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Synopsis

A general relativistic form of the energy transfer equation is developed for material particle s
interacting with a spherically symmetric and static medium . Using the relativistic expression s
of the energy density and the pressure in the different statistics, the radial energy flow is obtaine d
from the transfer equation for Maxwellian particles, bosons and fermions as a diffusion approxi-
mation . The thermal conductivity of ionization electrons is derived for a medium consisting of
only one kind of nuclei . The equations of the energy transfer by photons and neutrinos are ob-
tained in the special case of massless energy carriers . The condition of no net energy flow i s
found to lead to Tolman's law of thermodynamical equilibrium. The mean absorption coefficien t
of material particles is introduced and an approximative method for the calculation of this co -
efficient is given analogously to the Rosseland mean opacity .
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1 . Introduction

I n order to investigate the state of matter in the interior of dense stars, i t
is necessary to derive the energy transfer by radiation as well as by materia l

particles . In most cases the energy transfer by material particles or the thermal
conductivity accounts only for a negligible proportion of the energy transfer .
But under certain conditions the conductivity of the electron gas plays a n
important role, particularly in the white dwarf stars(') .

The discovery of the quasistellar radiosources in the past few years ha s
given support to the theory of relativistic astrophysics . The relativistic method s
are necessary because of those special circumstances which are probably
present in these radio sources (2 ) . The radiative energy transfer has been
studied both in the static(3) and in the timedependcnt(4> radially symmetric
medium in a general covariant way . But the general relativistic problem o f
the conductive energy transfer seems to be unexplored .

In this paper the energy transfer by material particles is examined b y
the same method as for the radiative transfer problem . The treatment is
restricted to the radially symmetric and static case . We also limit ourselves
to the case of energy flow due to identical particles which are interactin g
with the external medium while their interactions with each other are
neglected . Further, the study is restricted to the condition that the gas i s
close to thermodynamical equilibrium .

After some auxiliary equations the transfer equation is presented in
section 2 . In section 3 the energy density, the radial energy flow and th e
pressure of the particles carrying the energy are introduced and the transfe r
equation is expressed as a relation between these quantities . By using th e
relativistic expressions for the energy density and the pressure in the differen t
statistics, the radial energy flow is found proportional to the gradients o f
the thermal and the chemical potentials, in chapter 3A for Maxwellia n
particles and in chapter 3B for fermions and bosons .

The thermal conductivity of ionization electrons which are interacting
with a medium consisting of only one kind of nuclei is derived in chapter 4A .
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In chapter 4B the expressions of the radiative energy transfer and the neu-

trino diffusion are obtained in the special case of massless energy carriers .
The mean absorption coefficient of material particles is introduced, and a n

approximative method for the calculation of this coefficient is given fo r
electrons, photons and neutrinos in section 5 .

2 . Transport equatio n

We shall study a stream of identical particles, which at a definite poin t
is characterized by a four-dimensional elementary solid angle åQ, a space -

energy ]
like direction N and an intensity IQ in dimension	 The ele -
mentary solid angle åQ is given by

	

Iareal !time '

8S2 = sinh2 $60vo ,

where åw is the three-dimensional solid angle in the local rest-system of the
external medium with which the particles are interacting . The number

denotes a pseudoangle which measures the angle between the unit tangent

of nearly parallel world lines in åQ and the four-velocity vector of th e

medium .
The metric of the radially symmetric and static medium has the for m

ds 2 = - e l(r)dr 2 - r2 (dv2 + sin e vd,T2 ) + ef`(r)c2dt2 .

	

(2 )

We denote the space-like unit vector in the radial direction by Nr and the

time-like unit vector in the direction of time by U . In the metric (2) they
have the following contravariant components :

1Va = e 2 '0,0,01
l
l

{OOOe} .

	

i

	

(3)

Ua

= Now we letO denote the angle between N and Nr . The vectors N, Nr and

U then have the properties :

N•N=Nr •Nr =- 1

U. U = 1

	

N•U=Nr U=0

	

(4)

N•Nr = - cos O .

(1)
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We assume that the particle paths are geodesics except in the regions where

scatterings occur . The geodesics-approximation is good, if we idealize the

scattering processes as point interactions . This is a rather useful approx-

imation, even for electrons in an ionized medium . The electromagneti c

interactions between the electrons and between electrons and nuclei cance l

on a large scale the effect of each other . We can then write for the particle s

the equations of motion between scattering regions in the for m

U0 • (vUc2) = 0 ,

where

UD = U cosh + N sink

	

(6)

is the four-velocity vector of the particles belonging to the solid angle åS2

and V UL-2 is the covariant gradient of UQ .

Taking the scalar product of eq . (5) and the vector U, we obtain

UD •(oUD)• U = UD •pcosh$ - UD •(oU)• U~ = o.

Since we have assumed the situation to be static, the operator U . V applied

to any scalar function is equal to zero . When this is taken into account ,

eq . (7) is reduced to the form

sinh .1\T . V cosh = UD • (p U) • U~ .

	

(8)

Taking the gradient of U in component form, we get the equation

À

N•V cosh $ _ -
2 dx

e 2 cosh cos O .

Performing similar calculations by multiplying eq . (5) scalarly by

	

we

obtain the result
s

N. V cos 0 = - e 2
r dr sinh2 sin

e 0,

	

(10)
2

where we have also made use of eq . (9) .

The energy-momentum for the stream under consideration i s

åTQ = c2 OQUQ UQåS2, (11 )

where es? is the density of the rest mass of the particles in the solid angle åQ.
In writing eq. (11) we have ignored the interactions of particles with each

(5)

(7)

(9)
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other. The quantity - cU STS N describes the energy flux in the direction N
per unit proper time in the rest-system defined by U. This energy flux i s
also equal to IQSQ . Then we have

Is2 SdI = - cU• STs2 • N

= c 3 Ps2 sinh ~ cosh ~ åQ,
so that

	 Is-2
e,52

	

c 3 sinh ~ cosh $

Substitution of eq . (12) into eq . (11) yields the expression for åTQ

ST~

	

InETD u,-2 åD
c sinh e cosh

1
The covariant divergence of - ST12 describes the generation of momentu m

c

per unit time and unit volume. The U-component of this vector expresse s
the generation of energy in mass units . We define the coefficients of absorptio n
and emission x0 and jj, such that the energy flux absorbed from the beam

and emitted into it by the medium is respectively xs2eoIQSQ and 471400 SD ,

where eo is the proper mass density of the external medium . The gain of
energy must balance the loss at every point, so that in energy units we hav e
the equation

c(p STs?) • U- xs2°oIs)SD + 4~jS2eoSQ .

	

(14)

Inserting STn from eq . (13) into the left side of eq . (14), we obtain

(12)

(13)

IOUs? S,Q~

	

Is2 S12

sinh

	

sinh ~ cosh ~
Us-2 (p U) UD .c(p ST~)• U=p (15)

The first term on the right side can be developed as follows :

	

(IQUs2å,Qcosh

	

cosh $

	

0 sinh C / - U•0 sinh
	 IQåS2 +

sinh e
(0 U)IQSQ + V (Is-2 NS.Q),
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where the first term is equal to zero, since the situation is static . The second

term vanishes too, which we can see by computing V . U from eq. (3) . We

have then

/ID U~åS2~

	

(I
QNåS2

)sink C /

Substituting eqs . (8) and (16) into eq. (15) and then further into eq . (14) ,

we obtain the equation of the energy transfer

p •(IDNåS2) = (xQ o +
9
d e cos IDåS2

I

+
4 ispoåQ

.

3. Radial Energy Flow

We restrict our examination to the very nearly isotropic case . Instead
of working with the function IQ, we want to express eq . (17) by the moment s

of this function . The energy density, the energy flux in the direction N,

and the gas pressure are given by the formula s

1 cosh ~
ED = U. åTD • U= -

c sin h
	 I

'Q
dS2

~

HQ = cU•åT~•N,. = IQ cosBåS2

1 sinh e ,
P~ = N,, • åT~ • N,. _-

	

IQ cos-' Ø åS2 .
c cosh ~

Now we introduce the quantities Ee, He, Pe and I , belonging to particles
of the same e, by the expressions

Eå = sinh2 ~ f Es? dø

He = sinh2 ~ f HQ dw

PS = sinh2 ~ f PD do)

le = sinh 2 e ID .

(16)
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Substituting eq . (18) into eq. (19), we have the following integrals :

1 cosh	
(I dwEe -

c sinh

He = f le cos Odw

1 sinh
Pe =	 I~cos2 0dw.

c cosh

In order to construct the appropriate relation between the integrals (20 )
we need the auxiliary equatio n

V•(IQNcosØå.Q) = 4•(If Ncos0å åw)
(21)

= cos0V (ID NåQ)+IfS åwN Vcos 0

which, after using eqs. (10) and (17), can be written in the for m

A
d,up (IeNcos 0åe8w) _- (x~°o + 2 dr

e

	

cos 0 le cos 0 ae 6w

(22)
1

	

1 0 cosh2 e~
,

	

e

	

sin2 08E8w.

} (23)

+ -jeoocos Ø Sedw + - - --

	

2 le
r

	

2 dr sinh2

We have applied the following definitions in eq . (22)

x=xD

je = sinh2 ejn .

Integrating eq . (22) over all three-dimensional solid angles and taking int o
account the radial symmetry and the expressions (20), we get the relatio n

1 sinh

PS (r

1 da cosh e

	

-2
E8

(24)
Nr

(cosh
sinh i

	

cosh 2dr sinhi
e

eo

	

(1 cosh 1 du cosh f\ -2
P 6e .-

	

XfHf å
c

	

r sinh
e

2dr sinh3

The divergence in eq . (24) can be evaluated using the component repre-
sentation (3) of the vector N . and the expression
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de

	

1 tip cosh

dr

	

2 dr sinh e

which is obtained from eq . (9) . After a simple calculation we get

	

IN cosh
P Sfl

= 2
e

2 cosh	
P Sr sinh

	

r

	

sinh

+ 1 d,u
e 2 cosh3 e

P S~ +
e--2 cosh d(P~S~)

2 dr

	

sinh3 e

	

sinh

	

dr

	

.

Inserting eq. (26) in eq. (24) ,we find

d(P (5e)

	

1 sinh 2 e 1 du

	

O o sinh
-	

dr

	

- ~r• cosh 2 e 2 dr~

	

c
e

cosh ~
x~HgS~

/3 l d,u

~r + 2 dr /I
P4 Se .

Now we introduce the integral s

V .

o

which represent the total energy density due Lo the particles we consider ,
the total radial energy flow defined as the flux of energy relative to the par-
ticle stream, and the total gas pressure due to these particles . We further
define the mean absorption coefficient x of material particles analogousl y
to the Rosseland mean opacity(5) by

.
sinh

xH
cosh

o

which we analyze in section 5.

(29)

(25)

(26)

(28)
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The integration over the quantity in eq . (27) gives the equation

dP

	

1 sinh 2

	

b~
_ 1 du E

e0
!

e 2 xH
dr

	

r ~ cosh2 ~

	

2 dr

	

e
o

(3 1 d,ul

+ 2 dr /I
P.

r

We have worked with moments of the intensity function rather than th e
intensity itself in deriving eq . (30) . Because of that we need an independen t
auxiliary equation . It is then customary to use the diffusion approximation ,
where the statistical expressions of the energy density and the gas pressur e
in thermal equilibrium are applied . We shall eliminate the quantities E
and P from eq. (30) in the case of relativistic Boltzmann-statistics and
quantum statistics in chapters 3A and 3B respectively . The quantitie s
belonging to quantum statistics have an index d .

3 A. Radial Energy Flow due to Relativistic Boltzmann-particle s

The basic assumption of the relativistic kinetic theory is the equal a
priori probabilities of equal cells SvOQ, where 8v is the volume element
which the tangential vectors of geodesics intersect orthogonally in the four -
dimensional elementary solid angle SD . The cell åUå . is invariant unde r
general space-time coordinate transformations (s) . The statistical, special
relativistic expressions of the energy density and the pressure first derive d
by F . JöTTNER 171 are then valid also in the general theory of relativity . *

In a relativistic Boltzmann-gas consisting of material particles of prope r
mass m, the following relations are valid (7) :

E = 3P+ Y Ki(z)

P = K2( x)T2

where we denote

* This is physically obvious, because the general relativistic effects are negligible in smal l
distances of the mean free paths of particles .

(30)



mc2
T =

kT

mc13 ~ + mc:

	

(32)

y= 4nmc2
(

h I
e k T

Further, the functions Kn (T) are modified Bessel functions of the secon d
kind ; k is the Boltzmann constant, h the Planck constant, T is temperatur e

measured in the rest frame of the medium and y is the chemical potential .
The expressions (31) are derived for thermal equilibrium, but they are also
valid to a high degree of accuracy when the gas is close to equilibrium . We
recall the definition of Kn(T) (8

u

Kn(T)

	

Tv'

f CT "' sinh2n $ds~

	

(33)
1•3•••(2n-1)

o

and two recurrence relations for the m

nKn(T) - T
dK~~T)

= TKn + 1(T)

2n
K.+ 1(T) -

	

1('r) =

	

Kn( T ) •T

For the quantity E $ we get from eqs . (28), (31) and (33) the expression

E = ye z cosh sinh 2 e cosh 2

	

(35)

which, substituted in the first term of the right side of eq . (30), gives

f	 2

r cosh : E de =

P

f

	

cosh sinh4 e de = - P.

	

(36)

o

	

o

By use of eqs . (31), (33), (34) and (36) we obtain from eq. (30)

`c° 2- e xH = +2-P +

	

K1 (T)
c

	

dr

	

dr

	

2 dr T

K2(T) dy y dK2 (r)

	

dr 1 d,u y 4
-

	

+ - T

	

- 2K2 (T)

	

-I- -

	

K2 (T) + K1 (T)
T 2 dr T3

	

dr

	

dr 2 dr T T

~lK2(r) dy yk

	

d(Te 2 )
r2 dr +

mc2 K3(T)e 2

	

	

dr

dl

	

dP

	

dy

	

1 dy y

(37)
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d
The expression of

	

can be written in the form
dr

	

l
dY

	

y(v + mc2 ) -f` d( Te2 J Y -2 d[(v +rc2)c2_
dr

	

kT2
	 e

	

dr + kT e
	

dr

which, substituted into eq . (37), yields the result

	

c

	

1

	 Yk	 --2 r

	

%

	

1d ( Te2 1H	 	 e

	

I K3(T) - I
+

	

K2 (T)	
mcQ O x

	

L

	

1

	

mc2

	

J dr
(39)

+	 K2 (T)
d
--	

(v mc 2) e 2
mc2

	

dr

	

1
The radial energy flow has been separated into two parts to remove dif-
ferences of relativistic thermal and chemical potentials in the gas . Because
the chemical potential is also a function of the temperature and the density
of the gas, the first term in eq. (39) is not the total expression of the hea t
flow, but the other term will give a contribution to it .

3B. Radial Energy Flow due to Bosons and Fermions

In the relativistic quantum statistics, the following relations are valid (9) :

End = cosh u d

1 sinh2 e

	

(40)
Ped

	

3 cosh u d ,

where the distribution function ud i s

ydcosh sinh2 e
ud

	

[-	 	
ll

expIT+T(coshs-1)J+

	

4 1( )
mc 3

Yd = 4 rmc 2 -

and 17 is equal to +1 for Fermi-Dirac-gas and -1 for Bose-Einstein-gas .

(38)
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Using eq. (25), we obtain from eq . (40)

dP d

	

1 dy

	

1

	

11

	

1 d,u

	

ôu d
dr

	

6 dr cosh e -
cosh

'
J ud

- 6 d1 simh	

1 sinh2 (åud dT

jjJ

åud dv
+ 3 coshe 07' dr + ôy~ dr)

.

Insertion from eqs. (40) and (42) into eq. (30) gives the equation

A
1 dy

-
~ cz

X d Hd

3 dr f cosh e ud d$ 6 dr ,r sinh a: d~
o

	

o

1 r sinh2 aud dT ôud dzy

	

1 d,u (sinhi 2
+-

	

+

	

d+- J

	

ud dl .3
J

cosh OT dr åy dr)

	

6 dr eosh
o

	

o

From eq. (41) we have for
Ou d

and
OT

the expressions :

T sinh exp [ - k~ + r(cosh - 1 )

exp
L kT

+ r(cosh

	

1) +

ôud

	

~T'

T1
cosh e - 1 -

OT

	

mc

Substituting the expressio n

and sinh 2 e T aud
sinh	 +	

Oe cosh

	

å T

exp I -

kT
+ '(cosh. 1 ) ~ +

aud

(r+k7,~expl-k
T

+ r(cosh --1) I

exp [- kT + r(cosh~ - 1)~

expl-k
T

+ r(cosh1)~ +

u d .

/ sinh

	

cosh \
ud +

	

+ 2	 u d
`cosh

	

sinh

sinh2
+ 2 cosh u d

cosh

sinh 2

cosh ud

(42)

(43)

(44)



(46

obtained from eq . (44) into eq. (43), we get after grouping the terms

Oo A 1 fdT T d,r.c)
~

sinh2 aud
e xdHd

	

+3 \ drc

	

2 dr ~ cosh a T
d~

exp ~ + i(cosh - 1 )
1 dy~ 1

	

d~c

	

kT

	

sinh2 e

+ 3kT dr
+ 2 (y + mc 2 )

	

f	
dr ,1

	

y~

	

11

	

~ udd~
o exp

k T
-

	

+ z(cosh - 1) ` + '7 cos
h

from which

+
T d [(y~+mc2)e2] r

--	 I

mc2

	

dr

	

. 1
o exp

4A . Electronic Heat Conductivity

As an important special case of energy transfer by material particles we
examine in this chapter the electronic heat conductivity . We limit ourselve s
to the case with energy flow due to ionization electrons which are inter -
acting with a medium consisting of only one kind of nuclei of proper mass
M and atomic number Z.

In order to obtain an expression of thermal conductivity from eq . (39)
or eq . (46) we have to find a relation between the expressions d [(y + rnc2 )e1`42 ]/dr

and d(Te /212)/dr . We regard the medium as a perfect fluid, whose energy-
momentum tensor is given by

( To)aß = (C + P
2
) ua uß - gas

P o
c

where is the total mass-energy density, po is the pressure in the medium,
and g,,ß are the components of the metric tensor .

cosh - 1 -
mc

2 exp -
kT

+ z(cosh e - 1 )
/

	

II sinh4

(exp -kT
+ z(cosh~-1)

J
+ r7

2

exp I -

	

+ z(cosh - 1 )
L k T

kT
+z(cosh - 1) +

(47)
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From the covariant conservation law

p• T° = 0

	

(48)

we have in the metric (2) the equatio n

1 dPo
1 I

	

Po \ dy
+-e+--

	

= 0 .
c2 dr

	

2

	

c2 / dr

The medium consisting of nuclei is a Boltzman-gas also when the electron
gas is weakly degenerate . The equations of state are

(49)

e+ -
Po = Y o

- K3(To )
C2

	

T O

Yo
C2

	

C2

Po = . 2- K2(zo) = - ,
To

	

zo

Me2

To =	
kT

where we denote

Yo = 4~M
/MC\ 3

v° + me'hf C kT

\ h

The chemical potential of nuclei is given (10) by

v .

	

h2

	

312
E7 0ekT _	

(2flcT) 1>'7

Comparing this with
v

	

( h2

)

3/2Z
e0ekT

2v-mk T M '

which is the expression of the chemical potential in a non-degenerate electro n
gas, we find the relation

r M 31 2
Vo = V - kTlog l - Z

Substituting the expressions (50) into eq . (49) and using the first eq. (34) ,
we obtain

(52)

(53 )

(54)
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K2(zo) dYo 1 YoK3(zo) dT + 1 YoK3(zo) dy
= O .zod dr

	

To T dr 2

	

zo

	

dr

	

(55)

Using eqs . (51) and (54), we get from eq . (55) after simple calculation s

~
d [Op +mc2)e 2 ]

dr

T l a + ôy~ 4, 0
y + mc 2 Mc2 K3(ro )

	

åT åoodT-

T

	

T K2 (zo) /ay ay dC' oT
\ôT + a~o dT) y - MO

The quantity ~~ can further be derived as a function of T and e o . We
obtain from eqs . (50) and (51) the expressio n

d Po
T

å~
- y

T Î lY

- Mc2
å T

	

K2(zo )
c

2T-kT-I-

åv

M
K3(z°)

dT

)c 2 	

(57)
~yoK2(zo) - WO

Insertion of v from eq. (53) yield s

/K3(z0)

	

l1
5

deo
zo

~ K2(zo) - 2

dT zo

	

1
(58)

T

	

-
YOK2( ZO)

Substituting eqs . (53) and (56) into eq . (39), the equation of the radia l
heat flow reduces to the form

d( Ted

	

(59)

d(Te2
dr

H= -d
dr

Nr . 1 3

where
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4TLkm3C4 ~-I- mc° ~ +fc

	

A =	 e kT

	

e 2
123 e0x

	

MK3
/Mc 2

	

T deo mc 2 3

kT ~eodT kT 2

	

mK
/Mc 2

	

T deo Mc 2 3

	

2 \kT

	

eodT kT 2

is the expression of thermal conductivity of a non-degenerate electron gas .'"
The chemical potential of a degenerate electron gas can be derived (10)

from the integral equatio n

4 r

	

x2dx

	

h2 12 Ze o
T J

	

(61)
2 .7cmkT/ M

~ o exp -

	

+ x 2 + 1
k T

For small values of 0040' we have the expansion

K3
(mc2\ ~mc2

kT~

	

\k T

~~v~t \
F ekT

r ~d\

	

~ d

F I\ ekT /f = ekT

22Vd

	

32Vd

	

42Vd

ekT ekT ekT

23/2 ' 33/2

	

43/2 (62)

(63)

From eqs . (61) and (62) we obtain

\27rmkT~ M 23f2 ~2~mkT M 2

Repeating the calculations from eq . (54) to eq . (60), using eq . (46) instead
of eq. (39) and eq . (63) instead of eq. (53), we obtain the expression o f
heat now due to a weakly degenerate electron ga s

2Nd

	

~ h2 \ 3/2
Ze0

	

1 1

	

h2

	

3 L2 e 01e kT =

d 1 Te 2

dr
(64)

y d mc2
-

	

(cosh e - 1)
kT kT

2

kT + kT
(cosh$ - 1) + 1o exp

* The relativistic law of heat-diffusion (59), which agrees with the expression for the hea t
flow derived by C . ECKART(11 , includes the gradient of the quantity Ted /2 instead of the temper-
ature gradient of the classical case. The dependence on the metrics is due to inertia of the heat .
In the classical limit eq . (59) reduces to Fourier's law of heat conduction .

Mat.Fys .Medd .Dan.Vid .Selsk .36, no. 13 .
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where we denote

lMc 2 (T dCo 3 Mc2 1
mK2 -

	

- -
\ kT °odT 2 kT /

	 sinh 4 , (65 '

(cosh

	

1 )
k T le T

and
dT

is the saine function (58) of T and eo as in the case of a non-dege -

nerate electron gas .

From eqs . (59) and (64) we get as a special case of no net energy flow

due to a non- or weakly degenerate electron gas the general law (12 )

Te2 = T Vg44 = constant

	

(66)

for a relativistic fluid in thermal equilibrium .

The expressions of thermal conductivity of a semi- or strongly degenerate
electron gas can be derived only with numerical methods .

4B . Radiative Energy Transfer and Neutrino Flu x

The radiative energy transfer is obtained in the limiting case of the energ y

transfer by material particles . The calculations up to eq . (30) are valid for

a photon gas, if the expressions m cosh e and m sinh e are changed to he/c 2,

where u denotes the frequency in the rest-system defined by the vector U .
Eq. (30) then takes the form

dPf

	

l1 1 dlu\

	

Po ~

	

/ 3 1 d,u)
- Ef - e 2 xfHf - - +-- Pf,

	

(67)
dr

	

~r 2 dr~

	

c

	

\r 2 dr

where the mean absorption coefficient of photons or the Rosseland mean

opacity xf is defined by
~

= f x, H„ dv .

	

(68)

0

cosh $

1
T dO O 3\

C~o dT 2/
MK 3

1

	

h2
\ 312 40

2 312 ~27cmkT ~ M

kT

1 / h2 ~312
Z

e
0

2112`
27rmkT 1 M mc2

exp - - +
mc 2

	

'
+1
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Using the isotropic approximatio n

Ef 3Pf = aT 4, (69)

where a is the radiation pressure constant, we obtain from eq . (67) the

equation of the radiative energy transfe r

- acT3 '+ Fz d
T e 2Hf =

	

3eoxf
e 2

	

dr

	

(70)

agreeing with the corresponding results in references 3 and 4 .

We notice that the condition of no net radiation yields the same la w

(66) of thermal equilibrium as when the equilibrium is established by th e

thermal conductivity of electrons .
The energy transfer by neutrinos is obtained similarly as the radiativ e

energy transfer, if one assumes almost isotropic neutrino distribution . The
only modification which must be done is the change of the radiation con-

stant to the constant 7/8 a, since the energy density of an isotropic neutrin o
gas is not aT4, but 7/8aT4(13) Defining the mean absorption coefficient o f

neutrinos by

xnH1z = J xnv Hnv dv, (71 )

0

we get the equation of the neutrino flux

(72)
t±)

7acT 3

	

~
z

1` d(Te 2~
6C0xn

	

dr

Because the interactions of neutrinos and antineutrinos with matter ar e

generally different, the Rosseland mean must be taken as the average o f

that for neutrinos xn and for antineutrinos xhz or (14
)

2

	

1

	

1
+ +

	

(73)

Eq. (67), which has been derived using an isotropic approximation, ca n

not be applied to the case of a purely radial outward-moving neutrino flow.
A purely radial neutrino emission has been used by C . W . MisNEn (15) to
describe a flux of neutrinos produced in the deep interior of a supernova .

2 *
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5 . Mean Absorption Coefficien t

Eqs . (59), (64), (70) and (72) for the radial energy flow contain as a
parameter the mean absorption coefficient derived in eq . (29) for materia l
particles, in eq. (68) for photons and in eq . (71) for neutinos . In this section
we give an approximative method for the calculation of this coefficient . The
procedure is the same") as in computing the Rosseland mean opacity
from monocromatic absorption coefficients .

First we want to eliminate 6$ from eq. (27). Since we are concerne d
with the radially symmetric and static case, we have from eqs . (3) and (4)

A
d(cosh $)

N•pcosh $ = e 2 cos8 (74)
dr

Comparing eqs . (9) and (74), we find the relatio n

1 d(cosh $)

	

1 d,u
(75)

cosh $ dr

	

2 dr

For another stream of particles having the same space-like direction N but
a little different pseudo-angle $, eq . (75) can be applied in the form

1

	

d[cosh $ + d(cosh 0]

	

l 0
(76)

cosh $ + 8 (cosh $)

	

dr

	

2 dr

Subtracting eq . (75) from eq. (76) and using eq . (25), we get

d(S$)

	

1 dy

	

8$
(77)

dr

	

2 dr sinh 2 $

Elimination of b$ from eq . (27) by means of eq. (77) yields

dP~ 1 sinh2 $

	

1 du e0x s sinh $

dr
Ee

	

Ee
r cosh2 $

	

2 dr c cosh $
H~

(78)
1 d,ucosh2 $ 3

Pe
2 dr sinh2 $ r
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sinh e
Dividing this equation by

cos h
	 xe and integrating over the quantity $ ,

we obtain

00 z

	

1

f~
sinh

	

1 dy cosh

c
e H

	

r ,1 cosh ~ x 5 d~ + 2 dr ~ sinh xe d~

( 79)f cosh ~ 1 dP~

	

1 dy r cosh 3 e P~

	

3 r cosh P~
+	 -	 d

'
+	 J	 -de+ -

o

J	 	 d~ .
o sinh x5 dr

	

2 dr
o

sinh 3 ~ x~e

	

r sinh xe

We shall eliminate the quantities Ee and Pe from eq. (79) separately for a
non- and weakly degenerate electron gas and for a photon and neutrino ga s
analogously to the calculations in chapter 3 B .

5A. Mean Absorption Coefficient
of Non- and Weakly Degenerate Electron Ga s

From eqs . (28), (31), and (33) we obtain for a non-degenerate electron
gas the relations

Ee = cosh . i.z

P - 1 sinh2
u

3 cosh e '

where we denote

u = yez ° OSh e cosh sinh 2 $ .

Using eq. (80) we can write eq . (79) in the form

~~

	

\- Po
e2

H 1
f	 1	

+ cosh ~
u

--de
c

	

3,j \ cosh

	

dr xe
o

1 /au de au dT au dy sinh

	

2 du
c.,

cosh2e u
+-

	

+- + -

	

de+-	 	 -de:3

is

\ åe dr åT dr ay dr x~.

	

3 dr ~ sinh xeo

	

o

Substitution of the expressio n

åu sinh2 e au

	

sinh 2 s /
sinh	 +

	

T

	

=	 1 - z -

	

u + 2 cosh

	

(83)ae cosh

	

a T cosh

	

kT

1

(80 )

(81)

(82)
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into eq. (82) yields

1,

	

r
~

P~e2 3H= J cosh
~dr

de
u x de - 3

o

	

e

sinh 2 ~ de u
de

~ cosh ~ dr xe
o

I sinh ~ au dy

	

1 isinh2 ~ de dT au 1+ - r	 	 d~ - -

	

T- - sinh~ - - 	 de

	

(84)
3 J x.L ay dr

	

3 J `cosh s~ dr

	

dr åT xs
o

	

0

2 d,u r cosh 2 e u

	

+ 3 dr

	

sinh ~ xse
de .

o

Taking into account eq . (25), we obtain from eq. (84)

Po ,l--e 2 !LI =
c

~

1. ~ 21	 d(Te2

f

sinh~ au
de

	

1 d [( + mc 2 )e ] r~ sinh s~

dr

	

xs~ aT

	

kT

	

dr

	

J xe

au
Making insertion of u, aT and the relation (56) into eq . (84), and denoting

/Mc2

	

T doo 3 mc 2\

`kT l (2o dT 2 kT )

~Mc IT do] 3 Mc2

	

mK2

	

-

	

-
2

\kT \Co dT 2 kT
sinh4

e
,

	

y1

	

m c 2
exp - - + -- (cosh ~ - 1 )

kT k T

we finally get

H

	

-

	

47rm5 c8 e-- 2. 2 I'' r~ Ae cosh s~
d~ d(Te

2

3kh 3 Qo T 2

	

J xe sinh e

	

dr
o

Comparing eqs . (59) and (60) with eq . (87) we find the following expression
for the mean absorption coefficient of a non-degenerate electron gas :

MK3

cosh C -

Ay =

fl)

(86)

(87)
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1 /mc2\2 f cosh $ d
e

1 3 \ kT/ x sinh
0

(88)

MK
Mc2 /T de o

X 3 mc2 \

/mc 2 lmc k7' \oo dT 2 kT ~
K3 - K2

\ kT \kT Mc 2 d2o 3 117c 2
I21K 2

( T

(oo kT)kT dT 2

The calculations for the mean absorption coefficient of a weakly de -
generate electron gas are similar to the ones made above. We shall give only
the final results . The equation of thermal conductivity of a weakly degenerat e
electron gas is

Ha =

Ls s

	

~+

J

A~ a exp f _ ~ + rnc2
cosh ~ 1)

J4nm c -	 2	 ('

	

kT kT
(cosh

es

hnsi
	 d3kh8ooT2e

	

[exp
rrcz
l-

	

+	 (cosh e -1)
J

+ 1

JLL
kT kT

d Te 2
dr

For the absorption coefficients x5a and x the following relation i s
valid (17)

(89)

xe a =rlxs~ - (90)

where is the probability that the final state after a scattering of an electro n
is free. Inserting eq . (90) into eq . (89), it reduces to the form

Ha _-
4am5 c8 ~

	

~
A~a cosh	

d`
d(Te2

	

(91
)l3khi3oT2e

	

o
~ x5 sinh

	

di
1

The expression for the inverse value of the mean absorption coefficient fo r
a weakly degenerate electron gas i s
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f

Au cosh
f

A~ d cosh

,I x sinh e
0

f Au de
0

5B. Mean Absorption Coefficient of Photons and Neutrino s

The relativistic Rosseland mean opacity has been studied by K . A . Hä-
mEEN-ANTTILA (is) . For the sake of completeness, the calculation is no w
outlined starting from the theory of material particles . In the special cas e

of mc 2 cosh-4-hv and incl sinh e-> hv, we obtain from eqs . (25) and (77)
the corresponding relations

dv l d,u
v (93)

dr

d(Sv)

2 dr

1 d,u

2 dr
6v . (94)

dr

With the quantities now measured per unit frequence interval, eq . (27)

can be written in the for m

Ad(Pv 6v)

	

(1

	

1 d ,u
Ev cSv - ~̀-o e2 xv Hv ~v - 3+ 1

d,u
I Pv dv .

~r

	

(r
(95)

dr

	

2 dr

	

c

	

2 dr /

Elimination of Sv by means of eq . (94) gives

\

	

A
v

	

(1

	

1

	

-°o
e2 xv HE

	

- r P .d (96 )v

	

v

	

,
r

	

2 d r

	

cl

Dividing this equation by xv and integrating over v, we get

00 CO CO

- Qo H
-

ez (1 l d,u 3Ev
dv

Pv
dv + f

1 dPv
dv .

c

	

f Ir 2 dr J
+

xv

	

r J xv

	

J xv dr
(97 )

o o o

1
(92 )
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The classical laws of black body radiatio n

4~c
Ey = By

c

Pv = 3c B
,

2hv3

	

1
B y =	

cs

	

~hv \
exp

	

- 1
Ic T/

can be calculated from eqs . (40) and (41) in the special case of photons ,
after putting ip d equal to zero and multiplying the expressions with 2 becaus e
of the polarization of photons . Insertion of eq . (98) into eq . (97) yield s

Po z

	

27r dy ~ By

	

4 .7r

	

1 åBy dv dB., dT
e H

	

f

	

dv +	 f	 	 +	 - dv .
c

	

c dr ,J xy

	

c

	

åv dr åT dr~

	

(99)

Using eq . (93) and the expression

åBy

	

aBy
3B = v

av
+ T	 ,

we get, after grouping the terms,

I L

eo z

	

r -~ d Teti,
f

1 dB,,
e

Hf

	

3c
e

	

dr

	

x,, åT dv
.

c
o

Comparing eqs . (70) and (101), we find the following expression for the
mean absorption coefficient of photons :

1
	 	 f 1 aBy

xf

	

acT 3 J x,, aT dv
.

0

Differentiation of the expression for the total energy density of black bod y
radiation

} (98)

o

	

o

(100)

(101 )

(102)
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JI Bvdv = aT4
c

o

with respect to T and the insertion into eq. (102) gives another representatio n

1
for - .

xf
oor 1 aB„

J
d

x v aT
v

o
orr

J aBvd
v

o

Eqs. (102) and (104) for the Rosseland mean opacity are just the same a s
in classical astrophysics (5) .

The mean absorption coefficient of neutrinos is obtained similarly as th e

Rosseland mean opacity by using Fermi-Dirac statistics instead of Bose -
Einstein statistics . We get the expression

oo

f 1 aBn v

J xvn OT
dv

o
.

J aaT
dv

o
where

2hv 3

	

1
Bnv =

c 2

	

hv
exp k + 1

is the Fermi-Dirac distribution function for massless particles .
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