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Synopsi s
Dissociation of diatomic molecules is considered as the escape of a classical particle fro m

a potential minimum due to its Brownian motion . The criterion for reaction is taken to b e

annihilation of the particle at a certain energy. For this model the Kramers equation is set up

and solved exactly for potentials of the form V = C
I
r I n , and the rate constant for escape from

the potential minimum is found . It is also shown how the rate constant may be obtained from

a variational principle, and as an example of this method the rate of escape from a Mors e

potential is found . The results obtained agree very well with machine calculations . Finally it

is attempted to justify the Kramers equation in the limit of weak interaction by deriving it

directly from the Liouville equation . It is shown that the equation obtained deviates signi-

ficantly from the Kramers equation, except for the case of a harmonic oscillator molecule . It

is remarkable, however, that rate constants obtained in this way for the rate of escape of a

particle from very deep potentials of the above mentioned simple form are almost identical

with those derived from the theory of Kramers .
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Introduction

In recent years there has been a renewed interest in stepwise activatio n
theories of chemical reactions ) resembling the Brownian motion theory

originally proposed by KR Aui:Rs 6 . In such a theory the reacting molecule i s

considered as an effective mass point which performs a Brownian motio n
in an external potential due to the coupling to a thermostat . When the particl e
attains a sufficiently high energy a chemical reaction may occur, which i n

these theories is pictured as the crossing of a certain surface in phase-space,

or simply as an annihilation of the particle as it reaches a certain energy .
Due to the Brownian motion of the particle in phase space the probability

density function for the particle will satisfy a diffusion equation when th e
problem is treated classically, or a discrete analogue of a diffusion equatio n

when it is treated quantum mechanically . It is generally assumed that th e
diffusion equation derived by Kramers using the semiphenomenological
theory of Brownian motion is correct . So far it has only been possible,

however, to compare it with more exact calculations in the case of a particl e

moving in a harmonic oscillator potential, since only in this case has it bee n
possible to set up the equations . In the harmonic oscillator case, and with
the assumption that the density in phase space does not depend on th e
angle variable of the particle, there is complete agreement between th e
classical equation of KRAMERS6 and the equation derived by BAK, Gocur and
I-IENru 7 for the case of the Brownian motion of an oscillator weakly couple d

to a crystal lattice . Furthermore, for this case the quantum mechanica l

theory of MONTROLL and SHu]LR 1 also reduces to the Kramers equation
in the limit It

	

O .

In the case of a harmonic oscillator potential it is also comparativel y

simple to solve the diffusion equation, at least when the reaction is considere d
as an annihilation of particles. As is usual for such calculations, the rat e
constants obtained for the dissociation of diatomic molecules are far to o
small. One of the reasons for this is undoubtedly the use of the harmoni c
potentials, since one would expect that an anharmonic potential would spee d

1*
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up the dissociation reaction . Although the neglect of anharmonicity in th e
potential is by no means the only reason for the discrepancy between theory
and experiments, we shall here be concerned solely with this difficulty an d
disregard such questions as the relative importance of hard core collision s
and weak interaction collisions, and the even more elusive question o f
whether it is permissible to use intermolecular potentials, derived by usin g
the Born-Oppenheimer approximation, under the conditions which prevai l
in a molecular collision .

Throughout this paper we shall therefore assume that the reacting mole -
cule, which we for simplicity shall think of as a diatomic molecule, is i n
weak interaction with a thermostat . The thermostat which is assumed to b e
in equilibrium may be a gas or a crystal (phonon gas) . The criterion for
reaction is that the molecule reach a certain energy, i . e ., the reaction i s
pictured as an annihilation at a certain energy level .

For this model we derive the Kramers diffusion equation in phase spac e
(or rather energy-time space) and solve it exactly for oscillator potentials
V= C ~ r 1 n . For arbitrary intermolecular potentials the equation can be
solved approximately be a variational method . As an example of the us e
of this method, we find the rate constant for escape from a Morse potential .

Finally we attempt to justify the Kramers equation for the above model
by deriving it directly from the Liouville equation, using the asymptoti c
time integration developed by BROUT and PRIGOGINE' 2 .

Due to mathematical difficulties we limit ourselves in this case to con -

sidering the oscillator potentials V = C r j , V = yz2 and the square-well

potential, V = 0 for r I< 1/2, V = oo for I r > 1/2 . These potentials have th e
common feature that when r is expressed in terms of the action-angle va-
riables, J and r can be factorized, i . e . r = ro (J) B (a) .

In order to be able to compare the coefficients C, y and 1 for these potential s
one must make a convention about the different values of r at which dis-
sociation occurs . We shall make the assumption that the value of r at which
dissociation occurs is the same for the three potentials . We therefore have

C 2 -, ~ Dy

	

and

	

1 2 = 2 D/y

where D is the activation energy .

The most remarkable feature of the exact theory is that it gives practically
the same results for the rate of escape of a particle from a potential as doe s
the theory of Kramers, in spite of the fact that the two equations for the
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time behaviour of the density in phase space are completely different . We

cannot, however, agree with the statement made by MazuR 15 that Prigogine' s

theory confirms the phenomenological theory of Kramers . The agreement

which one obtains with respect to rate constants indicates, however, that a s

long as only weak interactions are considered, the conceptually much simpler

theory of Kramers which has later been elaborated by BRINI w\N16 may b e

useful when considering the influence of anharmonicities, or when investigat -

ing the validity of annihilation as criterion for reaction .

Both the theory of Kramers and the more exact treatment based o n

Prigogine's integration of the Liouville equation show that for simple
potentials one gets the result that the rate constant i s

t
k oc

ca (~I)) ß D

which is precisely the result one would expect from a correspondence argu-

ment assuming the result

k =/3Dé ßD

to be valid for the harmonic oscillator where the energy levels are equall y
spaced. Both theories therefore show that anharmonicities which decreas e
the frequency of vibration increase the rate of dissociation, in qualitativ e

accord with the experimental findings . The aim of the present paper is ,

however, not to compare theory and experiments, but solely to study how
the problem of anharmonic molecular potentials can be treated within th e
framework of a weak interaction theory .

Kramers' equation

We shall start by giving a derivation of the Kramers equation for diffusio n
in phase space for the case of small viscosity, i . e ., weak interaction betwee n

the particle, the Brownian motion of which we consider, and the thermostat .
The derivation takes its starting point in the Fokker-Planck-equation fo r
the phase-density function Ø = Ø (q, p, t), defined in the phase-space for

the particle. In the case of a particle exposed to a force derived from a n
external field of force V (q) in addition to the stochastically varying force du e
to the surrounding medium, the equation has the following form6 ' 8

dØ

	

d

	

1 åØI p dØ dVÔ Ø
dt ~dp

p +1n~
dpl mdg dg d P

(1)
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For our purpose it turns out to be practical to change the variable s
specifying the state of motion of the particle from (q, p) to action-angl e

variables J =
2

pdq, which depends only on the energy, and a defined
2g dE

by da = w dt where co =
l

= a For the simple case where dq = P dt we
have therefore

	

11z

s2 .~7.

J= ~2 dt = 2
- ç

p9 da .in

	

w m
o

	

o

We now consider the case where the coupling-coefficient q can be taken
to be so small that the particle will run through the region in phase spac e
between the surfaces with constant energy E and E + dE several times
(a increasing each time by 2 ï) before it leaves this region and changes it s
energy. Expressed in another way, we suppose the particle density to b e
equally distributed over the region between E and E I- dE, that is 0 _ 0 (J)

or (- -) = 0
. Substituting

J
a aJ a

	

a

	

a_ aJ a 1 dv ap

	

and
ap apaJ coma)

	

aq ag0J wdq a J

into eq . (1) and introducing the reduced energies x = ßE and reduced action
variables j = ßJ, eq . (1) is transformed int o

a$ it
Ø+ß p2 +

	

p' d

	

aØ î
at

	

win w co ni dj

(I

w

)'

aj

Then integrating (averaging) over a from 0 to 2 g using eq . (2), the following
partial differential equation is obtaine d

aØ _ q a
Øj+.1

-
-I 7iw --j 1 + å eh

	

(3)at

	

aj

	

co 6j!

	

ax (

	

ax)

where in the last equation 0 is considered as a function of the reduced
energy x and t instead ofj and t . Introducing the reduced time r. = ~p f we get

00

	

J
= w - ,j 1 +~x

)
Ji

and separating the variables by setting

0(.x, r) = (x) O (r)

(2)

p2
a20-

Co 2 I21 aj2,

we obtain
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1 d0 1

	

d(

	

d
0 dt

	

w
dx'j

1+

	

k .
dx

zl'=

	

.

	

As O has to approach a stationary function for r

	

, the solution for O
must be O

	

zc~ with k positive and real . For W we therefore obtain th e
differential equation

w d j(1+
d

)W -HkW=0 .
dx

	

dx

Because we are primarily interested in the deviation from the Maxwell -
Boltzmann distribution, we set

	

(x) = y (x) e x, and obtain for y

	

dirge
x

dx
)-I-ke

x ( u)=0

	

(4)

dy +(t-jco) d
dx

	

+kq=0 .

	

(5)
dx

	

`

Furthermore, for the special potentials, which can be expressed b y
/ E 11'

V(q) = C I q n l (C being a constant, 0 q c
C

) as for example the square -

well or the harmonic potential, j w will be proportional to x as a consequenc e
of the virial theorem. This can be shown simplest by introducing
p = ± V2 ni (EE-V) in the expression defining J when the potential is sym -
metrical about q = O .

1

2 n a,

q= ti
(E)11 '"'

is substituted we get

1 1/n L'(1/2+1 / ~n)

	

1/

	

r7aJ=2n2 nt C

	

1
. o

]

	

dJ

	

1 1
c~, dE

	

2 li
E-1 ,/

2n

	

1

	

1Jø- -E=-E

	

and jai

	

x .
n+2

	

e

	

c

For a box-potential (i . e ., "n = ") it is seen that c has to be put equal to

- in eq. (6) . For these potentials the distribution function y thus obeys th e

differential equation

xdxy+(c-x) -d +ay=0

	

with

	

a=ck.(7)

or

'

	

1

	

(EIC) i, "

pdq = 4 2 ~~/2tnF-'E C-J = -

	

q" dq .

When

(6)
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Exact solutions of Kramers ' equation

The exact solution of eq . (7) is a confluent hypergeometric series 9
-iFi(-a,c ;x)=1--x-a(-a+1)x2 + . .

	

(8)
c

	

c(c+1) 2 !
and our result is therefor e

= L b k é ka
e-x 1F1 ( -a, c ; x) .

k

The values of k which must be selected in the summation above are deter -
mined by the boundary condition : 1F1 (-a, c ; x') = O . The physical meaning
of the condition : = 0 for x > .x* is that the particle associated with th e
oscillating motion of the molecules considered is simply annihilated, whe n

it--during its random motion-reaches the reduced energy x '
The eigenvalues a = ck given by the equatio n

1F1 (-a, c ; x) = 0

	

(10 )

lie very close to the integers 0, 1, 2, 3, . . . for large values of x =
k T
1'- . Be -

cause of the factor é
-kr in each term of eq . (9), the term corresponding to

the smallest eigenvalue ao « 1 will be quite dominating, if only a certai n
time has elapsed since the system was "started" with some initial distribution ,

and the error made by setting O equal to this first term will therefore b e

completely negligible for reasonable values of x :+ (say x* ï 5) .

The reduced rate constant ko for the annihilation process-and for the
chemical reaction-is defined by :

dN = -Ico N
d r

where N is the total number of particles in the potential well

N(x, r)dx .

It can therefore be calculated from the following expression in which al l

terms in the solution for

	

except the first have been neglected .

d x*- -boet e 1F1(-a° , c ;x)dx
dr,o

	

a oko

	

(1 )=

	

x* as z

	

= C

boe c ex 1F1 (-a9 , c ; x) dx
eo

(9)
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The problem of calculating the rate constant is by eq . (11) reduced to the
purely mathematical problem of finding the lowest value for a which satisfie s

(10) .
if 1 E1 is Taylor-expanded in ao, assuming that ao «« 1, we obtain th e

	

following approximate solution of eq. (10) as 1F1 (0, c ; x)

	

1

1

	

/a 1 F1 (a, c ;

	

'r
2

+

	

(12)
ao

	

ôa

	

,o c c(c+1)2 -

By means of eq . (12) it is possible to evaluate ao directly as a function of
x' (method 3), but a simpler, although somewhat more approximate ,
formula can be found by usin g

1F1 (l,c ; .x)-l
Ix

	

c + c(c+ 1) 2 +
. .

x

i 1F1 (a, c ; x'~ )

The integration above is carried out by setting

1Fi	 ,c ; x)
dx = 1 F1 (1, e, x)(ao + a~ :x1 + . . .) -I-const .

.,

= 1F1 (1, e ; x) P (x 1) + const .

and determining the coefficients ao, a l , . . . in the polynomium P by dif-
ferentiation

a rFl

	

dPî I%1 (1, c ; x) x
äx -

P +xiFld
x

If at this place we substitute the asymptotic formula for 1 F1( 1 , c ; x) 9 , valid
for x ) ; 1

tl'1
(1, c

; x)
r(1)

e x xl
e

P can. be determined to be

P x +cx 2 +e(c+1)x 3

and in this way we obtain

.x*

	

i

	

x x
1F1 ( 1 ,c ;x) 1

	

1F1(1,c ;x) -1

	

1F1 (l,c ;x)
dx =

	

-- dx+

	

dx In x' '
x

	

x
0

	

o

~o
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Ç+~-
iTi (1,c. ;x) 1

	

1 ~ ~
_

	

~-

	

dx - In ~ ,_~~trl(I , c ; x
x

`

ff

	

~
•o

=P(c)e x" x * +O(InX ) .

We have therefore obtained the following asymptotic formula

P(c 1)

	

P(c +

which rapidly converges upon the exact result as the alue of x increases .
As mentioned in the introduction, this result is precisely what one woul d

expect more intuitively, namely k oc 1 ~ x ex *
w ( .x )

The agreement between the k-values given by eq . (13) and those obtaine d
by numerical solution of eq . (10) either by a machine method10, which has

been done for c = 1, or by other methods such as method 3, mentione d

above, is fairly good for the higher values of x (see table 1) .

The variational method

We now return to the general problem of solving the Kramers equation (3)
without making assumptions about the form of the potential in which th e
particle moves . First of all we are interested in a method which allows a

calculation of the smallest value of k for which ib satisfies the boundar y

conditions, because this value is equal to the rate constant k . For that purpos e

a variational method. is used . The method enables us to determine k-value s
only a little larger than the exact ones by approximating Ø with a trial

function .

It is immediately observed that equation (4) is of the Sturm-Liouvill e
type and that y satisfies the Sturm-Liouville boundary conditions :

YJ

x d = 0 both for x 0 ( .1 = 0) and for x = .x.' (y = 0) .

Therefore

d( -xdJ)ydxx
je

dx
dx

♦ x*

	

•x *

y2 1 e x dx

	

y2 1 e-z dx
w

	

w ('r )
• o

	

• o ,a

é fl ''(ßDy

	

(13)

zx*
2

(
d
dg)j(x)

	

x~

x dx

• 0
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TABLL 1 .

Values for the rate constant k, in reduced units .

Potentia l

V-c q'nl ( n° 2e-1 )
x 4 method Morse potential

1 n=2, c=1 a=1.,

	

c 3
n.=, c=2 22

harmoni c
box-potential potential const .forc e

potential

2 1) 0,216 0,271 0,28 8
2) 0,249 0,318 0,463 0,41 4
3 )

4) 0,329 0,37 2

5 1) 0,0170 0,0337 0,056 6
2) 0,0156 0,0288 0,0471 0,038 8
3) 0,015 2

4) 0,0274 0,034 5

10 1) 1,62 . 10-4 4,54 . 10-4 10,8-10-4 6,21 . i0-4
2) 1,54 . 10- 4 4,09• .10- 4 9,28-10-4

3) 1,53 . 10- 4 9,00 . 10-4
4) 4,02 . 10-4 5,86 . 10-4

15 1) 1,33 . 10 -h
4,58 .10- 6 13 .3 . 10 - 6

2)

3) 1,29 . 10- 6 12,1 . 10- 6
4) 4,26 . 10-6

20 1) 1,04-10` 8 4,12 . 10-8 13,9 10- 8
2) 1,01 . 10-8 3,92 . 10-8 12,9 . 10-8 6,45 . 10- 8

3) 12,9 . 10- 8

4) 3,90 . 10 -8 6,45 . 10- 8

Method 1) is based on formula (13) .

Method 2) is based on formula (17) using table 2 .
Method 3) is based on formula (12) .

The confluent hypergeometric series has been evaluated directly by means of a des k
computer .

Method 4) are calculations on a digital computer .
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The variational principle now guarantees that if-instead of the exact solu-

tion q-we substitute a "trial function" Y(x) into this expression, a valu e

l[o comes out

	

.x*
2dY1 .

-)i(x)e x dx
,dx

0

e, o

which is larger than ko . By varying the parameters in the trial functio n

until k o' attains it minimum value, we can therefore determine an approximat e
value for ko .

If the denominator in eq . (14) is considered as a normalization constant

for Y, this problem can be formulated as the problem o1 finding among al l

possible normalized functions for which Y(x'~) = 0 that function u which
minimizes the integral

(15 )

II is interesting to note that this integral is formally identical with the "gene-

ralized entropy production" discussed previously by one of us u in connection

with ordinary diffusion . Therefore the variational principle can be considere d

formally as a case of the theorem of Prigogine stating that a stationary

irreversible process is characterized by a minimal production of entropy .
If in eq. (14) we change to the new variable X = x/x', we obtain

Yy
) (X) é-x* ' dX

dX
o

Ico =

	

a
x 2 Y 2 -	 	 dX

w (X)

In the calculations of k o' -values performed in this work we have used th e

trial function : Y (X) = 1 -
ex-x

= 1 - ex* (x-x) , since a calculation for th e

harmonic potential with the use of a trial function including a parameter ,
Y = 1 - es (x- x*) gave the lowest k0-value, when was extremely close to th e

value 1 . It should be noted that y = 1 - ex-x* corresponds to a `-function

= e' y =

	

-e x* .

k 'o

Y 2

	

é x d.x-
w (x)

i x'`
~ d1r 2

/
d.x )

.l (x) e x

e,o



1 3

Fig . 1 .

That is, except for a normalization factor it is simply an equilibrium distribu -

tion function from which a constant value é-x* has been substracted in orde r

to make T-f zero for x = x .
When this Y-function is substituted into eq . (16) we obtai n

.1

e x * xj(X) dX

x ,x

w (X) (1 +
e2 (x-') - 2 e* (x-1) ) dX

0

From this expression the values for the rate constant k listed in table 1 wer e

calculated (Method 2) .

Escape of a particle from a Morse potentia l

In order to obtain a better approximation to the true intramolecula r

potential for a diatomic molecule than the simple potentials discussed abov e

and to check the above variational principle, we have investigated the escap e

of a particle from a Morse potential given b y

V (r) = D (1 - 05)2

D-rnco 2å 2
2 0

r is the length of the molecule minus its equilibrium length, and wo is the

frequency of oscillations for very small energies, that is, the harmonic
frequency . The magnitude of 1/6 measures the degree of anharmonicity .

~. 0 (17)
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hrom this expression it follows that

J = , 1~
.
pdr= ~(1 - I ! 1 -E/D)

0

-wwo k
~
1-E/D wor 1- .x/

which when substituted in. eq . (5) gives the equatio n

u-- 22.,.

	

-X-(1-X)]

	

/1 -X-(1-X)
2

Here we set yl -X = 1 - u (0 <u < 1) and obtain

and

dy

dX
+Icy=0 .

1

	

2 d

2 x''' u
(1 -

u) du e
2

	

1
u(1 - u) - 2 x : : ~y +k (1 -u)2 y=0.

	

(18)

This differential equation cannot be solved in terms of known functions ,
but by numerical integration the smallest value of k, for which a solution

through the points (u, y) = (0,1) and (u, y) _ (1,0) exists, can be found b y
a trial and error method . This was done on a digital computer and th e
results are listed in table 1 .

In order to check the validity of the variational principle in the for m
developed above we have calculated the ko' values given by eq.-(17), wher e

,j (X) and w (X) for the Morse potential have been inserted. The expression
used for these calculations is :

. l -F (.x' )
ko =

	

G(~.~ : ) * ~

	

.+

	

~ 2 x~~

	

for largecx

	

1~'(x'~) -2

~~x^

F (x*) = 1 t \e-0 dt
~~x e, o

(• ~,' x A
(x''') = 1 -e xA \oco d

l
4~x "'

	

11

F (r ') and G (x) are listed in table 2 . In the limit x"» 1 F is asymptotically

v

	

1
equal to

	

and G asymptotically equal to
x" .

The expression for k o'

should be compared with that obtained for the harmonic potential :

ko =

in which

and

N x* e

	

for large
. :.

.x'° .
1 - 2 x ''` e x

	

C
2z
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TABLE 2 .

Values for the functions F and G

x* F G

5 0,396 0,115 7
10 0,280 0,052 7
20 0,198 0,0256

Derivation of a diffusion equation in phase space

We have previously`' 14 considered the Brownian motion of an oscillator
coupled to a lattice which serves as a thermostat and shown that e, the

density in phase space of the system consisting of oscillator plus thermostat,

satisfies the equatio n
~

L L

	

dwf	 df

	

ô
+v

ô
I V, . f ~ 2 8(vw + wf) OHv

ô

a t

	

2~ ~

	

~

	

dwf ~(aJf

	

åJ)

	

(a,If ôJ)

+ (aJf -I,-a J/
IVp,tI2Ö(vw-wf)~c7aJf ''-

e

in which Jf and (of are the action variable and the frequency of a lattic e

oscillation with wave number f, J and w are the corresponding variable s
for the oscillator . V,, ,f is a Fourier coefficient of the non-harmonic inter -
action energy which will be defined below. In deriving this result it was
assumed that w is independent of J so that the Hamiltonian has the for m

H=~ f.Jf +J+V .
f

We shall now see that precisely the same equation arises when w depend s
on J, except that V, f has to be defined slightly differently .

For the perturbing potential V we take

V (r) _ W (l' - an) un
7L

where u n is the displacement of the n'th particle in the lattice, and W (r - an)
is the force exerted on the oscillator by an infinitesimal displacement of th e
11'th particle . This force of course depends on the stretching of the oscillator
which is given by r . Expressing u n in normal coordinates of we obtain

V

	

Vf gfe f r

with

	

f
Vf - ~' lh (l' - an)-if (r-a,, )

aL

(19 )
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As an approximation we assume VT to be independent of r for all value s
of f.

The equation for given above is derived from the spectrally decomposed
Liouville equation, using the integration technique developed by Baour
and P1IGOGINE12 . In order to apply this method the interaction potential V
must be Fourier expanded on the angle variable a . This can be done quit e

simply in the case of a harmonic oscillator by usin g

r =rosin a

C iJ'ro sin

	

Y Jm,
(fro) e im a

sn = --o,

where Jm is the Bessel function of ni 'th order .
Using qf = 4+ e'/ +

	

eZ of one then obtains

V = ~V e ifr =>> {%T
ei (al+ma) +V- e l (- ap+ma) 1

f of

	

L m. f

	

m, f'

	

1
with

	

m f
VM,

f = Vf qj+Jm (fro)

Vm, .f Vf (if
0
-Jm (fr 0

)

The squares of the absolute values of these Fourier coefficients are indepen -

dent of the index + or - and are the quantities IVv f 1 2 used above.

When the oscillator is not harmonic we still have r = ro (J) O (a) for the

simple potentials we are going to consider . Here O (a) is a periodic functio n

with the property I 0(a) 11 . We now define the functions Ym as

e2fr 0 (a) _f y
m
0 .

0 )
rn = -Y

and replace Jm (fro) in the equations above by Ym (fro) . When I VV , , f 1 2 is rede -
lined in this way, and it is assumed that w = w (J) is a function of J, equatio n

(1) now describes the evolution of e for the system of an anharmonic oscillato r

in a lattice of harmonic oscillators .
We then use that

~ Vp,fl z °~ Vf 1 2 ~ qf1 21 v(fro)
and

J
f	Iqf 1 2 = -

j(N) w
.f

where ON) is the total mass of the lattice .
Also, as is usual in calculations of this sort, we use the Peierls assumptio n

and
(20)

~n a (21)
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I ti> l 2

f = constant
2w.f

and the Debye spectrum for the phonons

dwf

where c is the velocity of sound in the crystal . Finally

crystal is in equilibrium, i . e ., we set

wf Jf = kT .

Under these assumptions the integration over of is elementary becaus e

of the à function, and the sum over r in the equation fore amounts t o

evaluating

7v
2 (v ~u~ru )

For the case of a harmonic oscillator an analytical expression for the abov e
sum has been found by Scxo "r 17 , namely

y v2Jv2(YZ)=SN(l z2 ) 1 / 2 (» )
v=-w

and since z = ro w/c is small compared to one, the right hand side is replace d

by 2 z 2 .

In general an analytical expression for the sum Yr 2 Y,2 (vz) cannot be
v

found, but we can find an approximate expression for the sum valid under
the same conditions as above .

Expanding in powers of z we hav e

> v2Yv (yz) =>~~2Yv (o )+ 2z>~32 317,(o) Iv(o)
v

+z2~v4 [Yy (0)2 -1-(o)YY (0)]+ . . .
v

From the definition of Y,, (z) it is immediately seen that Y 1,(O) = Sv,
o

and therefore the above expansion reduces t o

> v2 Y Y
(v z) = z2Y v 4 YY (O)2 + o (z3 ) .

v

Using the definition of YY (z) and Parsevals theorem for the Fourier coef-
ficients we have

df
=c

we assume that the

,
>

-c,o

v =-v
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and therefore

Nr . 7

~ ~
z (0)2

= 2

n
(o„ (6))2 d a

~-- - ~c

Q>I'oCU2 Ç 7' ~
V C / 2 a~c2

	

(a))- d a
e . -n

T

°
2 ~LC2II72 ~

(221i' (l))2 dl
, o

where the bar denotes time average .

a0

	

x~

	

a

	

2('

	

a-

	

3~~z'
W (x,)

	

w (x) 'a v ) I

	

t ±

	

(24)at

	

uC

	

ax

	

ål~ 1

	

a x

which deviates from the classical Kramers equation in that J(x) has been

1 / a 1 2
replaced by (a constant times) cv~ 1 It is easily seen, for instance

by using the virial theorem, that for a harmonic oscillator

a

v z

where y is the force constant, so that for this case we obtain the sam e
result as previously, namely

at

=

" a - x ( ' + --) °

xy

~t.C3 III 2

To be able to use this formalism on non-harmonic oscillators we mus t
first estimate how large an error in the rate constant we commit by replacin g

v2 y2

ajT) 2C 2 Ill 2 c ) 2 l al'

With the same abbreviations as we have used before, i . e . ,

x-~2

v 2

fw.f
hj~N )

~.G = -_
l.

.

x=E(3=w(J)dJ
we have

with
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the right hand side of eq . (22) by ,t-1 z 2 . This is necessary because the validity

of eq . (24) depends on a similar approximation .

Using the complete expression (22) in the master equation eq . (19) we

find
00 _ a x	 1 +ax

(1 + a ) 0
at

	

ax V1-ex

	

a x

where e is the ratio of kT to
2

mc2 , m being the mass of the particle an d

c the sound velocity .

Using the variational principle and the same trialfunction as above w e

find that for large values of x

k=x*é-x* [1 + ex* -78 e2 x*2 + . . .

and since ex k is smaller than one for all cases of interest this expressio n

is permissible . Although the approximation obtained by replacing eq . (22)

by z 2 primarily is good when one only considers the Brownian motion o f

the molecule at low energies it is seen that the ratio between the correct

rate constant and the approximate rate constant is only a factor 2-3 even

when ex* 1/2 . The temperature dependence of the preexponential factor

is of course somewhat different in the two expressions, but since this depen-

dence is small anyway and not easily accessible experimentally this is o f

minor importance .
We can therefore presumably use eq . (24) derived above for estimating

the influence of anharmonicities on the rate of escape of a particle from a

potential minimum .
0 17For the box-potential, which is zero for ~ r i 6 1/2, we interprete (

	

/ 2

a s
1

(11

aV ,

= 16 E2/12
=

2
E2, where y is the spring constant for the equivalent

harmonic potential i . e . the harmonic potential for which the stretching 1/ 2
corresponds to the potential energy D .

We then get

~
0

=2'7x"j' -1` x ax x3jJ (l+ ax ) 0

and now 97 has the same meaning as above. Using the variational principle
we get



20
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x* - [1 - G (x*) ]

k0=2x i
2F(x*)ex* + G(x")- 2

or, in the asymptotic limit x" co

2 -x*ko =	 - ri Ilx- e
I/7r

This is precisely the same result as that obtained by Kramers' theory
in the limit x* -+ Go, in spite of the fact that the equations for

	

are com-
pletely different .

	

°

	

2
For the potential C I r we have (ar) = C 2 = 2-Dy where y is again the

spring constant of the equivalent harmonic potential . We therefore have

aØ

	

rix*	
1 a

I/,-x(1+
a

at 2

	

I/xax

	

a x

and, using the variational principle, we get

1

	

e-x* [1 -G(x*) ]
ko 2 ?7 x''

F(x*)-ex*G(x')-3x* e

or, in the asymptotic limit

k0 = 7?

	

x* 3/2 e x-* .

This result deviates only by a factor of
4

from what one obtains from

the theory of Kramers . We see therefore that for these simple anharmonic
potentials the theory of Kramers and the more rigorous theory give practicall y
the same results for the rate constants in the limit of large activation energ y
in spite of the fact that the equations for the density in phase space look quit e
different . This does not necessarily mean, however, that the result also would
be almost identical for, for instance, the Morse potential, because in thi s
case r = r (a, J) cannot be factorized, and therefore the short-cut used above
cannot be applied .

Conclusion

The main result of the above calculations is that anharmonicities in th e
intramolecular potential changes the rate of a dissociation reaction by a
factor which is approximately inversely proportional to the generalized fre-
quency of the particle when its energy is equal to the dissociation-energy .
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This only holds true for potentials of the form C I r j n . For the Morse potential ,

for which the frequency goes to zero at the dissociation limit, the increas e
in rate over that for the harmonic potential is only a factor of two .

The result seems Lo be rather independent of whether one uses th e
theory of Kramers or a more refined theory. In the latter case however ,

owing to mathematical difficulties, only some of the simpler potentials coul d
be treated, not the Morse potential .

The fact that the rate is increased when the frequency decreases wit h
energy is well known. In the language of quantum mechanics it mean s
that the rate is increased when the density of energy levels increases wit h
the energy . It is remarkable, however, that the increase in rate obtained i n

this way for the Morse potential is far smaller than one should have expected .
RICE 13 , for instance, estimated that the anharmonicity in the Morse potentia l
would speed up a dissociation reaction by a factor of twenty over that of a

harmonic oscillator molecule. The most intuitive reason for this is probably
to be sought in the fact that for potentials of the form V = C I r 1 ' the anharmo-
nicity is operative already at very low energies (r 0) whereas the Morse
potential is almost harmonic up to fairly high energies .

Although the results obtained here for the Morse potential using th e
Kramers theory conceivably could be changed somewhat by a more rigorou s
theory, we feel that the influence of anharmonicity in weak interactio n

theories has perhaps been somewhat overestimated in the past . Since hard

core interactions play an important role in gasphase kinetics and no ex-
perimental result, to our knowledge, exists for dissociation of molecule s
interacting with phonons, it would be premature to try to compare with
experiments at this stage.
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