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Synopsis

The paper describes a theoretical approach Lo the problems of directional effects for ener-
getic charged particles moving through solids. Introductory comments on some aspects of di-
rectional effects are given in § 1. The fundamental approximations of the description are stated
in § 2, and the associated simple concept of a string of atoms is introduced. A transverse conti-
nuum potential is a natural consequence of the basic approximations. The limit of applicability
of continuum polentials is given by a critical angle. At high particle energies the critical angle
is of an especially simple type. The critical angle separates particles hehaving essenlially as
in a random substance from particles which do not come close to c.g. strings, with correspond-
ing strong reduction of most physical processes. A number of examples are discussed, and critical
angles belonging to alomic planes, strings, and pairs are compared. Characteristic features of a
quantal treatment are briefly sketched.

§ 3 treats basic statistical estimates in calculations of directional effects. As a function of
transverse energy, E,|, the slowing-down is calculated for electronic and nuclear collisions.
Multiple scattering, i.e. laclk of conservation of transverse energy, is studied in § 4. The normal
multiple scattering, duc to nuclear collisions, is strongly reduced for low values of E,.

The rate of physical processes depends on the external angle between a beam and a crystal.
In § 5 it is found that in simple cases the average of such rates over direction gives the same
result as in a random system. Similar rules hold for spatial averages.

In §6 experiments on directional effects are discussed from a theoretical point of view.
The main effects to be talken into account are summarized. The order of magnitude of dip minima
is eslimated. The possibilities are discussed of using as an experimental tool the shadow be-
longing to e.g. strings. A few commenls are made on recent experiments connecled with string
cffects.

A more detailed investigation of classical defleclions by lattice atoms, and the limils of
validity of eontinuum potentials, is given in Appendix A, where also critical angles of particle
emission from perfect strings are estimated. In Appendix B quantal corrections to the classical
descriplion are studied, and it is found thal—in contrast to the familiar case of single collisions—
the corrections are small at high velocities,
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§ 1. Introduction

Measurements of range distributions and energy loss in single crystals
have revealed direclional effects, both for slow, heavy ionsD and, more
recently, for protons?. The first indications of directional effects for slow
charged particles seem to be in observations on spuitering®. Further indi-
cations were found in digital computer studies® of simplified models of
penetration through lattices at extremely low parlicle energies.

.The purpose of the present paper is to show that a comprehensive
theoretical analysis may be made of directional effects in penetration of
charged particles through crystal lattices. This analysis leads to conditions
for the occurrence of a peculiar effect, described as atomic string effect.
The corresponding siring approximation is a well-defined approximation
procedure by means of which primary and secondary directional effects
can be treated. It then turns out that directional phenomena provide an
interesting tool for solid state investigations, mainly because lattice points
can be distinguished by means of a shadow effect. The theoretical results
were summarized briefly in a recent note®, and experiments were started
along these lines?.

At this point may be mentioned the well-known fact that, as a conse-
quence of lattice periodicity, interference patterns of waves can be ohserved
for both electromagnetic radiations and massive particles of not too short
wave length. However, directional effects of that kind are not the subject
of the present discussion, where mainly shadow phenomena are treated,
with classical mechanics as a starting-point. Usually, the wave lengths of
incoming particles are required to be exceedingly small and incoherence
prevails, so that interference patterns are absent.

The basic case of the present approximation method is the case of
high particle momenta, The classical orbital description of directional ef-
fects, as used in the following, is simple in this limit. In this connection it
is also important that the classical approximation in directional phenomena
turns out to be the better the higher the particle momentum, in contrast to
most collision problems, where quantum mechanics takes over at high
energies.

1%
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In the following chapters it is merely intended to present the general
theoretical framework, with emphasis on a few basic phenomena and sup-
plemented by a number of examples which can elucidate crucial problems.
Several aspects, like quantal effects and thermal vibrations, are treated
only in a cursory manner and need further study. Other problems, like the
details of slowing-down, are not treated fully, because they are of secondary
importance to the crucial questions discussed here.

The present chapter contains comments on some aspects of directional
effects. A few facts are mentioned concerning slowing-down of charged
particles,

Random systems

Although the spatial structure of a medium must have some influence
on slowing-down and scattering of charged particles, the effect is normally
disregarded. Several approximations are contained in a disregard of struc-
ture. They may be characterized by three mutually connected assumptions:
homogeneity, isotropy, and randomness of the medium. The first two as-
sumptions are often contained in the last one. An anisotropy due to lattice
structure can thus result from some kind of correlation between collisions.

Suppose, that a penetrating particle has a certain dilferential cross section
for scattering by single atoms, that its collisions with atoms of the medium
are separable and independent, and finally, that the atoms are randomly
distributed in space, with random orientation. Obviously, the slowing-down
process is then independent of direction; the probability distribution in
energy loss and scattering angle depends only on the mass per cm? pene-
trated, and is to be computed in a familiar way from single collisions. This
is essenlially a gas picture, and may be called a random system—implying
homogeneity, isolropy, and random collisions. However, it is important to
realize that the approximation of a random system is not confined to ran-
domly distributed atoms or molecules, but may also be applied to media
with lattice structure. As an example, one would a priori expect that a
polycrystalline substance in many respects can be regarded as a random
system.

Governed and ungoverned motion

A single crystal is a typical example of a medium in which directional
elfects in stopping might appear, due to both inhomogeneity, anisotropy and
lack of randomness. We may classify directional effects for charged particles
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moving through single crystals, or other media, by two labels: 1) un-
governed motion, and 2) governed motion. By ungoverned motion is meant
the approximation where the path of the particle may be assumed to be
essentially unaffected by the structure of the substance. Governed motion
means that the path deviates definitely from that in a random system, be-
cause the path is determined by the structure of the medium. Ungoverned
motion will be found to show merely fluctuations in physical effects due to
correlations, whereas governed motion leads to more fundamental changes
in physical processes.

In both categories of directional effects we may further distinguish be-
tween those cases where a) both direction and position of path are involved,
and those where b) only direction is involved.

Direction and position

If a particle can be assumed to move classically along a straight line
through a thin single crystal, the direction of the line of motion is important,
as well as its position in the lattice (dependence on position indicates in-
homogeneity, on direction: anisotropy). Thus, assume that the path is
parallel to a major axis in the lattice. IT then it is in between the atoms,
there is a reduction of all those physical effects which require a close col-
lision between particle and atom. If the particle is very close to atomic
positions there is an increase in these effects.

Now, on the one hand, one can hardly hit e.g. only the space between
atoms in a lattice, since a beam of projectiles will be spread over a large
arvea, and thus one fraction of the beam may pass between atoms, while
another fraction passes close to atoms. On the other hand, the impinging
beam can be rather well collimated in direction, and thus a fraction of
projectiles moving in straight lines might conceivably keep away from atoms
for considerable distances of penetration.

As an example, consider the energy losses suffered by a beam of par-
ticles moving through a thin crystal film, where the energy loss remains
small compared to the particle energy. The energy loss by a particle to an
atom may be assumed to be a function of the impact parameter only. How-
ever, if the particles have ungoverned motion, the average energy loss (but
not the fluctuations) remains the same as in a random system. This result
is evident, since the particle beam consists of parallel randomly distributed
paths. An average of energy losses over randomly distributed parallel paths
must give the same result as an average over randomly distributed atoms.
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In the case of governed motion, the paths do not remain independent of the
lattice, and the average energy loss is expected to deviate from that of a
random syslem. In the following, we are interested in possible occurrence
of governed motion in a lattice, where effects depend on both direction and
position of particle path, and where e.g. averages over external position of
the path are not in conformity with results for random systems.

Direction only

For comparison, we briefly consider effects concerned with direction
only, i.e. not associated with position in space of the particle path. Such
purely directional effects may be divided in two.

The first case can be indicated by an example. Suppose that the medium
is a homogeneous plasma in a constant external magnetic field parallel to
the z-axis. The energy dissipation by a particle is then independent of its
localization in space, but depends on the angle between the direction of
motion and the z-axis. This directional effect is a property of the medium,
and subsists even though the particle moves approximately along a straight
line.

The second case occurs e.g. for wave interference patterns due to lattice
periodicity. Such effects require an extended wave, in sharp contrast to a
classical localization of the particle within the lattice. As mentioned pre-
viously, we shall not here treat wave interference.

Channelling

The concept of channelling was introduced in recent papers on pene-
tration in crystals, at first for slow ions? 1) and later for swift protons. By
channelling is meant that a particle path near the centre of channels along
a major axis in a crystal may have a cerlain stability. Particles moving
along channels are subject to periodic forces, mainly focusing and occasion-
ally defocusing. If the forces are of harmonic type and the focusing force
is preponderant, this leads to a familiar solution of the equations of motion.
The transverse motion in a channel is roughly a long-wave oscillation, com-
bined with a short-wave vibration with the lattice period. The long-wave
motion has a constant amplitude and wave-length v/w, where o is the pe-
riod of average transverse harmonic oscillation and v the particle velocity.
If the amplitude is large, the oscillation no longer remains harmonic. Any
kind of oscillation within a channel we describe as proper channelling. A
theoretical treatment of channelling is given by LEamMaNN and LEIBFRIED®
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in a special case. Studies of individual paths at low energies by means of
digital computers were performed by RosiNson and Orn%, and by others.

It is worth while to indicate in a qualitative way the possible occurrence
of channelling and its relation to other phenomena. Suppose that a particle
moves along the centre line of a channel, with oscillations about the centre
line. If the energy of oscillation exceeds the barrier to a neighbouring channel,
the particle escapes readily from the channel. We can roughly estimate
the barrier for such escape either from the harmonic force in the centre of
the channel, or from direct estimates at the channel border line. We intro-
duce a barrier energy for channels, E,, presumably of order of 5eV for
protons, and depending on Z; and on the medium. Let y be the angle be-
tween particle motion and channel direction when the particle is at the
channel axis. If the energy in the transverse motion, Esin®y, is larger than
E,, the ion can escape from the channel; we need not discuss details as to
the probability of escape. Thus, we find a critical angle

Ec 1/2
e = -E 3 (11)

\

where E is the energy of the particle. Only if the incident ion both has an
angle less than o, with the channel axis and also starts close to the channel
axis, can its escape from the channel be disregarded and proper channelling
take place. This corresponds to a solid angle for proper channelling,

E
Q, ~ nEc ) (1.2)

Within this solid angle, channelling can occur with a finite probability. In
a wide channel, where the atoms in the walls are relatively closely packed,
the energy E,—and thus the solid angle £,—is expected to be larger than
in a narrow channel.

One consequence of (1.1) and (1.2) is that the crilical angle depends
strongly on the energy of the particle, while its charge and mass do not ap-
pear directly in the formula. Still, the barrier E, depends somewhat on the
atomic numbers Z; and Z,, and changes with lattice direction.

Already the above cursory considerations indicate that at high particle
energies the probability of channelling is negligible. At low energies the
probability becomes larger, although some effects have a disturbing influence
(cf. e.g. (A.13)). However, the probability of remaining in one channel is
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not of much physical importance, except for a special group of phenomena.
In the following chapters we arrive at a more complete picture of the phe-
nomena at high and low particle energies.

Electronic and nuclear stopping

There are two sources of energy loss by a charged particle!?. Electronic
stopping is due to electronic collisions, where the particle excites or ejects
atomic electrons, with loss of energy. The corresponding momentum transfer
is small because electrons are light particles. Nuclear stopping arises from
nearly elastic collisions with atoms, with transfer of both energy and mo-
mentum. Deflections of a particle are thus due to nuclear collisions, where
large forces and heavy masses are involved. This simple fact is of signi-
ficance in problems of directional effects.

One may distinguish between several regions of velocity in normal un-
correlated slowing-down of a charged particle. First, at high particle velo-
cities, electronic stopping is completely dominating, and nuclear stopping is
~10? times smaller. This limiting case applies for protons, or heavier ions,
when v > v; = Z¥3y,, Z, being the atomic number of the particle, v ils
velocity, and v, = e*/h. A quantal perturbation treatment of the excitation
of the atomic system may then be applied (Bethe-Bloch treatment), the
stopping being proportional to Z7 and decreasing approximately as v to a
power belween —1 and —2. Second, at velocities v < p;, electronic stopping
can still remain dominating and is nearly proportional to velocity® 13).

Third, the slowing-down of heavy ions of low velocities is dominated
by nuclear stopping. In random systems, nuclear stopping can dominate
over the electron stopping when & < 10, where ¢ is a dimensionless measure
of energy, of Thomas-Fermi type®,

a B M, .
& = _—‘_r’vg—.-i; . (1:3)
2,7, M, + M,

In (1.3), the atomic number of the medium is Z3, the atomic screening
radius is @ = @,-0.8853-(Z}3 + Z3?) 12, and E = M;p*/2 is the energy of
the particle. The parameter ¢ is convenient in the description of nuclear
collisions.

The stopping of charged particles illustrates the necessity of distinguishing
between electronic and nuclear collisions, and between several velocity re-
gions. In the present context the actual stopping is not of primary impor-
tance, as discussed in § 2, but it remains a significant secondary phenomenon.
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§ 2. Foundations of Theory

In order to find the proper approximation procedure for the treatment
of directional effects, we must distinguish between primary and secondary
phenomena. The energy loss of a particle (e.g. slowing-down by electronic
collisions) is a secondary phenomenon, since it is determined by the path,
but does not by itself govern the path. The possible governing of the path
must be due to deflections of the particle in collisions with atoms, and thus
a deflection is a primary phenomenon. Because of this simple fact, we can
immediately introduce four basic assumptions®, leading to a consistent
approximation procedure for the treatment of possible governed motion of
parlicles.

First, the angles of scattering of the particle may be assumed to be
small. Not only does this usually hold for fast heavy particles, but scattering
by large angles would imply that the original direction is completely lost,
as well as correlations associated with the direction. The scattering of the
particle is due to nuclear collisions, where it interacts with the charge dis-
tribution of an atom as a whole, the collision being nearly elastic. If the
angles of scattering in the laboratory system, g, and in the centre-of-gravity
system, 6, are small, we find for an elastic collision,

M,sin® M,
= - @ =~
M, + Mycos® M, + M,

tge O, for p<1, O<1, (2.1)

where M, is the particle mass and M, the mass of the atom, initially al rest.
If we are interested in the motion of the particle only, we may find the cor-
rect scattering angle, p, from the potential between particle and atom,
calculating as if the atoms were infinitely heavy. In fact, the classical for-
mula for scattering at small angles is

O —
Mg = M® = —~— | dz— V()22 + p?), 2.17
@ =0 = g [ arp v 21

where p is the impact parameter and V(R) the potential between ion and
atom at distance R. For the present purpose, the accuracy of the Thomas-
Fermi potential between particle and atom is ample in most cases, and it
leads to a simple comprehensive description. If the potential far away
from an atom is needed, other estimates of potentials may be useful.
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Second, since a collision demands that the particle comes close to the
atom, strong correlations bhetween collisions occur if the particle moves at
a small angle with a row of atoms; if it passes close to one atom in the row,
it must also pass close to the neighbouring atoms in the same row. This
leads us to the concept of a string of atoms, characterized merely by the
constan! distance of separation, d, of atoms placed on a straight line. We
describe this as the perfect string. In first approximation, collisions occur
with one string at a time, string collisions being independent and uncor-
related. The physical importance of the string is emphasized by the fact
that practically all physical processes caused by the particle, or influencing
its path, demand that it comes close to the string. One exception is resonance
excitation of atomic electrons, which may take place many lattice dislances
away from the particle, if it has a high velocity. The simplicity of the string
approximation is partly due to the circumstance that the lattice structure
does not enter, the only lattice parameter being the distance d between atoms
in the string. Strings belonging to low index directions have a small value of
d, and are the most pronounced ones. Correlations weaker than those of
strings are expected for crystal planes, atomic pairs etc.

Third, classical orbital pictures may be used to a large extent. They may
be applied in locating the particle in the lattice, because the wave length 7,
is small. It is less obvious that classical orbital pictures may be used in
describing collisions with e.g. strings of aloms. In fact, since individual
collisions with atoms need quantal corrections either when the quantity
% = 2Z,Zye’[hv is not large compared to unity, or when the impact para-
meter is large, the classical approximation might seem to be doubtful in
several cases. However, contrary to such expeclations the classical descrip-
tion of many successive collisions with atoms in a string does not become
invalid at high velocities. The quantal corrections are discussed below, cf.
Appendix B.

Fourth, the idealized case of a perfect lattice, and a perfect string, may
be used as a first approximation. The most important deviations are vibra-
tions of strings, i.e. thermal and zero point vibrations. Again, some of the
effects of vibrations are reduced by successive collisions with many atoms
in a string.

On the basis of the above four assumptions it is possible to construclt,
step by step, a theory of directional effecls for energetic charged particles.
The discussion of correlations and small angle deflections has led to the
basic concept of a string of atoms. This concept is not to be considered as
a fixed model, but rather as a starting-point for an approximation procedure
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applicable to directional effects. In this sense there is an analogy to the
ideal gas as a starting-point for descriptions of real gases, or an ideal lattice
as a starting-point for solid state theory.

Transverse continuum potential of a string

In order to study the effect of correlated small angle deflections on the
motion of a particle, we may at first introduce the continuum string ap-
proximation. The basis of the continuum approximation is to assume that
many conseculive atoms contribute to the deflection of the orbit. Having
found the particle orbits in the continuum approximation, we may next
ascertain whether these orbits are actually determined by many collisions,
i.e. we can find a condition for validity of the continuum picture. A discus-
sion of the connection between continuum string and perfect string is given
in Appendix A, where the combined effect of successive classical collisions
is considered in some detail.

In the continuum approximation we introduce the average potential at
a distance r from the string, i.e.

+oc

dz re—
Ur) = f 7'-i-V([/zz +1%), (2.2)

—%0

where V(R) is the ion-atom potential and d the distance between atoms in
the string. Although U(r) is determined as an average potential belonging
to a string, it is of interest to notice that d- U’(p) determines the scattering
already in a single collision with an atom, according to (2.1%).

If R is not very much larger than a, the potential V(R) is essentially of
Thomas-Fermi type, and we may put

. ZZye? (R
V() - 2 2.3)
a

Here, a is the screeming length of the ion-atom interaction, equal to* a =
o~ 0.8853 - (7213 1 Z2BY 2 and go(R/a) is the Fermi function belonging to
one isolated atom® 9. It is seen from (2.2) that, as a general rule, the varia-
tion of U with 1/r is by one power less than the variation of V with 1/r.
When (2.3) holds, we can write U as

* In the following it is often implicitly understood that Z, « Z,, so that a is put equal
to a,-0.8853.Z,7153,
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UG - 2 26

- &(rfa), (2.4)

which formula is valid if the Thomas-Fermi type potential (2.3) applies.

A comparatively accurate estimate of &(r/a), at moderate values of r/a,
is given in ref. 10. For the present purpose we shall use somewhat simpler
estimales. In order to get qualitative insight in the behaviour of &, i.e. of U,
we note that ¢, ~ 1 for Rfa « 1, and according to (2.2) and (2.4) the
function £(r/a) must then increase logarithmically for small r, or

r Ca
5(—) ~ 2log— , for r<Ca, (2.5)
a r

where 2logC is a constant of integration, determined by the screening.
An approximation somewhat better than (2.5), and applicable for all values
of r, is given by the expression, in the following described as the standard

potential,
r Ca\?
f(;) - logKT) " 1]. (2.6)

According to (2.6), & ~ (Ca/r)® for r > Ca. Even though (2.6) decreases
rapidly for large r, it becomes less accurate when r » a. As a standard value
for € we shall use C = ]/3, which gives a fairly good over-all fit. The best
fit at small r/a would be obtained for a lower value of C, while large r/a
would require a slightly higher value. Besides such estimates of U(r) we
shall sometimes consider the important alomic region where R ~ a and
r ~ a, so that V behaves as ~ R, and &(r/a) becomes & ~ ma/2r. The ac-
curacy of the above approximations is indicated in reference 10.

The formula (2.6) corresponds to simple expressions for the density of
electrons, p(R), and for the atomic potential V(R) in (2.5), i.e.

o(R) = i v_gglf. (2.6")
PR+ (Ca®)® '
V(R) = Z,Z, o2 i, 1 1 (2.6
U R (R4 Q)2

The limitation of the standard atomic potential in (2.6) is clearly seen if
we attempt to compute the average of the atomic radius squared, R?. This
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quantity diverges logarithmically, according to (2.6"). However, this is
usually not of importance in the present calculations.

Condition for continuum approximation and critical angles¥*

A qualitative condition for the continuum approximation is obtained if
we demand that the scattering in the vicinity of the minimum distance of
approach is due to many atoms. Thus, the collision time, A¢, multiplied by
the velocity component parallel to the string vcosy ~ v, must be large
compared to d. The collision time is of order of r ; (D/(vsiny), where [
is the impact parameter with the string, and r,,,(!) the corresponding mini-
mum distance of approach. The condition is thus

rmin<l) -

¥

At veosy ~ d. (2.7)

Let us apply the condition (2.7) in its most restrictive form, so that we
demand its fulfilment for I = 0, i.e. for r,;,(0). The latter quantity is a
function of . For brevity we simply write rp;, instead of r;,(I = 0,v).
The minimum distance of approach is determined by

1
U(rpin) = ~2—Mluz~ sin®y. (2.8)

It is seen that r,,;, increases rapidly as g decreases. According to (2.7),
the critical angle is obtained by inserting r,;, = d-p in (2.8).

If the energy, E = M;2%/2, is increased al fixed v, rp;, in (2.8) tends lo
zero. We may therefore expect that at high energies (2.5) applies, so that
the condition (2.7) together with (2.8) leads to

Ca { wzd}
— - expy —— > 1,
P 2b

where b = Z,Z,e*/E is the collision diameter belonging to laboratory system
coordinates.

For y increasing from zero, the inequality is violated first by the rapid
decrease of the exponential, provided Ca/pd can remain large. Condition
(2.7) therefore remains fulfilled if

/9b 'E, 97,7, 2
<p = |/EZ /22, g - 22220 2.9
y Y1 l/d l/E 1 d ( )

* For a detailed treatment cf. Appendix A; in particular (A. 8), (A.20) and (A. 21).
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provided Cafy,d is larger than unity, i.e. approximately
a d
wE—, or E>E =2ZZé¢— (2.9
d a

where a/d ~ 207", so that the energy E’ is several hundred times larger
than ;. According to (1.3), the condition (2.9") may also be stated as
e>¢" =2(dja)- My/(M; + M,), and if My < M, this corresponds to ¢ 2 2d - Z3/3ay 2.

If @ fulfils the condition (2.9), the continuum potential (2.4) may be
used and, accordingly, the particle cannot come closer than ~a to the
centre of the string. Since E; is normally much larger than E, in (1.1),
the angle v, is large compared to the critical angle «, for channelling. There-
fore, in a well-defined high energy region given by (2.9'), where eleclronic
stopping dominates, we may use the transverse potential (2.4), with a
critical maximum angle o p,, i.e. an effective maximum height of the trans-
verse potential cc 27, 7Z,¢%/d. In several respects, this maximum potential is
remarkably simple. It is independent of the total energy of the particle and
of the atomic screening radius a. It is a function of Z,e/d, the charge per
unit length of the string.

At low energies, where (2.9") is no longer valid, we obtain an approxi-
mate expression for the critical angle by introducing (2.6) in (2.8) and
(2.7). This leads to the condition

Ca 172
P < gy = (ﬁ/—%) , (2.10)
\d[/ 2
and since C /l/ 9 A [/5/]/ 2 ~1, the critical angle p, applies when
a ’
Y1 > R E < E', (2.10")

cf. (2.9"). An interesting consequence of (2.10) is that the potential energy
barrier, obtained by squaring the right-hand side of (2.10) and multiplying
by E, decreases proportionally to EYZ, instead of remaining constant as in
the high energy region. In contrast to ; in (2.9), the critical angle v, in
(2.10) depends on the atomic radius a and on the behaviour of the screened
atomic potential. For this reason, (2.10) is only a rough estimate and can
hardly be expected to hold accurately at very low energies. In the following
discussion we treat mainly the case of high energies, where (2.9) and (2.9")
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apply. The other limit, (2.10), will only be discussed briefly, but in a general
sense the following description applies also when (2.10) holds.

Already the result (2.9) gives a qualitative idea of the behaviour of a
beam of particles moving through a lattice. If the initial angle » is less than
~ 1, the continuum picture of the string applies, and there are separate
repulsive collisions with strings, the particle leaving the strings at the same
angle 9 as it had prior to the collision. Such particles hardly come close to
atoms, and their angle y is not changed as it would be by normal multiple
scattering. This may be called the aligned beam of particles, the condition
being that ¢ < C’'y;, where C’ turns out to be of order of 1-2. For the aligned
beam, the approximation of ungoverned motion, mentioned in § 1, can not
be wvalid.

From the formula (2.5) for the continuum potential it might seem as if
there were an infinitely high barrier at r = 0. However, firstly we have
seen from (2.9) that the continuum picture is not uite applicable when
v 2 1y (cf. Appendix A for a more detailed computation of critical angles).
Secondly, if we use a continuum picture already the thermal vibration of
atoms would lead to a smearing of the potential near r = 0, with a maximum
~ Z 1 Zye?d 1 log (C*a®[o%), where o is the amplitude of vibration, and the
resulting maximum potential remains of the order of E;. From both points
of views, if v > C'y; the particle moves rather freely through the lattice,
and may easily be scatlered by atoms in the usual way. In most respects,
the penetration phenomena are then as in a random system. We therefore
denote this part of the beam as the random beam.

Classical Rutherford shadow behind one atom

A simple and illustrative phenomenon is the shadow behind a repulsive
scattering cenlre in an external, parallel beam of particles. The scattering
is assumed to be classical (cf. (B.4) and (B.5)), and we suppose that there
is a screen perpendicular to the beam, at a distance d behind the scattering
centre. This idealized experiment may be said to represent a pair of atoms,
the scattering centre being one alom, the second atom being placed in the
screen, so that we ask for the probability of hitting the second atom,

An example of mearly isolated atomic pairs is found e.g. for nearest
neighbours in the diamond lattice, i.e. in the <1 1 1}>-direction. Such pairs
may also be regarded as incomplete strings, with successively two occupied
and to unoccupied sites. The pair effect can occur not merely in a mon-
atomic substance like Si, but also in e.g. ZnS, where all S atoms are shielded
by Zn atoms in one direction, and conversely in the opposite direction.
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For simplicity, we consider merely Rutherford scattering, corresponding
to impact parameters p < a. Let the scattering centre be placed on the
z-axis, the beam being parallel to this axis. A particle with impact para-
meler p hits the screen at a distance r from the z-axis, and for small angles
of deflection r is given by

b
r = p»l—;d, (2.11)

where b = Z;Z,e®/E. The distance r has a minimum, r,;, = 2[/ bd, for
p = ]/bd. The shadow region therefore has a parabolic shape, as a function
of the distance d, since its edge is at r = ry; o d*/2.

In order to hit the centre of the screen, we must tilt the beam by an
angle vp., = 2Vb/d = y,)/2, where w, is given by (2.9). The intensity
distribution on the screen is easily obtained from (2.11). Let f(r) be the
intensity on the screen, the external beam containing one particle per unit
area. Then, for large r, f(r) tends to unity, whereas f(r) = 0 for r < rp;,.
The particles aiming at r < r,;, are pushed just outside r_;,, where f(r)
has a peak. In fact,

0, I < I'min

KO =00 e, rha
E - 5 - - T s r >I‘min.

r

(2.12)

The sharp edge at r = r,;, is blurred when quantal corrections are taken
into account, the blurring remaining small only when x = 27,7Z,0,/v is
large compared to unity (cf. (2.29)).

The number of particles missing on the screen inside ry;, is 7ri,.
The number missing inside r is wr® — [ 2ardr f(r) = 7ar*(1 = (1 — 12, /rDYE).
For large r this implies that only half the missing number is compensated
in Rutherford scattering with p « d. It is easy to show that, for screened
atomic fields, the full compensation occurs for r larger than a. In fact, when
(2.6") holds, a 75 per cent compensation is obtained for r = Ca. Thus, for
fast particles obeying eq. (2.9") the compensation is divided in two equal
parts, one oceurring ar r Z 2(bd)"2, or pZ y}/2, and the other at r~ Ca,
or ¢ ~ Cald.

The critical angle ;. for a pair of atoms is apparenily quite similar
to that of a perfect string. Still, there are differences of major importance.



Nr. 14 17

If we tilt by an angle of e.g. 9,,;,/2, the nearest approach to the centre of
the screen will be r; /2 = V bd, which distance is much smaller than the
corresponding distance of approach to a perfect string, ~a, if (2.9") is
valid. In fact, both for strings and atomic pairs we must assume validity
of (2.9"), in order that Rutherford scattering remains responsible for the
phenomenon. The atomic pair is therefore much less effective than the string
in pushing particles away from the atlom. Another difference between atomic
pairs and strings is that the atomic pair is less classical because there is
only one repulsive collision instead of many. However, the most important
difference between atomic pairs and strings is the small multiple scattering
in the latter case, as will be discussed below.

Atomic planes

Another case of interest is that of a plane of atoms. Consider a parlicle
moving not in any major string direction, but still nearly parallel to a plane
in a lattice. There must then be some correlation between collisions with
atoms, although in a weaker and less well-defined manner than for a string.
Accordingly, one may expect effects of atomic planes in penetration. Like
in the case of atomic pairs it is of interest to find the comparative merits
of planes and strings.

A plane can give rise to governed motion of a particle, if the orbit of the
particle, as derived from the continuum potential, involves many collisions
with atoms. We therefore evaluate first of all the potential of a continuum
plane, as obtained by smearing the atoms evenly in the plane®. As a function
of the numerical value, y, of the distance from the plane, the continuum
potential is

Y(y) = N-d, j 2rdr - V(| + 12), (2.13)
0

where N-d, represents the average number of atoms per unit area of the
plane, d, being the distance between planes. The ion-atom potential V(R)
is given by (2.3). The potential Y(y) is similar to the string potential (2.2),
but lower by a factor ~ 2a/d, when r 5 2a. Further, in the plane—i.e.
for y = 0—the potential (2.13) has a finite value,

Y(0) = N- dp-fQ"erRV(R) ~ wZ,Zye* Nd,- R, (2.14)
0

* The perfect plane has no preferred direction. The atoms may be assumed to be distributed
as a two-dimensional liquid or, in simple estimates, random gas.

Mat.Fys.Medd.Dan.Vid.Selsk. 34, no. 14, 2
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where R is the average radius of the ‘atom’, R = Zz—lJ‘ZLnQ(R) "R3dR. The
—_— 0 —_—
Lenz-JrNSEN model® leads to R = 2.68 a, whereas (2.6") implies R = 2Ca.
By means of the standard atomic potential (2.6") a simple estimate is
obtained for the potential Y(y)

Y(y) = 2aZ,Zye" Nd,,- [(5 + CPa®)/* - y], (2.15)

which expression may be compared with the corresponding one for a
string, (2.6).

The criterion for use of continuum potential for a plane is more involved than
for a string. Let the particle, when far away from the plane, have an angle 6 with
it, i.e. transverse energy F, = E - 62 Even though many atoms contribute to the
deflection of a particle, there remains an uncertainty in the nearest approach yin
to the plane. In contrast to the case of a string, the particle will usually not be
deflected by atoms directly below its orbit, but it may happen that there is an atom
directly below the orbit at minimum approach. Let us therefore demand that in
this eventuality the deflection in the single collision is smaller than ¢. According
to (2.15), i.e. for the standard atomic potential, yy:, is given by

62 = 2xb - N-dy [(Yrn + C2)V2 — gyl (2.16)
and we demand
d-U’ i 1 1
b LY Wmw) o, 11 (2.17)
2FE Umin 1 Ymin
cea?

where the expression on the right-hand side is derived from the standard atomic
potential (2.6’). When combining (2.16) and (2.17) we find that they contain two
dimensionless parameters, { = yp;p/Ca and « = E,/E, where

AV A
E, = —X2% 77 30eV. 2.18
? T 2aGEAN -4, 20 (2.18)
The condition (2.17) is then equivalent to
S+ (2 + V2 — ] > o (2.19)

If we demand that yp,;y =~ a, this leads to E > 3E,. In point of fact, the inequality
(2.19) shows, on the one hand, that the continuum potential hardly ever holds at
distances small compared to a, even though the energy FE is very large. On the
other hand, even for quite low energies the potential applies down to distances
comparable with the atomic radius, R ~ 2Ca. In view of the comparatively slow
variation of Y(y) with y, we may then normally assume that the potential barrier
of a plane is not higher than
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Yerr = Y(0)/2, (2.20)

and for quite low values of E/E, the barrier becomes somewhat lower. So far, we
have discussed merely one of the conditions for a continuum description of planes.
‘We supplement this insufficient discussion by the description of a plane as a string
of strings.

Plane described as string of strings

The limits of applicability of a continuum description are less obvious
for planes than for strings. Some aspects of the properties of planes are
illustrated by the following idealized picture. A plane of aloms ean be
treated as a string of strings, if the angles with a major string are not very
large compared to w,. This case is of particular interest also for studies of
the way in which string effects and plane effects join.

Suppose that the angle y with a set of parallel major strings is of order
of the characteristic angle y,, so that for a wide region of impact parameters,
I, with strings, the strings can be considered as continuum strings. The de-
flection can then be described in terms of the two-dimensional motion in
the plane perpendicular to the strings, i.e. the transverse motion. Strings
are arranged in a regular lattice, so that a plane consists of a row of strings,
i.e. it can be conceived as a string of continuum strings. The transverse
motion has a velocity v, = vy, and the deflection by a string is determined
by U(r). If the angle of deflection ¢, in the transverse motion is small, it is
obtained easily from the integrated force, and the result can be expressed
in terms of the previously calculated plane polential Y in (2.13),

d"Y'(D
P, = 2E- o (2.21)
where d; is the distance between strings. It is seen from (2.13) that the
product d,-Y depends on lattice constants only through dy-N-d, = d,
where d is the atomic spacing in the strings.

We may at first discuss the shadow behind one string, in analogy to the
way in which we treated the Rutherford shadow behind an atom. This
enables us to study both the case of a pair of strings and the validity of
the continuum plane approximation. Consider a particle with {ransverse
motion in the positive x-direction, and impact parameter ! with a string
placed in the origin, (x,y) = (0,0). According to (2.21), the particle hits
the line ® = d; at a distance y from the wx-axis, where

2*
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d; ¥'(D)
2F - ¢?

y=1+

We may write y = @-d,, and find from (2.22) the minimum angle @, at
which the centre of a string may be hit, due to the shadow from the pre-
vious string,

3(% i CPa?\'° n-d,

= , if 2« 2.93
2 32 dg) V¥ (2.23)

minzg

If the inequality in (2.23) is not fulfilled, estimates of @, are not quite
well-defined, since for small impact parameters [ the continuum string is
no longer applicable. If the inequality is fulfilled, the angle y®,;, remains
smaller than that belonging to the continuum plane potential. In fact, the

effective potential energy corresponding to @, is

L B, — ¥ .;q#.(f/i@)l/?’
Yy = E-9p Dy = Y(0) 1an® i) (2.24)
Thus, the effect of a plane disappears gradually in the neighbourhood of a
string direction. This means that a string can stand out distinctly within a
plane. However, for strings of high index number, the barrier belonging to
(2.9) or (2.10) may be less than the barrier of the plane, and such strings
can be engulfed by the planar effect.

Comparison of transverse potentials

In three cases, i.e. for channels, strings and planes, we have estimated
continuum potentials, and we have also treated the case of atomic pairs.
At high particle energies, cf. (2.9"), the potential barriers for major strings
(and atomic pairs) are of order of 4Z,Z,*/d ~ Z,Z, 20eV, since d ~ 5a,.
The barriers of major planes are, cf. (2.20), 5Z,Zye’Nd,a ~ 5-Z,Z3%eV,
and thus lower than those of strings by a factor of ~ 4712, such that critical
angles are less by ~ 2Z}/5. The barrier for proper channelling, perhaps
~ 5¢V for protons, is considerably lower than the two others. When com-
paring effects of strings and planes, however, one must first of all bear in
mind that the string potential decreases more rapidly with distance than does
the plane potential; the two polentials become equal at distances of order
of d/2. The rapid decrease of the string potential makes penetration to the
centre of string atoms more sensitive to e.g. temperature vibrations of atoms,
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as will be discussed below. Moreover, there is a difference between strings
and planes, because in the former case the particle motion is two-dimensional,
while in the latter it is one-dimensional. However, strings and planes have
in common the division of a particle beam into an aligned part which does
not penetrate the potential barriers, and a random part which does. The
aligned beam remains at distances larger than ~ a in both cases. In the two
latter respects, atomic pairs differ from strings and planes.

Quantal shadow behind an atom

As a counterpart to the classical shadow behind an atom, we may finally
consider the quantum mechanical shadow in the limit where quantal per-
turbation theory applies for single collisions. This will also indicate a char-
acteristic feature of string effects in a wave picture. The essential point in
the following calculation is that we are not concerned with the standard
case of scattering theory, where the scattered wave is recorded at infinity.

As before, we cons1del a scattering centre located at the origin, with
potential V(R) where R = (x,y,z). At a distance d behind the centre is
placed a screen, i.e. with coordinates R’ = («',y’,z'=d). The incoming
particle has a wave function exp(ikz), where k = Mp/h. Scattering angles
are assumed (o be small. The range, a, of the potential is small compared
to the atomic spacing d. In first order perturbation theory, the wave function
1/)(]{) becomes

WR) =

M, zk\R R\
L f £ V(R)e““d%f (2.25)

 onk? IR

Since all coordinates in the x and y directions are small compared to d,
we find by series development of f?ﬁ—ﬁ'L and performing the integration
over z,

d{(x~x')“+(ll—y')2}

wWR) = ”“l[ 2'ﬁ2‘[drdeU(1)e . (2.26)

where U(r) is given by (2.2) and (2.4).

At this stage it is essential to notice that the exponential in the integrand
1s a rapidly oscillating function. In fact, since U contains the screening
length a, the exponential varies rapidly if

2

— » 1. 27
T d (2.27)
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For Z, » Z, and with d ~ bay, the inequality (2.27) is equivalent to

M v 1

e » 1, 2.27
m 5Z2/3 ( )

and therefore the condition (2.27) is easily fulfilled for heavy particles.
Another way of expressing (2.27") is to say that the momentum of the par-
ticle, Myv, should be very large compared to the average momentum, mu,Z5/2,
of an electron in the Thomas-Fermi atom. We conclude that even in the
quantal perturbation treatment there is a considerable localization of path
in analogy to the classical treatment. This is because the distance d between
atoms is not large, in the sense stated by (2.27).

The results obtained in (2.26) and (2.27) show that, in a general quantal
treatment, the contributions to the wave function at a certain point in space
are due to scattering by atomic fields within a narrow cone opposite to the
direction of motion. The disregard of all atomic fields except those within
the cone (or e.g. the siring), is equivalent to the basic assumptions on page 91I.

We introduce (2.4) in (2.26),

[tp(R =1 - _J’J‘ dde ( ) ﬁd[(acAac')“r(y—:e/')gllz’ (2.98)

where 1?2 = x® +y*. Suppose that ' = y' = 0, and apply the estimate (2.6)
for &(z/a). Then, for low values of » and when (2.27) holds,

wlm . @CP\ 2 x7

where y 1s Euler’s constant. The right-hand side is the limit for small » of a
familiar result belonging to a pure Coulomb field, |9(0, d)|? = zx[exp(msx) — 1]
For attractive fields we may here regard » as a negative quantity, and ob-
tain an increase in intensity behind the scattering centre.

§ 3. Statistical Treatment and Energy Loss

The previous chapter was concerned with basic problems and with the
accessibililty of different regions in a crystal lattice. In order to study in
more detail the total behaviour of a beam of particles in a crystal lattice,
we may, as a first approximation, apply the simple continuum picture of
strings (and planes).
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The continuum picture implies conservation of the velocity component
parallel to the string. The motion may therefore be studied completely in
terms of its projection on a plane perpendicular to the string. In this trans-
verse motion, the velocity far from a string is v, — vsiny = vy, and the
corresponding transverse encrgy is £, = E-sin®y ~ E-y®. The potential is
U(r), and we shall use several of the approximate formulae for U(r) in-
troduced in § 2.

Available phase space in transverse motion

The use of statistical mechanical estimates is a powerful alternative to
detailed studies of separate successive collisions with strings. We shall at
first consider statistical estimates of particularly simple type. We use the
continuum picture, and we need consider only the [ransverse motion; all
angles y» can be assumed to be small. For fixed values of velocity v and
transverse energy E, we then ask for the two-dimensional probability
distribution in a total potential Uy, = ZU(F —T,), where U is given by (2.4),

and 7; = (x;,y;) is the position of the i’th string of atoms. Evidently, we

Fig. 1. Transverse plane of strings for simplest cubic lattice. The square indicates unit cell, and

Lhe dashed circle with radius r, is approximate unit cell. Shaded area oulside circles with radius

rmin illusirates accessible portion of the plane for a given fransverse energy. There is uniform
probability distribution in shaded area according to two-dimensional continuum picture.
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may usually confine the treatment to one unit cell in the two-dimensional
F-plane, containing one string. For most purposes, we can assume that the
unit cell is a circle around the string, with radius r,, such that its area is
ary = (N-d)™. We often disregard the potential due to neighbouring strings,
so that the potential becomes simply U,, ~ U(r); this approximation ap-
plies if the transverse energy is not exceedingly low.

The beam of particles has some initial probability distribution, e.g.
corresponding to a given direction in p,-space. As a function of time ¢, or
depth of penetration z = v#, the distribution will be P(ﬁl,_f-, t). There will
be a ftrend towards statistical equilibrium in the transverse phase space.
Let us consider the equilibrium distribution within a transverse energy shell.
We introduce the available momentum space as a function of 7, when the
transverse energy is between E, and E +dE, . Since the volume in two-
dimensional momentum space is proportional to dE|, the equilibrium pro-
bability distribution becomes :

l

N > E_L > Utot(—;): .
Py(E,T) = (3.1).

0, E < Utot(?),

where the constant A is the accessible area in a unit cell with total area
A, = N71d™l. When the accessible portion of the unit cell is large, or 4 ~ A,
we can simply disregard the overlapping of string potentials. This leads to
Py = 1/A = 1/4,, and U, (7) = U(r), where r is the distance from a string.

One-dimensional distribution

It is interesting to notice the extreme simplicity of the probability distribution
in two-dimensional space, i.e. (3.1), as compared to both one- and three-dimensional
spaces. Thus, the one-dimensional equilibrium on an energy shell, corresponding
lo continuum planes, becomes

c{ E \
i (FT() ) E, >Y(y),

PyEy) = { “» \ P72 (3.2)
0, E, <Y(@),

where d,, is the distance between planes and € a normalization constant. In the
one-dimensional motion the particles stay with maximum probability at the edges
of forbidden regions, where the velocity is lowest. The formula (3.2) has several
consequences different from those of (3.1). Thus, when E, is large, higher than ¥ .,
all values of y are allowed, but the particle still feels the potential—in contrast to
(8.1)—and stays with increased probability near the planes, where Y is highest.
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Trend towards equilibrium on transverse energy shell

Having studied the equilibrium distribution on an energy shell in the
transverse motion, we may next estimate how quickly the equilibrium
distribution is attained. A measure of this is the change of average lrans-
verse momentum, <]5l>. Suppose that strings can be considered a good ap-
proximation. It is easily shown that

B = Ppo-exp(—z/i), (3.3)

where <{ >¢ denofes initial averages for z = 0, and where the mean free
path length A, of the particle is

+»
1
= - N-d-siny)J dl- (1 - cosg(D)), (3.4)
L —x

@(l) being the scattering angle of the transverse motion as a function of
impact parameter with the string. It is to be noted that 4 -siny is the so-
called transport mean free path of the transverse motion, i.e. on the aver-
age the particle moves 1 -siny in the transverse plane, in the direction of
Do
If we assume that the minimum distance of approach exceeds ~ a, and
the approximation § = ma/(2r) is used for the string potential in (2.4), we
get by a simple computation a direct estimate of A,
r na
) = (3.5)
2r

Therefore, when p < 9, the mean free path 4, is less than 1/(Nday,), the
latter quantity being of order of 1000 atomic layers or less. After an energy
loss of perhaps 1-10 keV, a proton attains equalization of distribution within
the transverse energy shell.

The results (3.4) and (3.5) are based on random collisions for the trans-
verse motion in the two-dimensional lattice of strings. However, as discussed
in § 2, p. 19, this lattice contains strings of strings, or planes. When the di-
rection of T)J_ is not far from a plane direction, there is again a reduction of
scattering, but now in the two-dimensional motion. In this limit, continuum
planes are applicable and the primary equalization of the distribution is in
the one-dimensional motion, leading to the equilibrium described by (3.2).
The mean free path for the one-dimensional equalization must be of order
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of 4, ~ d,/p, where ¢ is the angle between 7 and the plane. At this stage
we need nol treat further such questions of more detailed kind.

The quick scattering in azimuthal angle indicates that an assumption
of statistical equilibrium on a transverse energy shell is often a fair approxi-
mation. Moreover, suppose that experimental conditions are such that ini-
tially an average is actually performed around a string direction, i.e. with
respect to azimuthal angle. We then start from equalization on the trans-

verse energy shell, which distribution has stable symmetry in the continuum
picture.

Basic statistical averages over transverse motion

These results justify, so far, the use of (3.1). As a consequence of (3.1),
we can for any function f, depending on fl and 7, obtain first its average
on an energy shell

ey = [ fay 1G5, (3:6)

or, equivalently, for not too low E,

To
1
— 2zurdr f(p,.r), (3.6")
3 _ 2 f il
7‘6(1‘0 mln) ,

min

f (E_L) =

where f(p,,r) is the average of f(ﬁlf) over angles, and r;, is determined
by E, through the relation U(ry,;,) = E . The formula (3.6") is utilized re-
peatedly in the following. If r%, « rZ, the normalization factor is (mrg)™" =
N-d, and the upper limit in the integration may often be replaced by oo.

When the transverse energy is so low thal the motion is confined to
small unconnected areas (proper channelling), the integration in (3.6) can
be approximately within an ellipse or circle around minimum of potential,
and with area A.

Second, we can determine the final average f of f(E,) over the probability
distribution in v, i.e.

Wb = [ AE)AE,, 3.7)

where g(F) is the probability density per unit transverse energy.

The function g(E,) will change with penetration depth, because of mul-
tiple scattering, i.e. lack of conservation of {ransverse energy. Multiple
scaltering is treated in § 4. Before doing that, we find further properties be-
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longing to particles with a given transverse energy. In fact, we have so far
assumed that the total energy of a particle is conserved. We must therefore
estimate the nuclear and electronic stopping for a particle of given trans-
verse energy.

Statistical estimate of nuclear stopping

When the particle passes one atom at a distance r, and has a small
angle of deflection ¢, one obtains directly in terms of U(r) defined in (2.2),
cl. also (2.17),

d- U'(r)
~ 9E

, (3.8)

and therefore the energy transfer in this elastic collision is

dz
T =
" 2My?

HOR (3.9)

For aligned particles with a given value of E , we may average (3.9)
over the available part of the unit cell according to (3.6), and obtain

a1 N
T.(E) - WAfdmfdyJZ UR(7 -7, (3.10)
A

where T-j are the transverse coordinates of strings. Since we normally do

not consider extremely low transverse energies, we may introduce (3.6")
in (3.10), assuming r3;, < rg,

aN- d® .2 ,

T’I’L(E_L) = W rdrU (1'), (310)

Ymin

where the usual upper limit of the integration, r,, is more correctly replaced
by co. The average energy loss in (3.10) and (8.10") is equal to T, (¥,) =
N-d-S,(E,), where S, (E|) is the stopping cross section for a given value of
E,. The integration in (3.10") may be performed explicitly and the result
expressed in terms of E , if the standard atomic potential (2.6) is used.

The main contribution to the integral in (3.10") is in the vicinity of the
lower limit, rp;,. If U(r) varies as ™% when r ~ r;,, we gel directly from
(3.10") the nuclear stopping as a [unction of transverse energy
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wv E* M
Su(Ey) = szi-i , (3.11)

because U(rp;,) = E,. Since v is nearly equal to 1 for a < rp; < 2a,
increasing slowly to values ~ 2 for ry;, > 2a, the value of » in (3.11) is
not very sensitive to the magnitude of E?, and (3.11) gives a usecful first
estimate of the nuclear stopping. At the same time, the distribution in mag-
nitude of the individual energy losses is also implicitly given by (3.10").
The stopping cross section (3.11) may be compared with the normal nuclear
stopping in a random gas, cl. (4.2). When comparing with (4.2), (3.11) is
found to imply that L,(E,) = (»/2)-(E,/Ey})*, which is much smaller than
for normal nuclear stopping at high energies, where L, = log(1.29¢) ~ 5-10;
it should be noted that (3.11) is applicable only for E, < Ey?. In any case,
for swift particles the nuclear stopping cross section S, is quite small com-
pared to electronic stopping S,.

Nuclear energy loss in single collision with string

The above application of phase space in transverse motion resulted in statistical
estimates, (3.10) and (3.11), of average nuclear stopping. However, it is also of
interest to find the energy loss in an individual encounter between ion and string,
characterized by the energy E of the particle, and its initial angle ¢ and impact
parameter ! with the string.

The energy loss to one atom, at a distance r, is given by (3.9). In a string col-
lision r is a certain function of time, r = r(f). Integrating (3.9) over the orbit, we
thus obtain the energy loss to the string, =,(1,%),

+

d

T, (Ly) = ﬂl?vj U’23(r(t))dt. (3.12)
The integration in (3.12), containing the radial motion r(f) as a function of time,
is usually not simple, but may be readily performed if the potential U(r) is pro-
portional to r1 or to r~2. It can then also be verified that an integration of (3.12)
over all impact parameters results in the stopping cross section (3.10"). In the pre-
sent context we omit more detailed evaluations of type of (3.12), one reason being
that except at exceedingly low energies the nuclear energy loss is negligible com-
pared to electronic energy loss.

Electronic stopping

Even though we made only cursory estimates of nuclear stopping, that
case can be treated in a comprehensive manner, and the accuracy may be
easily improved. The electronic stopping is less simple because we must
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distinguish between a number of different cases. Still, one qualitative ex-
pectation can be stated generally; at a fixed particle energy E, but decreasing
E,, the electronic stopping is expected to decrease more slowly than does
nuclear stopping. The ratio belween electronic stopping and nuclear
stopping should therefore be higher in the aligned beam than in the random
beam.

We study primarily the important case of electronic stopping at those
high particle velocities—and low charge numbers Z,—where the Bethe-
Bloch formula applies. This formula may be written as

dE EE VAT
g SN Zy = Zy NI, (3.13)

U2

where N is the number of atoms per unit volume, and S, the stopping cross
section per electron. The factor L, is approximately given by

2muv?

L, = log~~, (3.14)

IR

provided the velocity is so high that x = v*/(v3Z,) » 1, and!® ¥ p[p, > Z3/3,
The quantity I is the average excitation potential, I ~ I;-Z;, and [, ~ 10 eV.

When (3.14) applies, one may divide collisions with electrons in two
groups, the distant resonance collisions and the close collisions with large
momentum fransfers to electrons (cf. Bour!®). Since the phenomena are
largely of quantum mechanical type, one may not apply classical orbital
pictures in every detail for collisions between an electron and the particle.
The precise distinction between close and distant collisions is in terms of,
respectively, large and small momentum transfers. However, one may
distinguish between the particle being outside the electronic orbit, where
only resonance collisions occur, and inside the orbit, where close collisions
occur with a probability distribution given essentially by the Rutherford
scattering law. In a qualitative way, it is well-known from the derivation
of the Bethe formula'® 13, that for very fast particles the stopping is asymp-
totically contributed equally by close and distant collisions. This turns out
to hold also in a precise manner (equipartition rule'®), at not too low par-
ticle velocities. A detailed discussion of the dependence of energy loss on
the space track of a particle of arbitrary velocity requires a generalization
of the usual description and will be published separately.
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From these considerations it seems proper, for large x, to replace (3.13) by
dE » . >
OTR(R) = S5, [(1 —)NZa + o ()], (3.15)

where Q(}){) is the density of electrons al the point in space through which
the particle moves, and where « 2 1/2, « being the closer to 1/2 the higher
the value of x = v?/(v3Z,). This result means directly that the stopping cross
section for a swift particle penetrating a thin foil can at most be reduced
by a factor ~ 1/2. As we shall see, it can also increase by a factor slightly
above unity, cf. § 5.

The increase per path length in square fluctuation of energyloss, d(AE)?/dR,
in the case where (3.13) applies, is proportional to Z,N. The fluctuation
contribution is due to close collisions only. In the presenl case, this con-
tribution must be obtained by replacing the average electron density Z,N
by o(F). This straggling contribution, as a function of 7, becomes (cf. Bongr12))

d(AE)? >
( (dR)J = 4nZl o(R). (3.16)

‘e

A somewhat similar formula'® holds at velocities v < v,Z3/%. According to
(3.16), the straggling depends more strongly on ¢ than does the stopping
cross section (3.15).

We consider statistical equilibrium at a certain transverse energy K,
and introduce an effective charge number Zz“(El) such that with U(rp;,) = E|
the number of electrons per atom outside the distance rg;, from the string
is Zy(E|). Averaging (3.15) by means of (3.6"), the electronic stopping
cross section is found to be

Zi (B

2

S(E) =8, |1l -a+ , (3.17)
where S, is given by (8.13). The ratio Z;(E,)/Z, is according to (3.22) and
(3.6"),
Z;(El) _ d Iyip* U,(z'min)
Z, 27, Z,e"

(3.18)

Thus, Z;(E,)/Z, is approximately equal to vE, [(Ey}), if U(r) o< ™" near
Imine ©L also (3.11), When the atomic model (2.6) is introduced in (3.18),
the following simple formula is obtained
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S(E) = S, [1 ~ aexp(— Eﬂz;?)] (3.19)

The formula (3.19) shows that the dip in electronic stopping is somewhat
narrower in angle » than are string effects where penetration to the centre
of strings is necessary. The direct significance of the characteristic angle y,
is also clearly indicated. It is noteworthy that the atomic screening radius «
does not enter, in spite of (3.19) being based on (2.6), where the screening
radius is an important parameter. The formula (3.19) contains the usual
error belonging to continuum potentials, i.e. the stopping does not rise above
the normal stopping S, when E, 2 Ey], and compensation of the dip (cf.
§ 5) is not obtained. The error is not serious, however, because the rise
above normal stopping is rather small.

The average straggling energy loss is immediately found from (3.16)
and (3.6"),

ey

R ) = 4nZ3e*N- Z;(E,), (3.20)

€

where Z,(E,) may be replaced by the estimates in (3.18) or (3.19).

Electronic energy loss in single collision with string

The electronic energy loss, 7,(/, ¥), in a single collision with a string,
al impact parameter [ and initial angle v, can also be derived on the basis
of (3.13) and (3.15). But we disregard the resonance stopping, i.e. the first
term in (8.15), since it takes place independently of a string collision. The
energy loss in a single collision with an atom at impact parameter r is then,
from the second term in (3.15),

4o
Se S 2 »
T(r) = E'd- o(r) = Ee J dz-g([/z“+r2), (3.21)

where g(R) is the electron density in an atom, at a distance R from the nu-
cleus, and where the electron density o (r) of the continuum string is

1 14d
(U@, (3.22)

P =
&(r) AnZie® r d
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As an example, we choose again the approximation U = Z,Z,e?ra/(2dr), and
obtain

N

ga 1

0s(r) = 5 - (3.23)

oo
Z|
~

‘We next integrate (3.21) over the encounters with atoms along a string, using (3.23)
and the hyperbolic orbit of an r-1-potential. The electronic energy loss in one collision
with a string becomes, at a transverse energy F, = Ey* and impact parameter [,

Se Zy-a 1 1< b 21)

. {1~ Lgrete —
8d  igy I arclg

Ly) =
o L) BT, )

(3.24)
1

where b, is defined by U(b,)) = E,, L.e. b, = naw‘f/(4w2). If we integrate (3.24) over
all [, we obtain the formula (3.18), with v = 1.

In order to estimate the straggling in energy loss, we can compare the maximum
energy loss in a string collision, i.e. 7,(0,y) in (3.24), with the usual maximum energy
transfer to an electron, 2mv? The ratio 7,/2mv? can be large compared to unity,
If in (3.13) we introduce L ~ 1.5 -2 = 1.5 - (v2/v} Z,)'/2, which formula applies
approximately when x is of order of 113), (3.24) leads to

o

2 M A\V2
T < T{0y) ~ o (%{2) (—5) 23/2-706\", (3.25)

which would be ~ 3keV for protons. Since this is an upper limit to 7,, the energy
loss is normally divided into bits much smaller than (3.25), so that the straggling
is small.

§ 4. Scattering of Aligned and Random Beams

We have scen that a beam of fast particles, having some probability
distribution in direction, can be divided roughly in two parts. For angles
less than ¢, (or y,, at low energies) we are concerned with the aligned part
of the beam, while angles large compared to y, constitute the random part
of the beam. The part between ~ y; and ~ twice ¥, is a transilion region.
In most respects, the two parts have a quite different behaviour. Thus, the
aligned part was found to have a smaller stopping cross section S(E,) than
has the random part. Moreover, in first approximation the two parts of the
beam appear not to communicate at all. Consider an ion in the random part
of the beam. It can easily collide with atoms and be scattered to other di-
rections within the random beam. If it were to be scattered into the aligned
beam, a comparatively close collision is required—i.e. impact parameters
much smaller than a. However, when the ion subsequently emerges from
essentially the centre of the string, it cannot easily become aligned, since
ions in the aligned beam do not come closer to the string than ~ «. Scattering
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from random beam to aligned beam therefore seems prohibited. Conversely,
an ion in the aligned beam will in the continuum approximation keep a
constant  far away from strings, i.e. a constant transverse energy E , chang-
ing merely its azimuthal angle in a more or less random manner. This
indicates the difficulty of being scattered into the random beam.

It is therefore important to discuss those phenomena which may be
responsible for (ransitions between aligned and random beam and for an-
gular diffusion within the beams, i.e. lack of conservation of transverse
energy. In the discussion we may distinguish between three groups of phe-
nomena responsible for transitions between aligned and random beams.

The first group concerns deviations from the picture of parallel conti-
nuum strings, with a potential U(r) or U, (F), cf. (3.1). Deviations can be
due to thermal vibrations, including zero-point vibrations of atoms, which
implies that the force on the particle fluctuates; the effect of fluctuation of
atomic positions will be studied in some detail. Deviations must also occur
when there are defects and impurities in the lattice. Defects and impurities
lead to important scattering effects, but are of variable size and can be quite
small in pure and perfect crystals. A special kind of deviation arises from
the periodicity of a perfect string, which gives fluctuations of the path as com-
pared to the motion ini a continuum potential U(r). The periodicity of perfect
strings normally gives rise to only a small scattering effect (cf. Appendix A).

The second kind of scattering is due to deviations from classical motion
in a conservative force field. It is necessary to estimate the magnitude of
quantum mechanical corrections to classical mechanical motion (cf. Ap-
pendix B). Moreover, a single collision between an ion and an atom is
quasi-elastic, so that the force field is not strictly conservative. In first ap-
proximation, the deviations from elastic collisions are included in electronic
stopping and the damping effect, cf. below.

The above two groups of phenomena lead to an average increase of E .
A third effect may be singled out, especially because it tends to reduce E,.
Suppose that electronic stopping is dominating, and that the motion is in a
conlinuum potential. Now, if the slowing-down force is directed against the
motion and the energy loss is E, the corresponding average change in E,
turns out to be 6E, =~ — §-8E-E |E, where ff ~ 0.5 — 1. Although small, this
damping effect can in some cases compete even with multiple scattering. We
may also compare the damping with the change of transverse potential
barrier. At high energies E, the transverse barrier is constant, while at low
energies it may decrease as EY? during slowing-down, cf. (2.10"). The damping
by itself thus exceeds the decrease of the barrier.

Mat, Fys.Medd.Dan.Vid.Selsk. 34, no. 14. 3
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Multiple scattering

When discussing the changes in o, or E » along the particle paths, it is
useful to consider at first the normal case of multiple scattering in a random
system. Let ¢, and %, be the angles with the z-axis of the projection of the
direction of motion on the x—z and y—z planes, respectively, so that D=
(v vy) and p = (y;+42)"%. The average square fluctuation in angle is
then 2% = ((y—<¥>)®>. We study the change of £ as a function of pene-
tration depth. It is well known (cf. Bourl?) that the increase in average
square fluctuation in angle, due to nuclear collisions, is approximately given
by
M, (OE), (E), Z,m L,

My E E M L, (4-1)

e

(62, =

where®

N-L

(dE‘ LEVAVALY
) Mgv2 "

T L, ~ log (1.29¢), (4.2)

h
the reduced energy e being given by (1.3). The formulae (4.2) and (4.1)
apply for £ large compared to unity. When ¢ 2 103, itis seen that L, ~ 5 — 10,
so that L, is not sensitive to the value of &.

There is a similar increase in average square fluctuation in angle, due to
electronic collisions, and derived from Rutherford scattering in close col-
lisions between particle and atomic electrons,

(507, -8, o(R)- oR. (4.3)

m
- 2M,E

In a random system, where the density of electrons Q(_ﬁ) is replaced by its
average, NZ,, the electronic contribution is much smaller than the nuclear
one, (4.1), by a factor ~2Z,L,/L,. The formula (4.3) is valid only if v is
larger than the electronic orbital velocities, or rather x = v?/v2Z, » 1.

In the case of the random beam, where all nuclear collisions are permit-
ted, we can apply formula (4.1), with neglect of the electronic contribution
(4.3). We can also use (4.1)—both for the random and aligned beams—in
the case of interstitials, impurities that break the symmetry, amorphous
surface layers, etc. Then, N represents the density of scattering centres, Z,
being their atomic number.

In the present context, it is appropriate to consider u; as a standard
angle, also for a random system without string effects. We introduce the
path length, Z, ,, . for which the average square multiple scattering in nuclear
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collisions (4.1), applicable for the random beam, becomes equal to 2.
Evidently,
l 2 4.4
P nNdZ-anpi ’ . (4.4)

and the corresponding total energy loss of a random beam, or in a random
system, is according to (3.13)

27,62 L M,
8E, = == 4.5
¥ d L, m (4.5)

Le. of the order of Z;-A4;-10keV in the case of swift particles, for which
LyJL, ~ 1/2.

In connection with (4.4) and (4.5), one should also consider single
scattering by angles larger than u;. The mean free path for such single
scattering is larger than (4.4) by a factor 2L, ~ 10. We may therefore often
disregard single scattering, but for special purposes it becomes important,
cf. (6.15).

Starting from an initially well-defined direction, e.g. corresponding to
polar angle ¥ = 0, the distribution becomes approximately Gaussian,

P(P)2rVdV = exp{ - W?/Q*} 2 PdP|Q?, (4.6)

where 2% is obtained by integration of (4.1). The Gaussian is a consequence
of many small scattering processes. For large ¥ the actual distribution has
a tail decreasing more slowly than (4.6), and due to large angle single scat-
tering. The approximation of WrLLiams and BoHr'® 17 may be applied.
If (4.3) is not negligible, it must be added to (4.1), and (4.3) contributes to
the Gaussian only—not to the tail.

Consider next particles in the aligned beam. We may at first estimate
the contribution to multiple scattering from electronic collisions. In analogy
to (4.4), we introduce the path length I, ,,, for which (602%), becomes equal
to p§. Averaging (4.3) according to (3.6"), we obtain

1 47, Z, o
= i . i
M aNd* Lyt Zy(E)) (4.7

The factor ZZ/Z;h(E_L) is given by (3.18) or (3.19), and tends to unity for

the random beam, while for the aligned beam it becomes large when y — 0.

The path length [, ,, is larger than lp,y, in (4.4), by a factor of at least 2Z,.
IJ*
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The strong multiple scattering (4.1) for a random system disappears
completely for the aligned beam colliding with continuum strings, i.e. when
conservation of transverse energy applies. In § 3 it was found that part of
the multiple scattering reappears as a quick trend towards uniform distribu-
tion on the transverse energy shell, cf. (3.4). Another part reappears due
to deviations from perfect strings. Thus, suppose thal in one transverse
atomic plane there is a deviation 6?((7) from the usual transverse force

-
K = —grad U(7). This gives a change in the transverse momentum b, ie.
approximately

L d
5B, - ;a?c(?). (4.8)

When the square of this scattering is summed over the atoms along a string
(or over successive transverse atomic planes), we obtain the change in
average transverse energy, due to string imperfections, i.e. on the path
length 4R,
(6;1)2 d e

L7 = - (SK(F)®HR, 4.9
TG (4.9)

6<EJ.> = E

where {...> denotes an average over positions in transverse motion of the
particle, i.e. (8.6) can be applied. :

If the average square amplitude, ¢° of the thermal vibrations (cf. (6.5))
may be considered as small, the corresponding force fluctuation becomes

GBR(F)? ~ %QZ<KZ(I')I'_2 + K3(r)), (4.10)

in the case of axial symmetry. The total diffusion can be expressed in terms
of the result (4.1) for a random system,

OB = (39%), E-y, (4.11)

where the reduction factor y = y,(E,,0) +y(£,) is a sum of contributions
from nuclear and electronic collisions. According to (4.9) and (4.10), the
magnitude of y, becomes approximately

2 2E 28

1 Y ) T o2
yn(EJ_’Q) ~ L—n b?cfg eB¥i(l—e Elpl)a’ (4.12)

if the standard atomic model (2.6) applies.
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For comparison, we rewrite the electronic scattering contribution (4.7),
introducing the standard atomic model by means of (3.19),

2E
1 _ L

L, ‘
: 1—e B¥1). 4,12
T A (412

ye(E_L) =

Although (4.12) and (4.12") are merely cursory estimates, it is apparent
that—in contrast to random systems—the elecironic contribution 3, may
exceed v, if 2F J_/Ey)‘f is small, and Z, low. Note, however, that the damping
effect, cf. p. 33, can dominate over (4.12") when My? > 2m.

When the increase in average square angle is known, the corresponding
diffusion equation becomes

d > . > >
5, 9(P1r2) = divy D(p))grads g(p,, o). (4.13)

where g-dp, ,dp, , is the differential probability, measured e.g. at potential
U = 0. Further, z = vt is the distance of penetration. The diffusion con-
stant, D, is determined by &(E v, and for axial symmetry one finds

KE >
SR

2D(py) +p,D'(py) = My (4.14)
where the right-hand side is given by (4.11).

When the diffusion constant is known, the increase in square fluctuation
of e.g. p, can be derived. In order to compare with the increase in E, we

consider the quantity {(p, —{p,>)*>/(2M;), and obtain from (4.13), for initi-
ally well-defined E |,

6<(p_|_ - <Pl>)2> _ ‘D(p.l_)
2M, - 6R M,

(4.15)

If y in (4.11) increases rapidly with E , the value of (4.15) is much less
than &{E,}»/dR. The smearing of the distribution by diffusion may then be
disregarded, and the transverse energy remains well-defined, increasing
steadily according to (4.9) or (4.11).

It can be of interest to solve the equations on the assumption of well-
defined transverse energy. If the electronic contribution (4.12") can be dis-
regarded, we obtain from (4.11), (4.12) and (4.4) the following change in
E, on a finite path length JR,
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SR = 51— B¥)? & 8
(1 —e B¥i) o8,

402 1 2EL Ey?\®
¢ ( "’1), (4.16)

where [, , is given by (4.4), and ¢ denotes the increase of the quantity in
question. One interesting feature in (4.16) is not limited to this equation,
but holds also for the more general diffusion based on (4.12); the path
lengths for scaltering are increased by a factor ~ L,a%/0?, as compared to
(4.4), valid for random media. This result is essentially based on the validity
of (4.10).

Single scaltering

The reduction factor y, in (4.12) can become quite small. If the diffusion is
sufficiently small, however, the dominant effect can be single scattering. By single
scattering a particle may in one collision enter the random beam, or its fringes.
Single scattering requires that the particle comes close to a nucleus, and the pro-
bability for single scattering is therefore proportional to the fraction of the total
number of nuclei which may be hit by a particle with transverse energy E,. This
fraction turns out to be I7,(E)) ~ P(rp(E))), where rp;(E)) is the minimum
distance of approach to a string, and P(r) the probability for a nucleus to be more
than the distance r away from the string, cf. § 6. The effective cross section for
single scattering is thus

dogpp(E)) = do - Iy (E)). (4.17)

For a given penetration depth, (4.17) can be applied to angles of deflection larger
than those belonging to the Gaussian peak of multiple scattering.

§ 5. Rules of Angular Averages and Compensation

Suppose that we are concerned with a definite physical effect, like the
energy loss per cm., the number of K-shell excilations, or the number of
(p. y) reactions. For random systems the effect occurs al a definite rate,
independently of direction. In a crystal, due to e.g. string effects, the rate
may change drastically within small solid angles. In § 3 we estimated some
changes of this kind in the approximation of transverse potentials. How-
ever, it can be difficult to carry out estimates to a high degree of accuracy
at all angles. It is therefore appropriate to ask for rules which hold irrespec-
tive of the use of e.g. transverse continuum potentials. In particular, it is
of interest to know in how far the average of an effect over all directions of
incidence in a crystal is equal to that of a random system. If this is the case,
we say that there is compensation of the directional effect in cuestion.
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At first we can disregard slowing-down of particles, i.e. we assume
conservation of total energy. We are then concerned with particles moving
in a fixed potential in three-dimensional space. We can here utilize two
concepts from statistical mechanics, i.e. reversibility and microcanonical
distribution. The idealized experiment of interest in the following is to
consider an external beam of particles, represented by e.g. a point source
at A, and to ask for the probability of hitting a certain point of space, B,
in the neighbourhood of one atom. This probability is to be compared with
the corresponding one when e.g. all atoms in the crystal, except the one in
question, are removed or brought in disorder.

Rule of reversibility

The first useful result is that of reversibility. We need not enter on
details, and shall disregard magnetic fields. Not only can the motion of a
particle in its orbit from one point A outside the crystal to a point B inside
the crystal be reversed according to mechanics, but also the transition pro-
babilities for direct and reversed processes ave equal, P,z = Pp,, if the
potentials at A and B are equal (cf. below). More definitely, suppose that at
A is emitted v particles per second per unit solid angle, in a direction towards
B, and that the cross section at B is ¢. The rate P 5 of direct processes is
equal to the rate Py, of reversed processes, for which emission at B is v
per unit solid angle and cross section at 4 is ¢. This result may be regarded
as a consequence of Liouville’s theorem. By finding the angular distribution
outside the crystal of particles emitted by atomic nuclel in strings in the
crystal, we have then also obtained the probability of hitting nueclei by an
external beam of particles. These results are not changed by multiple scat-
tering, where the processes are reversible too.

Reversibility can be violated in some cases. In fact, if slowing-down on
the path between A and B is so large as to influence the defleclions on the
way, it may not be possible to reverse the path, neither for potential motion
nor for multiple scattering effects.

Rule of angular averages

In order to obtain the second rule, i.e. the rule of simple angular aver-
ages, we introduce the probability P of a particle of energy E being at a
space point, E, inside the crystal. The probability is measured relative to
that without a crystal. Let the initial state be a particle beam of given uni-
form intensity, and a direction specified by angles ¢, ¢. The probability is
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then a function of & and ¢, P = P(9, (p,ﬁ). It should be noted that P also
depends on other variables, especially on the energy E, as well as on the
type of particle (Z;, A;), and on the medium (Z,, lattice structure). If we

average P(49, <p,ﬁ) over all directions, and denole the average as P(ﬁ) we
obtain

> 1 >
P(R) = - f P(#,9,R) sin §dddgp. (5.1)
T

An average over external angles is equivalent to imposing on the system an
external statistical equilibrium. The average can therefore be estimated from
statistical equilibria, e.g. a microcanonical ensemble for one particle. For
this purpose we introduce the particle-lattice potential VZ(E’) at the space
point R. If R is close to one atom, VZ(T{) should only include the potential
from the other atoms, because we compare e.g. with the corresponding pro-
bability of coming near the atom in empty space (or in a random substance).
Without considering details, we can state than V,(R) must be quite small,
perhaps of order of few eV for protons, like £, in (1.1), and thus usually
much lower than the transverse potential U(r). Since the available volume
in momentum space is proportional to pdE = l/{QMI(E~ Vl(ﬁ)}dE, the
average value of the probability P(4d, @,E) is approximately

Il

v pn1/2
E_@) 1, (5.2)

P(R) = ( i
where the deviation of P from unity can be disregarded, being approximately
equal to V,/2E. Now, probabilities, intensities or fluxes may differ by
[E—Vl(j?)]/E to a power between perhaps ~1 and +1, but such factors
are quite close to unity, so that even withoul detailed estimates we may
state that averages of type of (5.1) are equal to unity.

This leads to the rule of angular averages for energy conservation: Any
quantity Q, depending linearly on P(&, ¢, ﬁ), has the same angular average
as in a random systemm. By a random system is meant a system with
the same density, but without directional effects, for instance because of
lack of structure. Examples of quantities obeying the simple rule are
eleclronic stopping, e.g. (8.15), and nuclear stopping, (3.10), at a fixed
energy £. We may formulate the rule of angular averages as follows. If Q
is given by
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Q(%,¢) = a+ f b(R)P(9,9,R)d*R,
the average of ) becomes, according to (5.1) and (5.2), (5.3)

oy - 1 [ a2-00.0) = a+ [soen

Both in (5.3) and in (5.1) it is often possible to limit the average to a solid
angle £ small compared to 4=. In fact, suppose that at the borderlines of
a solid angle £2 the particles are not deflected into or away from this solid
angle, by deflections due to strings or planes. The separate average over
must then also fulfill (5.3).

If we apply the result of reversibility, the rule of angular averages can
also be used for particles coming from any space point R in the lattice and
arriving at a point outside the lattice. In this case the rule is quite evident,
even without use of reversibility and (5.3). In fact, imagine that atomic
nuclei in the lattice emit x-particles, which process oceurs at a fixed rate
per unit solid angle. The o-particles are deflected away from string di-
reclions, and exhibit a certain angular distribulion when emerging from the
crystal. But, evidently, on a large sphere surrounding the crystal, all par-
ticles will be collected, independently of their possible deflections within
the crystal. Moreover, if we collect within a relatively small solid angle
around a string direction, the angular width still being large compared to
string ‘deflection, the number collected is the same as if the string were not
there. Thus, the angular distribution has a complete compensation of the
dip, characteristic of quantities linear in P(J, (pﬁ) A similar problem was
discussed in § 2, in connection with the classical shadow behind an atom.

Limitations of rule of angular averages

When we are concerned with definite physical observations, like those
mentioned in the beginning of this section, the simple rule does not always
apply, because in actual facl energy conservation is violated in slowing-down
and the measured quantities may be strongly dependent on energy. By and
large, physical effects depending on slowing-down will not obey the rule of
angular averages. It can be useful to consider a few examples.

First, a basic quantity is the range of a particle. The stopping cross
section S(E |, E), at a definite energy E, is linear in P and follows the rule of
averages. The range, however, is of type of [dR = [dE/(N-S(E, E)). It is
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therefore not linear in P, and does not follow the rule. In fact, deviations can
be quite large. In two cases will deviations from the rule become small.
If S(E,) ~ &, the lalter being the stopping cross section for random slowing-
down, we have S(E)™' = $71-(2-S(%))/S), which is linear in P. More-
over, in a polyerystalline medium where the size dR of each crystal cor-
responds to 8E = OR-(S(E)N) « E, the range will be as in a random
system.

Second, an instructive example is afforded by a (p,y) reaction for pro-
tons passing through a crystal. The reaction occurs at a definite energy E,,
and has a width I', very small compared to E,. Suppose that I" neverlheless
remains so large that an energy loss ~ I is obtained only by penetration of
many atomic layers. The number » of reactions is then proportional to
¥ oc P(zp,ﬁn)/Sg(y)), where P(tp,ﬁn) indicates the probability of hitling a
nucleus. Since the ratio P/S, is not linear in P, ils average over all directions
need not correspond to a random system, and (5.3) does not apply. How-
ever, the probability of hitting an atomic nucleus may be essentially zero,
except when E, is large. Since S(E,) has a rather narrow dip, cf. (3.19),
we may have S,(E) ~ S, = const., in the region where P is different from
zero, in which case the compensation belonging to (5.3) is approximately
obtained.

As indicated by these examples, there is a large number of combinations
of effects which may influence the angular averages, when slowing-down
comes into play. Therefore, a thin single crystal foil, where the energy loss
remains small, is one of the few examples where physical effects can obey
(5.3) in a straightforward manner.

In measurements of angular dependence of effects in the neighbourhood
of strings and planes, the compensation in (5.3) is usually of interest in a
qualitative way only. In other cases, e.g. if nuclear cross sections are to be
measured with high accuracy in solids, the applicability of (5.8) can be of
direct importance.

Rule of spatial averages

The previous averages were concerned with angles, but also averages
over space give rise to interesting rules. Suppose that an external beam
has a fixed direction given by (&, ¢), e.g. close to a string direction, and
consider a nuclear process with a constant, energy independent cross section.
The rate of the process depends on the position of the nucleus in the lattice.
Now, if the probability density of the distribution of nuclei is constant in a
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transverse plane, the process has for these nuclei the same rate as in a ran-
dom substance, simply because every particle must pass through some point
of the transverse plane. Thus, for a fixed value of z, less than the penetra-
tion depth of every particle,

v = 1 2 .
P, R) )y, = ngf dedy P(0,9,R) = 1, (5.4)
Ao

where P is the previously mentioned probability, normalized to unity for a
random system. Any linear function Q = a-+b-P(9, @,ﬁ) has the average
Q>4 = a+b. Therefore, if—for fixed external direction &,¢—there is a dip
* in reaction rate when the atomic position is at a string, there must be a rise
above normal yicld at posilions in belween strings. However, the area oul-
side strings is much larger than the effective area of a string; the increase
in rate is then quite small, of order of Nd-wa®. A somewhat larger effect
would occur for planes. Still, because of the smallness of these changes,
reaction rates may then instcad be dominated by secondary string pheno-
mena, like electronic stopping, cf. § 6.

§ 6. Idealized Experiments and Comments on Measurements

When discussing experiments—both idealized and actual experiments—
it is instructive to bear in mind that, at low angles of incidence, particles are
prevented from coming closer than ~ a to the centre of strings (or planes).
This indicates, firstly, experimental tools that may be chosen. In fact, there
is a possibility of utilizing any physical process requiring that the particle
is less than the distance a from the atomic nucleus (nuclear reactions, Cou-
lomb excitation, inner shell excitation, wide angle Rutherford scaltering,
emission of charged particles from radioactive nuclei). Secondly, measure-
ments of this kind give direct information about paths of particles in the
lattice and their scattering, and hence enables one to study the important
primary phenomena, which govern the particle motion, ef. p. 9. Thirdly,
by means of the shielding inside ~ a one is able to pin atomic positions with
an accuracy < a in the vicinity of lattice sites, so that e.g. a method of ob-
serving defects and positions of impurity atoms is available.

It is easy to visualize many further applications, but it seems proper to
demonstrate first the way in which theory and experiments can cope with
the primary task sketched above. When that is done, a quantitative basis
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is obtained for estimating in how far the more complicated applications may
be realized. In the present context, however, we shall merely discuss briefly
a few aspects of the primary task.

Three stages in particle motion

The fate of particles on their way from an external source to e.g. an
atomic nucleus in a crystal may be divided into three successive stages.
These three stages appear in the opposite order for the reversed process of
a particle coming from a nucleus and arriving at a detector oulside the
crystal. A calculation of the probability of a direct process is often equivalent
to an estimate of the reverse process, c¢f. § 5.

A particle beam has an initial angular spread before enlering the crystal
surface. Let the initial distribution be P(Ey?)d(Ly]), where y, is the external
angle with strings. It can be convenient to include in this spread the multiple
scattering due to impurity layers in front of the crystal surface. It should be
remeinbered that the angular distribution from scaltering by a thin layer
consists of a narrow Gaussian peak and a tail due to single scattering.

Consider particles arriving at the crystal surface at a definite angle w,
with a string (or a plane). The first stage is then the transition from im-
mediately outside to immediately inside the erystal surface. We may intro-
duce a transmission factor,

T - T(ELEYD).

such that T-dE, is the differential probability of transverse energy between
E, and E| + dE,, when the external angle is y,. In the continuum description
we get, if Uy (7) ~ U(r),
Yo
9 2rdr 9
T(ELBYD) = | =5 8B, - Evi ~ UM). (61)
0

0

because, at the point 7, the transverse energy becomes Ey? + U(r). In this
way, the initial distribution g(E,, z = 0) can be obtained,

HEL0) = [ PaaER TCE, B, (6.2)

where the particle energy is E.

In (6.1) is assumed axial symmetry; the general formula corresponding
to (6.1) is a normalized integration over the unit cell. Therefore, in the
corresponding estimate for planes, the right-hand side of (6.1) is replaced by
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2dy
| 2o, - pt - v,
»
0

where d, is the distance between planes, y, the angle with the plane, and
Y(y) the continuum plane potential. In (6.1) the direction of the transverse
motion is disregarded and we shall omit estimates of e.g. g(}l,?,z = 0).

The second stage consists in the passage through the crystal from the
surface to depth z. During this stage there is multiple scaltering, i.e. a re-
distribution of transverse energy in a manner somewhat similar to diffusion.
The redistribution depends strongly on the value of E,[/Ey;, ef. §4. At the
same time, the particles are subject to slowing-down, so that the energy E
decreases. The slowing-down also depends on E l/Ezpf, cf. § 3. Accordingly,
a redistribution factor R is obtained, giving the probability of energy E’
and transverse energy Ei, at depth z, if their values ave E and E, at the
surface, 1.e. :

R = R(E,E,,z;E,E,,0),

where R(E',E,,0;E,E ,0) = E — E)S(E, — E|). Usually, one can either
disregard energy loss as compared to diffusion, or disregard diffusion and
include only energy loss. This leads to considerable simplification in R.
In some cases we can assume that both E and E, change smoothly, without
fluctuations, as functions of depth, so that R is a d-function in both E’
and E'l

When R is known, we can eslimate the probability g(E',Ej_,z)dE'dE'l
of energy in the interval dE' and transverse energy in the interval dE|,

9(EE,,2) = f dE, §(E,,0)R(E, E., 2; E, E,, 0). (6.3)

The third stage is the occurrence of the actual physical process, a nuclear
reaction for instance. In processes of this kind, the particle essentially must
penetrate to the centre of atoms, and the probability /7, (E ) for this will
be discussed in some detail. If /7; (£) is known, and the cross section for
the process in question is ¢, the effective cross section g, at depth z becomes

0ui(7) = f dE’ f dE, g(E', B, )Ty (B o(E). (6.4)

Cross sections o(E") for nuclear reactions can be of resonance type in the
energy E’.
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We refrain from discussing further the general case of superposition of
the three stages mentioned. Instead, a few basic examples will be treated
after the estimates of [I(E,).

Particle emission from string atoms and II(E_L)

Several characteristics of basic phenomena in the string effect are illus-
trated by the following idealized experiment. A fast, positively charged
particle leaves a nucleus by a process independent of lattice properties, e.g.
an «-decay. The nucleus has some probability distribution in space. The
first question to be solved is the probability I/, (E )dE, of transverse energy
between E, and E, +dE, . ‘

We note that I7;,(E|) = & - Il (E ) is the probability of the opposite process
as described by (6.4), where & is a constant accounting for available space—or phase
space—in the two opposite processes. In fact, in the continuum description &1 is
the fraction of the area of the transverse plane accessible to the particle, i.e. &1 =
1 —r;zmn(El)/rg, and thus & is normally close to unity. The subsequent fate of the
particle, as determined by multiple scattering and emergence through surface, can
be treated separately, the former being determined by (6.3) and the latter by re-
versal of (6.2).

Suppose that the atomic nuecleus is in the neighbourhood of an atomic
position in a perfect string, with probability distribution dP(r), where. r is
the distance from the string axis. The distribution in z-direction may be dis-
regarded. For simplicity, a Gaussian type distribution will be used as an

example in the following, i.c.
. 2

dpP = ehéEQI'dr-oc/Qg, (6.5)

where r is the distance from the perfect string, and o« is a normalization
constant, « = {1-exp(~r3fe?)} %, ie. « ~ 1 if ¢ is small compared to
ra = 1/(wN-d). The distribution (6.5) might roughly represent zero-point
and thermal vibrations of an atom with respect to its neighbours, If ¢ is
large, (6.5) corresponds to a uniform distribution within the unit cell. It
can therefore represent cases other than vibrations. The calculations of
several effects, cf. (4.10) and (6.13), involve mercly the average square
vibration of an atom, ¢% and not the probability distribution as such. At
low temperatures, ¢° is determined by zero-point vibrations of lattice atoms,
while at high temperatures it increases proportionally to temperature,
We ask for the initial distribution in transverse energy 77,,(E,), of
particles emitted into the latlice from an atom close to a lattice site. Consider
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the approximation in Appendix A, where a transverse potential U(r) may
be used, and I, is to be registered at the planes half-way between atoms.
A particle initially at a distance r from the string, moving at an angle ¢
with the string and azimuthal angle 9, will be a distance r* away from the
string when it arrives at the half-way plane, where r** = r® + (¢d/2)? + red-

costt. Therefore,
Fo

T
LB - | P [aee [ -a, - ven - B, @)
0

r=20

and for planes an analogous formula holds.
If pd/2 is small compared to the range o of the distribution, we may
put r* = r, and (6.6) becomes

To

() = [ ap(o (6.7)

Ulr) < Ey

Although (6.7) implies a dip quite similar to that in (6.6) for low values of
E |, the magnitude of (6.7) apparently cannot exceed unity, in contrast to
(6.6). The shoulder of the distribution at E;, ~ Ey] is therefore absent in
the approximation (6.7).

By means of (6.7), (6.5) and the standard potential (2.6) a definite ex-
pression for [/, is obtained

22 2EL 2
I, (E) = exp{— g (eByi — 1)71} —exp —ig- ) (6.8)
¢ e

where it is assumed that ¢ « ry, i.e. « ~ 1. When E, - U(r), the expression
in (6.8) tends to zero. However, the value of /[ ,(E ~ 0) is sensitive to
the atomic potential, and to the behaviour of the probability distribution
(6.5). The number of particles emerging from the crystal surface, at angles
close to zero with the string, may therefore be strongly influenced by mul-
tiple scattering, etc.

In view of the variability of the maximum dip, it can be of interest to look for
quantities less sensitive to multiple scattering. From (6.7) and (6.8) approximate
estimates of the width of the dip in [I(E|) may be easily obtained, but a precise
definition of the width is less simple. However, the integrated dip is more weli-
defined. Since the dip from umity is 1 —177,,4(E ), we may integrate over positive
values of this quantity. When (6.7) is introduced, we obtain an integrated dip
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. 7 nl
2(9) = f(l = Houe(E)))27sin pdy = Ef(l — Lou(ED)IE; =

0
] . (6.9)
me (d(r*) T
=% e e ¢ U(r).
0

‘When g is large compared to a, but small compared to ry, we find by partial inte-
gration,
ZZpe? 22—

I S 2 .
TR (6.10)

1
Qro »o » = ——— | 47R2d =
(re » 0 »a) gzd-EJ aR*dRV(R)

_ 0
where R? = Z;1 f4nR4dRQ(R) is the average square radius of the atom per electron.
0
In the LEnz-JENSEN description? the average square radius becomes R~ 1542,
which result agrees well with measurements as well as with the HARTREE treatment,
For ¢ large compared to a, we may thus put
2

() ~ n-%l_-maz/@z. (6.11)

In the opposite limit of ¢ small compared to a we find readily, from (2.5),

2 cz 2
20 < @) = n-q)—llog( ;1 y), (6.11")
2 4

where ¢ = 1.78 is Euler’s constant. A qualitative estimate, applicable for all values
of g, is therefore

vy, Gt 4ot

Qaa-tlog—— (6.12)

The formula (6.12), giving the dip as a function of transverse energy for g « ry,
should in this case also give approximately the dip outside the crystal, if multiple
scattering can be neglected. However, when ¢ in (6.9) becomes large compared to
rg, there is a uniform probability distribution dP(r) in the unit cell, r < r,. The
effects of exit from the surface are then most important, and according to the dis-
cussion in § 5, there is no dip outside the crystal. Tt so happens that (6.12) has the
value zero in this limit, and in this sense represents better the external than the
internal angular distribution. There is, however, a serious drawback in the formulae
(6.7) —(6.12). A continuum potential has been used, and thus compensating shoul-
ders are disregarded. It would be more correct to use (6.6) and apply the formulae
in Appendix A, according to which the potential energy is to be measured at the
planes half-way between atoms,
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The equation (6.12) can be used in two ways. From knowledge of ¢, the value
2 can be found approximately; from measurements of 2, the value of p? can be
estimated qualitatively. Apart from such estimates, it is seen that £ is proportional
to ] — 2Z,Zye2/d - E. '

Lowest minimum yield

The minimum yield of e.g. nuclear reactions at a given depth corresponds
to external angle y, = 0. The lowest value y of the minimum occurs at low
depth, where the multiple scattering is small. If we disregard the multiple
scattering, we find from (6.1) and (6.4) that there always remains a yield
from thermal vibrations. If the continuum description applies, we obtain
from (6.7) and (6.1) the first contribution y; to the total g,

11 = N-d-mo®, (6.13)

where ¢? is the average square amplitude of atomic vibrations with respect
to the string. It is noteworthy that (6.13) does not depend on the prohability
distribution, i.e. (6.5) need not apply. The magnitude of ¥, is often y; < 1072,
when d ~ 34.

For several reasons, the effective lowest minimum can be higher than
the above value. Particles in the exterior beam, which hit within ~ « from
the centre of a string, obtain transverse energy ~ E-¢7, and they may after
very little multiple scattering be able to hit the centre of atoms; the path
length in question is =, ,, in (4.4). This leads to the next, and less well-
defined contribution to y,

% = N-d-ad®. (6.14)
In the case of major strings, i.e. for d ~ 3-107% ¢cm, the magnitude of ,
varies between ~ 0.03 in the lighter substances and ~ 0.005 in heavy sub-
stances. For planes, we roughly find %, ~ 2a/d,.

The result (6.14) corresponds to the high energy casc (2.9"). At low ener-
gies, or large values of d, there is a well-defined increase in the fractional
area y, corresponding to transverse energy above the barrier. According to
(2.10) or (A.21) one obtains y, = aN-d?ay,, when y, is large compared to a/d.

It may be noted that the atoms at the surface can react directly with the
particle. The effective number of layers, of thickness d, giving full contri-
bution is &, where & > 1. Measurements confined to the first 10-50 layers
cannot therefore yield very strong dips, and a certain amount of multiple
gcattering must always be included in the measurements.

Although a classical orbit remains outside the centre of atoms in a

perfect siring, there is a quantal penetration. However, particles with the
Mat. Fys.Medd.Dan, Vid.Selsk. 84, no, 14. 4
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same value of Z;/E have the same characteristic angle v;, but their wave
length decreases proportionally to (MyE) Y2 oc (M;Z,) %, The quantal pene-
tration probability is in this sense an independent quantity which can be
made quite small.

The presence of amorphous impurity layers on the surface of the crystal
need not cause large multiple scattering. Still, effects of single scattering
cannot be disregarded in the present context. Let the number per cm? of
the i’th atomic species be »;, while its collision diameter with the particle is
b;. The fraction of particles deflected by an angle larger than @, in single
scattering, is then

S b6,
i

where it is assumed that @ is so large that Rutherford scattering applies.
If the particles originally have zero angle with a string direction, we have
directly obtained a tail of the distribution in transverse energy, and the
conlribution g, to y is obtained,

TdE
Zs = 2,v7b} Ef E—;— II(E)). (6.15)
g L
0

The integral in (6.15) may be evaluated by means of (6.6) or (6.7). At high
particle energies and for ¢ < o we may assume, crudely, that 77 ~ 0 for
E, < Ey}, and' IT ~ 1 for E, > Ey, leading to y, ~ yy>Zwmb?. This re-
sult is interesting in several respects. The value of y, can exceed y; or y,,
if there is a substantial surface layer of not too low atomic number. It is
also seen that at high particle energies both y;, ¥, and y; may be proportional
to the spacing d between atoms in the string. It is therefore expected that
the minimuin yield, when small, increases with d in a simple manner.

In any case, if measured dips are in the neighbourhood of the minima
quoted above, it seems possible to study in detail the effects of multiple
scattering, etc., as discussed in the beginning of this chapter.

Comments on experiments

Although detailed comparisons with experiments would be out of place,
it may be proper to comment briefly on some measurements directly con-
nected with the theory. We do this in the spirit of the introductory remarks
in this chapter (p. 43), selecting primary directional effects.

In the exploratory measurements on (p,y) reactions in Al and Si at
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~ 400 keV, Bgcua, Davies and NIeLseEn? observed the expected reduction
in yield in string direclions. The yield is proportional to ZI(E)/S,(E)), the
probability distribution in I, depending on external angle. The observed
reduction by a factor ~ 5 was large enough to be promising®, partly be-
cause the disturbing influence of electronic stopping could then be dis-
regarded, and partly because it seemed comparatively easy to develop
further this tool of solid state observations. The measurements are apparently,
as to purpose and result, different from those of THoMPsON'®,

In conlinued measurements, also effects of planes were clearly seen,
and higher proton energies were used?®. In connection with (p,y) reactions,
with rate o< S;'(E)), it may be mentioned that they might also be used for
identifying interstitials, where peaks in yield, instead of dips, should appear
for atoms outside strings when %, < 9, (c¢f. p. 43 and (3.19)).

The measurements by Domrrr and Birorxqvisti®) are of particularly
simple and informative kind. The angular distributions of a-particles,
emitted by heavy ions stopped in W, showed dips by a factor ~4 and
angular widths in agreement with (2.9). It could be concluded that most,
if not all, ions ended up in lattice positions. In more detailed measurements,
including changes of temperature, it should be possible to verify positions
of ions in the lattice and even to check vibrations (cf. also (6.9)).

Observations utilizing wide angle Rutherford scatlering would seem to
provide a promising and versatile tool, because of the large cross sections,
and the free choice of Z;, Z, and E%. The measurements by BgeH and
UecEru@12?) of Rutherford scattering for 400 keV protons in Ta and with
energy analysis of the emerging protons, provide the most definite and
detailed information obtained so far. Strings of both low and high index
numbers are clearly seen. The angular widths as functions of d and E are
in accord with (2.9) and (2.10), and dips approach the lower limits (cf.
p. 49 and ref. 5). An effect of planes is seen as a background of the dominating
string dips. It may be added, as an example, that Rutherford scatlering can
be used for determining positions of impurity atoms, in lattice sites or in
interstitial positions.

As to other processes requiring that the particle comes close to the nucleus,
preliminary measurements of inner atomic shell excitation by ~ 100keV
protons have been performed by BranpT et al.?!), but in the interpretation
the repulsion by atomic strings was not taken into account.

As regards secondary directional effects (cf. p. 9), the most prominent
one is slowing-down. For fast protons, the most accurate observations were
performed by Ercinsoy, WEGNER and Gison!D). These measurements

4%
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clearly reveal effects of planes and strings. The energy loss is found to be
reduced by a factor of at most ~ 2, in rough agreement with (3.15). The
wide distribution in energy loss is not to be accounted for as usual straggling,
which becomes quite small according to (3.20), but in terms of the statistics
of the two first stages in particle motion mentioned on p. 44 ff.

Numerous careful experimental studies on penetration by heavy ions in
the keV region have been performed, especially by Davies and co-workers
(e.g. refs. 1 and 23), and by Lurz and Srzmann24),
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Appendix A
Classical Scattering by Perfect String and Continuum Potential

The accuracy of the continuum string approximation may be assessed
approximately within classical mechanics. Besides classical mechanics, the
calculations in this appendix are based on the perfect string, i.e. atoms
placed on a straight line with constant spacing d, and are easily generalized
to a perfect lattice.

The first circumstance to be noted is the strict conservation of angular
momentum with respect to the string. We shall at first discuss only the case
of zero angular momentum. This is the least favourable case for conser-
vation of transverse energy, because the particle penetrates the closest to
the string.

Let atoms be placed on the z-axis, at z = 0, = d, + 2d, ... It is con-
venient to introduce the planes half-way between atoms, z = = d/2, + 3d/2,
- .., and measure transverse coordinales (x, y) at these planes. The distance
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from the string is r = (2 + y®)Y%, and the motion is assumed to be in a
plane containing the string (cf. above). We want to find the accuracy with
which transverse energy is conserved between the two planes, the a-plane
where z, = —d/2, and the b-plane where z, = +d/2. In the a-plane the
distance from z-axis is r, and the angle with the z-axis is y,, and in the
b-plane distance and angle are r, and w,. At z = 0, where the deflection
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Fig. 2. Classical deflections of particle by perfect string, with coordinates recorded at half-way
planes, cf. text.

occurs, the distance from the axis is r;. Then, r, = ry+y,-d/2, and r, =
Iy~ Yy, d/2. The deflection at r, becomes, cf. (2.1%),

d-U'(ry)
=y, -y, = —— Al
¢ = Y~ Y o (A1)
ry and r,—r, are given by
r, +ry d d
Ty = . 2*_(?41; Ty — Ig = E(T/)a'i_'%)' (A.2)

We here disregard terms of relative magnitude (y, +v,)%/2 in r, and of
relative magnitude ry/d in r,—r,.

From these relations we may find the degree of conservation of trans-
verse energy, retaining only powers of % less than y*; the latter limitation is
implicitly contained in the small angle approximation for y. We tentatively
introduce transverse energies E (r,) and E (r,),

E(ra) = By +W(z,),  E(ry) = E-yj + W(zy), (A.3)

and ask whether a transverse energy of this kind can be approximalely
conserved, i.e.
E(r)) = E (). (A4)
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If (A.4) holds, it is easy to calculate the angle of emergence 3 from the
string, since E-y* = E,. An over-all validity of the continuum approximation
would mean that the conservation in (A.3) holds not merely at the half-
way planes, but is also accurate at other values of z.

Consider the difference between E (r,) and E| (r;) in (A.3), and climinate
y, and y, by means of (A.1),

E_L(I'b) - El(l‘a) = W(rb) - W(I'u) - (Tb - I'u) : UI(I'O)' (A'5>
Since (A.2) is an implicit equation for r,, i.e.

[ S
1y = ——+—=U'(ry), A6
b= eE U (A6)
ro and U’(r,) are only functions of the sum r,+1r,, in the present approxi-
mation. The mean distance (r,+1,)/2 is, for brevity, denoted as r, and we
may ask for the connection between differential changes in r and ry,. From
(A.6) is obtained

dz r:
dr = dr, {] " 3E U (ro)}. (A7)

If ry initially is large, and then decreases, the two terms dr and dry remain
approximately equal, until the term in brackets in (A.7) becomes zero.
Thereupon, r increases rapidly as r, tends to zero. It is therefore appro-
priate to require

2

d
E > E U”(rmin)’ (AS)

in order that the transverse motion can be described by a continuum potential ;
in (A.8) the minimum distance of approach to the string is rp;, = Iy (E)
for transverse energy E,. The criterion (A.8) is closely equivalent to those
in (2.9), (2.10), or (2.7).

In order to find W, we expand in (A.5),

1
W(ry) —W(r,) = (r, — 1) W' (r) + o1 (ry =1 )W) +.... (A9

Assuming r—r, to be small, we also find

2
U'(ry) = U'(x) + U”(r)-:—E U@ +.... (A.10)
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As a result of this, we find that if the last term in (A.9) is disregarded, (A.5)
becomes equal to zero when the potential W(r) is given by

W(r) = U(r) + 1%1; (U2 +. ... (A.11)

However, it is easily verified that the condition (A.8) demands that the
second term in (A.11) remains small compared to the first one. We may
therefore identify W(r) with the continuum potential U(r). Nevertheless,
the second lerm in (A.11) may be given a simple physical interpretation,
accounting approximately for single scattering, albeit in an incomplete
manner, cf. below.

We omitted the last term in (A.9). Since we need only a crude estimate,
we may by means of this term find an upper limit to the lack of conservation
of transverse energy in a collision with a string. In fact, suppose that this
term represents twice the uncertainty in energy conservation when going
from z, to z,. Suppose even that the uncertainties add. The total uncertainty
in transverse energy after a string collision must be less than this sum.
We write the sum as an integral, where we can put (r,—r,)* = d®y? =
d*(E, — U(r))/E, as well as W(r) = U(z),

r d2 T, rre dzbﬂ(rmin)z
OE, - f 94 {E, - U(r); U""(r)dr = s
Tin . . (A12)
- E'Z.V_
48E * 2. ’

where v is the effective power of U(r), v = —dlogU(r)/dlogr. The right-
hand side becomes comparable to E, only if E, > Eyf, as was to be ex-
pected. Moreover, the right-hand side decreases as E, to a power between
3 and 4, since » ~ 1 —2. It is therefore seen that transverse energy conser-
vation must be accurately fulfilled, if E, is not large. We conclude that the
conservation of transverse energy, as expressed by (A.4), is a good approxi-
mation, and that deviations from it must be due to e.g. atomic vibrations.

In connection with (A.3), (A.4) and (A.11) may also be noted the special
case of a harmonic oscillator potential. Then, the higher derivatives of U
vanish, and an exact solution is obtained. In fact, suppose that Umt(?) =
Cr?/2. The general two-dimensional motion obeys the equations (A.5) and
(A.6), which may be solved to give
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1
Ey)i + l Cz'i — = Erp,z, + 1 CI% —_ . (A.13)
2 1 d°Cc 2 d*c
8E SE

One must therefore require that E > d®C/8, in order that the motion does
not diverge. This criterion coincides with (A.8). If the potential is not con-
fined to the transverse plane of atoms, the critical energy is slightly reduced.

In the above, transverse energy E, was shown to be conserved. However, the
particle energy E in the laboratory system was unchanged during the collision, i. e.
the recoil energy of the atom was disregarded. We may briefly show that, even
when the latter effect is included, E, may normally be taken to be conserved in
a collision. To this end, consider an elastic collision, so that particle energy after
the collision is E — T,, where T, is given by (3.9). The change of energy implies
in itself a reduction of transverse energy, 6E ,; = — Tn-v2. Moreover, when there
is transfer of energy and of angular momentum, the outgoing particle path is shifted
outwards by an amount ér, cf. reference 10,

sro Tuf TG 1)
A P o R M

the corresponding change of E, in the collision is 6E ,5 = dr- U’{r). The total change
is then 0E,; + 0FE ,». Suppose next that U oc r~% and find the statistical average
of &, for strings, according to (3.6). A simple calculation then shows that, for
I'min € T'o>»
CEp 1w
E, 3 E

(A.14)

Therefore, E, is conserved quite accurately if 0 < » < 2, ¢f. standard potential
(2.6). For this reason, and since electronic stopping normally dominates over
nuclear stopping—especially when F,| is small-—we may often disregard the change
in K| due to elastic nuclear collisions in a perfect lattice. The change in F, during
penetration is then usually due to electronic stopping, and to the other effects
mentioned in § 4.

General equations of motion

As an alternative to the above estimates we treat a somewhat different
approach, associated with variational principles in dynamics and useful
for numerical estimates. For this purpose we record the distance r;at z = j-d,
where j is an integer. Since the basic equation of deflection is

rpyq—2r 4 o d-U'(r;)
d s oE

(A.15)
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we may form the sum

< (g —r0)?
ZLj = 2 E T - U(I'J-) » (A16)
J=n+1

and the orbit for given values of coordinates r, and r, is determined by
variation of all r;, j = n+1, ..., m—1, with a stationary value of (A.16).

So far, the deflection was assumed to occur in the plane z = z;, the force
being an approximate d-function. At large distances from strings this is not
quite correct. It is easy to introduce the smoothly varying force in the present
formulation. In fact, let V,,(F,z) be the total potential in the lattice. Then,
the orbit from (7;,2,) to (Z,,z,) is determined by the variational principle

23
5 J L@(2).7(2)2)dz = 0, F(z) = 1, F(z) = o (A.17)
21
where

= -z 1 -9 > — d =
I(w(2),7(2),2) = —Q-le (2) = Vit(F(2),2),  w(z) = v r(z),

and all angles are assumed to be small, i.e. w « v. The Lagrangian formu-
lations (A.16) and (A.17) may be turned into Hamiltonian equations, but
owing to the explicit dependence of L on z, i.e. on the time variable, one does
not obtain the normal simple conservation of energy.

Emission of particle from atom in perfect string

On the basis of the approximate conservation of transverse energy I,
in (A.4), we can discuss the emission of a particle from the centre of an atom
in a slring. It is of interest to find both the minimum angle and the angular
distribution. It should be remembered, though, that this will not represent
too well the actual emission from an atom in a lattice, because we disregard
the vibrations of atoms, and in some cases quantal corrections should be
included. However, we do obtain an alternative estimate of the validity of
the continuum string picture.

The particle is emitted from the point r = 0, z = 0, at an angle @.
Its total energy, E, = E-y?, is then given by (A.3) and (A.11), where the
energy is recorded at z = d/2, i.e. r, = dP/2, v, = @, and where we assume
W(r) = U(r),

Ey? = E- @+ U(Dd/2). . (A.18)
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Since emission probability is proportional to differential solid angle ~ 2x®d®,
the probability distribution in angle ¢ is also contained in (A.18). If the second
term in (A.11) is included, we must add W, = Ed®-U'*(®@d/2) (4E) ? on
the right-hand side of (A.18).

In order to obtain quantitative estimates, we introduce the standard
potential (2.6), and (A.18) becomes

2 4C%?
’(/,'2 = @2 + %log <d2gbz -+ 1), (Alg)

the additional term being W, = 5(20) (1 + ®*d?*/1C%a?)™ ",

It is interesting to compare the terms in (A.18) and (A.19) with the correspond-
ing ones in scattering by a single atom, cf. p. 15 fi. In scattering by a single atom,
with the same notation as in (A.18), one obtains

S P o 2 yiea + & o od)
Y = . &
’ 2F 7 V@D + g UH(OD,

where the first term equals that in (A.19), whereas the second term tends to 32
for low values of @. The third term dominates when @ is small, and is similar to
W, for @ — 0. However, if v, > a/d, the third term can become ~ W,/16. This
indicates the ambiguity belonging to W,. In the following we disregard W,, pri-
marily because its inclusion would not affect much the estimates of critical angles.

Returning to (A.19), we can estimale the minimum, v,;,, of the angle
of emission, . The minimum is obtained for

@~ — 2022 . [(2()2612)2 . 2C2a2}u2'

2 d2 172
It is convenient to dislinguish between two limiting cases. Suppose that

is small compared to a/d. Then

1/2

«Ca a

Ymin = %‘[IOg #1‘ , for Y, <= (A.20)
d d

where o = 2%%exp(1/2). The coefficient of y; is of order of 1.5-2, and is
nearly independent of E and ¢, if %, is small.
Atlower energies, where y; > afd, we find from (A.19) the minimum angle

1/2
a
Ymin = 2(1/_" 7) = 2y, for oy > (a.21)
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There is a smooth transition between the limiting cases (A.20) and (A.21),
These two formulae are in good agreement with the qualitative considerations
in § 2, cf. (2.9) and (2.10). It should be added that in the low energy region,
where increasingly large impact parameters become important, the standard
potential (2.6), as well as (A.21), should not be considered as accurate
estimates.

In the formula (A.21), where angles are large, hardly more than the
first atom contributes much to the deflection near the critical angle. It is
noteworthy that in spite of the simplified transverse potential description
used here, the critical angle (A.21) is 14 per cent above the corresponding
precise result obtained for scattering by one atom only, at a distance d.
This gives a justification of the use of transverse continuum potentials in
one limit.

Appendix B

Quantal Corrections to Classical Description

The following discussion is divided in three seclions, of which the two
first are meant as a preamble to the third. The first section, Single Collisions,
concerns a familiar case of scattering, where a classical description is the
more accurate the lower the velocity. The second section, Continuum String,
illustrates that if the continuum picture were completely valid, the transverse
motion of particles would be essentially classical. The third section, Perfect
String, aims at an estimate of the quantal correction to classical deflection
by an actual string. It is shown that, in contrast to other collision problems,
the classical descriplion is the better the higher the velocity of the particle.

Single Collision

In a single collision the condition for a classical treatment is determined
by essentially two lengths, the wave length 7 of the relative motion and
Ly = [#(p)]™", Le. the focal length of the classical scattering, #(p) being
the deflection for impact parameter p. The total uncertainty, 69, in scat-
tering angle can be obtained in a way analogous to that used by Bourl?),
We assume that the angle d(p) is small, and thus determined by (2.1").
With a wave packet of width ér there are two contributions to §%, one from
diffraction and one from classical uncertainty in position, i.e.

2

(69)? + (o) (#'(p))*. (B.1)

T 4(or)?
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The minimum value of (B.1) is obtained for (6r)? = 7/(2¢'(p)), and becomes

(692 = 2-9'(p). - (B.2)
In order to obtain a well-defined orbit, we may demand (§84)? < 9%, or
z d( ! ) 1 (B.3)
f———1 < 1, .
dp\9(p)

which formula in the case of Rutherford scattering, ¥ = b/p, leads to the
inequality of Bonr!®
27, Zpe"

= ——> 1, B.4
% ¥il)) ” ( )

For the screened field of the standard atomic potential, (2.6'"), the condition

(B.3) and the scattering formula (2.1") give the somewhat stronger condition
2 2

%>1+§2%~1+% . (B.5)

The above formulae apply for the relative motion, where 7 = h/My, and

H(p) is the deflection in the centre of gravity system. However, it may be

shown that the results also apply in the laboratory system, if (2.1) is ful-

filled, i.e. with £ = K/Mv and 9(p) the deflection in the laboratory system.

This leads to a slight change in (B.1) and (B.2), since M, is replaced by M.

However, (B.3), (B.4) and (B.5) remain unchanged, because the particle
masses do not enter in these formulae, cf. (2.17).

It should be strongly emphasized that (B.3), and similar conditions for
the use of classical mechanics, are conditional and not absolute statements
of limitations of classical estimates. Thus, (B.3) comes into play only if
one desires a well-defined angle of deflection al very large distances from the
scattering centre, in one-body or two-body scattering.

Continuum string

Let us assume that the conlinuum approximation is valid. We may then
ask for the quantal correction to classical transverse motion. This is a quite
straightforward problem, since both classically and in quantum mechanics
there is conservation of transverse energy. As a simple example, we con-
sider a string potential U(r) = Z;Z,e*na/(2dr), and a particle with trans-
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verse energy E,. The Bour condition (B.4) applied to the transverse motion
with initial velocity v, = vy, and initial energy E, = Ey® becomes

iy (B.6)
K, = > i
+ 2d
Since y < y;, we find that %, is always larger than (we put a ~ q,Z; ')
(M 12 o m Qo 12

The right-hand side in (B.7) is independent of energy E, and is certainly
large compared to unity if M; is large compared to the electron mass m.
In the general case of string deflection the formulae (2.21), (2.15) and (B.3)
show that a classical description is applicable if 7, « a. The essential point
is that quantal tunnelling to the centre of a continuum string does not occur.
The treatment can be extended, e.g. to continuum planes, but for the present
purpose this is hardly necessary.

The following curious transformation from perfect string to continuum string
may be illustrative. We start from a perfect string of atoms with spacing d. We
imagine that each atom is cut in two equal parts, by a cut perpendicular to the
string, retaining the electron distances from the string. The halves are placed with
constant spacing d/2. Next, we cut each half in two, the spacing becoming d/4.
This process can be continued, the string approaching more and more a true con-
tinuum string. On the one hand, consider an isolated collision between the moving
particle and the fraction of an atom remaining at the n’th stage. The Born ap-
proximation will take over and be the more accurate, the higher the stage, and
orbital pictures of the deflection fail completely (cf. the previous section). On the
other hand, the continuum description of the particle motion gets more and more
accurate as the cutting proceeds, and the estimates in the present section become
relevant. In point of fact, the motion becomes rather classical. But in any case,
the use of a continuum description is not determined by the isolated scattering by
single entities; the decisive parameter is the length of the time interval d/v, be-
tween successive collisions, as will appear from the following section, and from
(2.27).

Perfect string

When considering quantal corrections to the classical treatment of a
set of successive collisions, we must compare the relative magnitude of a
number of quantitics. We can introduce five basic quantities of this kind, i.c.

4 Ly=[@I Y e d  Legy (B.8)
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where the first three parameters belong to single collisions too, whereas d
is the distance between successive collisions, and L, = v-At, cf. (2.7),
the effective collision length with one string, combined of many separate
atomic collisions. It is apparent that L_,;; > d » a, and in the type of col-
lisions considered here we also have 4 « d.

Besides the above lengths, we are concerned with others, partly con-
structed from those in (B.8). Thus, if a wave-packet is formed in the trans-
verse motion, of width dr, the wave-packet does not spread essentially on
a path length L,, = (dr)?/Z. We want to choose the size (8r)* of wave-packets,
i.e. L,, in an optimal way. A crucial question is whether L, is large or
small compared to d, the distance between successive collisions. Let us
tentatively suppose that d could be large compared to L, ; we would then
have a set of randomly adding fluctuations. In the i'th collision the angular
fluctuation is analogous to (B.1),

zZ
2
(09); = 1o + (80)972(1y), (B.9)
i.e. at minimum :
((51')? = 7/28'(r), (619)? = A9 (1), (B.10)

and totally the angular fluctuation would become
(0N = 129'(1,). (B.11)
7

However, in this derivation we assumed that d > L, ;, where L,, ; = 1/28'(z;)
according to (B.10). Since &'(r;) ~ 9(r;)/r;, this implies that d > r/d,,
which is in direct contradiction to the basic condition (2.7), requiring that
several collisions take part in the repulsion of a particle, i.e. L,y > d.
We must therefore assume that L,, X d, and can conclude that (B.11) does
not apply. The conclusion that the wave-packets in consecutive collisions
are not independent is in agreement with the inequalities (2.27), (2.27").

Disregarding the assumptions leading to (B.11), we must then consider
a wave-packet which approximately retains its width during the whole set
of collisions. If the width is dr, the total contribution to angular dispersion
from diffraction becomes (883, = 72/4(dr)?, which may be compared
with the corresponding term X7#%/4(dr)] in (B.9), (B.10). As to the total
uncertainty in deflection of the particle by the successive force fields, we
assume that there is a lack of coherence between successive collisions. If
they were completely coherent, the uncertainty in total deflection would
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disappear when transverse energy is conserved. In order to get a slight
overestimate of the uncertainty, we assume incoherence between successive
terms, i.e. totally

2 ﬁ‘) /2
(6 = @“)2 + (0r)? 219 (z), (B.12)
leading to
(69 = [ 19’2(1 M2, (B.13)
and
ey = 2 T, (B.14)

According to (B.13) and (B.14), both (64)* and (ér)® become smaller than
the corresponding expressions (B.11) and (B.10) belonging to completely
independent wave packets. Since 9'%(z;) decreases strongly with increasing
r;. it can for large E, be permissible to include in (B.14) only the effect of
the closest collision.

If we evaluate the summation in (B.13) as an integral, i.e. in the con-
tinuum approximation, we find

1/2
1/2 !

T
d
(60)2 = 7~ of f dzU"Z(r(z)) R (B.15)

— o0

where r(z) is the distance from the string as a funection of the coordinate z
measured along the string. The integral in the brackets depends only on E N
and on the impact parameter [ in the transverse motion, but not on d.
Therefore, (B.15) tends to zero for d — 0, as it should do for continuum
strings, in contrast to (B.11).

If (B.15) is multiplied by E, it represents the change in transverse energy
in one collision. Let us consider a particle at different energies E, but in
each case with the same transverse energy E . According to (B.15) its in-
crease in transverse energy, by fluctuations due to quantal corrections, will
then be proportional to the wave length Z of its tramslatory motion. The
quantal corrections lo classical description therefore decrease with increasing
velocity o.

A more detailed discussion of quantal effects will be published shortly,
in collaboration with Pu. LErvic and V. NIELSEN.
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