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Synopsis

A general relativistic form of the energy transfer equation is developed for material particles
interacting with a spherically symmetric and static medium. Using the relativistic expressions
of the energy density and the pressure in the different statistics, the radial energy flow is obtained
from the transfer equation for Maxwellian particles, bosons and fermions as a diffusion approxi-
mation. The thermal conductivity of ionization electrons is derived for a medinum consisting of
only one kind of nuclei. The equations ot the energy transfer by photons and neutrinos are oh-
tained in the special case of massless energy carriers. The condition of no net energy flow is
found to lead to Tolman’s law of thermodynamical equilibrium. The mean absorption coefficient
of material particles is introduced and an approximative method for the calculation of this co-
efficient is given analogously to the Rosseland mean opacity.
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1. Introduction

n order to investigate the stale of matter in the interior of dense stars, it
I is necessary to derive the energy transfer byradiation aswell as by material
particles. In most cases the energy transfer by material particles or the thermal
conductivity accounts only for a negligible proportion of the energy transfer.
But under certain conditions the conductivity of the electron gas plays an
important role, particularly in the white dwarf stars@®,

The discovery of the quasistellar radiosources in the past few years has
given support to the theory of relativistic astrophysics. The relativistic methods
are necessary because of those special circumstances which are probably
present in these radio sources®. The radiative energy transfer has been
studied both in the static® and in the timedependent® radially symmetric
medium in a general covariant way. But the general relativistic problem of
the conductive energy transfer secms to be unexplored.

In this paper the energy transfer by material particles is examined by
the same method as for the radiative transfer problem. The treatment is
restricted to the radially symmetric and static case. We also limit ourselves
to the case of energy flow due to identical particles which are interacting
with the external medium while their interactions with each other are
neglected. Further, the study is restricted to the condition that the gas is
close to thermodynamical equilibrium.

After some auxiliary equations the transfer equation is presented in
section 2. In section 3 the energy density, the radial energy flow and the
pressure of the particles carrying the energy are introduced and the transfer
equation is expressed as a relation between these quantities. By using the
relativistic expressions for the energy density and the pressure in the different
statistics, the radial energy flow is found proportional to the gradients of
the thermal and the chemical potentials, in chapter 3A for Maxwellian
particles and in chapter 3B for fermions and bosons.

The thermal conductivity of ionization electrons which arc interacting
with a medium consisting of only one kind of nuclei is derived in chapter 4 A,

1%*
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In chapter 4B the expressions of the radiative energy transfer and the neu-
irino diffusion are obtained in the special case of massless energy carriers.
The mean absorption coefficient of material particles is introduced, and an
approximative method for the calculation of this coefficient is given for
electrons, photons and neutrinos in section 5.

2. Transport equation

We shall study a stream of identical particles, which at a definile point
is characterized by a four-dimensional elementary solid angle 48, a space-

ener
like direction N and an intensity [o (in dimension | Ig_YI ) The ele-
mentary solid angle 682 is given by |areal [time|
682 = sinh? £6£6w, (1)

where dw is the three-dimensional solid angle in the local rest-system of the
external medium with which the particles are interacting. The number &
denotes a pseudoangle which measures the angle between the unit tangent
of nearly parallel world lines in 642 and the four-velocity vector of the
medium.

The metric of the radially symmetric and static medium has the form
ds? = — eMngp? rA(dv® + sin® vdg?) - e c2di?, (2)

We denote the space-like unit vector in the radial direction by N, and the
time-like unit vector in the direction of time by U. In the metric (2) they
have the following contravariant components:

1
-1
N = {c 2 ’0,0,0}
, 3)
e - {0, 0,0, e_2”'}.

Now we let 8 denote the angle between N and N,. The vectors N, N, and
U then have the properties:

N:-N=N,"N, = ~1
u-u
N-U=N,-U=0
N-N, = —cosf.

I
—

(4)




Nr.13 5

We assume that the particle paths are geodesics except in the regions where
scafterings occur. The geodesics-approximation is good, if we idealize the
scattering processes as point interactions. This is a rather useful approx-
imation, even for electrons in an ionized medium. The electromagnetic
interactions between the electrons and between electrons and nuclei cancel
on a large scale the effect of each other. We can then write for the particles
the equations of motion between scattering regions in the form

UQ'(VUQ) =0, (5)
where

Uy = Ucosh& + Nsinh & (6)
is the four-velocity vector of the particles belonging to the solid angle 6%
and VU, is the covariant gradient of Up,.
Taking the scalar product of eq. (5) and the vector U, we obtain

Since we have assumed the situation to be static, the operator U-V applied
to any scalar function is equal to zero. When this is taken into account,
eq. (7) is reduced to the form

sinh §N-V cosh & = Uq - (VU)- Ug. (8)

Taking the gradient of U in component form, we get the equation

A
1du -5 ‘
N:Vcoshé = eap 2 cosh £cos 6. (9)
2dr

Performing similar calculations by multiplying eq. (5) scalarly by N,, we
obtain the result

}b
1 —5/2  ducosh?é
N- f=—e¢ =" in26, 10
Y cos 2@ (r 0 sinh2§> sin (10)

where we have also made use of eq. (9).
The energy-momenium for the stream under consideration is

where g is the density of the rest mass of the particles in the solid angle 6£.
In writing eq. (11) we have ignored the interactions of particles with each
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other. The quantity —cU- 87+ N describes the energy flux in the direction N
per unit proper time in the rest-system defined by U. This energy flux is
also equal to Ind82. Then we have

1662 = — cU- 8T N

= c3pg sinh & cosh £ 602,
so that

to - (12)
¢3sinh &cosh &

Substitution of eq. (12) into eq. (11) yields the expression for 67,

I UpUp00
csinh £cosh &'

(13)

3T —

1
The covariant divergence of — 67, describes the generation of momentum
c

per unit time and unit volume. The U-component of this vector expresses
the generation of energy in mass units. We define the coefficients of absorption
and emission xg and j,, such that the energy flux absorbed from the beam

1
and emitted into it by the medium is respectively xo,/o02 and 4—ng0 842,
T

where g, is the proper mass density of the external medium. The gain of
energy must balance the loss at every point, so that in energy units we have
the equation

1
C(V‘ 5TQ) U= — .’L'QQOIQ(SQ + 4—‘]99069 (14)
pej 4

Inserting 67 from eq. (13) into the left side of eq. (14), we obtain

1,Ud02 1,60
c(v-aTQ)-U=v-<Q~Q >— =

Un- (V) U 15
sinh & sinh & cosh & o (VU)-Ug (15)

The first term on the right side can be developed as follows:

InUn082 cosh & cosh &
YR il B R ] Bl Y UV IBQ + V- (IpN5Q),
v < sinh & Visinh g 0%+ g g (V- D10dQ + V- (1o
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where the first term is equal to zero, since the situation is static. The second
term vanishes too, which we can see by computing V- U from eq. (3). We
have then

(Ut .
(Sinhé - V- (IpNoQ). (16)

Substituting eqs. (8) and (16) into eq. (15) and then further into eq. (14),
we obtain the equation of the energy transfer

1dy -Ea
V(IQZVaQ) = —(CL‘QQO’ng—B 2 cOS 0)[969
2 dr
! (17)
+1 [ 0,082
475‘1990 -

3. Radial Energy VFIOW

We restrict our examination to the very nearly isotropic case. Instead
of working with the function I, we want to express eq. (17) by the moments
of this funection. The energy density, the energy flux in the direction N,
and the gas pressure are given by the formulas

Ep - U-0T U = 2% 1 50
Q- Q ¢ sinh & 2
Hp = —cU- 8Ty N, = Incos 648 (18)
1 sinh &
PQ = Nr*éTQ'Nr = ; Cosh IQCOszgé.Q.

Now we introduce the quanlities Eg, Hg, Pg and I, belonging to particles
of the same £, by the expressions

E; = SlllhzijQdCD
H; — sinh® ¢ [ Hydw
P — sinh?& [ Pydo

l (19)

I¢ = sinh® £ I,.
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Substituting eq. (18) into eq. (19), we have the following integrals:

1 cosh &
Eé: = — ffgdw

¢ sinh &
Hg = [Izcos O dw (20)
Py = 1 sinh & fIE cos? 0 dw.

¢ cosh &

In order to construct the appropriate relation between the integrals (20)
we need the auxiliary equation

V- (IgNcostd) = A-(IgN cos b 3¢ dw)

] 20
= c0s0V - (IgN3Q) + ;68w NV cos 0 [

which, after using eqs. (10) and (17), can be written in the form

A
1du -5
V- (IsNcosb 3&dw) = _(x§@0+§~due Zcose>lgcos66§6m

1 1 1ducosh®& 22)
co

+Z—j59000506§6w+(————'u ) zlfsmz@é&éco

7

r 2dr sinh®&
We have applied the following definitions in eq. (22)

.’17§=LUQ

23
jg = sinh?&jg. } (28)

Integrating eq. (22) over all three-dimensional solid angles and taking into
account the radial symmetry and the expressions (20), we get the relation

oshE 1sinh& 1ducoshé
AN, —/——— P:d il Il shbutitnsl DA% Y
v ( inh& "¢ E) (r coshé 2dr smhf) £0

r sinh £ 2drsinh3é&

% a§~<1 cosh & 1ducosh 5) p.og.
C

The divergence in eq. (24) can be evaluated using the component repre-
sentation (3) of the vector N, and the expression
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dé  ldpcoshé

25
dr 2 dr sinh & (25)

which is obtained from eq. (9). After a simple calculation we get

V.<Nrcosh§P§6£> 2 ——coshE peos

inh & r sinh &
J (26)
1 d,u -5 cosh3 & - cosh cosh & d(PgéE)
2 dr sinh3 & smh§ dr
Inserting eq. (26) in eq. (24) ,we find
Ao
d(Ped 1 h?2 1d 5 sinh
A(Pgos) _ (1sinb?é 1dp Egd R Eingséf
dr rcosh?f 2 dr c osh &
(27)
LI PP |
ro2dr)
Now we introduce the integrals
E = [ B8
0
H - f Hyde (28)
0
P - | peae
0

which represent the total energy density due (o the particles we consider,
the total radial energy flow defined as the flux of energy relative to the par-
ticle stream, and the total gas pressure due to these parlicles. We further
define the mean absorption coefficient @ of material particles analogously
to the Rosseland mean opacity® by

sinh &
xH = f — gHgd«f, (29)

which we analyze in section 5.
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The integration over the quantity £ in eq. (27) gives the equalion

«w 11

apP 1 h2 1d =
fﬂéEgaf___ﬂ 5o
cosh2é& 2 dr c

' 3 1d (30)
2+ 2ZE)p.
r 2dr

We have worked with moments of the intensity function rather than the
intensity itself in deriving eq. (30). Because of that we need an independent
auxiliary equation. It is then customary to use the diffusion approximation,
where the statistical expressions of the energy density and the gas pressure
in thermal equilibrium are applied. We shall eliminate the quantities E
and P from eq. (30) in the case of relativistic Boltzmann-statistics and
quantum statistics in chapters 3A and 3B respectively. The quantilies
belonging to quantum statistics have an index d.

dr o r

3 A. Radial Energy Flow due to Relativistic Boltzmann-particles

The basic assumption of the relativistic kinetic theory is the equal a
priori probabilities of equal cells dvdf2, where dv is the volume element
which the tangential vectors of geodesics intersect orthogonally in the four-
dimensional elementary solid angle §£2. The cell dvdf2 is invariant under
general space-time coordinale transformations®. The siatistical, special
relativistic expressions of the energy densily and the pressure first derived
by F. Jittner™ are then valid also in the general theory of relativity.®

In a relativistic Boltzmann-gas consisting of material particles of proper
mass m, the following relations are valid™:

E = 3P + L Ky(v)
T

(31)
P = %Kz(r)

where we denote

* This is physically obvious, because the general relativistic effects are negligible in small
distances of the mean free paths of particles.
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me?
T =
kT
me\3 Y + mc? (32)
y=4mncz—1—l— e T

Further, the functions K,(7) are modified Bessel functions of the second
kind; k is the Boltzmann constant, k the Planck constant, T is temperature
measured in the rest frame of the medium and vy is the chemical potential.
The expressions (31) are derived for thermal equilibrium, but they are also
valid to a high degree of accuracy when the gas is close to equilibrium. We
recall the definition of K,(7)®

,L,'Il

= —Tcosh& x 12n
K,(v) 13 n-1) f e sinh“®& d§ (33)

3.+ (2

and two recurrence relations for them

dK, (T
nkK,(v) -7 ;f ) = 1K, ,,(7)
(34)
I(n+1(7) Kn 1(7) = n(T)

For the quantity Eg¢ we get from eqs. (28), (31) and (33) the expression
Eg = pe T E5inh2 £ cosh? & (85)
which, substituted in the first term of the right side of eq. (30), gives

1 smhzé' - Creoshé wita 3
_f oo Fds rfe sinh*£ d = " P. (36)

r
0 0
By use of eqgs. (31), (33), (34) and (36) we obtain from eq. (30)
A
dP d 1d,
aH = = 4928 27

QO 2
P+———K
c dr dr 2 dr 1(7)

Ko(m) dy v | dEy(z) dv  lduy
. + I Rt 2K,(7) o + S 1|z 1(2(1) + K (%) (37)

l

©
K, (77) d'y vk —’é—t d( Tez>
g2 dr mc? Ry(7e ’

r
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d
The expression of a—y can be written in the form
-

[ # “
ey 2
dy @ +me®) e—id(7e2> +Le—5d{(w + mcz)_cﬂ (38)
dr kT2 dr kT dr
which, substituted into eq. (37), yields the result
r p
7 A d(T 2>
H- - ‘iKg(T) —(1 +—”"2>K2(1)} ‘
megyx mc dr
(39)

+ H?% Ky(7) g[g%}?@eﬂ\._

The radial energy flow has been separated into two parts fo remove dif-
ferences of relativistic thermal and chemical potentials in the gas. Because
the chemical potential is also a function of the temperature and the density
of the gas, the first term in eq. (39) is not the total expression of the heat
flow, but the other term will give a contribution to it.

3B. Radial Energy Flow due to Bosons and Fermions
In the relativistic quantum statistics, the following relations are valid®:
Egy = coshiu,

1 sinh2¢ (40)
i ug,
3 coshé

P§d=

where the distribution function u; is

ygcosh & sinh?é

g =
L
exp [— ]:/‘T + 7{cosh é — 1)] + 7

3
4amc? me
I

and 7 is equal to +1 for Fermi-Dirac-gas and —1 for Bose-Einstein-gas.

(41)

I

Ya
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Using eq. (25), we obtain from eq. (40)

dPg, 1du 1 1du du,
- +coshé)u, —— - sinh & =2
dr 6 dr (coshf R Y
L1 1 sinh2& 0ud dT Bud dzp
3 cosh&\OT dr (91p dr

Insertion from eqs. (40) and (42) into eq. (30) gives the equation

Z‘ oo - w0
0o 5 1du 1du [ . ou
-2 x,H, ~ g;;fcoshEuddrE—gEI—.fsth?;dE
0
sinhzé‘(é)uddT du, d¢>d L Ldu * sinh2

+
i
© *g

+ — | ———u,dé.
cosh&\OT dr Oy dr 6drJ coshé uqdt
0
F 41) we have for 222 anq 2% g
rom e we e —_— —— the expressions:
q. ( we have for Be oT expressio

. K
tsinh§exp | — -— + 7(cosh & — 1) .
ou, in P { T 7( h )‘t

0

(sinh & 0 cosh 5)

— + 2
Y cosh & sinh & Ha
exp —ﬁ-!— T(cosh & —1)| +

ug.

exp —l-kr(coshé‘—l)
dug T (4 kT i
o = T COShS -1 _;CE

exp {— % + 7(cosh & — 1)} +

Substituting the expression

inh?& 9 inh?
smh§ il +_SL§ e _ <Sm §+2cosh§>lzd

o& cosh& = 0T cosh &

y
(”M)e’{p{ g Heosh s 1)} sinh? &

u >
cosh& ¢

exp [— % + 7{cosh & - 1)] + 7

13

(42)

(43)

(44)

(45)
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obtained from eq. (44) into eq. (43), we get after grouping the terms

Qo % (dT Tdu)f sinh?& duy
— e ded = 3 E
c

dr 2dr coshé 0T
1 d1,u du f
+ — (¢ + me?) —
31<T[ ( C)dzl
0
from which

Atp f - coshf—l——w— ex —l-l"l' cosh& —1
cyg Te 2 Te f( me? P kT ( )
0

2
(exp {— j:%" + 7(cosh & — 1)] + 17>

@ e - 1
g ( rcz)e J‘ exp [ + 7(cosh & )]

+mc2 LE o1 2
o [(exp —ﬁ+r(cos E-1)l+7

exp [~ % + 7(cosh & — 1)}

exp {— %—k T(cosh & — 1)} + 7

sinh4 ¢ d¢

sinh4 £ d&;.

4A. Electronic Heat Conductivity

As an important special case of energy transfer by material particles we
examine in this chapter the electronic heat conductivity. We limil ourselves
to the case with energy flow due to ionization electrons which are inter-
acting with a medium consisting of only one kind of nuclei of proper mass
M and atomic number Z.

In order to obtain an expression of thermal conductivity from eq. (39)
or eq. (46) we have to find a relation between the expressions d[(p + mc?)e®/? |/dr
and d(7e??)/dr. We regard the medium as a perfect fluid, whose energy-
momentum tensor is given by

(T = (9#) utf - 9P 55, (47)

where g is the total mass-energy density, p, is the pressure in the medium,
and gaﬁ arc the components of the metric tensor.

(46
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From the covariant conservation law
vV-T0 =0 (48)

we have in the metric (2) the equation

ldp, 1 Po \ dp
+-{o+52) =" < 0. 49
@ dr 2(9 (49)

e "2 )dr
The medium consisting of nuclei is a Boltzman-gas also when the electron
gas is weakly degenerate. The equations of state are

Po ¥
e+ _;) = T Ky(7)
¢ 7
2 (50)
¢

2
Yo€
Po = "5 Ko(mg) = —0o>
Ty To
where we denote

M\E Yot Me?
Yo = 475M<h) e *T

Mc? 1)

Ty = .
Y

The chemical potential of nuclei is given™® by

%‘ h? 812 < (52)
[4 = .
27MET) M
Comparing this with
Y 2 \3/2
R 2 (53)
2amkT| M

which is the expression of the chemical potential in a non-degenerate electron
gas, we find the relation

M\?
vy = v — kTlog [(——) Z}. (54)
m

Substituting the expressions (50) into eq. (49) and using the first eq. (34),
we obtain
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Ky(zy) d K3(79) dT 1 yp,Ky(1y) d
2(2Qﬂ+}’o 3( 0)*4-—)/0 3(7o) ap 0. (55)
T, dr 7wl dr 2 1, dr

Using eqs. (51) and (54), we get from eq. (55) after simple calculations

“
d [(1/) + mcz)ez}
dr

- 0 Oy d,
9 T(_*u;ﬂ&)_w_mcz () (56)
gu—i-nwf_ﬂczfi(@ 0T 0oy dT d\Te

T T Ky (t dy Oy d dr
A (00 v des)
oT  0p,dT

d
The quantit ] can further be derived as a function of 7 and . We
q y a7 %

obtain from egs. (50) and (51) the expression

9 K
720 - M — kT - M2 230
do, or Ky(7)

= . 57
dT T< Me 01/)) (57)
Yola(7p) Do

Insertion of % from eq. (53) yields

<K3<ro> 1)
Kam) 4, 5
doy  \ (7)) 2

dT ( 7 1)' (58)

T —_——
YoKa(70) 0

Substituting eqs. (53) and (56) into eq. (39), the equation of the radial
heat flow reduces to the form
N
Tez>

o atire)

dr (59

where
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_ drkmBet ew ;;w e‘“’; K’
h3gyx
ME Mc? Tdoy me® 3
X mc? X mc? S\ kT 0dT kT 2 (60)
\ kT P\ kT . M\ [T doy, M 3
mi. | o Z 5% e ¥
k] \oydT kT 2

is the expression of thermal conductivity of a non-degenerate electron gas.*
The chemical potential of a degenerate electron gas can be derived®
from the integral equalion

va\ oy 2, R iz
I =< )ﬁ’. (61)

3 2emkT; M
oo exp(——wi+.7c2>+1
kT

For small values of e¥«/** we have the expansion

2y 3Py 49y
( ;*’;) % kT kT kT
ek “6»»“WT3T/2'—m+"‘ (62)

From eqs. (61) and (62) we obtain

Ya e NPz 1 [ hz P 222
ekl = | ————0) —C+ ool e (63)
2amkT M 222\ 2mmkT] M2

Repeating the calculations from eq. (54) to eq. (60), using eq. (46) instead
of eq. (39) and eq. (63) instead of eq. (53), we obtain the expression of
heat flow due to a weakly degenerate electron gas

dwmbc8e 2 kT kT 2

e
3kh3py T2z, w; mc?
0 exp|——=+——(cosh&é-1)[+1
I xP kT kT (cosh&—1)

2
At p wAngXp{—ELE(coshf—l)} ( !i>
d\T
Hy = — _

R (64)

* The relativistic law of heat-diffusion (59), which agrecs with the expression for the heat

flow derived by C. Ecgart®D, includes the gradient of the quantity Tel'2 instead of the temper-
ature gradient of the classical case. The dependence on the metrics is due to inertia of the heat.
In the classical limit eq. (59) reduces to Fourier’s law of heat conduction.

Mat. Fys. Medd. Dan.Vid. Selsk. 36, no. 13. 2
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where we denote

- 1 b, 3/2 Zo,
ME\| (T doy 3 YA 2amkT| M mc?
1 ( B2 >3/z Zo, kT

" 932\ 9k T M
ME\[T dp, 38 Mc?

mi | | —— — =~ —
T \oo dT 2 kT

oy, me
. < Al - 1
exp [ T + T (cosh & 1)] +

cosh & —

AEd =

sinh#*¢,

d
and d‘&;(’) is the same function (58) of T and gy as in the case of a non-dege-

nerate electron gas.

From eqgs. (59) and (64) we get as a special case of no net energy flow
due to a non- or weakly degenerate electron gas the general law®®

“

Te® = T]/a1 = constant (66)

for a relativistic fluid in thermal equilibrium.
The expressions of thermal conductivity of a semi- or strongly degenerate
electron gas can be derived only with numerical methods.

4B. Radiative Energy Transfer and Neutrino Flux

The radiative energy transfer is obtained in the limiting case of the energy
transfer by material particles. The calculations up to eq. (30) are valid for
a photon gas, if the expressions mcosh & and msinh ¢ are changed to hv/c?,
where v denotes the frequency in the rest-system defined by the vector U.
Eq. (30) then takes the form

. A /
dpP 1 1ldu % 5 3 ldp
f—( ——H)Ef—?oe2 SEfo‘(—‘-F:_ P, (67)

where the mean absorption coefficient of photons or the Rosseland mean
opacity x, is defined by

a, H, = f x, H, dv. (68)
0

(65,
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Using the isotropic approximation
E;, = 3P; = aT4, (69)

where a is the radiation pressure constant, we obtain from eq. (67) the
equation of the radiative energy transfer

H#
acT? _’1_+/‘d<Te2)
R (70)
3ogxy, dr

agreeing with the corresponding results in references 3 and 4.

We notice that the condition of no net radiation yields the same law
(66) of thermal equilibrium as when the equilibrium is established by the
thermal conduectivity of electrons.

The energy transfer by neutrinos is obtained similarly as the radiative
energy transfer, if one assumes almost isotropic neutrino distribution. The
only modification which must be done is the change of the radiation con-
stant to the constant 7/8a, since the energy density of an isotropic neutrino
gas is not aT4, but 7/8aT4"®. Defining the mean absorption coefficient of
neutrinos by

x, H, = Jmm}InvdV: (71)
0
we get the equation of the neutrino flux

12
TacTs A1t d(Te2>

H, = e
6 QO xn dl'

n

(72)

Because the interactions of neutrinos and antineutrinos with matter are
generally different, the Rosseland mean must be taken as the average of
that for neutrinos x;, and for antineutrinos x, or®.

2 _ 1 1 5
X, w,  x,

Eq. (67), which has been derived using an isotropic approximation, can
not be applied to the case of a purely radial outward-moving neutrino flow.
A purely radial neutrino emission has been used by C. W. MisNer®® to
describe a flux of neuirinos produced in the deep interior of a supernova.

2*
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5. Mean Absorption Coefficient

Egs. (69), (64), (70) and (72) for the radial cnergy flow contain as a
parameter the mean absorption coefficient derived in eq. (29) for material
particles, in eq. (68) for photons and in eq. (71) for neutinos. In this section
we give an approximative method for the calculation of this coefficient. The
procedure is the same” as in computing the Rosseland mean opacity
from monocromatic absorption coefficients.

First we want to eliminate 6¢ from eq. (27). Since we are concerned
with the radially symmetric and static case, we have from egs. (3) and (4)

A
-5 d(cosh
N-Vcoshé = e ZCOSHM. (74)
n
Comparing eqs. (9) and (74), we find the relation
1 d(cosh 1d
(coshe) ~ Ldw (75)
cosh & dr 2 dr

For another stream of particles having the same space-like direction N but
a little different pseudo-angle £, eq. (75) can be applied in the form

1 d[cosh & + d(cosh £)] ~ ldu (76
cosh & + d(cosh &) dr C2dr’
Subtracting eq. (75) from eq. (76) and using eq. (25), we get
d(o ldu 6
LV L (77
dr 2 dr sinh? &

Elimination of 8¢ from eq. (27) by means of eq. (77) yields

. A .
dP 1 sinh? id re = sinh
dP; 1sin SEE~ —MEE—QO:LS(:Z sin £H5
dr r cosh?& 2 dr ¢ cosh &
(78)
1 du cosh2& 3 p
2 dr sinh2? & ¢ r &
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i . sinh & . . .
Dividing this equation by g and integrating over the quantily &,
we obtain ©cos
l oo
> E 1d cosh & E
gy LfSmREE, tds feshin,
c cosh & a¢ 2 dr sinh & a

(79)

+fcosh§iﬁd ldp cosh3§13§ g IJCOSh§P§ ”

+
sinh & xg dr 2 dr sinh3 & xg
0 0

sinh & x¢

We shall eliminate the quantities Eg and P from eq. (79) separately for a
non- and weakly degenerate electron gas and for a photon and neutrino gas
analogously to the calculations in chapter 3B.

5A. Mean Absorption Coefficient
of Non- and Weakly Degenerate Electron Gas

From egs. (28), (31), and (33) we obtain for a non-degenerate electron
gas the relations

Eg = coshéu
1 smhzé (80)
Pe =
3 coshE
where we denote
u = ye TS oogh £sinh2 &, (81)

Using eq. (80) we can write eq. (79) in the form

00

A
= 1 1
—@e2H=~f + cosh & —é—df
¢ 3 cosh & dr xg

0

(82)

sinh & xg de.

1 f 81; dé au dT+ du dy) sinh § e+ 2 d,u J cosh2& u
3 o0& dr 6T dr 61/) dr/ g 3dr
0 0

Substitution of the expression

du . sinh2& T@u sinh2¢&
8¢  cosh& 8T  coshé

1—r—kiT)u+2cosh§u (83)
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into eq. (82) yields
) °° ®
4 h2&d
_ & 2H—Jc0sh§££d§—— 4 J‘sml géid
¢ 3 dr xg s\ kT cosh & dr x¢
0 0
1 [ sinhé& dud 1 h2é d du 1
+—fsml§iffds f sin 57—§-s1nh5 9 Tage U84y
3 xg Oydr 3 coshé dr OT xg
0 ® 0
‘)d,u 'coshzf u
3 dr ) sinh& xg
0
Taking into account eq. (25), we obtain from eq. (84)
o 4
g - |
¢
LA . Tl - ! (85)
1 —ﬁ‘!d Te? sinh & du 1 d|(y+ mc?)e? sinh &
) fane gu 1 e )
3 l dr cg 0T kT dr x:
0

0

du
Making insertion of U’G_Z'* and the relation (56) into eq. (84), and denoting

Mc Tdoy, 3 mc?)
MK, —— - —
kT o dT 2 kT
cosh & — (

UC Tdoy, 3 M
——— - (86)
0,dT 2 kT
Ag sinh*é,
¥ mc
——= hé-1
expl T (cos & )}
we finally get
“
- drmb B ——ﬁf Ag cosh§ <Te2)' (87)
3khdp,T? xg smhé dr

Comparing eqs. (59) and (60) with eq. (87) we find the following expression
for the mean absorption coefficient of a non-degenerate electron gas:
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mcz J‘ COShE
1 ]cT . xg smh§
— = —. (88)
x Mc? Tdgy, 3 mc
ME,(—
0o dT 2 kT

0 dT 2 kT

mc? mc kT
Kol — ) — K| ——
kT kT Mc®\ (T do, 3 Mc
mKy|— | (—
\]cT
The calculations for the mean absorption coefficient of a weakly de-

generate electron gas are similar to the ones made above. We shall give only

the final results. The equation of thermal conductivify of a weakly degenerate
electron gas is

H; =
i o Aggexp _ e (cosh E-1)
d7md c8 ——J%“ LT kT cosh &
3kh3o, T2 sinh &
% 0 Xy {exp { ]% ' i (cosh £ - 1)} + 1‘J (89)
! .
d(Te2>
dr

For the absorption coefficients xg;, and a¢ the following relation is
valid 7

1
Lgg = ’7/.’1,5 =q1 — 3 g, (90)
exp [

Va
_fa -1 1
% + P (cosh & )} +

where 7 is the probability that the final state after a scattering of an electron
is free. Inserting eq. (90) into eq. (89), it reduces to the form

I ad
4mm® 8 *“T# Az, cosh & d 1d<Teg)

Hy = -2 . 91
. Bkhig, T2 wg sinng [ dr D
0

The expression for the inverse value of the mean absorption coefficient for
a weakly degenerate clectron gas is
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A h
fﬁc?s §d§
1 xg sinh &
0
— (92)

0

5B. Mean Absorption Coefficient of Photons and Neutrinos

The relativistic Rosseland mean opacity has been studied by K. A. Hi-
MEEN-ANTTILAY®., For the sake of completeness, the calculation is now
outlined starting from the theory of material particles. In the special case
of mc? coshé — hy and me? sinh £ — hy, we obtain from eqs. (25) and (77)
the corresponding relations

d 14
S (93)
dr 2 dr
d(é 1d
O _ _Ldn,, (94)
dr 2 dr

With the quantities now measured per unit frequence interval, eq. (27)
can be written in the form

A
d(P,9 1 14 3 1d
AR (1 Lde) g, ea:,,Hév oM p . (95)
dr r 2dr r 2dr
Elimination of d» by means of eq. (94) gives
dP, (1 1dp 5 z 0 3 o)
dr \r 2dr ,,—Cex,,,, r (

l o0
Py 1 14 E,
—%Oe"Hf=—<;—§Wdﬁ—> Ly f~—d 97)
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The classical laws of black body radiation

4
E, = —B,
c
p - p
V3 (98)
2hy3 1
B, = —-
C hy
exp <—> -1
k

can be calculated from egs. (40) and (41) in the special case of photons,
after putting y; equal to zero and multiplying the expressions with 2 because
of the polarization of photons. Insertion of eq. (98) into eq. (97) yields

=0 = Zdy- =
c cdr) =z, cJ x,
0

Gy  tmde By, taf 1(@@ o8, a1
0

— — ) dv. 99
0vdr+(9Tdr) g (99

Using eq. (93) and the expression

3B 0B, + TaB” 100)
3B — yo Y v
Y v aT (
we get, after grouping the terms,
R
00 & x d(Te2> 1 4B,
~ R H, = e ? f—~—dv. (101)
¢ 3¢ dr x, 6T
0

Comparing eqgs. (70) and (101), we find the following expression for the
mean absorption coefficient of photons:

1 n [ 1 aB,,d 102)
x;  acT? x, 0T * (
0

Differentiation of the expression for the total energy density of black body
radiation
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—f B,dv — aT* (103)

with respect to T and the insertion into eq. (102) gives another representation

for —:
Xy

F10B,
—ﬁdv
1y
Sul A— (104)

Ly faB"d
arT "
0

Eqgs. (102) and (104) for the Rosseland mean opacity are just the same as
in classical astrophysics®,

The mean absorption coefficient of neuirinos is obtained similarly as the
Rosseland mean opacity by using Fermi-Dirac statistics instead of Bose-
Finstein statistics. We get the expression

1 0B,
f —_— _Bng dv
1 J T orT
Ty 0B, d
ar
0
where

203 1

w2 hy ;
exp|— |+
*Pler

is the Fermi-Dirac distribution function for massless particles.

B

(106)
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