putting w = 0 in D(q,w) means adopting the adiabatic approximatio n
and this seems, thus, to be the natural starting point when dealing with th e

phonon problem (low w case). Since D(q,0) is real, this means that the peak s
in the correlation function <u(w) u(w)> in that case become 6-functions and ,
consequently, are quite non-physical . We may, however, improve upon th e
adiabatic solution by treating corrections to it as a kind of perturbation i n

the low w case . To lowest order this correction means including an imaginary
part (linear in the adiabatic w) in the dynamical matrix, thus introducing a
finite lifetime of the excitations or a width of the peaks (even in the harmonic

approximation) . One part of our problem is, accordingly, to investigate t o
what extent this procedure is practical to follow, i . e . to show that the non -
adiabatic corrections are small .

There is also another difficulty in Eq . (30) not present in the simplest

Born- von Kårmån treatment . We have even in D E(q,0) in Eq. (30) to deal
with a double sum in the reciprocal space. This means in particular tha t
we cannot in general find a local effective ion-ion interaction to use in a Born -

von Karmân calculation .

III. Expansion of the Response-Function

In connection with Eq. (13) we mentioned that - even in simple metals -

we are not generally allowed to neglect the effect from the periodic part of
the undisturbed electron density <co(r)) . This implies that %(r,r ' ) is not
generally a function of r - r ' only. The problem of calculating DE(q) becomes

then much more difficult . Experimental and theoretical results indicate [14],
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[15], however, that in some cases of interest the matrix is quite close t o

being diagonal in a plane wave representation . In such cases an expansio n

of the matrix h seems to be feasible and the problem is to find out whic h

terms in the expansion are of most importance in DE(q) .
By writing

where A is the part of the matrix diagonal in a Fourier representation and B
is the supposed small purely non-diagonal part, we. get formally

e 2 x

	

1

	

2

	

1

	

1+ e2x -
I-

n~0 1 +
	 e2A( e B i + 	

e 2A

n

~

	

(33)

In order to judge which terms in this expansion are of most importance
in DE(q), we need some kind of expansion parameter in our problem an d
then to collect all terms of a certain order in this parameter . A natural choice

of this parameter seems to be to consider the periodic part of <eo(r)> as smal l

(say, of first order) compared to the mean (uniform) value of <go(r)> = NZ .
This means that the periodic potential in the ideal lattice acting on the electron
system is small (of the same order) compared to the kinetic energy of th e
electrons. For all important Fourier components V(K) of this potential w e
then must have

kP
V(K) « EF 	 -

2m

(EF is the Fermi energy of the electron system) . But from Eq . (12) we find
that this means

Ze2Nve(K) « EF .

	

(35)

This inequality implies that the function ve(k) decreases more rapidly fo r
increasing k

	

any K than the function. v(k), since for metals of interest

1 \
with v(r)

	

we have Ze 2 Nv(K) of the same order as EF for the first (andri
most important) reciprocal vectors K . For a small q we can from these ob-
servations find the most important terms in the series in Eq . (33), when it i s
used in Eq . (30) .

In case n = 0 only the diagonal part A enters . When combined with the
unit matrix the contribution to DE(q) from the term K = 0 is very large and

gives mainly a cancellation of the corresponding term in DI(q) in Eq. (16) .
The remaining part of this contribution is, however, very important and i s

(32 )A -I- B,

(34) .
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in a certain model of the metal entirely responsible for the sound velocit y

(Box~i and STAVER [16]) . Their value for this rest is 71V
• q 2 . For terms

with K + 0 in the diagonal part we get corrections to this value of orde r
(V(K))2

compared to 1 . Thus, this is the order of the corrections we can expec t
EF

from the non-uniform electron distribution in the perfect crystal .
From the term with n = 1 in Eq . (33) and with B containing a facto r

V(K)
we get clearly contributions to D E(q) of this order from elements with

EF

either K or K' equal to zero . All other terms (both K and K' + 0) are a factor
V(K)

smaller .
EF

Similarly, we find contributions to DE(q) of this order in the term with
n = 2 in Eq. (33) in case both K and K ' are equal 0 . All other terms in the su m

are at least a factor ~~~K) smaller . So is also the case for all contributions fro m
terms with n > 3 . EF

Consequently, in order to take a consistent step beyond the approximation
of BoIIM-STAVEa (and ToYA) regarding the electron distribution in the crysta l
we have to include all terms of the same order discussed above (at least fo r
small q) . This means that for small q we have at least to consider the first
"row" and "column" in the matrix <K+ gIBIK ' + q>(corresponding to eithe r
K or K' = 0) . So much about the small q case. But what happens when q
increases and approaches any zone boundary? This is a more difficult questio n
to answer . However, the crucial point in the arguments above is the behaviou r
of the function ve(k) . For k equal to any of the important reciprocal lattic e
vectors we have assumed the value of this function to be so small that the rati o

Ze 2Nve(k)

	

Ze 2Nve(k)

	

V(K)
	 ! ti 	
EF

	

EF (1 + e 2A(k))

	

EF

is a suitable expansion parameter . But for k tending to zero the expressio n
Ze 2 Nve(k)

tends to order 1 . Of importance is then for what value of k
EF(1 + e 2 A(k))
this change of order takes place. If it happens for a k well inside the firs t
zone the arguments above hold for any q in the first zone . Although this i s
- so far - an unsettled point, we shall in the following as a proviso assume
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that this is the case and consequently assume that the terms kept in DE(q)
for small q contain uniformly in the whole zone all terms of importance . That

means we are extrapolating the condition in Eq . (35) to the more genera l

Ze 2N ve(K + q) « EF

	

(36)

(K + 0 and any q in the first zone) .

Then, the tentative form of DE(q) becomes as follows

1

	

vé (K + q) (K + q) (K + q) e 2A(K + q)
DE(q)=- -

4z K

	

v(K + q)

	

1 + e 2A(K + q)

, ve(K)KK e 2A(K)

K v(K) 1 + e 2A(K) +

ve(K+ q)v e(q)q(K+q) +(K +q)q e2<K+qIB l q>
+ K [v(K+ q)v(q)]112

	

1 + e2A(K+ q)

	

1 + e 2A(q)

_

	

°e(q) gq	 e4 I<K + g IB I q>I 2	

(q) [1 + e2A (q)] 2 [ 1 + e 2A(K+ q)]
= DEO + DEl + DE2

K v

where we have suppressed the co-dependency . In Eq . (37) we have also

discarded the term K = 0 (indicated by in the second sum due to the

cancellation from DI discussed earlier. The symmetry of the matrix B is
also used and an obvious notation for the diagonal elements is introduced .

We observe that in Eq . (37) the contribution to DE(q) from the static electro n

distribution <oo> (the second sum) contains only the diagonal part of x . We

further note in Eq . (37) that the periodic property in the reciprocal lattic e

of the complete DE(q) in Eq . (30) is lost when doing this small q approximation .

In order to reensure this property one needs consider the complete matrix B

in the contribution from the n = 1 part (the third sum in Eq . (37)) and a t

least an extension of the last sum in Eq . (37) (contributions from n = 2) by

replacing q with K' + q and do the sum over K'. If we make these extension s

in Eq. (37), we have, however, to adjust the contribution from <co> in order

to satisfy Eq . (13) .

IV. Approximation of the Polarizability Matrix

In Eq . (23) we introduced the irreducible polarization operator for th e

electron system in the ideal lattice . In order to make an explicit calculatio n

we have to know this quantity . However, no closed form for it is known even

(37)
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in the fairly simple model of the metal we have adopted here . Consequently,
we have to rely on more or less realistic approximations . The simplest non -
trivial approximation we can adopt is the R .P.A . or Hartre approximation
[17], [18], [9], which is the first term in an expansion [19] . In that case we
have (w real)

H(r, r', w ) =

	

Ti (r) (r'),Pg(r'W(r) {	 l(Ei) 1Ei - Ej + w + iå

	

f (38)

(5=0+)

where f(E t ) = {1 +eO(E"-F6}-1 ß =
k1

is the Fermi factor and Ti(r) is th e
B Tj

wavefunction for the single particle electron state with energy Ei . It satisfie s
an equation

4

2m
V(r)

1
g~(r) = 1=i~pi(r ) '

Although this seems to be a rather crude approximation, since not eve n
exchange effects between the electrons are properly considered, its effect i n
Eq. (25) can be substantially improved by a proper choice of the potentia l
v(r) . So it is possible in this way to cover the commonly used approximat e
inclusions of exchange and correlation effects [12], [13], [20], [21] and [22] .
V(r) is in Eq. (39) the effective one-electron potential in the ideal lattic e
and has to be consistently chosen . It has the full symmetry of the lattice an d
can be written

I 7(r) = G'V(K)eix• r with V(K) = V(- K)

	

(40)
K

in the cases considered here .
We have in Eq. (40) ignored the uniform part, since it has no dynamica l

effect and can be subtracted in Eq . (39). With <co(r)> supposed to be almost
uniform, we are led to make a perturbation expansion of Ei and (pi in eigen -

functions eik ' r
= <rile> to the free electron operator Ho = - 4 . In a n

extended zone scheme we get (neglecting spin)

	

2m

(39)

cp(k, r) =
N(k)1/211 + ~'c(k, K)eix • r} eik • r (41 )

with [23] and [19]
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n

Ik>

	

(42)

{‚k><k'_ l

c(k,K) =
E(k) - Ho

V
n1

<K +k l

and

(43)

fl k> <kJ -
1

	

I n
E(k)

	

k >= e(le)

	

<kJ V I

	

V

	

l
m= 1

	

~E(k) -Ho

	

1
k 2

e(k)

	

.2ni~

In Eq. (41), N(k) is the normalization factor and with cp(k,r) normalized i n
a unit cube, we get

N(k) = 1 + I'Ic(k,K)I 2 .

	

(44)
K

The reason why we have used thisWigner-Brillouin expansion in this cas e

rather than a Rayleigh-Schrödinger expansion is because in the latter we ge t
singularities for states close to the Bragg planes .

The zero order terms in these expansions give the usual LINDHARD [17 1

expression for xo . It is of interest to find corrections to low order in V to thi s

function. In order to do this we have to study quantities a s

<K+ g I M(k , k ')IK' + q> = an(k)l e "K+q)rlT(k')>

(45)
< cp (k')Ie"K'+g)*I93(k)> •

To zero order in V, with 99(k) and p(k ' ) equal plane waves, these quantitie s
obey a simple momentum conservation rule and are equal to bk

+k+qöt

In other words, all non-zero elements of Mo are equal to one and then assum e

the biggest possible value, due to the simple dynamical properties of a fre e
electron when acted upon by an external plane wave . For more general states

I99(k)> , I9)(k ')> , however, we get a more complicated conservation rule an d

the non-zero elements are no longer constants . With the state I T(k)>
Ik > +

	

ô(k,K)IK+ k >,where å(k,K) is of order V, it is seen that to firs t
K

order in V this effect sets in only in case K + K' in Eq. (45) . The first orde r
correction to the Lindhard matrix xo is consequently purely non-diagonal ,

while the first correction to the diagonal elements is of higher order in V .

But from the discussion of the approximate dynamical matrix in Eq . (37)

it is obvious that what we consistently need there is just the part of B linear

in V. Furthermore, it is clear that the only place in Eq . (37) in which we have

to consider the first correction to the diagonal elements is in the importan t

term with K = 0 in the first sum, i . e . in the term containing -e9A(q) We
1 + e 2 A(q)



(47 )

shall in the following include the correction of this term in the second orde r
part DE2 in Eq. (37) and thus by DEO mean the expression where xo is use d
throughout .

In the following we concentrate on the real part of H and get, by using
the expansion in Eq. (42), the following expression for the non-diagona l
element .

<g I H(w)IK + q> = 2P f(E(k)) -f(E(k') )

k , k ' E(k) - E(k ' ) + w

1
-- {[c"'(k', K) + c(k, - K)]8k± g+ [c(k', - K) + c"(k,K) ]

, S
k
k+K+q

1'

where the factor 2 is .from the trace over the spin states . We have in Eq . (46)
only kept terms that can possibly give lowest order contributions at least i n
cases where q is not close to a Bragg plane 2K' • q + K' 2 = 0 with K' parallel
to K . This restriction on q appears, because we have in Eq . (46) neglecte d
terms of the second and third degrees in the c(k,K) :s . These neglected term s
can, however, be of order 1 for states k and k' in narrow intervals of thicknes s
mV(K)

around Bragg planes and the sum over these states may then giv e

contributions of order V(K) in case f(E(k)) * 0 and f(E(k ')) - 0 (or vice
versa) in these regions . Therefore, the restriction is of importance only in
cases where the Fermi surface is intersected by any Bragg plane . But even
in these cases, we are going to neglect the restrictions and consider the expres -
sion in Eq. (46) as generally valid for all values on q, since the corrections
for q within a narrow region close to the Bragg planes discussed can be ex-
pected to be quite small . Effects of this kind are obviously to be expected ,
since the matrix H has a zone-structure in the periodic lattice and a represen-

tation of this zone-structure in the extended scheme leads to "rounding off "
effects at the Bragg planes, which give a smooth function in the reduced scheme ,
when the pieces are brought together .

From Eq. (47) we get the desired part of the matrix B linear in V(K)

e2 <g I B(w )IK + q> N e2<g 1 x i(w)IK + q> =	
7t2 aO [ U (q)v (K+q)] 112 V(~) ' ui(K,g,w )

( ko

	

Ze 2N)

1L2 ap

	

Ep

N(k)N(k' )
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1 7

k 2
where ao is the first Bohr radius in hydrogen and eo = -° is the free electron

2m

Fermi energy at T = 0 . In Eq . (47) ul is the characteristic first order function

of order 1, which is given in the appendix in zero T case .

From the expansion in Eq. (42) we also get the following expression fo r

the diagonal clement of H

< g l H(w )Igi = 2P
f(E(k))	 f(E(k ') )

k, k ' E(k) - E(k') + w

Sk+ q

Sh+q
	 	 k,
	 !c(k,K) - e(k' ,K)12 +

	

(48 )K N(k)N(k')

LSk +K+ q
~r(k)lyT(k) Ic(k,K)+c*(k,-K)I 2 .

Again this expression contains all effects of the desired order except
possibly when q is close to a Bragg plane .

In Eq. (48) the first åk -" gives in the free electron case the Lindhard

formula. It is, therefore, convenient to subtract this part and get the necessary
corrections explicitly . We write

	

ff

	

2P f(E(k)) - f(E(k' )) k±q = 2P 1	
f(k)	 f(k')	

- +

	

k, k' E(k) - E(k ') + w

	

k,•lE (k) E(k') + w

1

	

1
+ [f(k) - f(k' ) l

e2<q
I
r(w )1gi = - 2co U (g) Sizo(g, w) +
	 	 )

~L ao

	

K \ 80

= e2 <Ci7IY01q> + e2
<ql x 2l gi

Mat . l ys.Medd .Dau.Vid .SeLsk. 37, no. 9 .

E(k) - E(k ') + w e(k) - e(k ') + w

E(k)-F_(k')+w
åh+ qk

'

where f(k) = f(e(k)) {1 +ei")-i'40}-1 and g(k) = f(E(k)) - f(k) . The first

term in the curly bracket on the R .H.S . in Eq . (49) gives obviously th e

Lindhard formula and the remaining parts are corrections to this value du e

to corrections of the energies in the denominator (but with still the free electro n

Fermi factors) and the corrections of the Fermi factors respectively .

The element <q!x(q> can now to second order in V(K) be written (with
the restrictions on q mentioned in connection with Ep . (48))

+

	

(49)

2
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where the dimensionless function u2(K,q,w) is the characteristic function for
the correction to the Lindhard formula that is characterized by uo(q,w) . In
the appendix we have determined the function u2 in the zero T case .

It now only remains to relate consistently the potential V(r) to the inter -
action ve(r) . This is easily done, since in the tentative dynamical matrix i n
Eq. (37) we shall put in the zero order matrix ro in the terms containing th e
static electron distribution <eo> (the second sum) . From Eq . (22) this im-
mediately gives with åU(K) = - Ze 2 Nve(K) and åUeff(K) - V(K)

V(K)
Ze 2Nve(K)
1 + e 2 io (K) .

The simple form of Eq . (51) is naturally only valid for the form of DE(q)
given in Eq . (37) . If we alter this form, for instance by including terms i n
order to preserve the periodic property of DE(q) in the reciprocal lattice, w e
have to alter Eq. (51) as well .

V. Discussion

In this section we shall briefly discuss the functions ul and 11 2 obtained
in the appendix in the zero T limit . For simplicity we only consider the adia-

batic expressions in the two cases, which - as we indicated in the appendix -
is quite sufficient to do in connection with phonons .

The symmetry of the dielectric matrix gives the following general structur e
for ul

u l(K, q) = wi(K, q) + wi(K, - (K + q))

	

(J2)

Since K is an axis of symmetry in ui , it follows from Eq . (52) that u l has
the following symmetry plane

2K•q+K2 = O .

	

(53 )

It is therefore sufficient to investigate the function ul for K and q in a half-
plane. In this plane the intersection with the plane in Eq . (53) generates a
line of symmetry .

It is of particular interest to observe the difference between the two case s
Zo > 1 and Zo < 1 . This difference is already emphasized in the definitio n
of the function u l . The integrals Iij in Eq. (A 13) have two different functiona l
forms depending on whether the functions Ri(Zi) are negative or positive .
And as is seen in Eq . (A 31) all these functions Ri(Zj ) are essentially equa l

(51)
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in the adiabatic limit. But, for instance, R i (Zo) < 0 means that the inter -

section between the singularity planes 2K• k - K2 = 0 and (for co = 0) 2k • q +
+ q2 = 0 in Eq. (A 5) penetrates the Fermi sphere . Accordingly we cannot
have R 1(Zo) negative in case Zo > 1, since Zo > 1 means that the plan e
2K . k - K2 = 0 is entirely outside the Fermi sphere. There is consequently

an important qualitative difference between metals with a Fermi sphere
extending outside the first zone and those with the Fermi sphere completel y

inside the zone . This is one reason why the polyvalent metals is felt to b e

much more interesting than, for instance, a metal such as Na .
In order to demonstrate easily the behaviour of the function ui , some

relevant curves have been drawn in Fig. 1 for the case K = 2 and 2ko = 2 .2545
2 s

in -, which is a value appropriate for Al .
a

K is here the axis of symmetry and the circles around O and 0 ' are the
traces in the K - q-plane of the "Fermi spheres" (radii 2ko) around O and 0' .

M is the intersection with the plane in Eq . (53). The locus for points making

R i(Zi) = 0 is also shown. This locus is a circle with diameter OA ' and centre
at M1 which thus touches the "Fermi spheres" at the points A and A ' (note
the folded part) . The heavy parts of the circles in the figure give the loci for

2 *

K
M

Fig . 1 . Figure showing the intersection in the K- q-plane of the surfaces where ul (and u 2) hav e
nonregular behaviour (heavy lines) . The dashed figures show the intersection with the zone a s

indicated in the inset .
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points where there are infinities in the derivative of ui . The parts along th e
"Fermi circles" are to be expected, but it is interesting to note that along th e
circle around Mi there are also such points between A and A ' and moreover
with stronger infinities . The formal reason for these singularities is easily
located . Approaching the circle M 1 from the inside means that the functions

Ri(Z5) lend to - 0 . Then all cyclometric functions approach the values +
9

gT
or - 2 - . On the arc between A and A ' all functions Iij give a contribution + r

to the sum in Eq . (A 32) . When the factors are considered, a rapid increas e
is found in the contribution from the sum of h i there . On the circle the con-
tribution is zero . If, however, the circle is approached from outside, the n
Ri(Z5) tends to +0 and the integral are given by hyperbolic area function s
which themselves go to zero on the circle . These arguments apply for al l
points on the circle between A and A ' , since there is no change in sign for th e
contributions from the cyclometric functions along A - A' . This can be see n
to be the case, since for any of the integrals the following sum rule applie s
for the arguments involved in Ii j .

Ri(Z1) - (c i + ZiZj)2 = - (1 - Z2) (1 - Z;) .

	

( 54. )

Eq. (54) demonstrates that on the circle around M1 where R i(Z5 ) = 0 ,

the quantity (c i + Z1 Zj ) cannot become zero unless Zi or Z; equals + 1 .
This never happens between A and A' : at A (or A'), however, Z3(or Zi) equal s
1 and there is a change in the sign of 130 and 132 (or Iio and 112 ) . Along A O
and A'0 ' , and also along the folded continuation, this edge effect therefor e
disappears . 132 and I12 change signs again at B (or B') where IZ21 = 1, but
these sign changes cancel, making the function smooth there .

Physically this edge-effect arises from the discontinuity in the expansio n
coefficients of the electron wave function at the Bragg planes . In the presen t
treatment these discontinuities are infinitely large, since for the integrations ,
the finite coefficients (in a Wigner Brillouin expansion) have de facto bee n
replaced by the singular coefficients in a Schrödinger expansion . Consequently
the form of u 1 used does not give a correct reproduction of the real behaviou r
of the matrix element <gIxi lK + q> for values of q close to this edge. Thi s
form of u1 can only be expected to give the correct behaviour of the tru e

function up to a distance of order /q =
V(K)

•ko from the edge . The approxim -

ation made here yields a function connecting continuously (but with infinite
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slope at the edge) points on both sides of this edge . However, even in the rea l

case a rapid variation in the nondiagonal terms of the dielectric matrix ca n

be expected for values of q in that region . It is therefore of interest to fin d

out whether or not this property is observable in the experimental measure-

ments . What makes the situation so interesting is that points on this edge are
not in general close to any "ordinary" Koav point, where the following shoul d

apply [24] .
(K + q) 2 - 4kô = 0 .

	

(55 )

Instead the relationship is of the form [25 ]

(K + q)2 - s24ko = 0 : with s2

Although this condition is identical with the condition given by TAYLOR in

the limit of vanishing deformation of the Fermi sphere, the reason for th e

effect is entirely different in this case . In his treatment TAYLOR considers th e
matrix elements as slowly varying functions and attributes the effect to th e
shape of the Fermi surface (through the energy of the one-particle states) ,

but here to lowest order the effect is seen to be due to the rapid variation o f

the matrix element and present even for a spherical Fermi surface .
In Fig . 1 some traces in the K - q-plane of the first zone in a f . c . c . lattice

have been drawn. It can be seen that the curve A - A ' is rather far out from

0, in a region where the influence on the dynamical matrix from elements

<q l x 1 IK + q> is expected to be small . In any case it is clear from Fig . 1 that
the regions of particular interest are those around A (or A') and also around
the intersection M2 , where two singularities are added. It is also of interest

to observe the detailed shape of the function nl close to the edge along A - A' .
In Fig. 2 some results of an accurate computation are shown for some value s
of the angle between K and q . In Fig. 3 results are shown of a more extensive

computation of a l close to A ' . The edge-effect is seen to set in for

K

c l = cos 0 > - -

	

- 0 .8871 .
2k o

Around M2 the function is found to be quite smooth. It is almost impossibl e
to detect the logarithmic infinities in the slope, even in a very detailed com-
putation. However, in both these regions around A ' (and A) and M2 the in-
fluence from the neglected terms in Eq. (46) can be expected to give com-

paratively large "rounding off" effects and the results given here have fo r
that reason to be interpreted with some care .

IKXq I 2
K2q2 .

(56)
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K= 2

1. 5

1. 0

0 .5

0

	

0.5 2 .o
2k,,

1.o 1.5

Fig . 2 .

Fig. 2, 3 and 4 . ul (K,q) as a function of q for some K and cos O = K q
H q

Fig . 3 .
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2ko = 2,2545
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a s

o

O.o

O .s

	

l.o

	

l.s

	

2 .o
	 > g

2ko `in

	

1 )
a

rig . 4 .

I .n the case Zo > 1, the function ul becomes much less dramatic . In this
case the point 0 ' in Fig . 1 lies outside the circle q = 2ko, and Ri(Zi) > 0 for
all values of q . Hence the edge-effect does not appear in this case and only
the logarithmic infinities appear in the slope on the circles q = 2ko and 1K + qj _
2ko . In Fig . 4 the result is shown of a computation for Al in the case K = 21'2 .

There is a third possibility, namely Zo > 2 : the two circles at 0 and 0 '
in Fig. 1 then lie completely outside each other. This alternative has not bee n
investigated in detail, but nothing of importance is expected to happen in thi s
case either.

In the appendix the function u2(K,q) is split into two parts so that the
trivial effect from the change in the Fermi energy is treated separately . We
write

	

„
u2(K,'q) = u2(K, q) + u 2 (K, q)

	

(57)

where u2 (K, q) gives the isotropic effect from the decrease in the Fermi energy
and is given in Eq. (A 30) . The more interesting part u2(K, q) is in the appendix
written as follows

u2(K,q)

	

{w2(K, q) + w 2(- K, q)}

	

(58)

and is also given in Eq . (A 30) . Due to the axial symmetry of u2 around the
direction K and its evenness in q it is again only necessary to consider K and
q in a plane, and this time only for values of cl satisfying 0 5 cl 5 1 . Of
interest to us here is the behaviour of u 2(K,q) for rather small values of q :
say for q within a sphere inscribed in the first zone, since it is only for suc h
q :s the corrections from u2 are expected to be significant . This restriction is
important because both the expressions in Eq . (A 30) are singular for q : s
outside this sphere . The singularity in u2 is obvious at Zl = 1, which means



Fig. 5 .

Fig. 5 and 6 . The second order functions ua and i4 for some values of K and the angle 0 .

1
when q = 2ko . In u 2 the factor	 produces singularities along the arc o f

VRi o
the circle at Ml denoted by A - A ' in Fig . 1 . This are also has to be reflecte d
in the line A - 0 in order to give the total picture in this case . The singularitie s
are naturally quite non-physical, and indicate that the element <qIxI q> cannot
be expanded in a power series in V(K) at zero temperature, which might b e
expected from Lindhard's formula . They have to be removed if the functio n
u 2 is to be defined all over the K - q-plane . This removal requires among
other things a more careful investigation of the contributions to u2 from states
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Fig. 6 .

close to the zone boundary . At any rate, the expression given would suffice
here because the correction is only being considered for small q well insid e
the first zone .

The qualitative difference between the cases Zo < 1 and Zo > 1 is mor e
marked here than in the first order case. In Figs . 5 and 6 some results of a
calculation for K = 2 and K = 2y2 ; 4 ; have been collected, using the valu e
of 2ko = 2 .2545 .

The significant difference between the two cases is this that for Zo < 1 ,
u'2(K,q) is comparatively large and negative for the relevant values of q (it
becomes positive for larger q) whereas for Zo > 1, u2(K,q) is positive . This
means that in the Zo < 1 case there is a comparatively strong reduction of
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the dielectric function for small q . The effect from terms with Zo < 1 is then
to increase the frequency of the longitudinal phonons, contrary to what migh t
be expected for the effect from the lattice potential . For Zo < 1 there are als o
interesting peaks with infinities in the slope to the left, at points where IK + q~ =
2ko . The infinities are here of the same logarithmic kind as those found i n
the function ul(K,q) at these points .

In the case Zo > 1, however, the function u2 contains little of interest .
For all relevant values of q, u2 > 0, and as in the case of ul there is a weak
singularity in the slope at Z3 = 1 . (Seen in Fig . 6 for K = 202 .) For still large r
K the function u2 becomes practically isotropic for all values of q of interest .
This is also seen in Fig . 6 for K = 4 . There it can also be observed how fas t
the physically interesting quantity 14 + u2 goes to zero . For K = 2, this quantity
is numerically of the order 1 at q = 0 . But already for K = 4 it has decreased
to about 0 .01, and for K = 6 it has gone down to about 0 .002 . This rapid
convergency even in the function u2 indicates that no practical problem wil l
arise in the performance of the sum in Eq . (50) .

The model developed in this paper has been applied to aluminium by
the present author and A Westin. The results of the calculations are col-
lected in : On Phonons in Simple Metals II, AB Atomenergi, Studsvik, Ny-
köping, Sweden, Report AE-365 (1969) .
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Appendix

Our problem is to find explicit expressions for the various functions u j

introduced in the text .

For completeness we include also the LINDHARD [17] expression for uo(q) .

From Eq. (49) we have (q an arbitrary vector in the following)

	 f(k)
e2xo(q, w)

	

- L2u(g)2P

	

=f\k ~) 	 ~k + q
k' £(k) - E(k ) + w

U (q) uo( q , w)
where

1

	

f(k)dk
cc o(q ' w)	 	 P 	

27cko ~\l 2k . q + q 2 f 21nw

k o

7L 2a0 (A 1 )

(A 2)

which gives

1
uo(q,w) =

8Z1
(1 - Zif)ln + 2Z1+}

	

(A 3 )

w
in the zero T case. We have in Eq . (A 3) put Zl = q ; Z} = Z1 ± - and

shall add the expression for Z1 + and Zl- .

	

21 0

	

4soZ1

For the first order element we get from Eq . (46) after removing a factor

V(K) in the coefficients c(k,K) in Eq . (42) and passing to the limit V = 0 in

the remaining expressio n

e 2 <q I ui(co) IK + qi =
ko V(K)

[ v (g)v(K + g)]112 ul(K, q, w)

	

(A 4)
z2ao ao

where
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ul(K, q, w) =

	

ko P ( /(Ic) dk~	
1

27r J

	

2k•q +g2 +2mw

1[2K k - K2
- 2K(k +g) + K2

- 2k(K + q) + (K + q)2 + 2mw

[2K• k1 + K 2 2K(k + q) + K2

1

with the P symbol extended to all singularity planes .
In order to integrate this expression in the zero T limit we choose axe s

and variables as follow s

K = K(0, 0, 1) ; q = q(si, 0, ci )

K+ q = IK+ g l( s 3, 0, c3 )

k = ko(ecosg),sincp,Z) ; dk = kgdZQdgdcp

and are also going to use the following notation s

K

	

w
Z0 =

sko
; Zi} = Z1 f

48 0 4.

K

	

as earlier

Z 2 =	 (K+
q)

= Zo + 2c 1Zi

	

(A 7)
Zo

Z3 _ IK+q I

4ko2

	

= Z+ w
2k0

	

3f

	

3 4e
0 Z3

From (A 6) and (A 7) we get the relationship s

s22

	

2

	

/Zl 2
s2

	

Zo + ciZ1

	

(A8 )3

	

\Z3 i
c3

	

Z3

performing some simple integrations, we get for T = 0

1( 1
u i (K, q, w) _ - Sl	 (c 1Zo + Zi±) ln

16Z0 Z 1 si _

+ P f dZVRlt(Z) (	 	 1	
~l

	

J

	

1

	

Z Zo Z+ Z2)]

	

s3
-1

(A5 )

(A6)

After

( C. 3G0 - Z3+) .

1 + Zo

Zo

. In
1 + Zo

1 -Z0

i
1

	

1
+P f dZI/R3+(Z) 	 	 -	

-1 Z+ Zo Z + Z2
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where
R1±(Z) = Z2 + 2c 1 Z1tZ + Zlt - si

R31(Z) = Z 2 + 2c3Z3fZ + Z3~ - s3 .

The integrations in Eq . (A 9) are only over real values of the square-root s
which are interpreted in these intervals as follows

VRf}(Z) = sgn (c 1Z +

	

R1±(Z) 1 1 / 2

VR3,(Z) = sgn (c3Z + Z31) I R3 1 (Z) I 1J 2 '

By writing the integrand

VRjf(Z) =	 1	 	 {R1f(Zo) + Ri'f(Zo) (Z - Go) +
Z Zo

	

Rjf(Z ) (Z - Zo)
/dR il

+ (Z - Zo) 2 } where R11 (Zo) =	 -
\ dZ

and similarly for the others, we get after performing the integrations and
some reductions .

1	
)2(Zo+ciZi)ln

1 +Z1
u1(K, g, w) =

1 GZoZ1 si11- Zl+

+ 2(c1 Zo + Z1~) In 1+ Zo
- 2c1Z31n

1+ Z3t
1 - Zo

	

1 -Z3±

	

l
+ sgn (Rjf(Zo))VRio(I12 - Iso) - sgn(R1f(- Z2)) ' 1 /Ri

	

- IL) }

where I ti means

	

J

n
C l	 +ZoZli	 -	 VRlo if R1+(Zo) > 0
C 1 + ZoZf, + ~~R2

(cl 	

+ ZoZ1tl
2 arctg	 	 if R 1,(Zo) < 0

l ~ R~~

	

l o

In
- Z2Z1±	

VR2 if Rf1( - Z2) > 0 A 13)c 1 - Z2Z1f + VRia

	

~ (

2 arclg /cl -	 L2Z1±\ if R1±(- Z2 ) < 0
~ VR2 /

ZO

(A 12 )

1

f	 dZ

I~ V ~
I'

J (Z - Zo)VR1±(Z)

i
dZ

I12 = ~~R2P	 	 =
-1(z+ Z2) VR 11(Z)
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similar expressions (A 13)

where in Eq. (A 13) I/Rlo = IRIt(Zo)I1/2, and similarly for the others . Th e

evaluation of the integrals I is a little bit tricky, at least in case Rz~(Zj) < 0 .
We have to consider the two distinct cases possible (depending on whethe r

Rit(± 1) have the same sign or not) with the sign rule in Eq . (A 11) in mind
and to keep track of which branch of the cyclometric function we deal with .
In Eq. (A 13), however, all angles are in the interval - < Iii 15_ 2r When

doing the reduction in Eq . (A 13) we have also used the following relations -

ships

L3 2

R1f(Zo) 71 R3f( - Zo)

(A 14)
7 2

R lf( - Z2)
ZS

1

R3t(

	

Z2) .

The corrections to the Lindhard value of the diagonal part of x had i n
Eq. (48) and Eq . (49) three different sources . Considering first the contribution
from the change in the matrix M in Eq . (45) . We get this part after removing

a factor V(K) 2 and passing to the limit V = 0 in the remaining expression .

e 2 <q 4 q> = e2 u(q) I V(K) I 2 .2P
K

	

k, k '

f(k) - f(k ) J ak+q

	

1

	

1 2

	

e(k) e(k') + w k

	

e(k)-e(k+K) e(k')-e(k'+K)

	

(A15)

	

- 6k+K+q	
1

	

1

	

l

	

I
k'

	

e(k) - e(k + K) + e(k') - e(k ' K)i 1
with again the P symbol extended to all singularity planes . This contributio n
- and as we will see later, the others too - is made up of a sum over all K * 0 .
This fact may be used to simplify the calculations by a proper choice of the
terms in this sum . Of interest to us is to find the function u2(K,q) having the
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same symmetry as the lattice, which means a function even in q in this case .
Thus, with

	

ko

	

(V(K)12

	

nl

	

e2 Cq I xM l qi =
?C2QO

	

£o

l
! U (g) u2 (K, q, w),

	

(A 16 )

we write

u2(K, q , w)

	

ka
Pf

J	 f(k)dk

2TC 12K' g+ g 2 t 2mw

(1
	 2

	

1	 2

	

f(k)dk
2K•k-K2 +(2K(k+q)+K2 ] 2k(K + q) + (K + q) 2 +2mco

[(

2

2K. k + K2

)2+

1\ 2K(k +1q) + K 2 ) Jl 4ZZ1ci
"1(K' q, w)

where we have made a substitution K --> -K in appropriate terms . Similar
calculations as in the previous case give in the zero T limit

(A 17 )

	 1 ~~	 c
iuM (K, q, w) =

	

, ln
64Zo `

1 + Zo
1- zo

cl

f1 S 1

. In
1 +z2

1-Z2
C	 3+

	

I n
Z3 S3

1 + Zo

1-Lo
C 3

+
Z3 S32

ln
1 + Z2

1 -Z2
+

1

+ P JdZR1±zr 1

	

+ (Z -Zo) 2 (Z +Z2)2

-1

Jd7 .
1

- P

	

Z3 S3
- 1

[(Z + Zo) 2 + (Z + Z2)2 J 1
4Zo Zi c1

u1(K, q, w)

where we have exposed the integrals, which are singular in case Vol < 1
or/and IZ2I < 1, if the integrations are over these Z-values . With

f dZ	 VR1 1 (z) = - VR 1}(Z) +

f

	

dZRlt(z)	
-

(Z - _"/,o) 2

	

(Z - Zo) J 2(Z - Zo) VRif(Z )

and similar expressions for the others, we get from Eqs . (A 7), (A 8), (A 11 )
and (A 14) a cancellation of the dangerous terms ; in fact all integrated part s
in Eq. (A 18) and the similar expressions for the others are seen to com-
pletely cancel . Performing the remaining integrations, gives

(A 18)

(A 17)
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uM(K, q, w) =	 2	 22 {ZO ln
64Z o Z s

1 1 + Zo

1 - Zo
+

1

l
1 +Z3t

1 - Z3f

+ 1 f'(ZD +c1Zlf) If (Z2 - c 1 Z~f) 14,

64741 siZl~/Rô
lo

	

s171` ~Ri 1 2

+
(ZD - C3Z3f) I3 + (Z2 - C373±) I3 l	 1	 u K, w2

	

+

	

2

	

4Z Z c 1( q , )
s3 73~ ' R 30

	

s3 73VR 32

	

1

	

D 1 1

where again we may reduce the expression by use of the relationships give n
earlier . We leave, however, this to a later stage in this case .

Next we consider the lowest order contribution to <gk2l q> from the cor -
rection of the energy denominator in Eq . (49) . By a similar procedure as in
the previous-case, we get

k o3 (~

	

f(k)

	

I

	

1
u2 (K, q , w) = 2a~ P J dk(2k • q + q 2 + 2rnw)2 2K. k - K2

+

A 20)

where the second order singularity clearly must be interpreted as the limi t
of two nearby first order singularities, then giving zero contribution when th e
principal value is taken .

Similar calculations as those already shown give in the zero T limi t

+ 2Zl ln + Zolll
1 +Z2

1 -Z2
- 2Z31n

(A 15)

+ in
1 + Zo

1-74
-ln

az2 (K, q, w) =
64 70 712 2s1

2 c l I n

1 + Z2

1 -Z2

+ (c1 ZD +Zl)
I}lo

_ (c1 Z2 - Zli

	

}

	

~

	

VR lo

	

V12

1
+

2

(A 21 )

In this case it is practical to use axes with q = q(0, 0, 1) and K = K(s i , 0, cl )

and, then, to introduce functions Ro(Z) = Z2 - 2c1Zo/. + Za - si and R 2(Z) =
Z2 + 2c 1Z2Z + Z2 - si, which lead to integrals a s

1

	

1

f	
dZ

	

~	
dZ

	

I1Ô
J (z+ Zlf) VRo(z) J, (z - zo) VR1f(Z) VRô
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Finally we consider the effect from the change in the Fermi factors i n

Eq. (49) .
To lowest order we hav e

åf'(k)
9

(k)

	

ô e
	 {E(k) - e(k) -- (u -,uo)}

	

(A 22)

and then a contribution to u2

f(k)

F

	

kô ~

	

âs

	

~	 1	 ~(x) 1
u 2 (K, q, co) =

4m~
P dk

2k • q + q 2 2mco 12K • k - j~ 2

	

k1 1 (A 23)

where we have written
1

tir o = -v(K)12n(K)•
K

(A 24)

In the zero T limit is a()

	

å(e ao)

	

ko
{å(k - ko) + å(k + ko)} .

In that case we get from the condition g(k) = 0 the following expressio n
for P/(K)

	

K

1
z7 (K) = - 8Zo ln

1 + Zo

1 -Zo
(A 25)

which finally give s

u2 (K, q, co) IL + ln
647.oZ1

	

ô

1 + Z o

1-Zo

1 +Zlf

1 - Zit

. In
1

	

2

Collecting all contributions gives the following cumbersome expressio n
(where the first two terms cancel . when the sum over K is performed)

P = -	 1

	

1 + Zom + Eu 2 u2 +u2

	

32 ZôZl cl
ln 1- Zo

1

	

in
1+ ZIA +

	

1

32 Zo Zl c 1

	

1- Z1}

	

644/ Z1 c1 l/Rio

I
[ c 171(Zo +e1 Z1t)+c1 Zo\c 1Zo +Z1f)	 - 2s1 c1ZOZ1 - Rlf(ZO) ]

S21

(A27)

. jf + ~ c 1 Tl(ZO - c3 Z3f)+	 R
10

	

2
S3

(- Zo)] j
3 0

!
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1

	

[c 1Z1(Z2 c 1Z1) + c1Zo(c 1Z2 - Zit) - R11(- Z2)]
l

	

I}
64ZôZic1 ~~Ri2

	

S
1

	

2

	

1 2

- [ C1Z1(Z2 - C3Z

s2

) - R3t(-Z2) ]
j32}+u 2

3

	

I

with 12 (K, q, co) the last part of u2 in Eq. (A 26), i .e . the contribution fro m

the change in the Fermi energy caused by the periodic potential .
As mentioned earlier, we are in this case interested in the function u 2(K,q,w)

which is even in q . For this reason we define the functio n

112 - 11 2 + z4 .

	

(A 28)

With 14' already of the desired form and with

u2(K, q, w) = [ u2 (+ el) + u2 (+ el) + u2( ± c1)~ - u2 .

	

(A 29)

We have here consequently dragged along the w-dependency of th e
various functions ui in order to explicitly show how unimportant (in this case )
the non-adiabatic corrections are in the real part of x . The w-dependency

w
comes in via quantities like Z1± = Z 1 + --- In the phonon case Zl± is thus

4roZi . w
almost identical with Zl except when Zl is very small . In this limit	

c
48 0 4.

tends to a constant = (sound velocity/Fermi velocity at zero T for the fre e
Do

electrons) 10- 3. In almost all practical calculations it is, therefore, quit e
safe to neglect the non-adiabatic corrections completely in the real part of x .

And in the adiabatic limit the expression containing the integrals Ih in Eq .
(A 27) becomes surprisingly simple . We get in that cas e

u 2 (K, q, O) =
64Z2Z2

(G 3 	
-

1)
[Ilo - 112 - 130 + I32 1

0 1 c l rR10

u2(K,q,O) = -

	

1 - • ln
32 ZoZ1

R11(Zo) = R1(Zo) = R1(- Z2) = (4-4) ;

2
/

R3f( - Z0) = R3( - Z0) = R3( - Z2) = (4-4) _
~ G11 \Z3 - sl) .

/

1 + Zo

1 - Zo
. In

f c,
A 30)

where we shall add the two expressions with + C l . In the adiabatic limit w e
have
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The expression for u i(K,q,w) in Eq. (A 12) becomes also somewhat

simpler in the adiabatic limit . We get from Eq :s (A 12) and (A 31 )

1
ul (K, q, 0) =	 2(Zo + ciZl) • In

8 ZoZl s i

where in Eq :s (A 30) and (A 32)

I/Rlo = 11101
1/ 2

There is one point worth noticing in connection with the performance o f
the integrations above . The expressions found for ul and u2 are both singular
in case Zo = 1 and this value for Zo is consequently not allowed . We can

physically understand this situation by remembering that Zo = 1 means that

the free electron Fermi sphere is just touching a Bragg plane . The principal

value calculation close to this plane then breaks down, since this calculation
assumes an (essentially continuous) distribution of occupied states on bot h

sides of the plane. In order safely to obtain such a distribution, we must

require that Zo is sufficiently different from 1, which in physical terms mean s

K
that we require for any k = 2koZo =

2

l e(k) e o l > V(K) l

This condition is no serious restriction in actual cases .

NORDITA, Copenhagen, Denmark
and

AB Atomenergi, Studsvik, Nyköping, Sweden

1 + Zl

+2(c1 Zo+Zi)•In 2c1Z3 . 1 n
1- ZO

	

1

l

- Z3

+ sgn (Rio) I/Rlo [Ilo - 112 - 130 + I32] (

1 + Zo

+

+

	

(A 32)
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