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Synopsi s

A consistent canonical quantization procedure for electrodynamics in covariant gauges o f
a certain type is developed . This type comprises most of the gauges that usually are studied i n
the literature . In every gauge there are four photons and in the sense that the expectation valu e
of the four-divergence of the Maxwell field is zero for all physical states, all these gauges ar e
quantum generalizations of the classical Lorentz gauge . The quantization is carried out by mean s
of a Lagrange multiplier field. It is shown that there exist generators for four-dimensional trans-
lations and rotations in every gauge . A peculiar aspect is that the scalar and longitudinal photon s
are not stationary states (except in one gauge), because the energy is not diagonalizable i n
general . This is connected with the necessity of introducing an indefinite metric . It is possible
to connect the different gauges by operator "phase"-transformations of the electron field . The
necessity of a gauge renormalization removes some difficulties with the usual formulation o f
quantum electrodynamics . The self-mass of the electron comes out gauge dependent by a direct
calculation, but a more refined analysis shows that it actually is gauge independent .
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1 . Introduction

2
In classical electrodynamics the free Lagrangian density of the electro-

magnetic potentials A~1 is

= - Fm,FF«v,

	

(1 )

where Fm, = å~Av - aVAt, and we use the metric gm, _ (1,-1, -1,-1) . Variation

of A m gives the classical equations of motion

q Am + ô~å vAv = 0 .

	

(2 )

The freedom of gauge transformations allows us to choose both covarian t

and non-covariant gauge conditions, with the sole restriction that Fm „ be a
covariant tensor . A typical example of a non-covariant gauge condition i s
div A = 0 (the Coulomb gauge), and typical for the covariant gauges is th e

condition 001' = 0 (the Lorentz gauge) . .

It lias been known for more than thirty-five years 2 that difficulties are
met if we attempt to quantize (2) with a covariant gauge condition, e . g .
the Lorentz condition . With modern methods we can see that such difficultie s

arise in every covariant gauge, in other words, that the equations (2) cannot
be valid in any covariant gauge . Iiroui general arguments of field theory we fin d

that the most general vacuum representation of the field commutator must b e

<o I [ A[t(x), Ap(Y)] I o> = - 27rf dpE(p)(e1(p2)gFw + e2(p2)pppv)e-ip
. (x-y) ,

where cep = dp(2 s)-4 and e,(p 2) and e2(p 2 ) are spectral functions . Using (2)
we find e1 = 0 so that it follows that

<oI [Ffw(x), Fe,(g)] I o> = 0 .

As gauge transformations and Lorentz transformations may be mixed without disturbin g
the tensorial character of Fl,,,, the phrase non-covariant is somewhat ambiguous in this connexion .
Consider for instance the Coulomb gauge . If we claim that the Coulomb condition has to hol d
in every inertial system, then A F, does not transform like a four-vector, hut according to a com-
bined Lorentz and gauge transformation. If we claim that Af, is a four-vector, then the Coulom b
condition is not valid in every inertial system. For the covariant gauges no such difficulty arise s
because it is then natural to take A A to be a four-vector .

2 W. HEISENBERG and W . PAuLi, Zeits. f . Physik 56 (1929) 1 .

1*

(3)
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Now it is generally believed that this is not true', so that we mus t

give up the equations (2) in covariant gauges . In a non-covariant gaug e

we cannot show that the vacuum representation has the form (3) and
hence we cannot prove an analogous result in this case . The Maxwel l

equations (2) may very well be the equations of motion for the electro-

magnetic field in a non-covariant gauge . Among the non-covariant gauge s
we can mention the Coulomb gauge 2 , the axial gauge 3 , and the Valati n

gauge 4 .

In the case of the covariant gauges the above mentioned difficulty i s

usually overcome by adding a term

(a A(') 2

to the Lagrangian density (1) . The "gauge" obtained in this way is calle d
the Fermi gauge, and it is the only covariant gauge which has been formulate d

as a theory of canonically quantized fields' . A price must, however, be pai d
for the simplicity obtained by this . trick . There will be states which are no t
physically realizable, in the sense that they cannot be prepared in an y

experiment. Some arguments may be given to show that this is probably

the case in every covariant gauge . Whereas we are not able to claim that
the Maxwell equations (2) are satisfied for the quantized potentials, it seems
very reasonable to claim that the mean value of the potentials should b e
real and satisfy

q <A1,> + aa0 <Av> = 0

	

(4)

in every physically realizable stat e s . But then all states cannot be physicall y

realizable, because this would lead us back to (2) .
In quantum electrodynamics most of the gauges which usually ar e

studied belong to a one-parameter family characterized by the photon

propagator

( )
	 	 g~cv

	

) 	
kl ,kv

D~ z k = -ik2+is+1(1- a (k
2 +is)2

' R. E . PETERLS, Proc. Roy . Soc. A 214 (1952) 143 .
2 L . E . EVANS and T. FuLTON, Nucl . Phys . 21 (1960) 492 .
3 R. L . ARNOWITT and S . I . FIG5ÇLER, Phys . Rev. 127 (1962) 1821 .

J . SCHWINGER, Phys . Rev. 130 (1963) 402 .
YORK-PENG YAO, Journ . Math . Phys . 5 (1964) 1319 .
J . G . VALATIN, Mat . Fys . Medd . Dan . Vid . Selsk . 2G (1951) No . 13 .
See f . inst. G . KALLÉN, Handbuch cl. Phys . Vl (Springer-Verlag, Berlin 1958) .

6 This is in analogy with the Ehrenfest theorem of non-relativistic quantum mechanics .

(0)



Nr . 11

	

5

For a = 1 we get the Fermi gauge ,

for a = 0 the Landau gauge r and

for a = 3 the Yennie gauge 2 .

We shall show in this paper how the canonical quantization of a certain

class of covariant gauges may be carried out in a systematic way . In this

class we shall verify eq . (4) for the physical states . Furthermore, we shall
for these gauges find

012 <A> = 0

	

(6)

in every physical state, so that these gauges may all be considered as quantu m

generalizations of the classical Lorentz gauge. It will be shown that thi s
class of gauges is essentially equivalent to the family given by eq . (5) .

2 . Quantization of the free Maxwell fiel d

Let us begin with the study of quantum electrodynamics in the analogu e
of the classical Lorentz gauge, wher e

12
A = 0 (7)

is valid as an operator identity . Considering At,(x) to be generalized coordinates ,

we immediately see that (7) is a non-integrable relation between the gene-
ralized coordinates and velocities . This implies that quantum electrodynamics

in this gauge is non-holonomic and hence the canonical methods cannot b e

expected to work at all . In classical mechanics non-holonomic systems wit h
constraints like (7) are treated by means of Lagrange multipliers 3 , and it is
therefore tempting to use the same method here . Accordingly we add to th e

Lagrangian density (1) a term

AO,A1 ,

where A is the Lagrange multiplier, which in this case must be a scala r
field . In the new Lagrangian density

= -

	

- Aa,LA~`

	

(8)

we are allowed to treat At, as independent coordinates, and it is imme-

diately seen that the momentum canonically conjugate to Ao is now -A ,

I L . D . LANDAU, A. A . AnRIxosov, and I . M. KHALATNUSOV, Dokl . Akad . Nauk. SSSR 9 5
(1954) 773 ; JETP 2 (1956) 69 .

2 H . M . FRIED and D. R . YENNIE, Phys . Rev . 112 (1958) 1391 .
3 R . GOLDSTEIN, Classical Mechanics, pp . 11, 40 (Addison-Wesley, 1959) .
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whereas it formerly was identically zero . It would now be possible to go
on with the canonical quantization, but it is, however, convenient first t o

generalize (8) slightly . As variation of (8) after A(x) gives us the gauge

condition (7), it is seen that the Lagrange multiplier behaves like a fre e

coordinate, with the constraint as "equation of motion" . We therefore propos e

to change the Lagrangian density to

L = - F12VF V - Aa f,A U + F(A(x))

	

(9)

where F(z) is a holomorphic function with F(o) = F'(o) = O . As this extr a
term not contains Aa , it will only change the gauge condition to

am Al'`(x) = F'(A(x))

	

(10)

and should then only correspond to a gauge transformation . The equation

of motion for A u is-independently of the function F-

q AI, + a1,a„Ar= at,A.,

	

(11 )

and from this we get the equation of motion for A

q A=0 .

	

(12 )

From (9) we now find the momenta canonically conjugate to AI, to

be nd"'O , where 2 v =F1`V g l"A .

	

(13)

Canonical quantization leads to the relations

[A1( .x), A7(g )]xo=yo = 0,

	

(14)

[ Ai(x), Av(g)]xo-y~ = ig1v å(x - y),

	

(15)

[ A(x), A,(g) ]x = y, = ig 0.,,a( - ÿ) ,

	

(16)

[Ai(x), Ax(g)]x=yo = 0,

	

(17)

[A(x), Ak(y)]x,=y, = - iakå(x-,

	

(18)

[A(x), A (g )]xo=yo = 0,

	

(19)

where the dot means differentiation with respect to time .

From (11) we find taking p, = 0

A = 4A° + a iÅ

	

(20)
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and then by (16) and (18)

[A(x), A(y) J~ = y = O .

Integration of (12) yields for arbitrary yo

A(x) - fdgD(x-y)ayA(y) ,

where D(x-y) is the well-known singular function corresponding to mass
E-> -3 E

zero s . We furthermore use the convention a = a -a . Hence we find that

[ A(x), A(9)ß = 0

	

(21 )

for arbitrary points x and y . Analogously we find by means of the equal -
time commutation relations

[A(x), A,,(9)] = - iaD(x - y) .

	

(22)

Remark that the two important relations (21) and (22) both are independent
of the gauge condition (10) 2 . It is possible to find one more set of relations
which is independent of the gauge condition, namely the commutation
relations for the field strengths To find these we first define the transvers e
projection operator

z

	

+(am-nmrr-a)(8„-nvn•a)

	

(23 )F`v =
gm) n

~`nv

	

q + (n• a) 2

where nit is a time-like unit vector . Here we shall always take nl, = gw, .
Then ricv only involves spatial operations 3 . Now define the transverse field by

ATr _

	

Av .
P

	

/,tv

From (11) and the well-known properties of -tm, it follows that

q AT r =0 .

Integrating (25) and using the equal time commutation relations we find

[4''(x), Av r(y)] _ - ir'p .,,D(x- y),

	

(26)

showing that the transverse part of the Maxwell field is correctly quantized .
From (20) and (23) we get 3

G. KÄLLÉN, ibid ., p . 190 .
2 Equations (21) and (22) have been derived in the Fermi gauge of asymptotic quantu m

electrodynamics by R. E . PtTGH (Ann . Phys . 30 (1964) 422) .
3 4 = q +(n-å) a is Laplace's operator, and 1/4 may be defined a s

4
f(x)

	

Sdx'
47t .x-x'

(24)

(25)
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a
A I , = Ar ny 11 - az Az

such that

Ft,,„ = F,t7
;,ro

+
-aµnv

4

av11,Å
11 ,

where Fÿ are the "transverse field strengths" . Then using

[A(x), Aµr (y)1 = 0 ,

which follows from (22), we find

[Fm(x), Foa(y)] = i (gµoava, - gvA,a6 + 9'v6aµa0 - J,uoava0)D(x-y) . (27)

This is the most important result of this section . The quantization by mean s

of a Lagrange multiplier method leads to the welt-known commutation

relations' for the field strengths in an arbitrary gauge of the type considere d

here .

In order to find the commutation relations for the potentials we shal l
make a special choice of gauge condition, namely

F(A(x))

	

A(x)2 ,

	

(28)

where a is a real number, such that the gauge condition now read s

a12 An ` = a11 .

In the appendix it is shown that this choice of gauge leads to the family o f

photon propagators (5) . The gauge parameter a is actually identical to th e
mass ratio parameter in the theory of massive electrodynamics, develope d

by FELDMAN and MATTHEws 2 .

With the gauge condition (29) we find from (11 )

q Alt = (1 - a)a,„ 11 .

	

(30)

Using (12) we get

q DAIA = O .

Now it is fairly trivial to show that if a field T(x) satisfies the fourth order

differential equation q q cp(x) = 0, then, for arbitrary go ,

R . E . PEIERLS, Proc . Roy . Soc . A 214 (1952) 143 .
2 G . FELDMAN and P . T. MATTHEWS, Phys . Rev . 130 (1963), 1633 .

(29)
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F~

	

-<-)-
99(x)

	

-f d-yD (x-y)ay, g)(y) f dyE(x -y)ayo q m(y) ,

where E(x) is given by

ô4 (x - y,
E(x) = 2 gi f dpe(po'(P2),-ip(z-y)

	

,u 2 )=	
a 2iu,

The rather peculiar properties of this distribution are given in the appendix .
By means of the equal-time commutation relations and the integrate d

equation of motion for At,(x) we find after some calculation that

[Aµ(x), Av(y)]

	

- i(g t,„ q + (1 - a)(91,å„)E(x - y)

= - igt,,,D(x -y) - i(1 - a)aO„E(x-y) ,

where in the last line we have used the relation q E(x) = D(x) .

3 . Indefinite metric

It is well known that it is necessary to introduce an indefinite metric i n
the Fermi gauge in order to secure the covariance of certain expression' .

As the present theory contains the Fermi gauge as a special case, it mus t
be expected that this will also be necessary in any covariant gauge of th e
type considered here .

For the moment we shall content ourselves with the following propertie s

of the metric operato r

= (32)

9721t,?7 = A~, (33)

2710>

	

= lo> . (34)

Equation (32) expresses the Hermiticity and unitarity of the metric operator ,

(33) the self-adjointness properties of A t, with respect to m7, and (34) th e
choice of positive norm for the vacuum . In the following section we shall
fix the properties of with respect to At, completely.

G. KALLÉN ibid ., p . 191, 199 . Here further references can be found .

(31 )
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4. Fourier expansion of the field

In this section we limit ourselves to the case (29) . Let us define the fiel d

a-11
(35 )A (x))x(x) =

	

2

	

(xo~(x)

	

•

From eq. (12) it then follows that

q x(x) = (1- a)A(x) .

This shows that the field

A

	

= AI, - a1j(x) (36)

satisfies the equation
8 I`Af' = A, (37 )

and from (11) we find the equations of motion for A :

q A

	

= 0 . (38)

From the relation (se e

we

As eqs . (38) and (39) are the equations of motion and commutation
relations of the Maxwell field in the Fermi gauge we may immediately writ e

down the usual expansion (in a periodicity volume )

Ag(x)

	

e,(k7,) (a(R)é-ak'x + d(k.1)eik ' x),

	

(40)

where a(a) and

	

û(k7 = na*(k2)i i

have the usual commutation propertie s

[a(k 1), d(k' ;.' )] = rS kk ' (- gar ) ,

[a(k.1), a(k ' 7, ' )] = 0 .

the appendix)

1
E(x) = 2A (D(x) - x oD(x))

get using eqs . (21), (22), (31), (35), and (36 )

[A:,(x), Avr( y)] = ig11,D(x-g) . (39)

V 2 w
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If we therefore fix the properties of ' by the relations

[r7, a(k7.)] = 0 (2. = 1,2,3) ,

{17 , a(ko)} = 0 ,

we find

[a(k). ), a*(k''I' )] = dkk~ cSA,l , .

	

(41 )

This permits us to interpret a(k2) and a'(kA) as annihilation and creatio n

operators for photons .

By virtue of equation (12) we may expand the A-field as

A(x) =	 	 w
	 @(k)é-ik' x - A(k)eik ' x ),

	

(42)
v2

where as above ~(k) = 172.*(k)ri . From eqs . (37) and (40) we then fin d

yl2(k) = a(k3) - a(ko) .

	

(43)

One may easily verify tha t

[2(k), 2(k ')]

	

[ 2 (k), '2(k')] = 0

in accordance with the vanishing of the A-A commutator . Remark that (44 )
leans heavily on the properties of the indefinite metric .

By the expansion (42), of the A-field and by eqs. (35), (36), (40) and

(43) we may now express the total field Am in terms of annihilation an d

creation operators .
As in every gauge we are able to define the creation and annihilatio n

operators as above, the Hilbert (Fock) space will have the same structure in

every gauge. Although electrodynamics in different covariant gauges mus t

be considered as different field theories (because the gauge condition i s

stated before the derivation of the equations of motion), we can, however ,

think of these theories as formulated in the same Hilbert (Fock) space .

The transformation field y(x), given in (35) seems to be non-covarian t
on account of the explicit time dependence . [If the equations of motion for

A l, are solved by Fourier transformation one finds that this time dependence

essentially stems from the term - (t/2w) coswt in the solution of differentia l
equations of the type

	

dty + coy = sin cwt] .

(44)



The question of the apparent non-covariance is resolved in the followin g
way. Covariance in field theory is equivalent to showing the existence of a
representation of the proper inhomogeneous Lorentz group under whic h

the fields transform correctly, i . e . finding generators of infinitesimal trans-

lations and rotations . As we shall show in section 5 these generators exist ,

but are not independent of the gauge. This means that the field 4(x) ,
which can be defined in every gauge by eq . (36), is only a four-vector in th e

Fermi gauge. The splitting A~ = 4 + any is therefore a splitting of the1.1
covariant field AI, into two non-covariant terms in the gauge characterize d
by the parameter value a . An expression which . is covariant in one gaug e

need not be so in any other gauge .

5. The energy-momentum tenso r

Although it would be possible to study the general gauge condition (10)

we shall here limit ourselves to the simple case (29) where the Lagrangia n

density i s

By straightforward calculation we find from (45) the symmetric energy -

momentum tensor

Tl,„ = - Fp), F„2- + 9µvFPaFO6 + Apa„A + A„amA - gN , (A~ô~11 + 2 A 2), (46)

which by means of the equations of motion and the gauge condition is seen

to be conserved .

By direct calculation it is possible to show that the linear and angula r

momentum operators PI, and MIL„ have the correct commutation propertie s

with respect to the Maxwell field, i . c . that they are generators of infinitesimal

translations and rotations . Remark, however, that Pi, and Mm „ are not

Hermitian, but self-adjoint, i . e . 91P*77 = Pm and analogously for M . This

has the consequence that for instance the energy H is not necessarily dia-
gonalizable . Take for instance the model (a is real )

_ -i FI.r,vF" Aa l,Al ` + ;A2 .

	

(45)

/1 + a

	

a
H =

-a 1 -a
(47)y/ _

This H is self-adjoint with respect to ip, but it has only one eigenvector ,

for a. + o .



Using A i, = A, + ô 1,y we can split the energy-momentum tensor (46) int o

two parts
Tuv = Tf;,, + T,uv ,

where the first part is what we would find in the Fermi gauge and the secon d

is only dependent on A . From the usual theory of the Fermi gauge we kno w
that (after removal of zeropoint terms)

P'I:', = f d~T~o = ~ k~aX (kA)a(kA) .
k A

The rest of the four-momentum

P~
= f~

	

ciTA

is now found to be

P~ = 0 ,

Pô = Jdæ	
4 a

d 2 11 -1 A) =-	 12a ~w4k) A (k) -

Finally, we have the total momentum and energ y

PZ

	

~ . k2 a*(kA) a(kA) ,

P o = H

	

wo(kA) a(kA) + 1	
2
	 a

	

w2(k)A(k) .

From this it follows that (in matrix notation)

(1+1-a

	

1- a
II

	

(a :v (k3) 1

H,

	

2

	

- 2

	

(a''•: (k3)
I= w

LL

	

\a:<(k 0) J

	

1 -a

	

1 1 -a~ a"(k 0)J
,

~

	

2

	

2

showing-by comparison with (47)-that the energy is not diagonalizable ,

except in the Fermi gauge (a = 1) . This means that the longitudinal an d

scalar photons are not in general stationary states, but mix with each other
during time. Only one combination of scalar and . longitudinal photons i s
stationary, namely

a*(k 3) + a*(k 0) = 2(0 .



Let us by a natural generalization of the definition of physical states i n

the Fermi gauge demand that the physical states satisfy

211-(x) IØ > = 0,

	

(48)

where A+ is the positive frequency part of A . Then it is easy to see that only

the transverse photons contribute to the mean value of the energy in a
physical state . Furthermore

< Ø Ia,,AP I O > = 0 ,

so that every gauge of the type studied here must be considered as a quantum

generalization of the classical Lorentz gauge in the same sense as the Ferm i

gauge. (It is also seen that eq . (4) is satisfied . )

6 . Quantization of the interacting fields

We shall now consider the Maxwell field in interaction with the electro n
field . The Lagrangian density is taken to bel

Ilal,AP + 2 A2 + 4- [J), (iy•a - Ino)y] - 2 [V, ytty], (49)

where as before we have treated the gauge condition by means of a A-field .
All the fields are considered to be unrenormalized, and a o , mo , eo are the
unrenormalized parameters of the theory . By calling the gauge paramete r

a o , we have admitted the possibility of a gauge renormalization, and we

have restricted ourselves to the simple gauge conditions of the type (29) .
The equations of motion are found to be

e
qA

P + a,~av Av = ,
'
1i - 2 [17, y~wl ,

= ao A ,

(iy•a -mo)p = e o y .ATV ,

from which we again derive

q l = 0 .

	

(53)

1 We use the y-matrices with {yw y,,} = 2gm„ and y•a = a uyø . These y-matrices are self-
adjoint, i . e . Ÿ~ = yoyuyo = /, .

(6)

(50)

(51)

(52)



The metric operator î?, which must also be introduced in this case, with th e

properties given in section 3, is moreover assumed to satisfy V = 7iy +ny o .

The equal-time commutation relations for the Maxwell field and th e

A-field are found to be exactly the same as in the free case (eqs . (14)-(19)) .
Furthermore we have the following commutation and anticommutatio n

relations :

{y'(x), v(Y)Îxo= y, = 0, (54)

{ ?V(x), y~(J)}x,= y

	

= Yo å(

	

- J) , (55)

Mx), A~t(y )]x=yo = [ (x), Am(Y)]xo=yo = 0, (56)

[y(x), Ai(y)], y

	

= [77(x), Ai(J)]x.=ya = 0, (57 )

[y(x), A(y)]x,= yo = [ Wx), A(y)] .,-y, = 0, (58)

By methods analogous to those used in section 2 we find

(J9)[A(x), A(y)] = 0 ,

[A(x), Am(y)] _ - iôµD(x - y), (60 )

[ A(x), y(J)] = e oD(x - y)v(u), (61 )

[ A(x ),

	

- eoD(x - y)~V(y ) - (62)

These are the only integrable commutation relations in the case of the inter -

acting fields . A consequence of the last two relations is for instance tha t
A(x) commutes with any local bilinear expression in y and 5, i . e .

[ A(x), ya(Y)~wß(u)]

	

[ A(x), ~vß(u)vu(u)] = 0 .

	

(63)

7. Gauge transformation

If we had started with another value for the gauge parameter, say a ' o ,
then we would have arrived at a different theory of interacting fields . In the

case of the free Maxwell field we have however seen that the two gauge s

could be connected by a gauge transformatio n

A~~ = AF, + at,Y

	

(64)



with

We shall now see that the transformation (64) with x(x) given by (65) also
carries us from the gauge a o to the gauge a 'o in the case of interacting fields ,
when the electron field is subjected to the transformatio n

x(x) =
ao

2

ao
(x oA(x) - A(x))

7/ ) (x) = e£ 2 x(x) y~(x) e 2Z (x) (66)

One should here remark that x(x) is a q-number which does not commute

with y(x) .

We shall now show that provided At, and zp satisfy the equations of motio n

and commutation relations for the gauge ao, then AF, and îp ' satisfy the equa -
tions of motion and commutation relations for the gauge a~ .

From eqs . (50) and (64) we find

q A + am a vA'v = all - 2 L?

However, by (63) we have

[ , yo'] _ [V, yt, o ] .

Likewise by (51), (53), (64), (65) we fin d

= a 'o A .

From (52) and (66) we get

2

( i Y .a - mo)v ' = eov .A'y' - 2 [x,Y• A ]y' - 2 [Y• a x,v'] ,

where we have used the fact that [x(x), A u(y)] is a c-number such that

-t
2

x

	

+i
2

°y

	

teo
e

	

Ay e

	

= A' - 2 [x, Ait ]

Unless a cancellation between the singular terms on the right hand side o f
eq. (67) occurs, we cannot reduce it to the required form . But as we shall

soon see, this cancellation actually occurs . On account of the singula r

character of the terms we have to treat them with some care . First we find

by means of the commutation relations (61) that

(65 )

(67)



[y .0 x(x), w(y)Jx~=y.

while from (60)

Yu), y .A(x)],_y, _

Then

;•eo[x(y), yA(x)]~o=yow(g,xo) _ [y a x(x ), w(y)]x,=yo = 0 .

Here we can take = y and by use of (66) we see that the last two term s
in (67) actually cancel each other .

It is possible to show that the commutation relations are invariant under

these finite transformations, but it must actually suffice to show that the y
are invariant under infinitesimal transformations with Sa o = ao - ao in-
finitesimal . As an example we take the anticommutator (55) . Then

b{w(x),VO)}x,=~o

	

i
co

({{x(x),w(x)},w(u)}xo=yo-{1P(x),{x(y),w(y)}}x =yo>

Using

{A, {B,c}}

	

[[A,B],c] + {B,{C,A} }

we find by means of the commutation relation s

b{y(x),~i~(y)}.xo=yo = -i 2 - ~~ xoeo å(x y)[~r~(y),w(x)] +
x

a o
+ 2 x(x )yo å( - - 2 4	 y o eoa(x - g) [~(x), VOA] - 2 x(y)yos(x - g)).= yo = 0 -

y

The other commutation relations are shown to be invariant in an analogous
manner .

IL should be remarked that the A-field is not supposed to transform, in
other words that it is assumed to be gauge invariant . This is also consisten t

with the manifestly gauge independent form of the left hand side of eq (50) .
The A-field has more to do with the general mode of description (covarian t
gauges) than with the particular gauge in which this description is carrie d
out . Also the constants m 0 and e„ must be supposed to be gauge indepen-
dent .
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ao - ao

	

1

24 x
	 eo { yo ~- xoyiaZZ}

cS(x - y)v(g, xo) ,

äao
(~ Yo + xo y i a a,) å (x - 0) -

2 x

2



8. Renormalizatio n

A .characteristic feature of the renormalization in the Fermi gauge is th e
occurrence of a term

L
	 a Av

	

(68)1-L

	

v

in the renormalized current . This term cannot be accounted for by charg e
or wave function renormalization, but has to be introduced by gauge in -
variance arguments' . If the correction to the photon propagator is calculate d
in the lowest order in the unrenormalized theory, it is seen that startin g
from the Fermi gauge, one does not end up with a propagator which behaves
near the mass shell like a propagator in the Fermi gauge . In the renormalized
Fermi gauge the term (68) brings us back again to this form and hence th e
inclusion of this term must be considered as a renormalization of the gaug e
parameter. We shall show that this gauge renormalization comes out quit e
naturally in the present formulation .

Let us now introduce the renormalized mass (rn), charge (e) and gaug e
parameter (a) by

e
eo =	 ,

	

(70)
- L

ao = (1 - K)a,

	

(71 )

where åm, L, K are renormalization constants to be determined later on .
Likewise we introduce the renormalized fields y (' ) ,

	

and Air) by

y

	

Nycr) ,

	

(72 )

Aµ = 1/1 LA (;) ,

	

(73)

A -	 L A 0')
i - K

where we have anticipated the result that the wave function renormalizatio n
constant of the Maxwell field is the same as the charge renormalizatio n
constant . The wave function renormalization constant of the A-field ha s
been chosen such that the gauge condition for the renormalized fields read s

A(r),u
= aA(r)

It

' G . KÄLLÉN, ibid., p . 346 .

Ri o = rn - åm,

	

(69)

(74)



One might object that the A-field should not be renormalized as it doe s

apparently not take part in the interaction on account of eq . (53) . But a
glance on eq . (61) shows that this is not true .

Leaving out the superscript (r) on the renormalized fields we now find
the renormalized equations of motio n

	

q

	

+ au a vAv = a,
,,11

- J,u ,

	

(76)

eN2

	

K

	

JF`
=	

2(1-L) Y110 -
1 - K

(77 )

(iy . a - m)v

	

-f,

	

(78)

- ey•Ay +

	

(79)

OOP' = a4. .

	

(80)

It is seen that a term of the type (68) is now present in the renormalize d

current. We shall actually find in the next section that K = L. The commu-

tation relations between the renormalized fields may easily be derived fro m

the previously stated relations for the unrenormalized fields .

9. Determination of the renormalization constant s

The renormalization constants are usually expressed by integrals ove r
some spectral functions. By the well-known arguments we can write th e
vacuum expectation value of the current-current commutator a s

<01

	

Jv(Y)l I o~ =

	

i(g/u .v q + amav) fdA4(x-y,A)17(A),

	

(81 )

0

where 11(A) is a positive definite spectral function s (zero for negative A) and

A(x-y,2)

	

- 2mci fdpe(p)å(p2-A)e-ip(z_Y)

	

(82)

is the singular function with mass VA .

In order to find the renormalization constants in terms of this spectra l
function the standard procedure is to integrate (81) with suitable limi t
conditions, which express how the interacting field asymptotically goes ove r

i As the definition (81) is obviously gauge invariant we may use the result from the Ferm i
gauge (G. KALLÉN, ibid ., p . 350) .

2*
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into the incoming free field . Asymptotic conditions are, however, very
difficult to apply, because the limits are not well-defined . Furthermore ,
one finds in the conventional theory of the Fermi gauge that the matri x
element of the renormalized field between vacuum and a one-photon stat e
is different from the same matrix element of the incoming free field, because '

<o i A,u(x) I k> _ (g
,Å,,

- Matt a,) <o I Awn)"
(x) I k>

	

(83)

where M is a non-vanishing constant . Asymptotic conditions of the con-
ventional form 2 can therefore not be applied to quantum electrodynamics .

It is, however, possible to integrate (81) without transitions to the limit
of the infinite past or future. Let us define the field

",o)(x) =
f dy-D(x - y)åwAu(y)

	

(84 )

By an elementary integration by parts we find

x ,

At,(x) = A(Iy°)(x) + f dx'D(x x')DA11(x') .

	

(85)
ya

Now from the equal-time commutation relations we fin d

[Anx), Jy(y)] = i	
K

apa,,,D(x- y) .

	

(80)1 -- L

Then we have

K
[A,u(x),J,,(y)] =

	

- L
a,,,5D (x y) - fdx'D(x-x') [JJ,(x'), Jti(y)] ,

y .

where we also have used the equations of motion and the fact that th e
A-field commutes with the current . If we take the vacuum expectation value
of this equation and insert (81) we find after some calculatio n

<o I [Au(x), Jv(y)] I o> = i 1 KL al avD(x y) +

+ i(gl,y q + a00 fd2(4 (x - y, a,) - D(x-y))
rr(ll)

-
o

	

.

t (gFw - gyogvo)D(x - y) fdA 8(A) ,
o

I G. KALLÉN, ibid ., p . 344 .
2 I-I. LEHMANN, K . ZYMANZIK, W. ZIMMEHMANN, Nuovo Gllnellto 4. (1955) 425 .
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where we have used the relatio n

f dxD x- .x 4 x -

	

4 (x-y, d - D x

	

(88)

y ,

The last term in (87) is non-covariant and must therefore be identicall y

zero, i . e .

f d277(2) = 0 .

	

(89)
o

This also follows from the application of current conservation to (87) .

In view of the positive definite character of 11(2) this result seems quite
nonsensical . A suitable regularization procedure, however, removes thi s
difficulty', and without going into details we shall in the following assum e

eq. (89) to be valid .

By a similar procedure we can now integrate (87) to ge t

i (g,~tiq +a,iav)fdA4(x-y,A)( ~å~) n'(o)a(a))
o

where

17(0) = fdR
17(2)

0
.1

	

'

da ~~
2

)17'(0) = f

o

and we have used the relation

x ,

fdx'D(x-x')D(x'-y) = E(x-y) .
J o

which can be obtained either from (88) by letting A - o or by direct calculation .

Our renormalization requirement is then that this commutator shall
behave like the commutator for the free Maxwell field in the gauge a, nea r
the mass shell . If we disregard the 6-function in the last term this gives u s

J . MOFFAT, Nucl . Phys . 16 (1960) 304 .

<o I [ Au(x), Av(y) ] I ~> =

	

I

f

	

( 1 _ L

1

	

_ 1-K ._

	

1

(90)

)

- 11(0))

(91 )

(92)



22 Nr. 1 1

1
	 = 1 + 11(o) ,
1-L (93)

1 - K

1-L
= 1, (94)

i . e . K = L .

A similar procedure may be carried out for the electron field, for which
the spectral functions are defined by

< o I {f(x) , f( iu)}l o >

	

- 2 f dpe(p)(Xi(p2) - (y .p-m)E2(p2))e
ip•(x J) (93 )

The renormalization constants are then found to be given by

dm = N2Ei( rn2),

	

(96)

= 1. + Z2(m 2) - 2 m Ii(m2),

	

(97)

as in the conventional theory of the Fermi gauge . We have used the notation

zi(m 2)_ fdAfi(n.7)2 ,

	

(98)

ø

~l(rn 2) _	 	 1i0' )
,

	

(%. - 1272)2
.

m

10. Asymptotic conditions for the Maxwell field

We now assume the existence of incoming free fields An) ll(in) such tha t

1

N

(99)

q A~Gn) + a l,avAvin) = a ltA(in )

aFcA(in) = a11(in)
y

[Aln)(x), Aiin)
(g)] = - i(guvo + ( 1 -a)aA)L(x-g) .

It is then possible to show that with a suitable value for M the followin g
asymptotic conditions are consistent :

A = ~(in)

	

(103)
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At, = A~~n) - Må,2A + fdx'DR(x-x')Jt,(x'),

	

(104)

where DR is the retarted photon Green function' . It is quite clear that thes e
conditions are consistent with the equations of motion. But still we have
to show that for a suitable M they will also be consistent with the spectral
resolution of the commutator . From a spectral analysis of (ol [Am(x), Avin)(y)]

I o >
it follows by means of the equations of motion and (103) tha t

(o I [J,u(x ),
AV n)

(y)] I of = O .

	

(105)

From this we find by means of (104) tha t

<o I At,(x) I k, in> _ (o I A(ti,n) (x) I k, in> - Mål,(o I A(x) I k, in>,

	

(106)

which is identical to (83) in the Fermi gauge (a = 1) .
By a simple calculation we find by comparison with (90) tha t

2 M = II'(o) = fd.1 rA(~) ,

	

(107)
o

which also follows in the conventional theory of the Fermi gauge 2 .
We are now in a position to calculate the spectral functions in the lowes t

order . The result is

~

	

~\

	

2

H(o)(p2)
=	

e~ ( 1 + 2 1n~ Vi 4	
e (p2 - 4 m 2),

	

(108)
12 2

	

2

	

p2

2

	

~

	

2
iii

Ei°)(p2) =
me2

(1

	

2 )
(3 - a

p2
	 ) O(p 2 - m2),

	

(109)16n~ ,

e 2

4) (p2) = a	 1
16 7t 2

177 2

1

2

p 2 / )

@(p2
- 177 2) . (110)

The asymptotic condition (104) has been found by ROLLNIK et al ., Z . f . Phys. 159 (1960)
482, for the case of the Fermi gauge . The author is grateful to G . KALLiN for calling his attentio n
to this work and for pointing out that there may be some formal difficulties with this asymptotic
condition .

2 In order to find (107) one should use the equation
(ol[A1 - f1µ")+MaMA,A,,-Ay;~~)±Ma A]lô)=(ol[A,-A(,f',") A v-4'') 1I o),

and the derivation now proceeds exactly as in G . KÄLLÉN, ibid., p . 350 .



24

	

Nr. l. 1

For a = 1 these reduce to the usual Fermi gauge spectral functions . It
is seen that the wave function renormalization constant 1/ N2 is not ultraviole t

divergent for a = 0 (the Landau gauge) and not infrared divergent for a = 3
(the Yennie gauge) in the lowest order . This fact has been known for som e
timer. The self-mass presents in the lowest order a special problem, which
we shall discuss in the next section .

11 . The gauge dependence of the self-mass of the electro n

We have seen in section 7 that the bare mass of the electron is not suppose d
to change under gauge transformations. As the physical electron mas s
obviously must be gauge independent we can immediately conclude that th e
self-mass åm must be gauge independent .

If, however, we calculate the difference in self-mass between an arbitrar y
gauge and the Fermi gauge in the lowest order we find by (109 )

åm(0) - ånr2F ) _ 1lo) (m2) ..'EI(op)
(nI

2
)

= J d,l
z1° ) (À) 	 EiF(A )

a - III2me

me 2
= (1 - a) 16 72 ,

where we have denoted quantities from the Fermi gauge (a = 1) with a

subscript F.

Unless we can find an error in our derivation, this result shows tha t
there is an inconsistency in the theory. The error lies, however, in the step

from (111) to (112), because (111) is the difference between two infinit e

numbers, the value of which depends on the method we prescribe for th e

calculation of this difference . The result shows that the prescription (112 )

is not correct and we must now try to find a better way of evaluating th e

difference .

If we introduce a cut-off in the photon propagator the formerly infinit e

numbers will become finite . Hence, we get

B . Zu\nNO, Journ. Math . Phys . 1 (1960) 1 .

(112 )

(113)
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gm,

	

kukv

	

9'kv
.D~tiv(k) =

	

i	 + i(1-a)	 92-~ ( - i 	 ~~ev
+i( 1- a)

ku)

	

~2

-

	

kz

	

(k-)

	

k~

	

(k2)2 k 2

1

	

1

	

i

	

1 1

	

]
=

	

i (k2 -
k2

	

) g~cv + i(1 -a)kE,lcv
((k

2
)2~ + A

ik2
k2 A 2) )

where A 2 is the cut-off parameter, which is supposed to he gauge independent .
In the Fourier transform of the commutator and anti-commutator th e
expression

g1a,å(k 2) + (1-a)kukv å ' (k 2 )

must then be replaced by

.9'1a,(å(12) - å(1c 2 - 22)) + (1 - a)k1kv • (å'(k2)

	

2

	

- å(k 2 - 22))) .

This expression is now used in the calculation of the spectral function s

and we find the difference

2

	

2

	

2

E
i o> (p2)

	

(2)

	

16 n2 (1
a) (1 - p2 ) p2

O(p2 - m 2) -

rne2

	

2

	

2

	

2~ 2

32 n2
(1 a)p	

~2rn
((1 m~ D(p 2 - m2)

	

(114)
p

(1 + •12
p2

m2 '\

~/2(p2,~22, •12) O(p2 - (ni
+ 2)2))

.

Here l

2(x,y,z) = x2 + y 2 + z2 - 2 xy - 2 yz - 2 zx

is a quadratic form.

Remark that the last terms in (114) vanish for A2 - 00 . If we insert

(114) in (112), the integration can be performed and the result is identically
zero . The original result (113) is exactly cancelled by a contribution fro m
the last terms in (114). One should notice that the step from (111) to (112 )

now is perfectly allowed because both numbers in (111) are finite . Thus
with this prescription the self-mass is gauge independent also in the lowes t
order .

' G . K .iLLCN, Elementary Particle Physics (ADDISON-WESLEY, 1964) .
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The considerations in this section are a nice illustration of how carefull y

one must treat the infinite numbers met in canonical field theories of thi s
kind .

12 . Conclusions

It appears as if quantum electrodynamics in the covariant gauges of th e

type studied in this work is as consistent as the conventional theory of th e
Fermi gauge . But it is also clear that the formulation in that gauge is th e
simplest, not only because the photon propagator has its simplest form here ,
but also because the energy is not diagonalizable in any other gauge tha n

the Fermi gauge . The transformations which connect different covarian t
gauges are of a rather singular nature . Although it 'nigh be conceivable tha t

quantum electrodynamics would only be consistent for one choice of gaug e

parameter, no special reasons have as yet been found which would suppor t
this possibility . One might argue that the apparently gauge dependent self -

mass could be an indication of an inconsistency of quantum electrodynamics ,

but it is clear that this inconsistency only arises because the perturbatio n

calculation gives rise to a divergent self-mass, and it therefore belongs t o
the general class of defects of the theory which are circumvented by th e

renormalizaLion procedure .
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APPENDI X

The distribution

E(x) = 2 mi f dpr(p)å'(p2)e-tPx

	

(A . 1)

has obviously the propertie s

q E(x) = D(x) ,

E(- x) - E(x) ,

E(x) = au2 4 (x,,u2 )

where 4(x,u 2 ) is the well-known singular function

4 (x„u 2 )

	

- 2 aci f dp e (p) 6 (1) 2 - ,u2 ) e-`px .

	

(A. 2 )

By integration over po and over angles we find from (A . 1 )

f	
dp e2p

x

	

sin wxo)

J (9203 2w åw\, w 7

	

(A.3)

1 r

	

sin wxo
4 ~

2J
dwcoswJxI	

w
o

From this we immediately get

E(x)
E8

~) O(x 2) ,

and from (A .3)

E(,o) = E(z,o) = E(x,o) = 0 ; E(,o) = å() .

From (A . 4) it is clear that the positive frequency part of E(x) is diver-
gent for w-> O . But it also seems as if the positive frequency part of at,E(x)

u a = o

(A. 4)

(A. 5)
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were convergent . Let us therefore study this divergence somewhat closer .
We use here the well-known expansions of the singular function s

1

	

u2

	

(

	

2

	

l

4(x, ~2)

	

2 z £(x)a(x2) +
8n£(x)O(x2)

l 1

	

8 `r2 f + 0(,r.c4) ,

1

	

1	 	 ,u2 log

	

I x ~

	

r" 9l

	

1

	

p

	

+2~2 x

	

42;2 ~ 2

	

8 7L 2
1u4x2 (5

+
39,

2 4
- log

Y,uI2x I ) + O(,u 4) .

Equation (A . 5) is easily seen to follow from the first equation by differen-
tiation after u2 . By differentiation of the second we ge t

	

a4(1)(„u2) - 	 12 log	 Y luI x I F
/Å2x2

5
log	 Ix 	 I l

	

,u2x20,112

	

2

	

16 .T 22 (4

	

g 2

	

)

	

64A2
+ O(u2) ,

and this is clearly not convergent for ,u 2 - 0. But the gradient of this expressio n
is convergent in the limit

	

å4 (1)(x„u2 )

	

a

	

1 x

	

O A	
0,u2

	

=
a,u20,4(1)(x,lez) 4m2 x2

.

This means that we may define the distribution s

a À,E (1)(x) = ajttz a ;t 4 (1) (x , u2)

d(i)(x,y2)

	

-

aaE(f)(x)
=

a

a u2
a, 4(i)(x, 1

u2)
,ce= o

while the distributions E(1) and E(l) do not exist .
From (A. 3) it now easily follows tha t

E(x)
2
	 ~(D(x) - xa D(x)) .

Likewise it follows from

01,E(1)(x) = 2 nif åkki,b'(k2)ei x•x
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1
aE(l)(x)

	

24
a~(D ( I )(x) xoD`I'(x)) ,

that
(A. 6)

1
where

24
and

	

cannol be interchanged .

In order to find the propagato r

Dt,v(x -y) = J2- <o 1 { A,,(x), Av(y)} I ~> + J2- e(x - y) <o I [At,(x), A,( y)] 10> (A. 7 )

we shall first calculate the vacuum expectation value of the anti-commutator .
We express At, in terms of the Fermi field through eq . (36). Using the fact tha t

< o I {At(x), Ar(y)} I o>

	

g11,,,D(l)( .x-y)

we get by means of (37 )

<o 1 { A(x), Av (y)} J o> _ a;D (1)(x- y) ,

<o l { A(x), A(y)} I o> = O .

Then from these equations and eqs . (35) and (A . 6) we finally ge t

<o I {A,,1(x), A2,(y)} I o> = - g vD(1 ) (x - y) (1- a)a t ,av E(1 )(x -- y) .

From the properties of E(x) it follows that

s(x - y)at,a,,,E(x - y) = a ,,av(r(x - y)E(x y)) ,

so that we may write the propagator in the for m

Dt,,(x - y) = - g,w D( 1)(x y) +
2

e(x - y)D(x-y)

- (1- a) a ad, (1- A ll>(x - y, /a2) + r(x - y)A(x y, ~2 ) )

In momentum space we find

Dµti(k )

	

- gm,
k 2 + is +

(1 - a)
ô u2

k,k,,
Ic2 a 2 is

9	 „

	

k c kv

	

i- l~	 + i(1 - a)	 ~ -

	

k2 + is

	

(k 2 + ie) 2 ~
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