
Matematisk-fysiske Meddelelse r

udgivet af

Det Kongelige Danske Videnskabernes Selska b

Bind 33, nr . 9

Mat . Fys. Medd . Dan . Vid . Selsk . 33, no . 9 (1962 )

ON THE FORMULATION OF TH E

DYNAMICAL LAWS I N

THE QUANTUM THEORY OF FIELD S
B Y

P. KRISTENSE N

København 1962

i kommission hos Ejnar Munksgaard



CONTENTS

1. Introduction	 3
2. The basic equations of the theory	 7

Derivation of the reduction formula	 9
3. Discussion of the boundary conditions	 1 3

The boundary conditions 	 1 7
4. Perturbation theory	 20

Second order perturbation theory	 21
Third order perturbation theory	 2 3

Appendix A

	

	 2 7
The notations used for the theory of free. meson s

Appendix B

	

	 2 8
Volterra derivative s

Appendix G

	

	 2 9
On the formulation of the principle of maximum regularit y

References	 3 2

Synopsis

A new formulation of the dynamical laws for a system of elementary particle s
is proposed . In addition to simple assumptions of a kinematical nature, the for-
mulation rests on the principle that a classical field and classical sources which ,
according to the classical theory, describe the same physical situation, also d o
so when the classical system is coupled to a quantum field . For the simple example
of the Hurst-Thirring field, it is shown that this principle may be formulated i n
finite mathematical terms and may serve as a substitute for the formal field equation
of the renormalization theory . To the third order in the coupling constant-an d
presumably to all orders-the perturbation expansion gives the same result a s
the usual theory .

No infinities or similar mathematical ambiguities appear in the theory.

Printed in Denmark
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1 . Introduction

The study of the fundamental assumptions of the relativistic quantu m

field theory has to a large extent been concerned with axioms of a

general nature, such as f . inst . the axiom of microscopic causality, the asymp -
totic condition, and the requirement of unitarily . Basic assumptions of this
type, valid in general, could be referred to as kinematical assumptions . I t

is well known how to express the kinematical assumptions either directly

in terms of the field operators or in terms of various mathematical quantities

closely connected with the field operators . In particular certain distributions ,
such as the r-functions and the r-functions, have been studied . In terms

of such distributions, one may express the kinematical assumptions i n

closed formla, lb, 2, 3a, 3b )

Various suggestions for the incorporation into such formulations of the
dynamical laws valid for a specific system of interacting elementary particle s

have been discussed . Thus LEHMANN, SYMANZIK and ZIMMERMANN la) have

pointed out that the forces between elementary particles may be characterize d

by means of boundary conditions superimposed on the system of equation s
for the r-functions" . Recently, NIsHIJIMA 3b) and MURASKIN and NIsHIJIMA 4)

have proposed to use a postulated dispersion relation in terms of whic h

the boundary conditions may be formulated in a simple manner . It might
be true that the forces between elementary particles most conveniently are
expressed in terms of boundary conditions imposed on equations of a purely

kinematical character . Still, we hardly know the best way of characterizing
the forces. It might therefore be of interest to investigate also formulation s
in which the basic assumptions are directly concerned with the dynamical

properties of the system, and in which boundary conditions are used t o

exclude solutions of irregular behaviour only . So far, no direct formulation
of the dynamical laws, such as, for example, an explicit construction in
terms of the field operator of the source term in the field equation, coul d
be given . More indirect approaches might therefore be acceptable .

* See also ref . 9 .
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The formulation investigated in the present work does not utilize field
equations but is based, instead, on an assumption which concerns the be-
haviour of the quantum system when in interaction with a classical system
of the same type as the quantum system. The assumption has a direc t
physical interpretation for the case of quantum electrodynamics . Consider
the situation in which photons and electrons interact with an external elec-
tromagnetic system. The physical state of the classical electromagneti c
system may be described in terms of a classical distribution of current and
charge ju (x) . In this case, the interaction between the quantum system an d
the classical system enters into the theory by addition of the classical sourc e
j, (x) to the operator source of the photon field . However, this is not th e
only possibility. According to the classical theory, we might also describ e
the physical situation of the classical electromagnetic system by the electro-
magnetic field which, according to the Maxwell equations of the classica l
theory, is produced by the classical distribution of four current j, (x) . I f
this possibility is chosen, the interaction between the classical system an d
the quantum system is expressed by an additional term iey,AA,yp in the field
equation for the electron field, yp being the electron field operator . In quantum
electrodynamics, it has always been assumed that these two possibilitie s
give the same physical result .

We shall consider an assumption of this type as a basic principle o f
quantum physics . Admittedly, a direct physical interpretation of such a
principle is possible only for the case of quantum electrodynamics . However ,
the principle may be generalized to other cases and formulated as a definite
mathematical relation . To make the principle and some of its implications
clear we study, in the present work, the simple example of the Hurst-Thirrin g
field, i . e . the quantized version of the classical real field which satisfies th e
classical field equation

(- q + m 2) A (x) = gA 2 (x) .

	

(1 .1)

Let us for the moment apply the formal version of the quantized for m
of (1 .1). If the system interacts with an external field A(x) and an externa l
source j(x), the real quantum field A(x) satisfies the field equatio n

(+rn2)A(x)=j(x)+2gA(x)A(x)+J(x),

	

(1 .2 )

where the formal expression for the source operator i s

j(x)=gA2(x) .

	

(1 .3 )

* A proof was given by J . SCHWINGEn, Phys . Rev . 76, 790 (1.949) .
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To emphasize that the field operator depends on both A(x) and j(x) we

use the notation A [A, j ; x] .

Consider first the situation where j = o . If retarded boundary condition s

are used we have the integral equatio n

A(x) = Ain (x) + 4R (x- .x ' ) {j (x') + 2 gA ( .x ' ) A(x') } d 4x' .

	

(1 .4)

The notations used will be found in Appendix A . To give a definite meanin g

to the dependence of A on the physical state of the external system, w e

choose a representation of the free field operator A in in which this operator

is independent of the external field and source . If the formal expressio n

(1 .3) for the source operator is used, one finds that the operator

Â(x)=A(x)+A[A,o ;x]

satisfies the integral equation

A (x) = Ain (x) ~4R (x-x') gÂ2 (x') d 4x' +A (x) - ~4 R (x-x') gA2 (x') d4x ' .

Thus, if we define A i n and j by the classical field equation

A(x)=Ain(x,)+) 4R(x-x') {gA2(x')+j(x')}d4x',

	

(1 .5 )

where

( q +I722)Ai,n(x) = o ,
we have

A (x) Ain(x) +A in,(x)+ 4R(x-x')gA2(x')+j(x'))d4x '

In order to remove the classical radiation field

	

we apply the time- in -

dependent unitary transformation'

a
U [Ain] =exp ( -I ,l A ina JoAin(~I)dg

	

(1 .6 )

If one observes that

Ur [Airy,] Ain(x) U [Ain] = Ain(x) -Ain(x)

it is easily seen from the equation for Â that Ut [A in]Â(x) U[A in ] satisfie s
the integral equation which determines A [o, j ; x] . Thus, we have the re-
lation

A [o, j ; x] = A(x) + Ut [A in ] A [A,

	

o ; x] U [A in ] ,

	

(1 .7 )

where the sources j and Ain are connected with the field A by the classica l
field equation (1 .5) for the Hurst-Thirring field .

* We employ the notation : f (x)

	

g(a) = f(x) ag(x)

	

/(x) g(x
)

xo

	

axo

	

axa
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The equation (1 .7) is the mathematical expression for the assumption tha t

sources j and Ain and a field A, which describe the same physical situation ,
according to the classical theory also do so when the classical system i s
coupled to a quantum system .

In a similar manner, one derives the more useful equation

A[A,j+åj;x]=8A(x) +Ut [åAin ]A[A+SA,j ;x] U[ Ain],

	

(1 .8 )

where the connection between the source variations 6j, àAin and the variation

of the field is given by the varied form of the classical field equation, i . e . ,

6A (x) = ôAin (x) + S 4R(x- x') { g (6A (x'))2

+ 2gA(x') bA (.x ')+ åj(x')} d4x ' .

The proof given of (1 .8), (1 .9) is completely formal of course . However ,

these relations are in themselves meaningful mathematical expressions an d
we may assume that eqs . (1 .8) and (1 .9) are valid quite apart from th e

proof given . The formal derivation makes it plausible that, by such an
assumption, essential characteristics of the dynamics are introduced in th e
theory. In fact, similar formal calculations with another expression for th e

operator source lead to a completely different result . This is also indicate d

by the fact that the characteristic non-linearity of the Hurst-Thirring fiel d

appears explicitly in equation (1 .9) .
We shall take (1 .8), (1 .9) as a basic assumption of the theory . It will

be shown that such a postulate may be utilized in very much the same way
as the formal field equation of the renormalization theory . The advantage
gained is of course that we may maintain the attitude of ordinary mathematic s

that divergent quantities are allowed neither in the fundamental equation s

nor in any intermediate step of the calculations .

In paragraph 2, a list is given of the assumptions on which we propos e
to build a consistent formulation of the quantum theory of the Hurst-Thirrin g

field. It will appear that (1 .8) and (1 .9), which we shall refer to as th e

variational equations for the field operator, are not totally of a dynamica l
nature . In fact, as a special result, we obtain from the variational equatio n

for the field operator the reduction formulae of LEHMANN, SYMANZIK and

ZIMMERMANNib) and of NISI-IIJn17A 3a) . Thus, the asymptotic conditions

are superfluous . The boundary conditions which are necessary to avoid
solutions of irregular behaviour are discussed in paragraph 3 . It is found

that these boundary conditions may be formulated as a principle o f

maximum regularity of certain distributions, called rrR-functions, related t o
the source operator . The perturbation expansion is studied in paragraph 4,
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where it is shown that the theory gives unambiguous answers to the thir d

order (and presumably to all orders) in the coupling constant . The result s

found for the source operator agree with those of the renormalization theory .

The present investigation is of a rather preliminary nature . Several im-

portant problems have not been solved . Presumably, the validity of th e

variational equation for the field operator may be "proved" in the frame-

work of the renormalization theory . From the mathematical point of view

such a proof would be as formal as that given here . Still, a proof shoul d

be given in order to ensure that the correct results of the renormalizatio n

theory are reproduced to all orders in the coupling constant in the present
formulation . This question has not yet been considered. The assumption o f
unitarity is not needed for the unique characterization of the theory . Ulti-

mately we shall therefore be faced with the problem to prove the existence

of a scattering matrix. This question has not been considered either . Only

the Hurst-Thirring field has been studied and it is well known that thi s

theory is not quite typical in several respects .
The mathematical techniques used are presented in the usual languag e

of mathematical physics . Thus, the technical language of modern distribution

theory is avoided, although a certain not too low standard of mathematical
rigour should be maintained as regards questions of distribution theory . I n

other respects we benefit from the advantages of a purely formal approach ,

in particular with regard to topological questions in the underlying Hilbert

space. For the purpose of the present investigation this is not dangerous .

In fact it is easily seen that the situation may be remedied by a strict ad-
herence to the weak topology, i . e . all definitions and calculations may be

interpreted as relations between definite matrix elements in the Hilber t
space . However, whether the weak topology is the appropriate one for a
more thorough study of the theory is an open question .

2. The basic equations of the theory

To give a precise formulation of the variational equation for the fiel d

operator we need the connection between the quantum field A (x) and the
incoming field A(x) . We assume that A (x) is so regular tha t

S 4R (x-x') (- q ' + ni t) A (x ') d 4 x '

	

(2 .1 )

exists as a convolution integral, and that the operato r

Ain(x)=A(x)-S4R(x-x')(- q '+m2)A(x')d4x'

	

(2 .2 )
is independent of the external fields and sources, and is quantized in the
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usual way.* These assumptions involve two kinematical postulates, one con-

cerning the distribution character of A(x), which serves to guarantee th e

existence of A in (x), and a quantum rule which characterizes this operator .

For the special case of infinitesimal variations the fundamental dynamica l

assumption may now, in accordance with (1 .8) and (1 .9), be given in the

following form :

(' 6A(
x)&j ( y) d4y= 6 A (x

)+yA(x) 6 A (y) d4y
&j (y)

	

A (y) i
(2 .3)

i ~ [A (x), Ain (iJ)]

	

ô

	

&A zn (y) d3ZJ
a yo

wh ere

&j (x) = (-0+ m2 - 2 g A (x)) &A (x), (2.4)

and

&Ain (x) = &A (x) - S 4R (x-x ') (- q ' - I- rn 2 ) åA (x ') d 4 x ' . (2.5)

A possible definition of the Volterra derivative is given in the Appendix B .

As already mentioned in the Introduction, this postulate allows a derivatio n

of the reduction formula .
As a final kinematical assumption we take the variational equation t ' r t

åA(x)

&j
(y) = iz9'(x-y) [A (x), A(y)1,

	

(2 .6 )

first proved by PEIERLS 5) ; As is well known, this equation holds in th e

renormalized theory .

It will be seen in the next paragraph that the variational equations (2 .3)

and (2 .6) have more than one solution. These equations should therefor e

be supplemented with subsidiary conditions, which excludes solutions of to o

irregular a behaviour . One such condition is the requirement of relativisti c
invariance . In the following it should be understood that only relativisticall y

invariant solutions are admitted . The non-trivial question of the necessary

boundary conditions will be discussed in the next paragraph .
Before taking up the discussion of the boundary conditions we deriv e

* Cf. Appendix A .
t In the present work only the vacuum expectation value of Peierls' variational equatio n

is used .

tt For the Hurst-Thirring model it may be assumed that the commutator of two fiel d
operators is so regular that the right-hand side of (2 .6) exists as a limit of i & (x-g) [A(x), A(y) ]

where zi t (x) is a sequence of testing functions which for i-> 0 converges (in the topology o f

the space of distributions) to the distribution 0( .x) . In practice this means that the retarde d
commutator may be treated as an ordinary product . Such a regularity assumption is not pos-
sible for the commutator of two source operators .
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some direct consequences of the basic equations . First, we show that the

reduction formula follows directly from the variational equation for the fiel d

operator .

Derivation of the reduction formula .

To derive the reduction formula we use twice the variational equatio n
for the field operator. In the case of åAin ( .x) = o, we find from (2 .3)''

(Ky 2 gA (0)
à

Aåj(g

)(x) _ å

AåA

(æ)

o)
+(x-g) ,

while for åj(x) = o the result is
E->

oåA(x)
+ ~ b~(g) 6A (g) d4g-i ~[A (x) , Ain(g)_

aa

g0
6Ain(g) dl

where

8A ( .x) = bAin (x) +4R 2gA (x) åA (x) ,

Kx bAin(x) =o .

The conditions (2 .9) should not be ignored in the derivation of the reductio n

formula, as these conditions severely limit the domain of the variation s
åA(x) . Thus, in the formula which results from (2 .7) and (2 .8) ,

åA (g)(Ky- 2gA (g)) 	 åA ( )x)d4g =

i [ A (x), Ain (?1)]
ô--

åAin (y) d3 g ,
a Jo

an integration by parts is not permitted . Instead, we use

MAO) = 2 gA (g) åA (g),

	

(2 .11)
and find

aA(x)sA(x)

	

(g)} 4 g =åA(g)J~
åJ(g) åJ(g) K

y BA

	

d

	 a+ i [A (x), Ain (g) ]ago å Ain (y) d 3 ÿ .

* In the following we use for convenience the notation s

Kat (x)=(-O-km2)1(x), and J R1( x ) =zln(x-x')f(x' )d4x' .

( 2 .7)

(2 .8)

(2 .10)

(2 .12)
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Due to the retarded character of åA(x)/åj(y) we have

4R (y-z) Kv
ååj(y

(x)

	

å

) dog=-Ôj(z))

	

(2 .13 )

In fact, the difference between these two expressions vanishes for xo (zp and

satisfies as a function of z the homogeneous wave equation . If, further, the
relation

AR Kz 6A (x) åA (x) - åAin(x) (2 .14 )

is taken into account, we find from (2 .12)
<-->-

Ky
åA
å

Ç
64,

	

d4

	

i

	

Ain

	

d 3 ÿ. (2 .15)(y)

	

y = + ~ [A (x),

	

(y)] ä yo (Min (y)(u)

With the aid of the well-known solution of the initial value problem of th e

wave equation
E3

SAin (y) = S 4 (y-z)

	

-
BA (z) d3 ~,

	

(2 .16)
ôz0

we find from (2 .15) the reduction formula for the field operato r

[A (x), Ain(y)] = -is4 (y-z)Kzc5A(
	))

d 4 z,

	

(2 .17)

which alternatively, due to (2 .6), may be written in the usual for m

[A (x), Ain (y)] = 4 (y-z) Kz (x-z) [A (x), A (z)] d 4 z .

	

(2 .18)

Thus, the reduction formula gets a heuristic motivation in the formulatio n

studied here . Further, it might be remarked that in the derivation we have

not made use of asymptotic formulae, which in fact do not form a par t

of the basic assumptions of the theory .
For the discussion of the contents of the formulation proposed here, w e

found it convenient to work with the source operator instead of the fiel d

operator itself. For the Hurst-Thirring field, in the presence of an externa l

field and external sources, the source operator j(x) is most convenientl y

defined by the equation

(

	

q -I- m 2 ) A (x) = j (x) + 2 g A (x) A (x) + j (x) , (2 .19)

whence by (2 .2 )

A (x) = Ain (x) + A R (x-x ' ) { j (x ' ) + 2 gA (x ') A (x') +j (x ') } d 4 x' . (2.20)

We shall refer to the equation (2 .20) as the field equation .
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In terms of the source operator, the variational equation (2 .7) takes th e
form of the variational equation for the source operator, viz .

[Ky -2gA(g)](x)
__ j(x)

+2gå(x-y)A(x),

	

(2 .21 )
&1(y) åA (y)

while the reduction formula (2 .17) yields the reduction formula for the
source operator

[j (x), A in (y)] = i 4 (y-z) Kz	
j(x)

d1 z .

	

(2.22)
61( 0

Explicit expressions in terms of the field operator for the variational
derivatives of j (x) and for åA(x) /åA(y) may be found from (2 .6), (2 .7)
and the field equation (2 .19) . As an example, we quote the formula

aj(x)
_ [KK- 2gA (x)] [Ky -2gA(y)] iz9 (x- J)

	

O[A x , A(y)]

	

(2 .23 )åA (y)

[Kz-2gA(x)]å(x-y)-2gå(x-y)A( .x) .

	

1

The coupling constant appears explicitly here, where it plays a role in th e
characterization of the singularity at x = y . Outside the singularity the ex -
pression simplifies to

åj(x) = i,d (x - y) [.1O, j (y)], for xo + y a .

	

(2 .24)
8A (y)

x

This expression is well known from the formal canonical theory"' b ) ,

where the expression is assumed to cover the singularity for x = y as well .

It may easily be seen that the extrapolation of (2 .24) and the corresponding
expressions for 6j/åj and åA/6A to all values of x-y give the correct result
if the commutation relations between A, A. and j of the formal canonical
theory are valid .

We see from (2 .22) that, if the operato r

	

rSj(x)

	

r )

	

j(x ;y) =
Kya(y)

	

(2 .20

is expanded in the series '

j(x ;y)=f(x ;y)+f(x;y, l ) A in( 1 ) d ( 1 )

	

+~ ) ~f(x ;y, 1 , 2) :Ain(l)Ain(2) :d(12)+ . . .,

	

(2 .26)

* HAAG 7) . In the absence of bound states, the expansion functions f are c-numbers .
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where : . . . : denotes the Wick product (se Appendix A), we have for the

source operato r

j (x) = f(x) + Çf(x ; 1 ) Ain( 1 ) d ( 1 )

(2 .27 )

Here, f (x) <O j j(x) l 0> is not yet determined, but may be assumed t o

be subject to the boundary condition

<01j(x)10>-f(x)=o, forAj=o .

	

(2 .28)

We close this paragraph by a few comments on the formal theory whic h

is obtained if (2 .24) is extrapolated. in a naive fashion to all values of x
and y . In this formal theory the system of basic equations is easily seen

to be complete. We take j = A - o and find, by (2 .21) and the extrapolated

form of (2 .24) ,

j (x ; y) = i0 (x-y) [j (x), j (y)] +2 g å (x-y) A (x), (wrong)
where

A (x) = Ain, (x) + 4R j (x) .

These two equations determine the source operator anyhow if perturbatio n
theory applies . To the lowest order in the coupling constant we find from

(wrong)

j (x ; y) = 2gd(.x-y)Aft, (x) ,

whence by (2 .27) and (2 .28) we find for the lowest order term in the sourc e
operator

j (x) ° g : Aån (x) : .

When this expression is inserted into the right-hand side of the equatio n
(wrong) we find to the second order in g

j(x;y)(x-g)[g :AL(x) :, g :AL(y) : ]

+2 gå (x- y) A in (x) +2 gå (x- y) A R g : A in (x) : .

Proceeding in this manner we obtain the perturbation theory . However ,

already the second order expression demonstrates that the naive extra-
polation of (2 .24) is indeed not possible . The vacuum expectation value of
the first term on the right-hand side of the above expression leads to th e

+ 2 f(x ; l , 2 ) :A in( 1 ) A in, (2) :d(12)

+ g~ f(x ; 1 , 2 , 3 ) : A in ( 1 ) A in (2) A in(3 ) : d(123)+ . . . .
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well-known divergent expression for the self-mass of the meson and to a
wave function renormalization, this being finite in the present model .

Still, the formal approach is not without interest . It shows that the axioms

we have chosen are as complete as the usual axiomatic foundation of th e

formal canonical theory . It also demonstrates that, in order to have a complet e

dynamical theory, we must find the correct solution to (2 .24), regarded a s

an equation for åj(x) JåA(y) .
A direct approach to the multiplication problem (2 .24) has not been

found. The complete mathematical solution to the equation (2 .24) involves
an arbitrary distribution wich vanishes outside the subspace x = y, an d
what in particular complicates matters is, that this distribution is operato r

valued. We have instead chosen a more indirect method of investigation .

In this method the arbitrary distribution is c-number valued and the correc t

solution may easily be characterized . The drawback of the method is that

the external field has to be kept finite until the end of the calculations .
This complicates somewhat the algebraic part of the calculations .

3 . Discussion of the boundary condition s

In the following we take the external source equal to zero . Due to

(3j(x)_ .,

	

àj(x) d ~4_,
åi(y)

	

~(~ y)Kzb.i(z)

	

(3 .1 )

we have, by (2 .21) and (2 .25) ,

[Kv- 2B (y)]j(x ; 1)4R (1-y)d(1)=gSB~~ +2gå(x y)A(x), (3.2 )

where we have employed the notation

B(x) = gA(x) .

Obviously only this combination is relevant for the problem. The discussion

in the present paragraph as well as the explicit calculations in the next
paragraph will be based on the equation (3 .2), the reduction formula, which
will be used in the form of the connection between the Haag series fo r

j(x ; y) and j(x) given by (2 .26) and (2 .27), and the equation s

g~B
j
~ygaB(~j=z[j(x)' i(Y)l '

(3 .3)
ôj(x) _

grSB(y)
-o, for ya )xo ,
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which are a direct consequence of the explicit expression (2 .23) . Actually,

as will become clear, we need (3 .3) only in the vacuum subspace of th e

Hilbert space .

For j(x) = o the field equation (2 .20) reads

	

A (x) = Ain (x) + 4 R (j (x) +2B (x) A (x)) .

	

(3 .4)

Consider for the moment the perturbation solution . Here we regard j
as of at least the order g . For ,q = o we have by tile field equation

(x) = Ain (x) + 4R 2 B (x) A DO) (x) .

By the solution of this equation we find 2 gå (x- y) A(0 (x), i . e . the right-
hand side of (3 .2), to the first order in g. Hence we may calculate j(x ; y )
to the first order in g . To discuss in general terms how to proceed, assum e

that j(x) is known to the order gn as a functional of B. The right-hand side

of (3 .2) and thus j(x ;g) may then be calculated to the order gn+1 Hence

by the reduction formula, or more directly by (2 .26), (2.27), we find
j(x)-<0 j(x) 10> to the order g n+l . To be able to proceed in th e

iteration procedure we need <0 l j ( .x) l 0> to the order g n' + 1 or alternatively

gd<0 l j(x) l 0>/åB(y) to the order gfl+2 . This is the point where the vacuum
expectation value of the system (3 .3) comes into play. By the knowledg e
of j(x) - < 0 Ij(x) 10> to the order g'`

	

we can calculate

	

G(x ;y)=-C(y ;x)=i<01 [j (x), j(y)]lo>

	

(3 .5)

to the order gn+2 . Thus, what we need is to solve the system of equation s

~(olj(x)lo)

	

6<O1j(y)10>c x ; r
g

	

åB(g)

	

g

	

(x)

	

( g),

(3 .6 )
å 0 (j (s)0) = o

where the functional C (x ; y) is known . Observe that C is real valued .
We shall take the perturbation argument as an indication of the fact

that, if we can characterize that solution of the system (3 .6) which should

be used in physics, we have a well-defined formalism for the Hurst-Thirring
field. We therefore proceed to discuss the system (3 .6) and from now on

drop the assumption of the perturbation expansion . Thus we have converted

the problem of the i9 (x- y) [j(x), Ay)] multiplication into a similar ,

but simpler, problem where only c-number valued distributions are
involved .

g

	

åB(y)
for y ° > xo,
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The complete solution of the system (3 .6) consists of a particular solution

added to the complete solution of the corresponding homogeneous system, viz .

8l(x)

	

8l(y) _

åB(y) 8B(x) o '

(51(x)
=o, for x+y .

8 BO)

Due to the requirement of relativistic invariance we need only discuss th e

relativistically invariant solutions of the homogeneous equations . Hence we
have replaced the condition xo> yo, which for the homogeneous system i s

extended to xo + yo, by the condition x +y .

A functional of a function B(x) determines an infinite set of distributions

which we take as the expansion coefficients of the formal Volterra series .

For 1(x) we denote these distributions b y

14n(x-ill, x-y9, . . ., x -un) =snl(x)IàB(Jl.)8B(y2) . . .BB(yn)Ia=o,

	

(3 .8 )

where we have used a notation which reflects the invariance of 1 unde r
displacements in space-time . For the discussion of the equations (3 .7) we
found it necessary to restrict the domain of solutions to functionals analytical

in the sense that they are determined uniquely by the set of expansio n

coefficients of the formal Volterra series . It need not be assumed that the
formal Volterra series is convergent . To indicate the one-to-one corre-
spondence between the set of distributions 14n and the functional 1, we write"

'
1

	

'
14n( .x-yl, . . ., x -un) Ij ( zJi) . . .13 ( yn) d4y1 . . .d4iJn .

	

(3 .9)n !
n

The distributions 14n (zi , z2 , . . .zn) are of course symmetric in z l , z2 , . . . ,
zn and are invariant under the homogeneous Lorentz group . By the secon d

equation (3 .7), 14n (x-y, x-y2 , . . ., x-yn ) vanishes outside the subspac e
x = y, and hence, by the symmetry, 14n (zl , z2 , . . ., zn ) vanishes outside th e
intersection of the subspaces z,,= o, v = 1, 2, . . .n, i . e . except at the singl e
point zi = z 2 = . . . = z.- o . Thus, by a well-known theorem in the theory of

distributions, lln (zi , z2 , . . .,zn) is a finite linear combination of 8 (z l ) 8 (z2 ) . . .

8 (zn ) and its derivatives, viz .

14n(z1,z2, . . .,zn)=P(a0 , -, . . .,a-)8(z~)8(z2) .- .å(zn) .

	

(3 .10)
1

	

n

Here, P is a symmetric relativistically invariant polynomial .

* The summation starts at n =1 due to (O j (x) 0~ ~_o = o .

(3 .7)
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We have not yet taken the first of the equations (3 .7) into account . This
equation resticts the distribution 14 ,, by the condition that 1 4n(xi-x2, x1-x 3 ,

. . ., xi-xn+1) is symmetric in xn+1 as well . Hence, 1(x) may
be represented in the form

SO[B]
1(x)=SB(x) ,

where O is associated with the formal Volterra serie s

(
`

ll [ ~ 4 (n-1) (x l. -x 2 ,

n= 2

Thus, due to (3 .10), we have

O[B]=2(B(x), a~B(x), a~a, B(x), . . .)d4x,

	

(3 .13 )

where the density function 2 is an ordinary function of B (x) and the de-
rivatives of B(x) . The function 2 may involve derivatives of B(x) of ar-

bitrarily high order, but should be in accordance with (3 .10) and (3 .12) .

The results may conveniently be expressed in terms of the Fourie r
transform of the distributions . We define

14n(z1,z2, . . .,zn )

	

(20455

	

((11, q1, . . .,qn)

x exp(-i(i 1 z l -ig2 z2 - . . .-ign zn)d4 g 1 d4 g 2 . . .d4 q n ,

and have the result : s]3 (q1 , q2 , . . ., q n) is a symmetric and Lorentz invariant

polynomium, i . e .

* An interpretation of O[B] may be given in the following manner. It may be shown tha t
the first variational derivative of a scattering operator for the system is given b y

hASO
= Sj(x) .

Here the operator S is defined. up to a phase factor by the equation

4,,u1 (x) = St A ire ( x) S ,

and the conditions of unitarity and causality. It is easily seen that the condition of causality
restricts the arbitrary phase factor to the form exp i O, with O given by an expression of th e

form (3 .13) . If the source operator is known to the order gn in perturbation theory, we find S ,

apart from such a phase factor, to the order g " , and hence j to the order g" +1 is given by
the formula

4

j(x)=-igSi
åB(x) -~ g SB(x)

where O is of the type described but otherwise unknown .
Thus the discussion in the following would be made superfluous if a characterization of th e

c-number phase factor of this scattering operator could be found by other means .

(3 .11 )

. ., x1-xn)B(xl)B(x2) . . . B(xn)

	

(3 .12 )

d4x1 d4x 2 . . .c1 4 xn .
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S43 (q1, q2, . . . , qn) -

	

(- qi, - q2, . . . ,

	

q2,, q1 q2, q 1
(1

3 , . . . , qn-1
{In ) ,

and is symmetric in the indices . This is the result which follows from th e

second of the equations (3 .7) . The restrictions on 13 which follow from the

first of these equations will not be discussed further here .

The boundary conditions .
We now return to the system (3 .6). Let <01 j(x)10> be represented by

the formal Volterra series *
oc

1
11lqns7rR(x y1 , 	 x -yn)B(y1) . . . B(yn)

(3 .15)
<01j(x)10>,--

D, =1

•d4 y1 . . .d 4 yn

It follows from the discussion that, if distributions 7rR(.x-y1, . . ., x-yn )

define a particular solution to the system (3 .6), then

z1, . . . zn) = .2iR zl , . . . , zn) + P
Ô z1

. . . ' C~ zn
(

	

(

	

å (z1) . . . å (zit),

	

(3.16)

where P is a polynomium of the type described .
Thus the boundary conditions we need are those which may serve t o

characterize coefficients of the polynomial P(a/å z) .

A simple boundary condition suggests itself at this place . It is temptin g

to require that the solutions should be regular at the origin, in other words ,

that there should be no 6-like singularity . Such a requirement gives the
saine (meaningsless) result as the naive approach to the [j, j] -multi-

plication problem. The point is that no such solution exists, and an en-

forcement of such an inconsistent requirement leads to mathematical in -
consistencies which manifest themselves in terms of the well-known divergen t

integrals .

This is illustrated by a consideration of the simple example of the func-

tion nR (x-y) . For this function we simply have the expression i <01 [ j (x) ,
j (y)] 10> I8= ,, for the right-hand side of the first of the equations (3 .6). I t

is easily seen that this expression may be represented in the form t

i <01[j(x),j(o)]I0>IR=o = -~ e ( t ) à (x2 + a)f(a) dr ,

	

(3 .17)

* In the formal theory the interpretation of the functions NR is easily seen to be

N R (x-p 1 , . . . , x-yn ) =( 0 R (i ( x) ; i (y 1) . . . i (Jn)) 0) ,
where R denotes the retarded product . This formal expression is ambiguous, and not of much use .

t See f . inst . the work of Gårding and Roos, reported in the lecture notes of GåRDING and
LIONS 8 ) .

Mat.Fys.Medd .Dan .Vid.Selsk . 33, no. 9 .
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where f(r) is a distribution with support on the positive part of the rea l

r-axes, o -<- T <oo . If we split 7rn(x) in the symmetric part 5( .x) = (.7rR (x)

+ TR (-x)) and the antisymmetric part )r (x) _ -rß(x) + rR (- .x) , we have

according to (3 .6) and (3 .18)

7'R (x)

	

(x ) - ~ ~ (x), (3 .18 )

where

(x) =

	

(t) 8 (x 2 + r) f (r) &v .

	

(3.19)

For 5 we now have the equatio n

~r(.x)

	

-- e(t)rr(.x), for t+o .

	

(3 .20)

If f(r) is assumed to be sufficiently regular at the origin, we have the solutio n

(x) -2-
Ç

	

b(x 2 +r) f(r)dr .

	

(3 .21 )

However, for simple approximations, f. inst . in second order perturbatio n

theory, we find that f(r) is of the general typ e

f (r) - å ' CO,

	

(3 .22 )

apart from regular terms, where ô' denotes the derivative of Dirac's 6-func-

tion . Assume, for the sake of the argument, that (3 .22) is correct . In thi s

case, the expression (3.21) as it stands is without any mathematical meaning .

To illustrate this point, we proceed in the calculations with complete dis -

regard of the validity of the formal operations, and find the formal resul t

z (x) = S ' (x2) =
8 ~

t (d' (t-r) + 6' (t+r)) .

To see whether this expression makes sense we apply it to a testing functio n

cp(r, t), and find

t)

	

~ ~d~ .x = -~~(9' (t '~(x) 9)( l' ,

	

r) - ~( 1 ',-i')) dr
0

+
7r

}r 9_(r,r)+q)
(I', -r) dr .

2 ,o

	

I	

* It may be seen that the assumption (3 .22) essentially is equivalent to the assumptio n
that the well-known spectral function 11(x 5 ) in the Källén-Lehmann representation for th e
vacuum expectation value of the commutator of two source operators behaves like a constan t
for large values of x2 .
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The last terni diverges logarithmically at the origin. This of course is a

manifistation of the well-known divergent self-energy . Thus the symbol

å ' ( .x2 ) does not represent a distribution . *

In the renormalization theory the situation is saved by an additional terni

in the solution of the type 6m2 å(x), where årn 2 is a conveniently chosen

logarithmically divergent constant . The renormalization theory gives of cours e
the right result, but the detour over the mathematically undefined (divergent )

expressions should be, and in fact is, superfluous .

As the above example shows, in our formulation the inconsistencie s

originate from mathematically inconsistent regularity assumptions. The

mathematical form of (3 .16) suggests a formulation of consistent regularity
conditions in terms of the notion of the order of a distribution at a poin t

(here the origin). Such a formulation may easily be given and might indeed b e

the most adequate one for the investigation of the fundamental problems of th e

theory, such as, for instance, the problem of the existence of rigorous solutions .

However, the concept of the order of a distribution at a point is difficult
to work with in practical calculations, where concepts pertaining to th e
momentum space formulation are much more convenient . To avoid mathe-

matical complications we assume that the rR-functions are tempered distribu-

tions such that they possess a Fourier transform, and study the asymptotic

behaviour of the Fourier transforms of the distributions instead of the singu-
larity at the origin of the distributions themselves .

We here adopt a simple characterization of the asymptotic behaviour

in momentum space of a tempered distribution given f . inst . by MEnvEDEV 9l .

Let T(z) = T(zi, . . .,zn) be a tempered distribution with the Fourier trans -
form T (qi , . . . , qn) . We define the rate of growth at infinity in momentum

space of T(z) as the smallest integer N= N(T) such that eN+a increases

faster than T ( q i , . . . , qn) for -~ oo and any value of a > o . Correspond-
ingly, we call S more regular than T if N(S) <N(T) . If N(T) is negative
we simply say that T is regular . This ordering of distributions with respec t
to regularity is quite rough, as is illustrated by the remark that T and

T+P(ô/az)o(z) are equally regular whenever the degree of the polynomium
P does not exceed N(7') . Still, the above characterization is sufficient fo r

the discussion of the perturbation theory in the next paragraph . A more

refined ordering of distributions with respect to regularity is proposed in th e
Appendix C .

* In contrast hereto, the distribution symbolized by e(t) å'(x 2 ) is perfectly well defined ,
as one secs by a similar calculation . A parallel, but simpler situation would arise in a two-dimen-
sional theory (one x and one t), where å(x 2 -t2) is divergent, but e(t) å(x 2-t 2 ) is convergent, if
the usual way of treating 6-functions in mathematical physics is adopted .

2*
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Consider now the 7TR-functions . If the system (3 .6) does not admit regula r

solutions, we may instead look for the most regular solution . The rate o f
growth for the various 7TR-functions of such a solution might be looked upo n
as constants characteristic of the singularity required by the interaction. Ad-

ditional terms of the type P(a/az)å(z), when they make the 7TR-function s
less regular, introduce singularities of a complexity not required by th e
interaction . It is natural to assume that such singularities do not belong t o

the theory. This motivates the following formulation of the boundary con-

ditions for the equations for the source operator : The functions ZR (z l , . . . , zn,)
are as regular as compatible with the basic assumptions . This boundary con-

dition will be referred to as the principle of maximum regularity .

The principle of maximum regularity is not new, but has always bee n
adhered to in the usual formulation of the theory . An explicit formulation
of the principle may be found in the book by BoGoLlusov and Suznaov lo)

In the renormalization theory one simply introduces such renormalizatio n

constants, only, as are required to remove divergences according to th e
experience from the perturbation theory .

If the rate of growth at infinity in momentum space of a 7TR-function i s
N, an additional singularity of the type P(a/a z) b (z) , where the degree o f

P does not exceed N, is left arbitrary . The coefficients of the various term s

in the polynomial are thus arbitrary constants in the theory so far formulated .
If this situation should occur, these constants should be determined b y
further conditions of the character of normalization conditions . Presumably

no such arbitrary constants remain in the case of the Hurst-Thirring field .
The situation in this respect might be different in, for instance, the 7T-meso n
theory, this theory being more singular . Alternatively such constants coul d

be regarded as subject to physical interpretation, and thus as parameter s

belonging to the theory in the same way as the mass and the coupling constant .

4. Perturbation theory

As mentioned in the Introduction, we have not yet been able to prov e
that the theory proposed here gives the same results as the usual theor y
to all orders in the perturbation expansion . In the absence of a general proo f

we show in this paragraph that the two theories agree to the third order i n

the coupling constant . As the methods of calculation are somewhat different
from the usual methods we present the third order calculation in some detail .

In perturbation theory we assume that the source operator is at least o f

the order g, and expand in powers of g . When only results for B = o are



Nr.9

	

2 1

desired, it suffices to expand in powers of B as well . To indicate for a quantity
F the sum of all terms of order g 9 B a , with O r and a c s, we employ the
symbol P r ' s) . It is easily seen that in the n 'th order calculation we must
calculate all terms j (x ; y) (r ' s) , with r +s < n and s< n .

Second order perturbation theory .
To the first order in g and for B o we find from the variational equatio n

for the source operator (3 .2)

j (x ; y)(l'O) = 2gå (x - y) A in (x) ;

	

(4 .1 )

whence, by (2 .26) and (2 .27) ,

(x)(1'°) =g :A in(x) : •

	

(4 .2 )

For g = o and to the first order in B we have, by the field equation (3 .4) ,

A (
x)

(0'1)=A in(x) +2JR(x-1 ) B ( 1 ) A in( 1 ) d (1 )•

	

(4 .3 )

These formulae allow us to calculate the operator j(x ; y) (1j 1) from (3 .2) .
From the resulting expressio n

j (x ; y ) (1 ;1) - 2 g å (x -y) A in(x)-l 4gå(x-y) dr(x-I ) B (1) A in( l ) d ( l )

+4g A in (x) AR(x-yB (y)

	

J
(4 .4)

one finds, by the use of (2 .26) and (2.27) ,

j (x)(1 ;1) - <0 I j (x) I 0)(1 ' 1) = g : Az (x) :

4 .

	

x-I B 1

	

x A 1 :

	

j (4 .5)
g 5 R(

	

) ( ) Ain( ) in( ) d (1 )

As explained in the beginning of paragraph 3, we determine the unknown
vacuum expectation value <0 I j(x)10Pj 1) by means of the system (3 .6) .
A simple calculation gives for the right-hand side of the first of the equation s
(3.6) the result

C (x)(20) = c<0 ~[1(x)(1'0), J(o) (l ' 0)j I 0 >

= -

	

(x ; x 2)17(2) (x 2 ) d x2 ,
4m 2

with

(4 .7)
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Thus, to this order, the system (3 .6) becomes

U
0.
rR

	

;0)
7R ( -x) (2 ;0) =

	

(x ;

	

II (2)

	

2) d 2 ,(x)

	

,
4

	

x )

	

(x
c 4.m z

AR
(x) (2 ;0) = o, for x0 <o .

We have here used

_ 7R (x-9)(2
;o) .

	

(4 .9)
åB (d)

It is easily seen that, for zR(x)(2'0), the naive 99.-multiplication leads to a
meaningless result . However, a particular solution to the system (4.8) is easi-
ly obtained by means of the identity (- q + a2)4 (x ; x 2 ) = (a 2 -% 2)4 ( .x ; x 2) .

For the sake of convenience, we choose a2 <4m 2 and have the solution

(2 ; 0) _

	

2 •~ 4R (x ' x2 )R (x)

	

(- q +a )
1
	 2	 2 -H( 2) (N 2 ) dx .

e .4m2 a - x

Hence, the complete solution to (4 .8) is given by

~R(x)(20) =~CR(x)(2;0)+g2coå(x)+ . . .+g 2 C N (- q ) N 6(x) ,

where c o , cl , . . ., cN are constants and N is an arbitrary positive integer . By
the use of (4 .5) and the above expression for the right-hand side of (4.9)
we find, from (3.2) ,

.Î (x ; g) (2 ;0) - AR
(x-y)(2;0) + 2gà (x- g) Ain (x)

+2g 2 JR (x-1) :AL (1) :d(1)å(x-y)

	

(4.12)

+ 4g2 4R (x-y) : Ain (x) A in (9) : .

Following the general pattern we next obtain j(x), to the same order, with

the aid of (2 .26) and (2 .27). Due to - q Ain (x) -- m2 Ain (x) and the
general formula

AR(x
-

y) Ai,n( y ) d4y=c'Ain(x),

	

(4 .13)

where c ' is a constant, we find

1
(x)(2 ;0) = c"Ain (x) +g : Ain (x) : (4.14)

+2g2 4R(x-1) :Ain(x)Ain(1) :d(1) .

	

1
Here the constant c" is given b y iven by c" = c ' + ~ir 2 co -1-- . . . +e(-m2)'' nc, ; . To fulfil l
the regularity condition that (2 .1) exists as a convolution integral, c " = o

(4.8)

0 < 0 Ij (x)I 0 > 0-'i)

(4.10)

(4 .11)
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is required in order to avoid a å(p 2 +m 2 ) 2--catastrophe in momentum
space. Hence, by the field equation (3 .4), we find the complete second -
order expression for the field operator, viz .

A(x)(2;0) =Ain(x)+ 4 R(x-1 ) g :AL( 1 ) : d ( 1 ) l
} (4.15)

+2g 2 AR (x-1)AR (1-2) :Ai.(1)AL(2) : d(12) . J

The function yrR(x) (2j0) may now be calculated with the aid of the explici t

expression (2 .23) . A simple calculation gives the resul t

2 4r

.2Q (

R	

(m 2

xy ;

2) 2

x 2)

	

(2)
(x2) dx2l~x

~-x
	 11

From (4 .16) we find C2 = . . . = CN = 0, and explicit expressions for co an d
c l could be found. The results (4 .16) and (4.15) are of course the well -
known results of the renormalization theory .

Thus we see that, in the second order approximation, the functio n
7r R (x-y) is uniquely determined without the use of the principle of maximum
regularity . Indeed, it may be shown by similar considerations as that abov e
that this result is exactly true on the assumption that the spectral function
17(x 2) in the Källén-Lehmann representation for i <0I [j(x), j(o)] 10> I B_o i s
bounded for large values of x 2 . If this is true one finds, as above, that th e

first of the ZR-functions is given b y

4m (

	

~)2 rI (x 2 ) dx 2 .

	

(4 .17)

This expression gives the well-known result for he polarization of the
vacuum by a weak external field .

Third order perturbation theory .

For the higher-order calculations, the principle of maximum regularit y
is needed to determine the RR-functions depending on two or more variable s
z 1 , z2 , . . . It will be convenient to have a notation for the terms in a quantity
F(r ' s) which are proportional to gr B' . We shall denote these terms by th e
symbol Thus j (x) (3j °) = j(.x) (3 ' °) + j (x)(' °) . Hence, in the third order
calculation, as we already know j(x) (2 ° 0), we need only calculate j(x)(30)

S<o lj (x) lo > (1 ' 1 )
~R.(

_ 11)(2 ;0)

åB(y)
(4 .16)

7ER
(x) =

Kx
~

	

R (x x2)

2
m _x
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To calculate this operator, we start from j (x ; y) (1 ' 2) and follow the metho d

outlined in the beginning of paragraph 3 . By the variational equation for
the source operator (3 .2) we find

j (x ;y) (1'2) = 2gå (x-y) A (x)(°'2)+Sj (x
;z)(1 ;1) 4R (z-y) d4z2B (y), (4 .18)

where due to (4 .4)

.7(x ; z) (i '1)=4gå (x-z ) 4R(x - 1 ) B ( 1 ) A in, ( 1) d ( 1 )
(4 .19)

+4gAin (x) 4R (x-z) B (z) ,

while A(x) (0 ' 2) is given by the field equation (3 .4), viz .

A (x)(0 ' 2) = 5 4R (x-1) 2B (1) AR (1-2) 2B (2) Ain (2) d (12) . (4.20)

Application of (2 .26) and (2 .27) -i . e . of the reduction formula for th e

source operator-yields the result

i (x)''' 2)- <0 Ii(x ) 1 ") 1 0 >

=8g4R(x-l)B(OAR ( 1 - 2) B (2) :A,in(x) A in(2) :d (12)

	

(4 .21 )

+4g54R (x-1)4R (x-2)B(1)B(2) :A in (l)Ain (2) :d(12) .

According to the methods described in paragraph 3, the next step in th e
calculation consists in the evaluation of g<0I åj(x) (l ;2) /6 B(g) 10> by the aid
of the system (3 .6) . By (3 .5)

C(x ;y)(2,1)=i<0I [J (x) (1 ;1) , j (9) (1 ;0) 1 0>-(4 .22)

where the relevant source operators are given by (4 .5) . One finds

c (x ; 0 (2 ;1) = S K (x, y ; z) B (z) d 4 z,

	

(4 .23 )

where the kernel K(x,y ;z) is given by

K (x, g ; z) = 4 g 2 4R (x-z) { 4 (1) (z-y) 4 (y-x) - 4 (z-y) 4(1) (y-x) } l (4 .24)
- 4 g2 4R (y-z) { 4 (1) (z-x) 4 (x-y) - 4 (z-x) 4 (1) (x-y) } . 1

In this case, the formal solution of the system (3 .6), i . e .

å <olj
(x)(1,2)10>

	

1

g

	

åB(y)

	

- yrR (x-y,x-z)'3 ' 0) B(z)d4 z,

	

(4 .25)

with

zrR (x-y, x-z)(3' °) = 4g34R (x y) i 4R (x-z) 4(1) (z-y)

+ 4R (y-z) 4 (1) (z--x) 1

+ 4g3 4R (x-z) 4R (z- y) 4 (1) ( .x-y)

(4 .26)
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has a meaning, and defines a distribution . Simple considerations show that

this distribution is regular in the sense defined in paragraph 3 . Further, it

is easily verified that all of the basic equations are fulfilled by the corre-

sponding expression for j(x)(1 ' 2) . The solution (4.26) is thus the one re-

quired by the principle of maximum regularity.
We may now calculate j(x ; y)(2,1) . By (3 .2)

J

	

_

	

åj(x)(1'2)
j(x ;y)(z 1)= 2gà(x-y)A(x)(1 ;1) Fg

åB (y)

	

(4 .27 )

+S j (x ;z) (2, °) 4R (z-y) d4z 2B (y) .

	

1
Here A(x)(1 ' 1) may be obtained from the field equation (3 .4) and the formula

j(x) (1 ' 1) - 1

	

R(x-l)(2j0)B(1) d (l )g .

+4g 5 4R(x- 1) B ( l ) :Ain(x) A in( 1 ) :d (l) ,

which is a consequence of (4 .5) and (4.9) . Thus,

A(x)(1 ;1)=
S A R (x-1)TCR (1 2)(2 ;0)B(2)d(12)

(4.29)
+4g54R (x-l)4R (1-2)B(2) :Ai,, (1)Ain (2) :d(12)

+20AR (x-1)B(l)4R (1-2) :Az (2) :d(12) .

An expression for gåj(x) (1 ' 2) /åB(g) may be found from (4 .21) and (4 .25) .
Finally, j (x ; y) (2j °) is obtained from the expression (4.12) . In this way
j (x ; y) (2 ' 1) may be calculated. The result is

(4 .28 )

J (x ;y) (y ' 1) - < 0 Ij(x ;y)(2'1) 1 0 i+j(x ;g)IÎ' 1) , (4.30)

where j(x ;y)1' 1) denotes a two-particle term. The vacuum expectatio n
value is found to be

<- 0 I j(x ; y)(2 ;1) 10> = 26 (x-y) Ç 4R (x-1) ;TR (1-2)(20) B (2) d(12)

+27CR(x-1)(2 ;°)4R(1-y)d(1)B(y)

	

(4 .31 )

+(1/g)zrR(x-y,x-1)(s;°)B(1)d(l )

while the two-particle part of the operator j(x ;y)(2 ;l) becomes identical
with the (meaningful) expression found by the application of the forma l
unrenormalized canonical theory. The first two terms on the right-hand side
of (4.31) originate from the first and the last term on the right-hand sid e
of (4.27), respectively. Thus both these "dangerous" terms are brought into



j (x)
(jE'

°) gSnR (x-1) (2
'
° ) 4R (1-2) :A 2

in (2) :d(12)

2g3 ;4R (x- 1)4R (x-2)4(1) (1-2) :Ain (1)Ain (2) :d(12)

	

(4 .39)

+ 4g3 S 4R(x - 1) 4(1) (x - 2) 4R( 1 - 2 ) =Ain(1 ) Ai,j(2 ) :d (12), ~

26
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the third order calculation not by the second term on the right-hand sid e
of (4 .27), but by the two other terms and in the already properly normalize d
form obtained by the second order calculation .

By the expression for j(x ;0 (2 '1) and by (2 .26) and (2.27) we find
j (x) (2 ' 1) -< 0 1 j (x)( 2 ' 1 )10 > . It is easily seen that, in fact, the vacuum ex-
pectation value is equal to zero . For by (3 .6)

å <0 1j(x)1)I0 >
g -

	

-

	

-(xHg) = C (3 ' °) (x ; g) ,
åB(y)

where by (3 .5)

(4 .32)

C
(x ;g)(3 ;°) = i <o I [J(x)(2

;°)

	

J (g ) (1'0) 1 I 0 > (4 .33)

i . e. by (4.14)

C(x
;g)(30)) =2ig3 4R (x-1) < 0

	

[ :Ain(x)Ain(1) :, :A¢n(y) :]10 >

(x,_g)

Hence

(4.34)

C(x ;g)(3°°) = o, (4 .35)

due to the fact that the vacuum expectation value is required for an od d

number of incoming fields. It is now easily seen that the principle of maximu m

regularity requires

g	
åB(g)
	 =o .

	

(4 .36)

The equation (3 .2) gives the expressio n

j(x
;g)(3,0) = 2gà(x-g)A(x)(2 ;0)+gaJd

B(x(g

) )(2 ' 1)
.

	

(4 .37 )

Here A ( .x)(2 ° °) is given by (4 .15) and j(x) 2' ) is known already . From th e
resulting expression for j(x ;g)(3'0) and with the aid of equations (2 .26)
and (2.27) one finally finds the result, well known from the renormalizatio n
theory, that

j
(X) (s ;° =j

(X)ii '0) +j (s)1v°),

	

(4 .38)

where the two-particle part is given b y

Ô <o Ij (x)(' ' 1) I o >
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while the four-particle part'' j(x)D° ) is identical with the four-particle part
found by use of the formal theory .

The author has benefited from discussions with several members of th e
staffs at the institutes of physics and mathematics at Aarhus university . It
is a pleasure here to thank LARS MEJLBO and EBBE TRUE POULSEN for help -
ful discussions as regards various questions in the theory of distributions .
In particular my thanks are due Pout WERNER NIELSEN for much helpfu l
criticism and valuable suggestions .

Institute of Physics
Aarhus University

APPENDIX A

The notations used for the theory of free mesons

We use the pseudo-Euclidean metric, x = (x1 , x2 , x3 , x4) where x 4 = ixo .
Further, x 2 = xi, xi, = x2 - xo, and - q = - 4 + ô2 /ô xô . The free field operator s
Ain (x) are self-adjoint operator valued distributions which satisfy the com-
mutation relations

[ A in (x), A in (u)] = i4 (x-g) ,
where

4 (x-y) = - i (2 70-3 Ç d4p e (po) å (P 2 +nz 2) exp ipx .

Here, e (po) = po/ I po • The retarded Greens function is 4R (x) _ - O (x) 4 (x) ,
where O(x) is the Heaviside function

J
1, for xo> o

o, for xo < o .

The value of 0(x) for xo -o is not important .
The Wick product is denoted by : . . . : , and designates that the operators

inside the double dots are ordered such that any positive frequency par t
stands to the right of any negative frequency part . Useful rules for the cal-
culation with Wick products are found for instance in the book by BoGo -
LTUaow and SIIIRIiov 10 )

* T . e . an operator of the form

1

4 ii
/(x ;

1, 2, 3, 4) : A inz (1) Ain(2)
Ain(3)

Ain(4)
: d (1234) .
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APPENDIX B

Volterra derivatives

Volterra derivatives seem to be an indispensable mathematical tool fo r
the theory proposed here . It might therefore be useful to give a brief in-

troduction to the theory of variational derivatives .

Consider a functional Ø [ j] , which maps from a certain space of functions
j into the complex plane . Useful definitions of differentiability of such
functionals are all of the following general type : The functional 0 is calle d

differentiable of j if the variation of Ø is of the for m

[J+åj]-ø[J] = S

	

[J ; x ] åj(x) d4x + o [J, åJ],

	

(B . 1)

where Yf[j ;x] 6j(x) d4x is a linear functional of 6j and o[j, 8j] has certain

properties . Roughly speaking, it is required that for j fixed and 6j-> o, o[j, 6j

tends to zero "faster than" 8j . Hence, to give a precise definition of dif-
ferentiability, one has to specify

(i) the meaning of åj-> o, and

(ii) the meaning of the term "faster than" .

For any such specification, we call ![j ; .x] the Volterra derivative of Ø,

and use the symbol

W[j ;x]

8Ø [J ]

8J (x)

A simple possibility is the following :

(i) åj-} o means 6j = j (1) , where j(l) is fixed and

	

o ,

(ii) o[j, $j( l )] is required to be o(5) for j and j(i) fixed, i . e .

limo
[j,&j(n ]

This immediately leads to the relation

(13 .2 )

~ ~ [j x ] jcl ~ (x) d 4 x
dO [ + e.1(1) ]

d
(B .3)

5= 0

We stress here that, to our knowledge, no argument is known which in-

dicates that this particular definition is the most adequate one for use in

the quantum field theory. However, other reasonable definitions seem to

he more restrictive . Thus, in general, the existence of the right-hand side
of (B . 3) will be a necessary condition for differentiability .
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As mentioned in the Introduction, when operator valued functionals ar e
considered, the weak topology in the Hilbert space may be used to giv e
the relations in the text a well defined meaning . If further the definition
(B . 3) is adopted, and if the field operator is regarded as an operator value d
distribution, a symbol like åA(x)/åj(y) becomes endowed with the inter-
pretation

	

<AI(x)v(x)d4x!B>=	 <A I A (x) y (x) d4x I B> ,

	

(B .4)
å

åj (d)

	

6 (y)

where y(x) is a testing function for the operator valued distribution A(x) ,
and the variational derivative on the right-hand side is the one defined above .

Finally, a remark about certain interchanges of limiting processes, fre-
quently performed in the text, may be in its place . As an example conside r
the relation

	

2 6A(x)

	

å
(- qx+m)

åi(
=	

J) ~
. - ( - Oz +m 2) A(x) . (B.5)

If the possible interpretation mentioned above is employed, this equatio n
means

( - x+m2) < A I A [j+sj(l) ;x[ 113 >

d
=(- qx+m2)d~<AIA [i +~.i~l ' ;xll R>

i
(B .6)

d

d e

for C = o . This only requires an interchange of two ordinary differentia l
operators. The validity of such relations is assumed in the text .

APPENDIX C

On the formulation of the principle of maximum regularity

In paragraph 3 the concept of the rate of growth at infinity in momentu m
space was used to formulate the principle of maximum regularity . Such a
formulation is satisfactory due to its simplicity, but might not always work .
It presupposes that the 26R-functions are tempered distributions for which
the Fourier transforms are functions for large values of the momenta. Both
these properties might be difficult to prove without recourse to an approx-



30

	

Nr . 9

imation method . In this appendix we propose an ordering of distribution s

with respect to regularity which avoids these problems. Only standar d
notions in the theory of distributions are used, and for these we refer t o
the book of L . SCHWARTZ )

We consider distributions TO defined on a f-dimensional Euclidea n
space, e 2 , . . ., $f) . Differential operators are denoted by Da =
aa 1 +a2 + . . . I'fla b a 22 . . . a$.f, and la 1 =ar+a.2+ . . . +af is the degree of

the differential operator . As only local properties are considered, we nee d

not specify the type of the distribution . Let be an open bounded set and

D(sti) the totality of testing functions which vanish outside O . To define the
concept of the order of a distribution in C, we need the seminorm s

p k (v) - max max 1 Da o (e) I .

	

(C.1 )
lal=k fe d

The notion of the order of a distribution, as given in the book of Schwartz ,

is easily seen to be equivalent to the following definition (valid for bounde d
sets C only) : The order of the distribution T in C is the smallest intege r
mT (C) for which there exists a constant C, such tha t

I S T O y O d l< C Pin, (o) CO,

	

(C. 2)

for all ve D(C) . We define the amplitude A T (C) of T in C as the infimum
of the possible constants C in (C . 2) . The order and the amplitude of th e
distribution T at a point, say the origin o of -space, may now be define d

as follows : The order of T at o is the smallest integer mr for which ther e
exists a neighbourhood C of o in which the order of T is ni T . The amplitud e
of Tat o, AT , is the in finorm of the amplitude over all neighbourhoods o f

o, i . e . AT = inf AT (0) .
03 o

The two numbers, ris T and AT , may now serve to order distributions
with respect to their behaviour at = o . We say that S is more regular tha n

T at the origin if ms <mT or if ins = mT but A S <AT . In this manner all
distributions may be compared to each other, and in particular to derivative s
of 6. However, the comparison is quite rough . In general, if rns<mT , the
distributions T + S and T are equally regular at the origin .

The formulation of the principle of maximum regularity may now b e
taken over from paragraph 3 .

It is obvious that the '0-multiplication thus defined (although not alway s

uniquely defined) constitutes a generalization of the ordinary product of Im o
functions . Indeed, for sufficiently regular distributions, i . e . for distributions
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of the order zero and of the amplitude zero at the origin, the requiremen t

of maximum regularity gives the same result as the "naive" D.-multiplication

which succeeds in this case . It is easily seen that such distributions locall y

are measures continuous at the origin .

The concepts of the order and the amplitude of a distribution at a point

are much more powerful than the concept of the rate of growth at infinit y

in momentum space to analyse the dominating singularity o f 'the distribution .

This fact is revealed by the following theorem, which we give without proof :

If ni is the order at the origin in (x i , x2 , . . .,xn)-space of the distribution

zrR (xi , x2 , . . . , x n ) there exists a unique relativistically invariant and sym -
metric polynomial P. (a/axi , al åx2 , . . . , a/ ax n ), homogeneous of the m ' th

degree, such that ThR-P,.nå has the amplitude zero al the origin .

The main point is that the polynomial exists and is unique . The re-

lativistic invariance and the symmetry of the polynomial are then a trivia l

consequence of the fact that the statement that the amplitude at the origi n

is zero involves symmetric and invariant concepts only . In general one
cannot reduce the order by a regularization process f this type .
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