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Synopsi s

The analytic properties of the 4-point function as a function of 6 complex invariants ar e
studied in simplest perturbation theory examples . This is a generalization of the work by Källé n
and Wightman on the vertex function. The singularity manifolds are : one 4-point singularity
manifold, 4 sets of the 3-point manifolds of the type discussed by KW, and 6 cuts . These ar e
determined in three different ways, including an explicit evaluation of the 4-fold Feynma n
parameter integral which results in a sum of 192 Spence functions . It is shown from the existenc e

of the non-trivial geometric envelopes that the regularity domain D4
ert

is in general not en-

tirely bounded by the analytic hypersurfaces . The boundary of the domain is illustrated with
the aid of the 1-mass surfaces in some typical configurations of the 6 complex variables, showin g
that the 4-point boundary will in general carve out bubble singularities from the 3-point boundary .
It is hoped that the results here may give some insight into the problem of finding the envelop e
of holomorphy of the 4-point domain determined by the axioms of the local field theory alone .
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I. Introduction *

In the study of the general structure of the local field theory on the basis

of a few generally accepted postulates f (viz ., field operators transforming

according to the representations of the proper Lorentz group ; positivity of
energy of physical states ; local commutativity for space-like separations ;
etc .), one is led to the investigation of the analytic properties of the vacuum
expectation values of a product of field operators 2 and of related quantities

such as the retarded commutators 3 . Several significant physical applications

in this field have been made in recent years, e . g., the proofs of the dispersio n
relations 4 , the CPT-theorem 5, and the connection between spin and stati -

Stics 6 .

The significance of the vacuum expectation value of products of tw o

fields (in short, the 2-point function) has been known for quite some time 7 .
The complete 3-point analyticity domain E(D3 ) has been determined by
KÄLL]lN and WIGI-ITMAN 8 as a consequence of the above axioms without mas s
spectrum, and more recently the integral representations of the Bergman-

* Preliminary results of Sec . IN were reported by J. S . ToLL at the Naples Conferenc e
(April, 1959) (see, ref . 13) . I would like to thank Professor ToLL for this .

• See, e . g ., A . S . WIGHTMAN, Phys . Rev . 101, 860 (1956) . See also, WIGHTMAN, m Le s
Problèmes Mathématiques de la Théorie Quantique des Champs, Lille (1957) .

a For a comprehensive survey of the properties of such Wightman functions, see, e . g . ,
R . JosT's Lecture Notes in the international Spring School of Physics, Naples (1959) ; and als o
JosT's article in „Theoretical Physics iiz the Twentieth Century", ed . FIERz and WElssxoPF ,
Interscience Publishers, New York (1960) .

s See, e . g ., FI . LEHMANN, K. SYMAN'ZIIï, and W. ZIMMERMANN, Nuovo Cimenta 1, 205
(1955) ; and ibid . 6, 319 (1957) ; V . GLASER, LI . LEHMANN, and W . ZIMMERMANN, Nuovo Cimento
6, 1122 (1957) ; O . STEINMANN, Helv. Phys . Acta 33, 257 (1960) ; and ibid. 33, 347 (1960) .

4 See, e . g ., N. N . BoGOLlusov, B . V . MEDVEDEV, and M . K. PoLIVANOV, Lecture Notes
(translated at Institute for Advanced Study, Princeton, 1957), and FIZMATGIZ, Moscow (1958) ;
H. J . BREMERMANN, R . OEHME, and J. G . TAYLOR, Phys. Rev. 109, 2178 (1958) ; F1. LEHMANN ,
Nuovo Cimento 10, 579 (1958) .

s R. JosT, Helv . Phys . Acta 30, 409 (1957) .
• N. BURGGYNE, Nuovo Cimento 8, 607 (1958) ; cf . also G. LUDERS and B . ZunuNo, Phys .

Rev . 110, 1450 (1958).
• In a 1951 paper by H . UMEZAWA and S . KAMEFUGHI, Prog . Theor . Phys . 6, 543 (1951) ,

one finds, e .g ., the assumption about the positive definite energy of all physical states clearl y
stated. Furthermore, this paper also contains an explicit example of a reduction formula, viz . ,
for the problem of vacuum polarization . See, further, G . KALLÉN, Helv. Phys . Acta . 26, 41 7
(1952) ; H . LEHMANN, Nuovo Cimento 11, 342 (1954) .

$ G . KALLEN and A . S. WIGI-ITMAN, Mat . Fys . Skr . Dan . Vid . Selsk . 1, No . 6 (1958) . Thi s
paper will be referred to as KW .
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Weil type have been given 9 as a most general representation for a functio n
analytic in E(D3 ) and with arbitrary singularities outside .

The present investigation consists of a generalization to the 4-point cas e
of a very special feature which was treated by KW in their discussion o f
the 3-point domain 10 . To make things perfectly clear as to how this might
fit into the general framework in the 4-point case, it will perhaps be helpfu l

to sketch briefly the necessary steps needed in the systematic exploitatio n
of the analyticity domains of the n-point functions .

' For an n-point function, one starts in the space of (n- 1) real 4-vectors ei .
The axiom of positivity of energy immediately allows an analytic continu-

ation to the (complex) tube domain Rn_1 with SZ = and all '7z lying
inside the forward light-cone . Now there are three subsequent steps :

a) The Hall-Wightman theorem u maps this tube Rn_, into a domain
M,n_1 in the inner-product space of the 1/2 n(n - 1) complex variables 12 .
The first problem is then to determine this primitive domain Mn_ , (i . e . ,
to characterize the boundary Mn-1 is a natural domain of holo-
morphy 13 .

b) By permuting the original vectors, one gets a permuted n-point functio n

and thus a permuted domain M55 _, . Now by the axiom of strong locality ,

these permuted functions coincide on a certain space-like region S . If
Sft {~3Mn _ 1 } � 0, then one gets a function analytic in the domai n

Dn = U {Mn 1 } .

c) The domain Dn (because of' the above union) is not a natural domai n
of holomorphy 14 . The final step is to find the envelope of holomorph y
E(Da ) of Dn15 .

We now briefly discuss separately the cases for n <, 4 .

Case 1) 2-point domain : Ml is trivial; it is just the cut-plane (as is obviou s

from squaring a single (difference) vector O . The cut is along the positiv e
real-axis . Steps (b) and (c) are unnecessary . M l = D 2 = E(D 2) .

G . KäLLÉN and J . S . ToLL, in Pauli Memorial Volume, Helv . Phys . Acta. 33, 753, (1960) .
10 See KW Appendix III and Section VIL
~i D . HALL and A . S . WIGHTMAN, Mat . Fys . Medd . Dan . Vid . Selsk . 31, No . 5 (1957) .
12 For n > 5, the number of independent inner products is reduced to 2(2n-5) by linea r

dependence of more than 4 vectors in 4-dimensional space-time .
13 For n S 3, this is clear, since M l , 2 are both bounded by analytic hypersurfaces, an d

one knows that one can go no further . For n = 4, one gets non-analytic hypersurf aces, however ,
this is still proved by KxLLÉN and ToLL (private communication ; and Totals Lecture Notes
in International Spring School of Physics, Naples (1959)) .

l4 Cf., for example, D . ROELLE, IIeiv. Phys . Acta 32, 135 (1959) and thesis (1959), Bru-
xelles .

15 For basic notions of the theory of functions of several complex variables, see, e . g . .
H. BExxrn and P . TnuLLEN,''heorie der Funktionen mehrerer komplexer Veränderlichen, Ergebn .
Math . 3 Nr. 3, Berlin (1934) . For a physicist's summary, cf ., e . g ., KW Sec . VI if.
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Case 2) 3-point domain :
a) Part of M2 was first treated by D . HALL 16 ; it was simplified and ex-

hausted by KW who show that M2 is bounded by the following pieces o f
analytic hypersurfaces :

1 12 '3 = 1 +?2 +7' - z 2 /r, 0 <r <c,o,

	

(for lm zl • Im z 2 > 0) ;

S : z 3 = zl (1 - k) +22 (1 -1 /k), 0 < k < cx>, (for lm zl • Im z2 < 0) ,

and the cuts in z1 and z 2 .

b) Permutation is straightforward .
c) E(D3 ) turns out to be bounded also by analytic . hypersurfaces :

Cuts : zk =o>0, k=1,2,3 . (0 << co) .

Fia : z k = zi + - - z i zj /e , (for lm z k • Im zi < 0, lm z k • Im zi < 0) ;

z l z 2 + z 2 Z3 +z,3'1 - ()( z l + z2 + E 3 ) + e2 = 0

(for lm zl • Im z 2 > 0, lm z1 • Im z 3 > 0) .

Case 3) 4-point domain :

a) Part of the boundary of the primitive domain M 3 has been very ele-
gantly characterized by JosT 17 with a set of 3 x3 matrices M = DANAD ,
where M = I I ('i D is diagonal with positive diagonal elements, A i s
symmetric real except for diagonal elements which have positive imaginary
parts, and N has zero diagonal elements and 1 everywhere else . That M 3
is indeed a natural domain of holomorphy has been shown by KÄLL N
and ToLL 18 , who have also shown that M3 is not everywhere bounded by
analytic hypersurfaces .

b) The permuted domain remains to be determined . This can he ac-
complished by the present technique if sufficient and careful work is carrie d
through .

c) The real difficulty lies in the problem of finding the envelope o f
holomorphy E(D4 ), which is at the present moment completely unknown .
It is therefore entirely an open question as to whether or not E(D4 ) will be
bounded by analytic hypersurfaces .

At this point, we want to discuss the role of the domain Dnert which
one gets from simple yet non-trivial examples in perturbation theory. Let
us recall the following facts :

' e D . HALL, Ph . D . thesis, Princeton (1956) .
' See Ref . cited in footnote 2 .
18 See Ref . cited in footnote 13 .



6

	

Nr . 3

Case la) n = 2 : D2ert = E(D2 ) .

Case 2 a) n = 3 : D3ert gives about three-fourths of the answer to E(D3 ) ,
i . e ., D3ert is bounded by cuts and Fki surfaces . The only thing D3ert fails
to tell is the -surface (which corresponds to the case when all lm Z k have
the same sign) . (In fact, it should perhaps be pointed out that it would b e

extremely difficult to discover the exact shape of E(D3) if one didn't know
beforehand Drrt ; a knowledge of which then enabled KW to actually
prove the final results . )

It is in this spirit that the present study of the Drt is undertaken .
Namely, it is hoped that perhaps Drt might again give some insight int o
the envelope of holomorphy E(D4 ) in the axiomatic approach .

The work divides itself into two parts . The first part (Sections II-V) i s
devoted to the explicit location of the singularities of the 4-point functio n
in perturbation theory and their relevance criteria . The second part (Sec-

tion VI) is to determine what constitutes the boundary of the domain ; the
study of this boundary is our primary interest .

The main result of this study is that D4ert is also not entirely bounded
by analytic hypersurfaces . A lengthy analysis of the problem of the geo-

metric envelopes for the 4-point singularity manifold is made (Section VI) .
The 4-mass envelopes and the 3-mass envelopes, although they can als o
exist, are shown to be trivial and cannot contribute to the boundary o f

the domain. On the other hand, the two-mass envelopes are quite non -
trivial and have most natural relations with the 3-point boundary Fk1 sur -

faces . In principle, with the aid of an electronic computer, the boundar y

of D4ert can be explicitly plotted . However, we only give here the equations
and illustrate instead the one-mass curves (which are analytic) for som e
typical configurations in the space of six complex variables to show th e
presence of the 2-mass envelopes .

It is evident that the fact that D4ert is not bounded by analytic hyper -
surfaces will make the problem for D4ert to provide some answer to E(D4 )
much less transparent than the previous 3-point case . Of course, it is trivial
that E(D4)cD4ert However, as already mentioned above, it is still a n
open question whether or not E(D4 ) is bounded by analytic hypersurfaces .
If D4ert does have anything to do with E(D4 ), then the present investigatio n

gives a negative answer .



Nr.3

	

7

X

II. Simple Examples of the 4-Point Function

II.1 The Vacuum Expectation Value of Products of Four Fields in

Ward Theory (x-space )

We consider in perturbation theory an interaction via a Lagrangia n

01020304, where the 0i 's are neutral scalar fields with field quanta mi .

Expanding in powers of g, we have

~t (x) =Ø° ) (x)+g1 dx ' 4R(x-x ' ; mj ) ko)(x')Øi°)(x')02)(x')+	 (1 )

where (jklm) is a permutation of (1234) .

To the first non-trivial order, the vacuum expectation value of the fou r

fields reads :

< 0 ~ Øl
(xi) 02 (x2) Ø3 (x3) 04 (x4) I 0 >

(g)g

	

d ~i1 dq 2 d~Î3 ' exp [t (~i1 x14 ~- q2 x24 + q3 x34 )(2
R

S (g2 fiII22) å lg3 +II13) S ((g1 + q2 + g3)2+112 4 )
~( g2)~( g3)0(ql +q2 +g3) 	 - -

(ql + In l)R

+ O ( q 1) e (q2) 0 (ql +q2 + q 3)
(q3

2

	

2
+ m3) R

ô(gl+n4)ô(g2-i-m2)â(q+in
+ 0(414)002)003)	

((ql + q2 H- (13)2+ Iri4)R.

where xi s = xi - x5 . The 0's are the usual step functions

10, for xo < 0
(xo)

1, for xo> 0 .

The scalar products for 4-vectors are here defined with the metric (+++-) .

For the choice of the 4-point function in x-space, a more convenien t
expression results if we multiply (2) with a suitable weight function
0(1211, 1212, 1213, n14) and integrate over all masses m i O . In particular ,
following KW, we choose

4
(1211, m2, 1-13, 1214) -~ 4( -m k ; ak) , a k > 0 ,

k= 1

8	 (ql+ 1211)b(g3+n13)å((g l + q2 + (13) 2 	 -1- mi)
+ O (gl) 0 ( - g3) U (gi- q 2 +q3)

(q2 + m 2 )R

b (gl + lTli) h ( q2 + n12) å((ql + q2 + q3)2 + nib

(3)

(2)



(4)
a. =

Nr . 3

where
j

	

(

	

ezp a
A (2,

	

_ (2 a)4 13- J p + a

in which 13 . denotes the usual Cauchy principal part .

Using
2,

	

xdA ( - ~ ;Q) __ tu

	

,
p2+d

	

4 (p 2 a) (2TC)3Sd~e

	

8 (s
r2

+ 6)

	

( 5 )

A R (x) = 2 O (x) (x) ,

	

(6)

we have the expression

5I

	

s ~
S

lTil d1172 drn3 dm4 (112Î , rn22in, 1113 , 7124) < 0 j 01 (xl) Ø2 (x2) Ø3 (x3) 04 (x4) 0>o

~g )
dg 2 dq3 exp [ i

	

xs 14 + g 2 x24 + q3 z̀34) ]3~
Z n) 8

x [A (1)
(gl ; a l) A A ( (A , a2) AA((A , a3) A R ((g l + g2 + q3) 2 ; a4)

+A R(ql ; a l) A(l) ( q ; a2) AA(q3 ; (I 3) A R((g1 +g 2 + g3) 2 ; a4 )

+AR (gl ; al) A R(g2 ; a2) A(1) (g , (13) A R((g1 + 9' 2 + (13)2, a4)

+AR ( g l ; a1) AR((g ; a2) A R (g3, a3) A(1) ((gl +g 2 + q3)2, a4) ]

=
32

_

(2g7G)11

	

da 2 ca3 ca 4 8 ++ x14) å($2 + Tx24)

	

+< 4 + x
~~

	

1

	

( 1

	

4

	

~

	

( 3

	

-'- 34 )

f ~ (Al) + ~( 4̀2)+	 ~(A3) ~	 å(`44 )

~ AZ A3 A4 Al A3 A 4 Al A 2 A 4 Al A2 A3 }~

	

.

where
A k

	

k ak .

With the aid of the well-known identitie s

l

y
-' ~	

(A1)

	

~ dal da2 da 3 da 4 8 (1 - Zak) 6(3)
(Eak a k )

A 2 A 3 A 4

	

. .

	

o
cycli c

and

(8)

( 7 )

å (3) (e +A) =7L

	

Ô

and

(9)

the integrals over all k can be easily carried out. The result is :

dalda2 da 3 da 4 8(1 - Zak)	
)10 Ç

	

o(al a2 Z1 + al a3 Z2 + al a4 Z3 + a2 a3 Z4 + a3 a4Zg + a4 a2 Z6 - Eak ak)2

	

(10)
(l k > 0,

	

l1

g
64(2



where the six z's are defined as follows :

Equation (10) is the expression we shall take for the 4-point function I(z ; a)
as a function of the six complex z's and four real a's .

II .2 The Time-Ordered Product of Four Currents (p-space )

For completeness, we mention that the Fourier transform of the time-
ordered product of four currents in perturbation theory gives rise in p-space
to exactly the same integral expression (10) . The expression for the square -
loop Feynman graph is too well-known to warrant a derivation here 19 .
Since, as we shall see later, the singularity manifold has a natural geo-

metrical interpretation in terms of such graphs, we shall briefly sketch th e
necessary notations .

Consider also four scalar fields Tk? (x), with characteristic masses m k ,
k = 1, . . . , 4 . Write a t = n7 2 ,

/

and

Jl (x)
_ T40) (

(
x ) T10) (x)

J2 (x) = 4'10 (x)
X20)

(x)

./3 (x) = 90 20) (x) q'40) (x)

I4 (x)

	

301 (x) 4'40) (x)
Then

F(z = G n I r ij1(x l) .%2(x2) .h (x3) .i4(x4)} ~ o >

- 1~
ZiF(x12 ; a1) 4F (X23 ; 02) AF (X34 ; a 3 ) AF (X41 ; 04)

(12)
LT 2

(2 -A)" ~ dp12 dp23 dp34 ' exp • [i (p12x 1 2

k II (p12 , P23, P34)

-P23 x13 1- P34 x14) ]

where double indices denote the differences xii =

is For general expressions of Feynman amplitudes, cf ., e . g ., J . S . R . CHIsHOLM, Proc .
Camb. Soc. 48, 300 (1952) ; Y . NAMBP, Nuovo Cimento 6, No . 5, 1064 (1957) .
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P3

Figure 1 . Square-loop Feynman graph

A standard computation then yields :

H (P12' P23' P34 )

'

	

' 1

	

dalda2da3 da4 (5(1-Eak)

3 3

	

-	 	 • a,> 0
. 30(Xi a251+a1a3+a1 a4 g-3+ a2 a3 s4 a3 a4 S5+ a4 IX24' 6 - ~akak) 2 '

where the six

	

are defined by

2

	

2
4 1

	

X7.2 ,

	

'4 - 12 3

'

	

2

	

p _
~2 - - P13' S 5 - - p3

2
4

~3 - P14'

	

S6 - P42 •

We see that expressions (13) and (10) are identical and the definition s

for the z ' s and the are merely the same six invariants derived from a
set of three independent four-vectors . 7 0

III . Function of Six Complex Variables Represented by a

4-Fold Feynman Parameter Integral

III. 1 Definition of the P . -Manifold

Both the examples treated in Sec . II have led to the same integral ex -

pression, namely
1 dal. da 2 da3 da4 c5 (1 - ~ak)

I( ~ 'a) ~~~

	

i)2

	

'

	

(1a)

20 Special cases of this square Feynman graph example have been treated independentl y
for all six real variables by R. KARPLUS, C . M . SoMb1ERFIELn, and E . H. WICHMANN, Phys . Rev .
114, 376 (1959) . This was later extended to the case of two complex variables by J . TARSKI ,
Jour. Math . Phys . 1, 154 (1960) . In both works, all the 3-point boundaries are restricted to th e
real domain, and all the masses (internal and external) are held fixed together with stabilit y
conditions . Subsequently, there appeared a number of papers on the methods of locating th e
singularities of the general Feynman amplitudes without the explicit completion of integrations .
See, e . g ., L . D . LANDAU, Proceedings of the International Conference on High Energy Nuclear

(13)
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where

D - a la 2 Z1 + a1 a3z 2 + al a4 z3 -Ï- a 2 a3 Z4 + a 3 a4 Z 5 -i- a 4 a 2 Z 6 - ~a k ak .

This denominator D can be written in various manners for different pur -

poses . For instance, using the identity Zak = 1 under the integral, we can

write

D - =% tif 2

where the 4x 4 symmetric matrix

	

defined as

(16)

-2a 1

	

Z1 -a2 -a 1

Z - a1 a2

	

- 2 a2

? 2 -a 1 -a 3 .c 4 -a2-a3

'Z3 -a1-a4 Z 6 -a 2 a4

Z 2 a 3 a1

	

'3 a 4 a1 \

Z 4 --a3 -a2 Z6 -a 4 -a2

-2a 3

	

Z5- a4 -a3 it

~ -a 3 -a4

	

-2a4

(18)

The determinant Mi l will he simply denoted by ' throughout thi s

paper, and the manifold ¶(z ; a) = 0 will be referred to as the r-manifold .

It will be shown that the 4-point type singularity of our function I(z ; a)
comes just when this linear transformation (WO becomes a singular on e

(Section IV) . The significance and the structure of this P'-manifold are given

in Sec . 11I .4 .

III .2 Symmetry of the 4-Point Function

The symmetry of the problem is contained in that of W. Equivalently ,

we shall define a 3 x3 determinant A (z) (a quantity which will repeatedl y

appear in our later discussion), as follows :

-2z1 z4 - z1 z6 -z 3 - zl

A. (z) =
2

.z 4 Z1 z 2

	

2z 2

	

z5 - Z3 - Z2

	

(19)

z6 Z1 - Z 3 Z 5 - '2 - z3

	

2 s 3

el .(z) has the following interpretation 21 : Let 1 . 52, S3 be a set of three

independent 4-vectors, and let the z's and

	

be related as

Physics, Kiev (1959) ; J . C . POLKINGHORNE and G. R . SCrEATON, Nuovo Cimento 15, No . 2 ,
289 (1960) ; and ibid . 15, No . 6, 925 (1960). An inherent disadvantage of such approaches is th e
lack of explicit knowledge of when and only when the cancellation of singularities will not occur .

21 For real vectors in the Euclidean space, A(x) has the significance of being proportiona l

to the square of the volume of a tetrahedron . The principal minors of A(x), which are exactl y
the type of function .î(x) of KW, have the meaning of being proportional to the squares o f

areas of triangles (cf . remark following Eq . (82)) .
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Then

pp z

	

2

	

z
'1 = - b1, z 2 =

	

=3 - - S 3

z4 = - (`1 -

	

- - G2 - :3) 2

= 6 = - (~3 -
1) 2 .

A(z) = 4x Gram Determinant of (C1, 2, ~3 ) = 4

	

j

	

(21 )

(1)

(20)

(4)

(3 )
Figure 2. Tetrahedron representation for vectors

	

Figure 3 . Tetrahedron representation for A (z)

The situation for SZ is depicted in Fig . 2 together with their differenc e

vectors . The (Lorentz) squares of the vectors are just the z's given in (20) .
In Fig. 3, we labelled the six edges of the "tetrahedron " T by these z's .
Each of the four faces of T picks out a triplet of z's at a time. Intuitively

one would expect each triplet to obey the restriction of the three-point typ e
of KW, and this is indeed the case, as will be shown explicitly later

(Sec . 1V) .

It is clear then that our problem has the symmetry endowed in thi s
tetrahedron, in particular, the permutation symmetry which leaves the se t

of four faces of T invariant . Let us first divide the edges of T into two classes :
Two edges which meet at a vertex of T will be called adjacent edges, other -
wise conjugate edges. Obviously for a tetrahedron, for each edge there ar e
four adjacent edges and only one conjugate edge. Thus the six z's break
into three pairs of conjugate indices 22 . In our present notation, they are :

(1,5), (2,6), and (3,4) . For convenience, the four faces of T will be denote d
by Fk , k = 1, . . ., 4 and labelled in the following order : (456), (235), (136) ,

22 When properly identified, energy and momentum transfer variables are conjugate t o
each other in this sense . It is important to note that conjugate indices, ipso facto, do not appea r
simultaneously in any one of the 3-point quantities, e . g ., Ø(z) or R(z) .



Nr .3

	

1 3

and (124) . Note that this is equivalent to labelling the 4 vertices of Fig . 3
in the counter-clockwise order .

Then the operations which transform the set of all Fk into themselves
are obviously the permutations among any two pairs of the conjugate in -
dices . For example, (1,5)

	

(2,6) ; by this we mean the following :

either (i)
1 5){ ~( 2 6 )

: thus Fl , F4 invariant ; F2

	

F3

or (ii) ( 5 ) thus F2 , F3 invariant ; Fl < > F4

1

	

2
or (iii)

	

t
: thus Fl {--)- F4 ; and F2-(--->-F3 .

6

In other words, a permutation between adjacent edges is to be accompanie d
by the permutation between their respective conjugate indices (e . g. cases
(i) and (ii) above) ; and a permutation within one pair of conjugate indice s
is to be accompanied by the permutation within another pair of conjugat e
indices (e . g . case (iii) above) . This exhausts the symmetry of the problem .

We might remark that the above symmetry property, which is purel y
geometrical, is not confined to the perturbation theory . The quantity A(z)
(or the Gram determinant of three 4-vectors) will undoubtedly play a n
important role in the case of the axiomatic approach. In the perturbation
example Eq . (15), this symmetry is of course trivially implied by the per -
mutation symmetry between any two ai aj in the integrand, the net re -
sult there being the proper interchange of four z's and two a's, which (apar t
from the associated permutation among the mass parameters) agrees exactl y
with our above general prescription of the permutation among two pairs o f
conjugate indices .

III .3 The Structure of the 3-Point Øk-Manifolds and
The 2-Point Rµ-Manifolds

The 3-point 0-manifold of KW has precisely the same structure as tha t
of A(z) discussed above, except that a set of three z's emerging from on e
vertex in Fig . 3 is now replaced by a set of three mass parameters . Thus
the 0-determinant is (apart from a trivial factor of 4) just the Gram deter -
minant of three 4-vectors ;" i with the diagonal elements put on some mass -
shells .



14

	

Nr . 3

In the present 4-point problem, we have in all four sets of such Ø, one

for each face of the tetrahedron T . Thus, for example, the structure of Ø ,

can be represented by the tetrahedron Tl in Fig. 4 .

Z4 -a3 -a2

-2 %

Z 6 -a 2 -a 4 Z 5 - a3-a4

z6 - a 4 - Q 2

Z 5 -(1 4 -a3

- 2
a4

(22)

2a2
1
2 Z4 -a 2 -a 3

_

Figure 4. Tetrahedron representation for Ø ,

To every 0k-determinant, there arc associated four 2 x 2 subdeterminants .
One of them involves pure z ' s, i . e . the R(z) defined by KW, e . g . :

~i (456) _ -
2 z4

Z6 14 Z 5

-Z4 -Z 5

2z 5
(23)

which is associated with the face with all z's in Fig. 4. To see how À(z) i s
related to O(z), we note that (22) can be written a s

-2a3

	

Z4 =a3 0 2 Z5 -I-a3 -a4

0, =- '4 -f-a3 -a2

	

-2Z.4

	

.Z 6 24 Z 5

	

(22 a )

z5 -Fa3 -a4 Z 6 -Z4 -Z5

	

2z 5

in which - ~l appeas as the first principal minor of Øl when written in the
form (22a) . This feature will also appear in the 4-point case (cf . Sec . VI .2) .

The other three quantities are the Rk-manifolds defined by KW, e . g . ,

R6 =
- 2 a 2

Z 6 -a 2 -a 4

z 6 -a, -a 4

-2a4
(24)

which are associated with the faces of one z and 2 a ' s in Fig . 4 .
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It is well known that the manifold Rk (z k) = 0 yields the cut in each
variable z k in the 3-point case . This feature is also carried over to the 4-poin t
case where we have six such R-manifolds, giving rise to a cut along th e
positive real axis in each of the six complex variables . Note that each cu t
is actually an 11-dimensional manifold .

III. 4 The Structure of the 4-Point W-Manifol d

The generalization from the 2-point R-manifold to the 3-point 0-manifol d
is strongly suggestive as to how the 4-point W-manifold might be built up ,
and indeed the analogy turns out to be a valid one . As one can build up a
tetrahedron Tk for Øk by adding three a's to the k-th face taken out from
the tetrahedron T for A(z), one may now build up a "pentahedron"23 for
W by adding four legs of a's to the entire tetrahedron T as the base (Fig. 5) .
The remaining four hypersurfaces of this pentahedron, being tetrahedron s
Tk with 3 a's and 3 z's, represent just the set of 4 Øk-manifolds in our pro-
blem 24 .

The W-determinant has the simple interpretation in the p-space as 1 6
times the Gram determinant I (p i . p5 ) of four 4-vectors pk such that the

Figure 5. Pentahedron representation for W(z ; a)

diagonal elements are put on some mass-shells : -pk = mk = ak , and th e
off-diagonal elements are re-expressed through the difference vectors, e . g . ,

2, The above intuitive terms such as "tetrahedron" and "pentahedron" should perhap s
be properly changed into "n-simplex," n = 4,5 respectively .

2, By our previous labelling of the four faces of T (Sec . III .2), the index lc of Øk is suc h
that a k does not appear in Øk .
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2

	

2
2pi pj ° (p i - P7)2- 4 Pj = zm a i a ~

for some In . These four pt 's may just be identified with the four interna l

momenta of the square-loop Feynman graph (Fig . 1) . On account of the

momentum conservation at each vertex, these difference vectors pi

pi pi+1 are just the four external momenta and the six z's are then the

six invariants built up from these pi i+1 (cf. Eq. (20)) . From this, it is

clear that the 4-point singularity manifold Y' = 0 can be interpreted t o
arise just when the four pt's are not linearly independent25 .

IV . Sources of Singularities of the 4-Point Function

IV . 1 General Discussion

From the integral representation (15) it is clear that, with a given set

of parameters a t , the singularities of I(z ; a) come from a certain manifold

of z such that the denominator D vanishes somewhere within the range o f
integration. Of course, not all such points need be singular points of I(z), a s
we can easily convince ourselves that the integration may very well smooth e

out some of the singularities of the integrand . In fact, from the 3-point
example treated in KW, we see that there are some delicate cancellation s
which made

a) only part of the 0-manifold as relevant 3-point type singularities ; and

h) the relevant portion of the cut (2-point singularity), in the case o f
non-vanishing masses, actually starts from zk = (j/a

.+ ya,,) 2 , but not

(Vam-Van)
2

It will be shown in Sec . V that an inherent cancellation of this natur e

will again occur in the 4-point case .

In this section, we shall mainly locate the sources of all possible singu-

larities of I(z) . It will be shown explicitly that these singularities arise only

when the quadratic roots of D in a i become double roots . The condition s

for such double roots at each * stage then yield the singularity manifold s
for the 2-point, 3-point, and 4-point type, respectively .

We now briefly compare the methods we shall adopt in the 4-point cas e

25 This was independently noted by LANDAU loc . Cit ., and implicitly implied by KAnp Lus ,
et . al ., toc . cit ., for the real case .
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versus those available for the 3-point case. In the case treated by KW, th e
corresponding original expression i s

1 da1 da2 da3o(1- Eaå )
~~~ ~

H( 1, Z 2, 3

	

(25 )
Dl

where

D 1 = al a2 ?3 + a 2 a3zl ï a3 al z2

	

aj al .

It is obvious that, when one of the 4 a's in the 4-point case becomes zero ,
D of (16) (apart from a trivial relabelling of the indices) goes over to D1
of (26) .

The 3-fold integration in (25) can be carried out in a straightforward
manner, but the result contains a sum of 16 Spence functions 26 which
are somewhat inconvenient . Instead, KW applies the differentiation Ea/a ak ,

which, on account of the identity Eak = 1, has the net effect of raising th e
power of D1 by one for every such operation . Thus 2 7

3
) d

H(z ° =

	

1 d a 1 da2 da3 S (1 -Eaf)
aak

	

a)0
~o

	

D 2,l

	

(27)
k=1

	

1

Now (27) when integrated out contains only logarithms (KW (A . (46)) :

3
a

-H(z a) = - 1 1

	

' Pk log
z k amp=aj/Rk

	

(28)

d ak

	

2

	

1~Rk

	

z k - a n, - an - V Rkk = 1

where

	

is of the structure of (22), Rk of (24) and Pk = 00/Oa k .
The 4-fold integration (15) can of course be carried out by force,

but at first sight one is rather inclined to feel uneasy about a sum of 19 2
Spence functions . In this respect, it resembles (25) . Unfortunately, how -
ever, the above differentiation technique will no longer save the situation,
and the Spence function terms always persist in any explicit expression fo r
I„(z), where v refers to the power of D in (15). Since the case v = 2 is th e
simplest of all, and there is no merit in going to higher v, we shall jus t
stay with (15) .

At this point, it is instructive to learn the lesson from the 3-point case .
A study of the 3-point function H(z) of (25) in the undifferentiated form

26 For a comprehensive treatment of Spence functions, see, e . g ., L. LEWIN, Dilogaritlun s
and Associated Functions, London (1958) .

" One might note that, in a 2-dimensional (1-space, 1-time) space, the 3-point functio n
without differentiation actually has the form (27) . (This is a remark by Profs . KALLiN and ToLL . )

Mat . Fys. Medd. Dan .vid. Selsk . 33, no . S .

	

2

(26)
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led us to rederive the same singularity manifolds as those obtained from

the differentiated form (28) . There are two ways for this, which are es-

sentially equivalent :

(a) The first method is to discuss the singularities under one remainin g

integral sign . We have, after the completion of a 2-fold integration, the fol -

lowing expression :

H(z ; cr) = 1 01(1~(a) log y(a ) ,

	

(29)

where

1\T (a) = ï~ (z) a2 - 2 P3 a + R3 = /1 (z )

	

- et) (a - 02)

e1 2

	

~(1z)
[P3 ± 2 j/z3

	

(z) ]-

and
3l

	

'62

	

0E3 \

	

-

	

(30)

2
I å~ a

	

ôR2 I

	

~/11

	

) 2 : - ) - J/N(a)

x(a) =

	

__

	

2
a``

	

a1

	

V_(oc)2(åz a-~åJ1+
V r

~(a
)

	

1(a2a

	

-

fall into the range (0,1) in the a-plane, N(a) = 0 gives an apparent

singularity . However, at this point log z(a) becomes log i = n . 2 ac i (n = in-
teger), in which lies the inherent cancellation . As long as the two root s
remain distinct, H(z) can still be defined by analytic continuation into an -

other sheet of the Riemann surface even when one (or both) ei has (have)

actually passed through the open interval (0,1), since in this case one ma y
very well deform the path of integration to avoid meeting with the roots .

The upper end a = 1 is perfectly harmless . At the lower end a = 0, how-

ever, one gets the R3-manifold (which gives the cut in the z3-plane) . On the
other hand, when the roots lend to coincide after they have crossed over

the range (0,1) an odd number of times, then the above deformation o f

the integration path is no longer possible, and H(z) will have a singularity .

The condition for such double roots gives precisely the manifold Ø(z) = 0
(apart from the trivial alternative z3 = 0 which we disregard) . The only

other singularities H(z) can have is at the coincident zeros or poles o f

x (a) which can be easily seen to lead t0 the RI and R 2 manifolds (cf . (46)
and the remark thereto) .

In this way, one is able to relocate the singularities of the 3-point func-

tion H(z) in the undifferentiated form, which agrees exactly with what on e
gets from the explicit differentiated form (28) .

~R11

	

V

Thus, as far as the integrand of (29) is concerned, when the 3-point root s
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(b) The second method is to carry out the last integration of (29) . As
already mentioned before, one gets Spence function terms besides logarithms
here . However, a careful examination of these terms shows that, with proper
manipulation, they are still manageable. One first learns which combination
of the variables go into each of the Spence functions by explicitl y
differentiating them with XaIaak . From this, one sees how the Spence func-
tions unfold and all the inherent cancellations thereof . Once this is done ,
one can, taking into account the symmetry of the problem, again recove r
the singularities of the 3-point function H(z) in the Spence function form .
We did this only as an exercise to get an insight into properly handling th e
corresponding (and more complicated) Spence function terms in the 4-poin t
case .

In the following, these two approaches are generalized to the 4-point case .

IV.2 The One-Fold Integral Representatio n

We now proceed to discuss the singularities of I(z) after a straight -
forward completion of integrations over three of the four a's . We have ,
before a final integration, the following expression28 :

~ l

	

3

I(z ; a)= - 1
2

-

	

da

	

~~

	

5(0) logxi (a) . (31)
oA(z)a2+2 Q1 a +Øi 7=1 YNi(a)

Here the denominator in front of the summation sign has singled out, i n
the language of Sec . I1I .4, the tetrahedron Ti , viz., the set of variable s
(z4 , z 5 , z 6 ; a 2 , a 3 , a4) . The summation is thus extended over the remainin g
three T?+1, j = 1, 2, 3, of the pentahedron of Fig . 5 . (Recall that Tk was
defined by deleting a k from the pentahedron) .

Now the symbols in (31) stand for the following :

(WI

Qk=aax ' k= . . ., 4

	

(32)

(33)

2e We have performed the integrations over a 4 , a 3, a 2 , The remaining integration is ove r
a l , where we drop the subscript . This singles out the triplet (456) . Of course, by symmetry ,
the order of integration is entirely immaterial . Had one left the last integration over a k undone
for any k, the net effect would be a trivial permutation of T l H Tk from Eq . (31) .
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where iPkk denotes the k-th principal minor of the Y'-determinant . Note
that 01 is explicitly given in (22) . A (z) is given by (19) . We have also de -
fined A l in (23) . The three remaining similar expressions (one for each o f
the remaining three triplets) can be simply defined a s

	

~~+1 = (2A)jj

	

J = 1, 2, 3

	

.

	

(34)

Furthermore, we have in (31)
a01

(a)
= å(~)

- a a	 .

	

(35 )

	

i

	

y-r
1

The quantities 3VTI (a) and tij (a) are precisely of the same structure as thos e
appearing in the undifferentiated form of the 3-point function H(z) in (29) .
Here

Nj (a) _ .ij ÷ 1 a2 - 2P.ra+R1 •,

	

(36)
where

dal; +;, = a~ï

and the primed index j ' denotes the conjugate of j in the sense of Sec . 111 .2 ,
viz ., j = (1, 2, 3) ; j '

	

(5, 6, 4), respectively .
The quantity R 6 is given explicitly in (24), and the remaining five R1, (z,t )

are obvious from symmetry, as they can readily be read off from the prin-
cipal 2 x2 minors of the T-determinant .
Finally we have :

aAll(a)
14 .0)

aNl1(cc)
~lv3 (a)

ôz k

	

ati l
j = 1, 2, 3

	

"38 )
a) al

a
l(a) +Ai(a)

am- .
~a) +(a)

in which the indices (j ' kl) form a triplet. The identification of indices k
and 1 is unique for each j .

We note in passing that the integrand in (31) evaluated at a = 0 is pre-
cisely the final expression (28) for the 3-point function in the differentiate d
form, now for the variables (z4 , z 5 , z6 ) . (This is certainly to be expected ,
and serves as a check for (31)) .

Having thus identified all the quantities that appear in (31), we procee d
to note a number of identities which will be important for our subsequen t
discussions . We have, for j = 1, 2, 3 ,

1V12(x)=1. 1 Arl (x)+4zß ,{11(z)a2 + Ql x+Øl

	

(39)

(37)
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(0
mj(a_))~- (a 7,à+1

	

aR, _ ~

zk ,

	

4 azz
a -aal _ 1

1 aRk
= 1\j(a.)+4zà, ka2+2

aal
a.+ ak+ 1

1
•

(40)

a + aØ' +1 12= R k lVà(a)+4Øà ; 1
1 aR k
2

	

+
ax + 1

aa1
(41 )

(42)

where (pa) forms a triplet in (40) and (41) .

Furthermore, we have

3

5 111j (a)= 7~1 (1 -a)
à= 1

= 16i1(z)Øk +4/". k W(z ; a),

	

k= 1, . . ., 4 .

	

(43)

Note that, for a = 0, (39) read s

(a i ) 2
= A1 Rà,+4z5,Ø1

	

(44)
, åaà + i

which is just the 3-point relation (KW (A . 46d)), now for the variable (456) .

On the other hand, (41) reads for a - 0

(a)2 =
RkRà-- i- 4ak+tØà+1

	

(45)

which is a variant of (44) in that the role of the corresponding a's and z's

is now interchanged . The 4-point analogue of this will be noted in Eq . (110) .

Equations (43) which are the proper generalization of (44) to the 4-point

case will also play a dominant role in our later discussion of the boundar y

(See. VI) . It might be of some interest to point out that identities of the ty -

pes (43) and (44) have a rather natural interpretation in terms of the deter -

minant expansion by means of a theorem due to Jacobi29 . An illustration

of this is given in Appendix D .

For completeness, we might mention that the quadratic expressio n

(z k a 2 + 1 /2 a Rk/a am a + a,z ) appearing in (40) and (41) is the 2-point analogu e

of the 3-point quantity N (a) defined in (36), or (30) . In fact, this is th e

expression used by KW to discuss the singularity on the cut, viz . (cf . KW

(A.47)) :

29 See, Appendix D .
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Sol

	 1	
log zk am - an+VRk -

	

_	
d a

VRk

	

k- a,. - an- VR k

	

Nka ; 1 "k

2 dam

Note that this 2-point denominator is what one gets by multiplying the nu-
merator and the denominator of the individual factor in (38) (cf . (40)) .
Therefore we see that the zeros or poles of x5 (a), which give apparent

singularities to the logarithms in the integrand of (31), are really confine d
to the individual cuts in the z's .

We see from (46), (29), and (31) that in the passage from the 2-poin t

to the 3-point and to the 4-point functions, there is a perfect pattern o f

generalization, especially in the respective denominators of the integrand s
before the final stages of integration, viz . :

	

Quadratic Form :

	

Discriminant :

2 1 å Rk
2-Point :

	

zka +~~a„z + an ; Rk : 2x2 Determinant

3-Point : Â(z)a2 -2 	
aØ

a+R5 ;

	

: 3x3 Determinant

4-Point : A(z)a2 + 	
1 O W

a

	

	 a + (15k ; W: 4x4 Determinan t
x

A word about the definition of the branches of log x5 (a) in (31) is now

in order . From the original integral representation (15), we note that, where

all z ' s are negative real, I(z) is not only analytic but also positive . Hence
we may define the log x5 (a) to lie on its principal sheet for such z's and

the rest is done by analytic continuation from there . With this definition,

for instance, we will always have on the physical sheet log x5 (1) = log 1 = 0
at the upper limit of integration . Note that x5 (1) E 1, independent of the z's
(cf. (52) below). It should perhaps also he pointed out that for ar (0,1) ,
N5 (a) are all positive for all negative real z's . For general z's, the sign of

the square root ß/N5 is rather unimportant since log x5 will just compen-
sate for any change of sign in front of j/ Ny .

IV.3 The 4-Point Roots

The 4-point roots ri, 2 are now defined as the zeros of the 4-point qua-

dratic expression in (47), (which is the denominator in (31)) . By virtue

of (43), we have

(46)

a+ an
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	 Q±VQi- 1 6 11Ø1 -Q+2vAl Y'
rl, 2 (z) _

411(z)

	

4A(z)

Here we see explicitly that the condition for r to be a double root correspond s

to the tlf-manifold. (The other alternative Al (z4 , z 5 , z6) = 0 is trivial) .

Thus, from (39), it follows that

Mj (r2 ) _ ±1/1 ; i = 1, 2

I/NJ(rz)

	

J=1,2, 3

and, together with (42), we have in particula r

3
=0 .

j

	

rti= l

Furthermore, it can be shown that

3

"l (' x;(l. ti) = 1 ,
1= 1

where the summation sign X' and the product sign H ' are meant to take

care of the sign condition of (49) .
Note that

x;(1) =1 , J =1 , 2 , 3

	

( 52 )

holds automatically from (37), regardless of the manifold

A(z)] +2Ql r i -- Ø 1 =0 .

Finally the special case
3

l~x,(o) = 1
j

now holds on the 0 1-manifold . This last identity was first established in
KW and played an important role in their discussion of the 3-point function
in the differentiated form 30 .

The identities (49) and (51) are crucial for the 4-point case . Equation (49 )

says that at the vanishing of the 4-point denominator in (31), all the coef-
ficients of the logarithms become identical, which allows the three log term s

to be summed. Eq. (51) guarantees that they add up to log 1 .

so	 	 1 	Cf . KW (A . 50) . There the factor	 should read 0(z) .
vA (z)

(48)

(49)

(50)

(51 )

(53)
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Therefore, just as in the 3-point case, the change of the branches o f

this final logarithm will determine the relevance of the 4-point singularity .

We shall leave this problem to Sec . V and Appendix A .

With the above preliminary, the integral (31) can now be written a s

i1

	

3

I(z ;
a)

	

1

	

da
\-7 ( lIj (r1 ) _ llTj (r 2))	 1	

log xi( x)
211(2) •(r 1 - r2)

	

- I•1

	

a- r2 V(a)

1

	

1

	

3S

	

- r - F.
( l' '2 11 (2) '(T1 - l'2)

	

[
F

7 ( 1)

	

I 2)
i

where
1

Fj (ri) = LII1 (ri)

	

d a •
	 1	 log xj (a) ,

i = 1, 2

. 0 -ri I/iNj(a)

	

j=1,2, 3

The situation in the a-plane is quite clear . Namely, one has only to

watch out for the three sets of roots (i . e . the 2-point, 3-point, and 4-point )

of the expressions (47) versus the path of integration (0,1) . Equation (54)

explicitly shows that singularities of the 4-point type occur when the 4-poin t

roots ri become a double root and when there is no cancellation among th e

F's. We now discuss separately the two cases r l � r2 and r i = r 2 .

IV.4 The 2-Point and 3-Point Singularities in the 4-Point Functio n

We first discuss the case when the 4-point roots are distinct : r1 � r2 in

(54) . Obviously any singularity must then come from each F1 (ri ) and further -

more these singularities may still be subject to cancellation when the sum -
mation over j is carried out . The functions Fj (ri) defined in (55) are evidently
multi-valued . When explicitly evaluated, they involve logarithms and a

sum of 32 Spence functions for each i = 1,2 and j = 1,2,3 . It is clear that
the 4-point complication for each F1 (ri), as compared with the 3-poin t

function H(z) in the undifferentiated form (29), arises from the presenc e

of the extra factor (a - ri ) -1 in (55), which at first sight may cause an ap-

parent singularity for the integrand when ri passes through the range (0,1) .
However, this is actually not a relevant source of singularity as long a s

r1 f r2 , and r i � 0, or 1, since in this case the path of integration can b e

easily deformed. Stated otherwise, on account of the identities (49) an d
3

(51), Z Fj (ri ) can still be defined by analytic continuation to a different
j=1

(54)

(55)
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sheet of the Riemann surface whenever a single root r i crosses over the open
interval (0,1). As already remarked above (following (47) and (52)), th e
upper limit of integration is entirely harmless . On the other hand, r i = 0
implies the Ø1-manifold, which is exactly the 3-point singularity correspondin g
to the tetrahedron 7'1 . The other three manifolds are 01 + = 0 which
arise from the set of 3-point denominators Nj (a) in (55). This is evidently
clear from our discussion of the 3-point function in the undifferentiate d
form (29) . The remaining singularities in Fi (ri ) in (55) then come from

a) when the 3-point roots take on the lower limit 0 : giving the manifold s
R~. - 0 for each j . This results in one cut each for (z5 , z4 , z6) ; and

b) when the 2-point roots (i . e . the zeros and poles of x, (a)) become
double roots within the open interval (0,1) . These 2-point roots result in th e
manifolds Rm (zm ) = 0 for in = 1,2,3 and can take on the value 0 onl y
when the appropriate masses are zero .

We thus conclude that, for the case r1 =r2 , the singularities of our 4-point
function I(z) of (54) are the degenerate ones of the 3-point and the 2-poin t
types .

The above statement can also be explicitly verified by completing th e
last integration of (55) and then discussing the resulting expression . Thi s
is done in Appendix A .

We might mention that, for the case 1 .1 r2 , there exists yet another wa y
of looking at the singularities of ' FI (ri) . Consider now the expressio n

, aJ(z ;a)=

	

u
~ [ - 2 .A. • (r1 - j'2)'I(z ; a) ]

~= 1 x

4

=
aak

	

[Ij(l2)] .
k = 1

As far as the singularities in z's are concerned, J(z) will for all practica l
purposes yield as much information as I(z), as long as we are away fro m
the '-manifold. Now the right-hand side of (56) is free from Spence func-
tions ; and one can readily see, after a straightforward computation, that
one gets singularities of the 3-point and the 2-point type . 3 1

" These details are contained in the Appendix B of the author's University of Maryland ,
Department of Physics Technical Report No . 186 (unpublished) .

(56)
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IV.5 The 4-Point Singularit y

Now we come to the case when the 4-point roots become coincident :
r1 = r2 , or we are on the '-manifold . From (54), it is clear that one get s
a 4-point singularity on the ¶-manifold unless there is a cancellation among
the Z Fj (ri ) . For this we may divide the '-manifold into ilIR and u 1R ,

where the superscripts R and IR denote respectively the relevant (no cancel-
lation) and the irrelevant (no jump) portions of the r-manifold . It is easy

to convince oneself that ilr1R is actually non-empty . Obvious examples ar e

the cases when all Imµ have the same sign, or when all z~ are negative real ,

since in both cases we know from the original integral representation (15 )
that I(z) is analytic there .

The relevance criteria for the iP-manifold are treated in Sec . V .

IV. 6 Summary of the Singularity Manifold s

In this section, we see that the 4-point function I(z) admits the following
types of singularities :

(a) 4-Point Singularity : on the manifold Yf(z ; a) = 0 ;

(b) 3-Point Singularity : on the manifolds Ok = 0, k = 1, . . . , 4 ;

(c) 2-Point Singularity : on the manifolds RI, = 0, ,ci - 1, . . ., 6 .

In terms of the determinants, the Øk's and the Ry 's are just the appropriat e
principal minors of the W-determinant (cf . Sec . III) .

V. The Relevance Criteria for the 4-Point Singularity Manifol d

We have seen in Sec . IV that the 4-point singularity arises when the
roots ri defined by (48) become coincident . Now we want to examine the
behavior32 of these merging roots more closely in connection with the
question of distinguishing TfR from VR .

a2 In fact, the following technique was first applied to the 3-point case in the undifferentiate d
form (29) where one is able to re-derive the criteria for the change of relevance of the 0-manifold .
An explicit illustration of this is contained in the Appendix C of the reference cited in footnote 31 .
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To be specific, let us consider, for the sake of convenience, z l , . . ., z 5

as being fixed, the roots 1. 1, 2 as functions of zs alone . Suppose we make

an arbitrary path âb in the z 6 -plane, which connects a point a in the known

analyticity region (such a point can always be chosen ; e . g., at - oa) to a
point b lying on the 'P-manifold (Fig . 6) . Under the mappings z6 -» ri (z6 ) ,

i = 1, 2, this path ab is now mapped into, say AB and Å2ß, respectively ,

in the a-plane. Then there are the following possibilities :

at - plane

	r

A

0

Figure 6 . Path of continuation to Tr-
manifold .

Figure 7 . Behavior of the 4-point roots :
Irrelevant merging.

(i) Neither of the paths A crosses the interval (0,1), e . g., Fig . 7 ;
(ii) One of the paths crosses over the interval (0,1) once, e .g., Fig . 8 ;

or if more than one crossing is made, then eithe r
(i') the net crossing is even and without encircling the endpoints ; or
(ii') the net crossing is odd, or with encircling of the end points .

Situation (i) or (i') is obviously harmless . For such cases, (the path of inte-
gration can be easily deformed for the case (0), the function

	

Fj (r) has
3

no jump, hence there will be a cancellation in (54) ; the singularity at
rl (b) = r2 (b) is thus removed, and one says that the portion of the ¶-mani -
fold, to which the point b belongs, must lie in PIR. On the other hand ,
for the situation (ii) or (ii'), the function does have a jump, and hence n o
cancellation . One gets then an actual singularity at the point b, and the
portion of the 'F-manifold to which b belongs will lie in T R .

The technique thus described, of plotting the explicit behaviors o f
the merging roots ri in the a-plane versus the path of continuation in the
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z-space from the known analyticity region to the part of the Y'-manifold

whose relevance is to be determined, although most primitive and tedious ,
is a rather useful and practical procedure to really pin down the relevanc e
question. Except in some very special cases it is not ncessary to plot thes e

merging roots, as one can instead rely on more general criteria . Since we
do not expect the whole ç'-manifold to be relevant, the relevance of thi s
must change when it intersects with some other manifolds . In the following ,

Figure 8 . Behavior of the 4-point roots :
Relevant merging .

Figure 9 . Path of continuation in the neigh -
borhood of (W = 0) n (Ø = 0).

we shall show that these other surfaces are just the relevant portions of th e

Øk-manifolds of the 3-point type .

We shall first state the relevance criteria for the 3-point singularity
manifold Ø = 0 :

Lemma 1 (KW) : The 3-point singularity manifold Ø = 0 changes it s
relevance at its intersections with the relevant portions of the 2-point sin-

gularity manifolds R i = 0, i = 1, 2, 3 .
This statement is evident from the explicit form (28) 3 3

We can now state in perfect analogy :

Lemma 2 : The 4-point singularity manifold zY 0 changes its relevanc e

at its intersections with the relevant portions of the 3-point singularity mani -

folds Øk = 0, k = 1, . . . , 4 .

as Actually in KW, Lhe problem of choosing the relevant portion of the 0-manifold i s
quite easy . Since one knows enough from the permuted domain D 3 where one must have ana-
lyticity, an explicit knowledge of the branches of the logarithms is not mandatory . A mor e
transparent way of seeing this independently is by discussing the behavior of the 3-point roots .
This is given in Appendix C of the reference cited in footnote 31 .
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It suffices to show this for k = 1, as the others will obviously follow from

symmetry. There are two ways to see this :

(a) One observes that one of the two (4-point) roots, say r 1 , goes throug h

the end-point zero of the interval (0,1) in the a-plane when the z's cross
the manifold 01 = 0 (cf. (48)), while the other root (r2) does not and will
essentially remain unchanged . Thus when the two roots tend to merge, i n

one case (i . e ., corresponding to one side of the Ø1-manifold), the paths of

at - plane

1

o

Figure 10 . Merging of the 4-point roots :

	

Figure 11 . Merging of the 4-poinL roots :
On one side of the Ø, ,-manifold .

	

On the other side of the 0 1 -manifold .

the roots do not cross the cut (0,1) (Fig. 10) ; while for the other case (i . e .
corresponding to the other side of the Ø1-manifold), one of the roots (r 1 )

does cross over the cut (0,1) once (Fig . 11) . Thus YFi (ri ) crosses over t o

a different sheet of the Riemann surface, while Y F7 (r2 ) remains on the

original sheet . Therefore, there is a cancellation on one side of the Ø 1-mani -
fold, but not on the other side . Thus one concludes that the transition be -
tween TR and TIIR takes place at the intersection with the 0-manifolds .

(b) Another way to see this is by examining the explicit expression fo r
FJ (r i ) . The details are included in the Appendix A . We simply stat e

that the results there confirm the above simple argument .
We conclude this section with a few remarks :

(1) It is clear that, since the whole W-manifold cannot be all relevant ,
WR is non-empty only if the W-manifold has an intersection with Øk (the
relevant portion of the Øk-manifolds). Furthermore, as we shall see in Sec . VI
that the singularity domain of the 4-point proper is actually compact, TR

is non-trivial only if the W-manifold intersects twice with the 4r) . The con-
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dition that such intersections occur is extremely complicated, and we shal l

only state later (cf . Sec . VI) some necessary conditions .
(2) The pattern of generalization from Lemma 1 to Lemma 2 strongl y

suggests that this feature may perhaps very well be valid for the genera l

n-point domain in the perturbation theory . However, we do not attemp t
to prove (or disprove) this conjecture, since this lies outside the scope o f
the present investigation.

(3) Since OD3ert is actually part of ÔE(D3), Lemma 1 is likewise vali d

in the axiomatic approach. In the 4-point case, from the preliminary result s 3 4

for the OD4 rim the general spirit of Lemma 2 (i . e . deleting in leaving

the question open as to whether this Y'-manifold has any relation with th e
dD4rim (cf . remark in Sec . VL7)) seems also to be valid in the axiomati c
approach .

VI . Determination of the Boundary of the 4-Point Domai n

VI. 1 General Discussion

In the preceding two sections, we have shown that the 4-point singularities ,

subject to the relevance conditions, are confined to the manifold given b y

the vanishing of the following 4x4 determinant :

-2al

	

Z t -a 2 -al Z2 - a3 a l Z3 -a4 -a 1

Z1 -a l -a 2

	

- 2 a2

Z4 -a 2 -a3

Z3 -a l -a4

	

a 2 - a4

Z4 a 3 -a2 Z6 --a 4 -a2

2 a 3

	

z5 - a 4 - a 3

Z 5 - 0 3 ' 0 4

	

- 2 a 4

Ÿ' (z ; a) =
'2-a1-a3

(57 ); ak>U .

In this section, we wish to determine what constitutes the boundary sur -

faces for this singularity domain . As it stands, P(z ; ak) generates a 4-para-

meter family of surfaces in the space of six complex variables . In principle ,
the boundaries of such a family of surfaces could be made up from any

of the following multitude of possibilities :

(1) The geometric envelope of this 4-parameter family of surfaces, which
would correspond to a special path traversed by the a's in the sedeciman t
a k > 0 . This will be called, for convenience, the 4-mass envelope and will

be denoted by E1234 .

34 Private communication from Prof . KÄLI Éx .
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(2) Subcases of (1) when one of the 4 a's takes on the extreme value

of 0, or 00, and the other 3 a's, taking a path in the subspace of the octant

ai > 0, produce a 3-mass envelope In principle, there could be 8 such

envelopes .

(3) Still further subeases of (1) arc when two of the 4 a's take on the
extreme values of 0, or 00, and the remaining two a's, taking a path in th e
quadrant a,> 0, produce a 2-mass envelope Ezk . There could be 24 such

envelopes .

(4) Finally, we have the simplest of all cases when 3 of the 4 a's take on

the extreme values of 0, or 00, leaving the remaining one single a s to vary

along the semi-axis a s > O. In all, there could be 32 such 1-mass surfaces Ek .
Out of all these 65 possible candidates for the boundaries to the 4-poin t

domain D4ert our present task is to eliminate the ineligible ones . Fortunately ,

we can eliminate all cases in (2)-(4) which involve any a k to be o . We
recall that the a's have the physical meaning of the squares of the masses
associated with the internal Iines in the Feynman diagrams. Now if any ak
is arbitrary large, then the thresholds for virtual production processes which

correspond to the onsets of the associated cut-planes will be proportionall y
high . Since the 3-point boundary Fki curves will not be relevant unles s
they have crosses over the cut beyond the threshold (Lemma i of Sec. V) ,
and furthermore, since the relevance of the 4-point boundaries depends o n

whether or not they have intersected the relevant 3-point curves (Lemma 2) ,
it is clear that the 00-portion of any ak would not give rise to any relevant
singularity. This statement is also valid in the 3-point case, if we note tha t
all the relevant portions of the F l curves are actually confined to the lower

ends of the a m-ranges (from a. = 0 up to a finite value) .
This criterion has the further consequence that the singularity domain

of the 4-point proper is actually compact . Unlike the 3-point case when
the F1 2 curve extends to 00 in the z 3-plane at the a 3 = 0 end, the all a k = 0

end is always finite in the 4-point case (apart from the trivial case whe n
one of the z's stays zero) (cf . Eq. (120) below).

Thus we shall from now on consider in cases (2)-(4) those extrem e
values of a's to be zero only . In this way, the list of candidates for boundary
is now radically trimmed from 65 down to 15, viz . ,

(1) 1 E1234

(2) 4 Ezj k

(3) 6 Ea

(4) 4 Ek .
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In the following, we shall first examine the questions of the variou s
envelopes listed above . A priori, the question is two-fold :

(a) whether such envelopes can exist at all in the allowed all-positiv e
ranges of the a's and

(b) if they do exist under certain circumstances, then it still remain s
to be seen whether they are really part of the boundary of our domain .

It would perhaps be helpful to recall the corresponding situations fo r
the 0-manifold in the 3-point case . KW have shown that the boundaries
there are made of only the 1-mass curves (analogue of case (4) above) . The
envelope problem for the 0-manifold is a much simpler one than we shal l
encounter below . We give a concise treatment for this in Appendix B .
The result there can be simply summarized as follows : Envelopes for the

3-point 0-manifold can exist, but they do not lie off the R-manifolds 35 (i . e .
on the cut for each z) . One concludes then that the boundaries are mad e
up by the Fkl , which are simple analytic hypersurfaces .

Our results in the following subsections will show that, unlike the 3-poin t
case, the envelopes in the 4-point case are non-trivial 36 and in general the
boundary of our domain will be made of pieces of (2-mass) envelopes .
Thus we have here a fundamental difference between the 4-point domai n
and the 3-point domain, namely, the regularity domain of the 4-point func-
tion in perturbation theory, D4ert is in general not everywhere bounded by
analytic hypersurfaces .

Before we go into the details for each of the above cases, we shall for-
mulate the envelope condition as follows :

The existence of the envelopes is purely a property that is related to th e
algebraic structure of the manifold . Consider in general the expression fo r
an rn-parameter family of surfaces, f(zi ; ak) = 0, i = 1, . . . , n ; k = 1, . . .
where the a's are the parameters under consideration, which are allowe d
to vary over a real domain Am .

Definition : A point on f is said to lie on the m-envelope of f if, together
with f 0, the set of (ni - l) independent equation s

(o f \

lm
of

=0, .I,k1, . . .,m

	

(58)

aakl

admits a set of solutions {ak} such that {ak) eAm .
as hi this connection, it is very tempting to conjecture that the envelopes for the 1P--mani-

fold would not lie off the 0-manifolds, but this conjecture turns out to be not true .
36 In the sense that in general they do not lie on the 0-manifolds . However the 4-mas s

and the 3-mass envelopes do not contribute to the boundary (cf . Sec. VI.2 and Sec . VI .3) .
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Stated in another way, the (m - 1) independent equations (58) can b e

regarded as the (ni - 1) constraints on the m-parameters, so that in principle

one can always express all the other (m -1) parameters a s , s> 1 , as function s

of the remaining parameter, say al . Let

Â. = {a : a l EA m ; as = as(ai)}

which shall be referred to as the "path" for the In-envelope . Note that in
general A. will not be completely contained in Am . If, regardless of the

configuration of the z's,

:4.n Am„_ 0,

then it is clear that the m-envelope in question does not exist at all . Other-

wise, for A. n An 0, we will be able to find in the a-space (i . e . A„~)

an allowed path Am n Am such that the image of this under the mapping

zn =g(zl , . .ak) : f = 0

gives the desired m-envelope . Since the a's mix the real and imaginary

parts of the z's, the envelopes will evidently in general not be analytic hyper -

surfaces . Equations (58) will be referred to as the envelope conditions .

VI .2 The 4-Mass Envelope

We now proceed to apply the general equations (58) to our specifi c

manifold det j Tri3 I - I'(z ; a) = 0 of (57). Before we do this, we shal l

derive a number of identities which will be crucial for the subsequen t

discussion of the envelopes. First, we find it useful to rewrite the W-deter-

minant such that the a's shall appear only in one column and one row

(cf. (22a)). For instance, we have from (57) :

-2a l

	

z1-I-al -a2 z2 -} al -a3 Z3+al -a4

zl +al -a2

	

-2z1

	

Z4 - Z 2 -zl Z 6 -z3 -zl

z2 ~- al- ag z4 - Zt -Z 2

	

2z2

	

z5 -z3 -z2

Z3 +al -a4 z5 -zl -z3 z5 -z2 -z3

	

-2z3

Here al is singled out . Evidently there are 3 other such forms obtained by

suitable permutations . For convenience, let us denote by Wii the &-th element

and by Pij its minor in (57a), while the corresponding uncurled quantitie s
shall refer to those in the original from (57) . Note that

Mat . Fys. Medd . Dan. V id . Selsk . 33, no . 3.

	

3

(57a)
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1-1k = ~lk +2a1 ;

q-f11 = 7"11 .

k~ 1

We have already had occasion in Sec . IV to define such quantities as
1

Qk = äk of (32). Now these have the most natural interpretation in terms

of (57a), namely :

For k = 2,3,4

1a P
~1k =( - 1)k ' 2aax

	

1) k

	

Q k ; k � 1 ,

	

(60 )

pick _ 2 k
_ pkk .

Yj 11 = 211(-) .

Furthermore, from (57a), one immediately sees tha t

F~1 aa ' ~1k = 0 for k �' 1 .

Therefore
4

~ Qi = - 411(z),

	

(63)
i= 1

in which the right-hand side is independent of the a ' s . Next, with the aid

of (60), we have

4
p_ ( 1)å+l piz pli - ~11

p11 + (/_ 1)k+1 plx pI k

	

i=1

	

k
4p

uy Qi+1
y (- 1)2k+lŸ'ixQ, x

	

2

	

i=l

	

2 $

Using (59), we get
1 4

	

a F
2 ;~l Y-fij

aa;

for all i= . . .,4 .

Identities (63) and (64) will be of great importance to us in the followin g

discussions . Another set of identities which we will need here already ap -

(61 )k � 1,

(62)

since

(64)
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peared in (43) 37 . We are now ready to write down the envelope condition s

for E1234 according to (58) :

= Im ( Qà )
=o ;

Qk

j,k =1, . . , 4

j� k (otherwise trivial) .

(65 )

In view of the identity (63), we can now define a set of four real numbers

y k such that on E 1234

Qk = - 4 y k . A(z)

	

(66 )
with

yk = 1 ; lm yk = 0 .

	

(67 )
k

From (43) we have on the manifold W = 0 :

Qk =±4jAØk .

	

(68 )
Therefore we have on E123 4

Øk
=~k >0 ; j,k= 1, . . . ,

In principle, the system of equations (69) together with - 0 contain al l

the information there is about the 4-mass envelope . (In fact, as we shall se e

later in Sec. VI .4 for a 2-mass envelope, one has only one such equatio n

which actually exhausts the envelope condition) . However, a frontal attac k

on (69) for both the 4-mass and the 3-mass envelopes could lead to tremen-

dous algebraic complications . We find it much more convenient to go

hack to the system of equations (64). We have for P = 0 :

4

.�_, 'WàkQk = 0,

	

I = 1, . . ., 4 .

	

(70 )
k = 1

Now with (66), we get (A(z) = 0)

4

~ Via yk ° n Lyk = 1 .
k=1

	

k

We emphasize that the yk 's are real, so that the system of equations (71 )
is equivalent to the following set of 9 real linear algebraic equations 3 3

3 ' For a proof of such identities, see Appendix D .
38 The fact that V' = 0 is automatically satisfied is obvious from (72) .

4 .

	

(69 )

3*
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4

Y (Im Pik) yk = 0, i = 1,

	

. . . , 4, (72a)
k= 1

4
~ (Re 'Pik) yk = 0, i = 1,

	

. . ., 4, (72b )
k= 1

4
.

k-=-
(72c)

Since, according to (72e), the solution with all y's being equal to zer o

is unacceptable, it follows that the determinants of the coefficients o f

any four equations taken at a time (out of the eight in (72a-b)) should

vanish. We shall first discuss the consequences of (72a) which contain th e

most powerful restrictions on E1234 :

det

	

= 1
1

0

	

Y1 f12 g3

gl 0

	

g4 Y6

J2 Y4 0

	

Y5

Y3 6 y5 0

Note that this determinant is equivalent to the A-function of products of

conjugate variables, viz :

-2 i]l Ÿ5

	

g2 g6 J 1 95 g3 d4

Y2 Y6 - g1 g5 g3 g4

	

- 2 g3 y4

From now on, we shall be more specific by keeping the other 5 z's fixed ,

and project everything into the z6-plane. We see that the 4-mass envelop e

E1234 can only be satisfied on the two horizontal straight lines obtained b y

solving (73), viz :

jJ1y 5 + d3 114 ±2Vy1y3y4g5
Y6 =

	

g 2

det I lm iPu E

(Yk Yk')= - =0 .

	

(73a)

(74)

- - '/ --
~ vg 2 g6 = V gl y5 f VJ3Y4 . (74a)

or

From (74), it follows immediately that there exists no 4-mass envelope wheneve r

Y1Y3g4g5 r 0 • (75)

More generally, in view of (74a), we can state that the necessary condition

for the 'existence of the 4-mass envelope E1234 is that the three products o f

Ukyk', k = 1, 2, 3 ( k ' = conjugate of k, cf . Sec . III .2) must have the same sign, or
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y1 y5

	

y2 y6	 y3 y 4

~yly5

	

i y2y6~

	

~y3y4 1

which we shall refer to as the sign convention for the existence of the 4-mas s
envelope E1s34

An obvious example which satisfies this sign condition but where E 234
is entirely irrelevant is furnished by the configuration whenever 5 z ' s
lie in the same half-plane. Then the E1234 in the 6-th variable must also li e
in this same half-plane . As we have already mentioned in Sec . V, the ori-
ginal function (15) has no singularity for all 6z's having the same sign i n
the Imz's . Here we have a situation where the entire lines are irrelevant .
For the other configurations 39 , however, the situations are much mor e
complicated, as we shall see below .

So far, we have only explored the existence condition of E1234 based on
the consequence of the imaginary part equations (72a) . A brief examination
of the real part equations (72b) will convince oneself that there is no alge-
braic contradiction among the two sets of equations, so that in principl e
E1234, satisfying (76), can exist provided that all the parameters ak could
be found to be positive at least for some configurations of the x's . Thi s
we now proceed to show .

To be specific, let the y's be given, satisfying (76) ; one can explicitly
compute the yk 's from (72a) and (72e)40 (cf. Appendix C) in terms o f
the y's . Equations (72b) may now be regarded as those governing the a k 's .
The solutions may be written as follows :

(76)

with

1
c~x = 2f XiàYfYà+

	

Xxà Yà ; k,

	

j = 1, . . ., 4

	

(77 )

where the matrix X is given by

X3 X6 X5 0
3 ' The distinct configurations for which (76) is satisfied are given in Appendix C .
90 Note that the following ratios hold on E 1234 :

y i : yå : ys : Yå : = y4y5y6 : y2 y 3 y5 : y l y 3 ys : yly2y4, the right-hand -side can be regarded as Of,
evaluated at all x = 0 and all a = 0 (cf . Appendix C) .

,o

	

x1 X2 .

1r = (x, 0 X 4
~

X2 X4 0 (78)
5
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Note that
Xaj =ReWuIzk= o .

It is clear then that the configurations of the x's must be such that n (ak > 0} � 0,
or

2y.yj +Xkj yj >0, for k=1, . . .,4 .

	

(79)
j

The set of equations (79) which is linear and homogeneous in the six x's
defines a region of the x's in the six-dimensional space R6, which can be
visualized as the intersection of the "positive sides" of the four linear mani -
folds defined by setting the left-hand side of (79) equal to zero for each k .
Let S2z denote this intersection. The fact that S2z is non-empty is trivia l
(since the dimensionality of the variables (x's) exceeds the number of
constraints by two) . It may be of some interest to note the subset of D
for which the ak 's are positive definite (i . e ., regardless of the yk 's) . For thi s
we may rewrite (77) in the following matrix notation :

ak - _~ y(x)''L(k)y(k)

	

k = 1, . . ., 4

	

(80)

in which y (k) denotes a 3 x 1 column matrix of the yj 's with the deletion

Y 2
of the y k , e . g ., y( = ( y3 , etc . . L (k) is a set of 3 x3 symmetric matrices in
the x's :

x4 -x2 -x1 x6 -x3 -x1

L(1)-= x4-x1x2.

	

- 2 x2

	

x5 - :X;3 x2

\x 6 -x1 -x3 x 5 -x2 x 3

	

2x3

/ -2x1

	

x2 -x4-x l x3-x6 -xl
L(2) _ x 2 x1 -x4

	

-2x4

	

x5-x6 - .

\x3 - x1 - x6 x5 - x4 x6

	

- 2 x6

- 2 x 2 x 1 -x4 -x2 x3-x5 - x

L(3) _

	

- x2 - x4

	

-2x4

	

x 6 -x5 -x4

L(4)

Y4

/ -2x1

X2 - X5 X6 - X4 - X5

	

- 2 x5

2x3

	

X1 -x6 -x3 x 2 -x 5 -x3

x4 -x5 -x6

`i fY'.

-x3 x6 - 2x 6

- x3 -x5 x 4 - x 6 -x 5
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Note that'll

det
L(k)=211

.(x), for k1, . . .,4 .

	

(81 )

Now with the (tic 's regarded as the quadratic forms in the yk 's in (80), a
standard procedure of diagonalization immediately shows that the subset
co x of S>x for which the ak 's are positive definite is given by

	

wx ={x :x >0,Ak(x)<0,A(x)<0,
k=1, . . .,41

	

(82 )

l

	

,u=1,

	

.,6f

It is trivial to check that cox is non-empty . Thus 0 t co x CDx . Geometrically ,
-420 .x1 , xk) = 16 times the squares of the area of the triangle with th e

Figure 12 . Projection of the A(x)-cone .

sides Vxi , j/xi , Vxk ; and -11.(x) = 144 times the square of the volume o f
the tetrahedron formed by the six edges with lengths Vxp . In a 3-dimensiona l
space, the region 1,(x) < 0 is the interior of a c.one42 (tangent to all coordinate
planes) within the octant .x i , xk > 0 (cf. Fig. 12 above as projection) .
Nov in the 6-dimensional space, one first goes to the sexaginta-quadran t
x~ > 0, then takes the intersection of 4 sets of the Lcones in the sub-3-spaces ,
and finally inscribes the surface of 11(x) = 0 (which will be tangent to
all four Ric-cones) . (No attempt is made to draw such a picture here, no t
even the projection) .

This establishes that with suitably given z's (lm _'s satisfying (76) ,
Re z- 's satisfying (79), and in particular (82)), the four parameters a k can
indeed be found simultaneously positive on the 4-mass envelope E 1234 ,
and with this we conclude the existence of the 4-mass envelope .

d1 We note in passing that the structures of the L (k )-matrices can be easily understoo d
with the aid of the tetrahedron T of Sec. I11 .2 . The diagonal elements in Le k) correspond t o
those edges emerging from the k-th vertex of Fig . 3, and the ofl-diagonal elements to the edge s
conjugate to this vertex (i . e . the k-th face) .

4, A beautiful picture of such A-cone appeared in a recent paper of A . S . WTCHTMAN anel
H . EPSTEIN, Annals of Phys . 11, 201 (1960), in an entirely different context .
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We now proceed to discuss the relevance of E1234 . To be specific, con -
sider y l ,	 y5 given according to (76), compute the Y6 from (74) (i . e .
we get two horizontal lines E1z34 in the z6-plane) . From these 6 y's, compute
the yk 's from (72a) . Now given more or less arbitrary x1	 x5 , the li -
nearity of (77) implies that a k has one zero only on each of the E1234 . A

X6

Figure 13 . Straight-line segment in zg-plane as the 4-mass envelope .

typical case is illustrated in Fig . 13 . We use the symbol 0 -} to show the di-
rection in which that particular a.i is positive . Hereafter, E1234 shall properly
denote the allowed region of existence of the 4-mass envelope on whic h
the intersection of all a k > 0 has been taken (e . g., the segment betwee n
a 2 = 0 and al = 0 in Fig . 13) . By definition, E1234 is contained in S2x of
(79) ; however, E1234 n (Ox may be empty . The case when E1234 n w x ~ 0
has some pertinent features which we leave to the Appendix C . In general
there are the following possibilities :

(a) E1234 is either empty for a particular configuration of the z's or is entirely
contained inside the 3-point singularity domain : in such cases, the 4-mas s
envelopes are entirely irrelevant .
(b) E1234 is unbounded at one end which lies outside the 3-point singularity
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domain : In this case (imagine all F-0 pointing to the left in Fig . 13), it i s

also easy to dispose of by observing that the extreme far end of E1234 (which

corresponds to all ak -> 00) is never relevant. Since the relevance of E 1234

does not change unless it has an intersection ; otherwise, the case is reduce d

to (c) below.

(c) E1234 is finite and partly lies outside the 3-point singularity domai n

(Figs . 13, 24, 25) . This is the only outstanding situation of the 4-mass en-

velope which needs further discussion . It is clear that the path in the a-space

corresponding to such a finite E1234 is a straight-line segment bounded by

two 3-dimensional sub-spaces . As will be shown in Sec. VI.3, at the end

a. = 0 of E1234 comes the 3-mass envelope Eva (j ~ k ~ 1 � in) . Stated

otherwise, the fact that E1234 suddenly comes to a stop must mean tha t

there is another curve which would also pass through that point. For this ,

we must defer the remaining discussion of the role of the 4-mass envelop e

until we have treated the 3-mass envelopes in the next sub-section .

VI .3 The 3-Mass Envelope

We have seen that the restrictions of the 4-mass envelope are so strong

that one gets only rather trivial situations where E1234 is confined to a straight-

line segment in the z-plane . The envelope condition (58) or (66) is relaxe d

when one goes from an ]n-envelope to an (m - 1)-envelope ; since, by de -

finition, one of the parameters a i now takes on the fixed extreme value 0 ,

the corresponding restriction of a W/a ai is then to be removed . We shall
now sketch the necessary modification for the treatment of the 3-mas s

envelopes E5ki . To be specific, let us consider E123 , the 3-mass envelop e

formed by a special path in the (a l , a 2 , a3) 3-space. For this, we set onc e

for all, a4 = 0, in the expression for W(z ; a). Strictly speaking, Q4 which

was defined as a iP/a a 4 is now meaningless, however, as a shorthand no-

tation, we shall still use it as

l
Q4

-
-

	

1,aak .

which, as stated above, is no longer restricted by the reality condition o f

(66). However, the identities (70) still hold with a 4 = O. We may now de-

fine on E123 a set of 5 real y s , s = 1, . . ., 5 such tha t

a,=0



Q. j = yj G(z ;a), j = l , . . , 3

3

G(7. ; a) =

	

- 41i(;o) - Qq ;
j -1

3

Y Yj = 1
j = 1

= (Y4 + 2 Y5) G(z ; a) .

Substituting (83) into (70) and dividing by G(z ; a), we get, after taking

the imaginary and the real parts :

4
~ (Im Pik) Yk + (Re ~ti 4) Y5 = 0 ;
k= 1

4

Y (Re Y'ik) Yk - (Im 11ti4) Y5 = 0 ; for i = 1, . . . , 4 .

	

(84h)
k= 1

Now taking the fourth equation of (84h) together with (84a), we have

5

where
t=

usty t =0 , s=1, . .

	

,5 (85)

() Yi y2 Y3
(1

4 )

9l n y4 y6
~ 24 )

U= Y2 tJ4 0 Y5
~ 34) (86)

tJ3 Y6 y 5 0 0

with

~14) 94) ~34) 0 O

/
x3_al ,

(4))
x6 -a 2 (87)

\ X5 - a3 ;

where the superscript (4) is a reminder of a 4 = O . Note that this column

corresponds to the edges emerging from the 4-th vertex of the tetrahedron T

of Fig . 3 .
Since the det i U I must vanish for non-trivial solutions of the y s 's, we have

det U

	

-- (4)T V s(4) = 0,

(83)

and

(84 a )

(88 )
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where V is a symmetric 3 x3 singular matrix involving the y's alone :

~

	

) y4 y5 y6

	

y5 ( y1 y5 y3 y4 - y2 y6) y6 (y2 y6 - y1 y5 y3 y4)\

y5 (y1 y5 - y3 y4 - y 2 y6 )

	

2 y2 y3 y5

	

y3 ( y3 y4 - y1 y5 - y2 y6 )

\y6 (y2 y6 - y3 y4 - y1 y5) y3 (y3 y4 - y1 y5 - y

	

2 y1 y3 ys

Eq. (88) can be easily solved . The result i s

Y Wai ~~4> =0, for i=1,2,3,

	

(90)
j

where W is also a 3 x 3 singular matrix (but in general unsymmetric) :

Vii

	

V12 + (ykyk')

	

V13 + VA(ykyk')

V21 + VA(y k yk ' )

	

V22

	

V23

	

(yk y k')

V31 + V A (y k yk') V32 I V A(y k yk')

	

V3 3

in which A(y k y k.) is the determinant (73a) which vanishes on the 4-mas s
envelope .

From (91), it immediately follows that the 3-mass envelopes cannot exist i f

A(ykyk')<o .

	

(92)
This implies that

(a) If the y's satisfy the sign convention (76), then the 3-mass envelopes can
only lie outside the region bounded by the two lines of (74) . In particular ,
(92) implies that Eva can never cross over E1234 (cf. Fig. 15) .
(b) On the other hand, if the y's do not obey the sign convention (76) ,
then A(y k yk .) >0 always, and Enk a may exist while E1234 cannot .

For case (a), i . e . when E1234 exists, we assert that Efkl intersects with

E1234 at the point which corresponds to the remaining parameter a. = 0
on E1234 . This is intuitively clear since, at the point (q, ak, a ; am - 0)
on E1234, we are in the 3-space of (at , ak , al ) in which lies a path for Etk g ;
now this point must actually lie on the path for Etk g, since the condition
for E1234 is sufficient for that of Eiki . This statement can be explicitly veri-
fied by elementary computation . Considering the case a 4 = 0, we note that
the following ratios hold for the y s 's on E123 :

(91 )

. (89)
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Y1 - y2 • y3 • y4 - y5 • = y5 [(yly 5 y2y6 - .Ÿ

'

3Y4) =

	

( .Ÿ ky ~

	

Yk ') J

- 2 y 2 y3 y5 - y3 `(y3 y4 - yt y5 - y2 y6) + V/ ~ (ykyk') ] -

	 (4) y3~	
s(4)y5

	

( y ky k 'Y2 (Y2 Y6 y l y5-93y4)~

	

)E34) y3

	

y5

34) y3 - ~ 14) y5 ~~ (y k yk') .

It is clear then that, at E1234 n E123, we have y 5 = O . Then the remaining four

y's will have exactly the same ratio as those in the case of the 4-mass envelop e

(cf. footnote 40, and Appendix C), and the solution to the 3-mass envelop e

will coincide with the solution to the 4-mass envelope E1234 at a4 = 0 on.

the latter . This establishes our above statement that E25k n E1234 � O .

We now return to the discussion of the situation (c) of E1234 in the las t

sub-section, in which E1234 has a finite strip lying outside the relevant 3-point

Figure 14 . Inadmissible corners formed by the intersection between the 3-mass and the 4-mas s
envelopes .

singularity domain (cf . Fig. 13) . The end-point A of E1234 corresponds to

one particular am = 0 on E1234, say m = 4 . As we have just seen that E12 3
can only lie on one side of E1234 (e . g ., below the segment AB in the z 6-plane ,

+2y2Y3 y 5
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cf. Fig. 14 above) and that E123 actually touches this end-point A . Let us
imagine that EI23 is depicted by some curve ÅN in the z6-plane (Fig . 14) .
The exact shape of E123 will not be important to us (cf. remark in con-
nection with Fig . 15 below) . Our discussion up to this point does not ex ,
elude the possibility that the shaded region in Fig. 14 might contain the
4-point singularity . But this we now proceed to show as inadmissible .

Figure 15 . Admissible (but non-occurring) corners .

If this were really the case, the intersections of E zfk with E1234 would be o f
such a kind that we had a corner in our domain . Since, as is characteristi c
of the theory of several complex variables, such corners are vulnerable to
further analytic continuation43 , they cannot be part of the actual boundar y
of a natural domain of holomorphy . Note that if it were possible for Eifk
to cross over the 4-mass envelope like in the situation shown in Fig. 15, then
this would in principle be admissible (since, in this case, the regularity
domain would be the intersection of the two rather than the union as in
Fig . 14) . But our discussion of the 3-mass envelopes definitely exclude s
the possibility of such double intersections between Eifk and E1234 . Thi s
leaves the only alternative of the corner as shown in Fig . 14, which one ca n
reject as unacceptable for the boundary of our domain. Thus one conclude s
that the 4-mass envelope and the 3-mass envelopes do not contribute t o

43 A standard theorem is the well-known "Kantensatz" . See, e . g ., BEHNKE THULLEN ,
loc . cit ., p .52 ; KW's Sec . VI ; and H . KNESER, Math . Ann . 106, 656 (1932) . Although, strictly
speaking, this theorem has only been proved for corners formed by analytic surfaces, whil e
in our present case we are presumably dealing with the non-analytic surfaces, one can in th e
neighborhood of such corners construct tangential analytic surfaces so that the shaving of th e
corner received from the "Kantensatz" on the enveloping analytic surfaces will automaticall y
affect our present corner proper. I would like to thank both Professors JOS"r and KÄLLÉN fo r
comments on this point.
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the boundary 44 . In cases when the shaded region of Fig . 14 contains actua l

singularities, there must be another surface passing through and cover u p

this corner of Fig . 14 . For this, we must go over to the treatment of th e

2-mass envelopes .

VI.4 The 2-Mass Envelop e

As already mentioned in Sec . ß'I .3, the farther we go down to the enve -

lopes of lower hierarchy, the less restrictions there are on the Q k 's . We shall
first establish the intersection of the 2-mass envelope Eik with the 3-mass

envelope Kok . The method is quite analogous to the previous treatment o f

the 3-mass envelope .

We introduce a set of 6 real parameters y~ . For specificity, let u s

set a 4 a2 = 0 and consider E 13 (i . e . the 2-mass envelope formed by a

path in the quadrant a l > 0, a3> 0) . As before, the quantities Q4 , Q 2 shall

now be understood to stand for

a'11 )
Q4 - a4

a ~
Q2 = a a2

(a, = a = 0 )

(a, = a,=0)

Since the envelope condition for E 13 requires that

lm (Ql `I
Q 3

we may set

Q i =yi h(z ;a),

	

i 1, 3

YI+Y3° 1

]I (z ; a) - - 4A (z) - Q2 - Q4

	

(95)

Q2 = (Y2+ iy6)' h (z ; a)

Q4=(Y4+iY5) .h(z ; a) .

Substituting (95) into (70) and dividing by h(z ; a), we get, after taking
the imaginary and the real parts :

49 The role of the 3-mass envelopes in the case when the 4-mass envelope does not exis t
will not be discussed here . In view of the above feature for m = 4 that the (m-1)-envelop e
can only lie on one side of the m-envelope (i . e . meet at most tangentially), which will be seen
later (Lemma 3) to be also valid for m = 3, one feels more confident that the 2-mass envelopes
are actually more important even in this case .
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4
~ (Im Tik ) Yk +(Re Pi 2 ) Y 6 +(Re Ti 4) Y5 =0 ;

	

(96a)
k- 1

4

X (ReRe fik) Yk - (Im 71g2) Y6 - (Im 4) Y5 = 0 .
k= 1

Combining the second and the fourth equations of (96b) with (96a), w e

have :
6

T,uvYv =O ,

	

=
u

where (Tl ,,,) is a 6 x 6 symmetric matrix :

0

	

yl y2 y 3

	

1

	

3

y1 0

	

y4 y6 0

	

e 6

~~y
)

	

(Y2 y4 0

	

y5 e4(

	

98
)

y3 y6 y5 0

	

e 6

~1 0

	

0

	

y6 J

53

	

Sg ~5 0

	

y6 0 `/

where

~z= xi -a 1 , i=1, 3

= x~ - a3 , .J = 4, 5

5g = x6 .

Let T T= det I Tp„ 1 . Now making use of the Jacobi . theorem 45 on the ex-

pansion of the determinant in terms of the minors, we have

T= 4 y k Ye)

where TP' = minor of Tt,,,, being 5x 5 determinants .

One immediately recognizes that T 55 and T66 are precisely the deter -

minants of the type (whose matrix is defined in (86)) for the 3-mass enve -

lopes E123 (at a 2 = 0) and E134 (at a4 = 0) respectively. From this, the inter -

section of the 2-mass envelope with the 3-mass envelope is quite obvious .

Consider, e . g ., E13 n E123 . Since T must vanish on E 13 , and T55 vanishes

on E123, and consequently on E13 n E123, we have

45 See Appendix D .

(96b)

, . . ., 6

	

(97 )

1 , 55 T66 -( 7'56)2
(100)
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Y6- 0

T55
=0 .

and

A straightforward computation with the aid of (90) will reveal that (101 )
reduces to the second equation of (96b) with y 6 = 0 and y l , . . . , y 5 expressed

f PROJECTION OF C1234

"END-POINT OF 4-MASS ENVELOP E
CI23

	

a2

END-POINT OF 3-MASS ENVELOPE

Figure 16 . Typical paths for the various envelopes in the a-space .

by those on the 3-mass envelope E123 (cf . (93)) . This means that (101 )
is automatically satisfied on E13 n E123 ; hence there is no internal incon-
sistency. This shows that in general Eil, n Eijk � 0 .

This is also intuitively clear since the path C ijk in the octant of all posi-
tive a's corresponding to the relevant portion of Eik is in general bounde d
by the coordinate 2-planes am = 0, rn j, or k. Since the envelope con-
dition for Eik is sufficient for Eik , the end-points of Gipl, (in the finite case )
must then necessarily lie on the path, say, Ca for Eik . This situation i s
depicted in Fig . 16, showing that the path of one of the (m - 1)-envelope s
passes through one of the end-points of the path for the m-envelope, rn = 2, 3, 4 .
One further consequence for Eik n EiJk is the following :

From (100), we have, since T- 0 on E13 ,

(T56)2 = T55 T66 . (102)

(102) can only be satisfied when T 55 and T66 have the same sign . In the
case when E134 and E123 are distinct, we have in the neighborhood of E13 n

E123, T55 0 ; while T 66 (i . e . the determinant corresponding to E134) wil l
essentially remain unchanged in sign . Thus (102) immediately implies that
T55 cannot change its sign in the neighborhood of E13 n E123, i . e . E13 can -
not cross over E123 . The same statement holds for E134 .

(101)
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Collecting with this our previous result for Etik n E1234, we have estab-

lished the cases rn = 3, 4 of the following :

Lemma 3 : The intersection between the envelopes Efm-1 ~ and Efm) , for

m=2,3,4,

(1) is non-empty ,

(2) occurs at the ends of Efm), and

(3) is "tangential" .

Remark : (a) The subscript f is used to denote the case when the path C (m )
for the m-envelope E (m) is finite (i . e . C (m) is bounded by the sub-Km -1)-spa-

ces) . Otherwise, in the case when C(m) is unbounded, one can always show

that the corresponding envelopes are irrelevant .

(b) The term "tangential" is understood as saying that 0m-1) can only

lie on one side of Efm) (i . e. cannot cross over Elm) at the intersection4G
in the z-space) .

(c) Lemma 3 says nothing about the relationship between an E (m-2)
and an E (m) . Thus, for instance, a 2-mass envelope can cross over the 4-mass

envelope to swallow the corner of Fig . 15 (cf. Fig. 18 below) .

(d) Whether 0'0 will always contain the actual singularity is not full y

settled here . This is true, however, in the 3-point case : while the 0 31 and
Er, although not contributing to the boundary, do lie inside the sin-

48 This feature seems to be also valid for the envelopes in the primitive domain o f
the 4-point function in the axiomatic approach . (Private communication from Professo r
G . 1{ ÄLL IN) .

Mat . Fys. Medd . Dan. Vid . Se1sk. 33, no. 3.

	

4
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gularity domain (on the cut)47 . However, in the present case, we have on e
explicit example (cf. Fig. 24) where the corner formed by E14) with Er
is actually singular . (Of course, the case when Efm) is entirely contained
inside the 3-point singularity domain is trivial) .

It remains to say a few words about the case in - 2 in Lemma 3 whic h
involves the 1-mass envelopes (strictly speaking, they are not envelopes) .

One can, of course, explicitly show their intersections with the 2-mass enve -
lopes in a perfectly analogous manner as was done above for Eÿ 2 n Er ;
we shall, however, omit this elementary computation here . Intuitively, i t

is clear in the quadrant ai > 0, ak > 0, since a finite path C ik for Ea must

necessarily terminate on the semi-axes . A typical situation is shown i n
Fig. 17 in which C13 is bounded by the same axis . The image in the z 6 -

plane is shown in Fig . 18 where the 2-mass envelope E13 rides on top o f

the one-mass surface El , and the singularity domain is the union of the
regions bounded by these two .

For completeness, we mention that, in the 3-point case, there occur s

47 See Appendix B .
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a peculiar situation where E (1) n E (2) n EM � 0. This does not happen i n
general for the 4-point case. The only exception for E(m-2) n Eon-i-) n
E(m) � 0 to occur would be when there are coincident zeros of the a's on
E(m), e . g. Fig. 19 . However, the situation in the 3-point case is actuall y
of a slightly different nature than that of Fig . 19. There, the image of th e
2-mass envelope in the z-plane happens to be a constant, so that E12 (the
analogue of which in the 4-point case are the 3-mass envelopes) actuall y
shrinks to a point which serves as the junction between the 1-mass F' -
curves and the 3-mass envelope there48 .

The rest of this sub-section is devoted to the discussion of the connectio n

of the 2-mass envelopes with the boundaries of the 3-point singularity
domain, Fkl curves, and the equations for the former .

The conditions for the 2-mass envelopes are all contained in equation s
of type (96) . However, for the 2-mass envelope, it is actually more con-
venient to take (94) together with the identities (68), (i . e . (69)). Thus,
we have, for instance, on E13,

a real .

	

(103)

E l a
Figure 19 . Multiple intersections among the envelopes in the 4-point case (Non-occurrence of) .

Since ,

where

for z 6 � 0, we may write

(t3 (v6

	 -

43) = a2 > 0
/

	

_)

	

'03 a,=a,=0 a 1 h6 ` 6
(1

)
(104)

48 See Appendix B .

4*
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6
Z3

//zZ5

Figure 20 . Allowed region for the 2-mass envelope : (outside the solid-line shaded region) whe n
the two sets of F'-curves are in the same half-plane .

Nr . 3

4 +z5- a3 - 	 z4 'S (105 a )
O3

_{1)

	

'1 z 3
~ 6 =

z1 f z3 - al - (105 b )
al

are the points on the F45 and F13 , respectively. Equation (104) allows a
simple visualization of the location of the' 2-mass envelope. Consider a

point (at, a3) on C 13 , then in the z6-plane one can locate two points z .6 (a ) ,
i = 1, 3, on F1 3 and F4 5 , respectively, according to (105) . One sees then that

the condition (104) for E13 at (a) can only he satisfied on the line L 13 pas-
sing through z 6 (ai), 2 (0), excluding the segment between them. In other

words, the 2-mass envelopes cannot exist in the region bounded by th e

two F'-curves, such as the shaded regions in Figs . 20 and 21 . The exact
image of the point (ar, a3) in the z6-plane is given by the intersection o f

this line L13 with the W-manifold, which now reads for as = a4 = 0 :

	

-

	

//

	

zl - al) (z5 - a3) + (z, 3 - al) (z4 a3) -- 2 V ala3 (z

	

z(6 11 ) l-6 - -6 )
z 6 = . (106)

(z 2 - al -- a 3 )
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Y6

Figure 21 . Allowed region for the 2-mass envelope : (outside the shaded region) where the tw o
sets of F'-curves are in the opposite half-plane.

The elimination of zg from (104) and (106) is straightforward, and the re-
sulting equation reads :

o = Q 2 lai - al as - al (Zl + Zs - Z4 .Z5 + Z2)

- a l [zi z 5 + Z324+ 'i Z3 - Z2 ( Z1 + Z3) ] + a 3 z lZ 3 - Z2 Z lZ 3)

+2a{alas-alai-alas(zi+Z3-Z4-Z 5)-a 1 Z 4 Z 5 +a 3 z i z 3 }

	

(107)

lai a2 al - ag (Z4 + Z5 Zl - Z3 + Z2)

- as [z iz 5 + Z3Z4 - Z 4 2 5 - Z2 ( .04 + Z5)) + al Z 4 Z 5 - Z 2 Z 4 Z 5 } .

Note that this equation is symmetric under the simultaneous permutation o f

l
ai

H
cr 3 ;

and the variation thereof (cf. Sec . 111 .2) . The real and imaginary parts of
(107) give two equations for the 3 parameters al , a3 , and a. In principle ,
from these one is able to express two of the parameters in terms of th e
remaining one, say a ; thus, for fixed zl , . . , z5 , one gets :
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a l = a 1 (a')

	

62 >0 .
a 3 = a3 (a)

(108)

(108) then defines the path C13 when taken in the positive quadrant a l > 0 ,

a 3 > 0 . With this substituted into the equation resulting by solving for z6
from (106), one gets the final equation for E 13 in the z 6-lane, which for all
other z's being fixed, reads

'6 = `'6 ( d ) • (109)

In actual computation, however, the solutions of (108) from (107) involv e

great computational labor49 . The other five Ec k envelopes are, fortunately ,
slightly less complicated . But we shall not go into all this .

Since, in the solutions (108) for the a's, the Re z's and the lm z's are

well mixed, it is clear that (109) no longer gives an equation for an analyti c

hypersurface . Since, as we shall show in Sec . VI .5, the 1-mass surface s
(which are analytic) do not in general constitute the whole boundary t o
the 4-point domain, and since we have shown that in general the higher

envelopes lead to the pathological situations shown in Fig . 14, the proces s
of successive elimination forces the 2-mass envelopes to be the only remain -

ing eligible candidates for our boundary . And indeed for one explicit con -

figuration (cf . Fig. 24 in Sec . VI .5) we have shown that the 2-mass enve -

lope does come in .

With this we conclude that non-analytic hypersurfaces do serve as par t

of the boundary to the 4-point domain in perturbation theory . In the fina l

sub-section, we shall study those 1.-mass surfaces 50 Ek and shall illustrate
in some typical configurations the explicit behavior of Ex which indicate s
the presence of the envelopes .

VI .5 The 1-Mass Surfaces

The 1-mass surfaces, as compared with the various envelopes we hav e
discussed above, are much simpler objects, as they are simply the image s
of the four coordinate semi-axes in the a-space . Applying the technique of

the determinant expansion of Appendix D, we have the following identity :

60 With a as a running parameter, one gets usually a 6th degree algebraic equation in-
volving one final at .

50 Chronologically, these 1-mass curves were investigated first . From these, we can easil y
convince ourselves that they do not give the whole boundary. One is then forced to undertak e
a lengthy treatment of the envelope problem which is summarized above .
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(110)

Therefore, on the T-manifold, we get

îF24 = f2vØ2 Ø
Note that

T,24 1a W

2az6 .

Identity (110) is the proper generalization of (45) which holds in the 3-poin t
case . In terms of z6 , (111) is equivalent to

(z4 -a 2 -a3) aØ_2 + (zi -al-a2)
aØ2.

+ 2vØ2 Ø 4

	

6	 5	
R 2

	 3	

	

~

	

(113)

For completeness, we mention that the analogue of KW (A . 48e) reads i n
the 4-point case as follows : On the W-manifold

a04 VØ2 + a Ø2
VØ 4az l

	

az3
_

	

R 2

(112 )

(114a)

+ VØ3=

a 4 Ø2+ Oz5
R2 (114 b)

and the permutation thereof . (114) follows directly from (113), or equiva-
lently also from (70) with the aid of (68) .

The expressions for the 1-mass surfaces Ek (i . e . ak � 0, for one k ,
all other a's being zero), which immediately follow from (113) by settin g
to zero 3 a's at a time, are summarized as follows :

For El : al > 0 :

K Z4 w 4 +I/z5 m5)
2

,

For E3 : a 3 >0 :

al
Z6 =

(Z2 - al
(115 )

a3
z6

= (Z2 - a3

-- ,
(VIZ' LUI f l/ z3 W 3) (116)
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where the w ' s are defined as

Z2 Z 4
1U1

=
Z1 - Z2 Z4 + a3 + '

a 3

Z2 Z5
w3 = Z3 - Z2 - Z 5 + a3 -I- a

3

Z1 Z 2
1V4 = Z4 - Z1 Z2 + a1 +

al

Z22 3
w5 = Z5 - Z2 - Z3 + a1 +

al

(117a)

(117 b)

(117e)

(117d)

which vanish on the appropriate FkI-curves .

For E 2 : a 2 > 0 :

z6
= Z2

[-1 z 5 + z3 z4 ± a2 (z2 - z3 - Z5) ± 2 I// Z3 Z 5 a2+a2 (z2 -z1 - Z4 ) + z1 z4 1j . (118)

For E4 : a 4 > 0 :

1

	

--

	

-

Z6 z2
[Z1Z5+Z3Z4-+- a4 (? 2 Z1 ?4) ± 21/Z1'4[ a4 a4 (?2 Z3Z5) +Z3Z5 ] ] .

	

(119)

W'ith z1 , . . ., z5 fixed, the above 4 curves E k in the z6-plane start from a
common point G which corresponds to all ai = 0 (for a given choice of

the sign in front of the square root, cf . remark following (124) below)

z6°ß

		

(120)
Z2

= Z1Z5+Z3 Z4+2 VZiz 3 Z 4 Z 5 .

The 4 curves Ek start from G with the following slopes :

lazy

	

VA(z)	 VØ
k
°)

	

(121)

VOa k/G

	

Z 2Vz lz 3 z4z 5

evaluated at all a ' s being zero, viz :

7-4 Z5 Z6 \

Z2-Z3 Z 5

Z1

Z3

Z6 ~
\ Zl Z2 Z4

with

Ø kwhere is

( J O)) (122)
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On account of the identities (63) and (68), we hav e

	

(az6 ~

	

+	 A(z)

	

/123)

	

k .1 .Ôak G

	

Z2Vz1Z3Z4Z5

	

V

One may note the analogy between the ratios among these slopes and thos e
among the y's on the 4-mass envelope (cf . footnote 40) if one replaces al l
the z's by lm z's .

Next we come to the asymptotic behavior of the Ek . For E l and E 3 in
the z6-plane, we have respectively (for other a's being zero or finite )

lim Z6 = (VZ 4 ~ VZ 5)

	

(124 a)
a,--> o0

lim z6 = (j/zi i Vz 3)
2

.

	

(124b)
cc

In other words, E l and E3 terminate at finite points in the z 6-plane corre -
sponding to A l (Z 4 , z5 , z6 ) = 0 and 2 3 (zl , Z3, z 6 ) = 0, respectively. On the other
hand, E2 and E4 extend to infinity in the z 6-plane as a 2 -> and a4 - cc ,

with the following slopes :
1

z6 (a2 ~0)

	

] .Z2 Z3 Z5i2Vz3z 5
ay 3 °° z2

z6(a4 � 0) a,->-oo
z [z 2 zi z4t2z4]

	

(124d)

We now proceed to investigate the relevance proble m51 of these 1-mass cur -
ves. First of all, the sign in front of the root in equations (1 .15)-(119) should b e
chosen in such a way that one gets an enhancement rather than a cancellation
among the terms. The latter is entirely irrelevant . This situation is also tru e
for the lower order singularity manifolds . We recall that, in the 2-point case ,
the relevant cuts start from zk = (Va. + 1/ä,a ) 2, but not from (V° na

-
Van ) 2

In the 3-point case, the F'-curves are gotten by also choosing the sign whic h
would add up terms (while the opposite sign gives exactly zero there) .
Of course, for complex quantities under the square roots, the sign is meaning -
ful only with a suitable convention of the branches, which we shall tak e
as the one with the positive imaginary part .

sr To be precise, in view of the fact that part of the singular portion of E5 may be over -
riden by a 2-mass envelope (cf . Fig . 24), we are here seeking only the relevant portion of E 1
in the following sense :

(i) it has actual singularities, and
(ii) it lies outside the 3-point singularity domain (but not necessarily as the actual 4-point

boundary) .

(124c)
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It is a consequence of Lemma 2 that E k has a relevant portion if Ek
intersects twice with the relevant portions of the dominating F'-curves and if
the bubble formed by such double intersections lies outside the 3-point

singularity domain. The condition for such double intersections betwee n

Ek and F' can in principle be stated algebraically as follows : Consider, for

example, E l n F4 5 . After rewriting (115) for Ek in the form

;t i (z4 , z5, z6) 4 -2a11 Z6[ Z 2_' 8 Ztz5-z324-I- 2Z4Z5 Z2(z4+z5)]

	

(125)
-(Z4 -Z5)(Z1 Z5 - Z 3Z4)}+~ (Z kz k .) = 0, 9<a1< DO ,

	

1

and with the relevant portion of F4 5 given by

14 1' 5
z4 -I-Z 5 - e

Imz4z5
0<0<

IM (Z4 + Z5)
,

the problem is to find the condition on the configuration of the other 5

z's such that the system of equations (125), (126) admits at least two so -

lutions for a 1 (or e) in their respectively allowed ranges, as indicated above .
This can be done by brute force, but the result is so complicated that w e

do not wish to display it here . The conditions are obviously dependent on the

moduli (as well as the arguments) of the 5 z's, and we have not been abl e
to deduce from it a concise statement about the desired configuration .
(However, cf . (129)) .

Instead, we shall in the following classify the configurations of th e

5 z ' s by the location of the starting point G of Ek . There are three distinct
cases :

Case (1) ; G lies outside the 3-point singularity domain ;

Case (2) : G lies deep inside the 3-point singularity domain ;

Case (3) : G lies on or slightly inside the 3-point singularity boundary .

From our studies of the E k curves, we find that the first two cases do not
yield anything of interest . They correspond to the situations where Ek has
no intersection or non-relevant intersections with the F ' curves . Therefor e

we shall concentrate on case (3) above, which also has an intuitively appeal-
ing feature for the desired intersections between the E k and the dominant

F'-curves .

The condition is then to require that at least one of the slopes for Ek
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at G given by (121) has an intersection with the dominant F' curves. Fo r
the ease when the latter are hyperbolas (i. e . 0 < arg z k + arg zi < ii), thi s
implies that52

(ôargzk+argzi<arg z 6

aQ1G
Tc +arg z k +argzi

	

i 1, . . ., 4 .

	

(127 )

Condition (127), however, like the solutions to (125) and (126), is agai n
dependent on the lengths of the z's in addition to their arguments .

It is clear that (127) is not sufficient to guarantee a double intersectio n
even when G is chosen to lie on or slightly inside the F'-curves . However ,
only in such cases will the 1-mass curves Ei, provide a useful hint as to
how the 2-mass envelopes would come in . We illustrate this statement with
the following 4 pictures : Fig. (22a) and Fig . (22b) show situations where
the Ek 's have the wrong slopes, and are irrelevant . In such cases, th e
envelopes are also irrelevant. Fig. (22c) shows a situation when one Ej
comes out of the F'-region, while one other Ek stays inside . Although neither
makes double intersections with F' (hence neither is relevant per se), the
corresponding 2-mass envelope Eve may very well form a bubble with F' ,

which will serve as the 4-point boundary . Finally, in Fig . (22d), one see s
a situation where one Ei does make a bubble with F' (the bubble can b e
shown to be relevant) . On the other hand, another Ef also comes out of F' ,
which by itself gives no contribution to the boundary ; however, their 2-mas s
envelope Ei5 may enlarge the bubble formed previously by Ei alone. This
last phenomenon is what we have called the "overriding" of the relevan t
portion of 1-mass curves by a 2-mass envelope .

We shall now study some explicit examples . Let us first fix, for the sak e
of convenience, two (out of three in all) pairs of the conjugate variable s
(in the sense of Sec . I1 .2), say z 1 , z 3 , z4 , z 5 . Ideally one would like to plot
simultaneously in the product planes of the remaining pair of conjugat e
variables (i . e . z2 and z6), but for simplicity and practicality, we shall only
plot in the z6-plane (i. e . a 2-dimensional slice in the space of 12 dimensions)
with suitable reference to the location of its conjugate variable z 2 . The
restriction on z2 is as follows :

sz The 3-point analogy of this condition is obvious : The relevance condition of the Fia
curve itself, zm = zk+zi-r-zk z i /r, can also be easily discussed by investigating the slop e
of the curve (actually the asymptote here for the hyperbola) at r = 0 (i . e . the analogue of th e
point G) . Since one knows that the whole piece of Fla changes its relevance at its intersectio n
with the cut along the positive x„ Zaxis, the relevance condition of FL, is to require that
the slope at r = 0 should at least intersect with this x,,, cut, i . e ., 7t < arg (-zk z i) < 2n, fro m
which follows immediately the desired condition of the configuration : 0 < arg zk+arg z, < 7t .



60

	

Nr . 3

Figure 22a . Starting slopes of the 1-mass curves : (Irrelevant) .

Figure 22b. Starting slopes of the 1-mass curves : (Irrelevant) .
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Figure 22c . Starting slopes of the 1-mass curves : (Irrelevant 1-mass curves, hut relevant 2-mas s
envelopes) .

Figure 22d. Starting slopes of the 1-mass curves : (Relevant 1-mass curve and further 2-mass
envelopes) .
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(1) z2 shall not lie inside the relevant portions of the

3-point singularity manifolds 02 = 0 and 04 = 0, and

(2) z2 shall be such that G of (120) lies on or slightly inside

	

• • • (128)
the dominating boundaries to the manifolds Ø1 = 0 and 03 = 0

in the z6-plane .

Clearly there exists a limiting case of (120) when arg zs° ) and arg z 2

approach respectively those of the asymptotes of the two dominating F '

for z 6 and z 2 . This implies, after a simple computation, the following ne-

cessary condition for the relevance of Ek for the case when Im z i , i 1, 3, 4, 5 ,
have the same sign 53

2Max{argz i }<argzi , i=1,3,4,5 .

	

(129)
i

	

i

In the following, we shall confine ourselves to the consideration of thos e
configurations for which the four sets of the 3-point 0 k-manifolds are si-

multaneously relevant . (A few remarks are, however, made near the en d

of the text, regarding the degenerate cases, cf. Lemma 4 of Sec . VI .6) . This
means that, if one is looking at the triplet (ijk) in the zk-plane, one requires

that the following 3-point conditions are to be satisfied :

(a) 0<arg z i +argz.i «, if yiyi>0, yi >0 . (130a)

(b) 37t<argzi +argzf <4z, if y i ya>0, y i <0 . (130b)

(c) argzj >n+argzi , if y i yi <0, y i >0 . (130c)

One recalls that the configurations (a) and (b) yield hyperbolas and th e

configuration (c) gives a bubble in the z k-plane .
There are five distinct configurations in the distribution of the 4 zi 's ,

i = 1, . . ., 4 . The first four cases correspond to yl y 3 y4 y5 > 0 (which imply

the existence of the 4-mass envelope) and the remaining case is for y l y3 y4 y5 < 0

(where E1234 does not exist) .

(A) All .4 Up : (Two sets of hyperbolas each for z6 and

In this case, we have :

y l y 3 y 4 y5 >0 : y i >0 .

sa For other configurations with mixed signs of Im z j , condition (129) can be easily modifie d
by replacing some appropriate arg z,,, by 2n- arg z,,, (Cf., e . g., Eq . (136)) .

22) .

(131 )
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The 3-point boundaries are t~13 U F45 in the z6-plane ; and Fl4 U F35 in th e
z 2 -plane. (When there is no intersection among the two F' curves, one o f
the 0-manifolds will be imbedded in the other, and the dominating F ' curve
is the one which corresponds to the smaller sum of the arguments . Otherwise,
one has to take both of them into account .) The 3-point conditions are
(130a) taken four times, o r

Figure 23 . 1-mass curves in z,6 -plane for the configuration (A) : All 4 up (Two sets of hyperbolas
each for z6 and z 2) .

i � j and
arg z i + arg z~ <7r,

	

for

	

i, j = l,3,4 5, :

	

(132)
i � conjugate of j .

The 4-point condition (129) reads :

2 A1ax{argz i l<argz i <2a,

	

i= 1, 3, 4, 5 .

	

(133)
i

	

i

In plotting in the z6-plane, z2 is to be chosen according to (128) . A typical
situation for this case is shown in Fig . 23 .

(B) Two Up and Two Down : (hyperbolas for zs : bubbles for z 2) .

In this and the immediate next configurations, conjugate variables li e
in the opposite half-planes . Here ,

y 1 y 3 y 4 y5 >0 : y1y 3 >0 ; Y1 Y4 <0 .

	

(134)
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The 3-point boundaries are Fia U F4 5 in the zs-plane ; and F23 U F25 U Flt U

F24 in the z 2-plane. The 3-point conditions are explicitly (consider the

case yi >0)
0<argzi +argz3«

3 :z<argz4 +argz5 <4 z

arg z 4 > zi + arg z 1

arg z 5 > zr+argz3 .

The 4-point condition (129) now takes the modified form

(i) 2 Max{argzi}<Yargzi < 5 r

	

(136a)

if
i

Max { arg z l , arg z 3 }< 2n - Min { arg z 4 , arg z5 }

(ii) 37r<f argz i <4z +2 Min (argzi)<5'ir

	

(136b)

Max{argarg z 3)> 2zc-Min{argz4 , arg z 5 ) .

A typical case is shown in Fig . 24 .

Note: Figure 24 gives a very interesting example : El makes a bubble wit h

F1 3 which can be shown to be singular . On the other hand, E3 lies outside ,

and by itself is not relevant . Thus we have the situation shown in Fig . 22d .
Now, if one takes the path a1 = a 3 in the positive (al , a 3)-quadrant (a2 = a4 = 0) ,
one finds that its image in the zs-plane makes another bubble with Ff3 ,
which is also singular, but not contained by El . This shows definitely tha t

(a) The 1-mass surfaces E k do not in general give the whole boundary o f
Evert, and4

(b) Envelopes actually exist .

Another curve, which corresponds to the path al = a2 = a 3 = a4 in the
positive sediciment, is also plotted in Fig . 24. However, it is not relevant

in this case .
A plot of one of the simplest envelopes in the zs-plane, namely E24 ,

is also made, but in this particular case, it is completely submerged insid e

the 3-point singularity domain .

Finally the 4-mass envelope E1234 is finite in this case, being bounde d

by a 2 = 0 and al = 0 . This is exactly the situation illustr ated in Fig . 13 .

or

if
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Figure 24 . 1-mass curves in z 8 -plane for the configuration (B) : Two up and two clown (hyper-
bolas for z 6 ; bubbles for z 2) .

The end-point a2 = 0 lies outside the F1 3 and El as well as E, = , . The

3-mass envelope E134 can only come from below the E1234 . One will then

have essentially a final situation similar to that shown in Fig . 18 .

(C) Two Up and Two Down : (bubbles for z6 ; hyperbolas for z2) .

This one gets from (B) by simply permuting within one pair of con-
jugate indices. The net result (cf . Sec . III . 2) is the interchange of the rol e
of z6 and z2 .

Thus, e . g ., if one permutes z3 and z 4 from (B), :

yl y3 y4 y5 >O : yl y4 ~ O ~ y l y3 <O .

Mat.Fys.Medd. Dan.Vid. Selsk . 33, no . 3 .
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The 3-point boundaries are F1 6 U F3 6 U F4 6 U F5 6 in the z6-plane, and
F35 U F14 in the z2 plane. The 3-point and 4-point conditions are literall y

the same as (135) and (136) if one permutes z 3 and 24 . The Ek 's are shown
in Fig . 25 . This suggests a 2-mass envelope .

Figure 25 . 1-mass curves in z 6 -plane for the configuration (C) : Two up and two down (bubbles
for zb ; hyperbolas for z 2) .

Note : In Fig. 25, one sees again the situation of Fig . 14. Here the 4-mass
envelope E1234 is terminated at a 3 = O. Now the 3-mass envelope E124 wil l

intersect this point in the z 6-plane from above the line E1234 (since the othe r
line Eî234 in this case lies below E1234 , and from our analysis of (92), the
3-mass envelope must lie outside the region bounded by these two lines . )

One gets again a corner in the intersection E1234 n E 124 . A 2-mass envelope,

say, E14 , is then expected to cover this corner . The situation is depicted in
Fig. 25a .
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if

(D) Two Up and Two Down : (bubbles for z 6 ; bubbles for z2 ) .

One obtains this configuration from (A) when one shifts one pair o f

conjugate indices (1,5) or (3,4) to the opposite half-plane . Here we have,

e.g . :

lilg3 Y ,05 > O . gl d5 > O ;' g1 Y3 < 0 '

The 3-point boundaries are F1' 6 U F3 6 U F4 6 U F5 6 in the z6-plane, and

F2'3 U F. 5 U F1 2 U F2 4 in the z 2 -plane. The 3-point condition is in this cas e

(with (3,4) down)

Min{argz3 , arg z4 > i+ Max{argzi , arg z 5 }

	

(139)

and the 4-point condition reads :

(i) ~argzi <4zc+2 Min {argz1), i = 1, . . ., 4

	

(140a)

Max {arg z l , argz5}>2 r- Min {arg z3 , arg z4 )

(138)

5*
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or

if
(ii) ~argzi > 2 M ax {arg zi }, i = 1, . . ., 4

	

(140b)

Max { arg 2. 1 , arg z 5 } < 2 r - tilin {arg z3 , arg z4 } .

(E) Three Up and One Down : (1 hyperbola and 1 bubble each far

Here

	

yi y s y 4 y5 <0 . Consider, for example :

y1, y3, y4 >0 ,, and y 5 <0 .

Figure 26 . 1-mass curves in z,-plane for the configuration (E) : Three up and one down (one
hyperbola and one bubble each for z 6 and z 2 ) .

16 and

(141)
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The 3-point boundaries are then Fia U F46 U F5 6 in the :6-plane, and
F14 U F23 U FF 5 in the z 2-plane. The 3-point conditions are :

arg z 1 + Max {arg z3 ,argz4 } <r

argz5 > r+Max{arg z3 , argz4}

	

(142)

and the 4-point condition reads for this case :

2 argz 5 + 2 Max {arg z1 , argz3 , argz4} - 2 z r< arg zi < 2 argz5

	

(143)

A typical case is shown in Fig. 26 (which suggests a 2-mass envelope) .

VI. 6 Brief Remarks on the Degenerate Cases .

In our above description of the 1-mass curves, we have only considere d
the configurations where all four sets of the Ø k-manifolds are simultaneously
relevant . It would be of interest to see how the 4-point boundary change s
its character when one or more 0 k-manifolds become irrelevant . While
we shall not attempt to enter into the discussion for this in detail, we offer
two remarks on such degenerate cases :

(1) Lemma 4 : Non-relevance of 2 sets of 0-manifolds must imply the non-
relevance of at least one more set .

Proof' :

It suffices to show this for one particular configuration, say, in the cas e
when 4 of the 6 z's are all in the upper half-plane, 0 < arg z i < i = 1, 3, 4, 5
(cf . configuration (A) of Sec. VI.5), (since the proof for the other con -
figurations can be easily carried through with only trivial modifications) .

Suppose Ø2 and Ø 4 manifolds are both irrelevant in the z2-plane, then

arg z1 +argz4 > 1

arg z3 + arg z5 > a .

Assume 03-manifold to be relevant in the z6-plane (otherwise, nothing is
to be proved), so

argz 1 +argz3 < .

Then Ø1-manifold must be irrelevant, sinc e

argz4 +argz5 > 2a -argz1 arg z 3 > c .
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(la) An immediate consequence of Lemma 4 is the following. When Ø2

and Ø4 manifolds are both irrelevant (thus, e . g ., one has the cut-plane in
z 2 ), then in the z 6-plane, one has at most one set of relevant F ' curves for
the 3-point boundary. In this case, the 2-mass envelopes will not b e
expected to play a role, and the 4-point boundary will then be at mos t

made up of the 1-mass surfaces which are analytic .
(2) The case when all 4 sets of Ø k-manifolds are simultaneously irrelevan t
is, of course, trivial . Absence of any relevant 3-point boundary implie s

no change of relevance for the 4-point boundary . Since the latter cannot b e
entirely relevant, it must be entirely irrelevant . Thus, in this case, one gets
the cut-planes .

VI. 7 Conclusion

It should be emphasized that we have by no means exhausted the boun-
dary of the 4-point domain in perturbation theory. In fact, we have only
explored it to the extent that we have shown how the 4-point correction to th e

already existing 3-point singularity might look . Our studies of the domain D4ert

shows that the relevant 4-point singularities will carve out some bubble s
from the dominating F' curves of D3ert The singularity domain of the 4-poin t
proper is seen to be compact . We have demonstrated that in general th e
1-mass surfaces will not constitute the whole boundary of D4ert and that
the presence of the envelopes implies that D4ert is not everywhere bounded
by analytic hypersurfaces . Of the various envelopes we have discussed, th e

2-mass envelopes are the most important ones .

It is hoped that, if the 3-point analogy is again valid in the 4-point case ,
the results derived here might be of some use to the problem of finding
the holomorphy envelope E(D4 ) based on the axioms of local field theory
alone .

We conclude by posing a question . One recalls again from the 3-point cas e

that the domain D3rt' is bounded by the F-curves (say, for the case when bot h

Im z5 , lm zk have the same sign) of KW, which differ from the holomorph y
envelope F'-curves only by the exactly opposite signs of the range of th e
parameters a i (which, in the p-space, has the significance of being mi) .

Intuitively, this can be understood as follows : If one starts from the origina l
tube domain R,ß,_1 of the vectors p i where one requires lm pi EV, thi s
automatically forces one to go off the mass-shells and in particular one
finds it convenient to go to negative values of the mass-squares a i = m2 <O .
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(This situation is clear, for example, in the proof of dispersion relations ,
with the technique of BoGoLrunov 54 .) So OD3rtm essentially involves the

manifold with the parameters still in the range a i < 0 . The problem of

finding the holomorphy envelope then furnishes the necessary analyti c
continuation from ai <0 to a i > 0, which. is by no means trivial . This i s
exactly the relation between the F-curve of D3 rim and the F'-curve of E(D3 ) ,
or the F ' -curve of D3ert as shown by KW .

Therefore it will be of interest to see whether or not this analogy is a

valid one in the 4-point case, viz ., whether aDrt can be compared with
aD4rim with only a possible difference of the signs of the parameters* . Of

course, the problem is much more complicated in the 4-point case, sinc e
one is dealing with the envelopes in both 3D4rlm and 0D4ert An answer

in the affirmative sense would further strengthen one's hope that a D4er t

may have something to do with a E (D4 ) . But this we shall leave to a sepa-
rate investigation .
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Appendix A

Explicit Form of the 4-Point Functio n

Here we discuss the singularities of I(z) of (54) after explicitly carryin g
out the final integration for Fj (ri ) in (55) . For the case r1 t r2 , the singu-
larities are found on the Øk-manifolds and the Rtz-manifolds (cf. Sec . IV . 4) .
Finally, for the case r 1 = r 2 , the change of relevance of the '-manifold i s
shown to occur at (Y' = 0) fl (Ø k = 0) (cf. Sec . V) .

By symmetry, it suffices to write down F5(r i ) only, say, for j = 1, i = 1 ,
namely for the first half of the terms for the triplet (Z2 , z3 , z5) . A straight -
forward computation from (55) yields :

Fl ( I 1) = ~,' A, 1 {log 1
111

log xi (r1) + log
nl (o)

log xi (r1)

(A.1 )

+ Sl ( f il ( 1 1)) - `S1(72 ( 1 1))
1

in which each S5 (?7k (r i)) is a sum of 16 Spence functions :

8
I
r

S1(~I1(I 1)) = ~ E u [ (
77 9 ~

()

)

	 97

(1
) T

h(rl)

-9 7 1 (0))]
(A .2),

971@l) - Lou

where
1 ,

	

,u=1, . . , 4

1,

	

cc =5, . .

	

8

q,G) = dt log (1 + t)

and

i1, 2 (a)
=2 [2

a~~(OS) fNl(a)
J

2z5 P2 10,2 R2
'1, 2 =

%2 1 a a2
V

;;

2 d z3

2	 '1 5 P3± V A2 R3
0

3
4

_

	

1 a /12 - )//l 2
2 ÔZ2

} (A.3)

(A.4)

(A.5)

~

(A.6)
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w5, 6
=

A 3 w 1, 2

w7 8 = A2 w 3 4

where
1022

2 a zm -V '12

A,n=1
ôa2

	

m=2,3 .

-

	

-+ I/ï~~

(A . 6a)

20zm

The following identities can be easily verified :

4 ~ 5
- : Ø2 = r11(a ) 712( = A3wlw2 -

4

(%1(a) w,u )

log iii (a) = log A	 	 _2A3 µ	
a	 1	 _

11 Oh (a) - w µ)
fL=5

2 w 3 w4 = A 3 1w 5 w6 = A1w7 w s

	

(A. 7 )

4

~ (Iz(a) -CDµ)
(A.8)a

1 -1 (ry12(a)-wµ)

J

P = 5

and

= - log A 2 A 3

singularities of 7 F. (r•1), with F1 (r l) givenWe now briefly discuss th e
by (A .1), for the case rl � r•2 .

(1) The first term is lo 1 - r l . log

	

r) The point ri 0 corresponds t og
-1.1 x~('1

	

-

the Ø1-manifold (cf. (48)) . It is clear that a cancellation of the 3-point typ e
occurs here when the summation over j is carried out . Finally, for r l � 0 ,
or 1, the zeros and poles of Xj (r l ) can at most lead to the cuts in th e
z's . (cf. (51) and Sec. IV.4) .

The nett term is lo x11(1) lo

	

(r ) . Here the vanishing of r (1) or(2) gril
(0)

	

g x; l

	

g

	

h

72 1 (0) gives the Ø1
+ 1 -manifold .

(3) Now we come to the Spence function terms . Each Spence function 99(-)
is defined with a cut in the 4'-plane starting from its branch point at = - 1
to infinity . Now the branch points in (A .2) occur at

w - x "11( 1 ) = 0 ,
and

	

,u = 1, . . ., 8

	

(A .9)
wµ- 111(0) = O .

With the aid of (A.8), we see that this happens at the two ends of the inte -
gration interval . Again the point a, = 1 is irrelevant. But the point a = 0

Mat . Fys. Medd . Dan .Vid . Selsk . 33, no. 3 .

	

6
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leads to the Ø1-manifold, which is to be expected . Note that the points r1 = 1

or 0, which give 92(0) _ -n2/12, are entirely harmless for the Spenc e

functions .
Another source of singularity for the Spence function cp(,) is at infinity .

Now this happens when

171( ri)- c g =0 ,

	

fJ=1 , . . . , 8

	

(A.10 )

or, according to (A.8), this implies zeros or poles of xj (r i) . But these can

at most correspond to the individual cut in each of the z's .

Thus we conclude that from the explicit expression (A .1) and its per -
muted form for the case r1 � r2 , the singularities of the 4-point function I(z)
of (54) are confined to the 4 sets of Ø k-manifolds and the 6 cuts, one fo r

each z along the positive real axis . This agrees with our simple argument

in Sec . IV.4 .
Finally, from the representation (A .1) and its permuted forms of G Fj (ri) ,

j
we now briefly discuss the change of relevance of the Y'-manifold in th e
case r1 = r2 . Here the expression (54) gets essentially a contribution fro m
the first term in (A.1) (summed over j) in the neighborhood of the Ø 1-mani-
fold :

1'1 12
[log r 1 log 11 xi (r 1) - log r2 log 17 xj (r) ]

nm (2 ~ i)2

W-
p

	

V

1

A.11 )
n•2 ii

	

rl
• log -

r 2

	

r2
where

log II xj (ri ) = log 1 = n • 2 i i , by virtue of (51) ,
j

- log 1 = m 2n i ; n, m, integers .

On the Ø1-manifold, one of the r i , say r 1 , becomes zero, while the other
is finite . Thus on one side of 01-manifold, m = 0 (if we are on the prin-

cipal sheet to start with, e . g ., for all z's being negative real), but on the other
side, m ~ 0 . This shows a change of relevance of the 2Y-manifold at it s

intersection with the Ø 1-manifold. In a quite similar fashion, e . g., from
the second term in (A.2), there develops a change of relevance across th e
O.j 4. 1 -manifold. To show this, it suffices to note that at (VI - 0) ft (0j + 1 = 0) ,
one gets Nj (r i ) = 0, whence log xj (r i ) = log 1 also, for each j = 1,2,3 .

This confirms Lemma 2 in a more explicit way .

and

YJ = o
log y

r2
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Appendix B

Envelope Problem for the 0-manifold

In stating that the 3-point domain is bounded by analytic hypersurface s

Fkl (obtained by setting two of the three mass-parameters equal to zer o

from the 0-manifold), it is understood that the envelopes of the 0-manifol d
are trivial, in the sense that they do not exist off the cuts and hence neve r

actually contribute to the boundary (apart from what one has already o n

the cut) . The purpose of this appendix is twofold :

(a) To give a proof of the above statement 55 , and

(b) Since the 0-manifold is of a much simpler structure, the analysis here

actually serves as a prototype for the treatment of the P-manifold (cf .

Sec. IV), despite the fact that the final situations are quite different in tw o
cases .

The notation here for the variables in the 0-manifold follows that of KW .

I . 3-Mass Envelope E 123 :

Let

- 2 a l

	

z 3 - a 2 - a 1 Z 2 a 3 - a l

z3 -a 1 -a2

	

-2a2

	

-a3-a 2

	

(B .1 )

z2-a l - a3

	

-a2 -c13

	

2a3

The analogue of (63) is

The analogue of (64) is

3
PA: À (, ) ,

k= 1

k

	

Pk =

	

- . (B.2)

3
--

1 \3- ~
ik

å ~
2-1

	

aLak
for i = 1, 2, 3,

	

(B .3)

where the Oik 's denote the elements in the determinant (B .1) without ,
however, the factor 1/2 .

The Analogue of (70) now reads on the Ø-manifold :

3

~ Øik Pk ==0 , i=1,2,3 .
k= 1

ss This is previously known to KW, but remained unpublished . My sincere thanks are
due Professor KALLÉX for his many enlightening discussions on this, and for his kind permission
to include it here .

(B .4)

6*
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On the envelope E123, we have

aØ

a ai
a Ø
a ak

Pi _ Yi

Pk Yk
(B .5 )

where the yk 's are real, such that

Pk = Yk 2'( z )

Yk - 1 .
k

Thus the analogues of (72)

are(Im 02k) Yk = 0
k

(Re Oik) Yk = 0 .
k

Now from (B .7) follows immediately the analogue of (73)

0 = det I lm k = 2y1 y3y3•

	

(13 .9)

In general, for given yi , y 2 , � 0, (B .9) implies that y3 must be zero on th e
3-mass envelope . Or in other swords :

No 3-mass envelope for the 0-manifold can exist off the real axis .

This is also a horizontal line in the z3-plane (cf. E1234 of (74) in the 4-poin t
case) . At this point, one can immediately see that E123 is irrelevant : It cannot
be relevant on the negative real axis . Then at most E193 can lie on the
positive real axis, which is already the cut .

The following, however, is devoted to an explicit solution to the rea l
part equations (B .8), showing that E123 (as well as the 2-mass envelope s
discussed below) is actually non-empty, and in one particular configuratio n
(i . e . bubble) the 3-mass and the 2-mass envelopes are rather amusing
(cf. Fig. 28) .

With y 3 = 0, it follows further from (13 .7) that

(B.7 )

(B .8)
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Or, when normalized according to (B .6) ,

	 yl	 	 - y 2
Yl °

yl - y2

	

y 2

(B . l0 a)

With these explicit values of the yk 's, the real part equations (B .8) yield

yl a1 + (- y2) a 2 + (Pi - y2) a 3 - (x2 yl - x1 y2)

	

(B .11 )

yi a1- yz a 2 = 0

	

(B .12)

x 3 = 1 -

	

a i + 1 - y2 a2 .

	

(B .13)
y2,

	

(

	

yl

The path C 123 in the ak-space (which would give rise to E 123 ) is then the

straight-line intersection of the two planes given by (B .11) and (B .12) ,

within the octant a k >O. We now divide our discussion into two parts :

Case 1 : yl y2 < 0 (Bubble configuration) .

Without loss of generality, we may take y l >O . In this case, (B .11) i s

compact within the octant a k >0. Therefore its intersection with (B .12) give s

y2 al y2 a2

Figure 27 . Paths in the a-space for the 3-mass and 2-mass envelopes and the 1-mass curve s
for Che 3-point 0-manifold : y i y 2 < O .

a finite straight-line segment AB (Fig . 27) . The image of AB in the z3 -plane
is given by (B .13) . More explicitly, we have from (B .12) and (B .13)

2

= (1 - Y ) al

	

(B .14)
yz
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i f
which, together with (B .12), implies that a l and a 2 are positive if and only

x3 is positive . Furthermore, one gets from (B .11 )

a3 _ (- yly2) (x3o) _ x3)

(iJl - y 2 ) 2

where

(o) _ ~Jl -y2 )
x 3

	

( _
yl y2)

(x2 yl -X1 Y2 )

Figure 28 . 0-manifold envelopes for the bubble configuration in the z3 plane .

is precisely the abscissa of the point E (Fig. 28) which is the common inter -

section of Fia and F2 3 with the x3-cut .
Note that

x3o) >0, for arg z 2 > + arg zl ,

which is the relevance criterion for the bubble of Fig . 28. From (B .14) ,

(B .12), and (B.15), it is clear now that OE is the image of AB, since al l

ak >0 if and only if
0<x3 <x3o)

	

(B .17 )

This shows that in the case when the 3-point boundary is given by the

bubble, the 3-mass envelope for the 0-manifold is actually the segment o f

the cut on the real axis lying inside the bubble . It will be shown later that
the end point E (where a3 = 0 on the 3-mass envelope) actually constitute s

the 2-mass envelope E12 for the 0-manifold in this case .

(B .15)

(B .16)
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Case 2 : yl y2 > 0 (Hyperbola configuration) .

In this case, the results become dependent on the ratios of the real and
imaginary parts of z1 and z2 .

(i) when y l = y2, we must have also x1 = x2 as a consequence of (B .11)

and (B .12). The allowed region in the at-space becomes unbounded, being
the whole plane (B .12) within the octant ak >0 (i. e ., al = a 2 , a3 arbitrary) .
The image in the z3-plane is a single point æ3 = 0, viz ., E323 is at the origin .

Figure 29 . 0-manifold envelopes in the z 3 -plane for the hyperbola configuration : xr < 0 .

Thus

(ii a) if x3°) < 0, E123 is the whole cut x3 > 0. (Fig. 29) .

(iib) if 43° ) > 0, E123 starts from x3 = 43°) . However, this point has n o
significance for the case yly2 >0, since the hyperbola F1'2 (Fig. 30) inter -
sects the real axis at P with

(P) - IA y2 [(xl - x2) 2 + (yl+ y2) 2 ]
3 -

	

(
-

lyl + y2) (xly2 + x2 yl )

In this case one has both

x(3P) > x(30)

	

1
and

	

tl (B .20)x(P) > 0

	

13

for arg z 1 + arg z2 < 2r , which is the criterion for F1 2 to be relevant .

(ii) y l � y 2 . (B .14) and (B .15) now imply that all ak >0 if and only i f

x3 > Max {0, x3°) ) .

	

(B .18)

(B .19)
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II . Two-Mass Envelopes .

It can be easily seen that the 2-mass envelopes still lie on the cut alon g
the real axis .
We shall only treat E 12 here with a 3 set equal to zero ; for the others the
analysis can be easily adapted . The envelope condition reads :

Pl V	Rl
= a, a real number .

P2 = VE 2

Y3

Figure 30 . 0-manifold envelopes in the z3plane for the hyperbola configuration : 40 ) > O .

Case 1 : y 1 y2< 0

(B .12) and (B .14) now no longer hold, however, (B .11) with a 3 = 0
is equivalent to (B .21) . Furthermore, (B .13), which can be regarded as
the equation for the 0-manifold in this case, is still valid . From these, one
gets rather unexpectedly that E12 is just a single point at x3 = x3°l, (viz ., the
point E of Fig . 28) . Geometrically, in Fig . 27, CD is now the path for E1 2
in the positive quadrant. The entire segment CD is mapped into the poin t
E, which is exactly the end-point a 3 = 0 of E123 . 56

In this case, it is interesting to note that the path OC along the a l-axis
and the path OD along the a 2-axis in Fig. 27 map respectively into the rele -

ss The fact that the path for E12 is simply the projection of the plane for E 123 in 3-spac e
onto the 2-plane must be regarded again as a peculiarity of the 3-point case . This is not tru e
in the 4-point case (cf . Sec . VI), where we have shown that, although the path for E1234 is als o
a straight line in the 4-space, the paths for E, /k and Ea, are both not projections, and are very
far from being straight lines .

(B .21)
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vant portion of F23 and F13 in Fig. 28 (with the common end-point E be-

sides the origin). The occurrence of such multiple intersections of E123 n
E 12 n El n E2 must be regarded as a 3-point peculiarity (cf . Fig . 1 9

and the accompanying remark) . In the 4-point case, we have seen, however,

that in general we have only the intersection between an ni-envelope and

an (m-1)-envelope (cf. Lemma 3) .

Case 2 : yly2 > 0

Following E123 in this case, and the E12 for the above case, we see that

E 12 for this case also consists of a point at x 3 = x3°ß . Now

(i) If x3° ) < 0, E12 is irrelevant, an d

(ii) If x3°> > 0, E 12 is the point Fin Fig. 30, which is imbedded in the cut .

Appendix C

Some Algebraic Details for the 4-Mass Envelop e

We give here the details for the values of the y k 's on E1234, and the de-

pendence of their relative signs on the configuration of the y's .

Solving (72a), one gets

Y l Y 2 y5 , Y1Y3 - y6 , Yly4 y4

	

(GI )
Y3Y4 y1 Y2 Y4 y2 Y2 Y3 y3

Yl _ y3y4+Vyl. y3y4 y5

Y2

	

-

'
y2y3

Y3 y 1 y5 = 1/y1 y3 y4y 5

Y2

	

- y2 y5

Y4 +1 1 yly3 y4 y5
Y2

	

y3 y 5

These may then be normalized according to (67) . The (±) signs correspon d
to the sign of E1å34 in (74). From these, one immediately notes that, fo r
example ,

on E1234,

Yl Y3 0 according as yl y3 0 ,

y2 y4 < 0 according as y3 y5 < O .

or equivalently :

(C . I a)

and
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The exactly opposite statements hold on E 1234 .
We summarize the results in Table 1 :

TABLE 1 : Relative Signs of y k on E1s34 Versus Configuration s

Cases
I

	

Configuration of g Relative Signs of y k ' s

Up Down On E1234 On E123 4

I 1, 3, 4, 5 2, 6 all y k > 0
( i ) y 1, Y4 II y2, y3

(ii ) y l, y2 II Y3, Y 4

II 1, 2, 5, 6 3, 4 Yl, Y2 HI Y3, Y4
( 1 ) Y2, Y4 II Yl, Y 3

(ii) all y k > 0

III 2,3,5 1,4,6
( i ) Yl II Y3, Y2, Y4

Y4 I I Yi, Y2, Y 3
(ii) Y3 I I Y1, Y2, Y4

IV 1, 2, 3 4, 5, 6
(i ) Y2 II Y4 , Y1, Y3

Y3 II Y1, Y2, Y4
(1i ) Y4 II Y2, Y1, Y3

Remark : (a) These are the only four distinct configurations of the y's for
which E1234 exists . The remaining case with all gi, > 0 is disregarded here ,
since the 4-mass envelope is entirely irrelevant in this case (cf . remark
following (76)) . The permutation of (3, 4) with (1, 5) in case II is trivial .
So is the permutation of (2+-4-6) in cases III and IV .

(b) The subdivision into (i) and (ii) is based on
(i) Iyl ySI > I y 3y4 I

(ii) 1 111 115 1 < 1 y3 y4 I, respectively. Note that, when yl y5 y 3 y 4, one of the
lines E1234 coincides with the cut.

(c) All signs except in the case when all yk >0 are meant only in a re-
lative sense . Thus we use the double bars to denote that the y's lying on
the same side of the double bar have the same sign, while any two y's lying
on the opposite sides of the double bar have opposite signs .

(d) The above results can be briefly stated as follows :

(1) When the signs of the 6 y's break into 4 II 2, the signs of the 4 y' s
break into 4 II 0, or 2 II 2 .

(2) When the signs of the g's break into 3 II 3, then those of the y's
break into 3 H 1 .
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With Table 1, one can readily infer from (77) or (80) the signs of th e
a k ' s on the 4-mass envelope at x6 ~ ~ co. For al and a3 , no other informatio n
is needed ; however, for a 2 and a4 , there is a further dependence on th e
magnitude of y 2 and y4 (when the latter are positive). Table 2 illustrates
the situation for z6 - oo . Exactly opposite statements hold for the signs o f
the ak at the other end x6 -» -I- 0o .

TABLE 2 : The Signs of ak on E234 at x6 - - oo .

Cases*

	

IOn

a l and as a2
a4

E lL34 On E1234 On E1234 On E1234 E1234 E1234

( i ) + -
I

	

- - -
(11) - - -

II

	

(i ) - +

(ii) + - -

(i ) T (Y2

	

) _ (Y2

	

1 ) (Y4

	

1 )I II -- ---
(n) + - + (Y2> 1) (Y2> 1 ) +(Y4 > 1 )

( i )
IV

- + + (Y2

	

1 ) + (Y4

	

1 ) + (Y4

	

1 )

(ii) + (Y2

	

1 ) ~

	

1 )(Y2 + (Y4

	

1 )

* For the cases III and IV in Table 2, the signs of 4 y's break into 3 111 . Table 2 assume s
that 3 y's > 0 and one y < O .

The remainder of this appendix is devoted to the discussion of the cas e
when the (all ak positive) segment E1234 has an intersection with the set co x
of (82) . For this, it will be convenient to divide the discussion into the fol -
lowing two classes of configurations :

(1) All yk positive .

In this case, we have

o<Yk<1, XYk = 1 .

From Table 1, we see that this happens only for the following two configura-
tions (Figs . 31-32). We recall from Table 1 that all yk >0 hold for the con-
figuration (Fig . 32) only for y l y5 < y3 Y4 (otherwise 2 of the y's become nega-

(C.2)
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tive) . When y1 y5 - y 3 y 4 ' 0, the line E1234 collapses into the cut on the real

x6 -axis . On E1234, we have, in general, by virtue of (72) :

( Re Tij) Yi yj = 0

	

(C.3 )

(Im 'FiJ) YiYj = 0 .
i ,

Now the y's of (C .2) may just be identified as playing the same role as our
original integration variables a k ' s . Therefore for this case, the denominator D

Figure 31 . All yk ' > 0 on the 4-mass envelope for the configuration (I) of Table I .

of (15) will indeed vanish identically on E1234 (where all ak ' s are positive) .

When this segment has an intersection with the Øk-manifolds, part of i t

will have actual singularities .
One observes from Table 2 that E1234 are finite for both of these con -

figurations, since two of the a's (viz ., a 2 , a4) are negative at xs - - 00, and

the other two (viz . al , a3) are negative at the other end (x6 ->- + oc) .

(2) Not all yk 's positive :

In this case, identification of yk with ak is not possible, thus (C .3) do

not automatically imply that (16) will vanish on E1234 . In fact, it can he
easily seen that Re I) never vanishes for .xecox of (82) .
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3
One notes from (16), after the substitution a4 = 1 -

	

a
i

-Re D = 1 Y (Re ~PZ~) 7 z ~ _

-
-i, ~

= {x6
(a

2
a

°
) 2 À

~ (~) (a3 + a3)2 +
( ~

(ai + ai) 2 -	
4(x(

; a)

where

y

4
46

Figure 32 . All yk 's > 0 on the 4-mass envelope for the configuration (II) of Table Ï .

	 1

s

~å z11(x)

	

ô 2 11(x)

	

å 2 Øi (x ; a)
]2 x ôxi ôx2 a3+cÎx4åx2

al

	

ax4åa3 J

ag
ai (x)

[OA(x)
al -	 aØ

a
(x
a3

;
") ] (Cf. Eq. (35)) ;

	

(C.5)

o Q i (x ; a)
al=	

411(x
)

and l¶(x ; a) det I Re u.i i
which vanishes identically on E1234 . Thus we see that (C .4) is positive de-

finite for xeoa x , unless simultaneousl y

and

	

a2 ,

	

=

	

(C.6 )
ai = -

	

for i 1, 2, 3

a°<0, Y- ( - an<

(C.4 )

oa 2 =



86

	

Nr . 3

It is now easy to see that (C .6) cannot happen when at least one of the yk ' s
is negative . We have on E1234, after treating the det I Re Wig 1 with exactly

the same procedure which led to (64) ,

= Qk(x ;a)? k _	 	
(C .7)

4A(x)

Now, without loss of generality, we may take5i y l < 0 . Then (C.5) im-

plies that al = - y 1 >0, and (C. 6) clearly cannot happen . Thus for all

cases with yk not simultaneously positive, -Re D is positive definite on

u~~ fl ''1234, and it follows that this portion of the 4-mass envelope can neve r

be a relevant part of the boundary.

For completeness, we note the following identity on the 4-mass envelope :

2ReD - >' RePii ai ai = (ai - y i) (ai -y,)

	

(C.8)
i, 1

which can be easily verified with the aid of (77) .

Appendix D

Note on the Determinant Expansio n

We here observe that a great number of identities which have playe d
an essential role in our preceding discussion, such as (43), (44), (45) ,

(100), and (110), have a most natural interpretation in terms of their as-
sociated determinants . Take, for example, (43), which reads :

(laqJ)2

=
4A (2)

	

;Lie 11(2 ; a) .

	

(D.1)

Recalling the quantities following (57 a), we have, for k = 2

I Ô Ÿf

	

g 1 2
2 åa2

2A(z) = 1~-~j11

2 Ø2 = P22

- À
2

_ 12,12
-

Otherwise, a trivial permutation will bring (C .4) int o
responds to the desired negative yk .

D.2)

the form where the last a° cor-
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where p12,12 refers to the minor complementary to the 2x2 minor

W11 W12

W21 W2 2

in the YI-determinant of 57a .)Then (D.1) takes the form

P==

~11 ~12

"yj'21 ~22

W33 W34

W43 W44

D .3)

Now identity (D .3) can be easily verified to hold for a general 4x4 deter -

minants Thus (D .1) is established for k = 2, and by symmetry the others
follow. At this point, the corresponding identities for the 3-point case (KW
(A46d)) are seen to be also derivable from such a determinant expansion .

lr appears, however, that identities of the form (D .3) are actually
very special cases of a general theorem, which, in various forms, has bee n
dated back to Gauss (also for symmetric determinants) and others . W e
shall here quote a theorem due to Jacobi58 , which states tha t

Any minor of order k in A-1 is equal to the complementary signed mino r

in A ' (the adjoint of A), multiplied by 1AI- 1
In other words, this technique of determinant expansion relates the block I

in (D.4) with the block II in (D .5), their determinants being off by a facto r
of the original determinant :

~k

	

k :

~

	

I

	

.. . . . . . . . . . . . . . . . . .A-1 , (D .4)

58 See, e . g ., an elementary text by A . C . An'KEN, Determinants and Matrices, 3rd ed. ,
Edinburgh (1944) .
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Nr . 3

A' : . . . . . . . . . . . . . . . . . . .

:

	

II
(D .5)

(n -k)

It is then a simple matter to derive all the identities we mentioned b y

simply writing down the desired kxk minors in this fashion .
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