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Synopsis

The electromagnetic energy-momentum tensor inside a material medium is studied, mainl y
from a phenomenological point of view. The influence from the medium is taken into accoun t
by introducing a dielectric constant and a magnetic permeability . In this paper only Minkowski' s
tensor is studied, since a comparison between the theory and available experiments indicates
that this tensor is well suited to describe usual optical phenomena . Other tensor forms will b e
dealt with in a forthcoming paper . Here deductive formal procedures are employed ; in particular ,
two sets of conditions are given under which Minkowski's tensor is determined uniquely . Further ,
attention is given to various characteristic effects, such as negative field energy, which ar e
encountered with the use of Minkowski's tensor .
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I . Introductio n

1 . Presentation of the Problem

T
he electromagnetic energy-momentum tensor in a material medium re -

presents a problem that has given rise to a very long-lasting discussion.

Maxwell's field equations may be written in covariant form a s

aÄF~v + aFti Fv2 + a y FA,,., = 0, av H~v = c j,u ,

	

(1 .1 )

where the antisymmetric field tensors Fm, and H,uv are defined by (F23, F31 ,

F12) = B , (F41, F42, F43) = lE, (H23, H31, H12) = H and (H41, H42, H43 )

= iD. The four-vector j, (j, ice) is the external current density, it does not

include polarization or magnetization currents .

By means of the field equations the energy-momentum tensor can easily
be constructed if one knows the four-force density in some inertial system .
This is the case for an electromagnetic field in vacuum interacting with

incoherent matter, the four-current density of which be given by jj . In that
case the four-force density is given by f, _ (1/c)Fm,jv in any reference fram e
K, since in K° - the frame in which the matter under consideration is at res t

- the force takes the form f, (e°E°,0) . Thus -a,,Smv , where the
energy-momentum tensor S,u, is determined by means of (1 .1) as

S, = FduaFva - a~vFaßFaß

	

(1 .2)

since, in this case, Fm, = Hm, .
In ponderable bodies, however, it is well known that the force expression

is not so easily constructed . If we use (1 .1) to form the expressio n

1
F,uvJv + i (Fav au Hav - Hav 0,u Fav) _ - av Siv

	

(1 .3)
c

where

F~caHva - jS~vFaßHa~,

	

(1 .4 )
1*
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we see that S may be interpreted as an energy-momentum tensor . This i s
the proposal put forward by H . MINxowsKI . According to his view, the left
hand side of (1 .3) is interpreted as the force density within matter .

The expression (1 .4) leads to the following interpretation

-Sill = EiDk +Hi Bk - Sik (E•D+H•B)

	

(1 .5a)

Sole = ` Sk = i(E x H)k , Sk4 = icgk = i(D xB)k

	

(1 .5b )

-S44 = Wm = ,; (E•D+H•B) (i,k = 1,2,3),

	

(1 .5e)

where SM, gM,WM denote the energy flux, momentum density and energ y
density in any frame K.

The connection between the components of the field tensors F v and
Ht°v in the rest frame K° can, in the absence of dispersion, be written as
D° = E ik Ek, B° = gikH , where eik and ,uik are the tensors of dielectric an d
magnetic permeability . (Dispersion effects are always present, but they ar e
not of essential importance for the present problem and shall therefor e
simply be omitted .) Now the most important application of the phenomeno-

logical theory is in connection with optical phenomena, where e ik and ,uik

are real quantities . In the following we shall always assume E ik and ruik to
be real. Further, we shall consider only homogeneous bodies, such that the
gradients of eik or (Uik will differ from zero only in the boundary layers . It
can readily be verified that in the interior domain of a homogeneous bod y
the second term to the left in (1 .3) vanishes, such tha t

av suv = o

	

(1 .5d)

for optical phenomena (j, = 0) .
Then define the angular momentum by the quantities

= f (xi,gv - x, g m )dV,

	

(1 .6)

where gm = - (i/c)S,A4 . When the electromagnetic system is limited in space ,
it follows from (1 .6) that

d/ dtMmv = f (xv fm xmj;, +Svc - suv) dV,

	

(1 .7 )

where f~

	

- d,Sim, . Now consider a finite radiation field enclosed within a
homogeneous body at rest, and insert Minkowski's tensor Sm into (1 .7) .
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If the body is optically anisotropic, we obtain even in the frame K° an

expression for d/ dt°Mk° which is different from zero . If the body is optically

isotropic, we find d/dt°Mz D = 0 since SM0 is symmetrical when D° = sE° ,
_ ,uH° . In another system of reference, however, we have in genera l

Silt k also for isotropic bodies, and thus d/ dtIlIk � O . Asa conclusion, we

find both for anisotropic and isotropic media that an asymmetric mechan-

ical energy-momentum tensor is necessary to achieve balance of the tota l

(field and mechanical) angular momentum . This circumstance has some -

times been felt to be a real difficulty for Minkowski 's theory .

Besides, Minkowski's tensor seems to get into conflict with Planck' s

principle of inertia of energy, as expressed by the relation S = c2g.

To overcome the difficulties just mentioned, various other proposals of

an electromagnetic energy-momentum tensor have been put forward, the bes t

known of which is due to M . ABRAHAM .

For a general introduction to the subject-and for references to som e

original papers-we refer to Moller 's book . (1 )

2. Summary and Survey of the Subsequent Work

To facilitate the reading of some of the detailed expositions in the

following, we shall in this section give a survey of what follows, and men-
tion some results .

In this paper, which will be followed by a second one on the subject ,

we shall limit ourselves to a study of Minkowski's tensor . From the pheno-

menological point of view we are adopting, this tensor is found to be ade-
quate for the description of the usual electromagnetic phenomena, as fo r

instance the situation where an optical wave travels through transparen t

matter at rest. Comparison with experiments plays an important role in th e
investigation . But we stress already now that the experimental results d o
not exclude other possible forms of the electromagnetic energy-momentu m
tensor ; the essential point is rather that Minkowski's form adapts itself to
the experiments in a very simple way .

The long-lasting discussion on the subject has given rise to an extensiv e

literature, and it appears that in previous phenomenological treatments
mainly two lines of attack have been followed . In the first place one uses a
deductive method and constructs the energy-momentum tensor on the basi s
of commonly accepted quantities, for instance the energy in electrostati c

and magnetostatic fields, or the (macroscopic) field Lagrangian . In the
second place one examines the consequences of using the various tensor
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forms in appropriate physical situations, and compares with results that ca n
be expected on physical grounds . In these two papers we shall deal with
topics connected with both methods of approach .

Let us now review the individual sections . Chapter II is devoted to
deductive, and mainly formal, procedures. We start in section 3 by con-
sidering a variational method which is applicable to the case of static fields ,
and which in general leads to the force density and stress tensor when th e
energy density is known . For the latter density in the electrostatic case, w e
use the common expression z E• D . Minkowski's tensor is different fro m
other tensor forms proposed even in the case of an electrostatic field in a n
anisotropic medium, and some contradictory results have appeared in the
literature by the use of this method . We show how Minkowski's tensor i s
one of the legitimate alternatives that result from the formalism, and illus-

trate the considerations by an example that involves detectable torques o n
an anisotropic dielectric sphere . An important point is that we shall have
the opportunity to make an explicit statement of a crucial assumption which
must be imposed if the formalism shall yield Minkowski's tensor . This is
the assumption that each volume element experiences a torque density equa l
to D x E, even if the force on the element is zero .

In section 4 we use this assumption (the "dipole model") as one of th e
initial conditions in a formal uniqueness proof of the energy-momentu m
tensor. The dipole model corresponds to a certain requirement on the non -

diagonal components of the energy-momentum tensor, and to a vanishin g
ordinary force density in charge-free homogeneous regions . We require that
all components of the four-force density shall vanish, and that the tensor
shall be a bilinear form in the field quantities . With these initial conditions ,

we are led to Minkowski's tensor as the unique result .
Section 5 is devoted to a formal procedure along similar lines as i n

section 4, but with different initial conditions . In this case relativistic con -
siderations are also involved . We require the energy-momentum tensor t o

be a bilinear form which is divergence-free and an explicit function of the
field quantities E, D, H, B in any inertial frame (but not an explicit function

of the four-velocity of the medium). Both anisotropic and isotropic homo-

geneous media are included in the description . We find that the above -
mentioned conditions, in addition to the fact that eix and pile are symmetri c
quantities, determine Minkowski's tensor uniquely . In the procedure we use
ideas from the corresponding proof for the vacuum-field case, presented b y
V. Focx .
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In order to understand the underlying physical mechanism of wav e

propagation, it seems desirable as well to examine simple physical situations .
In chapter III we undertake this task and construct the electromagnetic

energy-momentum tensor in K° from semi-phenomenological arguments in
the following way : The stress tensor and energy density are taken to be th e

sum of the two parts corresponding to the electrostatic and magnetostati c

cases . Further, we use the fact that the fourth component of the four-forc e

vanishes when an electromagnetic wave travels through a non-absorptiv e

medium. From the continuity equation for energy we can then find the

Poynting vector S = c(E x H) and hence the electromagnetic momentum
density g = (1/ c) (E x H) from Planck's principle of inertia of energy, which

is assumed to be valid also for the electromagnetic field in matter . The

stress and momentum components determined so far lead to a force densit y
whose effect may be to excite a small mechanical momentum of the con-

stituent particles (dipoles) . By comparing with a radiation pressure experi-

ment due to R. V . JONES and J. C. S . RICHARDS we find that this suggestio n
is in fact supported . Corresponding to the mechanical momentum there i s
a small transport of mechanical energy which, however, together with th e
rest energy itself, is included in the mechanical part of the total energy-

momentum tensor . The conclusion is that Minkowski's tensor gives an
adequate description of the propagating wave .

In section 7, some attention is given to the microscopical method o f
approach. Some difficulties for the acceptance of Minkowski's tensor, whic h

have arisen from microscopical considerations, are discussed . It is stressed

that the ambiguity inherent in the formalism is not removed upon transitio n
to the microscopical theory .

In chapter IV we consider methods and specific effects connected with

relativity, and limit ourselves to the case of isotropic media . We start in
section 8 with a Lagrangian method which involves the use of Noether' s
theorem, such that the canonical energy-momentum tensor is obtained b y

a symmetry transformation . Minkowski's tensor is closely connected with
the canonical tensor, although the canonical procedure does not rule out
other tensor forms. In section 9 we analyse the well-known criterion due to
VON LAUE and MØLLER on the transformation property of the velocity of th e
energy in a light wave . By comparing with the Fizeau experiment involvin g

the velocity of light in moving media it is argued that the transformatio n

criterion ought to be fulfilled for an electromagnetic energy-momentum ten-
sor which shall describe the whole light wave . It is a satisfactory feature of
Minkowski's tensor that it actually fulfils this criterion . A related experiment
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reported recently, involving the propagation of light through media in a n
accelerated reference frame, is also considered .

Section 10 deals with a property which has caused difficulties for the
acceptance of Minkowski's tensor, namely the appearance of negativ e
electromagnetic energy in certain cases . We find this to be a direct conse-
quence of the state of covariance of the phenomenological theory : One
chooses covariant quantities to be compatible with a scheme one ha s
established on physical grounds in some inertial system . Since certain
mechanical quantities are counted together with the field quantities, on e
obtains-when covariance is imposed-a total four-momentum which i s
space-like. Therefore, by means of (proper) Lorentz transformations, on e
can find inertial systems where the total field energy is negative . Closely
related to these features is the behaviour of the Gerenkov radiation in th e
inertial system where the radiating particle is at rest : The energy flow
vanishes, while the momentum flow is different from zero and correspond s
to a force on the particle .

In section 11 we employ an infinitesimal Lorentz transformation as a
symmetry transformation in Noether's theorem and show how the formalism
readily adjusts itself to angular momentum quantities which are equivalen t
to those obtained from Minkowski's tensor . The division of the total fiel d
angular momentum into coordinate dependent and coordinate independent
parts is discussed .

In the last section we introduce the centre of mass of the field in a
relativistic manner . It is found that the various centres obtained in differen t
inertial frames do not in general coincide when considered simultaneousl y
in one frame. By considering in the rest frame K° the centres of mass
obtained by varying the direction and magnitude of the medium velocity v ,
we find that they are located on a circular disk lying perpendicular to th e
inner angular momentum vector in K° with centre at the centre of mass in K° .

II. A Variational Method . Uniqueness from two Sets of Conditions

3. A Variational Method in the Case of Static Fields

In this chapter we shall follow a rather formal kind of approach . Our
main task is to give two different sets of conditions under which Minkowski' s
tensor is uniquely determined . In the first place, however, we shall in the
present section deal with a derivation of the stress tensor and force density
when the electrostatic or magnetostatic field energy in K° is known . The
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calculation will be carried through in the electrostatic case. The method is

of interest in itself in so far as Minkowski's tensor is different from th e

other tensor forms that have been proposed even in the electrostatic case fo r

anisotropic media, and the method has been treated to some extent in th e

literature(2, 3, 4, 5), but the results do not always agree and we shall go int o

some details . We shall show how Minkowsk i ' s tensor is one of the admissibl e

tensors that result from the formalism, and in particular we shall show th e

underlying assumptions explicitly . This latter result is of interest in relation
to the statement of conditions in the next section .

Then consider an electrostatic field in a medium characterized by mate -

rial constants nik, where Ei = 7/ikDk
. 1 We assume nik to have remained

unchanged at each point during the (infinitely slow) formation of the field .

Then we can integrate the work exerted in building up the field, and obtai n
in the usual way the free energy

=f E•DdV .

	

(3 .1 )

Now let each volume element dV undergo an arbitrary virtual displacemen t
s so slowly that the process can be taken as reversible . Then we can equate
the change of free energy to the mechanical work during the displacement .

This "energy method" has been somewhat criticised by some authors (se e
Smith-White 's paper( 6) with further references), but there should be littl e
doubt that the method is applicable under the above conditions .

From (3 .1) we have

S = f E'SDdV+ z f D i D k d7 ik dV.

	

(3 .2 )

The variations of the integrand are taken at fixed points in space . Letting
the electric charge density be denoted by e, we obtain by a partial integration

f E•SDdV = -fo0•åDdV - f ØbD'ndS + f ØSodV,

	

(3 .3)
cond .

where the surface integration is taken over the fixed, charged conductor s
that are supposed to produce the field. On each conductor Ø is a constant,
and as the total charge on a conductor does not change under the displace -
ment, the surface term must vanish. Then

1 In this section we omit the superscript zero on quantities taken in K° .



. ~

ddt = ~ at + +DZ D k a~ k 1 dV .

Applying the continuity equation o • (eu) + Do/ dt = 0 (u = ds/ dt), we hav e

d

cond .

((' '

	

Onik`
= \(-eE•u+ DiDk

at
dv .

l1

It remains to put anal at in a form which involves the velocity u explicitly .
We therefore write

Djik

	

dnik

åt

	

dt

	

V
ni k

where the last term corresponds to the fact that, at a given point r, ther e
appears matter which was originally at the point r - s . The first term to th e
right in (3.6) corresponds to the change during the displacement of th e
element, and arises from two effects . Firstly, nik may change on account o f
the components of strain in the body . For small deformations one can mak e
a linear expansion

d'1ik/dt = yi kn dsim/dt,

	

(3 .7 )

where Sim = z (åmsi + ôi sm) is the symmetrical strain tensor . By symmetry
arguments the number of the coefficients ÿi . can be reduced so that only
two of them remain in the case where the body originally is isotropic bu t
under small displacements changes its dielectric properties and become s
anisotropic(7) . If the body is a fluid, so that all shearing strains sim(l om)
vanish, then only one of the ÿlß remains and corresponds to the electrostric-
tion term o (E2 emdE/de.) (where ern is the, mass density) in the final expres-
sion for the force density . However, we shall neglect these strain effects ;
they have no interest of principle for our problem . One sees also by a n
integration over the total system that the contribution to the total force fro m
the electrostriction term vanishes .

Secondly, there will be a contribution to dnik/dt because the crystallo-
graphic axes corresponding to a volume element dV rotate by an angle

q ' = (q91, cp2, q's) relative to the fixed coordinate system. This effect can b e
evaluated by transforming nik as a tensor under the infinitesimal rotatio n

qp of the coordinate axes . Thus we find

(3.4)

dt
~ = - 1 Øou•ndS+ ( o O•OU+iD i Dk a~tk dV -

3 .5)

(3.6)



(3.8)

So far we have not specified the variations ; the angle q) may vary from
element to element. But in order to collect the contributions to the fre e
energy variation, we shall need the relation between Ø and s, and shall from
now on assume the variation to consist of a pure rotation of each elemen t
about the origin. Hence s = cp x r and q) = v x s. When the medium is thus
rotated as a rigid body, we see that possible strain effects are not accounte d
for ; however, as mentioned above, these effects are ignored . To make this
kind of variation possible, we assume that the fixed, charged conductors ar e
placed in the vacuum outside the dielectric .

Eq. (3.8) now takes the for m

ZD ZDkddik dV =1(DxE)•(v xu)dV =
dt

z f(EiD n-Di E•n)u idS+ f ak(EDk -Ek D)•udV,

cond .

where the surface integral vanishes .
From (3 .5), (3 .6) and (3 .9) we get

dg'
= [-eE-+DiDkvnix+2åk(ED k -Ek D)]•udV.

	

(3.10)
dt

Equating - d /dt to the mechanical work f f • udV exerted by the volum e
forces f, we obtain

f = of+,Di Dk vnik - åk (EDk -Ek D) . (3 .11)

By Maxwell's equations this means fi = - 01,4, where the tensor S41. is
defined by1

Sak = - z(E iDk +EkD i)+-- B ikE•D.

	

(3.12)

The interpretation of (3 .11) as a force density and (3.12) as a stress
tensor is the result found by LORENTZ (2), POCKELS (3) and LANDAU and
LirsHITZ (4 ) . But there exists an effect not yet considered . There may be a
torque present in a volume element also when the force on it is zero, an d
this torque will perform work during the displacement . Denoting the corre -

1 Actually, S . is equal to Abraham's tensor in the electrostatic case .

(3.9)



sponding torque density by z, the additional amount to the total work done

is fx . q dV. This is the case if the difference P = D- E is due to a distribu-

tion of electric dipoles in the medium with the density P; we may then write
z = PxE = DxE,and

\-r ._ dV =

	

(DxE)•(o xu)dV = '~~\ ak (Ek D-EDk)•udV.

	

(3 .13)
dt

Equating - d /dt to the total mechanical work done per unit time, we obtain

from (3 .10) and (3.13)

f NE+ 2DiDk77ik+ zåk (Ek D-EDk)]'udV
(3 .1 4)

J [f +ôk(E k D_ED )I udV.

f = fm = eE + zDI D k v nik,
fim = - a k Sk,

	

(3.15)

i . e . Minkowski's force . Of course the deduction leading to (3.15) is not a
proof of the correctness of fM . Its validity is based upon the assumptio n

about the distribution of electric dipoles that leads to (3 .13), although it

should be noted that this assumption seems to be most natural . As a check
we can put e = o nik = 0 in (3 .15), then it follows that f = 0, as expected .

Minkowski's force density was obtained by E . DURAND in his book (5 > .

Hence

An example

Let us elucidate the preceding considerations by the following example ,

considered also by MARX and Gyöacyi(8) . Let a dielectric sphere be located
in a homogeneous electrostatic field, for instance between two condense r

plates . Assume that the external field is E° = (E 01 ,E2,0), and choose th e

principal axes of the sphere to coincide with the coordinate axes so that

Eix = (E1, e2, E3) . The field in the vacuum outside the sphere is

EVaC = Ea_	 1o
(p ' n-	

4n

	

r 2

the induced field being a dipole field . One has p = 3 V[(el - 1)E°/(E 1 + 2) ,

(e2 -1) EZj(e 2 + 2), 01, where Vis the volume of the sphere . 'Within the sphere

E _ [3E°/(E1 + 2), 3Ez/(e2 + 2), 0] .

(3 .16)
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The components of the body torque N are determined by the angular

momentum balance

Na = - dfdtMik -

	

(3.17 )
c

which we imagine to be taken at an instant just after that the externa l

devices, which might be necessary to keep the system fixed, have bee n

removed . In (3 .17) Ni(e) is the l'th component of the torque acting on con-

ductor c, and i,k,1 is a cyclic combination of indices . By making use of

(1 .6) and the conservation laws fi = - åvSw

r

, we find

NI = f (xifk-xkfi+Sik-Ski) dV+
J

[rx(Sn - S ac)] i dS +
internal

	

body
body

	

r

	

surface

	

(3 .18)
+

J
[r x Sna' ~ i dS-~Nf~ c ~ .

co)

	

c

Here we have introduced S. as a vector with components Sni = Siknk ,
where the normal vector n points outwards from the body and inwards t o
a conductor. It is apparent that the two last terms in (3 .18) compensat e

each other, so that we are left with an expression for the body torque whic h

agrees with the expression we would obtain by a direct evaluation of th e

integral in (1 .7), with the opposite sign. This should be expected, sine th e
torque is a local effect .

Now return to the dielectric sphere and insert Minkowski 's tensor into

(3 .18) . The only non-vanishing component of the torque i s

N3 = f (D x E) 3 dV- a 3 f (n x E)3 (D n)dQ+

	

lbody

	

surface

	

(3 .19 )
+ a3 f (n x Evae

) 3
(Eva' . n)d .Q ,

surfac e

where a is the radius of the sphere and d.Q the element of solid angle . By

using spherical coordinates the two last integrals can be evaluated, so tha t

N3 = f (D x E)3 dV - (p x E°)a + (p x E°)s = (p x E°)3 .

	

(3.20)

bod y

(Actually, the compensation of the two last integrals in (3 .19) can be verified
also by a mere inspection of the boundary conditions .) The result (3 .20)
could be checked by experiment . As a characteristic feature of Minkowski's



tensor, we see that the body surface term in (3 .18) vanishes ; it is natural t o
interpret the effect as a volume effect .

As regards the effects considered in this section, the magnetostatic fiel d

is analogous to the electrostatic field and requires no special attention .

4. Uniqueness from first Set of Conditions

This section deals with a formal proof. A set of conditions shall be given ,

from which we shall show that, within a multiplicative factor in the energ y
density component, Minkowski's tensor must follow uniquely for the electro-

magnetic (time-dependent) field inside a homogeneous, anisotropic mediu m

at rest l .

1 . Let us first assume that each volume element experiences a torque den-
sity r = P x E = D x E due to the fact that the constituent electric dipole s
are not collinear to the field E. This we may call the "dipole model", and it

was encountered for the first time in connection with eq . (3 .13) . We may
express this requirement in mathematical form by the relation

Sik - Ski = EkD i E iDk ,

	

(4 .1 )

where S ik is the energy-momentum tensor to be determined .

2 . Then require the energy-momentum tensor to be divergence-free,

aßSaß = 0,

	

(4 .2 )

the torque being described by the asymmetry only . For simplicity, we pu t
,u = 1 . The summation convention is avoided in this section.

3. As the third condition, Saß is required to be a bilinear form in the field
quantities .

The three quantities E, D and H characterize the field, and (4 .2) is an

algebraic consequence of the field equations and the constitutive relation s
which read Ei = niDi when the coordinate axes are chosen so that the tensor

nik is diagonal . We first suppose that the ni are all different . It is now con-

venient to eliminate E and treat D and H as the independent variables, an d

we can rewrite (4 .2) in the form

1 \Ve mention already now that both sets of conditions automatically exclude Abraham' s
tensor from consideration.



where the summations run from 1 to 3 .

The time derivatives can be eliminated by means of the two Maxwell ' s

equations

aDk

	

a Hl

at
= C l Skml axm

aHk

	

aEl

	

aDl
C S kmi

	

= - C

	

Skml ~i
at

	

m, l

	

axm

	

m, l

	

axm

Hence

/aSai aDl OSai aHl 1

	

aSa4 aD l aSIX4 åH

\aD l axi F aHl axi + ic J aDl at + aHl
(4 .3 )

~ /aSai aSa4

	

1 aD l -•

i, l~aDl
+

IaHk
S kal 7~l axi + L

aSai aSa4

	

aHl
-

aHi IaDk Skil axi = 0 .

	

(4 .5)

Here k is supposed to take the value that makes S kil different from zero .

Now having used (4 .4) and the constitutive relations, we conclude that (4 .5)

must be algebraic consequences of the remaining Maxwell's equations ,

hence (4.5) must be of the form

Aa~aiDi+Bal aiHi = O.

	

(4 .6)
i

	

i

Comparing (4 .5) with (4 .6), we have then (i = 1)

OSal

	

aSa2

	

OSa3
(ÎD1

	

aD2

	

aD3 (4 .7 )

Similarly

When i I, it follows that

and

aSal

	

OSa2

	

aSa 3
aHl aH 2 OH3

Osai aSa4+ i

	

- Skil 71l = 0
aDl aHk

aSai aSa4- l

	

Skil = O .
aH l aDk

(4.8)

(4.9)

(4.10)



Hence

dS,xi
'1z +

	

0
aDi1 ~1 -

asai 0S,, 1+

	

= o .
aH 1 aHi

If in (4.9) we interchange 1 and k and differentiate with respect to H1 ,
and compare with (4 .10) differentiated with respect to Dk , we get

(4.12)

	 a2Sa4	 a2Sa 4

aH 1 aH 1 "7k - aD k aDk
(10 k) .

	

(4.13)

The discussion hitherto has closely followed the uniqueness proof fo r
S, given by V. Focx(9) in the case of an electromagnetic field in vacuum .

Now the assumption of bilinearity of the tensor components, together
with the above equations, are sufficient to determine S 44 within a multi -
plicative constant . For this component must be a linear combination of
E2 , D2 , H2 and E- D since it is a three-dimensional scalar . Terms involving
H. D and H- E are excluded since E, D are polar vectors in opposition to H,
which is an axial vector . These properties are included in the expression

S44 = a i D2 + bH2 , (4 .14)

where ai and b may involve the material constants . From (4 .13) one then
finds a i = bap . The constant b is not determined ; with our customary choic e
of units b = - 1, i . e . S44 = - ,(E • D +H2) .

Considering now the spatial component Six, we see that it can contain
linear combinations of the terms EiEk ,EiDk ,EkDi , DiDk and HiHk . From
(4.2) with a = i it follows, since the momentum density is a polar vector ,
that S i k must be invariant under space inversion . Therefore terms like EiHk
and DiHk cannot he present . Moreover, we can have terms with the uni t
tensor S ik multiplied with a scalar, the scalar being of a form like the righ t
hand side of (4.14). We then write

3

Sik = c lEiEk+ c 2EiDk+ c 3DQ Ek+ c4D 1 Dk + c5HiHk- 8 ik f diDi + c6H2 ) =
1- 1

3

	

(4.15)

= (Clriia?k + C 2ni + C 3 a1k + c4)DiDk + C5HiHk - aik( d1 Dl + c6H2 ) .
1=1



The constants c l and d i shall not be restricted to be independent of the

material ; they shall be permitted to contain symmetric terms such as the

sum 771 + 7Î2 + 773 . From (4 .1) we now have (7Îi - ) 7c) (C2-C3+1) = 0, which

means

C3 = C2+1 .

From (4 .7) with a = 1,

2 (C1 7Îî + C2 7Î1 + C3 7Î 1 + c4 - dl) _

= C1)1)2 + C2 7Î1 + C 3 7Î 2 + C4
=

C1 7Î1)3 + C 27Î 1 + C3 7Î3 + C4 .

From the last equation it follows tha t

C1)1+ C3 = 0 .

With = 2 we get

2 (c. 1)2 + C2)2 H- C37)2 + C4 d 2) _

= Cl)2)1 -I- C2)2 + C3)1 + C4 = Cl)2)3 -I- C2)2 + c3)3 + C4 .

Hence
C 1 7Q 2 + C 3 = O.

	

(4 .20)

Comparison of (4 .20) with (4 .18) gives cl = c 3 = 0. From (4 .16) then C2 =

- 1 . Now (4.17) and (4 .19), together with the corresponding equation fo r

a = 3, yield

C4 = 2d1 +7Î l = 2d2 +77 2 = 2d3+773 .

	

(4 .21)

If we use (4 .11) with a = 1,i = 1,1 = 2, we obtain

7Î2C4 = 17 1 (2d2 + 722),

	

(4 .22)

which, together with (4 .21), is sufficient to determine the constants

(4 .16)

(4.18)

C4 = 0,d1 = - 2)1, d2 = - z)2, d3 = - Z 7Î3 . (4.23)

We now turn our attention to the terms S14 . As the momentum density

is a polar vector, any actual bilinear combination can be written in the for m

Si4 = a ijk fjDjHk ,

	

(4.24)
j, k

may contain material constants . Putting a = 1 in (4.9), we have

aS14

	

aS14

	

aS14
aHl-O,aH2

	

-iD3 , aH3 =iD2,

	

(4.25)
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which are compatible with (4 .24), when f2 =

	

i. Similar arguments for

a = 2,3 give fi = i. Therefore

Si4 = iPijkDjHk = i(D x H)i .

	

(4.26)
j, k

Then (4.10) gives, when a = 1, i = 1, 1 = 2, that c6 = - 2 . With another
combination of indices, or from (4 .8) or (4.12), one finds C 5 = - 1 . Inserted

into (4.15)

Sik = - EiDk -HiHk + åikz (E •D+H2) .

	

(4.27)

In the same way one finds from (4 .9) and (4 .10) that the remaining com-

ponents are

Soi = i ,6ijkr/jDjHk = i(Ex H) i .

	

(4 .28 )
J, k

We have thus arrived at Minkowski's tensor .

Note that as a result of the linear combination postulated in (4 .15), we

obtained to a certain extent the dependence on ni of the coefficient in fron t

of D iDk on the right of this equation . If instead we had put the first term o f

the last expression equal to the general form cikD iDk, the equations (4 .1 )

and (4 .7-10) would not have been sufficient to determine the component s

cik such as given above, where Cik = C1 ?7i77k + c277î + C3n1t + C4 .

The foregoing procedure is based on the assumption of different materia l

constants ; the conclusions are valid only when 77i -Ilk O . If, however, two

of these constants are equal, but different from the third, we see withou t

difficulty that the present treatment need not be changed. In the deduction

of (4.16) for instance, we use first the two unequal 77i and 77k to give C 3 =

c2 +1 . The same considerations apply when we construct the equations cor -

responding to (4 .18) and (4 .20), giving c l = c3 = 0, as before. We arrive

again at Minkowski's tensor as the final result .

But if the 77i are all equal, our equations are not sufficient to determine

the components Sic, uniquely . With a simplified expression for Sik corre-

sponding to (4 .15) and the assumption (4 .24), we can use (4 .7-10) and

determine the quantities except for a multiplicative constant . This con-

stant comes in addition to the multiplicative factor appearing in the determi-

nation of S44 . This is connected with the fact that we cannot take advantag e

of the dipole model in this case ; instead, we may take into account that

Saß is a tensor under Lorentz transformations . These concepts are taken u p

in the next section .



5 . Uniqueness from Second Set of Conditions

In this section we shall give another formal derivation of Minkowski ' s

tensor, based on somewhat different initial conditions .

Let us first refer to the treatment in Fock 's book (9) , for a consideration of

the problem to determine in general an energy-momentum tensor Sap

uniquely. He takes explicitly into account that Saß be a tensor, and he re -

quires it to be symmetric and to have a vanishing four-divergence . However ,

to determine Saß uniquely (or within a constant multiplying factor, provided

that suitable conditions exist at infinity), he finds it essential to lean on th e
requirement that the energy-momentum tensor should be a function of th e
state of the system . By "state" is meant the following . If the equations o f

motion and the field equations are written as first order equations for th e

unknown functions the latter functions are said to characterize the state .

Any function of pi that does not contain their derivatives and also does no t
contain the coordinates explicitly, is called a function of the state . With this
additional conditions imposed, he claims the energy-momentum tensor to b e

determined in principle for every physical system .
Now our system is different from those considered by Fock since Sao

must be permitted to be asymmetric . Therefore we shall carry through the
proof in detail .

We recall the three initial conditions which were given in the precedin g

section . Here we shall release the condition 1 and instead require S Œß to be

a function of the electromagnetic state of the system . Since the field equations
contain the field quantities only (and not the four-velocity VI, of the medium
explicitly), it follows that Saß also contains only field quantities . This is to b e

true in any inertial frame, and we shall use this property explicitly when w e
perform Lorentz transformations . We have thus

Saß = S aß(E,D,H,B) .

2. The tensor is still required to be divergence-fre e

ß
aßSaß

-0
,

where also in this section the summation convention is avoided .

3. The tensor is still required to be a bilinear form .
The material constants are in general e ik and ,Ia . From geometrical con -

sideration of the fact that in K° the magnitude of PO is proportional to that
2*

(5 .1 )

(5 .2)
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of E°, while the angle between P° and E° is constant for a given orientatio n

of the field, it follows that ea is symmetric . Similar considerations apply t o

pa . Also isotropic media are now included in the description .

The next task is to show that, within a multiplicative constant, the con-
ditions mentioned are sufficient to yield Minkowski's tensor . It is natural to

work directly with the field quantities E, D, H, B instead of eliminating some

of them by means of the constitutive relations in K° . Eqs . (5 .2) are algebrai c
consequences of Maxwell's equation s

1 OB

	

l OD
v x E=-

at' o
x H

c

	

c a t

o•D=0,•B =0

	

(5 .4 )

and the constitutive relations . Eq . (5 .1) implies that we have to write th e
constitutive relations in a form where neither the material constants nor the
body velocity is present . The simplest way of eliminating the material con-

stants in K° is to write

E° • a° D° - D° • a° E° = 0 (5 .5)
} (,u = 1 -4)

H° •a°B°-B°• a°H° = 0, (5.6)

so that the constitutive equations involve the first order derivatives of th e

fields, as do Maxwell's equations . Now (5 .5) can be written (F4ßH4ß -
H4°ßa°F

4
ß) = 0, which cannot be brought into a covariant form except by

introducing the four-velocity VI, of the medium. Similarly for (5 .6). We

therefore try to write the constitutive relations in K as a linear combinatio n

of the terms >Faßa,Haß and Haßa,2 Faß and readily find that

(Faßa,2 Haß-Haßaf,Faß) = 0

	

(5 .7)
, ß

Or

E•a1,D-D•a 1L E+H•O F2B-B•a,2H = 0

	

(5.8)

represent the simplest form of the constitutive relations with the require d

properties .

Let us then write (5.2) in the following form, assuming Saß to be a func-

tion of the state :

(5 .3 )



aE ax aD ax. aHi axi + åB1 axi
+

i ,

1

	

aSa4 aEi aSa4 aDi aSa4 aHi asa4 aBi

i

	

\
+

	

+ -- +

	

+
c

	

aEi at

	

OD 1 at aHi at

	

OBI at 1

and demand (5 .9) to be algebraic consequences of (5 .3), (5 .4) and (5 .8) .

By means of (5 .3) two of the time derivatives can be eliminated, but th e

derivatives Éi and Hi cannot be eliminated by means of Maxwell's equations .

The actual equation is then (5 .8) with ,u = 4, and by comparison with (5 .9)

we obtain the conditions

i

	

ti

	

i

	

z

aSa4 _
A"Di ,

aEi
aSa4 A"Bi . (5 .10)=
aHi

Since Sao is a bilinear form, the quantity A" must be independent of th e

fields . Eq. (5 .9) now reads

This equation must be a linear combination of the remaining equation s

(5 .4) and (5.8) with it = 1,2,3 . Only linear forms are permissible because
we have assumed the condition (5 .1), and inspection of (5 .11) then shows

that only terms linear in the derivatives are present . Hence (5.11) must be
of the form

~C"i (D aiE+B aiH E•ai D-H•ai B)+F"o •D+G"o •B,

	

(5 .12 )

where the Lagrangian multipliers C"i ,F" and G" do not contain differentia l

operators att . By equating (5 .12) to (5 .11) we can look upon this new

equation as an identity in the derivatives of the fields with respect to th e
coordinates, because of the presence of the multipliers . Hence we obtain the

relations

as i + iA" åkiiHk+ .Skis :Bk = C" iD i

	

(5.13)

i, i

a

	

aSa4 aHi
- iA iSkiiEk - Oka

aDk1 a xi

i, l

aSai aDi \aSai OB I
+

	

= 0 .
f aDi axi 	 aBi axi

i, z

aSai _
a Hi

asa4 aEi
aEi

+ ill"dkii Hk + iÔxii
aBk J axi +

(aSaa

' asai 0E 1 + asai aDi + aS"i aHi aSai aBi

(5.9)

= 0,

5.11 )
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OSca

	

OS
C"i B i . (5 .14)

aHa
- iA"Ek-i6kiiaDk =

When i ~ 1,

aSai
_ - C" iE l (5 .15)

aD i

aS"i
=

	

C' iHI . (5 .16)

When i = 1,

aBi

aSai - C"i Ei + F" (5 .17)
aD i

aSai

	

C
ai Hi

+G" . (5 .18)aBi

Then put a = 4, and examine which simplifications can be made in thes e
equations from the requirement of bilinearity of Saß . If we make a rotatio n
of the spatial coordinate axes in K, we know that aßS4ß remains unchanged ,
and so the expression (5.12) is also unchanged . Hence, since the expression
in the parenthesis in (5 .12) transforms as a three-dimensional vector, th e

quantities C4i must transform similarly. But according to the bilinearity o f

Saß, C4i must be independent of the fields, therefore C4i = 0. By similar
arguments we conclude that F4 = G4 = 0 .

The reduced system of equations we have now obtained is easily solve d
for the components S4ß . By assuming the form

S4i =

	

Sïjk(a]EjHk + a2EjBk + a3DjHk + a 4D jBk),

	

(5 .19)
1, k

we obtain from (5 .15) and (5.16) that a 2 = a3 = a4 = 0. If we fix the re-
maining constant a l = i, we obtain

S4i = i(E x H) i .

	

(5.20)
Similarly, by assuming

S44 = b 1E2 + b2D 2 + b 3H 2 + b4B 2 + b 5E • D + b 6H • B,

	

(5.21 )

we obtain by virtue of (5 .13), (5 .14) and (5 .10)

S44 = - ~ (E•D +H•B).

	

(5 .22)
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The discussion hitherto is in principle similar to that leading to th e

components S4ß in section 4, although the discussion has been carrie d

through for any K . But in order to find the remaining components, we shal l

use (5.1) and the tensor property of S . We perform an infinitesimal

Lorentz transformation x = x~ + DwIÅv xv , where the antisymmetric cow is

given by w ile = cp i(cycl), wi4 = iui /c . We obtain

ôB =

	

l- (uxE)-(q) xB) .
c

When a system in general is described by a set of functions ys, the change
of these, on account of the present transformation, can be written a s

ars = -i (0, ti Ÿ'sv ,

	

(5 .24)

where the antisymmetric WS v are functions of ys . We follow the method

given by Focx (9 ) (§ 31*) by introducing a set of operators X I" by the equa-

tions

	

X+" (h) =
Tfi

v
Oh

	

(5 .25)
~

	

a Ys

where h is some function of ys . Hence

X'v(rs) = Tr,

	

(5 .26)

which, inserted into (5 .24), gives

ays = 4 w ,uvXb y (Y5)•

	

(5 .27 )
,u . V

The variation ah can also be expressed in terms of these operators ; we have

1
_(uxB)--( IT xE)
c

1
-(uxH)-(q2 xD)
c

1
- - (uxD)-(g) xH)

c

(5 .23)

Oh
Sy s =

aYs
z,XYv (h) .

	

(5 .28)ah =

s
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With h = Saß (y $ ) :
rSSaß

	

2 col,vXuv (Saß) .

	

(5 .29)
,cc ,

This equation is compared with åSaß obtained from a tensor transformatio n

åSaß =

	

o) (S cca Svß +ö0Sav),

	

(5 .30)

and there results

X~v (Saß)

	

Stca Svß - Sva Suß + S1,ßSav - åvß Sa,u .

	

(5 .31 )

Finally, from (5 .25) and (5 .26)

as,fl~v
(Saß) _ .X~v (Ys)

	 aß

a Ys

In our case åy & are given by (5 .23), and as S44 and S4i are already found, we
shall see that the present equations are sufficient to determine the remaining
components Siß . It should be noticed that, as ys denote the field quantities ,
eq. (5 .1) is essential for the passage from (5.28) to (5.29) . Further, it i s
essential that Saß is a tensor for the establishment of (5.30) .

Now compare (5.23) with the general (5 .27) . There result s

a

	

a

	

a

	

a

	

X ik(y s ) =
EkaEi

-Ei-
aEk

+
DkaDi

- Di	 +
aDk

a

	

a

	

a

	

a
+Hk

	

-Hi - +Bk	 -Bi
aHi

	

aHk

	

aBi

	

aBk

(5.32)

X4i(ys) _ 2 ~ di 7k
9, k

From (5 .31) we obtain

a	 a

	

a

	

a )
Ei	 	

+aBk
- B,

aEk D' Mk
-x,

aD k

X42(S44) = Si4 + S4i . (5 .34)
Calculating from (5.32)

X41 (544) _ 4x41(Es )	\\ /

	

aS44

	

aS44

	

aS44

	

aS4 4
aEg

I X4i(Ds) aDs + X4i(H$) aH8 + X4i(Bs)
OB& ]

and using (5.33) and (5 .22), we get

X4i(S44) = i(D x B+ E x H)i .

	

(5 .35)
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From (5 .35), (5.34) and (5.20) then

Si4= i(DxB) i .

From (5 .31) we have for the spatial component s

Sik = X4i (S4k) + åikS44

From (5 .32), (5.33) and (5.20)

aS4 k
X4i (S4k) = X4i (ys)	 	 -EiDk - HiBk + 8ik(E• D +H•B), (5 .38)

s

	

ays

and from (5 .37) then

Sik = - EiDk -HiBk å ik(E•D+H•B).

	

(5 .39)

The adjustment of the constant a l in (5.19) has thus led to Minkowski' s

expression for all components . It follows that the two sets of assumption s

from the preceding section and the present section must be equivalent .

III. Derivation of Minkowski's Tensor by a Semi-Empirical Metho d

6. Consideration of a Plane Wave Travelling through Matter at Res t

This chapter forms the central part of our work . By using the pheno-

menological theory and leaning on experiments, we shall construct th e
electromagnetic energy-momentum tensor in the simple optical situatio n

where a plane light wave travels through a dielectric body at rest . We

emphasize that we do not intend to give a formal derivation of Minkowski' s
tensor ; we use simple, formal arguments to illustrate what may happen,
and then take the lacking information from experiments .

Isotropic matter

One might first think of the possibility to use microscopical considera-

tions as a guide to construct an expression for the force density ft, directly

in terms of the macroscopical fields . Some attempts have been made in thi s
direction('°, 11) . We shall study the microscopical line of approach to som e
extent in the next section, but mention already now that there are som e

difficulties of principle with a construction of the force density in this way .
The macroscopical force can be written as the average over appropriate

(5.36)

(5 .37)
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regions in space and time of the microscopical force acting on the externa l

charges and currents, as well as on the matter itself. But since the force i s
of the second order in the field quantities, we cannot simply find it in term s

of products of the macroscopical fields when the microscopical fields ar e

correlated in an unknown way.

Further, the macroscopic variational method which is applicable i n
electrostatic and magnetostatic cases commonly fails when the fields ar e

time varying .

Let us then employ the simple macroscopic method followed, for in -
stance, by LANDAU and LiFsHrrz(4 ) . It is usually so that the stress tensor an d
energy density may be taken as the sum of the parts corresponding to th e

electrostatic and magnetostatic cases . This is a reasonable construction at

frequencies much lower than the eigenfrequencies of the molecular o r
electronic vibrations which lead to the electric or magnetic polarization o f

the matter . Then the linear relations between E, D and H,B are still valid ,

when the fields are not too strong. But the latter relations are valid also i n
the optical regions where the dielectric permeability is approximatel y
frequency independent in virtue of the electronic polarization, but where th e

contribution from the slower molecular vibrations is absent. In this optica l

region we can therefore approximately put the magnetic permeability equa l
to 1 . We assume that the above-mentioned construction of the stress tenso r

and energy density is valid also in this case, so that these quantities are give n

by (1 .5a) and (1 .5e) .

As in the former treatment in section 3, we ignore electrostriction an d
magnetostriction effects .

We then have to determine the remaining components of the energy -

momentum tensor Sm, . First, we use the experimentally known fact that an

electromagnetic wave approximately does not lead to heat production in an
insulator through which it moves . This corresponds to the fact that the wav e

is scattered elastically on the particles constituting the matter . So we must

practically have f = 0 . By means of the field equations we can form the
expression

a
• c(Ex H)+ a-12,(E•D+H•B) = 0,

which is consistent with the continuity equation for electromagnetic energ y
when the energy flux equals

(6 .1 )

S = c(E x H) .

	

(6.2)
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It is of course true that (6.1) does not unambiguously determine the energ y
flux to be given by (6 .2) ; for instance, S could in addition contain a term
of the form of a curl . But such possibilities are of no interest for our problem .

To determine the momentum components Sk4, we make use of the rela-
tion S = c 2g, whence

1
g = -(ExH) .

c

The components that we have found up till now constitute a tensor whic h
we shall call s S v , with a corresponding force density P. Our next task is
to examine the consequences of this force . Let us therefore consider the
simple situation where a plane wave with E = Eoe 2 sin (kx -wt) travels
along the x-axis in an isotropic body . We have k = nay/c, where n = Veit
is the refractive index of the medium . It appears that fILA = & 1 [(n 2 -1)/c ]
(a/at)(E x H)1 , so that there is set up a fluctuating force in the x-direction .
This force is rather small ; we see that fi is of the order (If c)(n 2-1)(E x H) 1
= (1 /cu)(n 2- 1)(e -1)- 1(P x B) 1 (1/c)(P x B) 1 , which on a microscopical
scale (per dipole) corresponds to the magnetic part of the Lorentz force :
(e/c)(u x h)1 , where h is the microscopical magnetic field and e, u the
electric charge and particle velocity, respectively. Now we see that the rati o
u 2 /c«1 . In fact, if we accept a simple model with electronic polarization ,
one dipole per atom, e equal to the electron charge, and put h equal to th e
macroscopical field strength B E which is set equal to 10 volt/cm, w e
obtain with optical frequencies ß = u/c 10-10 , where u = j u I . Such a
rough estimation is sufficient to show that quantities proportional to ß 2 can
be taken to vanish . For instance, since the force on the dipoles in the x--direc -
tion is of the order of ß times the force on the dipoles in the y-direction, we
have also a particle velocity in the x-direction which is u l

	

/3u2 . The work
performed by f'1 per unit time is then gm, ti ß2 x (work performed by f2 per
unit time)

	

O . This is consistent with the result above which also ha s
experimental support : f4 = 0 .

Let us now introduce a mechanical energy-momentum tensor Uµv such
that

ôvScv = fFA = Ô v U,ty .

In writing this equation, we have already assumed that gravity effects ar e
absent. For instance, if the medium is a fluid then, in the absence of fields ,

Sa,. is equal to Abraham's tensor.

(6.3)

(6 .4)
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the diagonal components of the stress tensor are equal to the pressure, an d
the divergence of (Ilk yields the gravitational force density . But since thes e
effects are of no principal interest here, we shall omit them ; hence we inter-
pret the tensor (Sûß, + U,) to describe a closed system .

With the plane wave considered the only interesting component of UE k

is U11, the effect from the wave on the other components of Uik is zero .

The force /Id can be thought to act in two ways . (1) It may cause each dipol e

to fluctuate about a fixed position, the same position as the dipole occupie s

when the fields are absent. (We ignore thermal motions, which are of n o

interest here.) On an average, no momentum is then transferred to th e

dipoles ; instead, a kind of small stress is set up . (2) But the effect may also

be that a momentum in the x-direction actually results . Since 01 can be

replaced by - (n/c)(a/öt), we obtain from (6 .4), with U14 = icg i°eeh

[it~ C

Un +gmech

	

fi
,

From this point of view the main effect of fi is to produce a mechanica l

momentum, so we shall assume the contribution to Un from mechanical

stresses to be vanishingly small . Furthermore, the component U.11 contains

also a part emu i corresponding to the kinetic energy of the motion in the
x-direction, but the quotient em ul I(cgmeeh) = ul/e « 1, so that this kineti c

part can be neglected . Hence, ignoring the first terns in the parenthesis i n

(6.5), we obtain by means of (6 .3) and (1 .5 a)

(6.5)

glech - n2 - 1

C
(E x H)1 + tonst,

	

(6 .6)

where the constant may depend on Eo .

At this point we cannot get any further by theoretical considerations .

We shall therefore seek the remaining information from experiments in

optics. In this paper we shall consider three experiments which are of im -

portance for our problem ; these experiments are mutually in agreement and

especially two of them seem to yield sufficient information as to which

energy-momentum tensor should be taken as the most convenient . The firs t

experiment-which has immediate application in the present situation-i s

the Jones-Richards experiment to be described below. The two other experi-

ments are related to the propagation of light in moving media, and will b e

described later in section 9 .
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Jones and Richards measured the radiation pressure on a metal van e

from an electromagnetic wave passing through a dielectric liquid . Their

result is most easily explained by attributing a momentum density (1/c)

D x B to the wave . This behaviour is consistent with assuming the alternative

(2) above to be correct and putting the integration constant in (6 .6) equa l

to zero. Thus
2 -

	

gmech = n 1 (E x H) .

	

(6 .7 )
C

We note that (6 .6) cannot be supplemented with some initial conditio n

to give an unambiguous result . SOMMERFELD (12) , for example, has examined

the behaviour of "die Vorläufer" , i . e . the incoming field before the station-

ary state is achieved. The result is that at first the field frequencies are much

higher than the atomic frequencies of the medium . Therefore dispersion
effects must occur, in contradiction to the assumptions leading to (6 .6) .

We then turn our attention to the components U42, . We found above tha t

fi ul was practically zero, therefore the mechanical energy density Wmech =

- U44 must also be practically equal to the rest mass density . (The contribu-

tion to the energy on account of the force components lying in the yz-plane
is already incorporated in S44 .) The actual equation of motion i s

asmech aWmech

åx

	

at

	

-
0,

	

(6 .8)
}

where smech denotes the flow of mechanical energy in the x-direction .

According to the principle of inertia of energy we can put Smech = c2
K
,.mech

where gmech is given by (6 .7) . Smech corresponds to a very small motion o f

dipoles ; with the simple model above we found that ill 10- 10 cm/s and

because of the elastic coupling to the atoms the motion will be even smaller .

The kinetic energy on account of this motion is of course practicall y
zero, but yet a finite energy transport is achieved by the great rest mass .

As the wave proceeds through the body, new domains of matter are con-
tinuously being excited ; and when the wave has passed, the dipoles hav e
been displaced by a small amount in the x-direction .

Now, after having interpreted the components of Um) , we introduce the
quantities 0 i, ,, defined by

0i,, =

	

04,, = 0, (i = 1,2,3 ; v = 1-4) .

	

(6 .9 )
Then

- a v (S~„ -1- Om) = - av S,M = 0,

	

(6 .10)
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where S ti is Minkowski's tensor, which accordingly describes the propaga-
tion of the total travelling system, both the electromagnetic field and th e
mechanical excitation caused by the field. The small displacement of matte r
and the rest energy itself are ignored in this context .

Concerning gmech given by (6 .7) we note that this mechanical quantity
is expressed chiefly by electromagnetic ones . This is a characteristic featur e
of the phenomenological theory, and similar things are also found for in -
stance in the expression for the electrostatic field energy density in an iso-
tropic medium where, besides the pure field part z E 2 , there appears an
amount of internal energy in the medium, which is written as E•P =
s(e-1)E 2 .

The Jones-Richards experiment(13 )

We shall now consider the experiment to which we referred above in
order to find the result (6 .7). In 1951, R. V . JoNEs (13a) first reported in a
short note a measurement of the radiation pressure in various dielectri c
fluids, and later, in 1954, R . V . JONES and J . C . S . Rice-3ARDS (13b) gave an
extensive report of the final experiment . We find that this excellent experi-
ment clearly demonstrates that it is most simple and convenient to ascribe a
momentum density (1 fc)(D x B) to an optical wave travelling through a
refracting fluid . The experimental arrangement was the following : A ray of
light passed through a glasswindow into a dielectric liquid and was reflecte d
in the opposite direction by a metal vane immersed in the liquid . (Actually ,
the authors used two rays of light which were falling asymmetrically on th e
vane, and the vane was mounted on a torsional suspension .) The ratio
between the pressure on the vane when it was immersed in the liquid an d
the pressure on the vane when it was surrounded by air was measured .
This ratio was found to be equal, the external conditions also being equal,
to the refractive index of the fluid . Let us apply a simple theoretical argument
and first consider the divergence-free Minkowski's tensor with momentu m
density equal to g = (1/c)DB = n 2S/c2 . The symbols are referring to th e
incoming wave in the liquid . The momentum transferred to a unit surface o f
the vane per unit time is thus pn = (1/c)nS(1 + R), where R is the reflectivity
of the vane . Dividing by the vacuum (air) pressure po = (1/c)So(1 +Ro) and
assuming So = S and Ro = R, we find indeed the simple formula pn/po = n .
(See also the analysis by G . ROSENBERG (8 ) .) It is evident that a number o f
corrections are called for in this formula, owing to the fact that the externa l
conditions in reality are varying with n. For instance, although the intensity



of the radiation source (which is outside the container) is kept constant i n

the experiment, the intensity S will depend on the refractive index in a way

which may be described by means of Fresnel's formulas : The electric fiel d

E of the incoming wave in the liquid is related to the electric field Eg of the

incoming wave in the glass by E = 2Eg/(1 +n/ng), where 11g is the refractive

index of the glass and ,u is put equal to unity . Hence pn/po = nS/So =

(1 +ng) 2 (1 +ng/n)- 2 which, in the case of a typical fluid, amounts to a cor -

rection of approximately 4°/o with respect to the simple formula quote d

above .

Apart from this correction, JONES and RICHARDS carefully took into

account corrections arising from other effects, such as absorption in th e
liquid, multiple reflections at the vane and the window, and dependence of

the reflectivity R on the refractive index of the fluid . Unwanted effects fro m

convective forces in the liquid were eliminated experimentally by means o f

a chopping technique . After these various secondary effects had been com-
pensated for, the agreement between theory and experiment was found t o
hold within approximately 1 0/o for all the six various liquids investigated .

This agreement is remarkable, in consideration of the small effects involve d

(the mechanical couple measured was of the order of 10_ 6 dyne cm) .

If now in the calculation above we had inserted the expression g = (1/c)
EH for the momentum density, we would have got a factor 1/n 2 different
and hence disagreement `with the observed data . This does not mean, how -

ever, that Minkowski's momentum density is correct and all other alterna -
tives wrong, for the calculation above applies only to the case of a divergence -
free tensor. The experimental result does not prevent us from using a n

energy-momentum tensor with a non-vanishing force density such that th e

effect from the force is to be added to the effect considered above . But for a

divergence-free tensor, the experiment supports Minkowski's expression .

Anisotropic matter

This situation is analogous to the preceding one so we shall not go into
detailed considerations. We may choose the stress tensor to be given b y
(1 .5 a) also in this case, in accordance with the dipole model from section 3 .
By using the same argument as before, we find that the energy flux and mo-

mentum density of the field are given by (6 .2) and (6 .3) . The four-force
density f, derived from this preliminary energy-momentum tensor is give n
by f' = (1 /c)(a/d t)(D x B- E x H), f, = 0, when no charges or currents ar e

present. Then we suppose that this force excites a mechanical momentum
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density (1 Jc)(D x B- E x H) which travels together with the field . Including
this quantity in the energy-momentum tensor, we obtain finally Minkowski' s
tensor as given by (1 .5) . That SA 0 S 4k corresponds to the fact that the small
motion of matter particles is not taken into account, while the asymmetr y
of the spatial components SN is connected with torques .

7 . On the Microscopical Method of Approach

Even though we are concerned mainly with the phenomenological theor y
and in the preceding section employed an intermediate method, we shal l
here mention some papers where more or less microscopical theories have
been developed .

First, we refer to the treatment of TANG and MEIxNER (14) . This method is
not purely microscopical, and the main idea is rather similar to that w e
presented above . The authors make use of the total energy momentum tenso r
written in a form given earlier by KLUITENBERG and DE GROOT(15) , and
examine the excitation of matter set up by a plane electromagnetic wav e
travelling in a fluid . From the differential conservation equations they obtain
an expression for the velocity variations and hence evaluate the total energy -
momentum tensor in a form where the oscillating terms are shown explicitly .
On a time average the formal results are compatible with the results w e
earlier obtained. We should perhaps point out, however, that in spite of th e
formal completeness of the method one should in addition use experimenta l
results to get information about the average velocity of matter in the original
rest frame. For instance, in the frame where the constituent particles hav e
no mean motion, one ends up with S v plus the tensor corresponding to th e
rest mass properties of the medium as the total one .

Next, we shall take up a question which has led to one of the strongest
arguments in favour of a symmetrical tensor : The macroscopical tensor S~v
should be derivable from the corresponding symmetric, microscopical tenso r
sm., by averaging over appropriate regions in space-time, and should thu s
maintain its symmetry property. This argument was originally given by
ABRAHAM (16) , and his view seems to have been supported by several physicist s
(i . e . LANDAU and LIFSHITZ (4) , PAULI (17) ) .

But it can be seen that averaging procedures do not make difficulties fo r
Minkowski's theory . Consider a limited electromagnetic field within an
insulator ; by averaging over space-time elements, we obtain for the torqu e
density in component form - xiavsxv + xkavsiv . Comparing with the corre-
sponding torque calculated from the macroscopical tensor, we get
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x1 O S kv + xkavsiv + Sile - Ski = - TiavSkv + XkÔVSiv .

	

(7 .1)

Now introducing the dipole model in charge-free homogeneous regions o f

the anisotropic body, (7 .1) reduces to

Sik - Ski = - Xi a v ski, + xkavSiv

	

(7 .2)

The right hand side of (7 .2) is not necessarily equal to zero, therefore Sik

is not equal to S ki in general . This result is what we might have expected ;
while it is sufficient to regard the macroscopical tensor to be given by the
averaged microscopical one in regard to linear quantities (forces), this con -

sideration is insufficient in regard to second order quantities such as torques .

We have f2 = -a„S iv = - ô„siv, but sip, cannot express that the microscopica l
forces act at different points within a dipole . However, Sp„ must take into
account the macroscopical effects arising also from this fact .

The above reasoning is mainly the same as that carried out by Ig . TAM M

(see ref. 1, § 75) .

Then we shall consider to some extent the recent series of papers b y
DE GROOT and SuTToRP( 18) . These papers represent presumably the most
extensive microscopical treatment of the problem that has appeared . The

advantage of a purely microscopical method is that one obtains expression s

for the total energy-momentum tensor, the sum of the electromagnetic an d
the mechanical part . DE GROOT and SUTTORP give two expressions for th e
electromagnetic energy-momentum tensor, both of which are different fro m
Minkowski's tensor . They claim that Minkowski's tensor (and also Abraham' s

tensor) cannot be justified from a microscopical point of view . Their firs t
proposal, obtained by means of statistical arguments, reads in the momen-

tary rest system of matter, if the body is a fluid ,

Sik = - EiDk-HiBk + åik(2E2 + B2 -M•B)

	

(7.3a)

S4i = Si4 = i(Ex H)i

	

(7 .3b)

S44 = - i (E2 + B 2 ),

	

(7 .3c)

where these terms have been extracted from the expression for the total
tensor . But we have to point out that this is not primarily a derivation of the
electromagnetic tensor, it is a choice . There is no a priori reason to take ou t
just these terms and consider them as constituting the electromagneti c
tensor, even though it seems to be the simplest choice from a formal poin t
of view . For the macroscopical fields are contained also in the remainin g

Mat .Fys.MYledd.Dan.vid .Selsk . 37, no. 11 .
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terms of the total tensor, although they are there mixed up with mechanica l
quantities . This ambiguity of splitting is inherent in any microscopica l
theory . DE GROOT and SUTTORP claim that in a macroscopical treatment ,
in which the material tensor is not determined, the problem is to a larg e
extent undetermined . We agree that there is an ambiguity present in the
macroscopical theory-the problem is to some extent a matter of con-
venience-but we must point out that this ambiguity is not removed upon
transition to the microscopical theory .

DE GROOT and SUTTORP also employ thermodynamic methods and giv e
another form for the electromagnetic tensor which includes the whole inter -
action between field and matter, i . e ., it is equal to the total tensor, minu s
the mechanical tensor in the absence of macroscopical fields . This tensor is

interesting since it is closely connected with the result we obtained macro-
scopically . (The stress tensor obtained in section 3 was based on the fre e
energy (3 .1) in the electrostatic case, and this quantity certainly contain s

the whole interaction between field and matter since it is equal to the wor k
exerted in building up the field .) Actually, this result is compatible with
Minkowski's tensor, if one ignores the dependence of the material constant s

on the density and temperature, as we have done in our investigation, an d
one employs our former interpretation concerning the moving dipoles in K° .
For in the frame where the matter has no mean motion, their tensor agree s

with. Minkowski's tensor, except for terms involving gradients of the material

constants, and except for the momentum components which are given a s

Sig = i(E x H)i . If we then go over to the original rest frame K° and add the

contribution to the momentum from the small motion of the constituen t

particles in K°, we obtain Minkowski's tensor . The corresponding contribu-

tion to the energy flux is included in the mechanical tensor .

Summing up these remarks, we think that the microscopical theory, in-

volving a derivation of the total energy-momentum tensor, is an interestin g

and very complete treatment of the problem . Both the macroscopical and the
microscopical method imply certain ambiguities, the first one because th e

mechanical tensor is not determined in this way, the second one becaus e

the splitting of the total tensor is not unique . However, if the task is to
determine the electromagnetic tensor which is most convenient and therefore

ought to be used, we think that the macroscopical method is both effectiv e

and by far the simplest method, if one in addition takes into account the

experimental results .

Finally, we mention some microscopical treatments in which only th e

field part of the total energy-momentum tensor has been derived . H. OTT O- 9 )
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made an attempt to deduce the macroscopical electromagnetic tensor

(assumed to be symmetric) by averaging over the microscopical quantitie s
and imposing the subsidiary condition that, for an optical field, the four -

component of force f4 should be zero . Further, DÄLLENBACH (20) made use o f

the electron theory to give a covariant derivation of the electromagneti c

tensor . He obtained Minkowski 's tensor as the result. These different results

reflect characteristic ambiguities that are encountered, and we shall not g o

into further details .

IV. Further Developments, Connected with Relativity Theory

This chapter contains extensions and applications of results that have
been obtained up till now. In particular, we shall be interested to demon -
strate explicitly the characteristic features that are encountered when Min-

kowski 's tensor is used . Thus we shall consider both specific examples and

more deductive procedures which are intimately connected with Minkowski' s
tensor. These topics have been rather extensively studied in the literature .

In this chapter we consider isotropic media only .

8. The Canonical Energy-Momentum Tenso r

The Lagrangian and the Hamiltonian formalisms in special relativity are
frequently used in order to find the energy-momentum tensor of some

system. Let us apply this kind of method to the situation where an isotropic
and homogeneous medium, containing a radiation field, is moving with th e

uniform four-velocity VI, . We may start from Noether's theorem, which her e

can be written

a r(

	

åL

	

1

	

aL

	

åL

axvL1`La,uv - 7Aa vAa 8x
ß + ôAav ~Aa

+ a V
	 617/, = 0 .

	

(8 .1 )

Here A l, is the electromagnetic four-potential, and Aa

	

a vA,, . Further, L
is the Lagrangian density, which we choose a s

1

	

x
L = - 4 FµvHEav = - 4~h~v F~v +

2y
(8.2)

Ht,v is the tensor defined in section 1 ; the covariant relation between HEw

and FEav is
3*
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l1Hµv = Fuv+x(FvVu-Ft,lv),

	

(8 .3)

where x = (eu -1)/c2 , Fit _ FµvVv . It can readily be verified that the varia-
tional equations

OL O OL

aAy dxv OAy v

with L inserted from (8 .2) lead to Maxwell's equations . In the derivation o f
(8.1), eqs . (8 .4) have been used . For a derivation of Noether's theorem i n
general see, for instance, the review paper by E. L . HILL(21 ) .

The S-quantities in (8 .1) refer to infinitesimal symmetry transformations
of coordinates and dependent variables, i . e. the field equations must b e
unchanged in form under the transformations . Employing the infinitesimal
translation in four-space x~ = x,„, + åxi,, åx11 = const as a symmetry trans -
formation, we obtain from (8 .1), since åAp and SV,,, vanish

d V SFcv = 0,

	

(8 .5a)

where

	

,S;' = LSµv -	
dL

Aa ,
dAa, v

is the canonical energy-momentum tensor . By means of (8.2) we then find

S vn =
HvaAa -1 SF,FaßHaß .

	

(8 .6)

This tensor is neither symmetric nor gauge-invariant . In order to eliminat e
gauge-dependent quantities we may add HavAu a on the right hand side of
(8.6), whereby we obtain Minkowski's tensor . The additional term is diver-
gence-free, and does not influence the conserved four-momentum obtained
from Su . (When x = 0 the electromagnetic field becomes a closed system,
and in that case the additional term may be found by means of the well
known field theoretical symmetrization procedure, due originally to
BELINFANTE (22) and ROSENFELD (23) . )

It is thus apparent that Minkowski's tensor readily adjusts itself to th e
canonical procedure . We have to emphasize, however, that the foregoin g
procedure does not determine Minkowski's tensor uniquely . One of the
reasons is that the Lagrangian density (8 .2) corresponds to a non-close d
system and thus we have, from a formal point of view, no initial informatio n
as to whether the four-force density vanishes or not. If we demand that the
force density shall vanish, then Minkowski's tensor is the simplest resul t

(8 .5 b)
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emerging from the formalism . But this tensor is still not determined

uniquely, since there is no a priori reason that only the field quantities b e

present in the electromagnetic tensor . Terms involving the material constants
E and ,a and the four-velocity VI, may be present, and still the tensor may b e

divergence-free .
We mention that some interest has been given to the problem of how to

make use of the phenomenological Lagrangian methods sketched above an d

then construct the Lagrangian and energy-momentum tensor for the total

system, matter plus field . We may refer to a paper by SCHMUTZER (24) , who
as a result claimed Minkowski 's tensor to be preferred for the field . It i s
obvious, however, that the same kind of ambiguity in the formalism is
encountered here as in the microscopical theory we remarked upon i n

section 7 : One does not know which division of the total tensor into electro-

magnetic and mechanical parts should be chosen . One ought to have som e
information from experiments in simple physical cases in order to make a
convenient choice .

Finally we mention that the problem of constructing the total energy-

momentum tensor is . encountered also in magnetohydrodynamics, a fiel d

that seems to have attracted considerable interest during the last years .
These works are carried out on a phenomenological level . Now the mechan-

ical energy-momentum tensor for the fluid, in the absence of a field, is

symmetric. If Minkowski's tensor is chosen for the field, as is often the case ,

one then has to add an " interaction" tensor in order to make the total tenso r
symmetric . See the papers by PICHON (25) , PHAM MAU QUAN (26) and RAN -

COITA (27) .

9 . Transformation of the Velocity of the Energy in a Light Wave .
Two experiment s

Consider a plane light wave within an isotropic and homogeneou s
insulator moving with the uniform four-velocity V I2 in the reference frame K.

One defines the so-called ray velocity u as the velocity of propagation o f

the light energy . It is known that, similarly as in the case of an anisotropi c
body at rest, one has to distinguish between the ray velocity and the phas e
velocity. For an electromagnetic field in the vacuum, the ray velocity an d

phase velocity become in general equal . They are equal also in the presence

of an isotropic medium in the special case when the medium is at rest, or ,
more generally, when the ray is parallel to the direction of the motion of th e
medium .
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It is shown in MØLLER'S book (' ) that the ray velocity transforms like the
velocity of a material particle . FIe starts with the following equation for the
wave front of a spherical wave in K° being emitted from the origin at the
time to = 0 :

c 2
I•02 -

	

t02 = O .
n 2

Further-and that is a crucial point-the corresponding equation for th e
wave front in K is found by means of the usual point transformations of
each term in (9 .1) . That means that the world lines of the propagating wave
are assumed to remain invariant in four-space upon a Lorentz transforma-
tion. From theoretical considerations there seems to be no cogent reaso n
that nature really should conform to this assumption (it has sometimes bee n
claimed that if a particle travels in the light in one inertial frame it wil l
stay in the light also in another frame, but obviously this can be true onl y
if the ray velocity transforms like the particle velocity) . However, if we
again invoke experimental results, such as those obtained in the Fizeau
experiment described below, we find that the considered transformatio n
property of the ray velocity actually is verified in simple physical situations .
We shall see that this circumstance establishes a simple criterion which an
electromagnetic energy-momentum tensor ought to fulfil, in order to b e
convenient .

Let be an electromagnetic tensor which shall describe the travelling
wave . Since u is defined as the velocity of propagation of the wave energy ,
we have ui = icS4044 = Si /W. This velocity transforms like a particl e
velocity if and only if the quantities

u

	

ic
-

u2 /c2, V1 - u2/c 2

constitute a four-vector . By performing an infinitesimal Lorentz transforma-
tion 'P

	

/Iv= x
nu

+ co xv between two inertial frames K and K', MØLLER T has
shown that Uu transforms like a four-vector between these systems whe n

1
Rm,

	

+
c2

Sica Ua Uv

vanishes in K . Since a finite Lorentz transformation may be composed of
infinitesimal transformations, the equation Rm„ = 0 is a general condition

(9 .1 )

(9 .2 )

(9 .3)
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that

	

must satisfy in order that u shall have the required transformation

property .
It is easily seen that it is sufficient to examine RID,, in K° .

MøLLER shows that RID,, = 0 with Minkowski's tensor, when the mos t

general solution of the field equations representing a plane wave in K° i s

inserted . This feature means that Minkowski 's tensor gives an adequat e

description of the velocity of the energy in a light wave in any inertial

system.

Similar conclusions have been drawn by several authors . The subject

was first treated long ago by SCHEY E (28) . It was elaborated by VON LAUE and

published in a paper in 1950( 29 ) . Another treatment was worked out, in -
dependently and almost simultaneously, by MOLLER, and published in hi s

book in 1952 (1 ) . We may refer also to a paper by ScHÖEr (30) . It has been

shown by MANARINI (31) that u given by Minkowski's tensor transforms lik e

a particle velocity also within anisotropic media .

Fizeau 's experimen t

Assume that the ray travels parallel to the direction of motion of th e

medium. By using Minkowski's tensor, or simply by transforming the ra y
velocity u, we find in K, to the first order in v/c ,

u ~ +vllT n 2 ) ,

where the expression in the parenthesis is Fresnel's dragging coefficient .
Fizeau checked the formula (9 .4) experimentally . He used a two-beam

interferometer with moving water in the beam path . The phase differenc e
between the two beams was measured and was found to be in agreemen t
with the result predicted on the basis of (9 .4) . ZEEMAN even verified th e

dispersion correction term to the formula (9 .4) . For a more detailed descrip-

tion of the experiment, and for references to the original literature, see § 8
in MOLLER ' S hooka) .

[Note added in the proof : It has recently come to our attention that this

kind of experiment has recently been repeated by W . M . MACER, J .R .
SCHNEIDER, R . M . SALAMON, Journ . Appl . Phys . 35, 2556 (1964) : The au-
thors made use of a ring laser in order to measure the phase difference be-

tween the waves, thereby improving the sensitivity by several orders o f
magnitude . The dragging coefficient was measured in both a solid, a gaseou s

(9.4)
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medium and a liquid, and especially in the two first cases the agreement
with the expression (1 - 1/n 2 ) was found to be good . ]

In a paper( 14) which we also referred to in section 7, TANG and MEIXNE R
constructed an expression for the total energy-momentum tensor and als o
examined the transformation criterion of VON LAUE and MOLLER in con-
nection with a physical interpretation of the various terms in this tensor .
Recently, DE GROOT and SUTTORP (18) claimed that TANG and MEIXNER in
this paper actually invalidated the transformation criterion . We cannot,
however, agree with this statement . At least in the simple situation considere d
here the mentioned transformation property of the ray velocity u is verified
experimentally ; further, the relation u = S/W ought to be valid for an
electromagnetic tensor which shall describe the total light wave .

A Sagnac-type experiment

In a recent paper HEER, LITTLE and Bunn( 32 ) reported an experiment
involving the propagation of light through dielectric media in an accelerate d
system of reference . This is thus a kind of generalization of the Fizeau experi -
ment, which involved inertial systems only . Let us sketch some important
features of this new experiment .

The apparatus is a triangular ring laser as shown in Fig . 1 . L is a gas
laser which gives rise to two travelling electromagnetic waves in the cavity ,
one circulating clockwise and the other counterclockwise . When the system
is at rest the photon frequencies in the two wave modes are equal . Then
imagine that the cavity is set into rotation with an angular velocity Q, suc h
that the direction of D is perpendicular to the cavity plane shown in the
figure . The photon frequencies of the two beams now become different fro m
each other ; the beams interfere to produce beats which are counted at th e
detector D. This rotation-dependent frequency shift is called the Sagnac
effect (see the review paper by PosT(33>) . If a dielectric medium F is place d
in the light path, the effect will depend on the geometry of the medium an d
on the velocity of light inside it, and will hence be connected with th e
electromagnetic energy-momentum tensor . This connection can be expressed
in mathematical form as follows(34 ) . The energy density W for one of the
modes in the cavity frame is related to the energy density W° for this mode
in an instanteneous inertial rest frame by

W Wo + i D •[r x(E x H)] .
c

Only effects to the first order in ,Q are investigated, so that the fields in (9 .5)
may be evaluated for S2 = 0. Within this approximation the integral H =

(9.5)



Fig. 1 .

J WdV, taken over the volume of the field, is a conserved quantity . Further ,

the integral of W0 over the volume is the same for the two modes, so w e

obtain for the relative frequency shift

4v /v = AH/H =

_ (4 /c)[S2• frx(ExH)dV][f (E•D+H•B)dVi 1 .

Considering the beam as a plane wave with a small cross section, we obtai n

from (9 .6)

Aviv = (42A /c) [
J

(n + vdn/dv)dl

where A is the area enclosed by the light path and dl the line element along

the light path. In (9 .7) also the correction from the dispersion has bee n
included . The frequency shift 4v is simply equal to the number of beat s
counted per unit time .

The material medium F in the beam path was chosen as pairs of quart z

plates at anti-parallel Brewster angles . The value of the integral in (9 .7)
could thus be varied by varying the number of pairs . In order to eliminat e

the influence from the rotation of the Earth, one had to take the mean o f

the results obtained by rotating the cavity in the clockwise and in th e
counterclockwise direction . The agreement between the observed data an d

the results obtained on the basis of (9 .7) was excellent .

-1
(9.7)
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As a conclusion, we find that both the JONES-RICHARDS experiment con -

sidered in section 6 and the two experiments considered in this section ar e

explained on the basis of Minkowski's tensor in a very simple way s . And
this is the main reason why we consider Minkowski's tensor to be con-

venient for the description of optical phenomena .

10. Negative Energy . Remarks on the erenkov Effec t

Negative energy

By making use of Minkowski's tensor we find that the electromagneti c

field energy becomes negative under certain circumstances, and this fac t

has caused difficulties for the acceptance of this tensor . We shall show that

such a behaviour is a consequence of the way in which the covariant theory

is constructed .

Consider a plane electromagnetic wave which moves along the x-axi s

within an isotropic and homogeneous insulator with index of refractio n
denoted by n. 1f W° is the field energy density in the rest frame K° of the

body and v = vl = cß the velocity of K° with respect to an inertial frame K,

we find that Minkowski's energy density in K i s

WM = y 2(1 +nß)(1 +ß/n)W° .

	

(10.1)

From this expression it follows that WM < O when ß < - (1 fn) .
This feature is, however, connected with the fact that the rest mas s

quantities of the medium have been excluded from Sm . For the tensor

Olt,, introduced in (6 .9) has the only non-vanishing component O°n icgi ech °

= i[(n 2 -1)/n] W° in K°, which means that in K

- 044 = ßy2[(n2 - 1 )In ] W° .

	

(10.2)

Hence, the contribution to the energy density is negative when ß is negative .

For illustration, let us consider the following analogous situation from

mechanics : A material particle with four-momentum pu = (p, iE/c) move s

uniformly along the x-axis and is considered in two frames K and K', where

K ' moves with the velocity v with respect to K . Then E = y(vp ' +E ' ) and

is of course positive ; but by ignoring E', we obtain E < 0 when v < 0, pro-

vided p ' > 0 . This is the same effect as encountered above . For a materia l
particle ignoring E' is of course impossible, since we know the relation s

between p, E and p ' , E' from the Lorentz transformation and the principle

As we shall see later, the two first of these experiments represent a more critical test tha n
the last one.
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of covariance (cf. `3 26 in MØLLER ' s hooka ) ), and thus we have only to fin d

that combination p~ _ (p, iE/c) which makes up a four-vector . But the

covariant phenomenological electrodynamics is achieved by choosing ap-

propriate four-vectors and tensors which in K° are coincident with already

established quantities, such as the four-force density. In the picture cor -

responding to Minkowski's tensor we incluie the mechanical momentu m

density gmeeh ° into the electromagnetic tensor, but not the quantities Smech °

and wmech ° . By requiring covariance of this picture, we obtain a space-like ,

total four-momentum G of the field . Therefore, by means of proper Lorentz

transformations, we can find inertial frames where the field energy i s

negative .

The Cerenkov effec t

This effect offers an interesting application of l\linkowski's theory . We
shall suppose that an electron moves along the x-axis with a uniform velocity

which in K° is larger than c/n, the light velocity in the medium . And we

shall consider the process in the inertial frame K where the electron is at rest .

In this frame we find that the fields are stationary, and that H = 0(35 ) . Let

us then integrate the differential conservation laws over a volume which
contains the electron and which is enclosed by a cylindric surface S of small

radius and infinite length such that the axis of the cylinder coincides with

the x-axis . As H = 0, the energy flow through S vanishes ; the field energy

does not change, and the work exerted by the electromagnetic force on the
electron is zero .

Then examine the momentum balance . Unlike the energy flow th e

momentum flow is different from zero05 >, and the momentum transpor t
through S corresponds to a force on the electron in K . This is again a charac-
teristic consequence of the peculiar construction of Minkowski's momentu m

density in K° . The momentum balance in K reads

f Sknk dS =
-J

f ùdV,

	

(10 .3)

where the force components on the right hand side are readily obtained i n
K by transforming Minkowski's force from K° .

We shall return to this situation in the next paper, in connection with

Abraham's tensor .
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11 . Angular Momentum

We begin with some general remarks in connection with the applicatio n

of Noether 's theorem as given by (8 .1). By employing the infinitesimal
Lorentz transformation åx12 = comVxv as a symmetry transformation in (8 .1) ,

we obtain (isotropic media assumed)

aM,avd

	

aL

	

aß

where

Iv ~Aß

	

0=
oxa

	

a Va

	

a

Mµva

	

IyßAß

(11 .1)

(11 .2)= x~ Svån - xvSµ6 + aAa v
and

va~ - ava S f~ß - åvß Stia . (11 .3)

Spv° is given by (8 .5 b) .

If we interpret Mµva to be connected with the field angular momentu m
MIL, by

(11 .4)

then it can be easily verified that (11 .4) is equivalent to MGM obtained from
(1 .6) with Minkowski's tensor inserted .

From (11 .2) we obtain a coordinate-dependent part of angular momen-
tum

L g j'X/9k

	

( an xk~i an) dV
= c J aAL (x

i ak - xk a i ) Aa dV

	

(11 .5 )
a, 4

an d a coordinate-independent par t

1

	

aL
Pik =	 	 IkTAßdV.

	

(11 .6)
is aAa, 4

Inserting L from (8 .2), we find

1= - .f D (xi ak -xk a i)AdV
C

	

(11 .7)

= i J (DiAk -DkAi) dV.

	

(11 .8)
Z c

1
JM,24 dV,

ic

L
M
i k
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Let us then apply the theory to the physical situation in which a plane ,

monochromatic wave with wave vector k travels within a homogeneous and

isotropic insulator moving with the velocity v in the x-direction . A proper

discussion of the expressions (11 .7) and (11 .8) ought to be made in a quanta l
treatment, but the following general remarks may be made .

As indicated in (1 .7), the quantities AIN are in general not conserved.

It can be shown in the present case that this non-conservation is due to th e

part Lk, while the contribution from

	

fluctuates away .

It is known that for an electromagnetic field in the vacuum we can i n

the Coulomb gauge (A 4 = 0) interpret (11 .7) as the orbital angular momen-

tum, since this part is independent of the polarization of the photons . Simi-
larly, we obtain for x = (n2 - 1)/c2 > 0 that the constant part of Lk i s
polarization independent if we use the gauge in K° in which Al = O . If

k l = 0 (t = 2,3) or v = 0, then all quantities Mk,Lk and k are conserved .
In this case L g is polarization independent and is thus interpreted as orbital
angular momentum, while 2g is interpreted as the spin part .

We can verify that 21M is not a tensor, except in the special case ka = 0
when the total angular momentum also is a tensor . In an electromagnetic
field in the vacuum 2 v is a tensor only when ka = 0 ; however, when x = 0 ,
lYl~ ro is a tensor .

12. Centre of Mas s

Consider in K° a bounded radiation field, whose interior domain can b e
taken as a part of a plane monochromatic wave with wave vector k° .
Only in a small boundary layer the fields are assumed not to obey the usua l
plane wave relations, and this boundary layer is further assumed to contai n

negligible field energy or momentum .

Then let K° move with respect to K with the velocity v along the x-axis ,
and examine the behaviour of the centre of mass in K with coordinate s
X(K) . Taking into account that the field is bounded and that the total fiel d
energy $fM is conserved, we find

d

	

d(,MfxiwMdv
1

	

1
JSdV.

dt
XM(K) = dt

	

=

	

(12 .1)

Since the field is homogeneous ,

d/dtXM(K) = S'/WM = ui ,

	

(12 .2)
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where uj has been found to transform like the component of a particl e

velocity . Strictly speaking, Møller's mathematical treatment referred to i n
section 9 was based on a point transformation, while (12 .2) in general refer s
to different space-time points in two reference frames ; however, this does not
matter since u is constant along a world line .

We obtain then for the wave under consideratio n

d nr

	

n,3 + k° fk°
-Xi (K) = c-	 o 0dt

	

n +ßk ] fk

0 °

d XM(K) = C	

Nk°!k°- (1 = 2,3)
.

	

(12.3b)

Here k° _ k° ! . When k° = k°, ß = 1/n, K is identical with the rest system
K* of the wave, wherein Poynting's vector and the energy density bot h

vanish in such a way that the quotient (12 .3 a) also vanishes. If ki = k° ,
ß < - 1 In, then SM > 0, Wm < 0, dXM(K)/dt < O .

Investigation of the various mass centre s

For a physical system in general, it is known that the different centre s

of mass we obtain by varying the reference frames K, do not necessarily

coincide when considered simultaneously in one frame . We refer to a paper
by MØLLER (36) , in which it was shown that different positions may occur in
the case of a closed system possessing angular momentum in its own res t

frame (see also ref . 1) . Such a closed system is in many ways similar to our
radiation field, so that we wish to study this point . To avoid complicate d
notation, the superscript M shall be omitted in the following .

Since the rest frame K° plays a distinguished role we may call the centre

of mass X(K°) in this frame the proper centre of mass . Further, let the space-
time coordinates of the proper centre of mass in any K be denoted by XI, =
(X,X4), so that X(K°) = X° in K° . From the transformation properties of u
it is apparent that all possible centres of mass have the same velocity dX/dt
in any frame .

Let mµ, represent the four-angular momentum components relative to

the proper centr e

mµv = J[(xi, - XX)gv-(xv X„)g ,a)dV = M,,w - (XL, Gv - X,, Ga) .

	

(12.4)

(12 .3 a)
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By differentiating the expression for M t,,, with respect to time along th e

moving wave elements where d(g,dV)/dt = 0, we find that dMt„p /dt = dxt, fdt
• G,, - dx,, JdtG, . Thus it follows that dm,, p idt = 0 in any frame .

The difference Xi(K) -Xi between simultaneous mass centres is i n
general related to mio :

rni4 = 1 J(x 1 -Xi)bVdV = - [Xi(K) -Xi ] AP .

	

(12 .5)
c

	

c

Now the quantities Mµp do not constitute a tensor . This follows from th e
fact that the quantities

a6(x ,Åspc xpsµo.) = spit - Sp,

	

(12 .6)

in general do not vanish . (The detailed investigation of the tensor propert y

of Mµ , goes similarly as the investigation of the four-vector property o f

see § 63 of MØLLER ' S hooka)) Thus mu, cannot be obtained in K by a
tensor transformation from Ko . This is a fundamental difference from the

situation encountered for a closed system .

In order to find the actual coordinate difference we thus have to make
an explicit calculation of the integrals in (12 .5). In Fig . 2, L I and L 2 represent
the cut with the xix4-plane of a three-dimensional surface enclosing the field .
Since mi , p is a constant of motion, we choose to evaluate it in K at t = 0, i . e .

along AB . Actually, we have to consider in detail only the first integra l
(= Mi o) in (12 .5), for the second integral is equal to -Xi G 4 and G4 is a
component of a four-vector . We find readily

xl(AB) y- lx°(AB), x2(AB) = xz(AB), x3(AB) = x3(AB),

	

(12.7)
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and W(AB) is related to the components SZV (AB) by a tensor transformation .
Now seek to transform the integral over AB into an integral taken at con-
stant time in K°, and choose the domain CD for which to = O . This task ca n
readily be accomplished for the internal, plane part of the radiation field .
To this end we first observe that the world lines determined by S will each
intersect AB and CD in two space-time points with coordinates (x°(AB) ,
t°(AB)) and (x°(CD), 0) in K°, such that

	

1ck?
x°(CD) = x°(AB) - o f°(AB) = x°(AB) (1+

ßk°
I

	

\

	

/

ck°

	

k° ßx°(CD)

	

(12 .8)
x°(CD) = xi(AB) - nk° t°(AB) = x°(AB) + kaon

+ ß 1k°/k° (1 =
2,3)

t°(AB) = - (ß / c)x°(AB) .

The volume integration in (12 .5) shall be performed along the elements d V
which follow the wave. Since the x i-component of the wave velocity in K°
is equal to ck°1(nk°), the volume element dV is related to the correspondin g
element dV° taken at constant time in K° by

dV°/dV = y(1 +ßk°/(nk°)) .

	

(12 .9)

Further, we observe that S ,,(AB) = S%(CD) at corresponding world points .
For the internal plane wave part we have als o

SZk =
W°kiklok°2 , g i = nW°ki/(ck°) .

	

(12 .10)

When eqs. (12 .7-10) are inserted into the expression for M14 t , i . e . the con-
tribution to M14 from the internal field, we obtain

0 0

M14t ac 11+ k°knk °
	 [ X w odvo + - 2 (xig ° - ° 0 )dV °

ß 1/(

	

) e,
int

	

int

where the integrations are taken along CD, but only over the internal par t
of the wave .

Now it is apparent that, in addition to (12 .11), we have to take into
account also the effect from the thin boundary layer, which is responsibl e
for the internal angular momentum of the field . This is in agreement wit h
the fact that in the case of a closed system, the coordinate difference whic h
we are seeking is connected with the total angular momentum in the inertia l

,

	

(12 .11)
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frame in which the total linear momentum vanishes . To investigate this

boundary effect we introduce, purely formally, a tensor S , which is defined

by the following components in 10 :

s LO = S O / I22 , S40 = Sov . (12.12)

Thus the tensor S v is symmetric and divergence-free, so that

	

is a tensor

(cf. (12 .6)). We immediately obtain

M14 =
ic

J
x°W°dV° y I (x°gi ° - x°gi°)dV°

	

(12 .13)

by a tensor transformation, where the integration domain includes the whol e

field. If we now calculate the internal part M14'
int by transforming the inte -

grand similarly as we did above, we find

((~
M14,int =

is

	

W°dV°+ißy\(x°gi°- x°gi°)dV° .

	

(12 .14)

Here we have used eqs . (12 .7-9) and the relations

int

	

int

S%k = W°k
2
kkl(n2k02), 9'i ° = W°k°/(nck°), (12 .15)

which are valid for the internal part . By comparing (12 .13) and (12 .14)

it is thus apparent that the total M14 is obtained simply by extending the inte -

gration domain in (12 .14) over the boundary region, such that g ° and W°

refer to the total momentum and energy densities in this region . (Actually ,

the additional term to the first integral in (12 .14) is negligible.) Since gi° i s
proportional to g°, the same rule can be used to evaluate M14 from (12.11) ,
and we get

M14
=-

iy 1 + nßkl /k° (x o +
a2

M°ai I

	

(12.16)
c 1 + 13141/(nk°) a

By means of (12 .7), (12 .8) and the transformation formula for . the last
term in (12 .5) is found as (i = I)

cX1

	

dc l+ß c?/(n
k°)~X1Ye°+n2(X°Gi-X°G°)I, (12 .17 )

where we have also used the relation G° = nA''°k°/(ck°) . The latter relation
follows from the fact that the total linear momentum is obtained by inte-
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grating over the internal wave part . Then inserting (12 .16), (12.17) int o
(12 .5) and taking (12 .4) into account, we find

m14 =
iyß 1+ nßk°/k° on2

1 + ßk°/(nk°) m 11 (12 .18)

This is a boundary effect. Note that it is not necessary that the integral

J xW0dV 0 over the boundary be taken as small in order to obtain (12 .18) ,

but when this boundary term is negligible, the expressions (12 .17) and
(12.11) are equal to each other, apart from a sign .

It can be verified that X°G° - X°G° is equal to L° given by (11 .7), and
so m°1 in (12 .18) may be replaced by n given by (11 .8) .

Hitherto we have considered the cases i = 1 = 2,3 . For i = 1 we obtain
readily by the same method

0 0i 1+ nßkl/k

	

o 0
M14 = -

c 1 + ßk° /(nk° )

m1.4 =M14 - -X1 e = O .
C

By means of (12.5), (12.18) and (12 .19) we can thus write the coordinate
difference as

v x
a(K) = X(K) - X =	

n2(1 + ß • k°/(nk°)W O '

where is a vector with the components 2° _ (i, j, k cyclic) . The form

(12 .20) is obviously independent of the choice of the velocity vector v as
lying along the xi-axis . Since a(K) is perpendicular to v, it will be left un-
changed after a transformation from K to K° .

Now we can calculate .° from (11 .8) and find readily that ~o/0o =

nk°/(ck02 ) . By inserting this relation into (12 .20) we get

1 ßxk°
a(K) = I.önk°+ß•k°

	

(12.21 )

Let us consider in K° the positions of the various centres of mas s

obtained by varying ß and k° in (12 .21) . All centres lie in a plane perpen-

dicular to k°, and if ß, k° and ß • k° are kept constant the end point of the

vector a(K) will draw a circle with centre at the proper centre of mass .

(12 .19a)

(12.19 b)

(12.20)



The greatest radius of the circle is obtained when k°-/3 = - k°ß 2 fn and i s

equal to
amax = (ß/nk°)(1 -ß2/n2)

	

(12 .22)

An arbitrary angle between ß and k° will in general lead to a centre of mas s

lying on the disk described by (12 .22) .

Permitting ß to vary, we see that the greatest value of amaX occurs when

ß = 1 . Further, amax -~ 00 when k° --> 0 .

Instead of relating all centres of mass to the centre of mass in K°, a s

seems to be most natural and as we have done in the present section, on e

may also relate these centres to the centre of mass in K the frame in which

the wave is at rest and the medium moving .
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