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Synopsi s

We investigate the general properties of the most general local, angular momentum depend -
ent nucleon-nucleon potential . We generalise the arguments of a previous paper on angular
momentum dependent potentials, to take into account the complications which arise becaus e
of the spin of the nucleons. As an example we consider a scalar boson exchange potential, an d
show that the conventional approximation methods for obtaining local potentials from fiel d
theory are completely misleading in this case .
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1 . Introduction

In a previous papery (referred to as I hereafter) we have discussed th e
concept of a local, angular momentum dependent potential, and its relevanc e
to the equivalence problem, that is, the problem of obtaining a local potentia l
which is equivalent to a given non-local potential as far as phase shifts ar e
concerned. We established in I that it is in principle possible to construct a
local angular momentum dependent potential which is equivalent to a give n
non-local one . The question whether a potential is non-local or local in

coordinate space depends on the off shell behaviour of the potential in mo-
mentum space . In I it was explicitly shown that in perturbation theory i t
is always possible to choose the off shell continuation of the potential so that
the resulting coordinate space potential becomes local and angular momen-

tum dependent, since this merely corresponds to a rearrangement of th e
(infinite number of) equations connecting the potentials Ven to the T-ma-
trices Ten of various orders . In a practical calculation, when the potentia l
is constructed only up to some finite (and small) order, the off shell con-

tinuation chosen for the potential will affect the resulting phase shifts . On
the basis of numerical calculations performed in I for a single particle ex -
change potential, we may assert that the phase shift obtained with a poten -
tial which is chosen to be local and angular momentum dependent does not
differ very much from a phase shift obtained with a potential which differ s
slightly off the energy shell from the first potential . From the practical poin t
of view, we may therefore consider the method of constructing a local ,
angular momentum dependent potential as a method by which a give n
non-local potential can be approximated by a local one . An approximatio n
of this kind can in general be expected to be superior to the "static" an d
"adiabatic" approximations which have hitherto been used .

The purpose of the present paper is to generalise the arguments give n
in I for interactions between spinless scalar particles to the case of interac-

tions between nucleons in which various complications occur due to th e
spin of the nucleons. However, in this paper we restrict the detailed discus -

s#



4

	

Nr . 14

sion to only those points which cannot immediately be inferred from th e

discussion given in I .
Section 2 contains a discussion of the general form of a potential . In

section 3 we evaluate the "spin-angle "-matrix elements of the potential in
the momentum representation, which are needed in order to obtain th e

partial wave integral equations which connect the angular momentu m
dependent coordinate space potentials to the potential in momentum rep-

resentation .

In section 4 we solve these integral equations, and examine briefly
some of the properties of the resulting coordinate space potentials .

Section 5 contains a discussion of the scalar boson exchange potentia l

which we use as an illustration, and in section 6 we give some concluding
remarks .

2 . The general form of the potential

As is shown in an article by J . GoTo and S . MACHIDA 2 ), the most genera l

form of a potential between two spin one half nucleons, which fulfils natura l
invariance requirements, i . e . invariance with respect to coordinate spac e
translation, Galilei transformation, the exchange of the two nucleons, rota-

tion of space coordinates, space reflections, time reversal and Hermiticit y
of the potential, is, in momentum space ,

V(Œ 1, 62, q ,p) = Vp +Vl i(g xp) S+V261 ga-2• q+V3 Œ 1 .62

+ V4 Œ1 - (g xp)62 .(g x p)+ V5 6 1 •p62 • p .

The quantities q and p are given, in terms of the centre of mass (c .m . )

momenta (Fig . 1), by
q = k-k',

	

p = 2-(k-f-k') .

	

(2 .2 )

The six functions Vi in (2 .1) are real functions of the three independen t

scalars that can be formed from q and p,

V1 = Vz( g2 ,p2,( q x p)2) .

	

(2 .3 )

Finally, 61 and o-2 in (2 .1) denote the spin operators for the two nucleons ,

and S = 1/2(61 + 62) .

When charge independence is assumed, then each function V$ can be

expressed as a sum of a 1-term and Tl • T 2-term in iso-space, where the T are

the iso-spin operators . In what follows we shall omit the iso-spin factors ,

which are unessential in the discussion .

} (2.1)
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Fig . 1 .

When (2 .1) is transformed to coordinate space, one obtains in genera l
a completely non-local potential .

However, in certain circumstances the resulting coordinate space poten -
tial becomes neither strictly local nor non-local, but becomes a function o f
r and L 2, where L is the angular momentum operator . The problem of
determining the form of such a potential in the two-nucleon case has bee n
considered by S . OKUBO and R . E . MARSHAK 3) . Their result, which is essen-

tially based on invariance arguments, i s

G(61, 62 , r,L2) = Go + G1 L' S + ~[G2, S 12] + -I- G361 . 6 2 + G4 L 12 ,

	

(2 .4 )

where

S12 = 3r 2 61 ro-2 • r 6 1 ' 0'2 ,

	

(2 .5 )

L12 = 30-1 Lo.2 •L-61 'o- 2 L 2 .

	

(2 .6 )

The five functions Gi in (2 .4) are functions of r and L 2 only. Actually (2 .4)
differs slightly from the expression given by OKUBO and MARSHAK, as we
have symmetrised the tensor force term, and, for reasons of convenience ,

changed the definition of the quadratic spin orbit operator L 12 .
As pointed out by OKUBO and MARSHAK, a potential of the form (2 .4 )

is the most general local potential which can be obtained as a solution t o
the inverse problem of scattering .
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Let us now suppose that the function V in (2 .1) is properly restricted
so that it has a coordinate space representation of the form (2 .4). If this i s
the case, then we have the relation between V and G

V(61,62, 4,p) = <k'G( 6v 62, r , L2 ) k>

	

(2.7)

where
<k'

1 G(61,
Q.2, r, L2) I k>

	

jd3re_ 'Zk •

rG(61 6 2 r L2)C2k r .

	

(2.8 )

If the relation (2 .7) holds between V and G, then it holds separately for th e
spin-independent, spin-linear and spin-bilinear parts of V and G respectively .
We thus obtain from (2 .7),

Vo = <k' I Go I k>

Vii(g x p) S = <k ' I G1 L S I k>

5

Viai = <k' I 1~ [G2`512] + + G36 1 ' 62 + G4L12} I k> ,
i = 2

where we have denoted by Qi (i = 2, . . . , 5) the four spin-bilinear expres-
sions in (2 .1) .

In the first place it is clear that the relations (2 .9)-(2 .11) are well defined
only if the functions Gi(r,L2 ) satisfy certain conditions. In I we have an-
alysed these conditions in detail for the case of a spin independent potential ,
which corresponds to eq . (2 .9) . We may summarize these conditions as
follows . We require that each function Gi(r,L(L + 1)) for fixed r > 0 i s

an entire function of L(L + 1), which is bounded by a finite power of L(L + 1 )

for non-negative integral values of L. Then we require the existence of the
integrals

~

f drr2 l Gi(r,L(L + 1))j

	

(2 .12)

0

for every fixed L. In addition to (2 .12) we have also to require the existenc e
of additional absolute moments of each function Gi(r,L(L + 1)), but on thi s
point we refer to I for details .

Our next concern will be to invert the equations (2 .9)-(2 .11), that is ,
express the functions Gi as integral transforms of the functions V5. At thi s
point it is convenient to take the partial wave projection of the equation s
(2.9)-(2 .11) .
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We define the partial wave projection or "spin-angle" matrix elemen t
of a given function V(o-1 ,o2,q,p) as follows :

vLL'

	

<L' I v l L> =
J

ds2 k ds2k ,YJL' S( s-2 k ') V YJLS( s2k)

	

( 2 .13)

where

C LS(J , DI ; rn L, ms) ki , m,(D)Ys'S
mr, ,m s

in standard notation .

3. Matrix elements

The matrix elements of the six potential terms in (2 .1) have been eval-
uated by GoTo and MACHIDA (Ref. (2)), but for completeness these matri x
elements are also included in this paper in a more compact notation . The
matrix elements we have calculated coincide with those given by GoTo an d
MACHIDA, except in the cases of the linear and quadratic spin orbit potential ,
where there is a discrepancy . We also calculate the matrix elements of the
five terms in <k' I G I k> . The evaluation of the matrix elements define d
by eq . (2 .13) is in principle quite straightforward, although much tediou s
Clebsch-Gordon algebra is required in the calculation . To simplify the no-
tation we introduce the following abbreviations :

+ 1

A'r ) = Aïm)(k,k ' ) = (1 + 3ais)-1 f dxx'nPL(x) Vi
- 1

AL(k,k') = Az°)(k,k') ,
and

o

Here J,(z) is the Bessel function of the first kind, PL(x) is the Legendre poly-
nominal and x is the cosine of the angle between k and k' . Instead of e . g .
<L' , k ' I G°I k, L> we write <L' G°I L> to simplify the notation. Because of
the symmetry, invariance and Hermiticity requirements which we as-
sume the potential to satisfy there will be five independent matrix elements ;
namely one for S = 0, where we have L' = L = J, and for S = 1 three
matrix elements between states of equal L, where L takes the values J - 1, J
and J + 1 respectively, and one non-diagonal element with L' = J - 1 ,

L=J+1 .

(2 .14)

(3 .1 )

GL(k,k' ) = (2a)3(kk') z f drrGi(r,L(L -F 1))J

	

(kr)J

	

(k 'r)

	

(3 .2 )
L+ z

	

L +4-
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For the spin-independent and spin-linear potential we readily obtai n

<L' VoI L> = 2r åLL,FL(k , k' ),

	

FL(k,k' ) = AL, (3 .3)

<L' I GoI L> = åLL,Gi(k,k'), (3 .4)

< L 'IV1i(q Xp) S I L >

z[J(J + 1) - L(L + 1) - S(S + 1)] 8LL ,27rFL(k,k ' ),
(3 .5)

FL(k,k ') = kk'( i+ 1 -Ai-1 1

``

	

2L + 1

	

/) i

<L'I G1 L SIL> = BLL, -[J(J+ 1) - L(L + 1) - S(S + 1)]Gi(k,k') . (3 .6)

The evaluation of the matrix elements of the bilinear terms requires a n
appreciable amount of calculation, the result of which can be expressed . as

follows. The four matrix elements between states of equal L of any of the

functions VV S2i(i = 2, . . . , 5) can be written a s

<L I VvQi L> = 2nF (")(k,k ' ) < 61 . a-2> + 27rF (QT)
(k , k')<S12>,

	

(3 .7 )

where

<0'1 • 6 2> = 2S(S + 1) - 3,

	

(3 .8 )

0,

	

for S = 0 ,

2(J- 1)
for S

	

1, L = J - 1 ,
2J + 1

and

and

< S 12> =
2,

	

for S = 1, L = J ,

2(J + 2)

2J+1 '

(3 .9)

for S = 1, L = J + 1 .

We obtain

FrP) (k ,k' ) = -i[(k2 + k' 2 )AL - 2kk'AL(1) ],

	

(3 .10 )

2(QT)

	

1[(k2

	

2

	

-

	

1 ~ +1A1 1

F (k,k )

	

+ k )A 2kk A+ 3kk	 	
J

,

	

(3 .11 )
2L+ 1

FrP)(k,k ' ) = 4

	

(3.12)

FLcQT) (k,k') = 0,

	

(3 .13 )

FL(sP)(k,k') = ~k2k '2 [AL - AL(2) ],

	

(3 .14)
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ci) - A4 cZ >
FL(Qr)(k

k,)

	

ik2k,2[A Lc2) _ AL
+ 2 AL 2L + 1 +1 ]'

	

(3 .15 )

	

FLcsP) (k,k ') _ ~ [(k2 + k '2 )AL + 2kk 'AL(l) ],

	

(3.16)

	

FL(QT)(k k') = [(k2 + k' 2)A5L + 2kk'AL(i) _
2

(AL+i -	 AL-1)] .
2L + 1

	

(3 .17 )

The non-diagonal element can be written a s

67c(J(J+ 1))l i(z )<J + 1 I Vi Qz I J - 1> =

	

2J + 1
	 FJ (k,k ),

	

(3 .18 )

Fi (T) (k k/ )

	

(k2Ai-i + k'2A1+1 - 2kk'Al),

	

(3 .19)

	

FL(T)(k,k') = 0,

	

(3 .20)

FL~T)(k,k') = 3k 2k' 2 [2AL(1) - A4L 1 - Ai+I],

	

(3 .21 )

Fr ) (k ,k' ) = [k '2AL- + k 2A1+ 2kk'AL] .

	

(3 .22)

and

wher e

Hence, i f

then

5
V =

	

Vi`Qi ,
i=2

(3 .23)

and

where

<LI VIL> = 2 grF18P)(k,k ' )<6i • 6 2i + 2zFQT)
(k ,k' ) <Si2i,

	

(3 .24)

67r(J(J + 1))2 ~T )
<J+11VIJ-1> =

	

2J ) 1

	

Fa (k,k),

	

(3 .25)

5
F(LSP)(k,k') = 2 FLSP)(k,k') ,

i= 2
5

FQT)(k,k ' ) =

	

FLQT)(k,k') ,
i 2

and

For the

5

FLT) (k , k') =

	

FiT)(k,k') -
i = 2

matrix elements of the bilinear terms in G we obtain

< L 1 ,; [ G2, S 1 2 ]+I L% = Gi(k,k')<Si2>,

	

(3 .28)

(3.26)

(3.27 )

and
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<J + 1q[G2,S12j+IJ - 1) =

6(J(J + 1))2

2J + 1

	

[GJ - 1, J i 1(k ,k' ) + G; + J-1(k , k' ) ] ,

where

Gi-l,z+ 1(k,k ' ) +

	

+ 1,L-1(k,k' )
.r

(2n)3(kk')- 2
J

drr[G 2(r,(L - 1)L) + G2(r,(L + 1)(L + 2))]

	

(3 .30)
0

JL- L(kr)JL + i(k'r ) ,

<L ' G3ß'1 o-21 L>

	

å LL ,(2S(S + 1) - 3)G3L(k,k'),

	

(3 .31 )

<L' G4L121 Li = b LL• <L12% Gi(k,k'),

	

(3 .32)
where

0,

	

for S = 0 ,

(J-1)(2J - 3),

	

for S = 1, L = J-1 ,

<L12> -

	

(2J - 1)(2J + 3), for S = 1, L = J,

(J + 2) (2J + 5),

	

for S = 1, L = J + 1 .

We observe the relation between <S12> and <L12>

- 2 <L12> = (2L - 1) (2L + 3) (S12> .

	

(3 .34)

4. The integral equations and their solution s

We can now write down the integral equations which correspond to the

partial wave projections of the equations (2 .9), (2 .10) and (2 .11) respec-
tively. We introduce the abbreviation

ML,L,(k,k' ;r) = JL+ *(kr)JL,

	

(4 .1 )

From eqs. (3.3) and (3.4) we obtain

(kk'Fi°,(k,k') = 4n2 f drrGo(r,I, (L + 1))1VIL,L(k,k' ;r),

	

(4 .2)
0

and from eqs . (3 .5) and (3 .6)
oo

(k'k)=FL(k,k') = 47c2 f drrGl(r,L(L + 1))ML,1,(k,k' ;r) .

	

(4 .3)
0

(3 .29)

and

(3.33)



Let us then consider the bilinear terms in G

4 [G2, S12]+ + G361 . 62 + G4L12 .

From (3 .28), (3.31) and (3.32) we obtain the expression for the matri x

element of (4 .4), between states of equal L ,

Gi(k,k' )<S 12> + G2(k,k' )<6 1 oo2> + GL(k,k')<L12> .

	

(4 .5)

A comparison of (3 .24) and (4 .5) gives directly

(klc ')-4LP) (Ic,k ' ) = 4n2 f drrG3(r,L(L + 1))11'TL L(k,k' ;r),

	

(4 .6)
0

and, using eq . (3 .34) ,

(kk ')2FLQT > (k,k ') = 4 '.7-c 2f drrG2(r,L(L + 1))ML,L(k,k' ; r)

°

	

(4 .7)

- -i'(2L - 1)(2L + 3)472 f drrG 4(r,L(L + 1))ML,L(k,k' ;1. ) .

0

For the non-diagonal matrix element we obtain, from eqs . (3.25) and (3 .29) ,

(Ic1c') L FTT)(k,k' )
~

- 4z2 f drr[G 2(r,(L - 1)L) + G2(r,(L -I- 1)(L + 2))]ML-1,L+l(k,k' ;r )
0

The integral equations we have obtained, eqs . (4.2), (4.3) and eqs .
(4.6)-(4 .8) are the consequences of the assumption that the function
V(o-1,o-2,q,p) is represented by a function G(o 1 ,o- 2 ,r,L 2 ) in coordinate space .

The equation corresponding to (4 .2) has been investigated in I, wher e
it was shown that whenever the equation has a solution for Go(r,L(L + 1)) ,
this solution can be obtained by solving the equation obtained from (4 .2)
by using the constraint, or on-shell condition, k = k ' . This means that the
assumption that a function G(o-1 ,o-2 ,r,L 2) is the coordinate space representa-
tion of a V(6 1 ,o- 2 ,q,p) implies restrictions on the off-shell behaviour of V,
but no essential restrictions on the on-shell behaviour of V .

The equations we arrive at by using the constraint k = k ' are of the typ e

.

f(x,v) = f dyg(g,v)J,,,2(xy),

	

(4 .9)
0

(4 .4 )

and
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f(x , v ) = f dyg(J ,v )J,-1(xg)J, + 1(xy) .

	

(4 .10)

In the equations (4 .9) and (4 .10) f(x,v) is a given function of a real para -
meter x, and of the complex parameter v8D, where the closed domain D
is determined in the process of solving the equations . In order to invert (4 .9)
and (4.10) we need the following theorems .

Theorem I : If xf(x,v) is differentiable in (0, 0o) and if (xf(x,v)) '
d

dx
(xf(x,v)) belongs to L 2 (0, co), uniformly with respect to v within a close d

domain to the right of the line Re(v)

	

- f, the equatio n

f(x ,v )

implies almost everywhere

= f d lJ g(g , v)J72,(x9)
0

c

f
c

	

xy
d

g(x , v ) = - 2n
dx J

~ (yf(y,v))' f duuJ,(u) Yv(u) ,
o g

	

o

and g(x,v) also belongs to L 2(0, c.) .
Theorem II : If

then

f(x,v) = f dgg(g,v )J
„-

i(xJ)J,, + 1(xg) ,
0

	

d
g(x

,
v ) _ - ~ d

x

d
J gg (Jf(~J,v))

,

0

If duu[J, -1(u) Yv + 1(u ) + Jv + 1(u) Yv 1 (u)] ,

the conditions of validity being identical to those given in Theorem I . Here
Yi,(u) denotes a Bessel function of the second kind . Theorem I was proved
in I, and Theorem II is proved in exactly the same manner, so we omit
the proof in this paper .

The equations (4 .2), (4 .3) and (4 .6) are now dealt with in exactly th e
same manner as the equation corresponding to (4 .2) which was discusse d
in detail in I, so we shall only consider eqs . (4 .7) and (4 .8) in the following.
We now assume that the functions k2FQT)(k,k) and k2Fi) (k,k) for non -

o
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negative integral values of L have square integrable derivatives . We then
obtain, in accordance with theorems I and II ,

r(G 2(r,L(L + 1)) - 2((L + ~) 2 - 1)G 4(r,L(L + 1)))
k r(- 1)L d

cf`
dk

2~ dr J k	 (k2FiT)(k,k))' J
duuJL + 1 (u)J+

o

	

o
and

r(G 2(r,(L - 1)L) + G2(r,(L + 1)(L + 2)) )

L J dk (k2F (T) (kk))( 1)L d

4n dr k
o

kr

duu(JL_ L (u)J L + JL+ L(u)J_L+~,~-(~Z)) 'Iof
(Note that L in (4 .11) and (4 .12) is a non-negative integer .) In writing down
(4.11) and (4.12) we have anticipated a result which should be a conse-
quence of these equations, namely that the functions G2(r,L(L + 1)) and
G4(r,L(L + 1)) actually are entire functions of L(L + 1) . Let us consider eq .
(4.11) . The function JL + 2(u)J L _ 1(u) is, for fixed positive u, an even entire
function of L + z and consequently an entire function of L(L + 1) . We shal l
then have to prove that (-1)LFQT)(k,k) can be considered as an entir e
function of L(L + 1) . Let us consider the first term in FQT)(k,k), eq. (3 .11) .
Using the symmetry property PL(-x) (- 1)LPL(x) of the Legendre poly-
nominals, we obtain

+ 1

(- 1)LF1c92'>(k k) = 3k2
J

dx(1 x)PL(- x)V2

+1
-1 (4 .13 )

+3k2 f dx /PL
,(- x)-PL +1(-x)l j~

-1

	

\ 2L+1

	

/J

	

2

where the constraint k = k ' is to be used in the expression for V2. It i s
known that the function PL(-x) qua function of the complex parameter
L, is an even entire function of L +1-, when x has any fixed value such
that - 1 < x < 1 . The first integral in (4 .13) defines therefore an entire func-
tion of L(L + 1), provided V2 , as a function of x, is continuous in the (open )
interval (- 1,1), and provided the integral converges uniformly for L within
any closed domain. The same reasoning can obviously be carried throug h
for the second term in (4.13), and also for the other terms included in

(4 .11 )

(4 .12 )
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(-1)LFQT)(k,k) whence we conclude that (-1)LFQT)(k,k) can be contin-

ued to complex L in such a manner that it becomes an entire function o f

L(L + 1) . We may note in passing that this is in general not the continua-

tion to use if one wishes to consider the Schrödinger equation with an an -
gular momentum dependent potential for general complex L, as pointed

out in I. The integral on the right hand side of (4 .11) then also become s

an entire function of L(L + 1), provided the requisite conditions of con-
tinuity and uniformity of convergence are satisfied . Let us denote thi s

integral by 11(r,L(L + 1)) . In exactly the saine manner we can prove that

the integral on the right hand side of (4.12) can be continued to complex
L in such a manner that it becomes an entire function of L(L + 1) . We denote
this integral by I2(r, L(L + 1)) . We shall now have to prove that G2 (r, L(L + 1) )
and G4(r,L(L + 1)) separately are entire functions of L(L + 1) . Let us for

a moment consider the function G 2(r, L(L + 1)) as a function of L + . The
equation (4 .12) then defines G2(r,L(L + 1)) through a difference equatio n

of the form

g(z - 1) + g(z + 1) = f(z),

	

(4 .14)

where f(z) is an even entire function. It is known4> that difference equations

of this kind have in general solutions ; moreover, if f(z) is an integral func-

tion of finite order then there exists a particular solution to (4.14) which i s

an integral function of finite order, as proved in Ref . (4) . It is readily seen

that this particular solution is even if and only if f(z) is even. As a result

of these considerations it is clear that eq. (4.12) defines (apart from arbi-

trary additive solutions to the homogeneous equation) an even entire func-

tion of L + ; that is, G 2(r,L(L + 1)) is an entire function of L(L + 1) . The

function G4(r,L(L + 1)) defined by (4.11) is consequently regular in th e

whole finite L(L + 1)-plane, except possibly for L(L + 1) _ i where a pole

can occur. In order that G4(r,L(L + 1)) be regular also for L(L + 1) =
we must have

rG 2(r,i) = I1(r , I),

	

(4 .1.5 )

where, as before, 11(r,L(L + 1)) denotes the properly continued integral on

the right hand side of (4 .11) . However, on inserting L = - in eq . (4.12 )

we obtain

2rG2(r, 4) = I2(r , - i) .

	

(4 .16)

It is easily verified that

2I1(r, 4) = I 2 (r, - ~),

	

(4 .17)
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whence it follows that G 4(r, L(L + 1)) is an entire function of L(L + 1) . We

may finally remark that it is not a matter of necessity to obtain the expression s

for G 2(r,L(L + 1)) and G4(r,L(L + 1)) separately, since they occur in the

radial Schrödinger equations in precisely the combinations given in eq .

(4.11) and (4.12) . We may also remark that the functions G2(r,L(L + 1.) )
and G4(r,L(L + 1)) obtained from eqs . (4.11) and (4 .12) cannot be mor e

singular than o(r- 2) near r = 0, since we have only considered the class of

square integrable functions in the theorems I and II . The conditions whic h

ensure the boundedness property and existence of the absolute moment s

of the functions G2 and G4 can easily be obtained, so we omit these con -

siderations .
We may summarize the previous discussion as follows . We have estab-

lished the possibility of constructing a local, angular momentum dependen t

two-nucleon potential starting from the most general momentum spac e

representation of such a potential, and derived the necessary formulae fo r
carrying out such a programme. In order that a given momentum space

potential V should correspond exactly to a local, angular momentum de -

pendent potential in coordinate space it is necessary that this V should hav e

an off-shell behaviour which is implicitly defined by eqs . (4 .2), (4.3) and

eqs . (4.6)-(4.8) once the corresponding functions GZ (r,L(L + 1)) are ob-

tained by using the on-shell part of these equations . On the energy shell V
is only restricted by the differentiability and summability conditions whic h

ensure that the partial wave integral equations have square integrable solu-

tions . These conditions can probably be relaxed so that the resulting solu-

tions can behave like o(r- 3 ) near r = O .

5 . The scalar boson exchange potential

As an illustration we shall consider the lowest order potential clue t o
the exchange of a scalar boson with mass m and coupling constant gs . We
obtain the following expression for the potential in momentum space :

V = Vo + V1 i(g X p) ' S+ V4o1 . (q X p)o 2 (q X p),

	

(5 .1 )

	 gsww' /

	

k ' k'\
2

	

1
Vo - -

41114E ' \ 1
-	

coco ' ~ q2 + m 2 '

gs	

/

	

k•k'

	

1

V 1

	

2MVEE ' `

	

a co ' q2 + m 2

where

(5 .2)

(5 .3)
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and

	

gs

	

1
V4 (5 .4)

4MVEE ' cow ' q 2 +m 2

Here we have used the abbreviation s

E= VM2 + k2 ,

	

w= E +M,

	

~
(5 .5 )

E' = V M2 + k '2 ,

	

w ' = E' + M,

	

~

and q is, as before, the momentum transfer . It is readily seen that the po-

tentials (5 .2)-(5 .4) cannot, as such, be represented by local, angular momen-

tum dependent potentials in coordinate space. However, since the lowest

order potential in principle is fixed only on the energy shell, we may us e
the on-shell part of the potential directly to obtain the local, angular mo-

mentum dependent coordinate space potential . We shall then have to eval-

uate the functions Fr) , . . ., Fr) according to the formulae given in sectio n

3 . Let us introduce the notatio n

kFL)(k,k) = fL)(k) +rL> (k), (i = 0,1,SP,QT,T) .

	

(5 .6)

We then obtain, from eqs . (5 .2)-5 .4) ,

fi) (k) = g
sM

	

m2 2
QL(z ) ,

gl
k - Ek

1 -
4Mw

	

k
(11L )(k)

	

4ME 2 - 22 2 z~ ö LO - 3w22 S L1
J`

fl!-)(k) = -

	

'2

	

QL+1(z )	 QL- 1( z)
Ew ~1 4Mw}~

	

2L + 1 i
zka

rnk)
= - 2MEw2 ( S LO - * S L1),

gsm2k

	

m2'Ink) = - 12MEw2
1 + 4k2 (MO ,

	 gsk3

48P>(k) = 12MEw2
(zåLO + i aLl),

(5 .7)

(5 .8)

(5 .9)



Nr .14

	

1 7

(QT)(k) _

	

9'~n 2 k
fl ")(k) 1+ 4 QL(z)

	 g sk3z	 1 QL +1(z)- QL -1(z )

+ 4MEw 2

	

2L + 1

(QT)

	

gsk3 (2z + 3

	

5
rL (k) =	 	 8 +- å

2MEw2

	

6

	

Lo 18 Lt l
'

/	 	 g sk
3

1 Î0(1C)

	

-	 (QL + (z) + QL_1(z) - 2zQL( z)) ,6MEw 2

r (T)(k) _ - gslC3~
L

	

3MEw 2

Here Q L(z) is the Legendre function, and
m2

z=1+
2k 2

We may remark that the formulae (5 .8), (5 .10) and (5 .11) are valid fo r
L ? 1 only, since for L = 0 we have to replace the function Q L 1(z) -

QL_1(z) by Q1 (z) - Qo(z) in accordance with the formulae given in sec-
tion 3 .

Let us then discuss the eq . (5 .7) . The first term in (5 .7) corresponds i n
the "static" or "adiabatic" limit to the ordinary Yukawa potential . The
remainder rL )(k) in (5 .7) represents a short range interaction which operate s
only in the states with L = 0 or L = 1 . Before proceeding further we may
remark that it is perhaps unreasonable to pay too much attention to th e
short range terms rL )(k), since in the states with L = 0 and L = 1 there ar e
certainly unknown short range interactions which are probably more im -
portant than the simple single particle exchange forces of the type con -
sidered here . We shall therefore for a moment omit the short range term s
rL ) (k) from the discussion and consider only the functions fz )(k) . We then
need the asymptotic expansions) of Q L(z) for large values of k ,

I

	

Î 2k
QL(z) = log -

\

	

\

Here the function ip(z) is the logarithmic derivative of the gamma function
and y = - p (1) .
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2

(5 .10)

(5 .11 )

(5.12)

y- y(L + 0)(1 + 0(k- 2 )) .

	

(5.13)
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It is now readily seen that the function kf) (k) has a derivative which
is square integrable, but also absolutely integrable . We can then interchang e
the order of differentiation and integration in the inversion formula (Theo -
rem 1) given in section 4, and obtain, for integral values of L,

Go(T,L(L + 1 ))

	

1 f~ dk(kfL~ 0) (k )) kJL + 2(kr) YL + Z (kr) .

	

(5 .14)
2 7c Jo

(L > 1 )

The integral (5.14) cannot be evaluated in terms of elementary functions ,
but it can be transformed, by using contour integration, into a form whic h
reveals its relationship to the ordinary Yukawa potential . We have given
an example of this in 1, and shall not consider the matter further in thi s
paper . The function ktr(k) has also an absolutely summable derivative ,
so that we obtain

Gl(r,L(L + 1)) - -
~J

dk(kfï )(k))'kJL-~- z(kr)YL+ ~(kr) .

	

(5 .15)
o

(L > 1 )
Similarly,

G3(r,L(L + 1 ))

	

1j dk( Lkf csP) (k)) 'kJL

	

kr) YL (kr) .

	

(5 .1 6+

	

~-- 2(+

	

)

o
(L > 1 )

We may remark that the functions G ° , GI and G3 defined by the eqs . (5 .14)-
(5 .16) are less singular than r 1 near r = 0 .

For the remaining functions, fQT)(k) and fLT)(k), the situation is dif-
ferent . We observe that these functions tend to definite (non-zero) limit s
when k tends to infinity :

2

lim fQT>(k) = gs
k -)-co

	

4M

y(L - 1) - y(L + 1) ~

2L + i
(5 .17)

2

k
lim

--->- oo
fï)(k) - - 6A7(2y(L) - y~(L + 1) - y~(L - 1)) .

	

(5 .18)

The functions kf, T) (k) and kfLT)(k) do therefore not have square integrabl e
derivatives, and the inversion theorems are not immediately applicable in
these cases. This difficulty can readily be overcome . Suppose now that th e
principal part near r = 0 of the functions
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G 2(r,L(L -F 1)) - +(2L - 1)(2L + 3)G4(r,L(L + 1))
and

G2(r,(L - 1)L) + G2(r,(L + 1)(L + 2))
is of the form

g24(L)r R
1

	

9'22( L) r-7'-1

	

(5.19)

respectively, where 0 < < 2 and g22, g24 are L-dependent constants . Re -
calling the formula 6)

~

fdrr-2JIL(kr)Jv(kr) = C(7„rt,v)k~ 1 ,
0

(Re(u + v + 1) > Reg) > 0)
where

C(R„u,v) _

2-~r(~)r(zu+ -I v - +~)
I'O + ;v-',-,u +i)r(42 +zu+zv+ 1 )FGA + I ,u - iv +z)

we observe, from eqs . (4.7) and (4 .8), that 7. in (5 .19) must equal unity ,
and obtain the relations

4 c2g24(L )C (1 , L + i, L + --) = T F ) (00), (5 .22 )

4n2g22(L) C ( 1 , L

	

, L +

	

) = fi)(°°), (5 .23)

where ffQT)(00), fL)(Do) denote the limits (5 .17) and (5 .18), respectively .
We then obtain (for L > 1 )

G 2(r,L(L + 1)) - 2((L + 2) 2 1.)G4(r,L(L + 1)) =

g24(L ) _ 1

	

dk

	

IcJ 1 ~i Y

	

1 b r
T 2

	

2zf ( le(f (QT) ( lc ) fLQT)(~)))' L+ 3( ~ ) L+ ( ) ,
o

(5 .20)

(5 .21 )

~
(5.24)

and

G2(r,(L 1)L) + G2(r,L + 1)(L + 2)) _

g22(L)
j

r 2 +

	

f dk(k(fï )(k) - fiT)(~)))

	

(5 .25)
0

{JL - (kr) YL
+ (kr) + JL a 2 (kr) YL _ z (kr)Î -

As we mentioned before, it is not necessary to obtain the expressions for
G 2 and G4 separately, since these functions occur in the radial Schrödinger
equations in precisely the combinations given in (5 .24) and (5.25) .

2 *
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Let us now return to the short range terms ri (k) . It is readily seen that
these terms tend to non-zero limits 11)(09) when k tends to infinity. By

using the same arguments as above, we conclude that these terms in co -

ordinate space correspond to potentials which behave like O(r- 2) near
r = 0 .

We may summarize the discussion as follows . The scalar boson exchang e

potential (5.1) can be represented by a local, angular momentum dependent
potential G in coordinate space, which contains a central . ., spin-orbit,

spin-spin . ., quadratic spin orbit . . and tensor force potential . The three

first mentioned potentials behave like o(r-1 ) near r = 0, whereas the quad-

ratic spin orbit . . and tensor force potentials behave like O(r- 2 ) near
r = O . In addition, there appear short range terms which operate only in

the states with L = 0 and L = 1, respectively, and which behave lik e

O(r-2) near r = O .
Let us now compare this result to the one which is obtained by usin g

expansions with respect to p2 /M2 . In the adiabatic limit 7) the spin-bilinea r

terms disappear completely . The central potential becomes the ordinar y

e mr

	

l d
Yukawa potential Y =

	

, and the spin-orbit force becomes -- Y(mr) ,
r

	

r dr

which behaves like O(r- 3) near r = 0 . In the next approximation, keepin g

terms of the order p 2 /111 2 , one obtains$) a quadratically momentum depen-

dent central potential, which in coordinate space has the form Y(mr) -

P- 2
1V112

Y(mr), where p is the differential operator - 2 - ô) . The resulting

"effective" central potential is therefore a linearly energy dependent func-
tion which behaves like O(r- 3) near r = O. The spin orbit potential is in

this approximation the same as in the adiabatic limit . Also, the spin-bilinea r

terms are absent in this approximation . We may therefore conclude that

the approximations of the above mentioned type give a both qualitatively

and quantitatively misleading picture of the scalar boson exchange potential .

6. Concluding remarks

In the foregoing sections we have considered the more or less forma l

problem of obtaining a local, angular momentum dependent potential fro m

a given potential in the momentum representation . The formalism outlined

here might be considered complicated, but this lies in the nature of the
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problem and cannot be avoided . We may note that if one wishes to solv e
the two-nucleon scattering problem with a non-local potential in the mo-

mentum representation by using the Lippmann-Schwinger equation, the n
the matrix elements evaluated in section 3 are necessary ingredients in a
calculation of this kind . We have shown that a potential V in the momentum
representation becomes local and angular momentum dependent in co -
ordinate space if V has a particular off-shell behaviour, which is implicitly
defined by the partial wave integral equations considered in this paper .
We mentioned in the introduction that in a perturbative definition of a
potential it is always possible to determine the off-shell behaviour so that
the coordinate space potential becomes local and angular momentu m
dependent . We can in fact add an arbitrary term, vanishing on the energ y
shell, to the lowest order potential, provided this is compensated by addin g
the proper corrections to the higher order potentials . This procedure can
then be repeated for the potential of next order, and so on .

It is thus possible, within a perturbative definition of the potential, to
get a potential with any (reasonable) off-shell behaviour, and, in particular ,
the off-shell behaviour which yields a local, angular momentum dependent
potential in coordinate space .

Among potentials of this kind we may mention the various one-boson-

exchange potentials, which have been used extensively in numerical calcula-
tions in nucleon-nucleon (N-N) scattering . We shall not enter upon a discus-
sion of the domain of applicability of such potentials in this paper ; we
merely recognize the fact that the vast majority of potentials which hav e
been considered in N-N scattering are based more or less directly on th e
use of perturbation theory expansions for the S-matrix from field theory .
Besides the approximations of a "physical" nature involved in calculation s
with such potentials, one has used approximations involving expansion s
with respect to the inverse of the nucleon mass, in order to obtain local o r
"almost local" potentials .

In I we have investigated the validity of such approximations by eval-
uating the phase shifts for the case of scalar particles interacting through a
single particle exchange potential . It was shown that the "adiabatic" ap-
proximation can lead to quite inaccurate results for this case . The example
considered in section 5 of this paper shows clearly that the approximatio n
involving an expansion in p2 /M 2 is entirely misleading .

It is of course very natural to make approximations which lead to loca l
potentials, in order to obtain manageable equations . As we have demon-
strated, this can be achieved, whithout using p2 /M 2-expansions, by taking
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advantage of the ambiguities inherent in any S-matrix definition of th e

potential, and this leads to the concept of a local, angular momentu m

dependent potential .
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