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Synopsis

The distribution of the octupole oscillator strength, arising from one-phonon
excitations of density variation modes in even-even spherical nuclei, is analysed
on the basis of an interaction consisting of pairing -- octupole-octupole force.

Special attention is paid to the isospin structure of the states.

It is found that, in many cases, two or three lines of comparable strength
oceur in the low-energy spectrum (< 5 MeV).

The experimental cvidence on energy and transition probability, which is
available almost only for the very lowest state, can be accounted for reasonably
well by a strength constant for the octupole-octupole force which varies smoothly
with the atomic number.
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1. Introduction

In recent years, a theory has been developed which gives a description
of the density variation modes of nuclear vibrations in terms of single-
particle excitations. This represents an improvement upon older, more
phenomenological theories, not only by relaling the collective and the single-
particle aspects, bul also by comprising in the same picture all degrees of
collectiveness of the spectrum.

In a quantal system like a nucleus, density variations occur due to
transitions of one or more particles between different states. When a particle
is excited (a particle-hole pair created out of the ground state), the corre-
sponding fluctuations in the nuclear field affect the motion of the other
particles and tends to generate other particle-hole excitations.

Thus, because of the interaction between the particles through the field,
the randomly distributed {luctuations from different single-particle excita-
tions come in phase, and a more or less collective movement of the particles,
a vibration, arises.

The octupole vibrations which we shall study are known from experi-
ment to be less collective than the quadrupole ones. They should be more
intimately connected to the details in the single-particle level scheme, and
the oscillator strength in the low energy part of the spectrum might be
spread over several levels.

The lowest octupole excitation has been studied by Yosmipa (ref. 1) in
a few cases.

In the present work we shall extend the investigation of the octupole
excitation of lowest energy to a wider region of the periodic table. This
gives information about the way in which the coupling constant for the
effective force must vary with the atomic number in order to reproduce the
observed energies. We are also going to study the excitalions of higher energy
and the whole energy distribution of the oscillator strength. It may be men-
tioned here that from the calculation two rather strong lines appear frequently
in the low-energy region (2—5 MeV).
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Since the isospin character of the vibrational states has been discussed
only briefly before, we pay special attention to this problem and the relation
to the isospin dependence of the field producing force (the long-range com-
ponent).

2. The Hamiltonian

The ““microscopic’” description of collective excitations of a many-body
system was introduced in nuclear physics by several authors, and we meet
it under different names (method of linearized equations, random phase
approximation, Sawada method, Baranger method, quasi-boson approxima-
tion, generalized Tamm-Dancoff method) (refs. 2 and 6). It has been used
by several investigators, e.g., by YosHmpa (ref. 1) in the study of quadrupole
and octupole vibrations in some cases of spherical nuclei, by Biis, by
MarsHALEK, and by Soroviev et al. for deformed nuclei (vef. 3), and by
KrssLingER and SorReNSEN for quadrupole oscillations in a wide region of
the periodic table (ref. 4). Since the theory has been presented repeatedly,
we shall only mention here as much as is needed for introducing definitions
and notations (which are almost the same as that used by Yosuma (ref. 1)).
We consider spherical even-even nuclei. The particles are supposed to move
in a shell-model potential, interacting by a short-range and a long-range
force. Thus, the Hamiltonian is

H = H(shell mod.) + H(short range) + H(long range). (2.1)

The short-range part of the interaction

The short-range part of the interaction is represented by a pairing force
(ref. 5). Only that part of the pairing which influences the particles in the
partly filled shells is taken into account, and pairing between neutrons and
protons is not included.

The pairing + shell-model part of the Hamillonian is

H(shell model) + H(short range)
= > e(j. t)at(j,m ty)a(j, m, ty)

Jmt,
Ly I rr ! . . 2-2
~16U) 3 @t m at(, — ' tal, - m tpati.m ) | 4

Jom,t

X(— 1)1’—m’~7’+m.
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Here, {,is the z component (or the » = 0 spherical tensor component) of the
isospin of the particle with the convention

1 for protons
t :{ 2 on P } (2.3)

— 1 for neutrons,

&(Jj, 1,) is the shell-model single-particle energy, at (j, m, {)) and a(j, m, t,) are
creation and annihilation operators for a particle in the state j, m, {, (j
represents all quantum numbers necessary lo specify the state, with the
exception of #; and the magnetic quantum number m). The force constant
in the pairing G(f,), and the number of particles n in the partly filled shell
are inserted into the BCS equations (2.4) and (2.5) which are solved for

protons and neutrons separately with respect to the quantities A(#,) and
A(ty):

S+ 2
= , 2'
LRG| () @4
S0R(jte) < (27 + 1) = n, (2.5)
where

E(j ty) = ((e(f.tg) — A(Lp))? + A2(tp))', (2.6)
2rion  1fy Gt =(lo) *
v (Jito) = 2(1 TEG > (2.7)

Here, E(J,t,) is the quasiparticle energy, A(f,) the chemical potential or Fermi
energy, A(ty) the gap, v?(j,t,) is the probability for the shell-model level
Jjmty to be filled. The probability for it to be empty is

u'(jity) = 1= 07(j. k). (2.8)

The index ¢, is often omitted below.

Since the octupole oscillations involve mainly single-particle transitions
between different shells, the pairing has less influence than for the quadru-
poles. It has been checked that uncertainty in the pairing strength constant
G is less significant than uncertainties in other parameters. Thus, in almost

all cases (cf. sect. 14) we have used a standard value for G/A (A is the
atomic number).
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The long-range part of the interaction

We shall simulate the interaction between the particles through the
octupole part of the nuclear field by an effective force of attractive long-

range octupole-octupole type, working between all nucleons. Expressed in
terms of creation and annihilation operators it takes the form

H (long range)
- ~%g<—1)3-”<ta<1>ta<2>lx(?a),?(z))lto<1>to<2>>

I
m

’
’
)

3 3
e r . AR r .
X<J11111|13Y3 - l111n1><szzl13)’3~ —| ljamy
“\ g #\ g

% a+(j1, mj, t(')(l)) a+(jé, my, 18(2))
xa (fz’ my, {y (2)) a (.jl’ my, £ (1)) »

where the quantity
B O\l2
a = , (2.10)
My,

M being the nucleon mass and w, the frequency of the harmonic oscillator
used in the shell-model potential. (For further details, see below). In the
force constant » we have introduced the isospin of the nucleons F(1) and
7(2).

Assuming the interaction to he invariant under rotations in isospin space,
we can write » in the form

o
L]

(2.9)

— g+ 2 AT(1).T(2)
%o T % % 26,(1) 2t ,(2)(— 1),

X
l

(2.11)

where #,(1) and ¢,(2) are spherical components of the isospins of the par-
ticles. Thus, x, represents the isoscalar or 7 = 0 component of the force,
and x, the isovector or 7 = 1 part. In the following section we come back
to the relative magnitude and sign of x; and x,.

Below we concentrate on that part of the field which acts on protons or
neutrons, but does not change neutrons into protons, or vice versa. In that
case, only the » = 0 part of the force is working and thus it is the only part
which is considered in the tlreatment below. The » + 0 components are



Nr.1 9

relevant when exciting vibrations in the neighbouring odd-odd nuclei (cf.
sect. 4).

Since the force is introduced to describe the variations in the field, we
shall only take into account the fleld-producing part of the interaction (i.e.
the annihilation matrix element in the particle-hole interaction).

The radial dependence in the field is not very well established. Our
choice is made mainly for the sake of simplicity, and further investigations
would be of great interest.

We shall primarily study the low-lying, strong excitations, which are sup-
posed to be connected to vibrations of the nuclear surface. With our expres-
sion for the radial matrix element the surface region obtains a heavy weight.
It may be that contributions to the field interaction from single-particle
transitions j — j*, involving changes in the principal quantum number of the
harmonic oscillator |AN| = 3, are not properly weighted in our picture. For
instance, particles with a tail far oulside the nucleus probably give rise to
much smaller polarization of the core than supposed by the r?® dependence
which attributes a great influence to the outermost part of the wave function.
A better dependence might be oblained, e.g., by using the radial derivative
of a Saxon-Wood potential. The effect should be especially significant for
the resulting high-energy modes, whereas the low-energy modes should be
less affected. I'or our choice of force it appears that, for single-particle
transitions with AN = 1, the radial matrix elements are all of the same order
of magnitude, even when squared. (The smallest values are obtained when
the change in the number of radial nodes is maximal).

This means that the radial part of the interaction does not give rise to
strong cancellation of any of the conlributions from the single-particle transi-
tions of low energy. For the AN = 3 terms the square of the radial matrix
element is fluctuating more strongly, sometimes being quite small when a
great change in the number of radial nodes is involved. Roughly speaking,
the squares of the AN = 3 radial matrix elements are half as large as the
AN = 1 terms. The angular part of the matrix element is very sensitive to
whether spin flip is involved or not. E.g., the square of the reduced matrix
element is about 20 times larger for j;,j; = 7/2, 13/2 than for j,,j; = 9/2, 13/2.

It may finally be mentioned that it is still an unresolved problem whether
the isospin independent (z = 0) field and the isospin dependent field (v = 1)
are of the same radial structure. (For a definition of 7, see sections 3 and4).
You might suggest that for the 7 = 1 modes volume phenomena play a greater
role compared to surface phenomena than for v = 0 modes and, thus, that the
radial dependence of the 7 =1 field is slower than for the = = 0 feld.
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3. The excitations

For the tolal Hamiltonian H (2.1) the quasi-boson approximalion is used.
We describe the cxcitation as a superposition of two-quasiparticle creations
and annihilations and write the excitation operator B¥ («) in the form

J1Ja

i s J (3.1)
+ (=M q(eiodas to) iy Ja g | 3 — 1> ol fo, My, dg) 0(J 1, 1y, to)}’

BT (x) = z {P (et fioJas to) Gy ja g 18 b o™ (i, my, fg) &t (o ma, 1) l

where the quasiparticle creation and annihilation operators are given by
ot (Jom, o) = u(j, ) at (jom, to) = (= 1) ™0(j tg)a(j, — m. ), (3.2)
a(jom,te) = u(jto)a(j,m ty) — (= 1))~ "o(j l)a”(j, — mydg).  (3.3)

This means that the two-quasiparticle excitations (each having energy
E(j)+ E(jy)), are considered to be elementary oscillators which are coupled
by the long-range part of the force. In the expression for B*(«), j; and j,
run over all possible proton and neutron states, bul each pair should only
bhe taken once, i.e. if jij,f, is included, j,j, ¢, should not be.
Now, BT(«) working on the ground slate |0}, gives lhe excited state
| > with energy how,
) = BH(@)[0) (3.4)

and B(«)|0)> = 0, where B(«) is the hermitian conjugate to B (a). We
further have
[H,B"(«)] = ho,Bt () (3.5)

which, on inserting (3.1), gives the expressions (12.1) and (12.2) for
po Jjijs to) and q (o j1jste) used in sect. 12.

The orthonormality of the states gives (taking as above in eq. (3.1) each
pair j,J, only once)

2 {P(“’jpjz’ to) p(o s 1o Jos to) — q(oisjos 10) Q€& s j1s T to)} = Ope (3.6)

F1dste

Following the common procedure (ref. 6) we end up by eq. (3.7) the solu-
tions Aw of which are the resulting energies
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2
(”—Z’SI'— 1)("“3”~ 1)—”ﬂsps" ~ 0 (3.7)
7 7 49
or
470% sosr —%"1(52’ LS4l = 0. (3.8)
Here,
r 8 .
o A NEY (2] 10 o) + o) B + E()
= - G J.
3 (EG) + EG)) — (ho)? (69

Ji’
where the sum runs over all possible proton states j and j’, which may be

coupled to spin and parity 3-. The analogous neutron quantity is denoted
by S».

The first term in the numerator in S” is an ordinary reduced matrix
element

A3
<l’j’|li3Y3(§) Gy = (4T£)—1I2il~l’+3(u1)i—l/2 l

\3
L+ (= DI G - 11305¢ '.f’|(§) > (3.10)
@+ DEF DM

3
In ref. 1 Yosnipa presents a table showing the malrix elements of (g) , using

harmonic oscillator wave functions. The quantities x,, %, and #np are the
octupole-octupole force constants for the proton-proton, neutron-neutron
and neutron-proton force, respeclively. For these we have used the expres-
sions (2.11):

Ky = %y = Hy g, (3.11)
Hup = g — %y - (3.12)

If 3, = 0, the equation (3.8) for the determination of fiw reduces to

7
SP 8% = (3.13)
#y

which is the usual secular equation, and %, = 0 gives

7
AL (3.14)

41
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The analogue to this equation has been discussed for dipoles (ref. 7) for
which the opposite sign convention has been used in general.

In order to provide an idea of the variation of the force constant » with
A we may use a simple scaling argument.

If we assume the matrix elements to represent an interaction with a range
short compared to the nuclear radius, the interaction matrix elements are
inversely proportional to the nuclear volume, i.e. ~ 1/A. Since each of the
factors (r;/a)® and (ry/a)® varies proportional to A2, we expect % to be pro-
portional to 472

In our treatment we look apart from couplings to other modes, although
such effects may sometimes be of importance. Thus, the resulting states of
excitation energies more than some few MeV appear in regions with large
level density. In such a situation the present calculation is only expected to
give the gross structure of the 37 distribution.

For the low-lying states, the most important couplings may be those to
modes which involve large amplitudes. Thus the couplings to the strongly
collective quadrupole vibrations of very low energy are expected to be of
special significance,

In deformed nuclei, we know thal this coupling causes a splitling of
octupole modes with different X values. In the present calculation the most
interesting modification of the results which this eflect may cause may be
that the strength of the strong octupole line, which in the following calcula-
tion is often found in the 4—-5 MeV region, may be spread over several
states, which may be imagined as arising from the coupling of a 3~ phonon
to one or more 2% phonons.

The isospin of the excitation

In this section we are going to discuss briefly the isospin properties of
the excitations, which properties so far have been neglected.

In the same way as the excitation in ordinary space can be described
by the spherical tensor quantum numbers 4, (4 = 3 in our case), it may
in isospin space be characterized by analogous quantities v, », where 7
must be either 0 or 1 in the present treatment. The excitation operator
B*(z,v; 4, u) may e.g. be of the type

M(z =05 A =3,p) =2 51]Y,,(1) (3.15)
[
or
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M(z = 1,v; 2 =3, u) =21'§'Y3Ml’,,(i), (3.16)

where 7 runs over all particles in the nucleus (cf. sect. 4). We shall use the
matrix elements of the M operators between the ground state and the excited
states to describe the isospin structure of the excitations, as further explained
in sect. 4.

The matrix elements of M(z = 1, » = 1; 3,4) are non-vanishing only
when the excilation involves creation of a neutron hole, proton pair, i.e.
when it leads to another nucleus. Such an excitation may be realized by a
(p, n) scattering on the nucleus. In the same way 7, v = 1, — 1 leads to the
excitations of a neighbouring nucleus Z, 4 +Z —1, 4, e.g. by an (n, p) process.
Such excitations and their relevance to the present treatment are discussed
briefly in sect. 4. The 7 = 0 or 7, » = 1,0 excitations give rise to states in
the target nucleus and, as we shall see below, these two excitations are in
general mixed, although the strong low-lying states to a good approximation
are 7 = (.

As pointed out by Laxe and Sorer (ref. 8) and later utilized and ex-
plained in greater detail, e.g., by Stiv (ref. 10) and by Bour and MoTTELSON
(ref. BM), the isospin T of a state in a heavy nucleus is in many respects
a very well-conserved quantity. Therefore we must ensure that the states
which we find have good (7, T,). (T, is the third component of 7).

As long as we only apply 7 = 0 excitation operators to the ground state,
for which

(3.17)

) N-Z Z-N
(L.1o) = (T, ~T) = (=5 —— ),

there is no problem: we reach a state with the same 7, while 7, » = 1,0
operators may give rise to some mixture of 7 = Ty and 7 = T;+1. The
T,+1 part of the excitation is contained in the isobaric analogue to an
excitation of low energy in the neighbouring nucleus with 7, = — T, 1.
It has quite another structure than the T, states in the same energy region
and is only mixed weakly with them (ref. 9).

To illustrate the relation to our calculation let us, for simplicity, assume
sharp Fermi surfaces for protons and neutrons. Let e(F,n) and e(F,p) be the
Fermi cnergies for neutrons and protons, respectively. Let us consider a par-
ticle-hole excitation for which the particle (i.e. a proton) is created in a state
(J1,m;) such that e(j;,m;) (e(F,n) or the hole (i.e. a neutron hole) is created
in a state (j,, m,) such that &(j,, m,) >e(F,p).
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In this case T_ acting on the state gives zero. We cannot further align
the state in isospin space and, hence, T = T,.

For our purpose this means that, for single-particle transitions inside
partly filled shells and for part of the transitions from one shell to the next,
there is no possibility for isospin impurities.

It should be stressed that this does not mean that the excitation is pure
T =0, since 7 =1 and T = T, are able to couple to 7;.

For the transitions of higher energy, T is not automatically conserved.
Let us consider a definite particle-hole excitation (j,,/,) and let A+ (v = 1,
» = 0) create the particle-hole pair, coupled to (z = 1,» = 0; 2 = 3,u).
The resulting state with good quantum numbers (7, T,) = (T,, — T%) is then
formed by coupling of the ground state T = T, and 7 = 1:

W@ = DITy >}, -,
= < 10T, ~-T |1 -T, > AT (z =1, v = O)|T,~ T, > (3.18)
+ < 11T, -T,+1|Ty=- T, > At (v =1, = -D|T, - T;+1 >

/T

TR R S
(3.19)
/ 1 A"'( 1 DT, -T,+1
_ . T=1, v = — — -] >
‘ T, + 1 -1
~ A’[”(‘L' =1, v = 0)|T1_._T1 > for T; >> 1. (3.20)

The state is thus a superposition of an excitation, based on the ground state
|T,—T,>, and an excitation based on |7, ~ 7,4+ 1>, which is the isobaric
analogue to the ground state. In the following we neglect the last part.
The justification for this procedure is, partly, that for the states of low energy
which we are most interested in, the effect should be very small and, parily,
the assumption of T,;>>1, which should be well satisfied, except for the
lightest nuclei considered.

When the Fermi surface is smeared out, i.e. when our elementary modes
are two-quasiparticle excitations instead of particle-hole excitations, the
discussion which was given above contains a slight oversimplification. This
is due to the facl that the quasiparticles do not have a definite z component
of the isospin in the way we have defined them. Thus, the elementary modes
involving the creation of a proton-neutron quasiparticle pair are mixtures
of v = 1.

It shall finally be stressed that in general it is not allowed to treat the
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coupling in isospin space between the vibration and the ground state of a
heavy nucleus in the weak coupling limit. This means that it is not possible
to consider the excitation operator as a definite entity, the isospin of which
is coupled to that of the ground state by simple vector coupling, or which
may be rotated in isospace without complications.

It is e.g. easy to find a (v = 1, » = 1) particle-hole excitation, for which
the (v = 1, v = 0) partner gives zero when acting on the ground state of a
heavy nucleus. This happens whenever the parlicle or the hole is placed in
a level (j,m) which is occupied by neutrons but empty for the protons.

The isospin dependence of the long-range force

The isospin dependence of the long-range force is contained in the iso-
vector component »; of which little information is available. It is expected
to be negative (to have opposite sign of x,), since this will push the 7 = 1
excitations upwards in energy, as is the case for the giant dipole. (FFor further
details, see sect. 5). This means that the nn and pp force should be somewhat
weaker than the np force, or even have opposite sign, if 2y (|3 ].

An estimate of the magnitude of %, may be obtained by assuming that
the oscillating field has the same isospin dependence as the cenlral nuclear
field for which the dependence manifests itself, e.g., in the semi-empirical
mass formula and in the real part of the optical potential (ref. 50). This gives

wyfxg ~ —1/2. (3.21)

A similar result is obtained by assuming that the two-body force responsible
for the interaction is approximately of Serber type. Such estimates have
been discussed by Borr and MoTrTELsEN (ref. BM).

A determination of »; on the basis of a fit to the experimentally determined
energies is not possible. This is analogous to the situation for quadrupole
vibrations where even many more data are available (ref. KSII). This
difficulty is caused by the fact that all the experimental information concerns
the low-energy states, and for these the v = 1 part of the force has only
little effect in comparison to the v = 0 part, and also compared to other
parameters, as e.g. the single-particle energies which are not very well known.
(We shall see below that a more detailed investigation of the 2—-5 MeV part
of the spectra, using inelastic scattering with different projectiles and compar-
ing results for different states and for different nuclei, may be one of the best
tools for determining x,, but still a large uncertainty is expected). On the
other hand, we are able to oblain a fairly correct picture of the strong lines
in the low-energy spectrum without detailed information on %;, and therefore
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we have simply used an isospin independent octupole-octupole force in our
general calculations in sect. 15.

By this choice the lines of T = 1 type are poorly determined but, as we
shall see for »; = —0.5%, there is no strong tendency to build up very
great, individual = = 1 lines.

A discussion of the influence of %; and some examples of spectra, cal-
culated with »%; = —0.5%, and 2%, = —2%,, are presented in sections 5 and 9.
IFor the strong lines of low energy it is possible to give simple rules for the
changes in energies and reduced transition probabilities resulting from a
finite 5.

4. Reduced transition probabilities

The coherence and isospin properties of the excitations can be described
in terms of the matrix elements of the multipole operators M(z = 0; 4 = 3,u)
and M(z = 1,»; 2 = 3, ) which were given above ((3.15) and (3.16)).

In our treatment only the » = 0 component of M(z = 1) is relevant.

Taking the square of the reduced matrix element from the ground state
to the state in question (labelled 3-, «), we obtain two new quantities, namely
the reduced transition probabilities

By=B(r=0; 0 3—,a) }
> (4.1
|8 —,af|M(z = 0; 4 =3,1)[0>F,

i

and

It

Bi=B(r=1, v=0; 0 >3—,0)
, (4.2)
(38—, || M(x =1, v =0; A=3,u)]0>

In the same way, the ordinary electric transition operator
72T < 3 . s .
M(E3,p) = 2,17 Y5, (D) e} + to(D)) (4.3)
gives rise to ¢
B

We see that

li

B(E3; 0 -3 —,)

I

[ {8 —, | |M(E3, 1) [ 1052 (4.4)

M(E3,1) = e(M(x = 0; A =3,)+ Mz =1, v = 0; 2= 3,1). (4.5)

If for an excitation B, vanishes, we shall call it pure = = 0, whereas
By = 0 for a pure v = 1 excitation.
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The expressions for B, and B; can be obtained as special cases from the
general formula for B. This has been calculated by KS II under certain
conditions. Following their derivation it is easy to get a generalized expression

B = aﬁ{ S”(l ~ f;ﬁ S”> [M28P e, + sign (xnpSp<1 - %7" S"))
*p 172 2[ oy ’
e e A e R (4.6)
7
o ’ \
+|sp<1 —~SP>|S? |
7 f

€T

sign {z} = ol (4.7)

x|

Here,

and §'? is the derivative of S? with respect to Aw, the energy of the excited
state:

oo 09 4 2hw|<lj’||i3Y'3(§)3||U>Jz
(ko) ‘Z ((EG)Y+E())? - (ho)?)? (4.8)
< (EG) + EGH)Y (o' + v(j)u(f))z}:,

S'? being the analogous neutron quantity.

The quantities e, and ey are the effective charges of neutrons and protfons,
respectively.

Since we are taking all single-particle transitions into account, the effec-
tive charges for an E3 transition are the bare charges e, = ¢ and ¢, = 0.
The expression for B, the v = 0 part of B, is obtained when using ey = en
= 1/2 in (4.6) while B, appears when ¢, = —ep = 1/2.

The following relation applies to the three uantities

B = /By /B (4.9)

where the minus sign should be used if

|sp<1 - f{—"lS”>| < \S”(l o sp>| 4.10
7 7 (+10)

which, due to the neutron excess, often is the case.
Mat. Fys. Medd. Dan. Vid.Selsk. 35, no. 1. . 2
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If %, = 0 (but %, + 0) we obtain the simpler expressions

B = aﬁezﬂ (4.11)
S'? 4 g '

(SP + §™)?
By = a5 ~———~ 4,12
T D) (4.12)

- (SP —~ §™)?
B, =g 4.13
1 a 4(Slp+sln) ( )

If 2, = 0 and »; + 0 we get the same formula for B, whereas the expres-
sions for B, and B, are interchanged because of the sign in the numerator
in the general formula (4.6). For an arbitrary w,, »; mixture the sign is
sometimes positive, sometimes negative. For the strong states of low energy
it is found to be positive in the calculations below,

Inelastic scattering

While B is connected lo electromagnetic excitations, B, and B; are the
relevant quantities in inelastic nucleon scattering.
When a particle passes through the nucleus, its motion is changed by
the nuclear field and it interacts with the nucleons in a complicated manner.
In a simplified picture we may assume, however, that inside the nucleus
the nucleons in a projectile interact with the nuclear field in very much
the same way as the other nucleons do, and thus that the interaction essenti-
ally is of the form
2 {#or’ Yi(DM(z = 05 4 = 3,1)
J

i oo g - (4.14
20 3 YR (DEM(r = Lo 4 = 3.0}, J (4.14)
Y4

where we sum over the nucleons j in the projectile. The 7 = 1, » = & 1 terms
govern the charge exchange reactions considered below. FFor inelastic scat-
tering without charge exchange the reduced transition probability will be
proportional to
My
%o/ By = %y [/ By~ - (4.15)

or
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1\ 2
B0<1 . bz%@)) (4.16)

J
B,

b= i-”—ll/l (4.17)
%) B

and k is the number of nucleons in the projectile. The plus sign should be
used if B,<{B and the minus sign if B;> B. We note that we here have utilized
the assumption of the simple isospin dependence of the interaction (4.14),
whereas the precise dependence on the radial coordinate of the projectile
nucleons is of minor importance.

Here, as in the following, we neglect the electromagnetic part of the
excitation when we consider inelastic nucleon scattering.

where

The numerical value of the factor Zw(}fj) in (4.16) is maximal when
the projectile contains only one kind ot? nucleons, i.e. when & = 1. If the
projectile contains both protons and neutrons, the B; part is somewhat
washed away, and (4.16) comes closer to B,,.

The expression is simplified if either the total isospin of the projectile is
zero, as for a-particles and deuterons, or if the relevant nuclear field with
which it interacts is isospin independent (x;, = 0). Then we get B,. This
means that we are exciting just the 7 = 0 part of the vibration.

If the excitation is either pure v = 0 or v = 1, only one of the terms sur-
vives, but in practice this situation is never reached (cf. sections 7 and 9).

One of the more interesting features in the expression is the interference
between the two terms. Even when the state is fairly pure in v character,
i.e. By» > By or By) B, this interference gives rise to considerable variations
in the relative cross sections, using projectiles with different isospin (cf.
sect. 11).

Since the experimental material contains mainly measurements of B,
and since the underlying theory for electromagnetic processes is more reliable
than the theory of direct reactions, we will preferably discuss this quantity.
However, we note that inelastic scattering, using different particles, may give
in the future most valuable information on the structure of the excitations.

Charge exchange scattering

In the preceding section, we have discussed the inelastic processes con-
nected to v = 0 and v = 1, ¥ = 0 excitations. Now, whereas the v = 0 part
2*
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of the interaction only gives rise to scattering, the v = 1 part may {lip the
isospin of an incoming nucleon, i.e. give rise to charge exchange rcactions,
involving excitations of v = 1, v = 1 character. Let us consider a (p,n)
process. :

We use again the simplified expression (4.14) for the interaction between
the incoming particle and the nucleus. For the 7 = 1 part the ratio between the
nuclear matrix elements for isospin flip to non-isospin flip of the nuecleon is
given by

(T, ~-Ty+1L,BM(z =1, » = DT —-Ty>
(T~ T, BIM(z =1, v = )T, ~Ty>

Ty = T Ty = Ty + DT MG = DT
Ty = Ty 101y~ Ty < Ty | M((v = L[| Ty

1
= T

[ T,—-Ty+1, > being a state in an odd-odd nucleus which is the isobaric
analogue to the vibration |7T;—-7,6> in the target. Thus, by studying the
relative probabilities for exciting low-energy states in the target and ana-
logues in the odd-odd nucleus by protons we are able to learn something
about the isospin dependence in the interaction between projectile and target.

(4.18)

Scattering via isobaric analogues and stripping

Without going into details we shall briefly sketch how we can obtain
information on the structure of the octupole vibrations from stripping ex-
periments and from inelastic proton scattering via isobaric analogue states
(states with T = — 7). For the sake of simplicity we only consider the last
type of experiments. The generalization to stripping is straightforward.

When bombarding a nucleus, say (N;, Z,) which has (T, Ty) = (T1,— T4),
with protons, we are able to form various states |N,, Z; + 1,8 with (T, T,)
= (Ty+%, — Ty +3) in the compound nucleus (N;, Z; + 1), which are isobaric
analogues to states |N;+1,Z;,8> with (7,T,) = (T1+%,-T,-1) of low
excitation energy in the nucleus (N,2) = (Ny+1, Z;). The reaction ampli-
tude for the entrance channel is proportional to

(N1, Zy+1,8|at (proton) | Ny, Z;, ground state) (4.19)
in analogy to :
{N,;+1,Z,8|a" (neutron) | N}, Z;, ground state >, (4.20)
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the square of which is a spectroscopic factor for a (d,p) process leading
from the target ground state to the low excited state # in the nucleus (N,2)
= (Ny+1,Z,). Now, the compound state may decay by proton emission to
some state in the target. In the decay the amplitude is determined by

{Ny, Zy,v|a(proton) | Ny, Z; +1,87, (4.21)

which (if 3 is not the analogue to the ground state) corresponds to a pick-up
spectroscopic factor for neutron pick-up from an excited state in the target
(N, +1,7)) to a state p in the final nucleus (N, Z)).

Omne possibility of learning something about the structure of the octupole
oscillations is thus to bombard an even Z odd N target with protons to form
a 3~ isobaric analogue state in the compound nucleus. When this state
decays through the different proton channels, this “pick-up” process
provides information on the occupation of the different single-particle states
in the 3~ oscillation.

As a simplified example, let the final state in the target be a single
quasiparticle (j',m’) +a quasiparticle vacuum, which is assumed to be the
same as that in the compound nucleus, and let the emitied proton have
quantum numbers j, m. The channel state is

> at(j,mty = Dt (G ,m ty = —HGmim [3u>10) (4.22)
m
m’

and the decaying state is the isobaric analogue to
BY(3,u,2)|0" > (4.23)

(a one-phonon state with 4 = 3, ). By [0) and [0")> we denote the rele-
vant phonon vacua. The overlap is

~

~ u( j,m) plesjof), (4.24)

where p(«,j,j") is the amplitude for the j,j’ two-quasiparticle excitation in
the oscillation e.

When obtaining this result we have neglected the overall reduction factor
27T-+1 which appears in the transition probability for proton decay of an
isobaric analogue state. This factor is easily understood, since we imagine
that the isobaric analogue state can be formed by applying the isospin raising
operator T to the low-energy state in the (N+1,2) nucleus, i.e. by trans-
forming a neutron into a proton. However, there are 2 7T+ 1 excess neutrons
which can be transformed. Thus, the particle with quantum numbers j, m only
has the probability (2 T+ 1)~ of having #, = 1/2 in the decaying analogue state.
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Another possibility to learn something about the structure of the
octupole oscillations is to study inelastic proton scattering from an even-even
target via an isobaric analogue state in the compound system to a 3~ oscilla-
tion in the target. In a naive approach we think of using preferably isobaric
states which are known (or expected) only to contain to a very small amount
a component of a single particle coupled to a 3~ state. In a decay of the
analogue state in which a proton is emitted, leaving a hole together with
the “last odd particle”, we may thus directly gain information on the
probability that the target 3— state contains just this specific particle-hole
component.

Let us therefore assume, for simplicity, that the compound state is just
the analogue to a single quasiparticle + a quasiparticle vacuum, which is the
same as for the target. Let again j,m be the quantum numbers for the
emitted particle and j', m’ those for the odd nucleon.

The channel state is

S at(j,m,ty = $)BT(3,4,0) m3u|jm’ >0 > (4.25)
My b

and the decaying state the isobaric analogue to

~ ot (', m ty = =0 >, (4.26)

The overlap is

—
2j + 1

~ v(j, m)p(j.J"s %) l/ (-1 (4.27)
Again a reduction factor (27 + 1)~! is introduced in the decay probability,
when the isospin structure of the states is taken into account.

The major difference between the quadrupole and the octupole vibra-
tions is that, whereas the first ones are in general built up by many two-
quasiparticle excitations of roughly the same energy and thus with amplitudes
of comparable magnitude, the octupoles are often (ef. sect. 12) formed by
some few unperturbed modes. For these modes the amplitudes are rather
large (of the order of magnitude of unity) and thus more easy to measure.

Sum rules

In the analysis of transition strengths for multipole excitations the sum
rules for reduced transition probabilities play a significant role.
The energy weighted sum of B values is given by the formula (ref. BM).
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S(E,~E)B(E3; i —[) = Sl e? Z (ilrgliv. (4.28)
b

In the first sum we start from a state i, e.g. the ground state, and sum
over all states f, which can be reached by an E3 excitation, Ef and E; are
the two relevant energies. The last sum runs over all protons p.

From the derivation one immediately generalizes to get the corresponding
sums for B, and B, for the excitations from the ground state:

>(Ey—E)B(r = 0; 0 >3-,

[v4
= E, —E)B(r=1, v =0; 0 >3 -,
Z( 4 0)( ) (4-29)
14/h

= ﬂ[ {4Z<F>+4z<f>/

Here, p denotes protons, n neutrons. The index « runs over all available
3~ states in the nucleus. The expectation values of r? should be evaluated
in the ground state. These expressions are slightly model dependent. In the
derivation it is supposed that the multipole operator and the Hamiltonian
commute, except for the kinetic energy part. This implies that the shell-
model potential is velocity independent and that it is permissible to neglect
exchange effects. This is consistent with our approximations when we only
consider the » = 0 excitations. Then we may use an octupole-octupole force
which contains only the factor

wy + daq (D) E()) (4.30)

which commutes with M(z = 1, v = 0) as well as with M(z = 0).

The single contributions to the sums ((4.28) and (4.29)) and the total
sums we call oscillator strengths and total oscillator strengths, respectively.
If the protons and neutrons contribute with equal amounts to the sums,
then the total B oscillator strength is twice the B, strength.

Due to the neutron excess, the contribution from the neutrons is actually
often twice as high as that from the prolons, which means that the total B
strength is 4/3 of the B, strength. This is partly due to an oversimplification
in our treatment, because we usc the same frequency in the harmonic
oscillator potential for protons and neutrons. Thus, the protons are kept
closer to the nuclear centre, and > (r3> is too small. A better treatment

v
would be to use, e.g., Saxon-Wood potentials for protons and neutrons.
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When making the transformation from the unperturbed two-quasiparticle
excitations to the resulling excitations, the total oscillator strengths are un-
changed. This is a purely mathematical statement.

Thus the magnitude of the total B,B, and B, strengths may be calculated,
e.g., in a simple model of non-interacting particles in a pure harmonic
oscillator potential.

When using a model in which the levels closest to the Fermi energy A
are chosen empirically, as we do below, we introduce an element of incon-
sistency, due to the fact that we are not sure that these levels can be calculated
with the help of any velocity independent potential. It is also immediately
seen that, when pushing levels around in a somewhat arbitrary way, the
total oscillator strengths cannot be expected to be constant. Since, however,
this pushing concerns mainly levels near the Fermi level and some of them
move up and others move down, the effect is actually very small (at most
some few percent).

Sometimes the so-called isospin zero part of the total B oscillator strength
is considered (ref. 11). This quantity is Z/A times the total strength and in
our treatment it has not any very distinct meaning.

5. Octupole coupling in simple examples

Before discussing the spectra of real nuclei it may be instructive to con-
sider the simple case of one proton line and one neutron line coupled by
the octupole force.

To obtain a measure for the strength of the excitations it is convenient
to define

» A3
P S IR P[] 100D PG + oGDa?  (51)

J1ds

summing over all the proton states j; and j,. The analogous neutron quantity
is F7. The factor § is chosen because each term in the sum appears twice.

‘When the two lines are of equal energy and strength (F? = F7) the resulting
spectrum consists of a pure 7 = 0 mode and a pure v = 1 mode, For the
first one, energy and strength are determined only by x, the v = 0 part
of the force, and for the second one only by x, (fig. 1).

When F? + I, but the two lines remain in the same position, the resul-
ting modes become of mixed isospin character, but still the low-energy mode
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Fig. 1. Position of the two resulting lines for constant s, and different values of x,, when the

unperturbed spectrum consists of a protron line F? = 50, and a neutron line F® = 50, hoth
placed at 1 MeV. The line of lowest energy is independent af x,. B, B, and B, arc given in
arbitrary units, obtained when a = 1 (cf. equation (4.6)).

is mainly 7 = 0, determined by »,, and the high-energy mode mainly 7 = 1,
determined by x;, (fig. 2). This is correct, even if there is rather strong
asymmetry in the unperturbed spectrum.

When #x, is constant and —#, increases, the low state becomes purer
with respect to isospin. This may be considered in two ways.

1) When #x, is introduced, it sucks some of the v = 1 part from the low
excitation, which then becomes purer. Thus B; decreases while B and
B, appreach each other.

2) When #, is introduced, x, and #, are diminished whereas the proton-
neutron force becomes stronger. If, e.g., the state is preferably built
up by neutron excitations (&7 ) F?), they lose influence and more
proton excitations are mixed in. Thus, B increases while B, decreases.
(The strong component of the excitation is weakened).

It is interesting to note that even when »; = — 2%, (the nn and pp forces are
repulsive) there is a low-energy collective state. The reason is, that now s, =
35y, 1.e. the neutron-proton force is strongly attractive. For the high-lying mode
the energy goes up when —x; and thus »,; increases, since it becomes more
difficult to separate neutrons from protons. From the sum rules it follows
immediately that when F? = F7 the two resulting modes cannot at the



26 Nr.1

30 -2
w,=0
20 - B, = 373 0
B, = 15 24
10 |-
J 1 |
.5 1 15 MeV
8 .
30 -
Wi=-05%,
20 - 8, = 36.8 0.1
8 = 07 218
1ok
A | | .
5 0.5 1 15 Mev
30 -
K= 2%,
20 k
B, = 36 03
o - B = 0. 17.2
r I |
0.5 1 15 MeV

Fig. 2. Spectra for constant %, and different values of »;, when the unperturbed spectrum is
F? — 40 in 1 MeV and F? = 60 in 1 MeV. Again a = 1 (sec fig. 1).

‘When s, = — 0.5 times the %, value from the figure, but x»; = 0, a line with B = B, = 24,
B; = 0 appears in 1 MeV and another one with B = 14.1, B, = 0.9 and B, = 22.1 in 1.14 MeV.

same time be of pure isospin type. When #, is introduced, the low-energy
mode becomes of v =~ 0 type, but then the high-energy mode must be of
mixed isospin character, i.e. B, + 0.

Let us now proceed to the other possibility for asymmetry in the unper-
turbed spectrum, viz. the case where F” = F? hut the two lines have different
energies (fig. 3). The variations in B are easily understood, when it is
remembered that if », is introduced, e.g. more of the high-energy unperturbed
mode is mixed into the resulting state of lowest energy. It is obvious that
when the forces are so strong that the distance between the two resulting
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Fig. 3. Spectra for constant :, and different values of x;, when the unperturbed spectrum is

FP =50 in 1 MeV and F® = 50 in 1.5 MeV. When F? and F" are interchanged, B gets the
values indicated by dashed lines, while B, and B, are unaffected. Again a = 1 (see fig. 1).

modes is much greater than the distance between the unperturbed lines,
we are again close to the symmetric case of fig. 1, but we learn that the
situation with rather pure modes is reached much earlier.

6. Effects of shell structure

In order to obtain qualitative insight into the manner in which the shell
structure affects the resulting spectrum we shall in this section, in some
simple examples, study the energy distribution of B oscillator strength,
using an isospin independent octupole force.

Let us first consider a system of non-interacting particles in a pure
harmonic oscillator potential.

By 3~ excitations a particle can be raised either one or three shells,
giving one group of excitations at an energy fiw; and another one at 3 haw,.
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To find the oscillator strength distribution on these two groups we define,
for the proton excitations (c¢f. (5.1))

Fy

I

3
]§ n [ <lzjzl | Y3 (g) i | ”1j1> ’Z(Ll(jl) U(jz) + U(.jl) U(jz))z’ (6'1)

tAw =

I

3
Fp =3 5 RCYURE (?) 21> PG v(a) + v(jy) u(j)?%  (6.2)

(AN =3]
where AN is the change in principal quantum number from j; to j,.

Analogous quantities FJ* and F§ are defined for neutrons. Aparl from
a trivial factor, F? is simply the sum of the B values for all the transitions
to the states of excitation energy Lw,, i.e.

> B(E3; 0> 3—,a) = b F?. (6.3)
a(AN = 1)

It is easy to calculate F?, and I? can then be found from the energy weighted
sum of B values (4.28).

For the lightest nuclei F? = 0, since a 3hw, transiion is needed to
form a 3~ state. In the limit of very heavy nuclei F} ~ F%.

For Z = 20 we get FP/F? = 70%,, lor Z = 40 we obtain 76 %/, and for
Z = 70 the ratio is 829/, This means that in a very large Z interval the sum
of B values for excitations of energy fiw, is approximately 3/4 of the sum
of B values for 3hw, excilations. The AN = 1 excitations contribute about
20/, to the total B oscillator strength.

When we introduce an isospin-independent octupole-octupole force
between the nucleons, the neutron and proton excitations at hw, couple
and give an unshifted line at /iw, and a line with lower energy, as ex-
plained in the preceding section (ef. fig. 1). The same is the case for the
neutron and proton excitations at 3Aw,, and finally there is a coupling
between the lines in the two energy regions. This is illustrated by fig. 4.
The » value is taken from the detailed calculation below, where it is fitted
by the experimental data. We see that the introduction of the octupole force
does not push the lines very far down, and the oscillator strength, placed
on the low lines, is almost unchanged. This result is, however, very sensitive
to the strength of the octupole force. If » is increased by aboul 353%,, the
low line comes down to zero energy, i.e. the spherical shape becomes un-
stable in this model.
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Fig. 4. Resulling spectrum for a simple model of the nucleus A4,Z = 90,40, when », = 0 and
%y = 0. The unperturbed lines are dashed, the resulting ones fully drawn. The proton and neutron
lines are denoted by p and n, respectively. The unperturbed lines are concentrated in fiw, (= 9.15
MeV) for AN =1 and in 3fiw, for 4 N = 3, and they are represented by their strength F, intro-
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duced in the text ((5.1) and (6.1)). For the resulting states F = _(§ST)’ where 8’ = §? + 5%, The
value for x, has been taken from the detailed calculation (sect. 15). If S is 35°/, smaller, i.e.
if 3, is 35%/, greater, the spherical shape becomes unstable. In the unperturbed spectrum Lhe
AN =1 lines contribute with 209/, to the total B oscillator strength. The two resulting lines of
lowest energy contribute with 21.5°,, the lowest one alone with 9.5°/,.

The spectrum is independent of the atom number A under the following conditions: 1) The

slow change in the ratio FP/FP with A is neglected, 2) The ratio hetween neutrons and protons
is kept constant, 3) The coupling constant x varies like A—% This » varialion was suggested in
section 2 by a simple scaling argument.

The deviation of the actual central nuclear field from thatl of a harmonic
oscillator has important elfects on the octupole spectra. Thus, the broadening
of the shells leads to a smearing out of the oscillator strengths in the liw,
and the 3fiw, regions.

Of special significance for the low-energy spectra is the spin-orbit split-
ting which pushes levels down to the shells below. This means that inside
the partly filled shell there are transitions (a weak and a strong one, de-
pending on whether spin flip is involved or not) the energies of which are
prevented from going to zero essentially only by the pairing gap. The effect
begins to be of importance with the 4g,, level around A = 80. It is illu-
strated by a simple model in fig. 5. For the first excited state S(= S?+.S%)
and thus the energy is largely determined by the low-energy unperturbed
line, but B receives very substantial contributions from the higher lines.

For a more detailed study of the effect of the spread’in the single-particle
spectrum we go on to fig. 6. In fig. 6a all the low-energy single-particle



30 Nr.1

1000

500 —

|
|
|
I
|
!
|
|
|
1
|
|
!
|
|
|
|
|
1
|
I
I
|
|
T

|

|

L
hw, 3hw, E

Fig. 5. Ilustration of the influence of the strong transition inside the partly filled shell to the

lowest resulting line for the nucleus 4,Z = 90,40. The strengths F¥ and F? are placed in fiw,
and 3fiw,, respectively, with the exception that the strong 3pg»—4gy, line is placed at the
expected position 3.27 MeV =~ 1/3fiy, (shown by dashed lines). The sitnation here is especially
favourable to the low energy transition, since for this one the u » factor in the numerator in
S is almost equal Lo unily. (The transition goes from an almost filled to an almost empty level).

In the detailed calculation (sect. 15), the collective mode of lowest energy ocecurs at 2.61

MeV (shown by an arrow). If we use this energy in the model, S? = 434 and SP = 90.

The contribution to S? from the lowest-lying unperturbed line is 254. We can illustrate
the influence of the higher-lying unperturbed lines on B in the following way. Let us first

calculate B by taking only S? and S? from the transition of lowest energy into account,
subsequently by including all the AN =1 lines, and finally by also including the AN = 3 lines
(keeping E fixed). In this case, the ratio of B values is 1:2.9: 4.2, In the detailed calculation

S%’ = 537, which is more than found above, because of the influence of the broadening of the

shells. The quantity S¥ should be changed less. Using the value from above, SP/S? ~ 90/537 ~
17%/,, which should be a reasonable value.

transitions are placed as in a preliminary calculation, roughly equal to that
in sect. 15. All the high-energy transitions are placed at 3k w,. As a standard
nucleus Sn''® is chosen.

Fig. 6b shows the picture when the octupole force is introduced. In the
low-energy region two strong lines appear, one governed primarily by the
transitions inside partly filled shells, and another one by the transitions
between neighbouring shells. From table 1 it appears that these two lines
contain about 10%/, of the total B oscillator strength, i.e. the same amount
as the line of the lowest energy in the simple harmonic oscillator picture
in fig. 4.

In the medium region around A, many weak lines show up. In total
they contain 23%, of the B oscillator strength, which is 5%/, more than when
% = 0.
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Fig. 6. Histogram of the energy distribution of B values for Sn!1,

a) The unperturbed spectrum with the proton lines fully drawn and the neutron ones dashed.
The AN = 3 levels are concentrated in 37w, The position of the AN = 1 levels comes from
a preliminary calculation and is somewhat different from the values used in section 15.
The B value in a) is calculated with an eftective charge e on all nucleons.

b) The spectrum when the isospin independent octupole force is introduced (S = 0.578 x A%/,
which corresponds closely to S; = 0.45 x A%/3 used below). For the medium region around
hw,, histograms of B, and B, are inserted. For the strong lines above and below this energy
region, B, and B, are written above thc lines. B; and B, are in units of 10~7¢ ¢mS".
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Fig. 6. Histogram of the energy distribution of B values for Sn1¢,
¢) B, By, and B, for »%; = —half the x, value from b) and », = 0.

d) The spectrum in the 3hiw, region when F, is smeared out between 2.5 hw, and 3.5 fiw, and
#, is the same as in b). (For compulational reasons the region of proton F, lines is pushed
down 0.2 MeV compared to the neutron F, region).

e} The change from d), when x, like in ¢) and 5, = 0.
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Fig. 6. Histogram of the energy distribution of B valucs for Sntf,

f) The change from d), when x, = 0 and s, four times stronger than in c).
g) Histograms of B, B, and B; when %, has the same value as in b) and »; = — 0.5 »,. The un-
perturbed spectrum is for F, the same as in a) and for I, the same as in d).

Finally, we get two high-energy, strong lines. They are not realistic but
appear because of the concentration of the F, transitions at 3hw,.

To get some insight into the way in which smearing out of the 3hw,
transitions affects the picture we consider a crude model, the main results
of which are shown in figs. 6d, e and f (figs. 6e and 6f are discussed in
sect, 8). The unperturbed 3 kw, lines are distributed with constant density
between 2.5hiw, and 3.5Aw,. This change in the model from above affects

the lines only slightly in the fiw, domain, and therefore they are not shown.
Mat.Fys.Medd.Dan. Vid.Selsk, 35, no. 1. 3

MeV
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TaeLe 1. Contributions (here called rclative oscillator strengths) to the energy-weighted sum of
B, By and B, for the two low-lying strong levels in the resulting spectrum of Sn*¢ from the
model of fig. 6 and for the two high-lying levels which occur when F, is concentrated at 3 hew,.

The data are given for a pure x, force (denoted »x,) (the force from fig. 6 b), for a mixed
force with same s, and »; = — 0.5 %, (denoted »,-+,) (the force from fig. 6 g), for this value
of », and », = 0 (denoted 5,) (force from fig. 6 ¢), and for s, four times greater and still %, = 0
(denoted 43x,). Finally, “‘none” means the sum fractions trom the unperturbed spectrum, i.e.

when x, = %, = 0.

X rel. B rel. B, rel. B,
levels force osc. str. osc. str. osc. str.
two low-energy strong *y 7%, 179, 10/,
levels K+ My 8%/, 17%, 2%,
P 679, 649/, 809/,
*1 72°/, 809, 83%,
two high-energy levels 43, 77%, 799/, 919/,
o % 670/, 640/, 83%,
none 720/, 79°/, 799,

As was to be expecled, the oscillator strength is pushed somewhat to
the low-energy end of the region, where stronger lines are built up, while
a great part is left as a rather constant background (fig. 6d).

We note that the force is not able to form a very strong line in the gap
between F; and F,. This is partly due to a cancellation effect; the contribu-
tions to S from F; and F, have opposite signs. Aftempts to press a greater
part of the oscillator strength down from the 3hw, region does not result
in the formation of a strong line in the gap, but makes the strength go further
down to the Lo, region. If only the 3k w, unperturbed lines are included
in the Sn spectrum, the x, value from fig. 6d is just strong enough to place
the resulting slate of lowest energy at the edge of the F, region. When s,
is made twice as large, the state comes down from 20.61 MeV o 17.95 MeV
and the contribution to the total B oscillator strength increases from 219/,
to 329/y. If %, is once more multiplied by two, we are very near unstability
of the spherical shape of this ficlive nucleus. The state appears al 7.63 MeV,
but only contains 38¢/, of the B oscillator sirength and 629/, are still left
in the 3w, region.

From the discussion above we expect the spectrum in a nucleus to
consist of some few, strong lines of low energy (2—-5 MeV) and many weak
ones distributed rather uniformly in the Zw, and 3k, regions.

When going from nucleus to nucleus the qualitative picture of the spec-
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The single-particle levels come from a preliminary calculation, using the same neutron
levels as in case 9a and KSII proton levels (cf. sect. 15):

ot 0y dgat 0.8, hBypjat 2.1, dyp: 2.6 and s;;, 2,95 MeV. In this calculation ¢, = 0.413.

trum in these two regions should vary rather slowly, the variations being
essentially brought about by the changes in intershell distances and the
broadening of the shells.

The low-energy, strong states are expected to vary much more quickly
in position and B value, since they are very dependent on the energy and
the number of particles available for the transitions inside the partly filled
shells. This is the reason why we concentrate on this part of the spectrum
in the detailed investigation below.

The fine structure in the low-energy part of the unperturbed spectrum
has a strong influence on the distribution of the oscillator strength among
the very lowest-lying resulting states. We shall give some characteristic
examples in concluding this survey of the qualitative features of the spectrum.
The examples are chosen from the numerical calculation in sect. 15.

The general, well-known trend is that the level of lowest energy has a

g%
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Fig. 8. The B values in the low-energy spectrum in 4,Z = 142,60 (case 8a in section 15). Same
notation as in fig. 7.

small §' = §7 + §™ and thus a great B, whereas the opposite is true for the
following ones.

An example is given by the double magic Pb2*®, for which the lowest
part of the spectrum is shown in fig. 7. In this and the following figures only
the 6—-10 lowest states are included. It should be kept in mind that the
unperturbed lines of greatest energy in the figures are just the lowest ones
of the numerous states forming almost a continuum up to 10—-15 MeV, as
shown in fig. 6.

For a non-magic nucleus the single-particle transitions inside partly
filled shells in general all have energies well below the intershell transitions.
This gives rise to a gap in which a collective state may appear, and thus the
oscillator strength in the low-energy part of the resulting spectrum is in
general split info two or more parls. Figs. 8 and 9 refer to a neutron-magic
and a non-magic nucleus.

A special fine structure effect in the very lowest end of the spectrum
is seen when the lowest unperturbed transition is weak (due to the wv factor
or because spin flip is involved). This is illustrated by fig. 10.

Table 2 gives the contributions to the total B and B, oscillator strengths
for the lowest states. We see that the strength in the low part of the spec-
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Fig. 9. The B values in A,7Z = 148,60 (case 8a in sect. 15). Same notation as in fig. 7.

trum, is fairly constant, although it may be distributed in different ways
among the lowest states. In A,Z = 142,60 the lowest level is moderately
collective (closed neutron shell) and in A,7 = 148,60 it is very collective.
(We note that the increase in B and decrease in E just compensate each
other).

For the next nucleus in the table the lowest state is especially weak,
while for 4,7 = 90,40 the collective state is fairly high in energy and largely
governed by the strong proton fransition across the closed Z = 40 subshell.
This gives rise to an especially great contribution to the B strength.

7. Examples of the isospin structure of the excited states

In this section we shall give examples of the isospin structure, i.e. the
relative magnitude of B, B, and B,, for the excited states which we find
below, using the x», force. To start with the strong low-energy lines we see
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Fig. 10. The B values in 4,Z = 132,54 (case 7b in section 15). Same notation as in fig. 7.

from tables 3 and 4 that By is of the order of or greater than B, and B, {{B.
This means that the lines, as was to be expected, are fairly pure 7 = 0.
This is the case even for single closed shell nuclei, where you might expect
a greater v = 1 mixing.

The tables teach us further that even small T = 1 impurities are able
to change the ratio of B, to B so that it differs considerably from unity.
Because of the neutron excess, S* for the lowest level is in general greater
than S?, and thus B, > B. Since for this level B is never much smaller than
B, it follows from the considerations in section 4 that it contains a greater
part of the B, oscillator strength than of the B strength (see also table 2).

The levels in the fiw, region (fig. 6b), which although individually weak
contain in total an appreciable part of the B oscillator strength, are very
often of mixed v = 0 and = = 1 type (B, @ B,). However, v is less sig-
nificant here. In the 3hAw, region of fig. 6b we get a rather pure v = 0
state and a pure v = 1 state, due to the fact that we have concentrated
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TasLr 2. Row I gives for some nuclei the relative contribution to the total B oscillator strength
from the resulting level of lowest energy, and row II the contributions from the five states of

lowest energy.
Rows IIl and IV give the same quantities for the B, strength.
The contributions to the B, strength are always very small.

Az 142,60 148,60 132,54 90,40
’ case 8a caseSa case 7b case 3
] 2.50/, 2.5%, %, 5%,
1 6 o 5.5%, 7%, 89,
IIL. .o, 5 0, 8 Y, 1,9, 7%,
IV. . 16 9/, 16 9, 139/, 139/,

TaBLE 3. E (in MeV), B (in e* 10 %), B; and B, (in 10* f9) for all the lowest lying resulting states
for some nuclei, when a pure isospin-independent force is used. The data come from the general

calculation in sect. 15, with the exception that for A,Z = 120,50 the proton transilion 4 gy~ 5h

was placed 0.8 MeV higher.

11/2

A,Z = 90,40 4,7 = 120,50
E B B, B, E B B, B,
2.61 8.4 6.3 0.2 2.51 7.0 21 3.6
3.77 0.4 0.4 10-¢ 3.31 5% 10-2 0.1 10-2
4.23 1.7 2.2 0.04 4.48 6.2 7.6 §x10-2
4.73 0.2 0.4 0.07 5.14 0.1 4% 102 10-2
4.80 0.5 0.2 0.07 5.29 2.4 0.4 0.8
5.07 7% 10-3 0.8 0.7 5.65 5% 102 0.2 5% 10-2
A,Z = 142,60 A,Z = 148,60
E B B, B, B B B, B,
1.92 15 16 3x10-2 1.36 21 16 4.8
2.65 0.4 0.5 9% 10~ 2.41 0.9 0.4 2.6
3.77 6.6 20 3.4 2.67 0.4 2 % 10-2 0.2
4.44 0.6 0.5 10-2 3.83 0.2 0.6 0.1
4.70 1.9 5% 102 1.3 4.30 8.8 12 0.2
5.12 3 %10 1.5 1.6 5.18 10-2 4.2 3.8
5.56 0.8 3.2 0.7 5.35 0.1 1.7 1.0
5.58 10-2 5% 10-2 10-2
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TasrE 4. B,/B, for the two strongest lines in the low-energy spectrum of some nuclei from case
8 a (sec detailed calculation in sect. 15).

AZ 138,56 140,58 142,58 142,60 144,60 146,60 148,60
lowest level......... 0.03 0.01 0.10 0.002 0.04 0.08 0.10
next, strong level ... 0.18 0.17 0.10 0.17 0.10 0.04 0.02

all the 35w, transition strength on a single neutron and a single proton line.
In a real case we would expect the 3fiw, region to look somewhat like
the Aiw, one,

If Iy is smeared out in the same way as in fig. 6d, a rather strong v = 0
state is formed at the low end and B, falls off when we go upwards, whereas
B; is constant in the region. This result is, however, dependent on the model.
Variations in the relative and absolute density of neutron and proton states
may influence the picture considerably.

8. The possible existence of strong v ~ 1 lines

As seen in sect. 5, we can in the case in which we use an isospin inde-
pendent force primarily expect to treat the 7 =~ 0 states correctly while the
7 ~ 1 states are mainly determined by the magnitude of ;. To get information
on the distribution of the B; oscillator strength and the possible existence
of strong v >~ 1 states we therefore, in this section, study the spectrum of
our standard nucleus Sn''® (fig. 6) when a pure 3, force is used.

When F, is concentrated in 3hw,, a strong v~ 1 line and a 7 = 0
line are formed in the high-energy end of the spectrum (fig. 6¢). If =, is
made four times stronger, the line of highest energy appears at 30.68 MeV
with (B, By, By) = (8.3, 0.6, 13.2). The influence of the AN = 1 lines is
very small. If they were left out, the v = 0 line would be unchanged, the
v >~ | line would be 10-15°%, weaker. The oscillator strengths from table 1
show the expected variations. If the 3Aw, lines are smeared out between
2.5k w, and 3.5h w, the oscillator strengths are practically unchanged, but
the tendency to forming a distinet high-lying 7 ~ 1 state is considerably
weakenecd, as seen from figs. 6, e and f, especially if %, = —0.5,.

Of particular interest is the problem whether strong = ~ 1 lines could
be expected in the lower energy part of the spectrum. It is striking that
in the presenl model no such lines appear in the gap between the AN = 1
and the 4N = 3 excitations, nol even when x»; = —2x,. This is due lo
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the same cancellation effect as considered in sect. 6 in connection with the
investigation of the possible existence of states in the gap below the 3h w,
region (for pure x, force), but the cffect is even stronger here, since the
density of the oscillator sirength in the high-energy end of the unperturbed
spectrum in the fiw, region is small, i.e. the levels are weaker and are more
widely spread. We will study this point again below, using a x,+ x, force.

In the Aw, region many weak states, often of mixed isospin character,
appear and even in the lowest part, where the nuclei show more individual
trends, a study of some nuclei of different types has revealed no tendency
to formation of stronger v — 1 states. We are led to conclude that, with
the models and #, values which we have used, there is no pronounced
tendency towards building up individual very strong v = 1 levels. Even
in the AN = 3 region the B, oscillator strength is expected to be smeared
out over a broad energy interval, unless x, is very strong.

As mentioned above, the interaction matrix elements for the AN = 3
transitions are less reliable than for AN = 1, and this may give rise to modi-
fications.

9. Modifications in the spectra, when », + 0 is introduced

On the basis of the discussion of the simple examples in section 5 and
the cases of pure x», and pure »; force (sects. 6 and 8) it is easy to understand
the qualitative effects of an octupole coupling which contains both isoscalar
and isovector components. An example is given in fig. 6g.

In the 3hw, region of the spectrum the B, oscillator strength is pushed
downwards, B, upwards.

A concentration of B, coming from 7 = 0 levels is formed in the low
energy end and a concentration of B, coming from 7z = 1 levels is formed
at the high end. However, the tendency for forming a distinct, high-lying
7 =~ 1 line is only weak. When %, = —2%,, this is no longer correct. A line
with B = 7.74, By = 10.72 (same units as in fig. 6) is formed at 31.95 MeV,
containing 32°/, of the total B oscillator strength and 779/, of the B, strength.
This is rather near to the results for a pure %, force. We note that this con-
centration is only reached when we use a x, value, which is very large
compared to the tentative theroretical estimates. Table 1 gives relative oscil-
lator strengths for different »; values in a spectrum in which F, is con-
centrated in 3fiw,. If F, is smeared out, the figures for B, By and B, are
practically unchanged in the 3hw, region.
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TasLe 5. E, B and B, for some selected resulting states as discussed in the text. Units as in
table 3. The data are given for pure x, force, for s, +x,, where s, = — %%m and for g -i- 3, force
with 3¢y = —2s,. The magnitude of %, is the same in all three cases.
The results for Sn!* are due to the same calculation as in lable 3.

s, =0 = — Ly sy = — 2 Nucleus (4,2Z)
E.......... 2.26 2.45 2.65 116,50
B..o........ 5.7 6.8 8.0 lowest excited state
Bgooviiii 16 14 12
L. 2.61 2.63 2.66 90,40
B ... 8.4 8.0 7.6 lowest excited state
Byooivnl 6.3 6.5 6.8
B, 1.36 1.50 1.61 148,60
B .o 21.0 21.5 21.6 lowest excited state
Byooooiol 45.8 35.0 27.1
E . ......... 4.65 4.65 4.66 116,50
B ... ... 9.0 8.7 .5 next strong state
Byoovioi... 8.2 8.3
E .. ... 4.30 4.31 4.32 148,60
B0 8.8 9.2 9.6 next strong state
Byovviiia 12.0 11 11
E ... 4.70 4.75 4.79 142,60
B 1.9 1.1 0.5
By 0.05 0.1 0.2

In the medium region around fiw,, the states are weaker since some
T = 0 strength is sucked down by x, and some 7 = 1 strength upwards by
#;. If only the F; lines are included in the unperturbed spectrum, a calcula-
tion using the same values of »%, and »; as in fig. 6g gives the perhaps some-
what surprising result that no slrong v ™~ 1 line is formed above the F lines.
This reminds us of what happened when only F, was included. In sect. 6
we saw that then a rather strong force %, was needed to suck a greater part
of the oscillator strength out of the unperturbed lines.

In the low-energy spectrum, the presence of x; tends to decrease B,,
and this may have considerable influence on B and B, A quantitative
insight requires a more detailed study. For the resulting state of lowest
energy the changes depend on 1) the relative magnitude of 57 and S=,
2) whether the near-lying unperturbed modes are neutron or proton execita-
tions. When S» > 8?7,z tends to mix more prolon motion into the state, B
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increases and B, goes down (see the dala for A,Z = 116,50 in table 5).
The opposite trend is observed when S? > §7 (e.g. A,Z = 90,40). It may be
noted that only few cases exist where S® < S2(B; < B) for the lowest state.

Some modification arises from the low-lying modes. An example is
A,Z = 148,60 (table 5). Here, S* > S?, and thus B increases when %, 18
introduced, bul only very little, since the lowest and strongest unperturbed
transition inside the partly filled shells is a proton one (fig. 9), the role of
which is weakened by ;.

In all the above mentioned cases »; males the state less collective in
the sense that E is increased. In 4,Z — 142,60 we find an example where
By = B (the neutron excess and the closing of the neutron shell neutralize
each other). Then E,B and B, are almost independent of whether », — 0,
%y = —0.6xy or % = —2x, (table 6).

For the next strong excitation in the low-energy part of the spectra the
rules from above may be used, but it may happen that B and B, both move
up or move down, when x; is introduced. For the weaker levels one should
be more careful by using simple arguments, since there is a strong dependence
on the nearest unperturbed modes. Finally, table 5 gives an example (from
A,Z = 142,60) of a line which is mainly of 7 = 1 character. (The line comes
between a proton and a near-lying neutron mode). When the 7 = 1 part
of the excitation is shifted to higher energy, B decreases strongly.

10. Simultaneous adjustment of x, and %,

When fitting the experimental energies by an isospin independent octu-
pole-octupole force we make of course a systematic error. In this section
we shall sketch briefly how our results would have been changed if a fit
to experimental energies had been made by some general x,,%, mixture.

When, for the lowest state, B and B, are different as, eg., for A,Z = 116,50
we see from table 6 that we are able to make very great variations in B
and By, by keeping the energy fixed and varying », and »,; simultaneously.
This is not possible, however, when B, ~ B as is the case for the next,
strong state in A,7Z = 116,50 or for the lowest excitation in A,Z = 142,60.
For the energies we obtain the result that states with great difference between
B and B, move upwards relative to the stales for which B and B, are equal,
when »; is introduced. An example is given in fig. 11. By applying these
simple rules it is easy to predict the variations and we have not gone further
into a systematic study.
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TasLe 6. E, B, By, B, and & in the same units as in table 3 for the two strongest, low-energy
lines in some selected nuclei for different values of ;. For x, &= 0 we have chosen %, to give the
lowest-lying resulting state approximately the same energy as when s, = 0.

A,Z = 88,38 case 4a A,7Z = 142,60 case 8a
E 2.74 4.63 E 1.92 3.77
B 6.2 1.4 B 15 )
=0 B 4.9 3.7 # =0 B 1?3 236
co = 0.48 ¢ e ' ¢y = 0.45 ¢ .
B, 0.07 0.5 B, 0.03 3.4
b 0 0 b 0 0
E 2.75 4.70 E 1.92 3.89
. 6.0 1.9 B 15 8.5
sy =—0.5 %, B = —~ 0.5, >
ous B, 5.1 3.4 L ods B, 16 16
fo =7 B 0.03 0.2 o= B, 0.01 1.3
b 0.04 0.13 b 0.02 0.14
E 2.77 4.76 E 1.92 4.00
B 5.8 2.4 B 15 9.9
o= =2 B :3 3.1 o= A B 12 13
Co = 0.48 ’ > ' Cy = 0.45 ° )
B, 0.01 0.05 B, 0.003 0.3
b ~0.08 0.25 b 0.03 0.28
A,Z = 116,50 case 6 A,Z = 112,48 case 5D
E 2.20 4.23 E 2.15 3.82
B 6.9 7.5 B 9.1 6.3
o= B 18 4.6 =0 B 17 1.8
= . ' = 0.45 ’ '
o = 045 B, 2.5 0.4 =0 B, 11 1.4
b 0 0 b 0 0
E 2.18 4.20 E 2.14 3.93
B 1 6.6 B 12 4.5
%, =—0.5%, L #; =—0.5%,
o4 B, 20 4.7 o435 B, 18 1.6
e = B, 1.3 0.2 v B, 0.5 0.7
b 0.13  —0.09 b 0.09  —0.33
E 2.16 4.17 E 2.13 4.04
B 17 5.5 B 15 2.1
sy = —~ 2 ‘/ ° ® = — 25, 11
ot B, 29 4.6 S B, 18 .
o= B, 0.4 0.04 o= B 0.1 0.1
b 024 018 b 017  -0.72
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Fig. 11. Experimentally and theoretically determined values of the lowest resulting energy in

nuclei in case 8a from section 15. The theoretical values are calculated for different s, and ;.

¢, is defined by S; = 7/x, = ¢y A%/3 where x, is the effective force constanl as discussed in sections
13 and 14. A is the atomic number.

Only one comment is left. As will be discussed below, it is almost always
possible for x; = 0 to use a smoothly varying », in different regions of the
periodic table. An exception is e.g. the nucleus 4,% = 90,40, for which a
somewhat smaller », is needed to reproduce the experimental energy. As
seen above, the theoretically delermined energy is practically unchanged
when x; = 0 is introduced (since B < B,). Thus, %; + 0 cannot provide a
greater .

11. Influence of », on inelastic scattering

In the preceding sections we have discussed the influence of %, on B
and B, which two quantities are relevant in Coulomb excitations and in
the scattering of isospin-zero particles, respectively.

For some few examples, table 6 gives the quantity b, defined in sect. 4,
especially connected to scattering, e.g. of protons or neutrons.

For », = 0, b vanishes, but already for x»; = —0.5x,, in some cases it
is so large that it should influence the relalive cross section considerably.
E.g. for |b| = 0.1, the relative cross section for inelastic proton and «
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particle scattering should differ by 20°/,. From a comparison of the results
in the table with those from the detailed calculation (tables 21 to 36) it is
easily seen where the greatest effects are expected.

12. The collective character of the states

The amount of collectiveness in the excitation can be demonstrated, c.g.,
by comparing B with the single-particle estimate Bs.p. (table 7). It may be
TaBLE 7. The ratio for some selected nuclei of the predicted B value (from the detailed calcul-

ation) to the single-particle value, using for this last one the estimate
By p, = 0.416 A e 10~ 78 cm®.

case 1 2a 3a 5a 6 7a 7b 7c
AZ .. ..... 60,28 88,38 96,42 110,48 116,50 124,52 124,52 124,52
B/Bgy ... 16 24 23 14 12 6 3 17
case 8a 8a 8c 8c 9a

AZ ..., 140,58 150,62 140,58 150,62 208,82

BBy y. - 13 35 20 45 33

mentioned that, when the single-particle transition of lowest energy goes
from an almost filled to an almost empty level, every one of the particles
gives a contribution to B, which thus may be large withoul any coupling
between the excitations. More detailed information on the states is obtained
from a study of the relative magnitude of the amplitudes for different two-
quasiparticle creations and annihilations in the resulting excitation p(«,j;,/,)
and q(e,j;,j.) introduced in sect. 3.
If %, = 0 but %, + 0 they are given by (ref. 1)

3
. . r .
1 (gl 11%Yy (a) 1> Qe vy, + vy 1y,
p(gnds) = 7 : : - —,  (12.1)
v (S'(hew,))? E(j) + E(jp) — ko,
Cae (TN
{ (ol 11°Y, (E> > (uy, vy, +v;0,)
q(o, 1 jz) = . (12.2)

(S'(froy)) 2 E(jr) + E(jy) + ha,
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where kR w, is the energy of the state, and
S'(hew,) = SP(liwy) + S™(fiwy). (12.3)

When fiw, is nol very near to the energy of any of the unperturbed modes,
many of these contribute to the state with comparable amplitudes. Because
of the denominators the amplitudes for quasiparticle annihilation are much
smaller than for quasiparticle creation, unless E(j,) 4 E(j,)>>fiw,. This con-
dition is fulfilled when the level is pushed far down from the unperturbed
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Fig. 12. The numerical value of the two-quasiparticle amplitudes p(e, ji, j») and g(e, ji, Js)
(p up ¢ down) from the 6 or 7 unperturbed lines of lowest energy
a) to the lowest lying collective level in 4,Z = 142,60 (case 8a).
b) to the lowest lying collective level in 4,Z = 148,60 (case 8a).
¢) to the lowest lying collective level in A4,Z = 132,54 (case 7b).
d) to the second resulting level in 4,7 = 148,60 (case 8).
e) Lo the fifth resulting level in A,Z = 148,60 (case 8a).
f) to the third resulting level in A,Z = 116,50 (case 6, a preliminary calculation).
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energies towards zero, or when considering contributions from higher lying
fransitions.

For the state of lowest energy the amplitude p(x«,j;,j,) has the same
sign as the reduced matrix element times the uv factor. This means that
it has the same sign as the annihilation term in the two-quasiparticle inter-
action (ref. BM). In this sense there is a special coherence in the lowest state.
This coherence is also demonstrated by the fact that all contributions to B
have the same sign, S? only contains positive terms.

For the other stales the denominator in p(«,j,,/,) is negative for contribu-
tions from unperturbed modes at lower energy and positive for contributions
from unperturbed modes at higher energy.

Then, some cancellaion effect arises (cf. the discussion in sects. 6 and
8 of the vanishing of the lines in the gap between the AN — 1 and the
AN = 3 transitions).

In fig. 12 the numerical values of the amplitudes for the lowest resulting
state are given for a medium collective (a), a strongly collective (b), and a
weakly collective case (¢). For (¢) the nearest unperturbed mode dominates
completely. In (a) p—q* from the lowest unperturbed excitation is ~ 85°/,,
while in (b) the contribution from the six lowest ones is about 54°/,. Thus,
46°/, is left for contributions from the remaining part of the levels in the
unperturbed spectrum. In (d) and (e) we consider the 2”% and the 5
resulting state from the same nucleus as in (b). (d) is a rather weak state
where Sy < 0 because it lies just above a strong proton line. (e) is the second,
strong state in the spectrum. Another example of this kind is (f).

13. The renormalization procedure

As mentioned above all the single-particle transitions in principle are
taken into account when the resulting energies and transition probabilities
are calculated. Thus, no concept of effective charge is introduced.

The contributions from the AN = 3 excitations are evaluated in the
simple harmonic oscillator model. Such an approximative treatment may
be justified by the fact that S,, the AN = 3 part of S, always plays a minor
role in comparison to that of S;. When going to the highest end of the
periodic table this changes somewhat, but still in 2%Pp S, > 28,, although
the double closed shells allow no transitions of very low energy in S,.

When performing the calculation we found it convenient to work with
a renormalized force constant x,, defined by
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7 = S51(= §-8,). (13.1)
Hett
The resulting energies are thus obtained as the solutions to this equation,
neglecting the energy variation of S,. This should be a good approximation,
when the low-energy states are considered.
To calculate B we added to SP the quantity S = 0.05 4%% which value
was found to be a good approximation from 1%0 to 2°3Pb.
For 8" = 87 + 8" we simply used S; since the difference is very small
and of no importance, when the uncertainties in the treatment are remem-
bered. In the calculation of B, and B we used values of S,, quoted in sect. 14.

14. The parameters

The nuclei which we have considered are divided into regions (cases)
as shown below. In each of these regions ¢ was chosen as 20/4, where A,
is some representative atomic number in the region. This standard value is
pretty near to that which has been used before in spherical nuclei (refs. 4
and 12).

An exception is made for the region 28 < Z < 50. Here, KissLiNnGER and
SorensEN (ref. 12) have found that G, (G for protons) should be 26/4 to
give the right quasiparticle energies. We have made calculations for both
values of G, and find the best results with the high one. (For further details:
see below).

The shell-model levels «(j) have been taken from ref. (13) except for
the partly filled shells for which the level separations were obtained from
KSI and KSII or from stripping and pick-up experiments (for details, see
below). Since one of the weakest points in the treatment is the poor knowledge
of the exact value of &(j)s, we have in several cases made calculations with
different level schemes.

In our treatment we have looked apart from short range neutron-proton
interactions. Experimentally it is found that sometimes there are rather
strong shifts in the single-particle levels, e.g., so that the neutron level with
J = 1 —} moves down in energy when the lower spin-orbit partner is filled
by the protons (ref. 14). By using a simple d-functlion force it has been pos-
sible to describe this effect (ref. 15), but the explanations are slill rather

tentative, and a survey including satisfactory quantitative predictions over
Mab,. Fys. Medd.Dan.Vid.Selsk. 35, no. 1. 4
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a wider region of the periodic table does not exist. In some cases where
experiments indicate the existence of this effect, it is taken into account.

Since many parts of the residual interaction are not explicitely included
in our Hamiltonian, we should not be surprised to see how the theoretically
or experimentally determined effective locations of the levels change from
region to region of the periodic table.

There is little direct evidence concerning the separation of levels in
different shells. In our calculation the distance from the “‘center of gravity”
of the partly filled shell to the centers of gravity in the shells above and below
have been chosen to be approximalely the same as in the simple shell-model
calculation (ref. 13), but sometimes, when the shell is almost filled or almost
emply, we have tried to reproduce approximately the distances corresponding
to the strongest, low energy transitions across the shells. It is clear thal the un-
certainty here suggests to take the energies and B values of the states in the
3—5 MeV region as even more tentative and preliminary resulls than those
for the resulting state of lowest energy.

In the determination of the x variation we started by estimating S,/A from
the simple harmonic oscillator model, giving points on a line 0.027 A within
5°/y. The experimental energies were inserted in S, to give some experimental
value of the effective force constant (13.1). Smoothe curves were drawn for
7[xeeA = S;/ A and 7/xA = S[A. As we could perhaps have expected, none of
these curves could be fitted by a simple power dependence of 4, but to a good
approximation 7/x.; could in the different regions of the periodic table be
given by a variation like A%3, Then all the calculations were Tun again,
using

7 A5/3
S Bl Svoed

(14.1)
The details are discussed in section 15. In most cases ¢, = 0.45 was chosen.
This value corresponds to a force constant, given by

7 5/3 2
- = 045—— +0.027 — (14.2)
% MeV MeV
(cf. equation (13.1)).
Since S, varies somewhat more strongly with A than S does, $; = S— S, was
a little lower in the heaviest nuclei (¢, = 0.404 for Pb).
For the lighter nuclei the situation was unclear, but S; may have a
variation like A2



Nr. 1 51

The A%? variation of » is somewhat slower than expected from the simple
scaling argument in sect. 2. Whether this points to a real effect is difficult
to say, in view of uncertainties in S, due to the meager knowledge of the
high lying unperturbed modes, and in view of uncertainties in §; which is
strongly influenced by the two-quasiparticle excitations of lowest energy.

15. The calculation and the results

In our treatment we shall neglect the pairing interaction between neutrons
and protons. Thus, it is essential that there is a reasonably large distance
between their Fermi levels; therefore we have not considered nuclei with
28 < Z < 40 when 28 < N < 40, whereas we have investigated nuclei with Z
and N at each side of the subshell at 40 and nuclei, where the proton shell
between 50 and 82 is almost empty and the same neutron shell is almost
filled.

IFFor each value of N and Z and for the possible, different level schemes
the BCS equations (2.4) and (2.5) were solved and the values for u(j), v(j)
and E(j) inserted into the eigenvalue equation for Aw, (3.13). For some of
the nuclei 4 and 4 are given in tables 8 to 19. The distances from some levels
in the partly filled shell to a level in the shell above and the shell below is
given in table 20.

TasLE 8. 4 and A for case 1.

N =30 N =32 N = 34 N =36
A, —0.32 0.131 0.594 1.079
a........ 0.810 1.048 1.152 1.142

TaBLe 9. A and 4 for case 2 a.

Z =30 Z-32 Z =34 Z-36 Z =38
A, —0.560 ~0.125 0.339 0.842 1.457
Ao 0.89 1.153 1.270 1.107 1.018
N = 40 N = 42 N =44 N =46 N = 48
Ao, 2.670 3.138 3.496 3.818 4123
Ao 0.650 0.833 0.884 0.828 0.650




TasrLe 10. 4 and A for protons from case 2 b.

N = 40: Z =30 Z =32 Z =34

Aveviiiinn —0.645 —0.205 0.257

V4 R 0.991 1.303 1.467

N = 42: Z =32 Z =34 Z =36

Y/ —0.263 0.178 0.667

Ao 1.215 0.972 0.958

N = 44: Z =32 Z =34 Z =36

Acvviiiiii —0.349 0.082 0.570

P4 1.168 1.289 1.306

N = 46: Z =32 Z =34 Z =36 Z =38
Acoviioi —0.429 -0.013 0.465 1.111
Ao 1.082 1.182 1.169 1.093
N = 48: Z =34 Z = 36 Z =38

Y —0.116 0.364 1.060

Ao 1.114 1.082 0.963

N = 50: Z =36 Z =38

Aol 0.259 1.017

b4 0.955 0.760

TasrLe 11. 1 and A for cases 3a and 4 a.

Z =38 Z =40 Z = 42 Z =44

B, 1.435 2.293 2.858 3.286

Ao 0.848 0.835 0.996 1.039




Nr. 1

TasrLe 11 (continued).

Z = 40: N =52 N = 54 N =56
Ao —0.227 0.132 0.766
AL 0.518 0.617 0.569
Z = 42: N =152 N = 54 N =56 N =58
Avoviin —0.242 0.119 0.685 1.189
A, 0.534 0.653 0.687 0.968
Z = 44: N =52 N =54 N = 56 N = 58 N = 60
p/ —0.244 0.097 0.577 1.010 1.317
A0 0.521 0.651 0.727 0.940 1.095
TaBLE 12. 2 and A for case b a.
Z =46 Z =48 N=56 N=58 N=60 N=62 N=64 N=66 N =68
Aveiiian. 3.586 3.868 0.171 0.501 0.850 1.215 1.655 2.062 2.364
Ao 0.749 0.591 0.759 0.799 0.838 0.836 0.841 0.947 1.032
Tasie 13. 4 and 4 for neutrons from case 5 c.
N =56 N =58 N =60 N = 62 N =64 N =66 N = 68
A —-0.093 0.150 0.415 0.726 1.131 1.529 1.833
A 0.898 0.957 0.971 0.942 0.914 0.988 1.057
Tasre 14. 1 and A for neutrons from case 6.
N = 64 N = 66 N = 68 N =70 N="72 N =74
Avevennans, 1.199 1.700 2.012 2.277 2.520 2.746
s 0.606 0.756 0.854 0.901 0.912 0.889
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TasLe 15. A and A for case 7a.
Z =52 Z = b4 Z =56 Z =58
Ao 0.241 0.425 0.616 0.818
Ao, 0.504 0.674 0.774 0.828
N =68 N=70 N=72 N =74 N=176 N =178 N =80
Avennin.. 1.548 1.740 1.930 2.120 2.313 2.507 2.704
Ao, 1.051 1.032 0.992 0.928 0.835 0.706 0.516
TaBLE 16. A and A for protons from case 7 b.
Z =52 Z =54 Z = b6 Z =58
Avveeinin, —0.310 —0.095 0.143 0.414
Ao 0.438 0.569 0.631 0.657
TapLE 17. 4 and A for neutrons from case 7 c.
N = 68 N =170 N =72 N =174 N =176 N =178 N =80
Aviviiininn 2.040 2.290 2.519 2.731 2.931 3.122 3.307
Ao 0.745 0.797 0.815 0.800 0.749 0.655 0.491
TasLe 18. 4 and A for case 8 a.
Z = 56 Z =58 Z =60 Z =62 N =84 N = 86 N =88
Aovvnn 0.154 0.4271 0.704 0.985 —0.469 —0.275 —0.006
Aol 0.530 0.538 0.549 0.514 0.533 0.733 0.877
TasLE 19. A and A for case 9b.
Z =176 Z =178 Z =380
Aot 2.709 3.055 3.283
Ao 0.139 0.233 0.152
N =114 N =116 N =118 N =120 N =122 N =124
Avvien. 1.546 1.716 1.887 2.056 2,227 2.444
V4 N 0.721 0.665 0.604 0.529 0.425 0.256
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TaBLe 20. The energy difference hetween some level in the partly filled shells and a level in
the shell above or below.

case levels energy (MeV)
1, protons and neutrons ............. 31515 —3Dge 2.6
4895 ~48402 3.88
2a, protons ..., .. . oL 2dy/y =31 5,5 7.5
4%9/; ~48s 2.4
2a, meutrons ........................ 2dgsy 315, 7.5
4gorp —48ora 2.2
3, protons ..., 2dge =31 50 7.5
48gr2 48310 2.4
3, meutrons ........................ 484, —4d;,, 2.9
51111/2—5f7/2 5.4
Sb, protons . ....... ... ... 3f ., —314 2.9
4815 —48q1s 2.4
5b, neutrons ........................ 48y, —4dy, 3.6
4s17, 5T o1 4.9
6, meutrons ........... ... ... ... ... 484, —4d;,, 3.4
Shyy 1581, 3.6
7a, protons ........ ... . ..., 4840 —4ds;, 3.0
45,5 -1, 4.44
7a, neutrons ........................ 4845 ~484s 3.2
48519 —51 574 5.7
8a, protons ............. ... 0Ll Shyp/,-51f 5 5.4
48412 48905 2.2
8a, neutrons ........................ S5P1rs —68gsa 2.3
48414 =514, 4.67
9b, protons ............ ... . ...... .. 48475 —Bhy/y 4.26
4g9/2 ‘4g712 21
9b, neutrons ........................ 5P1ss 68410 3.6
481/2 ~5f7/2 4.95

The number of terms in S, was between 54 and 96, greatest in the
heaviest nuclei.

The calculation was performed on a GIER computing machine with
programs written in ALGOL.
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In general the ten lowest resulting cnergies have been calculated. In
tables 21 to 36 we report all those which seem Lo be of interest with special
emphasis on those excitations which have significant values of B or B,. In
figures 13 to 20 we give the energy of the lowest mode and compare with the
experimental data. When experimental B values are available, we also give
the theoretical results.

A very large part of the experimental information comes from an article
by HanseN and NatHAN (ref. 16). The B values, given by these authors,
were derived from inelastic « scattering experiments, assuming pure Cou-
lomb excitation. However, it appears that owing to the fact that the energy
of the a particles comes near to the Coulomb barrier, penetration becomes
important, and the real B values are smaller by a factor two or three in
most cases (an exception seems to be the A ~ 145 region, cf. ref. 48). There-
fore only the energies from ref. 16 are given below.

Case 1: Z = 28.

In this region the proton shell is closed, and the situation could be
expected to be somewhat similar to Sn where a strong line appears just below
the energy of the proton transitions belween the shells. Such a line is only
seen for the heaviest isotopes.

For neulron number = 30, the neulron fermi cnergy lies below the lowest
level in the partly filled shell, the neutron transitions are rather high in energy,
and most of the available oscillator strength is concentrated on one level.
The calculations were done with the KSII neutron levels: fy,:0, pgy:0,
P12:3 and ggpp:4 MeV and with the KST levels 0.78, 0, 1.56 and 4.52 MeV.
Since ConEN, FuimeR and McCarruy found good experimental agreement
with the Jast level scheme (ref. 17) we only report the results which have
been obtained when using this scheme. For the KS II single particle energies
there is an accidental degeneracy which can give rise to special phenomena
in the figures. Apart from this, the results from the two calculations are not
very different.

In recent (d,t) experiments, the results of which were published when
our calculation was finished, FuLmerR and Darunick (ref. 18) find good
agreement with KS I, only the p;,, level should perhaps come at 1.12 MeV.

Since the proton shell is closed, the lowest resulting states are essentially
governed by the strong neutron transition pgu — g, and the weak [y — gy
transition. The proton transitions coming up from the (sd)-shell are rather
weak and not very low energetic. The most important proton excitation is
fa2 = 9gs2 Which is of medium strength. If we change the intershell distance
f22 = Pajz from 2.6 MeV, the value we have used, to 4 MeV, as supposed by
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Fig. 13. The lowest-lying theoretical and experimental energies and B values for the Ni group
(case 1), ¢, = 0.39. The dashed lines indicate the two-quasiparticle encrgies. The experimental
data are taken from different authors (ref. 34).

KS II, the B value in 4,Z = 58,28 is diminished by a factor of 2, whereas
in 64,28 it goes down by a factor 3. The energy is 0.5 MeV greater in the
lightest nucleus, 0.1 in the heaviest one. This great influence, especially on
the B values, is not very surprising, since mainly the protons contribute
here. The © = 0 part of B is less affected.

The best it to the energies was reached by ¢, = 0.39, for which the ener-
gies are plotted in fig. 13. This value does not lie on the smooth curve for
S, discussed in sect. 14, and therefore another calculation was run, using
¢y = 0.435. In table 21 the lowest energy is given for ¢, = 0.435 and energies
for all the stronger lines for ¢, = 0.39.

The theory indicates the existence of one or two higher-lying excitations
of appreciable strength and in some cases such levels are found, but the agree-
ment between theory and experiment is poor, perhaps because of uncer-
tainties in the shell-model levels.

The B values of the lowest level are rather well reproduced by theory.
We note that when we extend the f;, — pgj, distance towards the KS II value,
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TasLe 21. The first row gives energy, B and B, for the state of lowesl excitation energy for case 1,
¢y = 0.435. The following rows contain data for the most strongly excited, low-lying states
in case 1, when ¢, = 0.39.

For units, see caption to table 3.

A,Z: 58,28 60,28 62,28 64,28

E, B, B;: 484 18 2.5 446 1.7 2.9 419 16 3.3 3.95 15 3.5
4.47 2.5 3.3 4.07 24 3.9 3.82 2.3 4.4 3.57 2.3 4.8
6.13 0.6 0.3 6.25 1.2 0.6 626 14 038 6.21 15 1.0
6.31 0.2 0.1 7.30 0.2 3x107% 733 0.2 4x10-% 7.33 0.2 5x10°2
724 02 102

B passes the experimental figure. As it was to be expected, $2 < S§% for the
lowest level and B; > B as discussed before. When the number of neutrons
increases, the lowest resulting level is pressed down, away from the lowest
proton mode; B decreases and B, goes up.

 Note added in proof: A new investigation of the Ni spectra has recently
been planned in Paris. Partly inspired by this experiment we have perfor-
med two more calculalions to see how the results are changed when other
single particle shell model level schemes are used: (b) proton levels f;5:
=3, P30, f5/2:0.8, p1;p:2.2 and gy,5:3.0 MeV, neutron levels f;,5:— 4,
Paja:0, f5,2:0.77, p15:1.12 and gy,,:4.0 MeV, G, = 24/A. (c): The gy, neu-
tron level placed at 3 MeV, the other levels unchanged from (b). G, = 24/A.
In both cases ¢y = 0.39. The results are presented in tables 21 b and 21c.

TaBLE 21 b. Energy, B and B, (in same units as in table 3) for the strongest, low energy exci-
tations in case 1b, when ¢y = 0.39.

AZ: 58,28 60,28 62,28 64,28
E, B, B,: 4.57 3.3 3.1 4.31 3.3 3.9 4.04 3.2 4.7 3.77 3.2 5.4
6.55 0.006 0.2 6.23 0.1 0.06 6.04 0.4 0.003 592 0.6 0.01
7.40 0.2 0.00 7.35 0.3 0.2 7.33 03 0.3 7.25 03 05
7.95 0.1 0.4 8.00 0.2 0.4 7.94 0.1 0.5 7.73 10— 0.3

TasLE 21 c. Energy, B and B, (in the same units as in table 3) for the strongest, low energy
cxcitations in case 1 ¢, when ¢, = 0.39.

AZ: 58,28 60,28 62,28 64,28
E, B, By: 4.34 31 3.3 4.03 3.0 4.0 3.78 2.9 4.6 3.61 2.9 5.2
6.12 0.2 0.01 591 0.4 107* 584 0.7 0.05 579 0.8 041
715 0.2 0.4 7.25 0.3 0.4 7.28 03 04 7.27 03 0.5
7.79 0.01 0.4 7.79 0.2 0.5
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Case 2: 28 < Z < 40; 40 < N < 50

Here rather many neutrons (or rather neutron holes) are available in
the unfilled shell for the lighter isotopes whereas there are only few protons.
The B values are low in the beginning and increase with increasing atomic
number. There is some tendency for giving a line in the gap above the transi-
lions inside partly filled shells, but the stronger proton transitions belween the
shells are rather high in energy and do not contribute much to the low-
energy spectrum.

Calculations were made for (a) the KS I proton levels f;5 = 0, pys = 0.6,
Pye = 1.8 and gy, = 3.4 MeV and G, = 26/A. Neutron levels from KS II:
[s)2 = 0, pgs = 0.3, pyp = 2.5 and gy = 3.6 MeV. (b) neutron levels like
in (a), proton levels which are almost equal to the KSII ones: pgs:0,
Pz 1.8, gg2:2.8 and f52: = 0.6+ (50 ~ N) x 0.1 MeV where N is the neulron
number, G, = 26/4. In both cases ¢, = 0.45 was used. The lowest proton
and neutron two-quasiparticle excitations are the weak f;;, — gy, and the
strong pgjs — gy transition. When going from (a) to (b) the py, gy distance
which represents the strong proton transition inside the shell is constant,
and thus the (a) and (b) results are rather similar. The differences arise
from the fact that in (b) the f;, proton level is placed above pg, and is
populated less for the lower values of the neutron number. Therefore the
strong pgjs — ggje transition has the greatest av factor in (b), and B is larger.
In tables 22 and 23 we give the results for cases (a) and (b). The lowest
level was discussed above. For the second level, given in table 22, S# is small,
because we have just passed a neutron excitation. Thus in most cases B > B,,.

Some of the lines of higher energy are rather mixed in isospin character
(By = B,>> B), indicating that the line is primarily due {o neutron excitations.
The experimental material is very meager. For the lighter nuclei Darcey gives
energies below the theoretically predicted values and with slower variation.

For A,Z = 88,38 the energy is rather well reproduced by the (a) calcula-
tion, but B is too small by 30°%, (see also the results from case 3).

Case 3: Z = 40,42;50 < N < 82. (4,Z = 88,38 is also included).

In this region, we start with. a relative large lowest energy in 4,7 = 90,40,
having a closed neutron shell and closed proton subshell, but B is large
since the transition across the proton subshell is strong. When more neutrons
enter, the encrgy goes down. The guantity B is almost constant and is spread
a litile over the lowest levels.

We used the KS I proton levels (as in case 2a), and neutron levels based
on stripping experiments (ref. 19) dy:0, $15:1.7, §73:2.6, dg;:2.7 and
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TABLE 22. Energy, B and B, for the low-energy, stronger levels in case 2 a, ¢, = 0.45,
Same units as in table 3.

A,Z: 70,30 72,32 74,32
E, B, B,: 2.54 1.4 4.4 2.51 2.0 5.0 2.84 2.0 5.2
5.05 0.5 0.4 4.75 1.1 0.5 4.78 1.0 0.4
5.28 0.7 0.7 5.63 0.2 0.8 5.67 0.3 1.0
AZ: 76,32 78,32 74,34
E, B, B,: 3.13 2.1 5.2 3.29 1.9 4.9 2.42 3.2 6.1
4.79 0.8 0.3 4,22 0.3 0.5 4.41 0.3 0.3
5.62 0.3 1.1 5.46 0.1 0.9 5.60 0.4 1.1
6.35 0.5 0.3
AZ: 76,34 78,34 80,34
E, B, By: 2.72 3.3 6.3 3.01 3.4 6.2 3.17 3.2 5.9
4.44 1.2 0.2 4.43 0.7 0.2 4.17 0.6 0.4
5.65 0.6 1.3 5.59 0.5 1.5 4.53 0.6 0.04
5.42 0.3 1.3
A,Z: 82,34 78,36 80,36
E, B, By: 3.19 2.7 5.4 2.44 5.7 7.8 2.67 5.7 7.4
4.16 1.5 1.2 3.92 0.6 10— 5.46 1.3 1.8
5.18 0.07 0.9 5.51 1.4 1.7
AZ: 82,36 84,36 86,36
E, B, B,: 2.82 5.6 7.1 2.89 2.2 6.8 2.85 4.6 6.5
5.31 0.9 1.7 3.87 0.5 0.2 3.73 11 0.3
4.58 0.03 0.6 4.69 0.2 1.7
5.11 0.3 1.0 6.00 0.5 0.3
6.13 0.7 0.2
AZ: 84,38 86,38 88,38
E, B, By: 2.46 8.0 8.2 2.54 7.6 7.9 2.55 7.1 7.8
5.14 1.6 1.6 4.53 0.3 1.1 4.59 0.7 2.3
4.94 0.5 0.8 5.50 0.6 0.06
5.77 0.5 0.02
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TasLE 23. Energy, B and B, for the level of lowest excitation energy in case2 b, ¢, = 0.45. The
following levels are rather weak and not very different from case 2 a. Same units as in table 3,

A7 70,30 ‘ 72,32 74,32

E. B, B,: | 241 21 5.2 ‘ 233 3.1 6.2 2.65 3.2 6.2
AZ: 76,32 78,32 74,34

E, B, B.: | 297 3.0 6.0 l 316 2.7 5.5 225 4.4 7.2
A,7: 76,34 ] 78,34 80,31

E, B, By: | 2.54 45 7.2 ' 2.82 4.4 6.9 3.00 4.1 6.4
AZ: 82.34 78,36 80,36

E, B, By: | 3.08 3.5 5.8 241 6.1 8.2 264 6.1 7.8
AZ: 82,36 84.36 86,36

E, B, By: | 275 5.9 7.2 281 5.4 6.7 277 4.8 6.4
AZ: 84.38 86,38 88,38

E, B, By | 251 7.6 7.9 249 7.3 7.4 237 7.0 7.1

hyyj5:2.8 MeV. Two calculations were run. a) G = 26/A and b) G, = 20/4.
The neutron single-particle energies might be somewhat uncertain. There
is some indication of a rather strong movement of the g,, neutron level
(ref. 20). Therefore this level is lowered by 0.4 MeV in Z = 42.

When neutrons are added to N = 50, the strong neutron transition
dsje — hyyp 1s populated and goes rapidly down in energy. At N = 56 there
is a minimum for the collective energy. After that the transition goes up,
and the weak g~ hyy;, transition becomes the lowest one. The proton
excitations have higher energy, and the uv factor in the numerator in S goes
down (to 0.7) with increasing Z. To fit the experimental energy, ¢, = 0.48
was needed, which is greater than in the neighbouring cases. In fig. 15 the
results are given for Z = 40 when using ¢, = 0.45. From the previous dis-
cussion we remember that we are not able to fit the energies with a lower
co value, if x; < 0 is introduced.

For Z = 40 the lowest level of the lightest nuclei has S? > S? and thus
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Fig. 14. The lowest-lying theoretical and experimental energies and B values for case 2a. The
experimental data for A,Z = 88,38 are due to Hrwim (ref. 35). The other ones come from an ex-

periment by W. Darcey (ref. 36).

TaABLE 24. Energy, B and B, for the low-energy, stronger excitations in cases 3a and 4 a, ¢, = 0.45.
Same units as in table 3.

A,Z: 88,38 90,40 92,40
E, B, B,: 2.74 6.2 4.9 2.61 8.4 6.3 2.37 9.1 9.3
4.63 1.4 3.7 4.23 1.7 2.2 4.36 1.8 1.3
4.80 1.5 2.7 4.80 0.5 0.2 5.19 0.3 1.3
506 7x107* 0.8
AZ: 94,40 96,40 92,42
E, B, By: 2.03 9.3 13 1.62 9.8 17 2.93 9.2 7.1
3.31 0.7 0.02 3.21 1.5 0.07 4.06 0.9 1.0
4.40 1.9 1.1 4.41 1.9 1.1 4.28 0.8 1.0
524 04 1.1 5.27 0.6 1.5 4.80 3.6 1.0
5.07 0.01 0.9
A,Z: 94,42 96,42 08,42
E, B, B,: 2.63 9.0 9.7 2.26 8.6 12 1.92 8.7 15
4.12 0.6 0.3 3.54 1.4 0.07 3.49 2.1 0.3
4.36 1.4 1.0 4.12 0.6 0.2 4.13 0.5 0.2
5.19 0.3 1.4 4.39 1.6 0.9 4.40 1.7 0.9
5.26 0.7 1.5 5.29 0.8 1.7
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Fig. 15. Energies and B values for cases 3 and 4, where dg,, hy,,, and g, hy;;, denote the

energy of the two-low lying neutron quasiparticle excitations. The theoretical energies are

caleulated with ¢, = 0.48. For Z = 40 the results for ¢, = 0.45 are shown. The experimental
energies are due to HanseEn and Natmawn (ref. 16). For 4,Z = 88,38 see caption to fig. 14.

TaBLE 24 (continued).

A,Z: 100,42 96,44 98,44
E, B, By: 2.11 8.8 15 2.76 8.1 9.7 2.36 7.6 12
3.55 1.5 0.06 3.75 2.2 0.5 3.74 3.1 0.8
1.43 1.7 0.8 4.29 1.6 1.1 4.31 1.8 1.1
4.77 5.6 0.3 5.00 0.3 0.5 5.02 0.4 0.6
5.37 1.4 1.6 5.44 10— 0.6
A,Z: 100,44 102,44 104,44
E, B, B,: 2.06 7.6 14 2.17 7.7 14 2.32 7.5 14
3.75 3.0 0.8 3.79 2.9 0.6 3.82 2.4 0.4
4.33 2.0 1.1 4.36 2.1 1.0 4.38 2.2 0.9
4.72 0.5 0.4 4.73 0.6 0.4 4.74 0.7 0.4
5.03 0.6 0.6 5.05 0.7 0.6 5.06 0.9 0.6
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TaBLE 25. Energy, B and B, for the lowest excitation, case 3b and 4 b, ¢, = 0.45.
Same units as in table 3.

A,Z: 88,38 90,40 92,40

E, B, By: 2.26 6.0 4.4 2.10 9.9 7.0 1.92 11 10
A,Z: 96,40 96,40 92.42

E, B, By: 1.64 13 15 1.28 15 21 2.29 9.3 6.5
AZ: 94,42 96,42 98,42

E, B, B,: 212 11 9.5 1.87 12 13 1.60 12 17
A,Z: 100,42 06,44 98,44

E, B, By: 1.77 12 17 2.48 9.6 9.7 2.17 9.5 12
AZ: 100,44 102,44 104,44

E, B, By: 1.91 9.5 15 2.02 9.5 15 2.16 9.4 15

B, > B. This is changed when the neutron number grows, and for some
nuclei By, ~ 2B. The smaller (7, in case b results in smaller collective energy
but causes no major changes in B. We note that the theory predicts the
existence of some higher-lying collective states.

Case 4: Z = 44.

The levels are the same as in case 3, only the neutron g,, is lowered
still further and the splitting in the neutron states changes a bil because of
the variation in A.

The neulron levels are: dy;5:0, 5)5: 1.6, gp/5:1.8, dyp:2.6 and hyyp5:2.7 MeV,
For the discussion, see case 3.

Case 5: Z = 46 and 48.

When passing on to this region there are still fewer proton holes in the
partly filled shell, and the available oscillator strength is not concentratedon
the lowest excitation. A number of level schemes was studied. We shall
only mention three:

a) the same proton levels as in case 3a.
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Neutron levels experimentally found by Curec (vef. 21) in stripping
experiments in Pd g;5:0, dgj5:1, 812:2.5, hy15:2.9 and dgpp:3.1 MeV.
26

same proton levels as in a) Gy = e
KS1 neutron levels :

dsi2:0, §72:0.22, 51;5:1.9, dgjp:2.2, and hyyp:2.8 MeV.

‘

proton levels like in a) Gp = :4 -, neutron levels from a tentative

interpretation of a (d,p) and (d,t) experiment in Cd by Roswer
(rvef. 45).

dsjo:0, Go2:0.2, fyyp:2.25, 575:2.25 and dy,:2.85 MeV.

This scheme is in fair agreement with the experimental (d, p) results,
obtained by Sitva and Gorpon (ref. 46) who find g,, to be placed
less than 0.4 MeV above dy,. KS I assumes this distance to be more
than 1 MeV.

a) there is a rather strong variation in the lowest neutron two-quasi-
e energies. The transition dy,—hy;, has the lowest energy, which
much as A passes dy,. In addition, the ww factor varies from 0.4 to 1.
auses a rapid variation in the resulting energy. This variation is not
in b) or c¢), since here the dyj;, — hyyy uv factor only varies from 0.6
and the two-quasiparticle energy changes more slowly. The lowest
urbed energy appears about 0.5 MeV lower in c¢) than in b). The

TaBLE 26. Energy, B and B, for the low-energy, stronger excilations in case 5a, ¢, = 0.45.

Same units as in table 3.

A,Z: 102,46 104,46 106,46
E, B, By 2.95 11 11 2.71 86 10 2.20 71 11
411 1.7 0.5 3.71 2.8 0.7 3.66 4.3 1.5
525 02 1.3 407 1.9 0.9 407 2.0 1.0
528 0.3 1.2 530 04 1.2
AZ: 108,46 110,46 106,48
E, B, By: 1.8 7.0 13 1.60 74 16 273 8.9 11
3.65 1.9 1.8 3.65 5.1 2.0 3.76 4.7 1.4
407 2.2 1.1 407 23 1.2 523 0.5 1.2
531 05 1.1 535 0.5 1.1

Mat. Fys. Medd. Dan. Vid.Selsk, 35, no. 1. ' 5
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TaBLe 26 (continued).
AZ: 108,48 110,48 112,48
E, B, B,: 2.33 7.2 11 1.19 7.0 13 1.65 7.2 15
3.71 6.5 2.3 3.70 7.4 2.9 3.70 7.8 3.2
5.25 0.5 1.1 5.25 0.6 1.0 5.48 0.2 1.0
AZ: 114,48 116,48
E, B, By: 1.77 7.5 16 1.99 7.6 16
3.46 1.7 1.2 3.62 4.2 2.3
3.75 6.8 2.6 3.83 4.0 1.2
5.51 0.5 1.1 5.53 0.7 1.0

TasLe 27. Energy, B and B, for the low-energy, strong excitations in

Same units as in table 3.

case 5b, ¢y = 0.45.

A,Z: 102,46 104,46 106,46
E, B, B,: 2.67 11 13 253 11 14 238 10 15
416 21 0.4 3.82 1.1 0.03 3.79 1.8 0.2
414 23 0.5 413 25 0.7
AZ: 108,46 110,46 106,48
L, B, By: 2.29 9.5 16 210 91 17 2.57 11 14
376 2.6 0.5 3.74 3.3 0.8 3.95 3.4 0.4
412 2.6 0.9 111 2.6 1.0
AZ: 108,48 110,48 112,48
B, B, By: 242 10 15 2.27 9.6 16 215 91 17
3.90 45 0.8 3, 5.5 1.3 382 6.2 1.7
AZ: 114,48 116,48
E, B, By 2.22 9.7 18 2.35 10 19
3.85 5.9 1.6 3.89 5.3 1.3

Tasre 28. Energy, B and B, for the low-energy, stronger excitations in case 5¢, ¢, = 0.45.
Same units as in table 3.

AZ: 102,46 104,46 106,46
E, B, By: 2.38 9.6 13 2.20 9.1 14 2.03 8.8 15
3.72 2.8 0.6 3.71 3.4 0.8 3.70 3.9 11
4.08 2.0 0.8 4.08 2.2 0.9 4.09 2.3 1.0
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TaBLE 28 (continued).
AZ: 108,46 110,46 106,48
E, B, By: 1.88 8.4 16 1.82 8.1 16 2.25 9.2 14
3.68 4.5 1.4 3.68 4.8 1.7 3.78 5.7 1.6
4,09 2.4 1.1 4.09 2.5 1.2
A,Z: 108,48 110,48 112,48
E, B, B,: 2.08 8.8 15 1.94 8.4 16 1.88 81 16
3.76 6.5 2.0 3.75 7.2 2.5 3.74 7.6 2.8
A,Z: 114,48 116,48
E, B, By: 2.06 8.1 16 2.31 8.4 16
3.77 7.3 2.6 3.81 6.7 2.2
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Fig. 16. Theoretically and experimentally determined energies and B values for cases 5a and
5b and for case 6. In 5, the quasiparticle energies are from case a. Ior cases 5, experimental
data are available from HaxseN and NATHAN (ref. 16), from M. Saxar et al. (ref. 37), and from
McGowan et al. (ref. 38). The experimental values for case 6 come from LemBere et al. (ref. 39).

Experiments by HanseN and NaTuAN for the nuclei in case 6 give the same energies except
for Sn'* where they find an energy of perhaps 2.40 MeV. Their B values are a factor of 3 greater
than the experimental ones given in the figure.

5%
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proton Fermi energy is higher than the energy of the levels in the partly filled
shell. The lowest proton transition becomes high in energy and the u» factor
is only 0.5 for Z = 46 and 0.25 for Z = 48. This means that the transitions
from py;s and ggp to the next shell become important. The result is a strong,
higher-lying 3™ state, for which B > B, while B < B, for the resulting level of
lowest energy.

When comparing the results with the experimental data it is seen that
none of the level schemes, which we tried, could give the correct trend
in the energies and B values. Still, something seems to be missing to
give the right variation with A. Therefore, further experimental studies of
the location of the single-particle levels would be interesting.

Case 6: Z = 50.

The Sn region has been discussed above, especially in relation to fig. 6.
We have seen how the closed proton shell gives rise to a higher-lying strong
line.

Since the proton shell is closed, we used for the proton single-particle
levels the Nilsson values (ref. 13) with the exception that 5 A,,,, was placed
in the middle of the 50—-82 shell, just as in case 7 and as in the Mottelson-
Nilsson paper (ref. 13). The energies are the following:

3fopi—2.1, 3pg:0, 3f52:0.7, 3pyp:l.4,
4gy9:3.7, dd5;p: 7.1, dgp:T.4, 455:9.1,
4dy5:9.2 and Hhy;;:8.4 MeV.

The neutron levels were taken from KSI:

Calculations have also been performed for another neutron level scheme,
proposed by ConeEx and Prick on the basis of a stripping experiment (refl. 22).
Since, however, they give a poorer fit to experimental energies, and since
after publication the measurements have been reinterpreted (ref. 23) so that
the level scheme comes much closer to KSI, the results of this calculation
are not reported.

The two neulron transitions in the partly filled shell are the weak g, — f1;15
and the strong dy, — Ay, which lies a little higher. The energies of both
transitions go up and the uv factor down, when A increases.

The transitions from the closed proton shell give rise to the second
strong line. The line of lowest energy has By/B =~ 2.5 due to the small S?
because of the closed shell, whereas the higher Iying strong line has B,/B < 1.
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TasLE 29. Energy, B and B, for the low-energy, stronger excitations in case 6, ¢, = 0.45.
Same units as in table 3.

A,Z: 114,50 116,50 118,50
L, B, By: 2.11 6.2 15 2.20 6.9 18 2.31 7.7 20
4.24 7.8 4.5 4.23 7.5 4.6 4.22 6.9 4.6
5.44 1.4 2.9 5.31 0.5 2.4 5.14 0.02 1.6
5.57 1.4 1.0
AZ: 120,50 122,50 124,50
E, B, By: 2.43 8.4 22 2.56 9.1 24 2.70 9.8 26
4.20 6.2 4.5 4.19 5.3 4.2 4.18 4.2 3.5
5.01 0.05 1.0 5.44 0.8 1.9 5.34 0.4 1.9
5.52 1.3 1.6

Some of the levels of higher energy have very different values of B, and B.
In some cases B{{B; because the line is a rather pure neulron one.

The energies are in good agreement with the results of LEmBERG et al.
and of HansEN and Natuan (see fig. 16), but the B values are smaller by
a factor 2 or more than the Lemberg ones.

It is noteworthy that this large discrepancy appears just in Sn where,
as mentioned above, B,/ B is extraordinarily great and thus the introduction
of an isospin dependence in the octupole-octupole force will have especially
large effects on B. However, we sec from tables 5 and 6 that an unexpected
large value of — x;/x; is needed to reproduce the experimental B value com-
pletely.

It is rather unsatisfactory that the proton single-particle levels come
just from a simple shell-model calculation. Because of the uncertainty in
the position of the proton 5k, level we have performed a calculation with
the energy of this level increased by 0.8 MeV. Some results are given in
tables 3 and 5. The shift in the 5 Ay, single-particle energy causes consi-
derable changes, especially for the higher-lying, strong excilation, since the
4 gg/2 — 5 Iy1o proton transition (energy 4.7 MeV) is one of the strongest ones
in the low-energy spectrum.

Preliminary results from inelastic « scattering by Faracer et al. (vef. 24)
indicale the possible existence of a second, strong 3~ state around 5 MeV in
A.Z = 122,50 and 124,30, the intensity being however much lower than
when exciting the lowest octupole state.

It is interesling to note that from the calculation B should be roughly
cqual for the higher lying state and for the lower lying one, while By, which
is the relevant quantity in « scattering, should be much smaller. Recently,
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Arvan etal. (vef. 25) have by means of inelastic proton scaitering found
a possibly collective level in 4,74 = 116,50 and 118,50 around 3.9 MeV with
unknown spin and parity. For the heavier Sn isotopes this level has disap-
peared, at least in the region below 4.7 MeV. It would be interesting to study
the possible relationship between this state and the states found by Faraca:
et al.

Case 7: 50 <« Z <« 82, 50 <« N < 82.

As mentioned in connection with fig. 10, there are here only few protons
and few neutron holes in the partly filled shells and the oscillator strength
in the low-energy spectrum is spread over several levels. Three level schemes
were used, viz.

a) protons: ¢,5:0.8, d5:0.8, hyy;p:2.4, dyp:3.13 and s15:3.36 MeV;

neutrons: dyp:0, gpp:l, Bype:1.66, s70:2.1 and dy;p:2.37 MeV.

b) same level scheme as in a), but the proton g,/, is lowered to 0 MeV.

¢) protons like in a), neutrons like in case 6.

The proton levels in a) were chosen on the basis of a suggestion by Kiss-
LINGER (ref. 26) and are almost identical to the KSII levels. The neutron
levels in a) come from a stripping experiment in the N = 82 region (vef. 27).
There is rough agreement between this neutron level scheme and single-
particle energies, found by JoLry in (d, p) and (d, t) experiments in 77 (ref. 47).

In case b) we only changed the position of the proton g, level in order to
investigate how this modifies the picture. The two level schemes a) and c¢)
are really different, and we report in detail the results for both with the
aim to demonstrate the influence of changing the single-particle parameters.

The main difference between the ‘““a-neutron levels” found by experi-
ment in the end of the region and the c levels, which fitted the quasiparticle
energies nicely in Sn, is that h;;, in the last case is placed at the top of the
shell, so that the neutron transitions from d;, and g, are allowed by the
uv factor, whereas in the first case hyy, as well as ds, and gy, are almost

TasLE 30. Energy, B and B, for the low-energy, stronger excitations in case 7a, ¢, = 0.45.
Same units as in table 3.

A,Z: 120,52 122,52 124,52
E, B, By: 1.93 7.3 14 2.09 5.7 11 2.24 4.2 7.7
2.36 2.1 3.2 2.47 3.1 5.1 2.58 4.8 6.5
419 7.8 5.8 4.23 8.3 6.0 4.24 8.7 6.3
5.31 1.8 0.7 5.32 1.7 0.6 5.12 0.2 1.5
5.35 1.3 0.2
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TasLE 30 (continued).
AZ: 126,52 128,52 130,52
E, B, By: 2.39 3.2 5.5 2.54 3.0 4.8 2.68 4.8 6.1
2.68 5.4 6.3 2.76 4.9 4.8 2.81 2.5 2.0
3.15 0.2 1.8 3.31 0.8 3.5 3.52 1.9 51
4.24 8.9 6.7 4.24 9.1 7.4 4.21 8.9 8.1
5.20 1.0 2.1 5.22 1.4 2.4 5.20 1.3 2.8
A,Z: 124,54 126,54 128,54
E, B, By: 2.01 9.7 15 2.16 8.8 12 2.30 8.6 11
2.41 2.8 2.9 2.48 3.5 3.2 2.56 3.2 2.5
4.35 7.6 5.9 4.37 8.0 6.2 3.17 0.1 1.9
5.53 1.9 1.0 5.53 1.8 0.9 4.37 8.3 6.6
5.585 1.4 0.5
A,Z: 130,54 132,54 134,54
E, B, B,: 2.42 9.5 11 2.49 10 11 2.52 11 11
2.65 1.6 0.9 3.56 1.0 3.5 3.81 1.7 4.4
3.35 0.5 2.8 4.83 8.7 8.5 4.28 8.4 9.8
4.36 8.5 7.3 5.40 1.4 4.0 5.33 0.8 4.6
5.40 1.3 3.2
A 136,54 130,56 132,56
E, B, By 2.53 11 11 2.15 13 15 2.24 14 13
4.12 10 17 2.52 1.2 0.5 3.37 0.3 2.6
5.19 0.1 3.7 3.17 0.1 2.0 4.46 8.2 7.3
6.08 0.2 2.1 4.7 7.9 6.5 5.52 0.5 3.0
5.75 2.0 1.6 5.76 1.4 1.0
A,Z: 134,56 136,56 138,56
E, B, By: 2.29 14 13 2.32 14 13 2.32 14 13
3.58 0.6 2.9 3.83 1.0 3.1 4.24 9.5 16
4.43 8.4 8.5 4.37 8.5 10 526 3x10°* 3.4
5.56 1.2 5.4 5.44 0.5 5.5 5.82 1.4 0.4
6.13 0.01 1.7
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TasLE 30 (continued).
AZ: 136,58 138,58 140,68
E, B, By: 2.11 16 15 2.13 16 15 2.13 17 15
3.59 0.5 2.7 3.84 0.7 2.6 4.33 9.3 16
4.51 8.3 8.5 4.45 8.5 11 529 3x10% 3.0
5.66 0.8 5.9 5.51 0.3 5.5 5.98 1.5 2.0
6.04 1.1 0.5
TaeLE 31. Energy, B and B, for the lowest line in case 7 b, ¢, = 0.45.
Same units as in table 3.
A,Z: 120,52 122,52 124,52
E, B, By: 2.00 4.8 11 2.15 3.1 7.3 2.29 1.9 4.5
A,Z: 126,52 128,52 130,52
E, B, By: 2.43 1.2 2.7 2.58 0.8 1.7 2.74 0.5 1.1
A,Z: 124,54 126,54 128,54
E, B, By: 2.16 3.1 6.9 2.30 1.9 4.3 2.43 1.2 2.7
AZ: 130,54 132,54 134,54
E, B, B,: 2.58 0.8 1.7 2,74 0.5 1.2 2.93 0.5 1.0
A,Z: 136,54 130,56 132,56
E, B, B;: 3.08 3.0 3.4 2.42 1.8 2.5 2.57 1.4 2.5
AZ: 134,56 136,56 138,56
E, B, By: 2.73 1.6 2.5 2.88 5.0 5.6 2.90 5.6 5.8
A,Z: 136,58 138,58 140,58
E, B, By: 2.53 9.7 9.5 2.56 9.9 9.3 2.56 10 9.8
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TasLe 32. Energy, B and B, for the low-energy, stronger excitations in case 7 ¢, ¢, = 0.45.

Same units as in lable 3.

A,Z: 120,52 122,52 124,52
E, B, B,: | 212 11 20 2.26 11 20 2.41 11 18
426 7.4 4.7 498 7.4 4.6 312 005 1.8
509 041 1.5 515 0.5 1.9 430 74 4.6
540 1.3 0.01 519 0.9 2.1
AZ: 126,52 128,52 130,52
E, B, By: | 254 11 16 264 95 13 271 83 10
321 0.6 3.8 334 1.7 6.4 351 3.0 8.4
4.31 7.3 4.6 4.31 7.1 4.7 4.30 6.7 4.8
521 1.2 2.3 521 1.3 2.5 520 1.2 2.9
5.72 5104 2.1 5.71 3 x 103 2.1
AZ: 124,54 126,54 128,54
E, B, By: 2.09 15 21 2.21 14 19 2.32 14 17
3.05 001 1.2 314 0.05 2.4 326 0.4 3.9
4.39 7.0 4.8 4.41 7.1 4.9 4.42 7.1 5.0
525 0.1 2.0 533 0.6 2.7 538 1.0 3.2
560 1.4 0.1
AZ: 130,54 132,54 134,54
E, B, B,: 2.40 13 15 2.47 12 13 2.52 11 11
341 1.0 5.3 358 1.7 6.1 377 1.9 5.1
441 71 5.3 440 7.0 5.7 3.88 1.2 2.8
539 13 3.6 538 1.2 41 436 6.7 6.4
534 0.9 4.7
A,Z: 136,54 130,56 132,56
E, B, By: | 255 10 9.8 212 16 18 220 15 16
4,17 10 16 3.29 0.4 4.0 3.44 0.8 4.8
527 0.4 4.3 450 7.0 5.2 450 7.1 5.6
581 0.1 1.2 550 0.6 3.7 554 1.0 48
584 1.0 0.07
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TasrLe 32 (continued).

A,Z: 134,56 136,56 138,56
E, B, By: 2.27 15 14 2.31 14 13 2.35 13 12
3.62 1.1 4.8 3.80 0.8 2.7 4.29 9.7 15
3.74 1.1 1.4 3.90 1.3 3.5 5.36 0.2 5.2
4.48 7.1 6.3 4.44 7.2 7.5 5.67 0.5 1.0
5.52 1.0 5.4 5.46 0.6 5.6
A,Z: 136,58 138,58 140,58
E, B, B,: 2.07 17 16 212 17 15 2.16 16 14
3.63 0.9 4.0 3.81 0.5 1.8 4.38 9.4 15
3.75 0.4 1.7 3.91 1.1 3.6 5.41 0.08 4.9
4.54 7.2 6.6 4.50 7.4 8.1 5.71 0.4 2.2
5.61 0.6 5.8 5.52 0.3 5.5
5.83 Q0.5 1.8
MeV

-—-— two quasi particle

——  theory
1= x  experiment
i [ 1 [ T I .
52 54 56 58 z
1201122124126 128 130 124126 128 130132134 136 130132134136 138 136 138140 A

Fig. 17. Energies for case 7b. The experimental points are due to HaNsex and NatuaN (ref. 16).
Recent experiments (ref. 40) indicate a possible existence of 3™ states in the following nuclei:
A,Z =130,56: £ =1.80 MeV, A,Z =132,56: L = 2.06 MeV,
A,Z = 134,56 : E = 2.37 MeV.
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Yig, 18. Energies for case 7c. When comparing this and fig. 17 we see that now the lowest
lying proton transition comes below the neutron ones. As discussed in the text, this causes
great changes.

filled. Therefore, all the transitions inside partly filled shells are rather weak
in case a) for Z just above 50. In case b) this is even more pronounced,
since here the strong proton transition dgu—fty;; has a very small uv factor
(both levels are almost empty). As seen from fig. 17, the lowest resulting
state in b) almost sticks to the two-quasiparticle energy.

The trend in the B wvalues follows from the above mentioned facts.
In a) the oscillator strength in the lowest part of the spectrum is spread
over more levels, and in b) the lowest line is especially weak, as seen from
fig. 10. Following, in table 31, the isotopes with Z = 56 for case b), we see
a bump in the B values at A = 136. The reason is that the lowest neutron
two-quasiparticle energy here is increased so much that it comes pretty near
to the lowest proton excitation, and thus S? goes up.

In ¢) the resulting state of lowest energy is always the strongest one.
For the following states there is often an appreciable difference between
B and B, Still, for the strong ones, B, > 3B,.

The experimental results by Hansex and Natean (giving B = 45 for
A,Z = 124,52 and 128,52) might perhaps be taken as an indication that the
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¢) levels are most reliable at least in the beginning of the region, but the
experimental information is very incomplete. Recent experiments by Ger-
ScHEL et al. (see caption to fig. 17), indicate a possible existence of 3~ states,
which show a more rapid energy variation than the theoretically calculated
ones. A confirmation of the results would be very interesting.

We note that we are here in a region, where some of the nuclei might
be fairly near to (or even have) non-spherical equilibrium shape (ref. 28).
This will of course influence the spectra.

Case 8: 50 <« Z <« 82, 82 < N
(below the region of stable quadrupole deformation).

Here, relatively few parlicles are available in the partly filled shells, and
above the lowest resulting state a strong octupole excitation is formed, largely
governed by the intershell transitions, as shown in figs. 8 and 9. We report
the results arising from three different level schemes:

a) protons: ¢,e:0, dge:0.8, hyyp:2.4, dgp:3.13, 5,5:3.36; neutrons:
f212:0, Pg9:0.83, i139:1.36, [55:1.88, hy;:1.9, pyyp:2.25 MeV.

b) the neutron level 75, changed to 0.75 MeV.

¢) neutron levels as in a). The proton level hy; changed to 3.2 MeV.

The proton levels come from a modification of a suggestion by KissLiNGER
for A > 200 and are almost identical to the KSII levels. In case ¢) we studied
the influence of placing the proton level By between dyp and sy, where
the neutron hy;pp lies in case 5. The neutron levels are due to CoOHEN,
Furuer and McCarruy (ref. 27). They do not find the i, level, which
in a) and b) is placed in two different positions.

The second position reproduces the [, — 15, distance in KSIL. On the
other hand, they use values which are greatly deviating from ours, especi-
ally by placing the hg, level 0.72 MeV below f;5. For the three cases
co = 0.45, ¢y = 0.47 and ¢, = 0.41, respectively, were used (see comment
below).

Another calculation was run, using the proton levels from case a) and
neufron levels, partly based on a suggestion by KISSLINGER: [p;5:0, lig;:0.2,
igip: 1.5, Pam:1.75, f52:2.3, pyje:2.9 MeV. The resulls from this caleulation
are the same as those from case a) for N = 82. For the greater Ns the ener-
gies are just a little higher; they are not reported.

For case a) the lowesl proton transitions are the weak g — Ry and
the strong (for Z > 36 lower lying) dy;s — lty1je, the uv factor of which changes
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MeV
- _____ two quasi particle
- —_— 8a
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—_ 8¢
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P I e N
A
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1= x N
Be | 32
Bt | 29
T T 1 1 1 T 1T
56 58 60 62-

z
138 140142 142 144 148748 144 146 148 150 A

Fig. 19. Energies for case Sa with ¢, = 0.45 and for case 8¢ with ¢, = 0.41. “Two-quasiparticle”
refers to the lowest lying two-quasiparticle energy in case 8a. The experimental points arce due
to Hansen and NaruaN (ref. 16) and E. VrJE (rvef. 48) (the B value).

from 0.2 at Z = 56 to 0.8 at Z = 62. The neutron transitions are the weak
f13/2 — fi1jp With a small uv factor and the strong f,,, —ij5 with a w factor
varying from 0 to 0.72.

Figs. 8 and 9 illustrate how the picture changes when going away from
the closed neutron shell. The most remarkable feature is the drop in the
energies, caused by the increasing strength of the low-energy neutron lines,
which lie above the proton two-quasiparticle excitation of lowest energy.

In case c¢) the proton quasiparticle energies are increased. This gives
the neutron variation a greater influence, but causes an overestimate of the
high energies. Changing two protons into {wo neulrons, i.e. going from
A,Z = 142,58 to 142,60 or from 148,60 to 148,62 gives experimentally, like
in case ¢), that the energy of the lowest 3~ state goes up, whereas the opposite
is true for a). In this sense b) is a little better than a).

For the excitation of lowest energy the neutron excess gives rise to B, > B,
i.e. S? > 87, even when the neutron shell is closed. The contributions from
S, are partly responsible for this. For A,Z = 142,60 S? is somewhat greater
than S7.
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TaBLe 33. Energy, B and B, for the low-energy, stronger excitations in case 8 a, ¢q = 0.45.
Same units as in table 3.

AZ: 138,56 140,58 142,58
E, B, B,: 9.72 7.8 11 2.38 11 14 202 11 23
2.97 2.6 4.3 3.71 6.7 19 2.67 1.7 0.1
3.67 5.6 17 1.89 1.8 0.03 3.08 7.8 16
4.69 1.8 0.02 5.70 0.01 1.8 524 0.1 1.8
5.66 0.03 2.4 5.83 0.03 1.7
AZ: 142,60 144,60 146,60
E, B, By 1.92 15 16 172 17 26 1.52 19 36
3.77 6.6 20 1.03 7.6 16 4.06 1.2 2.5
4.70 1.9 0.05 526  0.03 1.7 4.29 7.5 12
5.12 0.01 1.5 5.61 0.9 1.8 510 0.0t 1.9
5.56 0.8 3.2
AZ: 148,60 o 14462 146,62
E, B, B,: 1.36 21 16 1.51 21 21 1.35 25 32
4.30 8.8 12 3.81 6.8 20 2.44 0.04 2.7
5.18 0.01 4.2 4.70 1.8 0.05 4.06 7.7 16
5.35 0.1 1.7 512 3x10=® 1.5 5.71 0.4 3.0
5.83 0.5 1.7 580 0.5 2.3
A,Z: 148,62 150,62
E, B, By: 119 29 44 1.04 33 57
2.34 0.03 2.6 2.29 0.2 2.4
4.07 0.8 1.8 4.32 8.9 12
4.24 7.9 12 5.19 0.01 4.2
5.85 1.0 3.6 5.36 0.01 2.1

Above the transitions inside the partly filled shells there is a rather strong
line for which B is only a fraction of B, in the neutron magic nuclei. (The
transition is governed largely by the neutron transitions).

When we had finished our above mentioned calculations, a new neutron
level scheme became available, based on a tentative and preliminary inter-
pretation of some experimental results due to Yanc et al. (ref. 29):

f7/2:0, P3/2:1.2, 119/2:1.7, /5/2:1.9 and i13/2:2.0 MeV.
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TasLe 34. The first row gives E, B and B, for the lowest excited state from case 8 b, ¢, = 0.47,
and the second row those for:the"samc state in case 8:c, c, = 0.41. Same:units as in table 3.

A,Z: 138,56 140,58 142,58
E, B, By: 2,74 6.4 9.2 2.41 9.9 12 1.84 7.2 19
3.03 17 35 2.82 17 29 1.99 11 29
A,Z: 142,60 144,60 146,80
E, B, By: 1.96 13 15 1.66 14 24 145 15 33
237 20 29 1.84 17 37 1.49 21 50
A,Z: 148,60 144,62 146,62
E, B, By: 1.32 17 42 1.56 19 19 1.36 22 30
1.23 25 66 1.95 27 33 1.57 28 47
AZ: 148,62 150,62
E, B, By: 1.18 25 41 1.06 28 52
1.24 33 65 0.97 41 90

They did not see the p,/, level which we then placed at 2.3 MeV. The
precise location of this level should have only a very small influence on
the resulting spectrum.

When using this level scheme and the a) protons, the energy for the
lowest state was changed by less than 0.1 MeV, the variation with neutron
number N being a little slower than in a). The B values were increased
by 10-20¢/,. For the higher lying strong, resulting states the changes were
rather small. The main difference from a) to this case is that ¢, was changed
from 0.45 to 0.43 to obtain the best energy fit.

Another calculation was performed with the Yang et al. data and protons
from case c¢). When ¢, is chosen to fit the lowest resulting energy in A,7 =
150,62, (¢, = 0.393), the agreement with experiment becomes poorer than
in ¢) (less steep variation of energy), especially for the Z = 60 nuclei. B
is increased by 10-209/,.

As seen above, in this region we have had some difficulties in fitting
x. By just a small change in ¢, we are able to bring the lowest resulting
state in A,Z = 150,62 down to zero energy. This warns us to be suspicious
on the validity of our simple treatment. It is a well-known trend from the
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quadrupole case that, when the resulting state is pressed far down from the
Jowest lwo-quasiparticle mode, the simple quasi-boson treatment breaks
down. Anharmonicity effects and the Pauli principle should possibly have
been taken into account. For the octupoles the situation should in general
be better (the excitations are not so collective), one of the exceptions perhaps
being just the nuclei below the rare-carth deformed region. It should be
furtber siressed that the approximation of neglecting coupling between
quadrupole and octupole vibrations might be especially bad here, near the
domain of stable quadrupole deformation, where the 2+ vibrations are very
strong and of low encrgy.

Case 9: Z < 82, N <126,
(above the region of stable quadrupole deformation).

In this final case only few proton and neutron holes in the partly filled
shells are available. A higher lying state is formed, stronger than the lowest
resulting mode.

Two level schemes were used:

a) neutron levels suggested by KissLINGER (ref. 26) (almost identical to KS
IT) hgjp:0, f72:0.2,113/5:0.92, pgp:1.65, f55:1.98, pyp:2.55 MeV; proton levels
from calculations on Pb™® by GiLreT et al. (ref. 30) gq:0, dye:1.69, hyyy:
2.34, dg5:3.83, $15:4.18 MeV.

b) same neutron levels, proton levels from a recent experiment by Na-
THAN (ref. 31) gq2:0, d52:1.73, hy1p:2.06, dyyp:3.05 and s;),:3.40 MeV.

The single-particle energies in the neutron shell above the partly filled
shell are taken from a report on stripping experiments (ref. 32).

The proton energies above the partly filled shell are the values used by
GiLLET et al. (refs. 33 and 30). The other single-particle energies come from
the simple shell-model calculations (ref. 13) as explained before. The a)
calculation was performed especially with the aim to compare it with the
calculation by GILLET et al. (ref. 30).

The neutron single-particle energies are not exactly equal to the Gillet
ones, but the differences are so small that it might be reasonable not to take
them into account.

The transitions inside the partly filled shells are for the protons the weak
9z D11z and the strong dyp by transition and for the neutrons the weak
hg 1132 and the strong [;5 i35 transition, but all the contributing levels
are almost filled. This is especially pronounced for the protons where the
uv factor is very near to zero.
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TaBLE 35. Energy, B and B, for the low-energy, stronger excitations in case 9 a, ¢, = 0.413.
Same units as in table 3.

AZ: 192,76 192,78 194,78
E,B, B, | 249 30 15 291 47 20 2.48 42 18
453 13 51 445 20 38 431 21 50
555 59 16 505 1.7 15 554 651 13
A,Z: 196,78 198,78 196,30
E, B, By | 276 44 18 3.03 56 23 247 61 21
410 20 57 | 3.88 19 60 108 28 50
538 3.4 12 518 1.5 8.1 5690 1.0 10
AZ: 198,80 200,80 202,80
E,B By | 274 66 22 3.00 94 31 319 21 67
303 28 58 3.75 24 59 3.60 7.9 22
534 3.9 9.1 518 1.8 8.1 3.66 4.7 12
A,Z: 204,80 202,82 204,82
E, B, By: | 313 34 112 2.96 16 43 310 33 88
3.65 29 58 357 9.8 21
587 1.8 11 577 11 10
A,Z: 206,82 } 208,82
E, B, B,: 3.01 45 125 ' 279 49 147

The greatest role is played by the strong transitions between the shells,
giving a rather low-lying and strong octupole state in the doubly magic
Pb%8 (fig. 7). :

For the lower A values, there is a strong higher-lying 3-, whereas the
lowest one is rather weak and near to the two-quasiparticle energy. Because
of the neutron excess and the weakness of the proton transitions inside the
partly filled shell, B for the lowest state is smaller than B,.

One more calculation was run, using the a) neutron levels and proton
levels from KSII:

Grj2:0, ds52:0.8, hyqpe:2.1, dye:2.6 and s;5:2.95 MeV.
Mat.Fys. Medd.Dan. Vid.Selsk. 85, no, 1. 6
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TasLE 36. Energy, B and B, for the low-energy, stronger excitations in case 9 b, ¢, = 0.404.

Same units as in table 3.

Nr.1

AZ: 192,76 192,78 194,78
E, B, B,: 1.64 0.9 1.2 2.16 7.5 25 2.32 432 9.6
2.47 4.0 18 4138 26 48 2.48 2.9 14
441 18 53 5.04 1.2 11 422 25 56
5.46 2.0 3.2 5.63 5.4 7.3 5.50 61 12
5.52 4.3 10 5.79 0.8 3.0
A,Z: 196,78 198,78 196,80
E, B, By: 2.34 2.3 4.0 2.34 2.1 3.6 2.43 8.7 27
2.74 5.3 21 3.00 8.0 30 4.00 33 57
3.99 23 " 60 378 21 61 5.40 4.5 4.6
5.34 4.1 11 5.16 1.7 7.7 5.67 0.9 6.9
5.86 2.8 3.6 5.68 4.3 4.7
AZ: 198,80 200,80 202,80
E, B, By: 2.69 9.9 28 2.77 2.9 6.4 2.77 3.0 © 6.8
3.84 31 63 2.96 12 37 3.10 28 82
5.30 48 9.1 3.67 25 58 3.57 8.3 21
5.15 2.4 8.0 3.65 1.6 3.7
4.98 0.7 5.2
A,Z: 204,80 202,82 204,82
E, B, B,: 2.76 6.5 17 290 24 59 298 44 109
3.01 34 109 3.57 28 53 3.54 8.0 16
4.62 4.0 0.4 5.02 4.6 3.8 4.93 2.3 4.7
5.39 4.2 5.3 5.80 2.9 8.5 5.72 1.8 9.2
AZ: 206,82 208,82
E, B, B,: 2.85 53 140 2.62 58 165
4.59 4.2 0.1 4.56 4.3 0.4
4.80 0.3 3.3 5.08 2.4 1.1
5.44 1.5 3.5 5.46 1.9 2.5
5.68 0.8 5.2
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Fig. 20. The lowest lying energy, B value and two-quasiparticle energy for the nuclei in case
9b, where ¢, = 0.404. The experimental values come from ref. 41 and ref. 49.

Although the proton energies are quite different from those above, the result-
ing states are only affected little, especially the state of lowest energy. The
quantity ¢, was 0.413 in a) and 0.404 in b). The results are given in tables
35 and 36.

In Pb?8 the agreement between theory and experiment is quite satis-
factory, but it must be remembered that ¢, is chosen lower than in the other
cases.

If %, < 0 is used B will exceed the experimental value since B, > B.

Comparison with the calculation by GIiLLET et al,

As mentioned above, we are able to compare our results with those
obtained by GiLLET et al. (ref. 30) in Pb®® when using a spin and isospin
dependent force in which the radial dependence is of Gaussian type in the
distance between the two nucleons. In table 37 and table 38 we quote the
amplitudes p and ¢ for quasiparticle pair creation and annihilation, respec-
tively, from the lowest neutron and proton modes to the lowest resulting
state. It is remarkable that all the amplitudes except those for the neutron
5 fse 6syp quasiparticle excitation have the same sign for the two quite
different forces.

6%
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Tapre 37. For GILLET's calculation (ref. 30) and for the calculation from case 9 a, the table
gives B, p = p(e, Ji, Jo) and q = g(a, jy, j,) for the lowest neutron particle-hole excilations,
contributing Lo the first octupole excitation in Pp2¢8. E is the energy for the relevant particle-

hole excitation.

Since there is some difference between GILLET’'S phase convention (ref. 42) and ours, the sign
for our amplitudes p and ¢ in this table is changed to be in agreement with GirreT’s choice of

phasec.
" GILLET this calculation
transition
E p q E P q
5 sia0Fgrg e eveeueennan 4.01 0.19 0.03 4.17 0.21 0.04
SPs120Ggia- v e 4.34 —0.42 - 0.07 450 050 -—0.12
5FgraBlq1fg «vveveinnn. 4.80 0.39 0.07 4.94 0.41 0.12
S5pPueg—Bdgig. - v 5.02 0.08 0.02 5.16 0.23 0.07
5FeraBdgrge e, 5.59 0.06 0.02 5,73 0.11 0.04
5Fa10=6Ggrge e ovvvnn.. 5.78 —0.20 —0.06 5.95 —-0.09 -0.03
5pgie6dgra. .ot 5,92 —-0.05 —0.02 6.06 —0.15 —-0.06
S5faia=B8qrg. .. 6.04 —0.08 —0.04 6.20 0.12 0.04
S5PaBgarae s i 6.14 0.17 0.04 6.07 0.20 0.07
5Fs/a=000/a- e 6.71 0.13 0.05 6.64 0.15 0.06
5306 5rm« ceei. 6.93 0.05 0.02 6.69 0.11 0.04

TasLE 38. E, p and ¢ for the lowest prolon particle-hole excitations contributing to the first

oclupole state in Pb2°%, For further explanation, see caption to table 37.

. GILLET this calculation
transition

E P q p q
4dg;oDhyg. v 4.61 —0.47 —-0.08 —0.33 —0.08
483095 qia e ci 5.16 0.37 0.08 0.22 0.07
4dg -5 giae v 5.51 —-0.15 —0.04 -0.11 —0.03
ddgBhgg. oo, 6.75 —0.07 —0.02 —-0.06 —0.02
AdgsBPgrg- o vee i 7.26 —-0.13 —0.05 —0.09 —0.04
453155 50 c i 7.56 —0.15 —0.06 —-0.10 -~ 0.04
Adg 5Dl qige o oo 7.65 0.14 0.06 0.10 0.05
Bhyy;aOlygin vvvrennnn. 7.72 —-0.17 —0.07 - 0.17 —0.08
ddgisbfgiae e v vneeeanns 7.91 -0.10 - 0.04 —0.08 —0.04

Concerning their magnitudes, there is also a quite strong correlation.
The most interesting feature is that the Gillet neutron amplitudes in general
are a little smaller than our amplitudes, whereas the proton ones are about

500/, greater.



Nr.1 85

This is consistent with the result that GrLLeT et al. reach 609/, of the
experimental B value (which is only known % 30°/,, ref. 41) without using
any renormalization of the charge. If we took only the AN = 1 transitions
into account (keeping the resulting energy constant) B would go down with
a factor of two.

A stronger influence from the proton excitations on the lowest resulting
level is obtained when an isospin dependent force is introduced. Thus, when
%y = — 0.5 1s used and », is changed to give approximately the same energy
as when x; = 0, the B value is increased by 509, which means that it
becomes greater than the experimental value. (¢, = 0.38, %; = — 0.5, gives
E =283 MeV, B = 72)

16. Concluding remarks

The most striking feature we meet when we start the numerical calcula-
tions is the very great sensitivity of the results to the energies of the shell-
model levels inside the partly filled shells, and the incomplele and partly
contradictory information which is available concerning these energies.

It looks as if one may sometimes take different shell-model level schemes
for all of which it is possible lo argue reasonably well, and obtain very
different quantitative pictures for the lowest part of the resulting spectrum,
especially for the B values. This should be kept in mind, when our conclu-
sions are studied.

When the number of experimental resulls increases, and when more
modes of excitation are to be described from the same quasiparticle energies,
we may get a better insight into the variation of &(j), and then also into the
precise validity of the theory.

The fitting of the octupole force constant

For simplicity reasons a major part of the calculation was made, using
an isospin independent octupole force constant.

In general it has been possible to fit the experimental energies of the
lowest resulting excitation reasonably well with a smoothly varying ». In the Ni
region we had to use a value which was a few percent larger, and in Zr
a value which was a few percent smaller. Although difficult to say definitely
(cf. sect. 14) there seems to be some tendency for a weaker x» variation
with A than obtained by a simple scaling argument (cf. sect. 2).
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This might be taken as an indication that the surface region of the nucleus
should have a stronger weight than assumed by our simple Hamiltonian,

The magnitude and variation of » are in general agreement with the
parameters used by Sovoviev etal. (ref. 3), although some details are
different. E.g. they take only part of the single-particle levels into account.
When more and more levels are included, their x value approaches our
value (ref. 43).

They also use another (slower) A variation inside each of the two regions
of deformed nuclel around A ~ 180 and 4 ~ 240, whereas the variation
from the first region to the second is approximately the same as our overall
variation.

From the calculations on quadrupole vibrations (ref. KS II) it is well
known that when the lowest resulling energy is pressed far down from the
lowest two-quasiparlicle excitation, the fitting of » becomes very difficult.
Even a small change in » may bring the resulting energy down to zero.

This indicates that the simple quasiboson approximation breaks down.
When the state is very collective, the Pauli principle and various anharmo-
nicities should presumably have been taken into account (ref. 44).

Since the octupole vibrations are only moderately collective, the simple
theory should work better for these than for the quadrupoles.

An exception is perhaps the nuclei just below the deformed rare-earth
region where the nuclei seem to be able to undergo octupole deformation
rather easily. However, there is in this case a great uncertainty in the single-
particle energies, and a definite conclusion is difficult.

The general distribution of oscillator strength

From the calculation it appears that the octupole-octupole force sucks
5-10°/, of the total B oscillator strength down and places it on some few,
strong lines in the lowest part of the spectrum. While B for these lines
varies quickly, B x E shows a much slower variation.

The rest of the oscillator strength is distributed in the hiw, and 3hw,
regions. In the present model it will not be concentrated to any high degree
at some few levels but is spread rather smoothly over large energy intervals.
One of the more interesting results is that very strong lines just below or
above the 3hw, region can hardly be expected, but it should be stressed
that we have used a erude model and parameters which are not very well
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known. There is especially poor knowledge about the energy distribution
of the unperturbed excitations in the 3/iw, region.

The influence of the shell structure is clearly seen. E.g. the low-energy
part of the oscillator strength in the typical case is split into two parts because
of an energy gap in the unperturbed spectrum. This gap appears just above
the two-quasiparticle excitations inside partly filled shells.

It is worthwhile to note that the octupole excitation of lowest energy in
some sense only represents a fine structure in the resulting spectrum, although
it has been the subject of almost all theorelical and experimental investiga-
tions and is the most easily observed. The fine structure occurs because
the spin-orbit splitting pushes a level down, so that some particles outside
the core may change orbit almost withoul change in energy and make large
octupole moments. An essential part of the oscillator strength is left on higher
levels.

The low energy part of the spectrum

From the calculation it is seen that the energy of the lowest resulting state
very intimately follows the variations in energy and strength of the very
lowest two-quasiparticle modes. By studying the single-particle level scheme
and the filling of the levels it is possible in a very simple way to understand
the variations in position and strength of the strong excitations of low energy.

The few measured B values are reproduced by the calculation, in general
within 30 9/,.

This is the best we could expect from the simple theory.

We may stress that the calculation has been performed without intro-
ducing any effective charge. If the 3%iw, unperturbed transitions were
not included, the B values would be about a factor of two smaller. Some
uncertainty is introduced in B by simply using harmoniec oscillator values
for the strength and energy of the high-lying transitions.

There is some indication that the theory systematically underestimates
the B value and it is not difficult to find possible reasons for this. One is
that an isospin independent octupole force is used. We have seen how in
almost all cases introduction of an isovector component leads to an increase
in the resulting B value. We have not gone into a systematic study but may
mention that in the Sn region where the discrepancies between theory and
experiment for the B values are especially great, introduction of s; + 0
will have an especially large effect. Another possible reason is the systema-
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tic error due to the use of the same harmonic oscillator potential for protons
and neutrons. Thus, because of the neutron excess, the protons are kept
too close to the nuclear centre and contribute too little to the transition
moments. Finally, it is a more trivial possibility that a somewhat stronger
pairing force should have been used. This would give higher two-quasi-
particle energies. To reproduce the experimental energies a stronger octupole-
octupole force should be used, the state would be more collective, i.e. B
greater,

The isospiu properties

In the calculation it has been found that the low-energy strong excitations
to a good degree are of 7 = 0 type, although 7 = 1 impurities may give
tise to interesting effects, e.g. so that the “strength’™ of the excitation depends
of whether it is measured with the help of inelastic scattering of protons,or
with « scattering or with Coulomb excitation. For the models which we have
used, and for #x; values from a tentative theoretical estimate, there is no
strong tendency towards concentrating the 7 = 1 oscillator strength on a
single level.

When using a pure x, force we make a systematic error, which however
should be small, when the energies of the strong excitations of low energy are
considered. For B there may be a more significant change when %, is intro-
duced, as mentioned above.

Itis very difficult to determine the strength of the T =1 part of the long-range
force. One possibility might be to study the ratio of isospin flip to non-isospin
flip in the excitation of 3~ states by inelastic nucleon scattering. Another
one is to study relative cross sections for inelastic scattering processes, using
particles with different isospins and exciting different 3~ levels in the same
nucleus.

It should be less rewarding to study, e.g., the lowest 3™ state in neighbouring
nuclei, since the change in isospin character with a change in the atomic
number is not very rapid.
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