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Synopsis

A consistent canonical quantization procedure for electrodynamics in covariant gauges of
a certain type is developed. This type comprises most of the gauges that usually are studied in
the literature. In every gauge there are four photons and in the sense that the expectation value
of the four-divergence of the Maxwell field is zero for all physical states, all these gauges are
quantum generalizations of the classical Lorentz gauge. The quantization is carried out by means
of a Lagrange multiplier ficld. It is shown that there exist generators for four-dimensional trans-
lations and rotations in every gauge. A peculiar aspect is that the scalar and longitudinal photons
are not stationary states (except in onc gauge), because the energy is not diagonalizable in
general. This is connected with the necessity of introducing an indefinite metric. It is possible
to connect the different gauges by operator ‘“‘phase’’-transformations of the eleclron field. The
necessity of a gauge renormalization removes some difficulties with the usual formulation of
quantum electrodynamics. The self-mass of the electron comes out gauge dependent by a direct
calculation, but a more refined analysis shows that it actually is gauge independent.
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1. Introduction

n classical electrodynamics the free Lagrangian density of the eleciro-
magnetic potentials 4, is
& = —}F,F* (1

where F,,, = 0,4, - 0,4, and we use the melric g, = (1,-1,-1,-1). Variation
of A, gives the classical equations of motion

4, +0,0,4" = 0. 2)

The freedom of gauge transformations allows us to choose both covariant
and non-covariant gauge conditions, with the sole restriction that F,, be a
covariant tensor. A typical example of a non-covariant gauge condition is
div A = 0 (the Coulomb gauge), and typical for the covariant gauges is the
condition 9,4" = 0 (the Lorentz gauge).!

It has been known for more than thirty-five years? that difficulties are
met if we attempl to quantize (2) with a covariant gauge condition, e. g.
the Lorentz condition. With modern methods we can see that such difficulties
arise in every covariant gauge, in other words, that the equations (2) cannot
be valid in any covariant gauge. I'rom general arguments of field theory we find
that the most general vacuum representation of the field commutator must be

Col[Au(@), AW 0> = — 2a] dpe(p)(e1(PD) gy + €2(PIPuP)E ™ ™2, (3)

where dp = dp(27) % and o,(p?) and g,(p?) are spectral functions. Using (2)
we find p; = 0 so that it follows that

Col [Fyu(®), Fo(y)] 10 = 0.

1 As gaunge transformations and Lorentz transformations may be mixed without disturbing
the tensorial character of F,, the phrase non-covariant is somewhat ambiguous in this connexion.
Consider for instance the Coulomb gauge. If we claim that the Coulomb condition has to hold
in every inertial system, then 4, does not transform like a four-vector, but according to a com-
bined Lorentz and gauge translormation. If we claim that 4, is a four-vector, then the Coulomb
condition is not valid in every inertial system. For the covariant gauges no such difficulty arises
because it is then natural to take 4, to be a four-vector.

2 W. HersenBERG and W. Paurr, Zeits. f. Physik 86 (1929) 1,

1*
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Now it is generally believed that this is not true', so that we must
give up the equations (2) in covariant gauges. In a non-covariant gauge
we cannot show that the vacuum representation has the form (3) and
hence we cannot prove an analogous result in this case. The Maxwell
equations (2) may very well be the equations of motion for the clectro-
magnetic field in a non-covariant gauge. Among the non-covariant gauges
we can mention the Coulomb gauge?, the axial gauge®, and the Valatin
gauge®.

In the case of the covariant gauges the above mentioned difficulty is
usually overcome by adding a term

- % (a,uAM)z

to the Lagrangian density (1). The ““gauge’” obtained in this way is called
the Fermi gauge, and it is the only covariant gauge which has been formulated
as a theory of canonically quantized fields®. A price must, however, be paid
for the simplicity obtained by this trick. There will be states which are not
physically realizable, in the sense that they cannot be prepared in any
experiment. Some arguments may be given to show that this is probably
the case in every covariant gauge. Whereas we are not able to claim that
the Maxwell equations (2) are satisfied for the quantized potentials, it seems
very reasonable to claim that the mean value of the potentials should be
real and satisfy

<A, +0,0,(A% = 0 (4)

in every physically realizable state®. But then all stales cannot be physically
realizable, because this would lead us back to (2).

In quantum electrodynamics most of the gauges which usually are
studied belong to a one-parameter family characterized by the photon
propagator
k, k,

D) = ~i- 394 i1 q) T (5)

2+ e

-
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This is in analogy with the Ehrenfest theorem of non-relativistic quantum mechanics.
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For a = 1 we gef the Fermi gauge,
for a = 0 the Landau gauge! and
for a = 3 the Yennie gauge?.

We shall show in this paper how the canonical quantization of a certain
class of covariant gauges may be carried out in a systematic way. In this
class we shall verify eq. (4) for the physical states. Furthermore, we shall
for these gauges find

0,45 = 0 ' (6)

in every physical state, so that these gauges may all be considered as quantum
generalizations of the classical Lorentz gauge. It will be shown that this
class of gauges is essentially equivalent to the family given by eq. (5).

2. Quantization of the free Maxwell field

Let us begin with the study of quantum electrodynamics in the analogue
of the classical Lorentz gauge, where

9,4" = 0 (7)

is valid as an operator identity. Considering 4 ,(x) to be generalized coordinates,
we immediately see that (7) is a non-infegrable relation between the gene-
ralized coordinates and velocities. This implies that quantum electrodynamics
in this gauge is non-holonomic and hence the canonical methods cannot be
expected to work at all. In classical mechanics non-holonomic systems with
constraints like (7) are treated by means of Lagrange multipliers®, and it is
therefore tempting to use the same method here. Accordingly we add to the
Lagrangian density (1) a term
- A9 ,A",

where 4 is the Lagrange multiplier, which in this case must be a scalar
field. In the new Lagrangian density

8 = — | F, ¥~ 49,47 (8)

we are allowed to treat 4, as independent coordinates, and it is imme-
diately seen that the momentum canonically conjugate to 4, is now — A

3

1 L. D. Lanpau, A. A. Aprikosov, and I. M. KHaraTnikov, Dokl. Akad. Nauk. SSSR 95
(1954) 773; JETP 2 (1956) 69.

2 H. M. Friep and D. R. YExNIE, Phys, Rev. 112 (1958) 1391.

3 R. GoLpsTEIN, Classical Mechanics, pp. 11, 40 (Addison-Wesley, 1959).
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whereas it formerly was identically zero. It would now be possible to go
on with the canonical quantization, but it is, however, convenient first to
generalize (8) slightly. As variation of (8) after A(x) gives us the gauge
condition (7), it is secen that the Lagrange multiplier behaves like a free
coordinate, with the constraint as “‘equation of motion”’. We therefore propose
to change the Lagrangian density to

L = — }Fu, F* — A0,4% + F(A(x)) (9)

where F(z) is a holomorphic function with F(o) = F'(o) = 0. As this extra
term not contains A, it will only change the gauge condition to

0, AP (@) = F'(A(x)) (10)

and should then only correspond to a gauge transformation. The equation
of motion for 4, is—independently of the function F—

OA, +0,0,A"= 0,4, (11)
and from this we get the equation of motion for A
O4 = 0. (12)
From (9) we now find the momenta canonically conjugate to A, to
be #2#9, where
g = F¥ — g A, (13)

Canonical quantization leads to the relations

[Au(). A lg=y, = 0, (14)
A=), 4Dy, = 1900(E - 7), (13)
[A(x),  A(WD]o -y, = 9@ -7, (16)
(@), AW]gimy, = 0. (17)
[A(x), A(]o=y, = —1050E =), (18)
(@), AWsmy, =0, (19)

where the dot means differentialion with respect to time.
From (11) we find taking u# = 0

A = A4, +0,A (20)
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and then by (16) and (18)
[A(x), AP gy, = 0.

Integration of (12) yields for arbitrary y,

Aw) = —[dgD(z—y)0,Ay),

where D(x—y) is the well-known singular function corresponding to mass
<> > <
zero'. We furthermore use the conveniion d = 9 — 0. Hence we find that

[A@), A@] = 0 (21)

for arbitrary points x and y. Analogously we find by means of the equal-
time commutation relations

[A(x), 4] = —105D(x ~y). (22)

Remark that the two important relations (21) and (22) both are independent

of the gauge condition (10)2. It is possible to find one more set of relations

which is independent of the gauge condition, namely the commutation

relations for the field strengths F,,,. To find these we first define the transverse

projection operator

(8y—nun-0) (81,~n7,11-8)’ (23)
O+ (n-0)?

where n, is a time-like unit vector. Here we shall always take Ry = Guo-
Then 7, only involves spatial operations®. Now define the transverse field by

T = Gy~ n,n, +

AL = T A (24)

From (11) and the well-known properties of Ty it follows that
OAL = 0. (25)
Integraling (25) and using the equal time commutation relations we find
[427(x), A7) = — in,,D(x-y), (26)
showing that the transverse part of the Maxwell field is correctly quantized.

From (20) and (23) we get®

1 G. KALLENw, ibid., p. 190.
* Equations (21) and (22) have been derived in the Fermi gauge of asymptotic quantum
electrodynamics by R. E. Pven (Ann. Phys. 30 (1964) 422).
3 A = O+(n-§)? is Laplace’s operator, and 1/4 may be defined as
1 o = f&@)
= = —\dx S
A ) V= 4mle—7




Y 8M )
AH = AMT + ZA — Za,.A%
such that
d,n,—0o.n, .
Fup = FZ’;‘ + J“L—”—A——D—MA,

where Fﬁ' are the “transverse field strengths’’. Then using

[A(), 45" (] = 0,

which follows from (22), we find
[F,uv(x): Fga(y)] = i(Q,uQavaa - gvgaluaﬁ + gvo'a,uag - g,uoavag)D(x"y) - (27)

This is the most important result of this section. The quantization by means
of a Lagrange multiplier method leads to the well-known commutation
relations® for the field strengths in an arbitrary gauge of the type considered
here.

In order to find the commutation relations for the potentials we shall
make a special choice of gauge condition, namely

P(AG) = §A<x>2, (28)

where a is a real number, such that the gauge condition now reads
8MA'“ = add. (29)

In the appendix it is shown that this choice of gauge leads to the family of
photon propagators (5). The gauge parameter a is actually identical to the
mass ratio parameter in the theory of massive electrodynamics, developed
by FerpmaN and MarraEws?

With the gauge condition (29) we find from (11)

004, = (1 - a)d,d. (30)
Using (12) we get
no4, = 0.
Now it is fairly trivial to show that if a field @(x) satisfies the fourth order
differential equation 1 J¢(x) = 0, then, for arbitrary y,,

1 R. E. Prierts, Proc. Roy. Soc. A 214 (1952) 143.
2 G. FELpManN and P. T. MarTHEWS, Phys. Rev. 130 (1963), 1633.
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#(x) = — | dgD(z-y)dye(y) ~ | dGE—y)d, O9(y),

where E(x) is given by

, 0A(x~y, p*
E(x) = 2ai[ dpe(p)d' (phye = ~ ;@(M‘y =

ur=0

The rather peculiar properties of this distribution are given in the appendix.
By means of the equal-time commutation relations and the integrated
cquation of motion for 4,(x) we find after some calculation that

[Ap(®), 4] = — (g} + (1 - 0)9,0,)E(x-y) — } (31
= - ig,uvD(m_y) — i1 - a)a‘uﬁvE(x_y)»

where in the last line we have used the relation (JE(x) = D(x).

3. Indefinite metric

It is well known that it is necessary to introduce an indefinite metric in
the Fermi gauge in order to secure the covariance of certain expression®.
As the present theory contains the Fermi gauge as a special case, it must
be expected that this will also be necessary in any covariant gauge of the
type considered here.

For the moment we shall content ourselves with the following properties
of the metric operator #:

77=77*=77', (32)
ndyn = A, (33)
nlo> = lo>. (34)

Equation (32) expresses the Hermiticity and unitarity of the metric operator,
(33) the self-adjointness properties of A, with respect to 7, and (34) the
choice of positive norm for the vacuum. In the following section we shall
fix the properties of % with respect to 4, completely.

! G. KALLEN ibid., p. 191, 199, Here further references can he found.
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4. Fourier expansion of the field
In this section we limit ourselves to the case (29). Let us define the field

a—1
2

2@ = 0 @A) - 3 A, (33)

From eq. (12) it then follows that

Ox(x) = (1-a)A(x).
This shows that the field

Aﬁ =4, - 3”)5(.1) (36)
satisfies the equation
’ AT = A, (37)

and from (11) we find the equations of motion for A/I: :
DA}j = 0. (38)

From the relation (see the appendix)
1 =
B(@) = 5 (D) - @)
we gel using eqs. (21), (22), (31), (35), and (36)

[*4,5(:1")’ Af(y)J = - ig/wD(x_y) . (39)

As eqs. (38) and (39) are the equations of motion and commutation
relations of the Maxwell field in the Fermi gauge we may immediately write
down the usual expansion (in a periodicity volume)

LN D g+ agayern, (40)

I/V - ]/2 w
kA

Aﬁ(m) =

where a(kl) and . .
(k) = na*(kd)yy

have the usual commutation properties

la(kL), a(k'2)] = Oz (— 907)>
la(kR), a(k'A)] = 0.
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If we therefore fix the properties of % by the relations

(7, a(ki)]
1, a(ko)}

I

0 (A=1,223)),
O)

1

we find

[a(ka), a*(R'A)] = 8 oy (41)

This permits us to interpret a(ki) and a*(kA) as annihilation and creation
operators for photons.
By virtue of equation (12) we may expand the /-field as
Aw) = = 2 Iy a(yely (42)
VYV £<)2w
k
where as above A(k) = %A*(k)n. From eqs. (37) and (40) we then find

ME) = a(k3) — a(ko). (43)

One may easily verify that

), 2] = (AR, 2] = 0 (44)

in accordance with the vanishing of the A-4 commutator. Remark that (44)
leans heavily on the properties of the indefinite metric.

By the expansion (42), of the A-field and by eqgs. (35), (36), (40) and
(43) we may now express the total field 4, in lerms of annihilation and
creation operators.

As in every gauge we are able to define the creation and annihilation
operators as above, the Hilbert (Fock) space will have the same structure in
every gauge. Although electrodynamics in different covariant gauges must
be considered as different field theories (because the gauge condition is
stated before the derivation of the equations of motion), we can, however,
think of these theories as formulated in the same Hilbert (Fock) space.

The transformation field x(x), given in (35) seems to be non-covariant
on account of the explicit time dependence. [If the equations of motion for
A, are solved by Fourier transformation one finds that this time dependence
essentially stems from the term — (#/2w) coswt in the solution of differential
equations of the type

d*y 2 .
e T ey = sin ot].
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The question of the apparent non-covariance is resolved in the following
way. Covariance in field theory is equivalent to showing the exisience ot a
representation of the proper inhomogeneous Lorentz group under which
the fields transform correctly, i. e. finding generators of infinitesimal trans-
lations and rotations. As we shall show in section 5 these generators exist,
but are not independent of the gauge. This means that the field Aﬁ(m),
which can be defined in every gauge by eq. (36), is only a four-vector in the
Fermi gauge. The splitting 4, = Aﬁ + 0, is therefore a splitting of the
covariant field 4, into two non-covariant terms in the gauge characterized
by the parameter value a. An expression which is covariant in one gauge
need not be so in any other gauge.

5. The energy-momentum tensor

Although it would be possible to study the general gauge condition (10)
we shall here limit ourselves to the simple case (29) where the Lagrangian
density is "

8 = 1 F,F" - 10,4 + 3 A%, (45)

By straightforward calculation we find from (45) the symmetric energy-
momentum tensor

.9 a
Ty = — FuF) + % 0uFpoF® + A,0,4 + A0, 4 — g‘m,(Alaﬁ”/l +5 A%y, (46)

which by means of the equations of motion and the gauge condition is seen
to be conserved.

By direct calculation it is possible to show that the linear and angular
momentum operators P, and M, have the correct commutation properties
with respect to the Maxwell field, i. e. that they are generators of infinitesimal
translations and rotations. Remarl;, however, that PM and M/W are not
Hermitian, but self-adjoint, i. e. nP;n = P, and analogously for M, . This
has the consequence that for instance the energy H is not necessarily dia-
gonalizable. Take for instance the model (o is real)

B 1 0 "o 1+ a 47
n—(0_1>, _<ﬂx 1—a.>' 1)

This H is self-adjoint with respect to #, but it has only one eigenvector,
for oo + 0.
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Using 4, = Af; +0,% we can split the energy-momentum tensor (46) into
Lwo parts

N A

Ty = Tuw + Thy

where the first part is what we would find in the Fermi gauge and the second
is only dependent on 4. From the usual theory of the Fermi gauge we know
that (after removal of zeropoint terms)

Pﬁ = fdi'fl’ﬁ'o = %kﬂa*(l}l)a(]}l).
i
The rest of the four-momentum
il Jp—y
Py o= fda:TMo
is now found to be

Pi =0,

1- .10
pl - fd.f a(AZ—A—A) -
4\ A

1-a ¥ s s
5 Zw}.(k)l(k).

¥
Finally, we have the total momentum and energy

P, 2 kyat(kA) a(kA),

Ii

B,

I

kA
I o
H - z w(kd) (k) + Taz wI(R)A(E) .
i P

From this it follows that (in matrix notation)

l1~a 1—-a

{H (aa:acg)ﬂ . Tt a=*=<'c3>>
\as(k0) _l_gg I_L;_a a (k0)/”

showing—by comparison with (47)—that the energy is not diagonalizable,
except in the Fermi gauge (¢ = 1). This means that the longitudinal and
scalar photons are not in general stationary states, but mix with each other
during time. Only one combination of scalar and- longitudinal photons is
stationary, namely

a*(k3) + a*(k0) = I(k).
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Let us by a natural generalization of the definition of physical states in
the Fermi gauge demand that the physical states satisfy

A (x)|P> =0, (48)

where A4 is the posilive frequency part of 4. Then it is easy to see that only
the transverse photons contribute to the mean value of the energy in a
physical state. Furthermore

(D0, AP = 0, (6)

so that every gauge of the type studied here must be considered as a quantum
generalization of the classical Lorentz gauge in the same sense as the Fermi
gauge. (It is also seen that eq. (4) is satisfied.)

6. Quantization of the interacting fields

We shall now consider the Maxwell field in interaction with the electron
field. The Lagrangian density is taken to be!

a . €o
& = R EF DA + 2 AP L[ (0 - mo)y] ~ DT yp]AR, (49)

where as before we have treated the gauge condition by means of a 4-field.
All the flelds are considered to be unrenormalized, and a,, m,, ¢, are the
unrenormalized parameters of the theory. By calling the gauge parameter
a,, we have admitted the possibility of a gauge renormalization, and we
have restricted ourselves to the simple gauge conditions of the type (29).
The equations of motion are found to be

[
Dy + 00,4 = 6,4 = 2 [ y), (50)
3,48 = ayd, (51)
(iy-0 —my)y = e;y-Ay, (52)

from which we again derive
04 = 0. (83)

1 We use the y-matrices with {y,,9,} = 294 and y.a = a,pu. These py-matrices are self-
adjoint, i. e. Yy = 7'07’;57’0 =7,
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The metric operator #, which must also be introduced in this case, with the
properlies given in section 3, is moreover assumed to satisfy § = nytyy,.

The equal-time commutation relations for the Maxwell field and the
A-tield are found to be exactly the same as in the free case (eqs. (14)—(19)).
Furthermore we have the following commutation and anticommutation
relations:

{9(), ¥(Pls—y, = 0, (54)
{v(@), P gimy, = YoOE D), (55)
[p(2), A gy, = [9(2), 4,050y, = O, (56)
[p(), A ey, = [P, A ]pmg, = 0, (37)
(@), AWP]g=y, = B(@), AWPymy, = 0, (58)

By methods analogous to those used in section 2 we find

[A(zx), A(p)] = 0, (59)
[A(x), 4,(p)] = —0pD(x —y), (60)
[Ax), w()] = e, D(x —y)p(y), (61)
[A(x), p()] = — eoD(x = 1)(Y) - (62)

These are the only integrable commutation relations in the case of the inter-
acting fields. A conscquence of the last two relalions is for instance that
A(x) commutes with any local bilinear expression in % and %, i. e.

[A(x), wo(W)Pp(p)] = [A), Bp)ya(y)] = 0. (63)

7. Gauge transformation

If we had started with another value for the gauge parameter, say o',
then we would have arrived at a different theory of interacting fields. In the
case of the free Maxwell ficld we have however seen that the two gauges
could be connected by a gauge transformation

’

A = A, 8,y (64)

i
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with
ay,—a, 1 .
1@) = =00 — (@) = A@)). (65)
We shall now see that the transformation (64) with x(x) given by (65) also
carries us from the gauge a, to the gauge a, in the case of interacting fields,
when the electron field is subjected to the transformation

€o (28 .
Y(x) = ¢ 2@y 2 A, (66)

One should here remark that y(x) is a q-number which does not commute
with y(x).

We shall now show that provided 4;, and y salisfy the equations of motion
and commutation relations for the gauge a,, then A;l and y’ satisfy the equa-
tions of motion and commutation relations for the gauge a,,.

From eqs. (50) and (64) we find

, , e -
O4), +8,0,4” = 8,4 ~ ft@,mpl

However, by (63) we have
B vyl = [ yupl
Likewise by (561), (53), (64), (65) we find
8,4" = a,A.

From (52) and (66) we get
2
. ’ o -eO ’ 80 ’
(iy-0 —mo)y" = eoy- Ay — i [y Ay = [y dpy'], (67)
where we have used the fact that [y(x), 4,(y)] is a c-number such that

. Go €o o
eﬂEXAMeHEZ = 4, —12&) [, 4u]
Unless a cancellation between the singular terms on the right hand side of
eq. (67) occurs, we cannot reduce it to the required form. Bul as we shall
soon see, this cancellation actually occurs. On account of the singular
character of the terms we have to treat them with some care. First we f{ind
by means of the commutation relations (61) that
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17
; @ ~ a, 1
[V'a%(m)) w(yhxa=ya = = 9 A eo{??’o + XYy x} 6(3' U)V)(Jsxo)
while from (60)
- .al -
)y Az, gy, = — 1 ‘)A~(wo+xo% DT 7).

Then

teo[2(9), v-A(X) L = 9 x0) + [y 0 (), w(y) |y, - 0.

Here we can take & = 7 and by use of (66) we see that the last two terms
in (67) actually cancel each other.

It is possible to show that the commutation relations are invariant under
these finite transformations, but it must actually suffice to show that they
are invariant under infinitesimal transformations with da, = a, —a, in-
finitesimal. As an example we take the anticommutator (55). Then

O O A (L ORI SIS T EORPTEO N )3
Using
{A(B.CY} = [[ABLCI +{B.C.A}}

we find by means of the commutation relations

/

.€p

0
WD F WY, = = 15|~ 5 word @ DIWLY@) +

da,, .
+22(0)7,0(T =) - 5 J, 1 Yotod@E ) [w(@), B ~ 2 2(Y)760E ~ 1) =y, = 0.

The other commutation relations are shown to be invariant in an analogous
manner.

It should be remarked that the A-fleld is not supposed to transform, in
other words that it is assumed to be gauge invariant. This is also consistent
with the manifestly gauge independent form of the left hand side of eq (50).
The A-field has more fo do with the general mode of description (covariant
gauges) than with the particular gauge in which this descriplion is carried

out. Also the constants m; and e, must be supposed to be gauge indepen-
dent.

Mat . Fys.8kr.Dan.Vid.Selsk. 35, no. 11.
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8. Renormalization

A characteristic feature of the renormalization in the Fermi gauge is the

occurrence of a term I

171 0,0,4% (68)
in the renormalized current. This term cannot be accounted for by charge
or wave function renormalization, but has to be introduced by gauge in-
variance arguments'. If the correction to the photon propagator is calculated
in the lowest order in the unrenormalized theory, it is seen that starting
from the Fermi gauge, one does not end up with a propagator which behaves
near the mass shell like a propagator in the Fermi gauge. In the renormalized
Fermi gauge the term (68) brings us back again to this form and hence the
inclusion of this term must be considered as a renormalization of the gauge
parameter. We shall show that this gauge renormalization comes out quite
naturally in the present formulation.

Let us now introduce the renormalized mass (un), charge (¢) and gauge
parameter (a) by

m, = m — dm, (69)
e

R (70)

a, = (1 - K)a, (71)

where dm, L, K are renormalization constants to be determined later on.
Likewise we introduce the renormalized fields 1,0("), Ag) and A® by

p = Ny®, (72)
4, = 1-LAD, (73)
A= Vll__KL A9 (74)

where we have anticipated the result that the wave function renormalization
constant of the Maxwell field is the same as the charge renormalization
constant. The wave function renormalization constant of the /-field has
been chosen such that the gauge condition for the renormalized fields reads

3, A8 — aA?, (75)
1 G. KALLEN, ibid., p. 346.
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One might object that the A-field should not be renormalized as it does
apparently not take part in the interaction on account of eq. (563). But a
glance on eq. (61) shows that this is not true.

Leaving out the superscript (r) on the renormalized fields we now find
lhe renormalized equations of motion

DA, +0,0,4" = 8,41, (76)

Tu = —iN—z*Wn/ pl— a4 (77)
2(1—1)y""""# 1-K #

(iy-0 —m)y = —f, (78)

f= - ey-Ayp+ dmy, (79)

9,44 = ad. (80)

It 1s seen that a term of the type (68) is now present in the renormalized
current. We shall actually find in the next section that K = L. The commu-
tation relations between the renormalized fields may easily be derived from
the previously stated relations for the unrenormalized fields.

9. Determination of the renormalization constants

The renormalization constants are usually expressed by integrals over
some spectral functions. By the well-known arguments we can write the
vacuum expectalion value of the current-current commutator as

ol (), () lled = —i(g,,0 + 8M6,,)fdld(x~y,l)ﬂ(2), (81)
(2]
where II(1) is a positive definite spectral function® (zero for negative 1) and

A(x—y,2) = — 2mi | dpe(p)d(p® — A)e @) 89
PE(PIO(P

is the singular function with mass /4 .

In order to find the renormalization constants in terms of this speciral
function the standard procedure is to integrate (81) with suitable limit
conditions, which express how the interacting field asymptotically goes over

1 As the definition (81) is obviously gauge invariant we may use the result from the Fermi
gauge (G. KALLEN, ibid., p. 350).

2*
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into the incoming free field. Asymptotic conditions are, however, very
difficult to apply, because the limits are not well-defined. Furthermore,
one finds in the conventional theory of the FFermi gauge that the matrix
element of the renormalized field between vacuum and a one-photon state
is different from the same matrix element of the incoming free field, becausel

elAy(x) k) = (gu — MDO,0,) Co| AV () | k) (83)

where M is a non-vanishing constant. Asymptotic conditions of the con-
ventional form? can therefore not be applied to quantum electrodynamics.

It is, however, possible to integrate (81) without transitions to the limit
of the infinite past or future. Lel us define the field

AP @) = [dgD(x— )0, A1), (84)

By an elementary integration by parts we find

A, (x) = AP(x) + f dx' D(x—x YA, (). (85)

Now from the equal-time commutation relations we find

K
[AfF7 (@), 1 (y)] = T D -y). (86)

Then we have

K Lo
4@ T, = 1177 0,0,D(x—y) ~ [da’ Di=a) [ (x), Ty ()],

Yo

where we also have used the equations of motion and the fact that the
A-field commutes with the current. If we take the vacuum expectation value
of this equation and insert (81) we find afler some calculation

K
<ol [A/L(x)ﬁjv(yﬂ lo) = i'*_ 8[(1,61)1)(1'7.‘]) +

’7(/1)

+ (gD + 48y fdﬂ»(A(x g, 2) = D(z-p)) =22 (87)

— iy~ Gpuouo) D(x ) f dALI(R),

1 G. KALLEN, ibid., p. 344.
? H. Lenvanw, K. Zymanzik, W. ZIMMERMANN, Nuovo Cimento 1 (1955) 425.
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where we have used the relation

[awD -2 i) = 3 (A@-g )~ D). (69

Yo

The last term in (87) is non-covariant and must therefore be identically
zero, 1. e,

fdALKA) = 0. (89)

This also follows from the application of current conservation to (87).
In view of the positive definite character of [Z(1) this result seems quile
nonsensical. A suitable regularization procedure, however, removes this
difficulty?, and without going into details we shall in the following assume
eq. (89) to be valid.

By a similar procedore we can now integrate (87) to get

Col [4,(x), 4,(1)] 10y =

k%ﬂ+a@ﬁ]n@ﬂ~% 6ﬂE@~w_

(90)
p
(g + 0, »fdM(x 01 [ 00w,
where
I(o ).__[dzjj(l) (91)
_ e
(o) = [aa ;), (92)

and we have used the relation

fd.:t:’D(a:—:c’)D(x'~y) = E(x—y).

Yo .

which can be oblained either from (88) by letting 4 — o or by direct calculation.
Our renormalization requirement is then that this commutator shall

behave like the commutator for the free Maxwell field in the gauge a, near

the mass shell. If we disregard the d-function in the lasl term this gives us

1 J. MorFar, Nucl. Phys. 16 (1960) 304.
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1 .
—— = 1 + (o), 9
- ©) (93)

1=K _, 94
1-L (94)

ie. K =1L

A similar procedure may be carried out for the electron field, for which
the spectral functions are defined by

CoHf). [}y = — 2 [ dpe(p)(Zy(p) = (yp— m) Z(p2) e P&, (95)
The renormalizatiqn constants are then found to be given by

dm = N2X|(m?), (96)

El»é = 1+ Zy(m?) - 2m Iy (m?), (97)

as in the conventional theory of the Fermi gauge. We have used the notation

L(m®) = idl %(29 (98)
50 o o, 21(d)
Zy(m®) - n{ A (99)

10. Asymptotic conditions for the Maxwell field

We now assume the existence of incoming free fields Aﬁ"), A% such that

AR +8,0"Af™ ~ 0, 4™, (100)
(En) _ (i)
IAIM — g (101)
[, A )] = = (gD + (1-)8,9,)E(x—y). (102)

It is then possible to show that with a suitable value for M the following
asymptotic conditions are consistent:

A = A, (103)
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Ay = AR = MO, A + [dx' Dy(x—a') T (), (104)

where Dy is the retarted photon Green function®. It is quite clear that these
conditions are consistent with the equations of motion. But still we have
to show that for a suitable M they will also be consistent with the spectral
resolution of the commutator. From a spectral analysis of (o] [4,(x), AP ()] 0>
it follows by means of the equations of motion and (103) that

o] [J (), A ()1lo> = 0. (105)

From this we find by means of (104) that
o |4, (x) |k, iny = <o AFV(x)|k,ind — MO, Lo| A(x) | k,iny,  (106)

which Is identical to (83) in the Fermi gauge (a = 1).
By a simple calculation we find by comparison with (90) that

II(%)

2M = IT'(0) = fdl—r, (107)
o]

which also follows in the conventional theory of the Fermi gauge?.
We are now in a position to calculate the spectral functions in the lowest
order. The result is

2 2m2\y / 4 m? -
H(O) 2y € (1 + ) 1 —— @ 2__4 2 , 108
(p") 19 72 pz - p2 (p m”) ( )
E(O) 2y ITl(g2 (’1 1112)(‘3 mzx @( ) ) 109
1<p)_167z2\ pz . apz) pT - mY), ( )
2 2 2
2000 = ags o[ 1- %] oG- ). (110)
16 7%\ P

1 The asymptotic condition (104) has been found by RorLmik et al., Z. f. Phys. 159 (1960)
482, for the case of the Fermi gauge. The author is grateful to G. KZrLiN for calling his attention
to this work and for pointling out that there may be some formal difficulties with this asymptotic
condition.

® In order to find (107) one should use the equation

(Ol Au— A+ Mo, A, Ay— AS™ + Ma,Allo) = (0l A ,— A", A,— A 1)),
and the derivation now proceeds exactly as in G. K&iLLEiw, ibid., p. 350.
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For a = 1 these reduce to the usual Fermi gauge spectral functions. It
is seen that the wave function renormalization constant 1/N? is not ultraviolet
divergent for « = 0 (the Landau gauge) and not infrared divergent for ¢ = 3
(the Yennie gauge) in the lowest order. This fact has been known for some
time!. The self-mass presents in the lowest order a special problem, which
we shall discuss in the next section.

11. The gauge dependence of the self-mass of the electron

We have seen in section 7 that the bare mass of the electron is not supposed
to change under gauge transformations. As the physical electron mass
obviously must be gauge independent we can immediately conclude that the
self-mass dm must be gauge independent.

If, however, we calculate the difference in self-mass between an arbitrary
gauge and the Fermi gauge in the lowest order we find by (109)

am'® — dm{@ = T (m?) - X9 (m?) (111)
22O - 203G
_ J’d;{ 1 (4) 21F( ) (112)
. A—m
1 me’ 113
B ( (l) 167‘[2, ( )

where we have denoted quantities from the Fermi gauge (a = 1) with a
subscript F.

Unless we can find an error in our derivation, this result shows that
there is an inconsistency in the theory. The error lies, however, in the slep
from (111) to (112), because (111) is the dilference between two infinite
numbers, the value of which depends on the method we prescribe for the
calculation of this difference. The result shows that the prescription (112)
is not correct and we must now try to find a better way of evaluating the
difference.

If we introduce a cut-off in the photon propagator the formerly infinite
numbers will become finite. Hence, we get

1 B. Zumino, Journ. Math. Phys. 1 (1960) 1.
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b
wn

Q,Lw
1\2

o
D, (k) = +i(1-a) “”—>(-~z@—z<1—a>

— 22 _
(> <A2>Z)1«2 2

71 1 1 11 1y
= l(}{—2 ig gle+l(1 a)]\”]\,, ((k2)2+?(k_3_1€272))

where 2? is the cut-off parameter, which is supposed to be gauge independent.
In the Fourier transform of the commutator and anti-commutator the
expression

g‘mzé(kz) + (1 _a)k‘ukval(kz)

must then be replaced by
! 1 P .
(3K ~ S(E*— %) + (1 - a)kﬂlcv-(ﬁ (&*) — o (8(k2) — 8(k* - A1) | .

This expression is now used in the calculation of the speectral functions
and we find the difference

2 2 2
(©)¢ 1,2 (0) _ L T - P S N
237(p") — 25 (p) 16 - )( pz)pz O(p )
I 2 2 m2
_ 3:% (1- )*l_(( ;Ez—) O(p? — m%) — (114)
. [ 22— m? /l(pz,mz,lz) . .
(1 +—pz—) ]/ S0 (m ) )).

Here?

Ma,y,z) = 2 + 2 + 2% — 22y — 29z — 2z

is a quadratic form.

Remark that the last terms in (114) vanish for A?2 -»oco. If we insert
(114) in (112), the integration can be performed and the result is identically
zero. The original result (113) is exactly cancelled by a contribution from
the last lerms in (114). One should notice that the step from (111) to (112)
now is perfectly allowed because both numbers in (111) are finite. Thus
with this prescription the self-mass is gauge independent also in the lowest
order.

b G. KALLEN, Elementary Particle Physics (ApDisoN-WEeSLEY, 1964).
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The considerations in this section are a nice illustration of how carefully
one must treat the infinite numbers met in canonical field theories of this
kind.

12. Conclusions

It appears as if quantum electrodynamics in the covariant gauges of the
type studied in this work is as consistent as the conventional theory of the
Fermi gauge. But it is also clear that the formulation in that gauge is the
simplest, not only hecause the photon propagator has its simplest form here,
but also because the energy is not diagonalizable in any other gauge than
the Fermi gauge. The transformations which connect different covariant
gauges are of a rather singular nature. Although it migh be conceivable that
quantum electrodynamics would only be consistent for one choice of gauge
parameter, no special reasons have as yet been found which would support
this possibility. One might argue that the apparently gauge dependent self-
mass could be an indication of an inconsistency of quantum electrodynamies,
but it is clear that this inconsistency only arises because the perturbation
calculation gives rise to a divergent self-mass, and it therefore belongs to
the general class of defects of the theory which are circumvented by the
renormalization procedure.
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APPENDIX
The distribution

E(x) = 2nifdpe(p)d'(phe*” (A1)
has obviously the properties
OE(x) = D(z),
E(-x) = — B(x),

E(x) =

U= 0

where A(x, %) is the well-known singular function
A,y = — 2mi [dpe(p)(p* - uP)e 27, (A.2)

By integration over p, and over angles we find from (A. 1)

. j &P°T g (sm wro) A3y
x) = — -— .
( ) (‘) 7'6)3 a \ ( )
17 _ . sin wx,
— | dw cos o |Z| . (A.4)
4 w
(2}
From this we immediately get
E(x) = E(x) oG, (A.5)

and from (A.3)
E(%,0) = E(E,0) = E(F,0) = 0; E(x,0) = §T).

From (A.4) it is clear that the positive frequency part of E(x) is diver-
gent for o — 0. But it also seems as if the positive frequency part of 8,E(x)
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were convergent. Let us therefore study this divergence somewhat closer.
We use here the well-known expansions of the singular functions

1 2 2
Az, 4y = — —— e(x)d(x?) + £ &(x)O(x?) (1 _ xz) + O(u"),
2m 8n \ 8
11 veele|  pe
O, p?y = ~ =+ Foqog I E
A1) 277 x®  4a® 2 8 n?
4.2 =
pux” (b yulx) X
32 2(4_ gﬁ*)+0(”)'

Equation (A. 5) is easily seen to follow from the first equation by differen-
tiation after #®. By differentiation of the second we get

AV (x, u?) 1
RS ST AL N BT o),
912 122 %y Ty gane O

O
P

oyl sz_z_(«*? Wlxl) pra’

and this is clearly not convergent for 4> - 0. But the gradient of this expression
is convergent in the limit

AV, 1) 1 x
0= = —— AN (e 2y > Th
A a‘ug 0/12 A (/B u ) —>4;r52 i

This means that we may define the distributions

0
BAE(”(:(:) = —Q BZA(l)(x, MZ)

aluz ui=o ’

() 4 (&) 2
HE S (x) = g2 0 (e ) ,
Iz im0

while the distributions E and E® do nol exist.
From (A. 3) it now easily follows that

1 .
B@) = = (D(@) - 2, ().

Likewise it follows from

B, BN (x) = 2mi [ dkk,d' (ke F=
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that 1 .
O,EN() = 57 0,00 (@) — 2DV (). (4-6)

1
where BV and (?M cannol be interchanged.

4

In order to find the propagator
Dyy(x—y) = 3o {4 (), 4,(N}H o) + § e( —y) Lol [A, (), 410> (A.7)

we shall {irst calculate the vacuum expectation value of the anti-commutator.
We express 4, in terms of the Fermi field through eq. (36). Using the fact that

{A(x), AA W} o> = — g, DV (x—y)
we get by means of (37)

O {A(x). 47} o> = — DN (x —y),

(o] {d(x), A(y)}o> = 0.
Then from these cqualions and eqs. (35) and (A. 6) we finally get
CoH{A (), 4} 0> = — guDD (@ —y) — (1~ )0, 0,ED(x - y).
From the properties of L(x) it follows that
e(x— ), 0E(x—y) = 8,0,(s(x—~y)E(x —y)),

so that we may write the propagator in the form

i
Dunl =) = = gyl £ D9 4) + 5 e Dl -

9 i
— (=) 5 Oy <% AV =y, 4®) + (e~ Az ~y, Mz))

HWr=o
In momentum space we find
D, (k) S S
pwAK) = = Gy mT o U @) S Kyl -

k*+ e o —ptrie| L,

. Y . k/Lkv
= —i{———+i(l-a —.

K+ ie ( ) (k2 +ie)*
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