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Synopsi s

The energy-momentum complex, which was formulated in terms of tetrad variables in
an earlier paper in Mat . Fys . Skr., is applied to the exact asymptotic solution of Einstein' s
field equations for an axi-symmetric system given by BONDI and his collaborators . The for-
mulae derived for the gravitational energy radiated per unit time and for the total energy
of the system at any time confirm a conjecture by BONDI . The transformation properties of
the total momentum and energy for a non-closed system under asymptotic Lorentz transfor-
mations are derived and the approximate plane gravitational waves at large distances fro m
a radiating system are investigated. As regards energy and momentum, such waves are clo-
sely analogous to electromagnetic waves emitted by a system of accelerated electricall y
charged particles.
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1 . Introduction and Summar y

S
ince the first years of Einstein's theory of gravitation the question whether
or not a system of accelerated massive bodies loses energy by emissio n

of gravitational radiation has given rise to many controversial discussions .
The main reasons for this somewhat unusual situation in physics are the
following . On account of the non-linear character of Einstein's field equa-
tions it is difficult to find sufficiently general exact solutions of thes e
equations and most of the discussions on gravitational radiation hav e
therefore been based on. solutions of the "linearized" field equations . How -
ever, in many cases, such solutions have been shown to be good approxima-
tions to the solutions of the exact field equations only over limited parts o f
space and it has been doubted whether the results obtained by means o f
these solutions can be fully trusted . Moreover, until recently one did no t
have a consistent expression for the gravitational energy current which, i n
analogy with Poynting's theorem, could be used for calculating the amount
of energy carried away by the gravitational waves .

It is well known that the energy-momentum complex Oik given by
EINSTEIN many years ago does not allow to calculate the distribution o f
the energy and the energy flux in a physically satisfactory way, since th e
result depends on the spatial coordinates used . But even if one is interested
only in the total energy and its possible variation in time, such as in calcula-
tions of the energy emission from an insular system, the complex Oik is
applicable only in special systems of coordinates . In the trivial case of a
completely empty space, for instance, Einstein's expression gives an infinit e
value for the total energy when calculated in polar coordinates, in contras t
to the correct value zero obtained if one uses Cartesian coordinates . This
means, strictly speaking, that this expression is nol in accordance with
the general principle of relativity according to which all relations betwee n
measurable physical quantities, such as the total energy and the components
of the metric tensor, must have the same form in all systems of space-tim e
coordinates .
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The difficulties mentioned above have now been overcome . In a recent ,
most interesting paper, BONDI et al . M have been able to give the exact form
of the metric at large spatial distances from an axi-symmetric, but other -

wise arbitrary, insular system of matter that emits gravitational waves int o
the surrounding empty space, and, in a paper from 1961 (2) , we arrived at
an expression Tzk for the energy-momentum complex which is in accord-

ance with the principle of relativity and which therefore meets the objec-
tions raised against Einstein's expression Oz k . In the present paper, the
complex Tzk is applied to the solutions of BoNDl et al . Thereby we obtain
consistent expressions for the total momentum and energy as well as fo r
the lime variations of these quantities in the case of an arbitrary axi-sym-
metric system emitting gravitational waves . Some of the results of thes e
calculations have been published previously in a note in Physics Letters (3) .

In section 2, we give an outline of the basic theory and a surve y
of earlier results as well as some new results regarding the energy-momen-

tum complex. In contrast to the complex Oi k which can be expressed
directly in terms of the metric components and its derivatives, the comple x

Tz k is given directly in terms of tetrad fields which are determined by the
metric only up to arbitrary Lorentz rotations of the tetrads .

Tzk
is not in -

variant under such rotations . However, as will be shown in detail in section

6, the values of the total energy and momentum obtained by means o f
Tz k are invariant under all Lorentz rotations of the tetrads which are i n
accordance with the boundary conditions formulated in section 2 .

Section 3 contains a survey of the main results obtained by BONDI et al .
in(l) and it is shown that Einstein's expression Ozk gives unreasonable re -
sults for the energy radiation and the total energy in the system of co -
ordinates adopted in (l) . In contrast to this result it is shown, in section 4 ,
that the complex T zk gives a consistent value for the energy radiation, which
confir ms a conjecture by BONDI regarding the total energy radiated by a n
axi-symmetric system. In addition to that, the intensity of the energy radia-

tion in different directions is determined .
The total energy and momentum at any time are defined and calculate d

in section 5 and, as regards the energy, the result confirms a conjectur e

by BONDI in part D of M . The change in the total momentum per unit time

is shown to correspond to a recoil effect of the emitted gravitational radia-
tion of the same kind as for emission of photons .

In section 7, we investigate the transformation properties of the tota l

momentum and energy of the matter system as well as of the emitted radia-
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tion under asymptotically Lorentzian transformations . Finally, it is show n
in section 8 that the gravitational radiation at large distances from th e
system has the form of approximate plane waves with an everywher e
positive energy density and a momentum density equal to the energy cur-
rent density divided by c2 like in the case of a plane electromagnetic wave .
Details of the calculations are collected in the Appendix .

2 . The Energy-Momentum Complex

In general relativity the energy and momentum of the complete syste m
of matter plus gravitational. field is described by an energy-momentu m
complex of the form

Tik
`~
c~

i
k +

ti
k

°

	

•

Here, Zik is the energy-momentum tensor density of the matter, which i s
a function of the matter field variables and the gravitational variables ,
while the complex ti k of the gravitational field is an algebraic function o f
the gravitational field variables only . zik also appears as the source of the
gravitational field in Einstein's field equations

2 aik =
x ik

	

(2.2)

which determine the metric for a given matter distribution. If we eliminate
Ti k in (2.1) by means of the field equations, the complex Ti k appears as
a function of the gravitational field variables only .

A satisfactory solution of the energy problem in general relativity re -
quires that the energy-momentum complex satisfies the following conditions :

1. Tik (x) is an aftne tensor density depending algebraically on the gravita-
tional field variables and their derivatives of the first and second order s
and it satisfies the divergence relation

a Ti k
Tik, k=

ax
k=o .

2. A matter system for which the metric asymptotically at large spatia l
distances from the system is of the Schwarzschild type is called a closed

(2 .1 )

Ok a.2

(2.3)
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system . In this case we can use coordinates which are asymptoticall y
rectilinear and then we must require that the quantities *

- c S Ti 4 dxl dx2 dx3

a' = coast .

are constant in time and that they transform as the covariant compo-

nents of a free vector under linear space-time transformations . This
property is essential for the interpretation of Pi = {P, - H) as the total

momentum and energy vector .

3 . Tk T4k is transformed like a 4-vector density under the group of purely

spatial transformations

= f ` (xx ) , x4 = x 4

	

(2 .5 )

which leave the time scale and the system of reference unchanged . This
property makes the "energy content of any volume of space V", i . e .

Hy- -T44 dxl dx9 dx3 = - T4 4 dxl dx2 dx3

	

(2 .6 )

V

	

V

independent of the spatial coordinates used in the evaluation of th e

integral . Thus, 3. is the condition of localizability of the energy in a
gravitational field .

The classical expression for the energy-momentum complex given b y

EINSTEIN many years ago (4) is of the for m

otk = Zk + ,oz k

Here, 19ik is a homogeneous quadratic function of the first-order

of the metric tensor which is obtained from the Lagrangia n

2 -E I/ ggzk (rkrlm - F m rkl )

~Zk =

	

Ô dE91m
i
- S lk

2

	

ag ,

* In the following, we shall use natural units in which the velocity of light c and New -
ton's gravitational constant k are equal to one . Consequently, Einstein's constant x has th e
value 8a . Further, Latin indices run from 1 to 4, Greek indices from 1 to 3, and the sig -
nature is e, = {I, 1, 1,-1} .

(2 .4)

by the equation

(2 .7 )

derivative s

(2.8)

(2 .9)
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The explicit expression for Pik i s

0ik=

2lx \Tkn(v_ ggl
m

If we eliminate Zik in (2 .7) by means of the field equations (2 .2), the

complex Oik can be written, as was first shown by v . TREUD (5) , in the form

0. 1' = hLkl'
L (2 .11)

with the superpotential

	 gin	 	 kn im

	

In m12x1 = - i-	 	 [(-g) (g g

	

g gk ) , m
2xj/- g

As is well known, Einstein's expression Oàk satisfies the conditions 1 .

and 2 ., but not the localizability condition 3 . Therefore, EINSTEIN came to

the conclusion that, in general relativity, the energy content Ht, of a finit e

part of space has no exact physical meaning .

Only the total energy

HE _- J
1~ 044 dxi dx2 dx3 ,

	

(2 .13 )

obtained by integrating over the whole 3-dimensional space with t = x4 -

const ., should have a well-defined physical meaning . It has been argued
that this is quite natural, since it is difficult to imagine how one coul d

measure the energy contained in a small part of the system. On the othe r

hand, the total energy is certainly a measurable quantity, since the total

mass can be measured, for instance, by weighing the system on a balanc e

or by measuring its reaction under the influence of external forces . There -

fore, it would seem that Einstein's point of view is in accordance with

the nature of the problem .
Nevertheless, one may have some doubts as to the validity of the ex -

pression (2 .13) for the total energy, since it is not in accordance with the

general principle of relativity . According to this principle, any relation be-

tween measurable physical quantities, such as the total energy or mass an d

the components of the metric tensor, must have the same form in any syste m

of coordinates . In other words, we can only trust an expression like (2 .13)
if it represents the energy in any system of coordinates, and this is ob-

viously not the case . Take, for instance, two systems of coordinates con-

nected by a purely spatial transformation (2 .5) ; then, the total energy must

(2 .12)
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certainly have the same value in these two systems, for the result of a n

experiment, which allows to determine the total mass, is of course completely

independent of the way we choose to name the different points in space .
However, since the complex e does not satisfy the condition 3 ., the equa-
tion (2 .13) gives in general quite different values for the total energy in the

two systems of coordinates of the type considered .
As was pointed out long ago by BAUER 6> , this holds even for the trivial

case of a completely empty space where space-time is flat . In Cartesian
coordinates, HE is here zero as it should be, but if we use the metric corre-

sponding to polar coordinates in the evaluation of HE , we get an entirely
different result . In fact, the integral in (2 .13) is divergent in this case, an d
it should be noted that the divergence arises from the large distances r an d
not from the singular point r = 0 . A similar situation we meet in the cas e
of an arbitrary physical system, and this cannot be considered satisfactor y

in a general theory of relativity .

The importance of the restricted group of transformations (2 .5) lies onl y
in the fact that we can 'be sure that the total energy must be unchange d
under these transformations. For a more general transformation where th e

time scale and the motion of the frame of reference are changed, as fo r
instance for a simple Lorentz transformation, we must in general expec t
a change in the total energy of the physical system . The invariance of th e

total energy under the transformations (2 .5) requires that the energy -

momentum complex satisfies also the condition 3 . At first sight, one might
think that the condition 3 . is too stringent if we give up the idea of locali-

zability and only regard the total energy as a measurable quantity, for

with 3 . the equation (2 .6) is valid for any finite volume V and not only for
V equal to the whole 3-dimensional space. However, it should be remem-
bered that the system of coordinates in a given system of reference ofte n
consists of an " atlas" of different overlapping local maps, inside which the

components of the metric tensor are regular (7) , and it is then essential that
the equation (2 .6) holds for any volume V which lies inside a region of

overlapping of two coordinate patches .

It seems therefore that a satisfactory solution of the energy problem in
accordance with the general principle of relativity requires the existence of

an energy-momentum complex with all the properties 1 .-3 . Now, it can

be shown (8) that, if the gravitational variables are taken to be the com-

ponents of the metric tensor, the only complex which satisfies the conditions
1 . and 2. is Einstein's expression et', and it is thus impossible also to hav e
3. satisfied . Therefore, it seems that we are in a hopeless situation . However,
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gravitational fields may also be described by so-called tetrad fields instea d
of by the metric tensor . There are even certain matter systems where on e
has to use a tetrad description of the gravitational field . This holds, for
instance, in the case of a fermion field under the influence of a gravitational
field, where the latter has to be described by a tetrad field . In fact, in the
usual generally covariant form of the Dirac equation (9) , the gravitationa l
field is represented by a tetrad field and not directly by the metric . It i s
therefore natural to assume that the tetrad field variables are the fundamenta l
gravitational variables and, as was shown in reference 2, with this assump-
tion it is possible to define an energy-momentum complex which satisfies
all the conditions 1 .-3 .

Let h(a)ti be the covariant components of the a'th tetrad vector which i s
space-like for a = 1, 2, 3 and time-like for a = 4 . Further, let us put

h (a)Æ = n(ab) 11
(b)

z (2 .14)

where 7y vab) is the constant diagonal matrix with the diagonal element s
(1, 1, 1, - i} . Then, the connection between the tetrad field and the metri c
field at every point is given by

h(a i h (a)x =g z x

hnh (b) Z = bb .

Further, we have
V- g = lhl ,

where h = det {h (a)i } is the determinant with h(a)t in the a'th row and i 'th
column .

The starting point of the developments in (2) was the remark that the
curvature scalar density 9i, when expressed in terms of the tetrad fiel d
by means of (2 .15), takes the form

+(2.18 )

where f7 has the form of a usual divergence, which is of no importance i n
the variational principle, and

= I h I[h(a) r ; s h ( a) $ ; r - h~a) r . r h0') s . s ] (2 .19)

Here, the semicolon means covariant differentiation so that the Langrangia n
2 is a scalar density under arbitrary space-time transformations (a tru e
scalar density) in contrast to the Lagrangian 2E in (2 .8) which has this
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property under linear transformations only. Further, since the Christoffe l
symbols by (2 .15) are seen to be linear functions of the first-order derivative s
of the tetrad variables, the same holds for h(a)r, s• Hence, 2 (just as 2E)
has the important property of being a homogeneous quadratic function o f
the first-order derivatives of the gravitational field variables .

The energy-momentum complex Tik which, in (2) , was shown to satisfy
the conditions 1 .-3., i s

k

	

-
k

	

[	 02 1
ti

	

g ti

	

2 x h(a)' k
h (a) t - bik

2Tik = Zik + fi k

1 r a h(a)l

ti S ik .
2 x Lah, k

In terms of the tetrad fields, Einstein's field equations take the for m

	

1 ik = 1

	

1

	

b
h(a)i	 	 11 (a) k

	

-

	

, k

	

2 x

	

åh (a ) 2

	

åh(a)i

	

i ,
6 2

where
8h(a)

is the variational derivative of fi with respect to
k

complex Tik is derivable from a superpotential lZikt, i . e .

Tik =
uiki i

with

uikd _-uük

	

1 a~ h(a)k_ 1 h(a) ô i

2 x ho') i

	

2x
i a h

i
a)k,

(see Eqs . (2 .31)-(2.38) in (2) , and also (10) ) .

The explicit expressions for the complex ti l̀ and the superpotential are
(Eqs. (2.39), (2 .40) in (2) )

k	 	 h

	

(a) lc

	

_h(a) r

	

k

	

(a) r

	

(b) k s	 	 1
ti = x ~h

	

;h(al),
i

	

;ril(a),i h r h(a) i h (b)

	

Si

	

(2 .24)

	

uika=I ? ]
h(a)h(a)i .+(6k11(a)l(51h(a))h(a) .s]

	

(2 .25 )
x

In contrast to the superpotential hikt in Einstein's theory, the superpotentia l
1Ti kl is seen to be a true tensor density of rank 3 .

with

(2 .21 )

Theh (ka) •

(2 .22)

(2 .23)
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It is convenient to introduce the tensors

Yikl - Il
(a)i h (a) k ; l -

	

Yki l

Aikl - Yikl - Yllk = h(a)i (17.(a) k, l - Il (a ) k, l) - - Ail k

(a )Ø k =
Y

i
ki -A

i
ki=

	

i h (a)k ;

and the symbol

d~kl - I1 (a) i h (a) k, l

which is connected with the Christoffel symbol by the relation

4
a
kl = I,xl + Y

i
xl

(2.27 )

(2 .28)

In terms of these quantities the expressions (2 .19)-(2 .25) take the form

(Eqs. (3 .12), (3 .14), (D 34) in (2) )

= I h I LYrst Ytsr - or Ø r]

	

(2 .29)

ui xl - ~ h [Yk1i 82Ø l + Ø k ]

	

(2 .30 )

tix - I
h

I [Y kml dl rai - Øl Ykli + Jib: Ø k ] - 21x
61,

	

(2 .31 )
or

tik = uik -i- umkl
Amu,

	

(2.32)

where is the tensor densit yuZk

unk =Ih2,
I AmliY

k " ra - Øi Øk + Akil Ø l] - 212, 0 .i .

	

(2.33)

All the quantities introduced here are true tensors or tensor densities ,

except tik and Tix which deviate from a . true tensor density by the term
1Zmkl dm Thus, we get the following transformation law for Ti k and tik
under an arbitrary space-time transformation (xi) (x' i ) (Eq . (D . 37) in (2) ) :

k

	

l

	

r

	

-
Ti k = J 3xm

[ax i
Tim

+ ~ n a x
/axr

(2 .34)

where J is the Jacobian of the transformatio n

a (xi
	 ~ •x4)

	

1axiJ =	 = det	 r
a(x

	

x 4 )

	

ax' k J
(2 .35)
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From (2 .34) we see that the most general group of transformations unde r

which the quantities Tk T4k transform as a 4-vector density are those fo r
which

x'"

ôx'4
å 4

	

(2 .36)

This also follows from (2 .22) because Uikl is a truc tensor density, i . e .

axr ax k Ox' '

	

x' ax l
u4ka =

J åx '4 ae ôxt

Urst j	
åxs åxt
	 U4st

	

(2 .37)

on account of (2.36) . Thus, U4kl is an antisymmetric tensor density of rank
2 under all transformations of the type (2 .36), which means that

Tk = u
4

kl
,l (2 .38)

is a vector density .

The most general transformation of the type (2 .36) has the form

(2 .39)
x" = f'(xx)

	

(
x 4 = x4 + f(xx) ,

where f'' and f are arbitrary functions of the spatial coordinates . It contain s

the group of purely spatial transformations (2 .5) as a subgroup. Under the
latter group the fourth component of T k , i .e . T44 , is a scalar density, which

means that

Hv =- S S S T 44 dx i dx2 dx 3

	

(2 .40)

v
is invariant .

If we now introduce the expression T4 4 = 114" , into (2.40) we get, by
means of Gauss' theorem,

Hv = - SSU 44 (2 .41 )

F

where the integration is extended over the boundary surface F of the volum e

V. Here,

dS,l =btx~ dxx åx1 ,

	

(2 .42)

where 5,L,m is the 3-dimensional Levi-tivita symbol and dxx , So? are in-

finitesimal 3-vectors spanning the surface element on F . Since 114" trans-
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forms as a 3-vector density under the group of purely spatial transforma-

tions (2.5), U4 41 dS) is invariant, which again shows that Hv in. (2 .41) i s

invariant under these transformations . The expression (2 .41) is valid als o

if the spatial system of coordinates is composed of different coordinate

patches .
Let us now consider the integral s

(Pv)L =`~ S T,4 dx1 dx2 dx 3 = S~ 1Z ,
4 ~. 2 dx 1 dx2 dx3

	

(2 .43)
.

V

	

V

obtained from (2 .4) with i = c by integrating over a finite part V of 3-space .

Then, if 11,42 is continuous inside V, we get again by means of Gauss '

theorem

(Pv)c =
JJ 11 ,

42.dS) = S` Ai(x) . (2.44)

F

Since 11î k1 is a true tensor density, it follows that

A 1 (x)11,4 'dS,~ (2 .45)

at each point on F transforms as a 3-vector under the group of spatial trans -

formations (2 .5). Nevertheless, the sum (or integral) of the components of

the vectors A L in different points of F, of course, has in general no simple

physical meaning . However, this should not be regarded as a defect of th e
theory, since we have a similar situation already in special relativity if w e

use curvilinear coordinates in space .

In the limit of special relativity where space-time can be regarded as
flat, we have, in a system of inertia a momentum density given by the com-

ponents zz4 of the matter tensor density, which transform as a 3-vecto r

density under arbitrary spatial transformations, so tha t

B, = ~L4 dxl dx2 dx3

	

(2 .46)

are the covariant components of a 3-vector . Nevertheless, the three integrals

(pp), =SSSZ14(x)dxldx2dx3
SSSB,

(x)

	

(2 .47)

V

	

V

have in general no physical meaning at all .
This will be the case only in a system of rectilinear coordinates wher e
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the integrals (2 .47) are the components of the total linear momentum inside

V, which is a free vector Pv") . Now, a free vector can by parallel displace -

ment be attached to any point p in space, and in a system of rectilinea r

coordinates its components are the same in every point . However, by a
transformation to curvilinear coordinates, the components of the free vecto r
Pv@" will be different in different points p .

Of course, this does not prevent us from using curvilinear coordinates ,

but then we have in (2 .47) to substitute the arithmetical sum of the vecto r

components B ( of the vector B by the geometrical sum of the vectors B (x) .

Thus, the components of the free vector Pve') in a point p are obtained by

parallel displacement of the vectors B(x) to the point p, i .e .

(PP)),
= J .1 S B ~ (p),

	

(2 .48)

where the B," (p) are the components of the vectors obtained by parallel

displacement of the vectors B,(x) from the various points (x) to the point p .
In special relativity, this procedure leads to a unique result in an y

system of coordinates, since the space is flat and the result of a parallel

displacement therefore is independent of the curve along which the dis-
placement has been made . However, in. general relativity where the spac e
may be curved, it would seem impossible in this way to get an unambiguou s

expression for the linear momentum of a physical system in a given syste m

of reference. This is certainly also true if we consider the matter alone . It
is different, however, if we consider the momentum of the complete syste m

of matter plus gravitational field, in which case it turns out to be possibl e

to get a unique expression for the total linear momentum at least for any
insular system where the matter is confined to a finite part of space .

The reason for this is the following . For an insular system, space-tim e

can be regarded as flat at sufficiently large spatial distances from the syste m
and, consequently, we may introduce coordinates which are at least asymp-

totically rectilinear . Further, in contrast to the integrals (2 .47), the quantities

(Pv), in (2 .44) have the form of a sum of vector components A z situated on

the boundary surface F . Therefore, if we make the volume V so large tha t
F lies entirely in the region where the space may be regarded as flat, th e

situation is exactly as in special relativity. In a system of coordinates whic h
is rectilinear in this region, the components of the total momentum of th e
physical system inside the surface F are consistently given by (2 .44), i . e .
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by the arithmetical sum of the components of the vectors A L on F . The tota l

momentum Pv is a free vector and, since the quantities A L in (2 .44) are

3-vectors under spatial transformations (2 .5), we get the component s

(Pv) c (p) in a point p in arbitrary spatial curvilinear coordinates by paralle l

displacement of the vectors A(x) to the point p, i .e .

(Pv)L (P) - Ai (P)
F

(2 .49)

on the analogy of (2 .48). This gives a unique result provided that th e

curves along which the displacements are made are chosen to lie entirel y
inside the region where the space may be considered as flat . '

If we had used Einstein's expression Oik for the energy-momentum

complex instead of Tik , the just mentioned procedure would not have given
consistent results for, in this case, the equations (2 .43), (2 .44) would be
replaced by

(Pv)L = ~ J ~
OL4 dxI dx2 dx 3 = ~

J
h~4 À' dS~

	

(2.50)

V

	

F

and, in contrast to A L in (2.44), (2 .45), the quantity hL4 ~ dS), does not trans -
form as a 3-vector under the transformations (2 .5) except if the functions
r'' (x'') are linear. In curvilinear coordinates we would therefore not kno w
how to perform the above mentioned parallel displacement, and we ca n
only hope that the equations (2 .50) give correct results for systems of co -
ordinates which are asymptotically rectilinear . The results obtained i n
sections 4 and 5 of the present paper seem to justify this hope .

Finally, it should also be remarked that the preceding considerations ar e

somewhat loose, since we have assumed that the space is flat for a suffici-
ently large surface F . Actually, the flatness of the space at large spatia l
distances from an insular system is only an asymptotic property and w e
have in each case to state more precisely how large the surface F has t o
be chosen .

There is another important question which we have disregarded so far .

For a given tetrad field, the metric is determined by the equations (2 .15) ,
but for a given metric tensor gik (x) the tetrad field is not uniquely deter -

1 In a forthcoming paper it will be shown that the preceding considerations regarding
the 3-momentum vector in curvilinear coordinates inside a given system of reference can easil y
be carried through also for the 4-momentum Pi in the 4-dimensional space, which enables u s
to give a meaning to Pi for arbitrary curvilinear space-time coordinates .
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mined by these equations . If h2a) (x) represents a solution, then the tetrad s

h ~ a) _ .~(a)
(b) (x) 2Ill' (2 .51 )

also satisfy the equations (2 .15), providedth at the scalar functions D (0 (0 (x)
at each point (x) satisfy the orthogonality relations of a Lorentz rotation, i .e .

S2 (a) (c) SC (b) (c) _ ,SL (c) (a)
D(e) (b) _ 'b (2 .52)

(the indices in parenthesis are lowered and raised by the same rule as i n
(2 .14)) .

It is usually assumed that all measurable physical quantities and al l
relations between such quantities must be invariant under arbitrary Lorentz
rotations (2 .51) of the tetrads . In the case of the covariant Dirac equatio n
for fermion fields, for instance, measurable quantities such as the charg e
and current densities are unchanged under the transformations (2 .51), in
contrast to the field . function y (x) which transforms as an 'undor' . Now, the
components of the complex Ti k are invariant under (2 .51) only if the rota -

tion coefficients are constants

		

rota ,-
(0)

(a) (b) , i . e . independent of (.x) . In fact, from
the definition. (2 .26) of ?a l one finds at once the transformation la w

Ÿika - h
ia) h (a) k ;

	

Y ikl +Xikl

	

(2.53 )

where the tensor Xika = - Xkia is given by

	

Xikl = ~(c)(a)'Q(cb), l Ilia) hk) .

	

(2.54)

Further, since h = I/ - gis invariant under (2 .51), the transformation of th e
superpotential (2 .30) is given by

Ri k( = u ika + 12kl

	

(2.55)
with

kikl = - 1i lk =	 hi [Xkai
8i Xa+ 8i Xk ]

	

(2 .56)
x

Xk = Xiki
= Q(c) (a) Q(eb) i h (a) h(b) k . (2 .57)

Finally, we get from (2 .22) the following transformation equation for th e

complex Ti k under tetrad rotations (2 .51) :

Tik = lLi kl l
= Tik + Iika l (2.58)

and the last term is in general not zero, unless the rotation coefficients
Q(a) (b) are constant .
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Thus, Einstein's field equations which determine the metric only do

not allow to. calculate the complex Ti k uniquely. Therefore, if one regards

the energy density or more generally Ti k as a measurable quantity, one

will try to set up further equations which, together with Einstein 's field

equations, allow to determine the tetrad field so accurately that Tik can b e

calculated uniquely . Geometrically speaking, besides the curvature of 4 -

space which is determined by Einstein's equations, we need a set of sup-

plementary equations which allow to calculate the torsion of the space (o r

the tetrad lattice), i . e . the tensor yin .

In the trivial case of a completely empty space where L i k is everywher e

zero, one usually assumes that space-time is flat, i .e .

Rikim = 0 .

In that case we must assume that also the torsion is zero, i . e .

yin = 0

	

or 1-11';'I = 0,

(2.59)

(2 .60)

for only with this assumption will Tik be equal to zero, as we should have

for a completely empty space . Since Rikim is a linear function of the co -

variant derivatives of the h(a) i of the second order, the equations (2 .60) are
compatible with (2 .59) . In contrast to Oik which is different from zero i n

curvilinear coordinates, the covariant equations (2 .60) ensure that Ti k = 0

in all systems of coordinates .

The equations (2 .60) can also be written

where
Y(abc) = 0 , (2.61 )

Y(abc) = Yiki h(a) hko ) h (c) = h (a) k ; i 11(0 11(c) (2.62)

are the Ricci rotation coefficients . This means that the tetrad field in a coin-

pletely empty space has to be chosen so that `absolute' parallelism with
respect to these tetrads (see reference 2, section 5) coincides with the Levi -
Civita parallelism which is also global in the case of a flat space, wher e
we can use pseudo-Cartesian or Lorentzian coordinates . In such coordinates

gik = gik

and (2 .60), (2 .61) mean that we may choos e

h(a) _ oa

Lltat .Fys .Medd.Dan .v id .Sel3k . 344, no . 3 .

(2.63)

(2 .64)

2
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or, more generally,
Ala) -

(o )
,~ (a) (i) , (2 .65)

(o )
where Q (a) (b) is any set of constant rotation coefficients satisfying the rela-

tions (2 .52) .

For a system with matter iL is clear that (2 .60) or (2 .61) cannot be valid ,

for this would entail (2 .59) which would be in contradiction with Einstein' s

field equations . However, for an insular system where space-time is asymp-
totically flat at large spatial distances r, (2 .61) must hold asymptotically, i .e .

y(abc) 0 for ri oo . (2 .66)

Thus, in an asymptotically Lorentzian system of coordinates the tetrad s

must satisfy the boundary conditions .

( 0 )
A. h a) -SZ (a) 0) oo for r-)- co .

	

(2.67 )

Further, as regards the manner in which this quantity tends to zero, we shal l

make the following natural assumption :

B. hza) -Q) (a) (() shows the sane asymptotic behaviour as the metric quantitie s

gik -' Îi k

This behaviour depends of course on the type of physical system w e

are dealing with. For a system with outgoing radiation, only, the boundar y

condition will have the character of Sommerfeld's radiation condition . The

form of the boundary conditions will of course also depend on the syste m

of coordinates . Although it may be convenient to use asymptotically rec-

tilinear coordinates, the boundary conditions can of course be formulate d

in any system of coordinates .

As regards the supplementary equations which, together with Einstein' s

field equations and the boundary conditions, should determine the comple x

Tik uniquely, it was shown in reference 2 that the following six covariant

equations would serve this purpose :

Y al ; + vikl Ø ~ - 0
(2 .68)

However, these equations are not the only possible ones and . the arbitrarines s

in the choice of the supplementary equations is even somewhat larger tha n

was assumed in reference 2 . In an interesting paper by PELLEGRINI and

PLEBANSKY (11) , this arbitrariness is diminished by the requirement tha t

all the equations for the tetrad field should be derived from a variational

principle . In this way, they arrive at a theory which, in the weak-fiel d

approximation and in the case of a spherically symmetric system, is prac-
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tically identical with the theory in reference 2 . But in addition to that, their
formulation opens up the possibility of an interesting generalization of the
usual theory of gravitation, in particular as regards systems containing

fermion fields . However, also this theory contains some arbitrariness an d
the equations determining the metric tensor are not exactly identical with

Einstein ' s field equations . For this reason, it may be for the time prefer -
able to work with the formulation developed in reference 2 .

When we have made a certain choice as regards the supplementar y

equations, for instance the equations (2 .68), the energy-momentum comple x

for a given physical system is a definite function of the space-time coordi-

nates, which means that we may calculate the energy distribution through -
out space. However, if it is true that the energy content in a small part o f
space is unmeasurable, then we have obviously obtained too much . Now ,

it is an interesting fact that, if we only regard the total energy and momentum
as measurable quantities, the question of the exact form of the supplementar y
conditions does not arise . In fact, as we shall see in section 6, the energy
and momentum contained in a sufficiently large volume V are invariant
under all tetrad rotations (2 .51) which respect the boundary conditions A

and B for the tetrads formulated on p . 18 . On the other hand, the distribu-
tion of the energy throughout space will in general be different after a tetra d
rotation. This is quite satisfactory if the energy distribution is unmeasurable .

The situation is then here somewhat similar to the case of the covariant
Dirac equation where the measurable quantities, like the charge and current
densities, are invariant under tetrad rotations, while the wave function s
themselves are not invariant . From this point of view the tetrad field vari-

ables have to be regarded as subsidiary quantities like the potentials i n
electrodynamics, and the tetrad rotations are a kind of gauge transforma-

tions under which the measurable quantities, such as total energy and
moment, are invariant. Supplementary equations of the type (2 .68) are
then not necessary, but sometimes it may be convenient to `fix the gauge ' by
applying such covariant equations . '

3. The Gravitational Field at Large Spatial Distances from an Insular
System with Axial Symmetr y

In order to calculate the gravitational energy emitted from a physical
system as well as the total energy and momentum of the system by means

* In some cases it may even be advantageous, just as in electrodynamics, to fix th e
gauge in a non-covariant way ; this is not in contradiction with the principle of relativity ,
since the gauge of the tetrads in this point of view is considered unobservable . In this
connection, cf. also reference 14.

2*
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of the theory outlined in the preceding section, we have to know the fiel d
at large spatial distances only. In reference 1, BONDI, VAN DER BURG and

METZNER have given the exact form of the metric at large spatial distances

from any axi-symmetric system with no ingoing radiation . These investiga-
tions were extended to an arbitrary system in a subsequent paper b y
SACHS (12) . In the present paper we shall, for simplicity, confine ourselve s

to the consideration of axi-symmetric systems and start by quoting some o f
the relevant results obtained by BONDI et al .

Although it is in principle allowed to use any system of coordinates i n

general relativity, there are certain classes of coordinate systems in which
the boundary conditions have a particularly simple form .

In the system of coordinates S' with coordinates

(x

	

,0,q),u}

	

(3 .1 )
introduced by BONDI et al ., 0 and are a kind of polar angles with th e
symmetry axis as polar axis, and r is a ` radial' coordinate chosen in such

a way that the 2-surface du = dr = 0 has the area 4acr2 . Further, the time

variable u is defined so that the curve du = d0 = dg) = 0 represents an out -

going light ray .

In S ' the metric tensor gi k has the form

g
ik

-

	

~ 0

	

0

	

0

	

r2 e2 Y

0

	

0

e2

	

r2 Ue2 Y

0

	

-e 2 ß

0

	

- r 2 Ue2 Y

l'2s1n2Oe 2y

	

0

0

	

(r-1
Ve2

	

r 2 U2 e2 Y )

where U, V, ß, y are functions of r, 0 and u . The corresponding determinant

g ' = det {g; k } is given by J/ - g' =
r2 sin 0e2ß . (3.3)

The contravariant components of the metric tensor are

I' 1 Ve 2ß -Ue 213

	

0

	

-é 2 ß

- Ué2 ß

	

i2 e 2 y

	

0

	

0

0

	

0

	

(r sin 0)-2 e 2 Y

	

0

	

(3 .4 )

-é2ß

	

0

	

0

	

0

To ensure regularity in the neighbourhood of the polar axis the functions V ,

fi, U/sin0, y/sin20 have to be regular as sin 0 goes to zero . Although dif-

glk
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ferent coordinate patches in general may be necessary throughout space -
time, it is believed that the space sufficiently far from the system is covere d
by one patch of coordinates of the type (3 .1)-(3 .4) . In these coordinates
the absence of inward flowing radiation may be expressed by the assump-
tion that the functions U, V, ß, y for sufficiently large distances r can be
written as a power series in 1/r with coefficients depending on 0 and u only .
By introduction of the corresponding series expansion for g2 k into Einstein' s
field equations for the empty space outside the matter one obtains

c (u, 0)I. 1 + 03

ß- 4=

	

c(u Ø ) 2 I.-2 +03

U= - (c +2ccot0)r 2

+[2N(II, 0) +3cc2 +4c 2 cotØ] r-3 + 04

V=r- 21tiI(u,0)

	

1
- [N2. + N cot0-c2 2 -4 cc 2 cotg -~ c2 (1 + 8 cot2 0)

J
r1 + 02 .

Here, On means a term which vanishes as r n for r --> 00 . c(u, 0), M(u, 0) ,
N(u, 0) are functions of integrations which depend on the type of matte r
system we are dealing with and the suffix 2 means partial differentiatio n
with respect to 0 for constant r,

	

u . In general we shall use the notatio n

( )1=år'( )2= 00',( )3 a( )0= åu

	

(3 .6 )

The functions c, M, N are not independent, they are connected by the
relations

M0
=

- cot +2Ao

-3 No =M2 +3cc 02 +4 cc0 cot0+coc2
with

	

A=c22 +3c2 cot0-2 c

= (c 2 sin O + 2 c cos 0)2/sin 0

_ [(csin 2 O) 2 ]
fsin 0 .

sin Ø

	

2

(3.5)
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Thus, if c(u, 0) is given, the functions M and N may be obtained by integra-

tion of (3 .7) and the flow of information in the system is entirely controlle d
by the function c which, in reference 1, is called the news function . Further ,

since

g
,
44 - - l - 2	 m(u,0)

r
+ 0 2 )

	

(3.9)

on account of (3 .2) and (3 .5), the function M(u, 0) is called the mass

aspect . In the case of a static system, M is simply equal to the total mass in
of the system, i . e.

M = m .

	

(3.10 )

In part D of reference 1, Bonne proves the interesting theorem that th e
mean value m(u) of M(u, 0) over all directions is a never increasing func-

tion of time. In fact, with

m(u) =

	

M (u, 0) sine d0

	

(3 .11 )

o

we get, by means of (3.7), (3 .8),

(
- m(u)o = - 2 Mo sin0d0

IS
1 co 2 sine d0 .

o

	

o
Here we have used that

(3.12)

S As0d0 =

0

(c sin 2 0) 2
sin 0

(3.13)= 0
o

on account of the regularity condition for y/si ne 0 , for sin 0 - 0 which, by the
first equation (3.5), leads to the following limiting behaviour for the new s
function. c :

c ^ k (u) sin e 0 for sin.0 -->- 0 .

	

(3 .14)

For a static system the quantity (3 .11) is equal to the total mass o r

energy of the system and, since the right-hand side in (3 .12) is always
positive unless co = 0, we see that a system which is initially and finally

static must lose energy if the news function c o is different from zero in th e
intermediate stage .
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This important result of Bormi was limited to the case where the syste m
initially and finally is in a static state . By means of the theory of the precedin g
section we are now able to prove this theorem for any (axi-symmetric )
system and we shall also verify Bondi's conjecture that the quantity m(u)

in (3 .11) is equal to the total energy for all times, so that the formula (3 .12)
gives the energy radiated per unit time at any stage of the development of
the system .

Let us first calculate the energy flux through a large sphere of `radius '
r using Einstein's energy-momentum complex OQ k . According to (2 .10) and
(3.3), the energy current density should b e

-
19,4~

_

	

2
r2 sin O

[ rim (e2 ß g'')o -
r~ås (e9 ß

g`~,c
)ojx

Further, if
dx Y ={0, d0, 0}, åx' ' ={O, 0, dcp}

	

(3 .16)

are two infinitesimal 3-vectors lying on the sphere of radius r in the direc-
tions of increasing B and cp, respectively, the quantity (2 .42), representin g
the surface element spanned by these vectors, become s

dS4=S x-.f,dxåx '/ '_{d0dp,0,0} .

	

(3 .17 )

The energy flux in the outward direction through this surface element shoul d
then be

SE' d B d T _-041 ` dSti =- ~4 1 d O d cp .

	

(3.18)

By introducing the series expansion of the metric tensor (3 .2)-(3.3) fol -
lowing from (3 .5) into the right-hand side of (3 .15) we get, as shown in the
Appendix,

~4x -
2 s n B [ZMlto(c20 + 2 co cot O)

J
8i + 0 1 .

	

(3 .19)

For sufficiently large values of r we can neglect the term Ol and we get for
the differential energy flux (3 .18) by means of the first equation (3 .7)

SE dO c hp = -2 [2 c02 -2 Ao + 4 cot 0(c20 + 2 c o cot 0)1 sin 0 dO dT .

	

(3 .20 )

Thus, according to Einstein's expression for the energy flux, the tota l
energy which per unit time is leaving a sphere with a sufficiently large radiu s
should be

(3.15)
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2
~~SÉdOdq

	

c2sinOdO+g~co	 +
cos2 0

0
sin0d0 .

	

(3 .21 )
o

	

o

Here, we have introduced the value = 8 :rc and used the equation (3 .13)
as well as the condition (3 .14), which give s

Ç(c02 cos@+2c 0	
sing

)dO=co cosO o
o

s

	

2 2

	

( 2e0 sn o	 +co sin@ ) dO=c 0 1 ± cos 2
sinOdO .

0

	

o

The expression (3 .21) is not in accordance with Bondi's equation (3 .12) ,
in particular it does not have the essential property of being always positiv e
since the integrant in the last term is linear in c o .

The inadequacy of Einstein's expression O a k in the system of coordinate s
used by BoNDI et al . is even more apparent if we calculate the total energ y
in a large sphere of radius r . By means of (2 .13), (2 .11) and (3 .17) we get
for this quantity

	

` l cHE (r) -JJJ044dx 1 dx '2 dx' 3

ah

41.

ax' i1 dx
' dx'

2
dx

a = -

	

n 4 4 ds2,

	

(3 .23)

= - ( 1h4 41 ded97 ,

provided that the system of coordinates can be continued into the interio r
of the matter system in such a way that 114 4 is everywhere continuous . In
the Appendix it is shown that h4 41 for large values of r is of the form

(3 .22)

which shows that

2rsinO
+0o (3 .24)

HÉ (r) -~ ~ for r-> oo . (3.25)

It should be noted that the first term in (3.24), which causes the divergence ,
is completely independent of the functions c and M which characterize th e
system, i . e . the divergence is of the type mentioned earlier which was noticed



Nr . 3

	

2 5

already by BAUER( 6 ) for a completely empty world . If we, quite arbitrarily ,
subtract this infinity, the term 0o in (3.24), when introduced into (3 .23) ,
does not give the correct value of the total energy even for a static system .
According to the considerations in the preceding section, this could also b e
expected .

4. Gravitational Energy Radiation from an Axi-Symmetric Syste m

In this section we shall show that the complex Tik (in contrast to Oi l')

gives a value for the energy radiation which is in agreement with Bondi' s
equation (3 .12) . In performing the calculations it is convenient to introduc e
a new system of coordinates S with coordinates

(xi ) = {x, y, z, t}

	

(4 .1)

connected with the coordinates (3.1) of the system S' by the transformatio n

x= rsinOcosg7, y= rsinOsin 9) , z =rcos 0

x4= t = r +ü .

The advantage of the system S is that it is asymptotically Lorentzian and tha t
the components of the metric tensor have a series expansion in 1/r starting
with the power zero . Since Tik and 1Zixi transform in a simple way, it i s
easy afterwards to find the components of these quantities in the system S' .

The transformation coefficients corresponding to (4 .2) are

axi

:sin O cos

sin 0 sin 9)

rcos0cosq)

r cos 0 sin 9)

-r sin O sin

r sin 0 cos 9)

0

0 i
k

(4 .3)ax cos 0

1

- r sin O

0

0

0

0

1 l

	

i

with

r = 1 /x2
+y 2 + z 2 .

The corresponding Jacobian is

a xi
J= det ax, k }= r2 sin 0 .

(4 .4)

(4 .5)
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Therefore, by (3 .3),
1

	

2 ßj/- g
=Jv

-g' = e .

For the calculations it is convenient to introduce the following four-compo-
nent quantities :

Or
ni axi =

{sin O cos q9, sin O sin qq , cos 0, 0 }

mi = {cos 0 cos q5, , cos 0 sin qq , - sine, 0}
1={-sin

	

cos q), 0, 0}

a u
= a xi ° - (ni 4 + ni) = {- sin O cos qq , - sin 0 sin w, - cos O, 1 }

and the corresponding quantities ni , mi, ,cri with indices raised by means
of the constant matrix i1 ik = nik, i . e .

ni=ni, mi=mi, li==lzkpk={,u -1} .

Then, obviously ,

ni ai = rn i mi =

	

= 1,

	

,ui ,u 1 = 0

ni mi = ni 1 i =

	

= ni i ,ai = 1i ,ui = 0, ni ,ui = -1 .

The derivatives of the quantities (4.7) with respect to u and r are zero, i .e .

(ni)0 = (ni)1 = (m i)0 =	 _ (hi)0 = (hi)1 = 0

and the derivatives with respect to 0 and cp are at once seen to be

(ni)2 nti , (mi)2

	

ni , ( 1i)2 = 0 , (ui)2 = - mi

(ni ) 3 = sin. 0

	

(mi)3 = cos 0 li ,

(li) 3 - - (cos O mi + sin 0 ni )

(,ai)3 = - sin O lz .

Further, it follows from (4 .7) that

mi 1nk + li l k + pi Ni k + li 4 Pk + Pi 74 4

= mi mk + li Ik - (Pi nk + ni Pk) - ,tii hk = lix ~

(4 .6)

(4 .7 )

(4 .8)

(4 .9)

(4 .10)

(4 .11)

(4 .12) .
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The transformation coefficients (4 .3) may now be written as a ro w
matrix

axi

	

ax, k-
(-

	

rmi , r sin B l i , 84)

	

k = 1

	

2 3

	

4 .

The inverse coefficients are then the column matri x

ax i

a x k

since

axi ax ' l

a 'i axk

	

- Flink +mk+l'llk+S4tilk

	

4.15

	

= mi mk ± l i l + I,li
+ yei ik4 + 7Î 4

i
Pk =

åi

	

(

	

).x

	

k

	

lk

	

k

	

J

on account of (4 .12) .

For the covariant components of the metric tensor in S we get, by (3 .2 )
and (4 .14),

ax'l ax m ,
gik = a xi a xk

	

= e2 %' m i m k -I- e 2 2' 11 l k

(r-1 Vet ß_ I .2 U2 e2 Y) mi
LL k - e 2 P (u i nk

+

ni l- lk)

rUe 2Y (m i ,uk + Iu.i mk) .

Similarly, by (3 .4) and (4.13) ,

gik

	

axi axk

	

lm

	

2

	

i k

	

2 i

	

1

	

2

	

i k

g

	

a x l a x ' m g

	

= e- Y m m -I- e 2' 1 1+ r ve-
ß ,cl ,u

+r 2 ß (ui
+ 714N1 k ) +rUr2 ß (ui ln k + mi Fl k ) .

At large distances r, the components of the metric tensor appear as a power
series in 1/r with coefficients depending on u, q) . In the following we shall
only need explicit expressions for the terms up to the second power . By
introduction of the expansions (3 .5) into (4 .16), and using (4 .12), one easily
finds

(4 .16)

(4.17)
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(4 .18)

(4.19)

(4.20)

gik = nik + gik + Zik + 03

	

-1

	

2

	

gik - aik l ,

	

Zik ßåx 1.

a,ik = akå = 2 c(m i mk - lå lk ) + 2 DI Fci,uk

+ (c2 + 2 c cot 0) (mi ,u k + ui mk ) ,

ßåk

	

° 2 c2 (mi mx + lå 1k) -I-

2
c2 (pi nx + ni Fi k )

+ (N2 + N cot 0) ,ui ,u k - (2 N + cc2) (ini ,u k + rnk) .

If we define the quantities yåk,åkß aåxßik with indices raised by means
of the constant matrix Vic as in (4.8), then aix and ßik are obtained fro m

(4.20) by substituting må ,

	

pi and nå by the quantities (4 .8) .

Now, it is easily seen that the contravariant components of the metri c

tensor have the following series expansion :

gik

	

- yi k - z2k + j r

	

yyrx + 03, (4.21 )

for this expression satisfies the relation

(4 .22)gel
gxl = ,3 ';,

up to the terms of second power in 1/r . The expression (4 .21) can also b e

obtained by introduction of the expansions (3 .5) into (4.17) .

Let p (u, r, 0, 9)) be any function of the variables (x'i ) and let us denot e

the derivatives with respect to xi by

with

and

ay
1',

	

axi
(4.23)

with a comma in front of the index 1, in contrast to the derivatives (3 .6)
with respect to x'i which are written without a comma .

Then, by means of (4 .14) ,

ax'm ôy,

~ l - ax l C)x m

	 Ml

	

y'3 1l
- Y)o,ul+''Pint-

r + rsin0

(4.24)
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If y' is equal to the function yik defined by (4 .19), we have

( (Xik)0

	

-aikn l +(aik)2	 Illl 	 +(aik)3Ill s in 8
yik, l -

	

lul +

	

~

	

(4 .25)
I'

	

I• J

On the other hand, if yi is a quantity of the type 02 , like zit or y ir yk, ive
have simply

(f'ik)o
Zix, l-(Zix)o Fil + 0 3 =

	

,(.c l + 03 .

	

(4 .26
)

From (4.6), (3 .5) and (4 .21) we get the following expansion for gik

	

-g gik

	

ir k

	

ik 3/~
gik - !ix -

	

_ ß - a arg + YfC ~Z

	

L•-

	

-I- 03

	

(4 .27 )

and, by means of (4.25), (4.26) and (4.9)-(4.11), one finds, as seen in
the Appendix (A.1-A .8),

2M- A
g2x k =

	

2

	

C6 2 + 03 .
r

(4.28)

This shows that our system of coordinates is harmonic only apart fro m
terms of the type 02 .

In order to calculate the total energy and momentum as well as th e
energy emitted by means of the complex Ti k we need an expression for th e
tetrad field h(a)i corresponding to the metric (4 .18)-(4 .21) . As explained in
section 2, the tetrad field is not uniquely determined by the equation (2.15) ,
since any tetrad rotation (2 .51) will leave the metric unchanged . However,

as was mentioned already in section 2 and as will be shown in detail i n
section 6, the values of the total energy and momentum given by (2 .41 )
and (2 .44) with a sufficiently large surface F are the same for any tetra d
field satisfying (2 .15) and the boundary conditions A and B on p . 18 .
Therefore we can choose any tetrad field satisfying these conditions, for
instance

(4.29)

which is symmetrical in a and i . This expression is in accordance with the
equation (2 .15), for we have

1

	

1(

	

1
h (a) i = 97ai + 2 yai + 2 -ai - 4 Li ar Y't
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h za)h (a) k = nik + 2 (gik gki) + ( Zik

	

gir g k)

-r ~ 'ki If g kr g i + 4 ~i ~ak + ~3

- nik + gik + Zik + 03 = gi k

on account of (4 .18) . Further, since h (a)j in (4 .29) is an algebraic functio n
of the quantities gik and Pik entering in the expression (4.18) for gik - ~lik ,

it is clear that this tetrad field satisfies the conditions A and B .
We shall now calculate the complex ii k, defined by (2 .31), up to term s

of power 2 in 11r . To this end, we only need to calculate the quantities (2 .26) ,
(2.27), which occur quadratically in tik up to the first power in 1/r . Ac -

cording to (4 .18), the Christoffel symbols are simply

1
ri,kl = 2 (gik,l +gil, k gkl,i)+ 0 2 •

Further, since

Yikl = hia) h (a) k ;

	

hza) (1i (a) k, i -rkl h (a) r)

	

~
(4 .31 )

= hza) h (a) k l ri kl ,

we get, by (4 .29), (4 .30) and (4 .25) ,

Yikl = Si 2 gak, l 2 (gik, l g il, k gkl, i) 0 2

1
- 9 (gkl,i -gil,k) + 02

	

(4 .32)

- 2 r [(akl)O /'Ii (ail)0

	

+ 02 .

Thus,

_

	

1
Øk Yzki 2 r L(aki)o

	

(4)o Pk] + 02 = 02

on account of the relations

ai = 0, axi pi = 0

following from (4.20) and (4.9) .

(4 .30 )

(4.33)

(4 .34)
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From (4 .32)-(4 .34) and (4.9) one easily finds that the Lagrangian
(2 .29) is zero up to terms of the second power in 1/r . In fact, we have

2 =	 [(a ) P_ (a ) ,u ] [(
aki

)o Pi (alz)o Pk] + 03 = 03 .

	

(4.35)4 r2

	

kl O ä

	

il 0 k

Finally, since

4lmi
= h(a)

l
1i

	

a l
(a) m, i= yJ

2
~a

1
_ ~r ( 061 )0 +Li + 0 2

we get for the complex ti k in (2.31 )

tik -
;

Ykml
filmi + 03

4 xr2 [(a l )0 pk -(ak) 0

	

(am)0 /-t- + 0 3 .

Hence, outside the matter where zik = 0 ,

Tk

tZk

4 xr2 (al7n)0
(
a")o Pi + 03

2 Cot

	

k

xr2 ~iiu
+0 3 .

Here, we have again used (4 .34) and the relatio n

(aik)o (a
ik)0 = 8 c0 2

following from (4.20) and (4 .9) .

For sufficiently large values of r where we can neglect the
3-vector density

2 CO2
nx4

	

xl,t

	

,

which represents the energy current, lies in the direction of increasing r .
Now, let dx.2• and åxi" denote two infinitesimal 3-vectors which are tangent s
to the sphere of radius r in the directions of increasing 0 and 99, respectively .
Then,

1

(4.37)
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dx2' {r cos 6 cos 9) de , r cos 0 sin (pd B, - r sin 0 dO) = rnY d B

8x1`={ rsin0sinTdq~,rsin(cosOcp, 0

	

)=rsin(11`d gp

and the quantity dS,, = 604, dx2' 8x1`, representing the surface element spanne d
by these vectors, is

dS,ti = nti r2 sin B d O dT .

	

(4 .40)

Therefore, the energy flux through this surface element is, for sufficiently

large values of r,

SdOdq) = C~udS,, =
22

sine d Bdq) .

	

(4.41)
x

The total energy which per unit time leaves the sphere of radius r is obtained
by integrating over all directions, i . e . ,

dd =SSdOdT =
2

\co 2 sinOdB .

	

(4.42 )
o

This expression is in accordance with Bondi's equation (3 .12), but the

calculation has here been performed in the system S instead of in S ' , and
we have to show that the same result holds in the system of coordinate s

used by BONDI et al . By means of the transformation law (2 .34) for the

energy-momentum complex it is now easy to calculate the quantity t4k in

the system S' . Since the coordinate transformation (4 .2) is of the type (2 .36) ,
14k transforms as a vector density .

Hence, by (4 .5) and (4 .37) ,

t4k = r2 sin o
axm

t4m
= 9 x° 2 ,ci k si .n B+ Ol

	

(4 .43 )

dx
u k =

	

~n pm ={-1,0,0, Oj .

	

(4.44)
dx

Here we have used (4.14) and (4.9) . Thus, we get for the 3-vector density

2c
°
2 sin 0

C~
x = t4x = 	 81+O1

	

(4.45)
x

and, for sufficiently large values of r, the energy flux through the surfac e
element defined by (3 .17) becomes

with
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z
S'dBdcp = EdS~, =

2 c°
sinBdBdT .

	

(4 .46)

As one should expect, a comparison with (4 .41) shows that the energy
flux is the same in the system S' as in S, since the transformation (4 .2) does
neither change the system of reference nor the time scale .

On the other hand, Einstein's expression (2 .10) does not have this im -
portant property . In the system S we get, by means of (4 .30) and (4 .25) ,
for the Lagrangian 2 .0 defined by (2 .8)

CiE

	

41'2
[(aik

)0 g'm + (am)0,a' (am) 0

[(ak )o ail + (aln )0

	

- ((Ikl)0 dam] + 03 = 03

on account of (4 .34) and (4 .9) . Further, since

s (y g), m
02ms -

V- g

( v - g
gim), i - - ÿ lm , i + 0_

(ain
) o2 -

	

ui +O 2 ,
1,

we get from (2.10)

vi k - 21x rim(v -ggim),i+ 03

4 y LT 2 L(al )0 ,am + ( am)0 1,1i - (alm)o rtLkl
(alm)0'üi

+
03

1

	

J

4 7L1.2 (aim)0 (alm)o
du i rLlk + 03

or, by (4 .38),

~
k 2 CO2

	

k
Z

	

x r2 ,ui ,u + 03 .

A comparison of (4 .48) with (4 .37) shows that Einstein's expression for
the energy-momentum complex gives the correct value (4 .41) for the energ y
flux when calculated in the system S . However, since '0'4 k transforms in an
unphysical way under the transformation (4 .2), it leads to the wrong result
(3 .20) for the radiated energy in the system S' adopted by Bonny et al .

The calculations of the present section have corroborated the conjec -
Mat.Fys .Medd .Dan.Vid .Selsk. 34, no . 3 .

	

3

and

1

(4 .47 )

(4 .48)
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ture of BONDI regarding the total energy flux from an axi-symmetric syste m
expressed by the equation (3 .12) . In addition to that, our equation (4 .41 )
gives the angular distribution of the energy flux which must be regarded
as a measurable quantity, provided we can construct a receiver of gravita-

tional energy which can be placed at large distances from the emitter i n
different directions . According to (4 .41), the energy flux per unit solid angl e
is given by the square of the news function co (t-r, 9) and, by (3 .14), we

see that the energy flux must be zero in the direction of the symmetry axis .
For a detailed account of the angular distribution of the radiation fro m

a given physical system we have to know the angular dependence of c o .

This requires a continuation of the solutions (3 .2), (3.5) of the field equa-
tions at large distances into the interior of the system. So far this has been
achieved exactly for a static system only . However, for a quasi-static syste m

and sufficiently weak radiation, BONDI E' ) found the following approximate

expression for the news function c (u, 9) :

c = 2 Qoo sin e

	

(4 .49)

where Q (u) is the quadrupole moment of the system . According to thi s
expression we should expect a steep maximum for the energy radiation in

directions perpendicular to the axis of symmetry .

5 . The Total Energy and Momentum

We begin this section by performing a calculation of the total energ y

which, as we shall see, leads to a verification of Bondi's conjectur e
that the quantity m(u) in (3.11) represents the total mass or energy of th e

system. Also here it is most convenient to work in the system S instead o f

in S' , but first we must show that the total energy is the same in both systems .
According to (2 .41), the energy contained in a large sphere of radius r at
the time t is in the system S

H(u, r) = -` 11.44À' dS2. .

	

(5 .1 )

Similarly in S'

H' (u,r)=

	

1144 dS,l .

	

(5 .2 )

In this integral (5 .1), r and t are constant, while in (5 .2) r and u have to

be kept constant .
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Since u = t-r, the 2-surfaces over which the integrations in (5 .1) and
(5 .2) are to be performed are identical . On account of (3 .17), the integrant
in the last integral is

U4'4À dst = 1144 ' d0dp .

	

(5 .3)

Further, since 112 x1 is a tensor density, we get, by means of (4 .5), (4.13) and
(4 .14),

_ ax r ax'4 ax' ,
114

41 -
J	 	 	 11

ax 4 axs axt
r
st

= r 2 sin 0 å4 ,u $ rt t14r"

.

(5 .4)

Now, 11,' is antisymmetric in s and t and, according to (4 .7), ,u s = 6,4 -n, .

Therefore, by (5 .3), (5.4) and (4 .40) ,

114'4 dSj=114 4x nx r 2 sinOdOdgi=11 44x dSx , (5 .5)

which shows that the integrals in (5 .1) and (5.2) are equal :

(5 .6)I-I' (u, r) = H(u, r) .

The integrant in (5 .1) can, by (4 .40) and (4 .7), be written

(5.7)-1144 ~dS2 =11441 p i r2 sinOdOdcp,

which shows that we have to calculate U44t lai up to terms of the secon d
power in 1 fr . More generally we have, by (2 .30) and (4 .6) ,

2 13
uxa

u l =	 ]Yki2 - 82k Øl f~l +

	

.

The calculation of yxl2 and 01 for the tetrad field (4 .29) is carried out in the
Appendix (A.9-A.15) and gives the result

lTZ xl ul =	 {- 41bI + A) I-12 p lc -(c2 + 2 c cot O) m2 u x~ + 03 .

	

(5 .9)
2 ;sr '

By introduction of this expression with i = k = 4 into (5 .7) and (5 .1) we
get

(5 .8)

3 *
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H(u,r)=SÇ114 41 ,u.1 r2 sin0dOdw

(5 .10)
= 21r 1 1(4111-A) sin0 dOdcp+01

or, by means of (3 .13) and (3 .11) and putting x = 8z ,

H (u, r) = m (u) + 01 .

	

(5 .11)

For sufficiently large values of r we can neglect the last term in (5 .11) and
the remaining term, which is a function of u only, we shall define as the
total energy H of a non-closed system . Thus, the total energy

H= m(u)=(u,0)sinOdO

	

(5 .12 )
0

is just given by Bondi's expression (3 .11) .
We shall now perform a similar calculation of the total momentum o f

the system. As explained in section 2, this quantity is given by the simpl e
expression (2 .44) if, and only if, the system of coordinates is asymptotically
rectilinear . This is obviously the case with S but not with S' . Thus, in S
we get for the linear momentum contained in a large sphere of radius r ,
by (2 .44), (4.40) and (5 .9) ,

(u, r) 5~11`4À dS), = -11,4Z 1.G1r2 sinO d O d ~p

= 1

	

1 ~(4111-A)n~sinOdOdcp 5 .13)2 x ,
r
1J

1

Thus,

- 2xJ 1 (c 2 +2ccot0)m, sin OdOdT +Ol .

(5 .14)Pt (u, r) = PL (u) + Ol
with

(4 M- A)

	

sin 0 ad(?)2
(5 .15)

2x

	

(c 2 +2ccot0)m, sin 8dO d .
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Again we can neglect the last term 0 1 in (5 .14) for sufficiently large
values of r and define the `total momentum P L ' of a non-closed system b y
the remaining term (5 .15) which is a function of u only. Since M, A and c
are independent of q' for an axi-symmetric system, while n 1 , n2 , nil , n1 2
are proportional to cos q) or sin q), the integration over g' in (5 .15) give s
at once the value zero for the components of the total momentum in a
direction perpendicular to the symmetry axis, as one should expect :

P1 =P2 =0 .

	

(5 .16)

For the component along the symmetry axis we get, by (5 .15), (3.8) and
(4.7),

n

P= 4n ÇMcos0sin0d O
n

	

o

Ÿ Ç [c2 siuo+2cco50 2 :oso_c2 sinO+2ccososino] dB . (5 .17 )
0

The last integral is easily seen to be zero, for iC is obviously equal t o

J
[(c 2 sin 0 + 2 c cos 0) cos 0 ] 2 dO = (c 2 sin 0 + 2 c cos 0) cos 0 for = 0

o

on account of (3.14) . Hence ,

Ps=25M(u,0)cosOsin0 d0 .

	

(5 .18 )
0

The equations (5 .12), (5.16) and (5 .18) show that the components of th e
`total four-momentum'

Pi = {PL , -II)

	

(5 .19 )
are

n

	

n

Pi = O,O, 5 McosO sine dO,-MsinOdO .

	

(5 .20 )
0

	

0

For the time derivatives of these quantities we get, by means of (3 .7) and
(3.13),
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dPl _ dP2 - 0
dt

	

dt .

n
dP4d~ = -2`lVl~sindd 0

0

cc
4 ~~J

c2dS~ = 4
n

SÇ (n)r2 dS2

where

	

is the energy current density (4.39) and

dQ = sin0 dOdrp .

(5 .22) shows that the energy is conserved .
Further,

dPt3 =2M0 cos0sindO=-4~co 2 cos0dS2=-r2 dS~,

	

(5.23)

o

where V is the component of the vector density (4 .39) in the direction o f
the symmetry axis . Here we have used that the integra l

AocosOsin0d0=~[c 22 sinOcos0+3c2 cos 2 0-2csinOcosO] 0 d0

0

	

0

s= [c20 sin O cos O+c o (1+cos2 0)]2 d O

o

_[c20 sin O cos 0+ c o (1 + cos2 0)] ~o = 0

on account of (3 .14) . The equations (5 .21.), (5 .23) show that the gravitationa l
energy radiated administers a recoil to the system of the same amount as in

the case of electromagnetic radiation .
The relations (5 .21)-(5 .23) could also be obtained directly from (2 .3) .

If we integrate this equation over the interior of a large sphere of radius r ,

we get

(5.21 )

dt

	

T2 4 dx l dx 2 dx3 = - ~ Tir y dxl dx2 dx 3 =-
J J Tir ~x .

	

(5 .24)
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bi virtue of (4 .37) and (4 .40) this gives, for sufficiently large values of r ,

SS c

	

d

	 a

	

2x
	 r2

2
,ui t.6 ny r2 sin 0 d O d q=

4

	

1 co' Fri dS?
., .

0

	

0

in accordance with (5 .20)-(5 .23) .
In this section we have defined the `total momentum and energy' as th e

quantities obtained from (5.11) and (5 .14) by neglecting terms of the typ e
01 . This amounts to neglecting all terms of the type 03 in LLti41 ,u i in the sur-
face integrals (5 .10) and (5.13). Therefore, Pi will be equal to the momentu m
and energy contained in a sphere of radius r only if the terms 0 3 occurring
in the series expansion of 1~ i41 u1 are really negligible . For this to be true
it is necessary that r is so large that the different terms of ascending power s
in our series expansion of the metric correspond to decreasing orders o f
magnitude, i . e . we must have

» Iyiki»Izikl»	 (5 .26)

Further, we must require that r is so large that the last terms in (4 .25) ,
(4 .26) are small compared with the first terms, i . e .

(yik)o I« I ÿik I' r 1

	

(5 .27 )

and a similar relation for zik .
In view of the expressions (4 .18)-(4 .20) for yik and zik the condition

(5 .26) demands

IcI «1 WI «1, INI«I NII, 	 (5 .28)
r

	

r

	

r

Further, if 2 is the order of magnitude of the wavelengths of the radiation
emitted, we have

c

	

M

	

N
co -Mo

	

-, No - 	
and (5 .27) then means

(5.30)

Thus, the radius r has to be large compared with the wavelengths of th e
radiated waves, i . e . only if the surface of the sphere is lying in the `wav e

7r

	

(5 .25)
= 0,0, -9c2 cosO sine dO, Tl c2 sinOdO

(5.29)
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zone' of the radiation will the momentum and energy contained in th e

sphere be equal to the `total momentum and energy' P of the system. In

all practical cases, co and Mo are very small quantities and it is easily see n
that the conditions (5.28)-(5 .30) are compatible with the relations (3 .7) ,

(3.8) .

6 . Invariance of Pi and of the Asymptotic Form of Tik under

Tetrad Rotation s

In section 2 it was shown that the complex Ta k transforms according t o

Eq. (2.58) under tetrad rotations (2 .51) and it is unchanged only if the

rotation coefficients are constants . However, as also mentioned in section 2
and as we shall show now, the total four-momentum P2 as well as the

asymptotic form of TT k are invariant under any rotation (2 .51) for which also

the new tetrads Lr ) satisfy the boundary conditions A and B on p. 18 . In
our proof of this statement we shall again work in the system of coordinate s
S, where the boundary conditions have a particularly simple form, bu t

since it is a statement regarding covariant quantities the proof is of cours e

valid in any system of coordinates .
From (2 .51) and (2.16) it follows that

Q (a) (b) (x) = W ) h b) .

	

(6 .1 )

Therefore, since the tetrads (4 .29) have the limit

hlb) --> åb for r - oo ,

the boundary condition A for ili a) yields

(o)

	

(o)

D (a)
(b) (x) ,Q(a) (2) ~b = ~(a) ( b)

(o)

where the coefficients Q (a) (b) are constants .

However, V. is unchanged under constant tetrad rotations so that w e
(o)

may choose ,Q(') (b) = 87, without any loss in generality . This means tha t
(o )

,S2 (a) (b) (x) must be of the form

2(a) (b) (x) = 6b + wab (x),

	

(6 .4)

where

(6 .2)

(6 .3 )

wab (.x) -- 0 for r-3 00 . (6 .5)
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The indices a and b in coa l, are, of course, raised and lowered according t o
the same rule as in ,Q( a) o) .

We shall now apply the boundary condition B to the new tetrad vector
hZ a> , which requires that hl' ) - ba must have the same asymptotic behaviou r
as the metric quantities y) = gik - i1ik . In the system S the boundary condi-
tion for y has the form of a Sommerfeld radiation condition, i . e . y (u, r, 0,T)
as a function of u = t - r, r, 0, and q) satisfies the condition

C .

	

( ryp)1 = 0 '1 -> 0

for r ->cc under constant u, 0, q) .

Moreover, y and its first-order derivatives go to zero at least as 1 for r
r

Now, condition B requires that G must hold also for y = ilia) - ô¢ which,
on account of (6 .1) and (6 .4), implies that also the function y = co al, satisfie s
the condition C .

This means that co al, (u, r, 0, 99) and its derivatives have the following
asymptotic behaviour for r -oc : w ab ' (wab)0, (wab)2 and (coab)3 go to zero
at least as l fr, and (W ab ) 1 goes to zero at least as 1/r' .

Symbolically this is expressed b y

lwab' (wab)0' (wab)2' (Wab)3} _

( wab)1 02 '

where O ' means a term which goes to zero at least as lrn

Otherwise the scalar functions veal, can be chosen completely arbitrarily
apart, of course, from the orthogonality relations (2 .52) which imply the
following conditions :

wal,+ wal, -I- coc a wel, = 0

(Oct wbe = (')ca Co cl, ,

From the first of these equations and (6 .6) we get for the symmetrical com-
bination

w{ab} - wab -1- OJ ba

l w {ab }' (w{ab })0 , (0{ab})2' (0 .1ab })3} = 02

(w {ab}) 1 = 03 .

(6.8)
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Further, from (4.24) with v = w

w ab, I(wab)0 ri l +
L
(wab)1 nI T (wab)2 Zn I +T

Sln 8(wab)3 1l
J

, (6.10)

where the bracket term is of the type 02 on account of (6 .6) . Hence,

wobf, I
- (w€ab})0 NL I + 03 - ( coca wcb)0 F LI + 03

	

(6 .11)

au I

	

a 2 u
i

axi = ax I axi -
01 ,

w`ab}, I, i -( co a w cb)00 Pi + 03 .

We shall now calculate the asymptotic form of the complex Tik corre-

sponding to the tetrads h2 a) . By the asymptotic form we mean the expressio n
for Tic obtained by neglecting all terms of type 03 , i . e . the expression which
determines the energy radiated from the system .

According to (2 .58) we hav e

Tik _ Ti k = yikl I

	

(6 .14)

and we shall see that this quantity is really zero for large r if we neglect al l

terms 0 3 . To this power in 1/r we get, by (2 .54), (4 .29), (4 .21) and (6 .4)-(6 .10) ,

XkI -h(a)kh(b)IS?(c )i

	

(a) .i2 (cb), i

1
a')

	

bl _ 1 bl

	

c(rr' 2 1J

	

Y/

	

y
~

(8a + w a) co ,cb i

= wkd

	

[ co' (wr-I)0

	

y7k ( wrI )0

	

Y" (wkr)0l ,LLi + 0 3 .

Further, since h = 1 + 02 , we get from (2.56)

	

x 1,ixl

I-
YIcIi,

i+
xk

	

q XI , + 03

2
1

3 '

Here we have put

and, since

(6.12)

(6.13)

(6.15)

(6.16)

which gives

k

	

kI

	

x

	

k IZi =X i + x, i = X +X I, i

Zit = X~I1 I +XIZI = 2 XI

(6.17 )

(6.18)
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Now, we get from (6 .17), (6 .15) and (6 .6)-(6 .12)

Zik wk l ,

	

k-

	

i

	

col
l ,

-I-

	

1

	

llOJrk (6Jrl)0 - 21 Y" (IOrl)0
_ ~

Y' ( O~ kr)O
J

>cLi~Il

	

t

	

o

+ I G~rl
C ~rk)o

-
ZY

rl
(wrk)o

	

I~rk (wir)o] Lll Gli 0 3\

	

o

{ki).

	

rk

	

I

	

1

	

k

	

Lrl f=CO

	

i +

	

or)o - Jr (w )o~

	

/II -I- 0 3 .

0

Here we have used the relations

yrl ,ul = (9 r1)o

	

= 0

	

(6 .20)

following from the second equation (4 .34) .
By means of (6 .9) and (6.13) the equations (6 .19) and (6 .16) give

Zi k = 03, Zll = 0 3

	

(6 .21 )
and

y kl , l = o'3 .

	

(6 .22 )

Thus, the asymptotic form of Tik , obtained by neglecting all terms of th e
type 03 , is unchanged under all tetrad rotations which respect the bound-

ary conditions A, B, and it is therefore uniquely given by the equatio n
(4 .37) . In particular this holds for the gravitational energy emitted, whic h
is uniquely given by the expressions (4 .39)-(4 .42) .

We shall now show that also the total four-momentum Pi is invarian t
under these rotations . According to our definition of Pi and in view of
(5 .10), (5.13) and (2.55), the change in Pi under a tetrad rotation is given b y

P-Pi =- Ç i4
l
-1,I z41 ) /.I 1 r2 sine d O d w

- ÇYi41 u1 r2 sinOdOdry ,

where the integration is extended over the surface of a large sphere o f
radius r and all terms of the type ° 1 have to be discarded . The calculation o f
y41 ,1 1 , which runs along similar lines as the calculation of 1Qkl l in (6.15)
-(6.22), is performed in the Appendix (A . 16-A.22) . The result is, neglecting
terms of the type 03 ,

(6 .19)
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xYi 4d ,ua

	

(a) 4 ')?' (ln),ni-min),)+(w4
.1 )3

(l,Z ni - lin) )r

	

r sin O

+dz [(0.)'
2r)2

(mtinm ; nx) +

2r

si) e
(1r n

)
, - Irn

0 J
.

From the definitions (4.7) of ni , mi and li it follows that

m,,n,t - m),nx = ax)v P'

1,,n ), -1,1 n„, = ax7v

Therefore, we get from (6 .23)-(6.25) with i = 4

2 n

- P4 = H-H=
rdYV

dO~d c!) [(wy2 ) 2 l v sin0-(c,)'2-) 3 mv] .

	

(6 .26)

0

	

0

By partial integrations of the first and second member with respect to 0

and 99, respectively, we get, since the contributions from the boundarie s
cancel,

z 2 n

P4 -P4 = r2x v ~d0dT w'a [-iv cos 0+(mv ) 3 ] = 0

	

(6.27 )

o

	

o

on account of (4.11) . Similarly we get from (6 .23)-(6.25) with i = t

P,-Pi - O .

	

(6 .28)

Thus, also the total four-momentum Pi is invariant under all tetrad rotations
which respect the boundary conditions A and B, and Pi is therefore uniquel y

given by the equation (5 .20) .

7. Transformation of Pi under Asymptotic Lorentz Transformation s

We have seen that the total energy is invariant under the transformation s

(4.2) and (2 .5) which leave the system of reference and the time scal e

unchanged . For more general coordinate transformations this will of cours e

not be the case . We shall in particular investigate the transformation pro-

perties of Pi under transformations which, at large spatial distances from th e

(6 .24)
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system, have the form of a Lorentz transformation . For simplicity, we shall
only consider such transformations of this type which lead from the syste m
S with coordinates (4 .1) to a system S with coordinate s

(-7') = {:r, J,

	

i }

_{f sin 6 cos 17 , f sin B sin (T , f cos 6, û+f)

for which the metric tensor '-gik asymptotically is of the same form as i n
(4.18)-(4.21) . In part C and in the Appendix 3 of reference 2, A . W. K .
METZNER has given the most general asymptotic form of a transformatio n
of this kind . A special class of these transformations (a pure K-transforma-
tion) is given by

r = Kf+û cosh v-
K

+O l

sinB ~
0 = Slrl 1(

	

' T K 2 + 0K

	

2

=

û 52 (K,)2

u K 2F K 3
	 +02 .

K = KO) = cosh v + sieh v cos B > 0,

	

(7 .3 )

(7 .2 )

Here ,

where v is an arbitrary constant an d

K' = dé - sink v sin 0 .

From the second equation (7 .2) it follows tha t

sin-

	

ii(Kcoshv-1 )
sin 0 =	 1-	 	 + 0 2

K

	

fK 2

Binh v + cosh v cos
coso=

	

K

	

+01 .

It is easily verified that the transformations (7 .2), when written in terms o f
the variables (4 .2), (7 .1), asymptotically are of the form

(7 .4)

(7 .5 )

(7 .6)
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x=c+01 ,

	

rd= 0+01 ,

z = T cosh v +tsinh v+ O l

t= tcoshv+Tsinhv +O1

which is a special. Lorentz transformation with a relative velocity

(7 .7)

v = tan v

	

(7 .8)

in the direction of the symmetry axis . Thus, far away from the matte r
system, the reference points of the system S arc moving with the constant
velocity v in the direction of the z-axis with respect to the system S .

The news function c(û, 0) and the mass aspect M(û, B) in the system
S are connected with the corresponding quantities in the system S by th e

following relations :

C= KC, Co = K2 -Co , coo= K 3 COO ,

lb1 = K 3 [M + f(û, 0)] ,

f(û, 0) = 2 s [1- Kcoshv KK']+ûcOZ,K'
K'

u2co o
K

3

is a function of û and 0 which depends linearly on the derivatives co, T oo ,
cot of the news function c(ii, 0) with respect to ü and O . Therefore, for a

system which does not radiate, i .e . for co = 0, the function TO, 0) vanishes .

(Note that, if co = 0, then also co = 0 on account of (7 .9)). Further, since
we also in S have relations of the type (3 .7), (3 .8) we see that in this cas e

also Mo = 0, i .e . M = M(0) is a function of 0 only .

For the total momentum and energy in the system we get, on the analog y

of (5 .20) ,

Pi (û) = 0, 0,
2~

M(rz, 0) cos sin 0 d0, -
2~

M(û, 0) sin 0 dØ

	

(7 .10 )

0

	

0

Pl =151 , P2 = P2

i . e . the components in a spatial direction perpendicular to the relative

motion are transformed as if P2 were a vector . However, the transforma-

tion of the components P3 and P4 is in general much more complicated .

For instance, take the expression (5 .20) for P4 ,

where

Thus,

(7 .11 )
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n

P4 (u) =- 2 M (u, 0) sin O d 0,

	

(7.12)

0

and introduce the variable 0 defined by the asymptotic form of (7 .5), (7 .6)

as new variable of integration . Then we have

sin d 6
sinOdO=

	

jj

	

(7 .13)
I1 9

and, on account of (7 .9) and (7 .2) ,

n

P4 (u) = - 2 [DI (Ku, 0) + f (Ku, 6)] K (0) sin 6 d0,

	

(7 .14 )

0

where u during the integration has to be kept constant in the argumen t
û = K • u in the functions M (a, 0), TO, C)) .

Similarly, using also (7 .6) ,

P3 (u)= -ÇM(u, O) cos0sin0de

o

	

(7 .15 )

=
2

[M (Ku, O) + f (Ku, 0)] [sinh v + cosh v cos 6] sin O d O

	

i

o

Since the variable û = K(0) u in M(u, 6) is varying over the range of inte -

gration in (7 .14), (7 .15), it is seen that there is in general no simple con-
nection between (P3 , P4) and (P3 , P4) .

However, if the system for a certain period does not radiate, i . e . for
c o = co = 0, then both Pi and P2 are constant in time . Further, we have the n

f(û, O) = 0 and Mo = 0, i .e . Ff = M(0) is independent of û, and in this
case we get from (7 .14), (7 .15) and (7 .10)

P3 =
2 Ç

M (0) [sinh v + cosh v cos 0] sin B dO = P3 cosh v - P4 sinh v

o

P4 = -
9 SM()osh v + sinh v cos 6] sin 0 d6 = P4 cosh v - P3 sinh v .

o
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Thus, for a non-radiative system, the quantities Pi transform as the co-
variant components of a free 4-vector under the asymptotic Lorentz trans-
formations considered, i .e . under the K-transformations (7 .2), (7 .3) .

This result is easily seen to hold for arbitrary asymptotic Lorentz trans -
formations . To prove this statement we only need to show that co = 0 implie s

Tik = 0 4 for r 00 ,

	

(7 .17 )

for, according to a well-known argument (see f . inst . reference 8), the 4 -
vector character of Pi is an immediate consequence of (2 .3) and (7 .17) .
Now, with co = 0, (3 .7) and (4.19) give

(aik )o = 0

	

(7.18)

and (4.24), (4.29)
1

h (a) k, a = 2 (IIak)o u a + 0 2 = 0 2 .

Further, by (4 .32), (4.33), (4 .36) ,

ldika, Yika, Øk, 11ikaJ = 0 2

and, since

	

and tik are homogeneous quadratic expressions in thes e
quantities,

2=04
Tik= tik= 0 4 ,

i .e . (7 .17) .

From (7.11) and (7 .16) it follows that

Pi Pk = Pi Pk = - m 02

is an invariant, and we may assume that this quantity is negative so tha t

we can define a real total rest mass mo of the system by (7 .22) . Then it is
always possible by a suitable K-transformation to make r', - 0, and in this
`rest system' we have

(7 .19)

(7 .20)

7 .21 )

(7 .22)

H =rno . (7 .23)

For a radiative system we have seen that the total momentum an d
energy Pi does not transform in a simple way under the transformation s
(7 .2), (7 .7) and the same holds generally also for the gravitational energy

and momentum radiated in a given time interval. However, if the radia-

tion is going on a certain finite : time only, so that co (u, 0) is different from
zero in a time interval ui K u K u2 but zero outside this interval, it is easily
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seen that the total gravitational four-momentum p i emitted during th e
radiation period must again be a 4-vector under asymptotic Lorentz trans -
formations . This follows at once from the law of conservation of energy

and momentum which yields

Pi= pzi)_pp) (7.24)

where pi(1) and Pi (2) are the total four-momentum of the system before and
after the radiation period, respectively . Since Pi (l) and 12(2) are then 4 -

vectors the same holds of course for pi .
An explicit expression for the gravitational four-momentum pi is obtaine d

by integrating (5 .25) over the radiation period, i .e .

u :

	

at

	

ua

	

0.r

pi = {O,0,

	

duco (u, 0)2 cos Osin0d0, _SduSco@,
6)2 sinOdO

	

(7 .25)

u,

	

0

	

2L,

	

o

with an analogous expression for p i in the system S .
The 4-vector character of pi is easily demonstrated directly by intro-

ducing the new variables of integration ü, XO obtained from (7 .2), (7 .4) by
neglecting terms of the type 0 1 , i . e .

û

	

sin -0
usin0

K

	

=	
K

The corresponding Jacobian is, on account of (7 .26) and (7 .13) ,

1 ûK'

K K2

00 a o

ad a é

Thus, using (7 .9) and (7.25) ,

p4

	

SSco2sin0
dudO = - Kco 2 sinBda

= p4 cosh v-p3 sinh r .
Similarly,

	

P3 = 153 cosh v -P4 sinh v

P1=Pi =0, P2 = P =0 .
Mat .Fys .Medd .Dau .Vid .SeLsk . 34, no . 3 .

(7.26)

au a u
Oa åé

0
1

K

1
K2 .
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The emitted gravitational energy

h= -p4 =~co(u, 0) 2 sin0dudO

	

(7 .30 )

is always positive, and from (7 .25) we see that

Hence,
P42 > P32 .

97
xk

Pi Pk - P32
- p4 2

(7 .31)

(7 .32)

with a real value for the `rest mass' ,a of the gravitational radiation . As
far as energy and momentum are concerned, the loss in these quantities during
the radiation period is exactly as if the system had emitted a . particle of rest
mass lu with the velocity

< 1

	

(7 .33)

in the direction of the symmetry axis .
Although Pi in general is not exactly a 4-vector, this will be true with

very good approximation in all practical cases . From the approximate ex -
pression (4 .49) for c one can see that co for all systems in nature is an ex-
tremely small quantity, so that we hav e

û co ~( 11

	

(7 .34 )

for a large interval of û . According to (5 .25) and (7 .9a) this means that
Pi is only a slowly varying function of time and that the function fin (7 .14) ,
(7 .15) can be neglected . Further we get by a Taylor expansion in CI- u =
u(K-1), and by means of the first equation (3.7) and (3.8) written in the
system S,

MO, 0) = DI (u, 0) +Mo (u, 0) (û - u)

= 111(u, 0) + 0 (ûc 0 )

so that we can neglect the last term on account of (7 .34). Then, the equations
(7 .14) and (7 .15) are reduced to (7 .16) with 0 = u in Pi (û) on the right -
and side of (7 .16). This means that Pi(u) transforms approximately as a

4-vector under asymptotic Lorentz transformations .

P3
P4

m=
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S. Approximate Plane Waves Emitted by a Distant Matter Syste m

In this section we consider the gravitational radiation in a spatial

region V of linear dimensions 1 at a large distance R from the matter system
so that

1 << R (8 .1 )

and that V lies entirely in the wave zone defined by the relations (5 .26)-

(5 .30) . Then, it is easily seen that the solution (4 .18)-(4 .20) of Einstein' s
field equations inside V has the form of a weak field expansio n

(1)

	

(2 )

gik = nik,+ yik -I- yik +	 (8.2)

(1 )
where the first approximation yi . represents a plane wave . Let us in partic-
ular consider the case where the region V is lying around the point x = R ,
y = z = 0 on the positive x-axis . Then it is convenient to introduce ne w

coordinates

(x" ) _ {x, y, z, t} ,

x =x+R,y=g,z=z,t= t

so that inside V

(8 .4)

r= l/(R +x)2+ g'-I-z =R++0 1 ,

	

(8 .5)

where On throughout this section means a term which is small of the n'th
order. Further, if we put

(8 .6)
we have

u=t r = û -R+01

cos O = r=R +02 =0 1 , sin0 =1+02

sin (p
rsn0-01,

cos q) =1+02 .

Therefore, the quantities defined by (4 .7) are of the form

S (8 .7)

4*
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(ni , jn i , l i , } _ {iii , , li, hi} + 0 1

	

(8 .8 )

with
0,

	

0, 0}?ji ={ 1 ,

in t ={ 0, 0, -1, 0}
(8.9)

li ={ 0, 1,

	

0, 0}

4i ={ - 1, 0,

	

0, 1}=-ni .

The quantities (8 .9) are constants which obviously satisfy the saine rela-

tions (4 .9), (4.12) as the quantities (4 .7) .

On account of (8 .7) the functions c(u, 0), M(u, 0), c2 (u, 0) occurring

in the expression (4.20) for
aik

have the following form inside V :

{c (u, 0), 111(u, 0), c2 (u, 0)} =

{c(û -R ,

	

M(û - R, 2 1, c2 (û- R, 21 } +O l .

The quantities inside the curly brackets on the right-hand side of (8 .10)
are functions of û, which we denote by RE (a), RM(û), Rc2 (u), respectively .

Then, inside V the quantity
yik

in (4 .18) takes the form

(8 .10)

(1)

gik = gik +0 2 ,

where
(8 .11 )

(yik
= 2 c (u) @T-l i Ink -

	

+ 2117 (u) f!-i ,Uk + C2 (u) (mi ,~.r,k + N ril k ) (8 .12)

is a function of û = t only and therefore represents a plane wave travel -

ling in the direction of the positive Y-axis . On the other hand, the term 0 2

in (8 .11) depends on x, ', z besides on û and, since this term is of the sam e

order as zik in (4.18), we see that already the term of the second order (y)i k

in (8.2) is not a pure plane wave .

Inside V the tetrad field (4 .29) is of the form

1 (1 )
h (a)i = ylai + :72- yai+ 02 .

Further, in the same region we get from (4.37) and (4 .48)

(8 .13)

2c'(û) 2
(8.14)Tii ~7c + 0 3
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2c' (û)2_ _

a!, = k -	 - l~i k -ho, ,

where the prime means derivation with respect to d, i . e .

dc (û)

e (u)

	

dû

Thus, in the system of coordinates (xi), Einstein's expression Oi k and the
complex Ti k give identical results if we neglect all terms of order 0 3 . The
first order metric tenso r

gik -

	

gik (8 .17 )

is a solution of the linearized field equations and it has the form

1+2M

	

0

	

c

/

	

0

	

1-2c

	

0

-2111

0 igik - (8.18)
c2

	

0

	

1+2 c
\ -2M

	

0

	

-c~

c 2

-1+21V1 . i

To the same order of magnitude we have

(8.19)~ik =

	

ik - gik

which satisfies the de Donder condition

(8.20)Øik , k = 0

in accordance with the equation (4.28). This latter equation also shows tha t
the de Donder condition is not satisfied in higher approximation . Introduc-
tion of the approximate metric tensor (8 .17) into the expression (2 .10) for
Z~ik gives of course just the formula (8 .15). This is the usual procedure b y
which the energy flux in a weak plane gravitational wave has been calcu-
lated on the basis of Einstein's theory (13) and, on account of the accordanc e
between Dik and Ti" expressed in (8 .14) and (8 .15), this procedure seem s
to be justified .

However, it should be noted that the accordance between Di k and Ti'
holds in special coordinates only, and if we base our calculations on th e
complex Di k it is in general not easy to decide in which systems of coordi -

(8 .15)

(8 .16)
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nates this expression is valid . To illustrate this point let us again for a
moment consider the case of a completely empty space, where we can us e

Lorentzian coordinates (Xi ) with the metric tensor 7Îåk In these coordinates th e

quantity 99îk in (2 .10) is zero . By an infinitesimal coordinate transformatio n

Xå =xå -i- i (x),

	

(8 .21 )

where the i (x) are arbitrary functions of (x i) which are small of the first

order, we obtain for the metric tensor gik in the new system of coordinate s

an expression of the type (8 .2) with the first order term

(1)
Yåk

=
~å, k + $k, å (8.22)

.$1: =

	

e. (8.23)

Then, a simple calculation shows that the quantity dik in (2.10) correspond -

ing to the metric tensor gik in general is different from zero, i . e .

z9,åk ~0 . (8 .24)

As shown in the Appendix (A.23)-(A.36), this arbitrariness in the value of

Einstein's energy-momentum complex cannot be removed simply by re-

quiring that we should use only harmonic systems of coordinates wher e
the de Donder condition is satisfied . It is true that 79î k is equal to zero i n

all such systems (x i ) for which the quantities Si in (8 .21) are functions of

x4 - x1 only, and this might indicate that Einstein's expression can be applie d

safely to those solutions of the field equations in empty space which ar c

first order plane waves . On the other hand, the fact that a simple trans -

formation of coordinates in a flat space may create a 19 i k of the same order

of magnitude as a `real' gravitational field makes one feel uneasy in applyin g

Einstein's expression in general .
The just mentioned difficulty does not arise with the complex Ti k , for

in a completely empty space we have in all systems of coordinates exactl y

Tik = ti k = 0

	

(8.25)

on account of the condition (2 .60) imposed in this case . For a weak gravita-

tional field of the type (8 .18) we have then also to require that J deviate s

from the values (2 .64) or (2.65), valid in a completely empty space, by a
quantity which is small of the first order . This requirement is of course

satisfied by the expression (8 .13) which is symmetrical in a and i . If we
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introduce this tetrad field into the expression (2 .31) for tik we get of cours e

just the formula (8 .14) . Now, the proof in section 6 for the invariance o f

Ti ' under tetrad rotations of the type (6 .4)-(6 .7) leads to the result tha t

Ti ' = ti k inside V is unchanged under all rotations of the tetrads (8 .13)

with coefficients D(ab) of the form

Q(ab) = ?lab + CT) ab (ü),

	

(8 .26)

where the quantity w ab (û) is any function of û = t - x which is small of
the first order and antisymmetric in the indices a and b . The invarianc e

of the second order expression for tik under such rotations is shown ex -
plicitly in the Appendix (A.37)-(A.45) . A finite rotation with constant co-

(o )
efficients S2 (ab) will of course also leave Tik unchanged .

An infinitesimal coordinate transformation (T i) -(x'i ) of the typ e

x'i = Ti

	

(1)

changes the complex Ti k given by (8 .14) into

(1 )
T'

i
k = Tk_ r

	

.r
kn.

z

	

i, n

Here, in using (2 .34), we have neglected all terms of order 03 and

(1)

21Y ~
I(~rn

~
' ft k ( (grk l ' P

nl

(8 .27)

(8.28)

(8 .29)

is the first order expression of the superpotential (2 .30) corresponding to
the tetrads (8 .13). If

	

= `(û) is a function of ü = t -T only, we have

and, since
e', i, n - W) " f"ti l""n (8 .30)

we have in this case
fn ll rkn =0, (8 .31)

T'i k = Tik . (8.32)

Thus, to the second order the energy-momentum complex is unchange d
under infinitesimal coordinate transformations where is a function of ü
only. By a transformation of this type the metric (8 .18) can be brought
into one of its two standard forms (i3 ) . If we choose Ei of the form

+ Ø (u) m i, (8.33)



56

	

Nr . 3

where x and 0 are functions of û only, we have

= x ' (~) Î ai Fk + Ø' (u)

	

Pk .

	

(8.34)

Then, we get for the metric tensor in the new syste m

0- )
gik = gik +
(1)

	

( 1 )
gik gik - ~i,

	

= 2 c(Ini mk li lk )

+ 2 (M- x') Pi Pk + (c 2 - Ø ' )(nli ak + I72 IcFai) •

x (û) _ 1VII (û) dîa ,

	

(a) _ c2 (û) dû

	

(8.36)

(8.35 )

With

this gives
( i)
gik = 2 c (rni riI k - li Ik ) (8.37 )

or
0

	

0

	

0
\

1-2c

	

0

	

0

0

	

1+2e

	

0

o

	

o

	

-

0
gik =

Thus, the new system of coordinates is a `rectangular' system and since

(8 .39)

(8 .40)

On account of (8 .32), the energy-momentum complex T'ik in this system is

also given by (8 .14) .

The components of the tetrads (8.13) in the system (x'i ) are

,

	

dxk

	

1yi

	

1 c l ) ~
h (a) e

	

a x, i h (a) k - ( åkz -

	

e)
ak

	

Jak

_ 1 7ai + c (mami- Tali) +2 2 (ua ril i - Ina P) ,

an expression which is not symmetrical in a and i . By a rotation of th e

tetrads of the form (8 .26), which leaves Tik unchanged, we get

u' f' - x ' = l- x - (x- x) = l-x = az

we have
=c(ai)=c(u') .

(8.41 )

1a~a) i = (ea -I- CJa b (al)) h (b) i = 11 a) i + 6ai (u) • (8 .42)
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Thus, if we choose

/a)
\

a' a6 (

h (a)i takes the form

! _

2 C 2 (u) (l~a m_ - m a ;fib) -- COba (8 .43)

1 (1 )
-h(a)i = Tai+C (rilarm - Ta li) = 17ai +

2
t'ai , (8.44)

i . e . also in the rectangular system the tetrads can be chosen symmetrical i n

the tetrad- and vector indices .

Finally, a spatial rotation about the x'l-axis through the angle n/4 leads

to a system of coordinates (x" i) in which the metric has the other standar d

form (13) :

(1 )

gik - gik + gik
„

>

where

(8 .45)

( )CJ n
23 (1), 32 = 2

	

(8 .46)

and all the other components are zero . If we perform the same constant rota-

tion of the tetrads 1 a) > which leaves Ti' unchanged, we see that also i n

this system the tetrads can be chosen symmetrical in a and i, i .e . for the

rotated tetrads we have
„

	

1 (1 ;
h

,
(a)i -17ai + Yai (8 .47)

Let us now consider a sandwich wave, where c ' (û) = 0 outside an in-

terval û 1 < uz < [12 . The momentum and energy per unit area in the (g, z) -

plane of the system ( i ) is then, in virtue of (8.14) and (8 .9) ,

4L ~

Pi = ti4 dx = 2 F{i J ((')2 dui ,
x

	

(8.48)

û ,

2L

"

	

2

(

Gz

Pi = ~ c' (g) 2 dui, 0, 0, - 2 c ' (ui) 2 duz .

	

(8 .49 )

It is also clear that p i transforms as a 4-vector under Lorentz transforma-

tions
-k (8.50)
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for, according to (2 .34), T ik transforms as a tensor under such transforma-

tions . Let us briefly consider a special Lorentz transformation in the direc-
tion of the X-axis, i . e .

Then,

and

with

Thus,

or

= .x ' cosh v +t ' sinh v

t= t' cosh v+x ' sinh v

ti_ = °~' ., -

ii = t - x ° (cosh v - sln]1 v) u '

u' t ' - x ' ,

T ik - ë' (u') 2pi' // I'

-k

	

1

	

-4

Lc i ax'i ,uk

	

ax , i + a = (cosh v-sinhv)

pi' = S Ti/4 dx' = Ti4dû = _2 (cosh v - sinh v) 2 µi
S

c (Z!) 2 du'
J

	

~1

_ - (cosh v sinh v) ? ~i ~ c' (û) 2 dtt ,

û ,

p l = pl cosh v +p4 sinh v, p2 = Pz ,

p3 = P3, p4 = pl sinh v +p4 cosh v

(8 .55 )

in accordance with the transformation law for a four-momentum vector .

We can now always combine the Lorentz transformations (8 .50) of th e
coordinates with the corresponding rotation of the tetrads, i . e .

(Oh

	

b
It (a) i = ~(a)

	

(b) i = u a n (b) i (8 .57)

which leaves the Ti k unchanged . Then it is clear that the components of
the rotated tetrads in the transformed system of coordinates are again give n

by
( 1 )

(a) i = .ai + 2 yik (8.58)

where gik is the first order term of the transformed metric tensor gik .
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As regards energy and momentum, the wave packet of gravitationa l
radiation with the four-momentum pi is quite analogous to a corresponding
electromagnetic wave . From (8 .49) we see that the invariant norm of th e
four-momentum is zero, i . e .

PiP = Pi P 'i = 0,

	

(8 .59)

which corresponds to a vanishing "rest mass " of the packet .

Appendix

We start by establishing a few relations needed in the following calcula-
tions . They are all consequences of the expressions (4.20) for aik and ßi k
and of the equations (4 .9)-(4 .11). First, we quote again the relations (4 .34) ,
(4.38), and some immediate consequences of these equations :

ai = o, aik ,uk = o, aik Ilk = ai 4

( aik) o ~k = 0, (aik)2

	

aik (Itk)2

	

IIIk ,

(aik)3
k = aik 003 = sin 6 aik Ik , (aik)0 (

aik)
0

= 8 co' .

Similarly, we have
aik a ik = 8 c2, (aik)o aik = 8 cc0

= 3 c2, (M)o = 6 cc o

C2

	

R
ß ik fik =

	

2
rVi , (ßik )0 ~Lk = - cco ,ui.

aik mk = 2 c mi +(c 2 + 2 c cot Ø) ,ui

aik Ik = - 2 cli .

By differentation of these equations with respect to Ø and q), respectively,
and by using (4.11) and (A.1), we obtain

(aik)2mk = a24+(c2-2ccot0)m1+(c22+2c2cot0- 22 ,u-2cni
sin 0

1 (aik) 3 Ik = ai 4 + cot 0 [4 c mi + (c2 + 2 c cot 8) dui] + 2 cn i .sin 6

Hence ,

Further,

i

(A .4)

(aryk)2
mk

+ sin 8
(aik)3 lk = 2 ai 4 + (c2 + 2 c cot 0) mi + A,ui
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with A given by (3 .8) . Further, since

ai4 = - 2M-(c 2 +2 c cot O) mi ,
this may be written

(aik )2 mk
+ sin 0

(aik)3
Ik =

	

+ (A - 2M) ,u' .

Now, we get from (4 .25), (A.1), and (A.6)

Nr . 3

(A.5)

(A .6)

U zk k

	

/aik

	

(a2k)0 it k=

	

L +
k

	

1

-ai4 -Fai4 +(A- 2 M),ui

(A - 2 M) u i

r2

(A.7)

and, therefore, by (4.27), (A.1), (A.2) ,

ik

	

(flik) 0 -(ai
r	 ar )o	 + cc0 Y]i k

gi', k -- (Y),k

	

2

	

+03
T

2M- A
_

	

~

	

~ LZ -I- O 3 ,
r ~

i . e . the equation (4.28) in the text.

We shall now calculate the tensor yki i and the vector Ø t for the tetrad
field (4 .29) up to terms of the second power in -1/r. From (4 .31) and (4 .29 )
we get

h r
(a )

Y7Si -

	

h (a) S, i - rr, Si

( (V. + 21
Ua)

2 [ gas, i + zas, i - 4 (1at Js), i
J
- 2 ( .9'rs, i + Sri, s gsi, r) + 03

t
= 2 gis, r gir, s -I- 4 (Urt Us, i Ur, i Ust)

l

J
+ 03 .

On account of (4 .25), (4 .26), this give s

Yrsi = Arsi - A sri + 0 3

(ais)o	 1

	

nn

	

i

	

I } (A. 9)
A rsi = 2 r ur + 2 r2

- a.is n r + (ais)2 Mr + (ais)3 l.r/sin 0 + (Nis)0

	

+ 4 art (as)o ,~i J JI
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Finally, by raising the two first indices by means of (4 .21) ,

kl

	

kr i s
Y i

-
g g Yrsi

	

/-
'
gkr

Tr

ls
Y'

s2 _
2
	 r2 (?Ikr als +

n
ls akr) f (a

is)0 rLt'r ( air)0 Ll s] + 0 3 •

Thus,

Y kl i = 21r [(ai)o
k

(ai`)o
l ]

+ 9r2{ -a
i nk+aiknl+ (ai l ) 2 n1k (ai k )2 m

l

+
1

s

	

[(a i l )3 lk (aik )3 Il]
+yk

[(Ni l ) o - (air) .
a lr]

in 8

[(ß )o - (air)o
akr]

+ 71 [ar
(arl)0 -

alr (ark )O] ui1 + 03 .

By contraction of this expression with respect to i and k, we get by mean s

of (A.1), (A.2), and (AM) for the vector Øl

~jl = Yili =
22 - al 4 + (ail)2 II1i -I-

sin 0 (ali)3 l i

- cco ,ti l - 6 cco + yl (ars)o
arsl, + 0 31

	

}

From this we see that

0 1 pi 0 3

	

(A.12)

Øk cci = 2r2 [A- 2111 + cc o ] ~. ck ,ui + 03 .

	

(A.13)

Further, from (A .10), by applying (A.1), (A .2), and (4 .9) ,

Ykh~ il _
2r2{

-ai azlnl m k +fll lk - k cco,ui } +0 3

or, using (A.3) ,

?Ali

	

2r

2 {(2 111 +
(= c0)

	

k + c+ 2 c cot 0) !nir<ti k} + O3•

	

(A. 14)lu l

	

l'li>U

	

( 2

(A .10)

(A.11)

_- [A- 2 M+ cc o ] ,al + 03 .
2 r 2

and
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Therefore, since li = e 2 ß = 1+ 02 , we get from (5 .8), (A .12)-(A.14) ,

u2kl ~l1

= 2 x
	 2.2 l( - 4 = A) p i p lc - (c2 -I- 2 c cot B) mi rLG k) + 03 ,

	

(A. 15 )

which is the formula (5 .9) in the text .

Our next task is to prove the formula (6 .24) for the quantity

To the order required we have, just as in (6 .16) ,

x likl
ll1 =

Zik
-2-1

Zll
8z + 03,

	

(A .16)

where now
Zik = Xkliml +Xlk1 ui .

	

(A.17)

From (6 .15) and (6 .20) we get for this quantity

zik = wkl

	

fGl -I_
wlk

	

+
[ wrk

(wr)0 +
wr1

(wrk)o]
mi

iril l

1 (A.18)
Jk

(wrl
+ wlr)0lli,ai + 0 3 .

Here, the last term but one is also of the order of 03 on account of (6 .9)

and, by means of (6 .10), we get

Zik = (w k1 + wlk + cork wr i ) o /tai l

+ (CUkI)1 ni Yi + (wlk)1 n l l.li

+ r [ (
wkl )2

lnarlll
+

(a)')2 ml Fl i ~

1

+ r sin 0 [(wkl)31i,a1 + ((o lk ) 3 11 dui) + 03 .

The first term in this expression is zero on account of (6 .7), and in th e

remaining terms toll can be treated as antisymmetric in k and 1 in virtue

of (6. 9) . Finally, since j = S4 - n i , we get

ZZk = (wk 4) 1 ni +
T.

(w k 4)2 mi
+ r sin 0

(wk
4)3 li

+ [(wlk)1 n1
+r

(w1h)2 ml
+ r sin O (w1k)3 1l ,

+
1 (wk)2

(niml - mi nl) + r sin 0 (0k1)3 (ni 11 - li nt) + 03

xYi 41 ,t1
1 •

(A.19)



and

~zkk _ (W l 4)1 nl
I r

(w")2 m i +	 T
S111 B (

OJ14 )3 I l

+ c- (w )2 (Ilxm l Ina lk %, )

+ 2r	 sin
e

(wxR)3 (nx I,t - Ix n .a) + 03 .

Hence,

=7i4 - 2 7k kb4

= (0)4 21)2 (ni In~ - lni nl) + r sin 8 `0)
4

21 )3 (n i I).- li n A)

xl

	

~~xd[(Cl)
2 r (

)2,
nY

m~ -
nix

n~)
+~ r si )3B (nx I). - Ixn 7~) + 08 ,

which is the formula (6 .24) in the text .

Next, we shall calculate the complex 19 i k created in a completely empt y
space by the infinitesimal transformation (8 .21) . Since

axi

axk = ~k

we get for the matrix tensor gik to the first order

axl axmgak

- axi axk
ilm = l%i

Ø lk = i ik

with

$z
_

	

ek,

	

i
1c =

?
kl 4.4

,l •

To the same order we have

rkl -
2r

(grk, l + grl, k gkl, r)

	

, k, l

.

	

ri

	

(A.26 )

lm

	

r ,

4 l
Yi Pl

(A.21 )

(A.22)

(A.23)

(A.24 )
T ~i k + ~k i

(A.25 )

Further, since

we get
/ -g=1 +

(V
gglm

	

7)
lmr

,r,

	

em, l

(A.27 )

(A.28)
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Thus, the Einstein Lagrangian (2 .8) is to the second orde r

'2E _ ~ r

	

q

	

,

	

St' s,
,.

,r,s

	

rs, t
with q

	

ei , k
,k

(A.29)

(A.30)

and for Einstein's energy-momentum complex (2 .10) we get to the same

order

• k =
1

9i

	

r

	

q Ek _2 k

	

k2x{ ,r,i

	

5

	

,l,nz

	

i

	

5 ,~

	

5 s,i

	

111

cc~~

	

(A.31 )

+(e' m + m,k i )

	

2r

	

E}ß x,

	

,,nz

which in general does not vanish . Even if we require that the new system

should be harmonic, we have in general Pik O . From (A.28) we see that

the new system is harmonic if

(1/- g gik) k = - q = 0,

	

(A .32)

which only will make the first terms in (A.29) and (A.31) disappear .

On the other hand, if

	

(u) is a function of u = x4 - x i only, so that
the metric tensor (A .24) has the form of a plane wave, we hav e

k,

	

( ) TkNil

where Nik are the quantities defined by (8 .9) for which

fik'uk = 0 .

in. this case, we get at once from (A .29)-(A.34 )

(1/- g gxk ), k = - q = 0,

	

= 0

	

(A. 35)

and

	

=
~1

	

~

	

û

	

„ _k

	

~,. „
Pr

	

ll = 0 .x

	

(P)" N r ii (P)" s ~i + (~
m

) Hi Fii ( ) ~ P.}

	

(A - 36)

Finally, we shall show that a rotation of the tetrads (8.13) with coeffici-
ents 2(ab) of the type (8 .26) does not change the value (8 .14) of the complex

tik defined by (2 .31) . To the first order, the rotated tetrads are

(b)

	

1 (1 )
h(a) i = Q(a) h (b) i = 17ai + Jai +

_

~ai •

(A.33)

(A.34)

(A.37)
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Since both (yai and (iati are functions of û = t - only, we get to the same
order

'Pik(

	

li î a) h (a) k: =
1 ( 1 )

	

( 1 ) _

	

_ _

9 Yid /

	

2 Uil l u k + w ik 7i (A.38)

Here,

	

are the constant numbers defined by (8 .9), and the prime means
differentiation with respect to û . Similarly, we ge t

4 '7,1 = h(a) ~ h ( a ) k, l-
L
~y+ a' -2 k

	

k lul

	

A. 3 9('

	

)
0k°Y 2ki° [w 'kfu i] .

where we have used the relations

(1)

	

(1 )

gik :1k=0,

	

ui = 0

	

(A.40)
following from (8 .12) .

By means of these expressions we can now calculate the Lagrangia n
(2 .29) corresponding to the rotated tetrads to the second order, which give s

YiklY
lki_Øk 4j k

(1)

	

(1)

	

1 %i i

	

1 (1åi Fk

	

lk -i
_ [2 UN Pi 2 Uil Ik + ~~lk PI] {2 J Fi - 2 U

	

+ c~ F~ ]

	

(A.41 )

- [wik

	

[wlk
Fl l] '

(wik)' (wlk) ui
r ul - (wik)'

(wlk)'
7i F11 = O .

Similarly, by means of (2 .31) ,

- Ÿ km l jlmi
Øl Qk

li +dlli Øk

(l) rz -k

	

1(lk -m

	

km

	

11I'

[1 (l) l- [2 VI u -
) ill FG + CU

	

ua,
2

yfn +
(T)lm]

I ~i

L yt - ,

	

(

lk

	

k ll

	

F-1
(l) l

	

sk - ,

	

- [cu ,ur[ 2 Yl + t
J

~i +

	

iJl + w 1, Pi [ w Nlrl

	

(A. 42 )

1 ( (1) )((lim

	

(

	

(l lm '

	

k
- ~4 ~ ~

+ 2 ~
)

(wlm)
l

Ti iu

+ @751 1Y (vk) ' Pi P,

Here we have again used the relations (A .40) . Finally, we shall make us e
of the fact that w lm is antisymmetrical in l and rn, i . e .

Mat .Fys.Medd.Dan,v id .Selsk . 34, no. 3 .
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w am =

	

w ma ,

	

wa i = 0 , (A.43)

(1)

while a~am is symmetrical . Therefore, sinc e

((1)

	

(1)

	

'

usm,J 1 ?dam l = 8 c (0 2 ,
we get for the complex ti k

(A. 44)

f'i k = 2 c (u) 2 ri ftik = ti k , (A.45)

which completes the proof of the invariance of the energy-momentu m

complex under the rotations of the type (8.26) .
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