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Synopsis

The analytic properties of the 4-point function as a function of 6 complex invariants are
studied in simplest perturbation theory examples. This is a generalization of the work by Kiillén
and Wightman on the vertex function. The singularity manifolds are: one 4-point singularity
manifold, 4 sets of the 3-point manifolds of the type discussed by KW, and & cuts. These are
determined in three different ways, including an explicit evaluation of the 4-fold Feynman
parameter integral which results in a sum of 192 Spence functions. It is shown from the existence
of the non-trivial geometric envelopes that the regularity domain Di’ert is in general not en-
tirely bounded by the analytic hypersurfaces. The boundary of the domain is illustrated with
the aid of the 1-mass surfaces in some typical configurations of the 6 complex variables, showing
that the 4-point boundary will in general carve out bubble singularities from the 3-point boundary.
It is hoped that the results here may give some insight into the problem of finding the envelope
of holomorphy of the 4-point domain determined by the axioms of the local field theory alone.
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I. Introduction*

In the study of the general structure of the local field theory on the basis
of a few generally accepted postulatest (viz., field operators transforming
according to the representations of the proper Lorentz group; positivity of
energy of physical states; local commutativity for space-like separations;
etc.), one is led to the investigation of the analytic properties of the vacuum
expectation values of a product of field operators? and of related quantities
such as the retarded commutators®. Several significant physical applications
in this field have been made in recenl years, e. g., the proofs of the dispersion
relations?, the CPT-theorem5, and the connection between spin and stati-
stics®.

The significance of the vacuum expectation value of products of two
fields (in short, the 2-point function) has been known for quite some time?.
The complete 3-point analyticity domain E(D;) has been determined by
Kirvtn and WienTMAN® as a consequence of the above axioms without mass
spectrum, and more recently the integral representations of the Bergman-

* Preliminary results of Sec. IV were reported by J.S. Tory at the Naples Conference
(April, 1959) (see, ref. 13). T would like to thank Professor TorL for this.

1 See, e.g., A.S. WienTmaN, Phys. Rev. 101, 860 (1956). See also, WicHTMAN, in Les
Problémes Mathémaliques de la Théorie Quantique des Champs, Lille (1957).

® For a comprehensive survey of the properties of such Wightman functions, see, e. g.,
R. Josr’s Lecture Notes in the fnlernational Spring School of Physics, Naples (1959); and also
Jost’s article in ,,Theoretical Physics in the Twenlieth Cenfury*, ed. Fierz and WEISSKOPF,
Interscience Publishers, New York (1960).

3 See, e.g., H, Leaman~, K. Symanzig, and W. ZiMMERMANN, Nuove Cimento 1, 205
{1955); and ibid. 6, 319 (1957); V. GLasER, F. LeamMann, and W, ZiMMERMANN, Nuovo Cimento
6, 1122 (1957); O. Steinmann, Helv. Phys. Acta 33, 257 (1960); and ibid. 33, 347 (1960).

* See, e.g., N.N. BogoLiuBov, B. V. MepvEDEV, and M. K. PoLivanov, Lecture Notes
(translated at Institute for Advanced Study, Princeton, 1957), and Fizmareiz, Moscow (1958);
H. J. BreMErMANN, R. OenMme, and J. G. TavLor, Phys. Rev. 109, 2178 (1958); H. LEuMANN,
Nuovo Cimento 10, 579 (1958).

® R. Josr, Helv. Phys. Acta 30, 409 (1957).

* N. Burcoyn~E, Nuovo Cimento 8, 607 (1958); cf. also G. Lifprrs and B. Zumino, Phys.
Rev. 110, 1450 (1958).

" In a 1951 paper by H. UmEzawa and S. KaMerucnt, Prog. Theor. Phys. 6, 543 (1951),
one finds, e.g., the assumption about the positive definite energy of all physical states clearly
stated. Furthermore, this paper also contains an explicit example of a reduction formula, viz.,
for the problem of vacuum polarization. See, further, G. Kiriin, Helv. Phys. Acla. 25, 417
(1952); H. LEavann, Nuovo Cimento 11, 342 (1954).

¥ G.KArLEN and A. S. WieuTMmaN, Mat. Fys. Skr. Dan. Vid. Selsk. 1, No. 6 (1958). This
paper will be referred to as KW.
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Weil type have been given® as a mosl general representation for a function
analytic in E (D3) and with arbitrary singularities outside.

The present investigation consists of a generalization to the 4-point case
of a very special feature which was treated by KW in their discussion of
the 3-point domainl®. To make things perfectly clear as to how this might
fit into the general framework in the 4-point case, it will perhaps be helpful
to sketch briefly the necessary steps needed in the systematic exploitation
of the analyticity domains of the n-point functions.

For an n-point function, one starts in the space of (n —1) real 4-vectors &,.
The axiom of positivity of energy immediately allows an analytic continu-
ation to the (complex) tube domain R,_; with [, = &, —in; and all #, lying
inside the forward light-cone. Now there are three subsequent steps:

a) The Hall-Wightman theorem'! maps this tube R,_; into a domain
M, _, in the inner-product space of the 1/2 n(n—1) complex variables!?.
The first problem is then to determine this primitive domain M,_; (i.e.,
to characterize the boundary oM, _;). M, _; is a natural domain of holo-
morphyl3.

b) By permuting the original vectors, one gets a permuted n-point function
and thus a permuted domain 3 M, _;. Now by the axiom of strong locality,
these permuled functions coincide on a certain space-like region S. If
Sﬂ.{‘,BMn_l};c’ 0, then one gets a function analytic in the domain
D,=u {EEMn-l}' )

¢) The domain D, (because of the above union) is not a natural domain
of holomorphy!*. The final step is to find the envelope of holomorphy
E(D,) of D,15

We now briefly discuss separately the cases for n < 4.

Case 1) 2-point domain: M, is trivial; it is just the cut-plane (as is obvious
from squaring a single (difference) vector ). The cut is along the positive
real-axis. Steps (b) and (c) are unnecessary. M, = D, = E(D,).

® G. KivLex and J. S. Towrr, in Pauli Memorial Volume, Helv. Phys. Acta. 33, 753, (1960).
16 See KW Appendix ITI and Section VII.
11 D, Hawr and A. S. Wigurmax, Mat. Fys. Medd. Dan. Vid. Selsk. 31, No.5 (1957).
For n > 5, the number of independent inner products is reduced to 2(2n—>5) by linear
dependence of more than 4 vectors in 4-dimensional space-time.

23 For n < 3, this is clear, since M,, , are both bounded by analytic hypersurfaces, and

12

one knows that one can go no further. For n = 4, one gets non-analytic hypersurfaces, however,
this is still proved by KArLLEx and TorL (private communication; and Torvr’s Lecture Notes
in International Spring School of Physics, Naples (1959)).

14 Cf, for example, D. RueLLE, Helv. Phys. Acta 32, 135 (1959) and thesis (1959), Bru-
xelles.

13 For basic notions of the theory of functions of several complex variables, see, e. g.,
H.Beunke and P. THULLEN, Theorie der Funktionen mehrerer komplexer Verdnderlichen, Ergebn,
Math. 8 Nr. 3, Berlin (1934). For a physicist’s summary, cf., e. g, KW Sec. VIl
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Case 2) 3-point domain:
a) Part of My was first treated by D. HaLLl6; it was simplified and ex-

hausted by KW who show that M, is bounded by the following pieces of
analytic hypersurfaces:

Fig: zg=zi+2p+r+2y5/r, O0<r<oco, (for Im z; - Im z,> 0);

St zg =5 (1 k) +z,(1 - 1/k), O<k<oo, (for Im z, - Im z,<0),

and the cuts in z; and z,.
b) Permutation is straightforward.
¢) E(Dy) turns out to be bounded also by analytic hypersurfaces:

Cuts: 7, =0>0, k=1,2, 3. (0 <p=<oeo).
thj: Iy = 5t 50— 250, (fbr Im z; - Im 2, <0, Im =, - Im 7, <0);
T nZg+zazg g — (2 + 2+ 23) + 00 = 0

(for Im z - Im z,> 0, Im z; - Im z,>0) .

Case 3) 4-point domain:

a) Part of the boundary of the primitive domain M; has been very ele-
gantly characterized by Jost!? with a set of 3x3 malrices M — DANAD,
where M = |[({;-{;) |, D is diagonal with positive diagonal elements, 4 is
symmetric real except for diagonal elements which have positive imaginary
parts, and N has zero diagonal elements and 1 everywhere else. That M,
is indeed a natural domain of holomorphy has been shown by KXLLEN
and Torr!®, who have also shown that M; is not everywhere bounded by
analytic hypersurfaces.

b) The permuted domain remains to be determined. This can be ac-
complished by the present technique if sufficient and careful work is carried
through.

¢) The real difficulty lies in the problem of finding the envelope of
holomorphy E(Dy), which is at the present moment complelely unknown.
[t is therefore entirely an open question as to whether or not E(D,) will be
bounded by analylic hypersurfaces.

At this point, we want to discuss the role of the domain DE®' which

one gets from simple yet non-trivial examples in perturbation theory. Let
us recall the following facts:

i D. Harr, Ph. D. thesis, Princelon (1956),
17 See Ref. cited in footnote 2.
% See Ref. cited in footnote 13,
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Case la) n=2: D¥*'* = E(D,).

Case 2a) n = 3: DE®'* gives about three-fourths of the answer to E(Dy),
i. e, DE°t is bounded by cuts and Fy; surfaces. The only thing DE™ fails
to tell is the {-surface (which corresponds to the case when all Im z; have
the same sign). (In fact, it should perhaps be pointed out that it would be
extremely difficult to discover the exact shape of E(Dg) if one didn’t know
beforehand D§°™; a knowledge of which then enabled KW to actually
prove the final results.)

It is in this spirit that the present study of the D2®'* is undertaken.
Namely, it is hoped that perhaps D}°** might again give some insight into
the envelope of holomorphy E(D,) in the axiomatic approach.

The work divides itself into two parts. The first part (Sections II-V) is
devoted to the explicit location of the singularities of the 4-point function
in perturbation theory and their relevance criteria. The second part (Sec-
tion VI) is to determine what constitutes the boundary of the domain; the
study of this boundary is our primary interest.

The main result of this study is that D2 is also not entirely bounded
by analytic hypersurfaces. A lengthy analysis of the problem of the geo-
melric envelopes for the 4-poinl singularity manifold is made (Section VI).
The 4-mass envelopes and the 3-mass envelopes, although they can also
exist, are shown to be trivial and cannot contribute to the boundary of
the domain. On the other hand, the two-mass envelopes are quite non-
trivial and have most natural relations with the 3-point boundary Fy; sur-
faces. In principle, with the aid of an electronic computer, the boundary
of DE®' can be explicitly plotted. However, we only give here the equations
and illustrate instead the one-mass curves (which are analytic) for some
typical configurations in the space of six complex variables to show the
presence of the 2-mass envelopes.

It is evident that the fact that D§°** is not bounded by analytic hyper-
surfaces will make the problem for D'* to provide some answer to E(D,)
much less transparent than the previous 3-point case. Of course, it is {rivial
that E(D,) € D}***. However, as already mentioned above, it is still an
open question whether or not E(D,) is bounded by analytic hypersurfaces.
If D2 does have anything to do with F(D,), then the present investigation
gives a negative answer.
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I1. Simple Examples of the 4-Point Function

11.1 The Vacuum Expectation Value of Products of Four Fields in
Ward Theory (x-space)

We consider in perturbation theory an interaction via a Lagrangian
gD P D3P, where the @,’s are neutral scalar fields with field quanta m;.
Expanding in powers of g, we have

D, (x) =DV (x) +g S da' dp(x—a'; m) PP (@) DO () PQ (2 +. . ... (1)

where (jklin) is a permutation of (1234).
To the first non-trivial order, the vacuum expectation value of the four
fields reads:

<0 | Dy (1) Pa(s) Py (3) Py(y) | 0>

= (2_7%9 \ 5 \ dqy dqadgs - exp [1(q1 214 + gaTayg + g3 T3y)]

8(qs+m3) (g3 +m3)d((qy +qa+qs)* + m)
(g rmd)y,

(gl +m)0(qi + m5) d((q + ga + q3)° + mY)
(g5 + m3)y

5(q§ + m‘f) 5(q§ + m%) 5((qy + qs + q3)2 + mi)
(g5 +m3)p

8(qi + ) d (g3 + m3) d (4§ + ni3)

(g1 + g2+ ¢a)°+ My

[@("‘12)@((]3)@(% +qz+q3)

+0(q1)O(~93) O(q1 + 42+ q3)

+60(q1)0(q2) O(q1 + gz + q3)

+0(q1)0(q3)O(g3)

>

where x;; = x; —a;. The @’s are the usual step functions

0 () [0, for ay<0

Lg) =3
11, for xy>0.

The scalar products for 4-vectors are here defined with the metric (+++—).
For the choice of the 4-point function in x-space, a more convenient

expression results if we multiply (2) with a suitable weight function

®(m}, m3, mj, m}) and integrate over all masses mj > 0. In particular,

following KW, we choose

4
®(md, m3, m3, mi):ﬂd(fmi;ak), >0, (3)
=1
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where
A 1 ap- &7 4
o= s\ ) )
in which ‘8. denotes the usual Cauchy principal part.
Using
dAA(=4; o) S -
R 1 iné
= SO A ATOE (2 0 LI (5)
and -
Ap(x) = 20 () D (x), (6)

we have the expression

I \ S S S dmi dmi dm? dm & (m, m3, m5, m3) < 0| @ (x) Py (25) Py () Py(x,) | 0>
J o

= 3.;22971)3 S S g dq; dgadqs - exp [1 (g x4 + gaTag + Q3 xg)]

< [AD(ghs ay) A,(q5s an) Aa(qss az) Ap((qu+qa+43)*; ag)
+ Ap(ghs a) AV (g5 az) A4(g5; a5) Ap((g1+ e+ qs)*s as)
+AR(qf; ap) AR(qi; ds) A(l)(qg; az) Ap((q1+qs+ (13)22 a,)
+ AR(Q%L ap) Ap(gss az) Ap(q5; ag) A(l)((ch + g+ q3)%; ag)]

(7

-9 \\ssdfldfzd§3d§4a(§1+§4 x14)6(52 RS §4T124)5<§3+ *3034)

T 322mit
‘ f 0(A1) N 0(4z) " 0(4s) n 8(4Aq)
lAzA3A4 A1AsAg AjAs Ay A A Ag|’

where 2
A, =& +ay.

With the aid of the well-known identities

T S(A et
2 AQ(A;344 = *S\S.\Udal doy dorg dotg 6(1 — Zoy,) (L ay) (8)
cyelic
and . 5
I e s@eez 4y 9
e 2l

®.4) ©

the integrals over all & can be easily carried out. The result is:

g \\K\'l docldocgdacgdoc45(1 — Zoze)
64(2m)10 V)V o(aroozr + ooy ze + o oazy + dp oty za + o3 oty 75 + g ot zg — Zotg ag)? (10)

I=

a, >0,
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where the six z’s are defined as follows:

- 2 - 2
= &y, 4T T X ]
I 2 . _ 2
2= TTag, 5= T Xy

- 2 -
g = —Xgy, g = RETN

[ (11)

Equation (10) is the expression we shall take for the 4-point function I(z; a)
as a function of the six complex z's and four real «’s.

II.2 The Time-Ordered Product of Four Currents (p-space)

For completeness, we mention that the Fourier transform of the time-
ordered product of four currents in perturbation theory gives vise in p-space
to exactly the same integral expression (10). The expression for the square-
loop Feynman graph is too well-known to warrant a derivation herel®.
Since, as we shall see later, the singularity manifold has a natural geo-
metrical interpretation in terms of such graphs, we shall briefly sketch the
necessary notations.

Consider also four scalar fields @@ (x), with characteristic masses my,
k=1, ..., 4 Write a; = mi, and

(@) = ¢’ () ¢ ()
Ja(®) = ¢ (@) ¢ ()
Js (@) = ¢ (x) ¢ ()
Ja(@) = ¢ () o0 ().
Then
F(z)=<0] T{jl(*’tl).iZ(mZ) Ja(xs) j4(rc4)} J 0>

1
“16 Ap (2305 7)) Ap(Xag; a5) Ap(23y; ag) Ap(ry; ag)
- (12)
17T

= ('Q’;)Té \ & \ dpy5 dpes dpgy - xXP. [1(P1aX1n + PagTig + Pagtiy)]
% H (P12, Pos, P3s)

where double indices denote the differences x; = x; — ;.

i* For general expressions of Feynman amplitudes, cf., e. g., J. 5. R. CarsuoLm, Proc.

Camb. Soc. 48, 300 (1952); Y. NamBU, Nuovo Cimento 6, No.5, 1064 (1957).
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Py
Py P3
P2
Figure 1. Square-loop Feynman graph
A standard computation then yields:
H(p12, Pass P3a)
\SW doa das dog dog 8 (1 — Zo) o (13)
_ _ i - T
Jd 3ol taraglo+onoals+asagla + agaals + caonls — Dagag)?’ F
where the six {'s are defined by
{1 = ‘P%z: &y = ‘P%a
L= *p%:s’ L5 = *P§4 (14)
&y = _P%cp {g = _Pi-z-

We see that expressions (13) and (10) are identical and the definitions
for the z's and the {’s are merely the same six invariants derived from a
set of three independent four-vectors.20

ITI. Function of Six Complex Variables Represented by a
4-Fold Feynman Parameter Integral

II1. 1 Definition of the ¥-Manifold

Both the examples treated in Sec. II have led to the same integral ex-
pression, namely

ool _
I(Z;a):SSS'\Odal_dagda;;;f)?@(l Z'ackl‘ (15)

20 Special cases of this square Feynman graph example have been treated independenlly

for all six real variables by R. KarprrLus, C. M. SoMmmERFIELD, and E. H. Wicumann, Phys. Rev.
114, 376 (1959). This was later extended to the case of two complex variables by J. Tarski,
Jour. Math. Phys. 1, 154 (1960). In both works, all the 3-point boundaries are restricted to the
real domain, and all the masses (internal and external) are held fixed together with stability
conditions. Subsequently, there appeared a number of papers on the methods of locating the
singularities of the general Feynman amplitudes without the explicit completion of integrations.
See, e. g., L. D. Laxpau, Proceedings of the International Conference on High Energy Nuclear
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where
Dot o7y 0ty Oy Ty + Oy 0y Ty T Oy Oty 2y + gl Ty T Xy OlpZg — 2oy, (16)

This demominator D can be written in various manners for different pur-
poses. For instance, using the identity Xa; = 1 under the integral, we can
write

D=

¢

B =

> Vo0 (17)
i, 7 ’

where the 4x4 symmetric matrix (%) is defined as

—2a, =y — Oy Ig—Qg—ay Iz —y—
) - Zy— g — g — 2, Zg— Az — Uy  Zg— g — Uy ‘ (18)
Zo— 0y — Qg Z4— Qg — U —2ay Iy~ Qg ~ dg
‘Zg— g — Qg Zg—Ug—dy Iz Qg —ay —~2a,

The determinant |¥;| will be simply denoted by ¥ throughout this
paper, and the manifold ¥(z; a) = 0 will be referred to as the ¥-manifold.
It will be shown that the 4-point type singularity of our function I(z; a)
comes just when this linear transformation (%) becomes a singular one
(Section IV). The significance and the structure of this ¥-manifold are given
in Sec. 111.4.

II1.2 Symmetry of the 4-Point Function

The symmetry of the problem is contained in that of ¥. Equivalently,
we shall define a 3x3 determinant A(z) (a quantity which will repeatedly
appear in our later discussion), as follows:

. ~21z Zg—Tg— Iy Zg— Iz — 1
A(z)=5 Zy— 21— 23 — 214 Z5—Zg— Ia|. (19)
Zg— 21— I3 I5— Iz~ 33 —2zq

A(z) has the following interpretation®': Let {15 Loy &g, be a set of three
independent 4-vectors, and let the z’s and {’s be related as

Physics, Kiev (1959); J. C. PoLxiNngHORNE and G. R. ScreEaroN, Nuovo Cimento 15, No. 2,
289 (1960); and ibid. 15, No. 6, 925 (1960). An inherent disadvantage of such approaches is the
lack of explicit knowledge of when and only when the cancellation of singularities will not occur.

21 For real vectors in the Euclidean space, /(x) has the significance of being proportional
to the square of the volume of a tetrahedron. The principal minors of /1(x), which are exactly
the type of function A(zx) of KW, have the meaning of being proportional to the squares of
areas of triangles (cf. remark following LEq. (82)).
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o CZ - =2 - -2

17T Th1s A2 7T Te2y ~3T T 63
2= = (L1 - 52)2: R (T 53)2 (20)

%= = (3~ L)%
Then
A(z) = 4xGram Determinant of (g, {p, {3) =41(8- )] (21)
(n :
Z3
Z
—_—
(2) (4)
(3)

Figure 2. Tetrahedron representation for vectors Figure 3. Tetrahedron representation for /1 (z)

The situation for ; is depicted in Fig. 2 together with their difference
vectors. The (Lorentz) squares of the vectors are just the z's given in (20).
In Fig. 3, we labelled the six edges of the ‘“‘tetrahedron’ T by these z’s.
Each of the four faces of T picks out a triplet of z’s at a time. Intuitively
one would expect each triplet to obey the restriction of the three-point type
of KW, and this is indeed the case, as will be shown explicitly later
(Sec. IV).

It is clear then that our problem has the symmelry endowed in this
telrahedron, in particular, the permutation symmetry which leaves the set
of four faces of T invariant, Let us first divide the edges of T into two classes:
Two edges which meet at a vertex of 7" will be called adjacent edges, other-
wise conjugate edges. Obviously for a tetrahedron, for each edge there are
four adjacent edges and only one conjugate edge. Thus the six z's break
into three pairs of conjugate indices?2. In our present notation, they are:
(1,5), (2,6), and (3.,4). For convenience, the four faces of 7 will be denoted
by F,, k=1, ..., 4 and labelled in the following order: (456), (235), (136),

22 When properly identified, energy and momenlum transfer variables are conjugate to
each other in this sense. It is important to note that conjugate indices, ipso faclo, do not appear
simultaneously in any one of the 3-point quantities, e. g., @(z) or A(z).
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and (124). Note that this is equivalent to labelling the 4 vertices of I'ig. 3
in the counter-clockwise order.

Then the operations which transform the set of all F, into themselves
are obviously the permutations among any fwo pairs of the conjugate in-
dices. For example, (1,5)<=(2,6); by this we mean the following:

1\ «>/(2 . )
either (i) 5) (6): thus Fy, F, invarianl; Fy<— Iy
<>

1 2
or (ii) (_) e (6): thus F,, Fy invariant; Fy<—F),
A |

\

1 2
or (iii + : thus Fi<—F,;; and Fy<+Fy.
1 3

b 6

In other words, a permutation between adjacent edges is to he accompanied
by the permutation between their respective conjugate indices (e. g. cases
(i) and (ii) above); and a permutation within one pair of conjugate indices
is to be accompanied by the permutation within another pair of conjugate
indices (e. g. case (iii) above). This exhausts the symmetry of the problem.

We might remark that the above symmetry property, which is purely
geomelrical, is not confined to the perturbation theory. The quantity /A(z)
(or the Gram determinant of three 4-vectors) will undoubtedly play an
important role in the case of the axiomatic approach. In the perturbation
example Eq. (15), this symmetry is of course trivially implied by the per-
mutation symmetry between any two a«;<—> 2 in the integrand, the net re-
sult there being the proper interchange of four z's and two a’s, which (apart
from the associated permutation among the mass parameters) agrees exactly
with our above general prescription of the permutation among two pairs of
conjugate indices.

III.3 The Structure of the 3-Point @ ,-Manifolds and
The 2-Point R, -Manifolds

The 3-point @-manifold of KW has precisely the same structure as that
of /A (z) discussed above, except that a set of three z’s emerging from one
vertex in Fig. 3 is now replaced by a set of three mass parameters. Thus
the @-determinant is (apart from a trivial factor of 4) just the Gram deter-

minant of three 4-vectors {; with the diagonal elements put on some mass-
shells.



14 Nr. 3

In the present 4-point problem, we have in all four sets of such @, one
for each face of the tetrahedron T. Thus, for example, the structure of @,
can be represented by the tetrahedron 7 in Fig. 4.

Figure 4. Tetrahedron representation for @,

- 2a, Zy— O3 — Qg Zg— Uy — (g
1 . .
B, = 5|7 @—a - 2ay Zg— @y —dg . (22)
Zg— g — Qg Z5—dg— Oy —2a,

To every @,-determinant, there are associated four 2x2 subdeterminants.

’

One of them involves pure z’s, i. e. the 1(z) defined by KW, e.g.:

-2z Zg— 24— %
4y (456) = — ! e (23)
Zg— Iy~ Zy — 2z

which is associated with the face with all z's in Fig. 4. To see how A(z) is
related to @(z), we note that (22) can be wrilten as

—2ag Zgtag—as zgtag—ay
1
D) =5z tag—a, —2zy T 24— Zp (22a)
Iyt Qg —ay Tg—Zq4—Zg — 2z

in which —4, appeas as the first principal minor of @, when written in the

form (22a). This feature will also appear in the 4-point case (¢f. Sec. VI.2).

The other three quantities are the R,-manifolds defined by KW, e. g,
—-2a, Zg— (g ~ Qy

Zg— Qg — Uy —2ay

which are associated with the faces of one z and 2 «'s in Fig. 4.
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It is well known that the manifold R, (z;) = 0 yields the cut in each
variable z; in the 3-point case. This feature is also carried over to the 4-point
case where we have six such R-manifolds, giving rise to a cut along the
positive real axis in each of the six complex variables. Note that each cut
is actually an 11-dimensional manifold.

III. 4 The Structure of the 4-Point ¥-Manifold

The generalization from the 2-point R-manifold to the 3-point @-manifold
is strongly suggestive as to how the 4-point ¥-manifold might be built up,
and indeed the analogy turns out to be a valid one. As one can build up a
tetrahedron T, for @, by adding three a’s to the k-th face taken out from
the tetrahedron T for A(z), one may now build up a “pentahedron’’?? for
¥ by adding four legs of a’s to the entire tetrahedron T as the base (Fig. 5).
The remaining four hypersurfaces of this pentahedron, being tetrahedrons
Ty with 3 a’s and 3 z’s, represent just the set of 4 @,-manifolds in our pro-
blem?4.,

The ¥-determinant has the simple interpretation in the p-space as 16
times the Gram determinant | (p;- p;) | of four 4-vectors p, such that the

a, 04

A . 16

Figure 5. Pentahedron representation for ¥(z; a)

diagonal elements are put on some mass-shells: —p2 — m? = ,, and the

off-diagonal elements are re-expressed through the difference vectors, e. g.,
2 The above intuitive terms such as ‘“‘tetrahedron’ and “pentahedron” should perhaps
be properly changed into ‘‘n-simplex,” n = 4,5 respectively.
# By our previous labelling of the four faces of T (Sec. I11.2), the index k of Dy is such
that a; does nof appear in @y.
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for some m. These four p,’s may just be identified with the four internal
momenta of the square-loop Feynman graph (Fig.1). On account of the
momentum conservation at each vertex, these difference vectors p;,. ;=
Pi—Pi+1 are just the four external momenta and the six z's are then the
six invariants built up from these p;; ., (ef. Eq. (20)). From this, it is
clear that the 4-point singularity manifold ¥ = 0 can be interpreted to
arise just when the four p;’s are not linearly independent?s.

IV. Sources of Singularities of the 4-Point Function

IV.1 General Discussion

From the integral representation (15) it is clear that, with a given set
of parameters q;, the singularities of I(z; a) come from a certain manifold
of z such that the denominator D vanishes somewhere within the range of
integration. Of course, not all such points need be singular points of I(z), as
we can easily convince ourselves that the integration may very well smoothe
out some of the singularities of the integrand. In fact, from the 3-point
example treated in KW, we see that there are some delicate cancellations
which made

a) only part of the @-manifold as relevant 3-point type singularities; and

b) the relevant portion of the cut (2-point singularity), in the case of
non-vanishing masses, actually starts from z, = (Jan+}/as)’, but not

(V am —Y an)®.

It will be shown in Sec. V that an inherent cancellation of this nature
will again occur in the 4-point case.

In this section, we shall mainly locate the sources of all possible singu-
larities of I(z). It will be shown explicitly that these singularities arise only
when the quadratic roots of D in «; become double roots. The conditions
for such double rools at each slage then yield the singularity manifolds
for the 2-point, 3-point, and 4-point type, respectively.

We now briefly compare the methods we shall adopt in the 4-point case

28 This was independently noted by Laxpau loc. cil., and implicitly implied by KarpLus,
et. al., loc. cit., for the rcal case.
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versus those available for the 3-point case. In the case treated by KW, the
corresponding original expression is

et dog dasdag (1 — Xy _
H(zl,ZZ,z3):\55 13) ( 7), (25)
. 0 1
where

- - - I3
Dy = oqogzg + ogogzy + a0y 29 — Zoty ;. (26)

It is obvious that, when one of the 4 o’s in the 4-point case becomes zero,
D of (16) (apart from a trivial relabelling of the indices) goes over to Dy
of (26).

The 3-fold integration in (25) can be carried out in a straightforward
manner, but the result contains a sum of 16 Spence functions2 which
are somewhat inconvenient. Instead, KW applies the differentiation X'9/0 a,,
which, on account of the identity X'e; = 1, has the net effect of raising the
power of D; by one for every such operation. Thus??

3
\, | J ‘o 'ldaldagdagé(l—Zaj)
%1 G H G rz)—SSSO 5 . 27)

Now (27) when integrated out contains only Jogarithms (KW (A. (46)):

3
v J?»,H(,. Cl) - _ l} %2/ Pilogzlcf Uy — Ay, + I/Rk
{:1 dag ' 20 <~ VRe ~ 2p— ttm — i, — Ry

(28)

where @ is of the structure of (22), R, of (24) and P, = 99D/0a,.

The 4-fold integration (15) can of course be carried out by force,
but at first sight one is rather inclined to feel uneasy about a sum of 192
Spence functions. In this respect, it resembles (25). Unfortunately, how-
ever, the above differentiation technique will no longer save the situation,
and the Spence function terms always persist in any explicit expression for
1,(z), where v refers to the power of D in (15). Since the case » = 2 is the
stmplest of all, and there is no merit in going to higher », we shall jusl
stay with (15).

At this point, it is instructive to learn the lesson from the 3-point case.
A study of the 3-point function H(z) of (25) in the undifferentiated form

% For a comprehensive treatment of Spence functions, see, e. g., L. Lewin, Dilogarithms
and Associated Funclions, London (1958).
*7 One might note that, in a 2-dimensional (1-space, 1-time) space, the 3-point function
without differentiation actually has the form (27). (This is a remark by Profs. KiirEN and ToLw.)
Mat. Tys. Medd. Dan.Vid. Selsk. 38, no. 8. 2
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led us to rederive the same singularity manifolds as those obtained from
the differentiated form (28). There are two ways for this, which are es-
sentially equivalent:

(a) The first method is to discuss the singularilies under one remaining
integral sign. We have, after the completion of a 2-fold integration, the fol-
lowing expression:

H(z: a>—\ e s @ (29)
where
N(#) = A(2) o ~2 Pyoc— Ry = A(2) (= 01) (& — 02)
0152 l()P3i2V @()
and

L NAGR e R

D=1 a1 4 '
o o 1 o v

Thus, as far as the integrand of (29) is concerned, when the 3-point rools
01,3 fall into the range (0,1) in the a-plane, N(«) = 0 gives an apparent
singularity. However, at this point log y(«) becomes log 1 = n.2xi (n=in-
teger), in which lies the inherent cancellation. As long as the two roots
remain distinct, H(z) can still be defined by analytic continuation into an-
other sheet of the Riemann surface even when one (or both) p; has (have)
actually passed through the open interval (0,1), since in this case one may
very well deform the path of integration to avoid meeting with the roots.
The upper end « = 1 is perfectly harmless. At the lower end « =0, how-
ever, one gets the Rg-manifold (which gives the cut in the zz-plane). On the
other hand, when the roots tend to coincide after they have crossed over
the range (0,1‘) an odd number of times, then the above deformation of
the integration path is no longer possible, and H(z) will have a singularity.
The condition for such double roots gives precisely the manifold @(z) =
(apart from the trivial alternative z3 = 0 which we disregard). The only
other singularities H(z) can have is at the coincident zeros or poles of
x(«) which can be easily seen to lead to the R; and R, manifolds (cf. (46)
and the remark thereto).

In this way, one is able to relocale the singularities of the 3-point funec-
tion H(z) in the undifferentiated form, which'agrees exactly with what one
gets from the cxplicit differentiated form (28).
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(b) The second method is to carry out the last integration of (29). As
already mentioned before, one gets Spence function terms besides logarithms
here. However, a careful examination of these terms shows that, with proper
manipulation, they are still manageable. One first learns which. combination
of the variables go into each of the Spence functions by explicitly
differentiating them with 29/0 a;. From this, one sees how the Spence func-
tions unfold and all the inherent cancellations thereof. Once this is done,
one can, taking into account the symmelry of the problem, again recover
the singularities of the 3-point function H(z) in the Spence function form.
We did this only as an exercise to get an insight into properly handling the
corresponding (and mrore complicated) Spence function terms in the 4-point
case.

In the following, these two approaches are generalized to the 4-point case.

IV.2 The One-Fold Integral Representation

We now proceed to discuss the singularities of I(z) after a straight-
forward completion of integrations over three of the four «’s. We have,
before a final integration, the following expression?28;

ol 3
Iay= g\ 2 NIy
0 A2+ 5 Quocr @y T VN; ()

Here the denominator in front of the summation sign has singled out, in
the language of Sec. Il1.4, the tetrahedron 7}, viz., the set of variables
(24, 25, %65 (g, (3, @g). The summation is thus extended over the remaining
three T;,,, j = 1,2, 3, of the pentahedron of Fig. 5. (Recall that T, was
defined by deleting a; from the pentahedron).

Now the symbols in (31) stand for the following:

v
Q=G K=lioid (32)
P, -5 W (33)

2¥ We have performed the integrations over a,, oy, oy, The remaining integration is over
®;, where we drop the subscript. This singles out the triplet (£56). Of course, by symmetry,
the order of integration is entirely immaterial. Had one left the last integration over o undone
for any k, the net effect would be a trivial permutation of T, < Ty from Eq. (31).

i
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where ¥** denotes the k-th principal minor of the ¥-determinant. Note
that @, is explicitly given in (22). A(z) is given by (19). We have also de-
fined 4; in (23). The three remaining similar expressions (one for each of
the remaining three triplets) can be simply defined as

b1 =AY, j=1,2,3, (3D
Furthermore, we have in (31)
8/1 (A) 0D, .
M;(ax) = . 35
(o) = “Far (35)

The quantities N;(«x) and yg;(«) are precisely of the same structure as those
appearing in the undifferentiated form of the 3-point function H(z) in (29).
Here

Nyj(o) = Ay, o8 = 2P a+ Ry, (36)
where
6@j+ 1 o~
e (37)

and the primed index j* denotes the conjugate of j in the sense of Sec. 111.2,
viz., j =(1,2,3); J = (5, 6,4), respectively.

The quantity Rg is given explicitly in (24), and the remaining five R, (z4)
are obvious from symmelry, as they can readily be read off from the prin-
cipal 2x2 minors of the ¥-determinant.

Finally we have:

81¥[j (oc) ﬂ/lj (oc) —————

VN,( o)

+V’V()

’CJ( )= 011[ (oc) 31[ (oc) J=L23 (38)

+ I/LV (O()

in which the indices (j'kl) form a triplet. The identification of indices k
and ! is unique for each j.

We note in passing that the integrand in (31) evaluated at « = 0 is pre-
cisely the final expression (28) for the 3-point function in the differentiated
form, now for the variables (zy, z5, 7). (This is certainly to be expected,
and serves as a check for (31)).

Having thus identified all the quantities that appear in (31), we proceed
to note a number of identities which will be important for our subsequent
discussions. We have, for j =1, 2, 3,

M2 () = 1y Ny () + 42y /l(z)cx2+é Oyt @y (39)
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(02\»’[2(57.2_ 2 1(62;~+1a_ Ry |
Oz | 4\ 0z aaz+1)

\

(40)

19Ry,
= N;(or) + 4z [zka2+§6—(; o+ “k+1]-

BP; 1 0D , 2 1OR
(a&;;d | '—6':7— :sz\/]-(ot)+4(pj+l Zp o +§’5'(;;OC+ Mpea1ds (41)
where (j'kl) forms a triplet in (40) and (41).

Furthermore, we have

3
D M) =2 (1—) (42)
i=1

Qi =16A(z)P, +47,Y(z;a), k=1,..., 4. (43)

Note that, for « = 0, (39) reads

[ oD, \?
(\Baﬁi) =Ry + 420 (44)

which is just the 3-point relation (KW (A. 46 d)), now for the variable (456).
On the other hand, (41) reads for « =0

0@, 1\

{—N;) ~ ByRy+4 a2 1@, 4, (45)
which is a variant of (44) in that the role of the corresponding a’s and z's
is now interchanged. The 4-point analogue of this will be noted in Eq. (110).
Equations (43) which are the proper generalization of (44) to the 4-point
case will also play a dominant role in our later discussion of the boundary
(Sec. VI). It might be of some interest to point out that identities of the ty-
pes (43) and (44) have a rather natural interpretation in terms of the deter-
minant expansion by means of a theorem due to Jacobi?®. An illustration
of this is given in Appendix D.

For completeness, we might mention thal the quadratic expression
(2,0 +1/2 0 R, /0 a,, & + a,) appearing in (40) and (41) is the 2-point analogue
of the 3-point quantity N;(x) defined in (36), or (30). In fact, this is the
expression used by KW to discuss the singularity on the cut, viz. (ef. KW
(A.47)):

2 See, Appendix D,
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1 mam—agt )R\ de ,
VEe log — = 1R . (46)

Tk~ ~ Ay — Ry

Note that this 2-point denominator is what one gets by multiplying the nu-
merator and the denominator of the individual factor in (38) (cf. (40)).
Therefore we see that the zeros or poles of y;(«), which give apparent
singularities to the logarithms in the integrand of (81), are really confined
to the individual cuts in the z’s.

We see from (46), (29), and (31) that in the passage from the 2-point
to the 3-point and to the 4-point functions, there is a perfect pattern of
generalization, especially in the respective denominators of the integrands
before the final stages of integration, viz.:

Quadratic Form: Discriminant:
. 10R .
2-Point: Zy I A a,; Ryt 2x2 Determinant
20 ay,
. 0D o .
3-Point: A(z)e® - z—«och @: 3x3 Determinant (47)
j
. 1 9% . .
4-Point:  A(z)e?+= 9w % Dy; ¥ 4x4 Determinant
ax

A word about the definition of the branches of log y;(«) in (31) is now
in order. From the original integral representation (15), we note that, where
all z’s are negative real, I(z) is not only analytic but also positive. Hence
we may define the log y;(«) to lie on its principal sheet for such z’s and
the rest is done by analytic continuation from there. With this definition,
for instance, we will always have on the physical sheet log y;(1) =log1 =0
at the upper limit of integration. Note that y;(1) = 1, independent of the z’s
(cf. (52) below). It should perhaps also be pointed out that for «s(0,1),
Nj;(«) are all positive for all negative real z's. For general z’s, the sign of
the square root 1/Nj is rather unimportant since log x; will just compen-
sate for any change of sign in front of |//V

1V.3 The 4-Point Roots

The 4-point roots r; 5 are now defined as the zeros of the 4-point qua-
dratic expression in (47), (which is the denominator in (31)). By virtue
of (43), we have
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~Qi]/Q§—16A¢1: —Q:E2V/T1§’;. .
4 A(z) 4 A4(2)

ri,e(z) =

Here we see explicitly that the condition for r to be a double root corresponds
to the Y-manifold. (The other alternative A;(z4, 75, zg) = 0 is trivial).
Thus, from (39), it follows that

2

M) _ T T
VY N; (re) V J

and, together with (42), we have in particular

1
1

JUCT )

(49
, 3 )

I

3

f'VWGﬁ =0, (50)

§=1 rp=1
Furthermore, it can be shown that

3
TL wuGo =1, (51)
i=1
where the summation sign X" and the product sign /I’ are meant to take
care of the sign condition of (49).
Note that .
Zj(l):l: J=ls2’3 (52)

holds automatically from (37), regardless of the manifold

A(z)r? J\‘% Qur,+9,=0.

Finally the special case
' 3

Tl (0 =1 (53)
i=1
now holds on the @;-manifold. This last identity was first established in
KW and played an important role in their discussion of the 3-point function
in the differentiated form?3°.

The identities (49) and (51) are crucial for the 4-point case. Equation (49)
says that at the vanishing of the 4-point denominator in (81), all the coef-
ficients of the logarithms become identical, which allows the three log terms
to be summed. Eq. (51) guarantees that they add up to log 1.

30 Cf. KW (A. 50). There the factor — should read y/A(z).

V()
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Therefore, just as in the 3-point case, the change of the branches of
this final logarithm will determine the relevance of the 4-point singularity.
We shall leave this problem to Sec. V and Appendix A.

With the above preliminary, the integral (31) can mnow be written as

Wl 3
_ " M (r M (19)
~A(Z> . (1‘1 — I‘z) . T—-dl o — I o — Iy VN;(OC)
— ¥£w _L_» %[F . F.or):
T 24(2)  (r1-12) = s(ro) = £ ()1
where
1l de 1 i=1,2
Fy(ry) = M, (r, S L log 1 (). ‘ 55
](z) J(‘l,) Joo— 1y [/Nj(oz) g/f]( ) j=1,2,3 ( )

The situation in the «-plane is quite clear. Namely, one has only to
watch out for the three sets of roots (i. e. the 2-point, 3-point, and 4-point)
of the expressions (47) versus the path of integration (0,1). Equation (54)
explicitly shows that singularities of the 4-point type occur when the 4-point
roots r; become a double root and when there is no cancellation among the
F’s. We now discuss separately the two cases r;=ry, and r; =r1y.

IV.4 The 2-Point and 3-Point Singularities in the 4-Point Function

We first discuss the case when the 4-point roots are distinet: r; =1y In
(54). Obviously any singularity must then come from each F;(r;) and turther-
more these singularities may still be subject to cancellation when the sum-
mation over j is carried out. The functions F;(r;) defined in (55) are evidently
multi-valued. When explicitly evaluated, they involve logarithms and a
sum of 32 Spence functions for each i = 1,2 and j = 1,2,3. Tt is clear that
the 4-point complication for each F;(r;), as compared with the 3-point
function H(z) in the undifferentiated form (29), arises from the presence
of the extra factor («—r;)"" in (55), which at first sight may cause an ap-
parent singularity for the integrand when r; passes through the range (0,1).
However, this is actually not a relevant source of singularity as long as
ry = ry, and r; ¢ 0, or 1, since in this case the path of integration can be
easily deformed. Stated otherwise, on account of the identities (49) and

3
(1), ZF;'(W) can still be defined by analytic continuation to a different
i=1 :

(54)
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sheet of the Riemann surface whenever a single root r; crosses over the open
‘interval (0,1). As already remarked above (following (47) and (52)), the
upper limit of integration is entirely harmless. On the other hand, r; = 0
implies the @,-manifold, which is exactly the 3-point singularity corresponding
to the tetrahedron 7,. The other three manifolds are ;.1 =0 which
arise from the set of 3-point denominators N;(«) in (55). This is evidently
clear from our discussion of the 3-point function in the undifferentiated
form (29). The remaining singularities in F;(r;) in (55) then come from

a) when the 3-point roots take on the lower limit 0: giving the manifolds
R; =0 for each j. This results in one cut each for (z;, z4, z5); and

b) when the 2-point roots (i. e. the zeros and poles of y;(«)) become
double roots within the open interval (0,1). These 2-point roots result in the
manifolds R, (z,) =0 for m = 1,2,3 and can take on the value 0 only
when the appropriate masses are zero.

We thus conclude that, for the case r;=r,, the singularities of our 4-point
tunction I(z) of (54) are the degenerate ones of the 3-point and the 2-point
types.

The above statement can also be explicitly verified by completing the
last integration of (55) and then discussing the resulting expression. This
is done in Appendix A.

We might mention that, for the case r;><r,, there exists yet another way

of looking at the singularities of ZF]. (r;). Consider now the expression
i

4"7
J(z; a) = 5 3a~[~241-(r1—r2)~1(2: @)l
z a (56)
- N S ) - Fy)

As far as the singularities in z’s are concerned, J(z) will for all practical
purposes yield as much information as I(z), as long as we are away from
the ¥-manifold. Now the right-hand side of (56) is free from Spence func-
tions; and one can readily see, after a straightforward computation, that
one gets singularities of the 3-point and the 2-point type.3!

3 These details are contained in the Appendix B of the author’s University of Maryland,
Department of Physics Technical Report No. 186 (unpublished).



IV.5 The 4-Point Singularity

Now we come to the case when the 4-point roots become coincident:
ry =1y, or we are on the ¥Y-manifold. From (54), it is clear that one gets
a 4-point singularity on the ¥Y-manifold unless there is a cancellation among
the >’ F;(r;). For this we may divide the ¥-manifold into %% and ¥7%,

¥

where the superscripts R and IR denote respectively the relevant (no cancel-
lation) and the irrelevant (no jump) portions of the W-manifold. Il is easy
to convince oneself that W/# is actually non-empty. Obvious examples are
the cases when all Imzﬂ have the same sign, or when all z, are negative real,
since in both cases we know from the original integral representation (15)
that I(z) is analytic there.

The relevance criteria for the ¥-manifold are treated in Sec. V.

IV. 6 Summary of the Singularity Manifolds
In this section, we see that the 4-point function /(z) admits the following
types of singularities:
(a) 4-Point Singularity: on the manifold ¥(z;a) =0;
(b) 3-Point Singularity: on the manifolds @, =0, k=1, ..., 4;
(¢) 2-Point Singularity: on the manifolds R, =0, 4 =1, ..., 6.

In terms of the determinants, the @;’s and the R,s are just the appropriate
principal minors of the ¥-determinant (cf. Sec. IIT).

V. The Relevance Criteria for the 4-Point Singularity Manifold

We have seen in Sec. IV that the 4-point singularity arises when the
roots r; defined by (48) become coincident. Now we want to examine the
behavior®? of these merging roots more closely in connection with the
question of distinguishing ¥# from W&,

32 In fact, the following technique was first applied to the 3-point case in the undifferentiated

form (29) where one is able to re-derive the criteria for the change of relevance of the @-manifold.
An explicit illustration of this is contained in the Appendix C of the reference cited in footnote 31.
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To be specific, let us consider, for the sake of convenience, z;, ...,z
as being fixed, the roots r; , as functions of z; alone. Suppose we make
an arbitrary path ab in the zg-plane, which connects a point a in the known
analyticity region (such a point can always be chosen; e. g., at —o0) to a
point b lying on the ¥-manifold (Fig. 6). Under the mappmgs zg = Iy (2g),
i =1, 2, this path ab is now mapped into, say fB and AzB, respectively,
in the a-plane. Then there are the following possibilities:

[
Y =0 a - plane
b A2
a/ A/ B
X6 !
o |
Figure 6. Path of continuation to ¥- I'igure 7. Behavior of the 4-point roots:
manifold. Irrelevant merging.

(i) Neither of the paths A’;B crosses the interval (0,1), e. g., Fig. 7;

(ii) One of the paths crosses over the interval (0,1) once, e.g., Fig. 8;
or if more than one crossing is made, then either

(i") the net crossing is even and without encircling the endpoints; or

(ii") the net crossing is odd, or with encircling of the end points.

Situation (i) or (i) is obviously harmless. For such cases, (the path of inte-
gration can be easily deformed for the case (i')), the function Z' F;(r) has

no jump, hence there will be a cancellation in (54); the singularity at
r(b) = ry(b) is thus removed, and one says that the portion of the ¥-mani-
fold, to which the point b belongs, must lie in I, On the other hand,
for the situation (ii) or (ii), the function does have a jump, and hence no
cancellation. One gets then an actual singularity at the point b, and the
portion of the ¥-manifold to which b belongs will lie in W%,

The technique thus described, of plotting the explicit behaviors of
the merging roots r; in the x-plane versus the path of continuation in the
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z-space from the known analyticity region to the part of the ¥-manifold
whose relevance is to be determined, although most primitive and tedious,
is a rather useful and practical procedure to really pin down the relevance
question. Except in some very special cases it is not ncessary to plot these
merging roots, as one can instead rely on more general criteria. Since we
do not expect the whole W-manifold to be relevant, the relevance of this
must change when it intersects with some other manifolds. In the following,

o -plane

Figure 8. Behavior of the 4-point roots: Figure 9. Palh of coutinuation in the neigh-
Relevant merging. borhood of (¥ = 0)Nn (D = 0).

we shall show that these other surfaces are just the relevant portions of the
@, -manifolds of the 3-point type.

We shall first state the relevance criteria for the 3-point singularity
manifold @ = 0:

Lemma 1 (KW): The 3-point singularity manifold @ = 0 changes its
relevance at its intersections with the relevant portions of the 2-point sin-
gularity manifolds R; =0, i =1, 2, 3.

This statement is evident from the explicit form (28)33.

We can now state in perfect analogy:

Lemma 2: The 4-point singularity manifold ¥ = 0 changes its relevance
at its intersections with the relevant portions of the 3-point singularity mani-
folds @, =0, k=1, ..., 4.

3  Actually in KW, the problem of choosing the relevant portion of the @-manifold is
quite easy. Since one knows enough from the permuted domain D; where one must have ana-
Iyticity, an explicit knowledge of the branches of the logarithms is not mandatory. A more
transparent way of seeing this independently is by discussing the behavior of the 3-point roots.
This is given in Appendix C of the reference cited in footnote 31.
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A

It suffices to show this for & = 1, as the others will obviously follow from
symmetry. There are two ways to see this:

(a) One observes that one of the two (4-point) roots, say r;, goes through
the end-point zero of the interval (0,1) in the «-plane when the z's cross
the manifold @, = 0 (cf. (48)), while the other root (ry) does not and will
essentially remain unchanged. Thus when the two roots tend to merge, in
one case (i. e., corresponding to one side of the @;-manifold), the paths of

a - plane o - plane
2
re
"
o ] o |
——
N

Figure 10. Merging of the 4-point roots: " Figure 11. Merging of the 4-poinl roots:
On one side of the @,-manifold. On the other side of the @ -manifold.

the roots do not cross the cut (0,1) (Fig. 10); while for the other case (i. c.
corresponding to the other side of the @;-manifold), one of the roots (r;)
does cross over the cut (0,1) once (Fig.11). Thus ZF]-(rl) crosses over to

7
a different sheet of the Riemann surface, while >’ F;(ry) remains on the
i

original sheet. Therefore, there is a cancellation on one side of the @;-mani-
fold, but not on the other side. Thus one concludes that the transition be-
tween PE and ¥'® takes place at the intersection with the @-manifolds.

(b) Another way to see this is by examining the explicit expression for
ZFj(IL) The details are included in the Appendix A. We simply state
i

that the results there confirm the above simple argument.

We conclude this section with a few remarks:

(1) It is clear that, since the whole ¥-manifold cannot be all relevant,
Y2 js non-empty only if the ¥-manifold has an intersection with @ (the
relevant portion of the @, -manifolds). Furthermore, as we shall see in Sec. VI
that the singularity domain of the 4-point proper is actually compact, ¥#
is non-trivial only if the ¥-manifold intersects twice with the @F. The con-
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dition that such intersections occur is extremely complicated, and we shall
only state later (cf. Sec. VI) some necessary conditions.

(2) The pattern of generalization from Lemma 1 to Lemma 2 strongly
suggests that this feature may perhaps very well be valid for the general
n-point domain in the perturbation theory. However, we do not attempt
to prove (or disprove) this conjecture, since this lies outside the scope of
the present investigation.

(3) Since @ D§™ is actually part of 4 E(Dy), Lemma 1 is likewise valid
in the axiomatic approach. In the 4-point case, from the preliminary results3?
for the #DE'™, the general spirit of Lemma 2 (i. e. deleting ¥ in leaving
the question open as to whether this ¥-manifold has any relation with the
@ DEM™ (ef. remark in Sec. VI.7)) seems also to be valid in the axiomatic
approach.

V1. Determination of the Boundary of the 4-Point Domain

V1.1 General Discussion

In the preceding two sections, we have shown that the 4-point singularities,
subject to the relevance conditions, are confined to the manifold given by
the vanishing of the following 4x4 determinant:

—-2a Iy =0y — Q) Zz—dg— Uy S3— (g—
7. — — —9 — — 7o — —
Zy — Q] — g 2a, Zy—Qg— Uy Zg— Qg — g
Y(z; a)= ; a>0. (57)
Zg— Q1 — Qg Zy— Oy~ dg - 2ag Zg — g — O3
Tg— 0y — Qg Zg—Qg— 04 Z5— Uz— (4 —2a,

In this section, we wish to determine what constitutes the boundary sur-
faces for this singularity domain. As it stands, ¥(z,; q;) generates a 4-para-
meter family of surfaces in the space of six complex variables. In principle,
the boundaries of such a family of surfaces could be made up from any
of the following multitude of possibilities:

(1) The geometric envelope of this 4-parameter family of surfaces, which
would correspond to a special path traversed by the a's in the sedecimant
a, > 0. This will be called, for convenience, the 4-mass envelope and will
be denoted by E),3,.

% Private communication from Prof. KALLEN.
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(2) Subcases of (1) when one of the 4 a’s takes on the extreme value
of 0, or oo, and the other 3 a’s, taking a path in the subspace of the octant
a;> 0, produce a 3-mass envelope E;.. In principle, there could be 8 such
envelopes.

(8) Siill further subcases of (1) are when two of the 4 a’s take on the
extreme values of 0, or oo, and the remaining two «’s, taking a path in the
quadrant a;>0, produce a 2-mass envelope E;,. There could be 24 such
envelopes.

(4) Finally, we have the simplest of all cases when 3 of the 4 a’s take on
the extreme values of 0, or o, leaving the remaining one single a, to vary
along the semi-axis a;> 0. In all, there could be 32 such 1-mass surfoces E,,.

Out of all these 65 possible candidates for the boundaries to the 4-point
domain D§®™, our present task is fo eliminate the ineligible ones. Fortunately,
we can eliminate all cases in (2)—(4) which involve any g, to be co. We
recall that the o's have the physical meaning of the squares of the masses
associated with the internal lines in the Feynman diagrams. Now if any g,
is arbitrary large, then the thresholds for virtual production processes which
correspond to the onsets of the associated cut-planes will be proportionally
high. Since the 3-point boundary Fy, curves will not be relevant unless
they have crosses over the cut beyond the threshold (Lemma 1 of Sec. V),
and furthermore, since the relevance of the 4-point boundaries depends on
whether or not they have intersected the relevant 3-point curves (Lemima 2),
it is clear that the co-portion of any g, would not give rise to any relevant
singularity. This statement is also valid in the 3-point case, if we note that
all the relevanl portions of the Fy, curves are actually confined to the lower
ends of the aq,-ranges (from @, = 0 up to a finite value).

This criterion has the further conscquence that the singularity domain
of the 4-point proper is actually compact. Unlike the 3-point case when
the Fi, curve extends to oo in the zz-plane at the ag = 0 end, the all a; = 0
end is always finite in the 4-point case (apart from the trivial case when
one of the z's stays zero) (cf. Eq. (120) below).

Thus we shall from now on consider in cases (2)-(4) lhose exlreme
values of a’s to be zero only. In this way, the list of candidates for boundary
is now radically trimmed from 65 down to 15, viz.,

(1) 1 E1234
(3) 6 Ey
(4) 4 E,.
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In the following, we shall first examine the questions of the various
envelopes listed above. A priori, the question is two-fold:

(a) whether such envelopes can exist at all in the allowed all-positive
ranges of the a’s and

(b) if they do exist under certain circumstances, then it still remains
to be seen whether they are really part of the boundary of our domain.

It would perhaps be helpful to recall the corresponding situations for
the @-manifold in the 3-point case. KW have shown that the boundaries
there are made of only the 1-mass curves (analogue of case (4) above). The
envelope problem for the @-manifold is a much simpler one than we shall
encounter below. We give a concise trealment for this in Appendix B.
The result there can be simply summarized as follows: Envelopes for the
3-point @-manifold can exist, but they do not lie off the R-manifolds®® (i. e.
on the cut for each z). One concludes then that the boundaries are made
up by the Fy;, which are simple analytic hypersurfaces.

Our results in the following subsections will show that, unlike the 3-point
case, the envelopes in the 4-point case are non-trivial®® and in general the
boundary of our domain will be made of pieces of (2-mass) envelopes.
Thus we have herc a fundamental difference between the 4-point domain
and the 3-point domain, namely, the regularity domain of the 4-point func-
tion in perturbation theory, D§®™, is in general not everywhere bounded by
analytic hypersurfaces.

Before we go into the details for each of the above cases, we shall for-
mulate the envelope condition as follows:

The existence of the envelopes is purely a property that is related to the
algebraic structure of the manifold. Consider in general the expression for
an m-parameter family of surfaces, f(z;;0,)=0, i=1, ..., n;k=1,...,m,
where the ¢’s are the parameters under consideration, which are allowed
to vary over a reql domain 4,,.

Definition: A point on f is said to lie on the m-envelope of f if, together
with f= 0, the set of (m—1) independent equations

91
I ) =0 k=1 ' 58
m ﬁ/ =0, J,&e=1,...,m (m)

aak

admits a set of solutions {ak‘} such that {a,;} ed,,.

35 In this connection, it is very tempting to conjecture that the envelopes for the ¥-mani-
fold would not lie off the @-manifolds, but this conjecture turns oul to be not true.

3 In the sense that in general they do not lie on the P-manifolds. However the 4-mass
and the 3-mass envelopes do not contribute to the boundary (cf. Sec. VI.2 and Sec. VI.3).
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Stated in another way, the (m—1) independent equations (58) can be
regarded as the (2 — 1) constraints on the m-parameters, so that in principle
one can always express all the other (m — 1) parameters a,, s> 1, as functions
of the remaining parameter, say a;. Let

A, ={a:aqyed,; a, = a,(ar))}

which shall be referred to as the ““path’ for the m-envelope. Note that in
general A,, will not be completely contained in 4,,. If, regardless of the
configuration of the z’s,

A,nA,=0,

then it is clear that the m-envelope in question does not exist at all. Other-
wise, for A,NA,>0, we will be able to find in the a-space (i. e. 4,,)
an allowed path /imn A, such that the image of this under the mapping

Zy =g (2, - T3 @) f=0

gives the desired m-envelope. Since the a’s mix the real and imaginary
parts of the z’s, the envelopes will evidently in general not be analytic hyper-
surfaces. Equations (58) will be referred to as the envelope conditions.

VI.2 The 4-Mass Envelope

We now proceed to apply the general equations (58) to our specific
manifold det| ¥, |= ¥ (z;a) =0 of (57). Before we do this, we shall
derive a number of identities which will be crucial for the subsequent
discussion of the envelopes. First, we find it useful to rewrite the ¥-deter-
minant such that the a’s shall appear only in one column and one row
(ct. (22a)). For instance, we have from (57):

-2a Zytay—ay  Zgtap—dsg  Zytap—ay
_ Z1 + Ay ~ dg -2z Zg—Zg—Z1 . Zg—i3— %1 .
V(z;a) = =¥yl (67a)
Tyt — Qg Zg—Z1—Zg — 2z, 25— 23— g
Ig+ 0y — Gy Zg—7Zy—Z3 Z5—Ig—Z3 — 2z

Here q, is singled out. Evidently there are 3 other such forms obtained by
suitable permutations. For convenience, let us denote by ¥, the ij-th element
and by ¥ its minor in (57a), while the corresponding uncurled quantities

shall refer to those in the original from (57). Note that
Mat, Fys, Medd. Dan.Vid. Selsk, 338, no. 3. 3
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V=Yg +2a; k=1
Lk 1% 1 1 (59)
= ¥y [
We have already had occasion in Sec. IV to define such quantities as
oY

U = S of (32). Now these have the most natural interpretation in terms
ax

of (57a), namely:

For k = 2,3,4
gk 4)’“-%%%5(—1)’“%();5: k=1, (60)
PEE =20, = W ke, (61)
PR _ 2 A(2). i (62)

Furthermore, from (57a), one immediately sces that

ic1 10w\
since
&9
STk _ o for k=1
.{“:10(1,
Therefore
4
2 Qi=—44(2), (63)
i=

in which the right-hand side is independent of the a’s. Next, with the aid
of (60), we have

4 -~ £
W ST W P ST (T

i=1 E+l
1 & 1 2k-+1 qf
= ‘5![’112 Qz‘+§ Z (-1 11 Q-
iz1 E¥1

Using (59), we get

, 1 & o

W=*§_Zly’zf'57j (64)

i=

for all i =1, ..., 4.
Identities (63) and (64) will be of greal importance to us in the following
discussious. Another set of identities which we will need here already ap-
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peared in (43)37. We are now ready to write down the envelope conditions
for Ejuy according to (58):

g o Gok=1,....4
Im a—;’, - Im(a’) - 0; (65)
e -k j#=k (otherwise trivial).
k

In view of the identity (63), we can now define a set of four real numbers
v such that on Ejagy .
Qp= 4y, A (66)
with

2;’)’1;:12 Imy,=0. (67)

From (43) we have on the manifold ¥ = 0:

Ok = = 4 ) ADy. (68)
Therefore we have on Ejgg,
b, ¥ ]
=205 jk=1,...,4. (69)
k  Vk

In principle, the system of equations (69) together with ¥ = 0 contain all
the information there is about the 4-mass envelope. (In fact, as we shall see
later in Sec. V1.4 for a 2-mass envelope, one has only one such equation
which actually exhausts the envelope condition). However, a frontal attack
on (69) for both the 4-mass and the 3-mass envelopes could lead to tremen-
dous algebraic complications. We find it much more convenient to go
back lo the system of equations (64). We have for ¥ = 0:

(ks

Vi O =0, 1=1, ..., 4. (70)

k=1

I

Now with (66), we get (A(z)=0)

4 —

D Warve=0, Dly,=1. (71)
k=1 k

We emphasize that the y,’s are real, so that the systermn of equations (71)
is equivalenl to the following set of 9 real linear algebraic equations®8
3% For a proof of such identities, see Appendix D.
#8 The fact that ¥ = 0 is automatically satisfied is obvious from (72).
3*
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4

k__}jl(lmﬁpik)yk=0, i=1,...,4, : (72a)
i _

D (ReW,)y, =0, i=1,...,4, (72b)
k=1

4

> ve= L , (720)
k=1

Since, according to (72c¢), the solution with all y’s being equal to zero
is unacceptable, it follows that the determinants of the coefficients of
any four equations taken at a time (out of the eight in (72a-b)) should
vanish. We shall first discuss the consequences of (72a) which contain the
most powerful restrictions on Fygg:

0O m ¥y Y
u1 0y oy
det | Im ¥y |=|" S Y (73)
y2 ya O Us
Uys Ys Y5 O

Note that this determinant is equivalent to the A-function of products of
conjugate variables, viz:

-2 Y5 Y2Ys ~Y1Ys ~UslYs|
Yallg —H1Ys — YslYa —2Y3y,

A yp) = - 0. (73a)
From now on, we shall be more specific by keeping the other 5 z’s fixed,
and project everything into the zg-plane. We see that the 4-mass envelope

E 934 can only be satisfied on the two horizontal straight lines obtained by
solving (73), viz:

+ +2Vy )
Ye _Y1lystyslhs - Vyrysyays (1)

or
= Vy2ys = Vyrys £ Vysya. (742)
From (74), it follows immediately that there exists no 4-mass envelope whenever
Y1Y3Yays<0. (75)

More generally, in view of (74a), we can state that the necessary condition
for the ‘existence of the 4-mass envelope Ez3, is that the three products of
UrYr > k=1,2,3 (k' = conjugate of k, cf. Sec. II1.2) must have the same sign, or
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nys _ y2ye¢ _ Ys¥Ya
lyays | ly2ys|  lysyal

(76)

which we shall refer to as the sign convention for the existence of the 4-mass
envelope Fibs,.

An obvious example which satisfies this sign condition but where FEi5,,
is entirely irrelevant is furnished by the configuration whenever 5 z's
lie in the same half-plane. Then the Ei}y, in the 6-th variable must also lie
in this same half-plane. As we have already mentioned in Sec. V, the ori-
ginal function (15) has no singularity for all 6z’s having the same sign in
the Imz’s. Here we have a situation where the entire lines are irrelevant.
For the other configurations3?, however, the situations are much more
complicated, as we shall see below.

So far, we have only explored the existence condition of Ejy3, based on
the consequence of the imaginary part equations (72a). A brief examination
of the real part equations (72b) will convince oneself that there is no alge-
braic contradiction among the two sets of equations, so that in principle
E1234, satisfying (76), can exist provided that all the parameters a, could
be found to be positive at least for some configurations of the x’s. This
we now proceed to show, :

To be specific, let the y's be given, satisfying (76); one can explicitly
compute the y,’s from (72a) and (72¢)* (cf. Appendix C) in terms of
the y’s. Equations (72b) may now be regarded as those governing the a;’s.
The solutions may be written as follows:

1 . ..
cxk=~—2fZXiJ-yiyj+_>TJ Xgvis koi,j=1,...,4 (77)
1,7 i
with

2.7=1,
7

where the matrix X is given by

S VR R P o

X 0 x x,
x=| " S (78)

o xy; 0 xy
T3 wxg x5 0

3 The distinct configurations for which (76) is satisfied are given in Appendix C.

40 Note that the following ratios hold on E,,g,:

i v ¥ vi = Ua¥s¥s® UsUsUs: Uilsls: UrYUaYs, the right-hand side can be regarded as @y
evaluated at all £ = 0 and all a = 0 (cf. Appendix C).
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Note that
X,; = Re?,|

ap=10"

Itis clear then that the configurations of the 2’s must be such that n {a,c > 0} =0,
&
or

~%Z_‘Xijyiyj+ZXk]—yj>0, for k=1, ..., 4. (79
Y 7

The set of equations (79) which is linear and homogeneous in the six x's
defines a region of the a’s in the six-dimensional space R®, which can be
visualized as the intersection of the ‘‘positive sides’” of the four linear mani-
folds defined by selting the left-hand side of (79) equal to zero for each k.
Let £, denote this intersection. The fact that £, is non-emply is trivial
(since the dimensionality of the variables (z’s) exceeds the number of
constraints by two). It may be of some interest to note the subset of Q,
for which the a;’s are positive definite (i. e., regardless of the y,’s). For this
we may rewrite (77) in the following matrix notation:

(k)TL(k)

Y@, k=1, ..., 4 (80)

1
Uy = —5V

in which »® denotes a 3x1 column matrix of the y;'s" with the deletion

. Ve
of the v, e.g., YW = [ y5], ete.. L® is a set of 3x3 symmelric matrices in
4 .
the x's: Vs
& A
—2x; Ty~Xp—1;  Xg—Xz— Xy
LY - Ty— X — Xy — 2, Ty~ Ty — g |,
Tg—X;— Xy L5— Xy~ Ty ~ 2y
c \
—2x Ty — Xy — Xy Tz—XLg— T
LY = T~ Xy — Xy -2, Xy — Tg — Ty
XLy — ) —Xg Xy — Xy~ Xy —2x
N A\
—2xy Xy =Xy~ Ty Xg—Xy— Ty
L® = Ty — g — Ty -2y X~ 25—y |,
Xg—Xg— X5  Tg— Xy~ Ty —2xy
— 24 Iy —Xg— X3 Xy— X5~y
W - €Ty —Xg — Ty ~ 2, Ty~ Ty — X

Ty — X3 — 5

b

Xy — X5 — X5
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Note that#
det L® = 2A(x), for k=1, ..., 4. (81)

Now with the a;’s regarded as the quadratic forms in the y.’s in (80), a
standard procedure of diagonalization immediately shows that the subset
w, of Q. for which the q,'s are positive definite is given by

wy, =2 x, >0, A (x)<0, A(x)<0 fe=1. ”.,4] (82)
* T Tk ’ . ’ u,=1...6[' B

It is trivial to check that , is non-empty. Thus 0 = w, €Q,. Geomelrically,
—A(z;, x;, 1) = 16 times the squares of the area of the triangle with the

A<O

Figure 12. Projection of the A(x)-cone.

sides Vx;, Vx;, Jap; and —A(x) = 144 times the square of the volume of
the tetrahedron formed by the six edges with lengths Vx[u. In a 3-dimensional
space, the region A(x) <0 is the interior of a cone?? (tangent to all coordinate
planes) within the octant x;, x;, x;>0 (cf. Fig. 12 above as projection).
Now in the 6-dimensional space, one first goes to the sexaginta-quadrant
x,> 0, then takes the intersection of 4 sets of the A-cones in the sub-3-spaces,
and finally inscribes the surface of A(x) = 0 (which will be tangent to
all four A,-cones). (No attempt is made to draw such a picture here, not
even the projection). :

This establishes that with suitably given z’s (Im z’s satisfying (76),
Re :’s satisfying (79), and in particular (82)), the four parameters a, can
indeed be found simultaneously positive on the 4-mass envelope Ejss,,
and with this we conclude the existence of the 4-mass envelope.

1 We note in passing that the structures of the L!-matrices can be easily understood
with the aid of the tetrahedron T of Sec. II1.2. The diagonal elements in L% correspond to
those edges cmerging from the k-th vertex of Fig. 3, and the ofi-diagonal elements to’ the edges
conjugate to this vertex (i. e. the k-th face).

2 A beautiful picture of such A-cone appeared in a recent paper of A. S. WiaHTMAN and
H. ErsTEIN, Annals of Phys. 11, 201 (1960), in an entirely different context.
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We now proceed to discuss the relevance of Ejus,. To be specific, con-
sider y;, . ..., y5 given according to (76), compute the yg from (74) (i. e.
we get two horizontal lines Efg, in the zg-plane). From these 6 y’s, compute
the y,’s from (72a). Now given more or less arbitrary «,, ..., ;, the li-
nearity of (77) implies that q; has-one zero only on each of the Efsy. A

Figure 13. Straight-line segment in z,-plane as the 4-mass envelope.

typical case is illustrated in Fig. 13. We use the symbol 0~ to show the di-
rection in which that particular «; is positive. Hereafter, E)y3, shall properly
denote the allowed region of existence of the 4-mass envelope on which
the intersection of all a;>0 has been taken (e.g., the segment between
ay =0 and a, =0 in Fig. 13). By definition, Ejgq is contained in Q, of
(79); however, Ejg3,N®, may be empty. The case when EpgaNw, =0
has some pertinent features which we leave to the Appendix C. In general
there are the following possibilities:

(a) Ejgy, is either empty for a particular configuration of the z’s or is entirely
contained inside the 3-point singularity domain: in such cases, the 4-mass
‘envelopes are entirely irrelevant.

(b) Eg34 is unbounded at one end which lies outside the 3-point singularity
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domain: In this case (imagine all <-0 pointing to the left in Fig. 13), it is
also easy to dispose of by observing that the extreme far end of Ejag, (which
corresponds to all q, —cc) is never relevant. Since the relevance of Ejpy
does not change unless it has an intersection; otherwise, the case is reduced
to (¢) below.

(¢) Eis3, is finite and partly lies outside the 3-point singularity domain
(Figs. 13, 24, 25). This is the only outstanding situation of the 4-mass en-
velope which needs further discussion. It is clear that the path in the a-space
corresponding to such a finite E o3, is a straight-line segment bounded by
two 3-dimensional sub-spaces. As will be shown in Sec. VL.3, at the end
ay, = 0 of Epjpy comes the 3-mass envelope Ejy,(j= k=1 m). Stated
otherwise, the fact that E;,5, suddenly comes to a stop must mean that
there is another curve which would also pass through that point. For this,
we must defer the remaining discussion of the role of the 4-mass envelope
until we have treated the 3-mass envelopes in the next sub-section.

V1.3 The 3-Mass Envelope

We have seen that the restrictions of the 4-mass envelope are so strong
that one gets only rather trivial situations where E},3, is confined to a straight-
line segment in the z-plane. The envelope condition (58) or (66) is relaxed
when one goes from an m-envelope to an (m—1)-envelope; since, by de-
finition, one of the parameters a; now takes on the fixed extreme value 0,
the corresponding restriction of 9 W/dq; is then to be removed. We shall
now sketch the necessary modification for the treatment of the 3-mass
envelopes Ej,. To be specific, let us consider Ej53, the 3-mass envelope
formed by a special path in the (a;, a,, az) 3-space. For this, we set once
for all, ay = 0, in the expression for ¥(z; a). Strictly speaking, Q, which
was defined as 0 ¥/0a, is now meaningless, however, as a shorthand no-
tation, we shall still use it as

0, - {09’)

\Bak

a =20

which, as stated above, is no longer restricted by the reality condition of
(66). However, the identities (70) still hold with a; = 0. We may now de-
fine on fijos a set of 5 real y,, s =1, ..., 5 such that
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Qj=v6(zm), j=1,...,3 l
3
G(z;a)=j_§1Qy-~ ~4A(2) = Qy; (83)
3:
2 =1
j=1

and
Qs=(yatiys) G(z; a).

Substituting (83) into (70) and dividing by G(z; a), we get, after taking
the imaginary and the real parts:

4
gl(lm i) ve+(Re W) y; =0 (84a)
4
Zl(Re Vo ve—(ImW¥,)vs=0; for i=1,..., 4. (841h)
k=

Now taking the fourth equation of (84b) together with (84a), we have

[Me

tlestyt=0, s=1,...,5 (85)
where
0 Y1 Y2 Ys 5(14)
gy 0 Ja  Us 5(24)
U= ys ys 0 s fgl) (86)
Ys Ys Yys 0 0
O D g gy
with
/ x3 _ al\
(5§4)) =S| xg—ug (87)
5~ g

where the superscript (4) is a reminder of a4 = 0. Note that this column
corresponds to the edges emerging from the 4-th vertex of the tetrahedron 7
of Fig. 3.

Since the det|{ U] must vanish for non-trivial solutions of the y,’s, we have

det (U] = — & ye@ _ g, (88)
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where V is a symmetric 3x3 singular maifrix involving the y’s alone:

2Y4YsUs Us(Y1Ys — Ysls —YaYe) Ys (Yale — Y1 ¥s — Yslfs)
V=1 ys (Y1Ys — YsYs — Y2Ys) 2ysYsys Ys(YsYa— 1 ys — Yalis) |- (B9
YoWelle —Ya¥a—11Ys)  Us(UalUsa—thys—Y U ) 241 Y3 Ys

Eq. (88) can be easily solved. The result is

D WEP -0, for i=1,2,3, (90)
J

where W is also a 3x3 singular matrix (but in general unsymmetric):

Viy Vig ¥ Vl Wegr) Vs l/l (s yk’)‘
W=t Vy = ‘/l (W Yr) Vaz Vag F ]/;'(yic Yr) (91)
W r PN
Va TV AW yr) Va2 ) Ay yx) Vs

in which A(y,y; ) is the determinant (73a) which vanishes on the 4-mass
envelope.

From (91), it immediately follows that the 3-mass envelopes cannot exist if

AQUryp) < 0. (92)
This implies that

(a) If the y's satisfy the sign convention (76), then the 3-mass envelopes can
only lie outside the region bounded by the two lines of (74). In particular,
(92) implies that E;,; can never cross over Ejp, (cf. Fig. 15).

(b) On the other hand, if the y’s do not obey the sign convention (76),
then A(yzyy) >0 always, and FE;,; may exist while E 44, cannol.

For case (a), i.e. when Ejyq, exists, we assert that Ej; intersects with
Ei53, at the point which corresponds to the remaining parameter aq, = 0
on FEjygs. This is intuitively clear since, at the point (af, of, af; a, =0)
on [ygg4, we are in the 3-space of (a;, ay, @) in which lies a path for Ey,;
now this point must actually lie on the path for E;,, since the condition
for Ejgg, 1s sufficient for that of E,;. This statement can be explicitly veri-
fied by elementary computation. Considering the case a, = 0, we note that
the following ratios hold for the y/'s on E:
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Yii Vel ¥t Vet Vst = Us (U1 U5 — Yalis — yaa) = VA (urys)]
2 282UsYs" Us [(ys Ys~U1¥s —YalYs) T Vﬂ (ykylc’)l :

5&4) Yz + §§4) A —

“Ya | (Yale — Y1Ys — Ysls) * o VA (ege) o3
£ ys— &1 Ys

TRudls e

: oy

EPyg— EPy;

It is clear then that, at E 3, N E 53, we have y; = 0. Then the remaining four
7’s will have exactly the same ratio as those in the case of the 4-mass envelope
(cf. footnote 40, and Appendix C), and the solution to the 3-mass envelope
will coincide with the solution to the 4-mass envelope Ejq3, at a,=0 on
the latter. This establishes our above statement that E;; N Ejpg 5= 0.

We now return to the discussion of the situation (c¢) of Ejyq, in the last
sub-section, in which Ejs34 has a finite strip lying outside the relevant 3-point

|

Figure 14. Inadmissible corners formed by the intersection between the 3-mass and the 4-mass
envelopes. )

singularity domain (ef. Fig. 13). The end-point A of Ey3, corresponds to
one particular a,, = 0 on Eju,, say m = 4. As we have just seen that K,
can only lie on one side of Ej.3, (e. 8., below the segment AB in the zg-plane,
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cf. Fig. 14 above) and that E,3 actually touches this end-point 4. Let us
imagine that Ejy; is depicted by some curve AN in the zg-plane (Fig. 14).
The exact shape of Ejps will not be important to us (cf. remark in con-
nection with Fig. 15 below). Our discussion up to this point does not ex-
clude the possibility that the shaded region in Fig. 14 might contain the
4-point singularity. But this we now proceed to show as inadmissible.

Figure 15. Admissible (but non-occurring) corners.

If this were really the case, the intersections of £y with Ejyps4 would be of
such a kind that we had a corner in our domain. Since, as is characteristic
of the theory of several complex variables, such corners are vulnerable to
further analytic continuation®, they cannot be part of the actual boundary
of a natural domain of holomorphy. Note that if it were possible for E
to cross over the 4-mass envelope like in the situation shown in Fig. 15, then
this would in principle be admissible (since, in this case, the regularity
domain would be the intersection of the two rather than the union as in
Fig. 14). But our discussion of the 3-mass envelopes definitely excludes
the possibility of such double intersections between E; and Ej,,. This
leaves the only alternative of the corner as shown in Fig. 14, which one can
reject as unacceptable for the boundary of our domain. Thus one concludes
that the 4-mass envelope and the 3-mass envelopes do not contribute to

43 A standard theorem is the well-known “Kantensatz. See, e.g., BEHNKE-THULLEN,

loc. cil., p.52; KW’s Sec. VI; and H. KNESER, Math. Ann. 106, 656 (1932). Although, strictly
speaking, this theorem has only been proved for corners formed by analytic surfaces, while
in our present case we are presumably dealing with the non-analytic surfaces, one can in the
neighborhood of such corners construct tangential analytic surfaces so that the shaving of the
corner received from the “Kantensatz”” on the enveloping analytic surfaces will automatically

affect our present corner proper. I would like to thank both Professors Jost and KArrLew for
comments on this point.



46 Nr. 3

the boundary%. In cases when the shaded region of Fig. 14 contains actual
singularities, there must be another surface passing through and cover up
this corner of Fig. 14. For this, we must go over to the treatment of the
2-mass envelopes.

V1.4 The 2-Mass Envelope

As already mentioned in Sec. VI.3, the farther we go down to the enve-
lopes of lower hierarchy, the less restrictions there are on the Q;’s. We shall
first establish the intersection of the 2-mass envelope E,;; with the 3-mass
envelope E;,. The method is quite analogous to the previous treatment of
the 3-mass envelope.

We introduce a set of 6 real parameters y,. For specificity, let us
set ay = ay = 0 and consider E;3 (i.e. the 2-mass envelope formed by a
path in the quadrant a; >0, az3>0). As before, the quantities Q4, Q, shall
now be understood to stand for

0, - (8?17')

9 as,

. o

o 2]

6612

Since the envelope condition for E,;s requires lhat

Im (g—;) =0,

(s = a.=0)

(a; = a,=0)

we may set
Qi=y; h(z; ), (=1,3
yitys=1
hiz; a)=—4A4(z) - Qy~ Q4 (95)
Qp = (ya+1iyve)  hi(z; @)
Us=Ya+iys)-h(z; a).

Substituting (95) into (70) and dividing by h(z; a), we get, after taking
the imaginary and the real parts:

44 The role of the 3-mass envelopes in the case when the 4-mass envelope does not exist
will not be discussed here. In view of the above feature for m = 4 that the (m-—1)-envelope
can only lie on one side of the m-envelope (i. e. meet at most tangentially), which will be seen
later (Lemma 3) to be also valid for in = 3, one feels more confident that the 2-mass envelopes
are actually more important even in this case.
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4
Zl(lm ¥ ve +(Re Vo) ye + (Re W, ) ys = 0; (96a)
L=

4
Zl(Re Vi) v —Im¥ ) ye—(Im ¥ ) s =0. (96b)
k=

Combining the second and the fourth equations of (96b) with (96a), we
have:

-[Qa

Tupvs=0, m=1,...,6 (97)

y=1
where (T),,) is a 6x6 symmetric matrix:
0y vy ys & &

0 ys ys O &g
Yo ys 0 s &4 &5

(Twy) = (98)
” Ys Ys Ys U £e
& 0 & & 0 -y
& & & 0 —yg O
where
g =w;-a, 1=1,3 ]
§j=x].-a3, j=4,5 (99)
&g = . J

Let T=det| Ty, |. Now making use of the Jacobi theorem?®® on the ex-
pansion of the determinant in terms of the minors, we have

55 766 _ ( :[‘56)2

T= 7 C0n ) , (100)

where 7" = minor of T,,, being 5x5 determinants.

One immediately recognizes that 7% and 7% arve precisely the deter-
minants of the type (whose matrix is defined in (86)) for the 3-mass enve-
lopes Eqp3 (at ay = 0) and Ej5, (at ag = 0) respectively. From this, the inter-
section of the 2-mass envelope with the 3-mass envelope is quite obvious.
Consider, e. g., Ej3 N E5. Since T must vanish on FE,, and 7% vanishes

on Fip3, and consequently on E;3 N Ejss, we have

45 See Appendix D.
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ye =10
and .
T®=9. (101)

A straightforward computation with the aid of (90) will reveal that (101)
reduces to the second equation of (96b) with y4 = 0 and y,, ..., y; expressed

_sPROJECTION OF Cip34

a
3
“END-POINT OF 4-MASS ENVELOPE
Ci23
a,
Q Ci3” Y- END-POINT OF 3-MASS ENVELOPE

Figure 16. Typical paths for the various envelopes in the a-space.

by those on the 3-mass envelope Ejy; (cf. (93)). This means that (101)
is automatically satisfied on E;3 N E;s5; hence there is no internal incon-
sistency. This shows that in general E; N Eu; 0.

This is also intuitively clear since the path C,;; in the octant of all posi-
tive a’s corresponding to the relevant portion of E; is in general bounded
by the coordinate 2-planes a,, = 0, m = i, j, or k. Since the envelope con-
dition for E;; is sufficient for E;, the end-points of Cy; (in the finite case)
must then necessarily lie on the path, say, C;, for E,.. This situation is
depicted in Fig. 16, showing that the path of one of the (m —1)-envelopes
passes through one of the end-points of the path for the m-envelope, m =2, 3, 4.
One further consequence for E;; N E;; is the following:

From (100), we have, since T =0 on Es,

(T%%)? = 7% 766 (102)

(102) can only be satisfied when 7% and 7% have the same sign. In the
case when Ejs, and E;,3 are distinct, we have in the neighborhood of E;; N
Eyp3, T ~0; while T (i. e. the determinant corresponding to Ejy,) will
essentially remain unchanged in sign. Thus (102) immediately implies that
T® cannot change its sign in the neighborhood of Ej3 N Eye, i. e. Eyy can-
not cross over Ejpy. The same statement holds for Ej;,.
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Collecting with this our previous result for E;; N Eyy3, we have estab-
lished the cases m = 3,4 of the following:

Lemma 3: The intersection between the envelopes E}m‘l) and E}m), for
m=2,3,4,

(1) 'is non-empty,
(2) ocecurs at the ends of Ef(m), and
(3) is ‘‘tangential’.

Remark: (a) The subscript f is used to denote the case when the path C™
for the m-envelope E™ is finite (i.e. C"™ is bounded by the sub-{m — 1)-spa-
ces). Otherwise, in the case when C™ is unbounded, one can always show
that the corresponding envelopes are irrelevant.

(b) The term ‘“‘tangential’” is understood as saying that Ef(m_l) can only
lie on one side of E}m) (1. e. cannot cross over E}m) at the intersections,
in the z-space).

(¢) Lemma 3 says nothing about the relationship between an E™~?
and an E™. Thus, for instance, a 2-mass envelope can cross over the 4-mass
envelope to swallow the corner of Fig. 15 (cf. Fig. 18 below).

Qs'

a

Figure 17. Path for the 2-mass envelope E,,.

(d) Whether Ef(m) will always contain the actual singularity is not fully
settled here. This is true, however, in the 3-point case: while the E}P’) and
E® although not contributing to the boundary, do lie inside the sin-

¥ g g Y
46 This feature seems to be also valid for the envelopes in the primitive domain of

the 4-point function in the axiomatic approach. (Private communication from Professor
G. KALLEN).

Mat. Fys. Medd. Dan. Vid. Selsk. 33, no. 3. 4
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gularity domain (on the cul)??. However, in the present case, we have one
explicit example (cf. Fig. 24) where the corner formed by E}‘l) with Ej(.3)
is actually singular. (Of course, the case when E}m) is entirely contained
inside the 3-point singularity domain is trivial).

It remains to say a few words about the case m = 2 in Lemma 3 which
involves the 1-mass envelopes (strictly speaking, they are not envelopes).

Ye

2

: !llz

hesnt ¥

)

Figure 18. Envelopes in the zg-plane.

Oune can, of course, explicitly show their intersections with the 2-mass enve-
lopes in a perfectly analogous manner as was done above for E}z) n E}a);
we shall, however, omit this elementary computation here. Intuitively, it
is clear in the quadrant a;>0, ;> 0, since a finite path C, for E; must
necessarily terminate on the semi-axes. A typical situation is shown in
Fig. 17 in which C,3 is bounded by the same axis. The image in the z4-
plane is shown in Fig. 18 where the 2-mass envelope E;3 rides on top of
the one-mass surface E;, and the singularity domain is the union of the
regions bounded by these two.

For completeness, we mention that, in the 3-point case, there occurs

47 See Appendix B.
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a peculiar situation where EV'n E® n E® =2 0. This does not happen in
general for the 4-point case. The only exception for E™ ®ngEm-Dn
E™ =20 to occur would be when there are coinecident zeros of the a’s on
E™ e g Fig. 19. However, the situation in the 3-point case is actually
of a slightly different nature than that of Fig. 19. There, the image of the
2-mass envelope in the z-plane happens to be a constant, so that E;, (the
analogue of which in the 4-point case are the 3-mass envelopes) actually
shrinks to a point which serves as the junction between the 1-mass F'-
curves and the 3-mass envelope theress,

The rest of this sub-section is devoted to the discussion of the connection

a=a:=0
ﬂ 4 E|23'4

i34

El23

El3

Figure 19. Multiple intersections among the envelopes in the 4-point case (Non-occurrence of).

of the 2-mass envelopes with the boundaries of the 3-point singularity
domain, F,;l— curves, and the equatlions for the former.

The conditions for the 2-mass envelopes are all contained in equations
ot type (96). However, for the 2-mass envelope, it is actually more con-
venient to take (94) together with the identities (68), (i.e. (69)). Thus,
we have, for instance, on FEis,

@1 9

—= =¢%, ¢ real. (103)
¢3 = as=10

Since, for zg==0, we may write

D ag (zg — 252
J) :l:‘—(“——fl)—):o%o, (104)
Q)S,ag=a.=0 (76— 7¢ ")

where

4% See Appendix B.
4%
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Figure 20. Allowed region for the 2-mass envelope: (outside the solid-line shaded region) when
the two sets of F’/-curves are in the same half-plane.

a7 _
B oz (1052)
ug
3z
Zgl) =2 + 23 — al - %113 (105}))

are the points on the Fy; and Fij, respectively. Equation (104) allows a
simple visualization of the location of the 2-mass envelope. Consider a
point (af, af) on Ci5, then in the zg-plane one can locate two points z¢(af),
i=1,3, on Fyy and Fj, respectively, according to (105). One sees then that
the condition (104) for E;; at (af) can only be satisfied on the line L3 pas-
sing through z4(af), zg(af), excluding the segment between them. In other
words, the 2-mass envelopes cannot exist in the region bounded by the
two F'-curves, such as the shaded regions in Figs. 20 and 21. The exact
image of the point (af, af) in the zg-plane is given by the intersection of
this line L3 with the ¥Y-manifold, which now reads for a, = a4 = 0:

(21— @) (55— ag) + (23— @) (24 — ag) = 2}/ a5 (2~ ) (75— =)

(72— —ag)

Zg

. (106)
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Figure 21. Allowed region for the 2-mass envelope: (outside the shaded region) where the two
sets of F’-curves arc in the opposite half-plane,

The elimination of zg from (104) and (106) is straightforward, and the re-
sulting equation reads:

_ 203 2 2 o o .
0 =0 ay—ayag—aj (23 + 23— 24 — 75+ Z9)

—ay [z 25+ 2324~ 71 23— 2 (21 + 2g)] + gz 73— 221123>
+2 a{a% ag— ayay— ayag (z; + 25 — 24 — 25) — ay 7475 + a32123> (107) v

(8 2 2 w4
= 3y - a3 (z iz =z — 23+ 7p)

— gz 25+ 737y — 2475~ 2 (24 T 25)] Q12425 — 22T )

Note that this equation is symmetric under the simultaneous permutation of

rzl<—>z4 1]
l ay < dg; ;o> —
! o I

o

and the variation thereof (cf. Sec. 111.2). The real and imaginary parts of
(107) give two equations for the 3 parameters a;, az, and ¢. In principle,
from these one is able to express two of the parameters in terms of the
remaining one, say o; thus, for fixed z;, ..., z;, one gets:
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ay (0).
as(c)’

(108) then defines the path C;3 when taken in the positive quadrant a; >0,
azg>0. With this substituted into the cquation resulting by solving for z4
from (106), one gets the final equation for Ej; in the zg-lane, which for all
other z's being fixed, reads

It

74
! &> 0. (108)

I

Qg

zg = 7¢(0). (109)

In actual computation, however, the solutions of (108) from (107) involve
great computational labor?®. The other five k. envelopes are, fortunately,
slightly less complicated. But we shall not go into all this.

Since, in the solutions (108) for the a’s, the Re z’s and the Im z's are
well mixed, it is clear that (109) no longer gives an equation for an analytic
hypersurface. Since, as we shall show in Sec.VI.5, the 1-mass surfaces
(which are analytic) do not in general constitute the whole boundary to
the 4-point domain, and since we have shown that in general the higher
envelopes lead to the pathological situations shown in Fig. 14, the process
of successive elimination forces the 2-mass envelopes to be the only remain-
ing eligible candidates for our boundary. And indeed for one explicit con-
figuration (cf. Fig. 24 in Sec. VI.5) we have shown that the 2-mass enve-
lope does come in.

With this we conclude that non-analytic hypersurfaces do serve as part
of the boundary to the 4-point domain in perturbation theory. In the final
sub-section, we shall study those 1-mass surfaces®® £, and shall illustrate
in some typical configurations the explicit behavior of E, which indicates
the presence of the cuvelopes.

VI.5 The 1-Mass Surfaces

The 1-mass surfaces, as compared with the various envelopes we have
discussed above, are much simpler objects, as they are simply the images
of the four coordinate semi-axes in the a-space. Applying the technique of
the determinant expansion of Appendix D, we have the following identity:

19 With ¢ as a running pafameter, one gets usually a 6th degree algebraic equation in-
volving one final a;.

50  Chronologically, these 1-mass curves were investigated first. From these, we can easily
convince ourselves that they do not give the whole boundary. One is then forced to undertake
a lengthy treatment of the envelope problem which is summarized above.
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_ 4P, - (PR

' N (110)
Therefore, on the ¥-manifold, we get
Wt — 4 2Dy Dy (111)
Note that |
51124:%%2. (112)

Identity (110) is the proper generalization of (45) which holds in the 3-point
case. In terms of z5 (111) is equivalent to

(za-ar—ag) 222 b (21— ay — ) P2 9 [ 2Dy
6Z5 a:3

Ze = , 1
6 Ra (113)

For completeness, we mention that the analogue of KW (A. 48¢) reads in
the 4-point case as follows: On the YP-manifold

0Dy — 0Dy
874V¢2:{36_Z2V¢4
£ )Py = s 3 (1142a)
024

4= 0Dy
D74 V@zﬂ:‘(‘a—z—s—VQLL

+ [Py = o8 (114Db)

and the permutation thereof. (114) follows directly from (113), or equiva-
lently also from (70) with the aid of (68).

The expressions for the 1-mass surfaces E, (i.e. a,= 0, for one k,
all other a’s being zero), which immediately follow from (113) by setting
to zero 3 a’s at a time, are summarized as follows:

For Ey: a;>0:

Zg = @%{11)2 (Vzaws = /25 ws)?, (115)

For Eg: ag>0:

e e YT o
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where the w’s are defined as

Z9Z4

1U1=zl—22‘z4+a3+ y (1173)
as
Z9 25

Wy = Zg — Zg— 25 + ag + (117b)
as
Z122

Wy =Zy— 7 —Zg+ ay+— (117¢)
ai
Z9 Z

Wy = 25— 2p ~ 25+ @y + — (117d)
ay

which vanish on the appropriate Fj-curves.

For Ey: ay,>0:

ZGZZ;“[5125‘”324*‘“2(22—23—55)i2|/2325[U§+‘12(52‘Z1‘54)+~"‘15’4]]- (118)

For E : ay>0:

= [1125+zaz4+a4(z2*21—24):1:2]/;1:4[(12 + a4(zz-23—z5)+z3z5]]. (119)

With z;, ..., z; fixed, the above 4 curves E, in the zg-plane start from a
common point G which corresponds to all a; = 0 (for a given choice of
the sign in front of the square root, cf. remark following (124) below)

0L 120
. (120)
with

C=zy25 + 25242 Vz1z3z4z5.
The 4 curves E, start from G with the following slopes:
dz Az s
<~) B L ORRY o) (121)
day/ ¢ Zy l/zl 2324725

where @ is @, evaluated at all a's being zero, viz:

@M=l ") (122)
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On account of the identities (63) and (68), we have

. (%)G— o AG@ (123)

z2 ]/21 232425

k=1 \6ak

One may note the analogy between the ratios among these slopes and those
among the y’s on the 4-mass envelope (cf. footnote 40) if one replaces all
the z's by Im z's. »

Next we come to the asymptotic behavior of the E,. For ] and Ej; in
the zg-plane, we have respectively (for other «’s being zero or finite)

lim 7z = ([ za=)/2)" (1242)
@ —> o B _

lim zg — ()2, £ )/z5)". (124Db)
&y —> o

In other words, E; and Ej; terminate at finite points in the zg-plane corre-
sponding to 4, (z,, 25, z¢) = 0 and 13(z;, z3, z4) = 0, respectively. On the other
hand, E, and E, extend to infinity in the zg-plane as ay—>cc and a;— oo,
with the following slopes:

1 —.
zﬁ(ag?ﬁ())az_)zg{z2~z3—z5i2]/z3z5ja2 (124¢)

1 oo -
zﬁ(a4;ﬁ0);::g[zzfz1~z412|/zlz4]a4. (1244d)

We now proceed to investigate the relevance problem5! of these 1-mass cur-
ves. First of all, the sign in front of the root in equations (115)—(119) should be
chosen in such a way that one gels an enhancement rather than a cancellation
among the terms. The latter is entirely irrelevant. This situation is also true
for the lower order singularity manifolds. We recall that, in the 2-point case,
the relevant cuts start from z; = (J/a,, +}/a,)? but not from (}a,, -} a,)?
In the 3-point case, the F'-curves are gotten by also choosing the sign which
would add up terms (while the opposite sign gives exactly zero there).
Of course, for complex quantities under the square roots, the sign is meaning-
ful only with a suitable convention of the branches, which we shall take
as the one with the posilive imaginary part.

¥1 To be precise, in view of the fact that part of the singular portion of E; may be over-

riden by a 2-mass envelope (cf. Fig. 24), we are here seeking only the relevant portion of E;
in the following sense:

(i) it has actual singularities, and

(ii) it lies outside the 3-point singularity domain (but not necessarily as the actual 4-point
boundary). :
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It is a consequence of Lemma 2 that E, has a relevant portion if £
intersects twice with the relevant portions of the dominating F'-curves and if
the bubble formed by such double intersections lies outside the 3-point
singularity domain. The condition for such double intersections between
E, and F’' can in principle be stated algebraically as follows: Consider, for
example, E; N Fy;. After rewriting (115) for E, in the form

Ry (z4, 25, 2) 0 — 201826 2276 — 2175 — 2374 + 22475 — 73(2 +25)] ]

- (125)
— (24~ 25) (zlz5—z3z4)}+2 (zxz) =0, 0<ag<oo, l
and with the relevant portion of Fy given by
2425
26=z4+25—0~—-9 _ l
(126)
0<op *Imz4-g5—
= Im (24 + 25) ’

the problem is to find the condition on the configuration of the other 5
z’s such that the system of equations (125), (126) admits at least two so-
lutions for ay (or g) in their respectively allowed ranges, as indicated above.
This can be done by brute force, but the result is so complicated that we
do not wish to display it here. The conditions are obviously dependent on the
moduli (as well as the arguments) of the 5 z’s, and we have not been able
to deduce from it a concise statement about the desired configuration.
(However, cf. (129)).

Instead, we shall in the following classify the configurations of the
5 z's by the location of the starting point G of E,. There are three distinct
cases:

Case (1); G lies outside the 3-point singularity domain;
Case (2): G lies deep inside the 3-point singularity domain;
Case (3): G lies on or slightly inside the 3-point singularity boundary.

From our studies of the E, curves, we find that the first two cases do not
yield anything of interest. They correspond to the situations where I, has
no intersection or non-relevant intersections with the F' curves. Therefore
we shall concentrate on case (3) above, which also has an intuitively appeal-
ing feature for the desired intersections between the £, and the dominant
F’-curves.

The condition is then to require that at least one of the slopes for E,
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at (¢ given by (121) has an intersection with the dominant F' curves. For
the case when the latter are hyperbolas (i.e. 0< argz, +arg z;<n), this
jmplies that?

0 .
argzk+argzl<arg(£§_)<n+arg prargy (=1, ..., 4. (127)
i/¢

Condition (127), however, like the solutions to (125) and (126), is again
dependent on the lengths of the z’s in addition to their arguments.

It is clear that (127) is not sufficient to guarantee a double intersection
even when G is chosen to lie on or slightly inside the F’'-curves. However,
only in such cases will the 1-mass curves E, provide a useful hint as to
how the 2-mass envelopes would come in. We illustrate this statement with
the following 4 pictures: Fig. (22a) and Fig. (22b) show situations where
the E.’s have the wrong slopes, and are irrelevant. In such cases, the
envelopes are also irrelevant. Fig. (22¢) shows a situation when one E;
comes out of the F'-region, while one other E, stays inside. Although neither
makes double intersections with /' (hence neither is relevant per se), the
corresponding 2-mass envelope E; may very well form a bubble with F,
which will serve as the 4-point boundary. Finally, in Fig. (22d), one sees
a situation where one FE; does make a bubble with F’ (the bubble can be
shown to be relevant). On the other hand, another £j also comes out of F’,
which by itself gives no contribution to the boundary; however, their 2-mass
envelope F;; may enlarge the bubble formed previously by E; alone. This
last phenomenon is what we have called the “overriding” of the relevant
portion of 1-mass curves by a 2-mass envelope.

We shall now study some explicit examples. Let us first fix, for the sake
of convenience, two (out of three in all) pairs of the conjugate variables
(in the sense of Sec. 11.2), say z;, z3, 74, 75. Ideally one would like to plot
simultaneously in the product planes of the remaining pair of conjugate
variables (i. e. z; and zg), but for simplicity and practicality, we shall only
plot in the zg-plane (i. e. a 2-dimensional slice in the space of 12 dimensions)
with suitable reference to the location of its conjugate variable z,. The
restriction on zy is as follows:

%2 The 3-point analogy of this condition is obvious: The relevance condition of the Fj,
curve itself, zm =z + 2r—7r—zp z/r, can also be easily discussed by investigating the slope
of the curve (actually the asymptote here for the hyperbola) at r =0 (i. e. the analogue of the
point G). Since one knows that the whole piece of Fz; changes its relevance at its intersection
with the cut along the positive wx,-axis, the relevance condition of Fj; is to require that
the slope at r = 0 should at least intersect with this x, cut, i. e., n < arg (—z %) < 2z, from
which follows immediately the desired condition of the configuration: 0 < arg z;+arg z; < 7.
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Fl

Figure 22a. Starting slopes of the 1-mass curves: (Irrelevant).

Figure 22b. Starting slopes of the 1-mass curves: (Irrelevant).

Nr. 3
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Figure 22c. Starting slopes of the 1-mass curves: (Irrelevant 1-mass curves, but relevant 2-mass
envelopes),

Yo

Figure 22d. Starting slopes of the 1-mass curves: (Relevani 1-mass curve and further 2-mass
envelopes).
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(1) zo shall not lie inside the relevant portions of the
3-point singularity manifolds @, = 0 and @, = 0, and

(2) z, shall be such that G of (120) lies on or slightly inside ; ---- (128)
the dominating boundaries to the manifolds @, =0 and @3 =0
in the zg-plane.

Clearly there exists a limiting case of (120) when arg z® and arg z,
appreoach respectively those of the asymptotes of the two dominating F’
for zz and z,. This implies, after a simple computation, the following ne-
cessary condition for the relevance of E, for the casewhen Im z;, 1= 1, 3, 4, 5,
have the same sign®

2Max{arg z;} < > 'argz,, i=1,3,4,5. (129)
i i

In the following, we shall confine ourselves to the consideration of those
configurations for which the four sets of the 3-point @,-manifolds are si-
multaneously relevant. (A few remarks are, however, made near the end
of the text, regarding the degenerate cases, ¢f. Lemma 4 of Sec. VI.6). This
means that, if one is looking at the triplet (ijk) in the z,-plane, one requires
that the following 3-point conditions are to be satisfied:

(a) O<argz +argz;<m, it g, 5,0, 4,>0. (1302)
(b) Bm<argz;+argz<4a, ifyy,>0,y,<0. (130b)
(¢) argz>m+argz,, if g;y;<0, y;>0. (130¢)

One recalls that the configurations (a) and (b) vield hyperbolas and the
configuration (¢) gives a bubble in the z -plane.

There are five distinct configurations in the distribution of the 4 z;’s,
i=1,...,4. The first four cases correspond to y;y;y,y5>0 (which imply
the existence of the 4-mass envelope) and the remaining case is for y, y3y,y; <0
(where FE g9, does not exist).

(A) All 4 Up: (Two sets of hyperbolas each for zg and zy).
In this case, we have:

Y1Ysyays > 0: y;> 0. (131)

5 Tor other configurations wilh mixed signs of Im z;, condition (129) can be easily modified
by replacing some appropriate arg z,; by 2m-arg z,, (CL., e. g., Eq. (136)).
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The 3-point boundaries are Fjy U Fy; in the zg-plane; and £y, U Fyy in the
zo-plane. (When there is no intersection among the two F’ curves, one of
the @-manifolds will be imbedded in the other, and the dominating I’ curve
is the one which corresponds to the smaller sum of the arguments. Otherwise,
one has to take both of them into account.) The 3-point conditions are
(130a) taken four times, or

Figure 23. 1-mass curves in zg-plane for the configuration (A): All 4 up (‘T'wo sets of hyperbolas
each for z; and z,).

o i) and

argz; targ <z, for i, j=1,3,4,5,: . - (132)
o 1+ conjugate of j.

The 4-point condition (129) reads: _

2Max{argzi}<Zargzi<2n, i=1,3,4,5. (133)
@ i
In plotting in the zg-plane, z, is to be chosen according lo (128). A typical
situation for this case is shown in Fig. 23.

(B) Two Up and Two Down: (hyperbolas for zg: bubbles for z,).

In this and the immediate next configurations, conjugate variables lie
in the opposite half-planes. Here,

Y1YsYa¥s>0: y14s> 05 yry, <0. (134)
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The 3-point boundaries are Fj3 U Fys in the zg-plane; and Fpa U Fas U F, U
Fy, in the zy-plane. The 3-point conditions are explicitly (consider the
case 1, >0)

O<argz;+argzy<m ‘
dm<argz, rargzz<4m
* ° - (135)
argz,> w+ arg z;
arg z; > m+ arg z3.

The 4-point condition (129) now takes the modified form

(i) 2Max{argzi}<2argzi<5n (136a)
it ' !

Max{argz, argz3y < 27— Min{arg z,, arg 75}
or

(ii) 3:m<;argzi<4n+2Min{argzi}<‘5n (136b)
if

Max { arg z;, arg :3} > 27— Min {arg z4, arg :5} .
A typical case is shown in Fig. 24.

Note: Figure 24 gives a very interesting example: E; makes a bubble with
F1'3 which can be shown to be singular. On the other hand, I lies outside,
and by itself is not relevant. Thus we have the situation shown in Fig. 22d.
Now, if one takes the path a; = ay in the positive (a;, ag)-quadrant (a, = a, = 0),
one finds that its image in the z4-plane makes another bubble with Fis,
which is also singular, but not contained by E;. This shows definitely that

(a) The l-mass surfuces E, do nol in general give the whole boundary of
DRt and

(b) Envelopes actually exist.

Another curve, which corresponds to the path ¢ = a3 = a3 = a4 in the
positive sediciment, is also plotted in Fig. 24. However, it is not relevant
in this case.

A plot of one of the simplest envelopes in the zg-plane, namely FEyy,
is also made, but in this particular case, it is completely submerged inside
the 3-point singularity domain.

Finally the 4-mass envelope E;,3, is finite in this case, being bounded
by a3 = 0 and a; = 0. This is exactly the situation illustrated in Fig. 13.
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BN -

A“}\\\\\\\\\“\\\

Figure 24. 1-mass curves in zg-plane for the configuration (B): Two up and two down (hyper-
bolas for z4; bubbles for z,).

The end-point a; = 0 lies outside the Fi3 and E; as well as E, _,. The
3-mass envelope I3, can only come from below the Ejy3,. One will then
have essentially a final situation similar to that shown in Fig. 18.

(C) Two Up and Two Down: (bubbles for z4; hyperbolas for z,).

This one gets from (B) by simply permuting within one pair of con-
jugate indices. The net result (cf. Sec. II1. 2) is the interchange of the role
of zz and z,.

Thus, e.g., if one permutes zg and z, from (B),:

Y1YsYaYs>0: yys>0, y1y3<0. (1387)

Mat, Fys. Medd. Dan.Vid. Selsk. 33, no. 3. 5
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The 3-point boundaries are FjqU FsqU Fy U Fye in the zg-plane, and
Fy5 U Fy, in the z, plane. The 3-point and 4-point conditions are literally
the same as (135) and (136) if one permutes z; and z,. The E,’s are shown
in Fig. 25. This suggests a 2-mass envelope.

—

XY

(o]

~

Figure 25. 1-mass curves in zg-plane for the configuration (C): Two up and two down (bubbles
for zy; hyperbolas for z,).

Note: In Fig. 25, one sees again the situation of Fig. 14. Here the 4-mass
envelope Ej,3, is terminated at ag = 0. Now the 3-mass envelope £, will
intersect this point in the zg-plane from above the line £7,3, (since the other
line Ehs, in this case lies below Efyg,, and from our analysis of (92), the
3-mass envelope must lie oufside the region bounded by these two lines.)
Omne gets again a corner in the intersection Ej53, N Ey34. A 2-mass envelope,
say, Iy,, is then expected to cover this corner. The situation is depicted in
Fig. 25a.



Nr.3 67
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Figure 25a. Envelope situation for Fig. 25.

(D) Two Up and Two Down: (bubbles for zy; bubbles for z,).

One obtains this configuration from (A) when one shifts one pair of
conjugate indices (71,5) or (3,4) to the opposite half-plane. Here we have,
e.g.:

Y1Ys¥a¥s;> 00 y1ys> 0y yryz<0. (138)

The 3-point boundaries are FjgU Faq U Fye U Fye in the zg-plane, and
Fas U Fy U F1, U Fy, in the zp-plane. The 3-point condition is in this case
(with (3,4) down)

Min { arg z3, arg z, ) > 7 + Max {arg zy, arg 75y (139)
and the 4-point condition reads:

(i) Dlargz;<4m+2Min{argz;), i=1,...,4 (1402)
7
if
Max{arg zy, arg 25}> 27— Min {arg z3, arg 24}
5%
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o () >argz>2Max{argz,}, i=1,...,4 (140b)
i

Max { arg z;, arg 25} <27 —Min {arg Z3, arg 24} .

(E) Three Up and One Down: (1 hyperbola and 1 bubble each for z4 and z,).

Here U193Y4Y5 < 0. Consider, for example:

Yy1:Ys, Y, >0, and yz;<0. (141)

Yo

Fis

Figure 26. 1-mass curves in zg-plane for the configuration (E): Three up and one down (one
hyperbola and one bubble each for z, and z,).
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The 3-point boundaries are then Fyy3U Fjo U Fy in the zg-plane, and
F1, U Fy3 U Fyq in the zp-plane. The 3-point conditions are:

arg z; + Max {arg zg, arg 7, ) <7

142
arg z; > 7w+ Max {arg Zg, arg 24} (142)
and the 4-point condition reads for this case:
2 argz; + 2 Max{arg zy, arg 73, arg z4} -2 n<Z argz; <2 arg z,. (143)

(2

A typical case is shown in Fig. 26 (which suggests a 2-mass envelope).

VI. 6 Brief Remarks on the Degenerate Cases.

In our above description of the 1-mass curves, we have only considered
the configurations where all four sets of the @;-manifolds are simultaneously
relevant. It would be of interest to see how the 4-point boundary changes
its character when one or more @,-manifolds become irrelevant. While
we shall not attempt to enter into the discussion for this in detail, we offer
two remarks on such degenerate cases:

(1) Lemma 4: Non-relevance of 2 sets of @-manifolds must imply the non-
relevance of at least one more set.
Proof:

It suffices to show this for one particular configuration, say, in the case
when 4 of the 6 z’s are all in the upper half-plane, 0 <arg z; <&, i=1,3,4,5
(cf. configuration (A) of Sec. VI.5), (since the proof for the other con-
figurations can be easily carried through with only trivial modifications).

Suppose @, and @, manifolds are both irrelevant in the z,-plane, then

argz; +argz, > m
argzg + arg 75 > 7.

Assume @g-manifold to be relevant in the zg-plane (otherwise, nothing is
to be proved), so

arg zy +arg z3 < 7.
Then @;-manifold must be irrelevant, since

argzy +argz;> 27w —arg zy — arg z3 > .
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(1a) An immediate consequence of Lemma 4 is the following. When @,
and @, manifolds are both irrelevant (thus, e.g., one has the cut-plane in
z5), then in the zg-plane, one has at most one set of relevant F’ curves for
the 3-point boundary. In this case, the 2-mass envelopes will not he
expected to play a role, and the 4-point boundary will then be at most
made up of the 1-mass surfaces which are analytic.

(2) The case when all 4 sets of @,-manifolds are simultaneously irrelevant
is, of course, trivial. Absence of any relevant 3-point bhoundary implies
no change of relevance for the 4-point boundary. Since the latter cannot be
entirely relevanlt, it must be entirely irrelevant. Thus, in this case, one gels
the cut-planes.

V1.7 Conclusion

It should be emphasized that we have by no means exhausted the boun-
dary of the 4-point domain in perturbation theory. In fact, we have only
explored it to the extent that we have shown how the 4-point correction to the
already existing 3-point singularity might look. Our studies of the domain DJ°™*
shows that the relevant 4-point singularities will carve out some bubbles
from the dominating F’ curves of D}*'t, The singularity domain of the 4-point
proper is seen to be compact. We have demonstrated that in general the
1-mass surfaces will not constitute the whole boundary of DF*'* and that
the presence of the envelopes implies that D2 is not everywhere bounded
by analytic hypersurfaces. Of the various envelopes we have discussed, the
2-mass envelopes are the most important ones.

It is hoped that, if the 3-point analogy is again valid in the 4-point case,
the results derived here might be of some use to the problem of finding
the holomorphy envelope E(D,) based on the axioms of local field theory
alone.

We conclude by posing a question. One recalls again from the 3-point case
that the domain D}™™ is bounded by the F-curves (say, for the case when both
Im z;, Im z;, have the same sign) of KW, which differ from the holomorphy
envelope F'-curves only by the exactly opposite signs of the range of the
parameters a; (which, in the p-space, has the significance of being m?).
Intuitively, this can be understood as follows: If one starts from the original
tube domain R, ; of the vectors p, where one requires Im p,eV, this
automatically forces one to go off the mass-shells and in particular one
finds it convenient to go to negative values of the mass-squares a;, = m:<0.
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(This situation is clear, for example, in the proof of dispersion relations,
with the technique of Bogoriusov3l) So dDE''™ essentially involves the
manifold with the parameters still in the range «,<0. The problem of
finding the holomorphy envelope then furnishes the necessary analytic
continuation from a;<0 to ;>0, which is by no means trivial. This is
exactly the relation between the F-curve of DY™™ and the F'-curve of E(Dy),
or the F'-curve of DE®*, as shown by KW.

Therefore it will be of interest to see whether or not this analogy is a
valid one in the 4-point case, viz., whether 9 D}*"* can be compared with
0 DPTI™ with only a possible diflerence of the signs of the parameters®. Of
course, the problem is much more complicated in the 4-point case, since
one is dealing with the envelopes in both d DY™™ and 9 DE***. An answer
in the affirmative sense would further strengthen one’s hope that §Dhe*t
may have something to do with 0 (D,). But this we shall leave to a sepa-
rate investigation.
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Appendix A
Explicit Form of the 4-Point Funection

Here we discuss the singularities of I(z) of (54) after explicitly carrying
out the final integration for F;(r;) in (55). For the case ry>= ry, the singu-
larities are found on the @ -manifolds and the R -manifolds (cf. Sec. IV. 4).
Finally, for the case r; = ry, the change of relevance of the Y-manifold is
shown to occur at (¥ =0)n (P, = 0) (cf. Sec. V).

By symmetry, it suffices to write down I5(r;) only, say, for j =1, i =1,
namely for the first half of the terms for the triplet (z;, z3, z;). A straight-
forward computation from (55) yields:

1-nm 71(1)

Fy(r) = V/Al {Jog " log y3 (r1) +log 7 (0) log ;1 (1)

\ (A.1)
+81 (1 (1)) — Sy (72 (1)) J

in which each S;(7;(r;)) is a sum of 16 Spence functions:

S, (ny(ry) = i% {q, (Mlﬂl_)) — (L’M)J , (A.2)

=i} (1) — o m(ry) — oy
where
1, w=1,....4 A3
-1, u=5,....8 (3-3)
o\t
(L) =S Tlog (14 8) (A.4)
1
and
11N (@) )
71, 2(%) % [5 (9105 )iVZZJNI(OC)} (A.5)
o _225 Pg:{:l/;ugﬂz
L2710k
e
2.623
(A.6)
w2275 PatVisRs
3,4~ T
: /12 16/12 e
20. Ve
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where
102 — (A Ga)
555, /%
A, =222 m=2,3
™ 192 /i - ’
55? +l A2

The following identities can be easily verified:

i

;;5 Dy = 1y () 1712 (2) = Agy g = Aggmy = Az'wsog = A5 wamg (A7)
2

and
4 4
11 () e,) 1 (a0, |
log 1 () = log AgAg 51— = —log A, 45 “51 (A.8)
11 (o () ) I (15(2)~w,) [
m=5 #=3
We now brielly discuss the singularities of ZIU (ry), with F,(r;) given
by (A.1), for the case r; == ry. J
(1) The first term is log ! _11'1 -log x;(r1). The point r; = 0 corresponds to
-1

the ®@;-manifold (cf. (48)). It is clear that a cancellation of the 3-point type
oceurs here when the summation over j is carried out. Finally, for ri#0,
or 1, the zeros and poles of x;(ry) can at most lead to the cuts in the
z’s. (cf. (61) and Sec. 1V.4).

(1)

(2) The next term is logni(o) log ;(r1). Here the vanishing of #,(1) or

7 (0) gives the @, -manifold.

(3) Now we come to the Spence function terms. Each Spence function ¢({)
is defined with a cut in the {-plane starting from its branch point at = —1
to infinity. Now the branch points in (A.2) occur at

w, —m(1) =0,
and w=1,...,8 (A.9)
wy,—71(0) = 0.

With the aid of (A.8), we see that this happens at the two ends of the inte-

gration interval. Again the point « =1 is irrelevant. But the point « = 0
Mat. ¥ys. Medd. Dan. Vid. Selsk. 33, no. 3. 6
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leads to the @;-manifold, which is to be expected. Note that the points r; = 1
or 0, which give @(0) = —#%/12, are entirely harmless for the Spence
functions.

Another source of singularity for the Spence function ¢({) is at infinity.
Now this happens when

m(r)—e,=0, p=1,...,8 (A.10)

or, according to (A.8), this implies zeros or poles of x;(r;). But these can
at most correspond to the individual cut in each of the z’s.

Thus we conclude that from the explicit expression (A.1) and its per-
muted form for the case ry=r,, the singularities of the 4-point function I(z)
of (54) are confined to the 4 sets of @y-manifolds and the 6 cuts, one for
each z along the positive real axis. This agrees with our simple argument
in Sec. IV.4.

Finally, from the representation (A.1) and its permuted forms of ZFj (ry),

7
we now briefly discuss the change of relevance of the ¥-manifold in the
case ry = ry. Here the expression (54) gets essentially a contribution from
the first term in (A.1) (summed over j) in the neighborhood of the @;-mani-
fold -

[log ry log ]j] %;(r1) —log rp log ]jf % (D]

ry—1rs

R 2ai loa T N IM [ (A.11)
ryL—ra rg |¥W=o l/ g ’
where
log IT y;(r;) =log1 =n-2 =i, by virtue of (51),
and 7
I . ]
logrz g/:ON logl =m-2xi; n, m, integers.

On the @;-manifold, one of the r;, say r;, becomes zero, while the other
is finite. Thus on one side of @ -manifold, m = 0 (if we are on the prin-
cipal sheet to start with, e. g., for all z’s being negative real), but on the other
side, m= 0. This shows a change of relevance of the ¥-manifold at its
intersection with the @;-manifold. In a quite similar fashion, e. g., from
the second term in (A.2), there develops a change of relevance across the
@, ;-manifold. To show this, it suffices to note that at (¥ = 0) N (@;,; = 0),
one gels N;(r;) = 0, whence log y;(r;) = log 1 also, for each j = 1,2,3.
This confirms Lemma 2 in a more explicit way.
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Appendix B
Envelope Problem for the ®#-manifold

In stating that the 3-point domain is bounded by analylic hypersurfaces
Fy; (obtained by setting two of the three mass-parameters equal to zero
from the @-manifold), it is understood that the envelopes of the @-manifold
are trivial, in the sense that they do not exist off the cuts and hence never
actually contribute to the boundary (apart from what one has already on
the cut). The purpose of this appendix is twofold:

(a) To give a proof of the above statement®, and
(b) Since the @-manifold is of a much simpler structure, the analysis here
actually serves as a prototype for the treatment of the ¥-manifold (cf.

Sec.1V), despite the fact that the final situations are quite different in two
cases.

The notation here for the variables in the @-manifold follows that of KW.

[. 3-Mass Envelope Ejg5:

Let
- 2q Iy~ Gy~ @y Zg— dg— Uy
@(:;a)—% g~ Uy — Qs —2a, =g — dg). (B.1)
Zg—Q;— Uy Iy~ Qg —~ Uy - 2ag

The analogue of (63) is

3
kélpk:z(;), P,ngz. (B.2)
The analogue of (64) is
@:—li’_@@ for 1=1,2,3 B.3
2 2 Pag, for =123 (B.3)

where the @;’s denote the elements in the determinant (B.1) without,
however, the faclor 1/2.

The Analogue of (70) now reads on the @-manifold:

3
Z D, Py = i=1,2,3. (B.4)

3% This is previously known to KW, but remained unpublished. My sincere thanks are
due Professor KALLEN for his many enlightening discussions on this, and for his kind permission
to include it here.

6*
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On the envelope FEjo3, we have

o0
dag _ Py yi <
@”Pk_wc (B.5)
Bak
where the y,’s are real, such that
Pr =y A(= ]
R = |~ (B.6)
2_ re=1. I
%
Thus the analogues of (72) are
;(Im@m) Y =10 (B.7)
> (Re )y, = 0. (B.8)
%
Now from (B.7) follows immediately the analogue of (73):
0=det|Im®y| =2y y,y;. (B.9)

In general, for given y;, y,, 70, (B.9) implies that y; must be zero on the
3-mass envelope. Or in other words:

No 3-mass envelope for the D-manifold can exist off the real axis.

This is also a horizontal line in the zz-plane (cf. Ejyq, of (74) in the 4-point
case). At this point, one can immediately see thal Eiyg is itrelevant: It cannot
be relevant on the negalive real axis. Then af most FE, can lie on the
positive real axis, which is already the cut.

The following, however, is devoted to an explicit solution (o the real
part equations (B.8), showing that Fj,; (as well as the 2-mass envelopes
discussed below) is actually non-empty, and in one particular configuration
(i. e. bubble) the 3-mass and the 2-mass envelopes are vather amusing
(cf. Fig. 28).

With yy = 0, it follows further from (B.7) that

ys =0 l

— - (B.10)
Y2 Y2 [
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Or, when normalized according to (B.6),

_n Ty

yl:g,h—yz’ Vz:ylﬁm-

(B.10a)

With these explicit values of the y,’s, the real part equations (B.8) yield

Y1+ (—y2) a2+ (Y1 — ya) ag = (Ta Yy — T1 Ya) (B.11)
yiay~ sz =0 (B.12)

_ JJ,!) +(1_92) B.13

g ( s a " a3, (B.13)

The path Cqpy in the az-space (which would give rise to Ej,3) is then the
straight-line intersection of the two planes given by (B.11) and (B.12),
within the octant a; >0. We now divide our discussion into two parts:

Case 1: y,y,<0 (Bubble configuration).

Without loss of generality, we may take y,;>0. In this case, (B.11) is
compact within the octant q; > 0. Therefore its intersection with (B.12) gives

O3
A
Ci23
relevontl portion
. of F|3
relevant portion 50,
of B3
C B *C,

2 2
a=ya
yI i y2 2

Figure 27. Paths in the a-space for the 3-mass and 2-mass envelopes and the 1-mass curves
for the 3-point @-manifold: y,y, < 0.

a finile straight-line segment AB (Fig. 27). The image of AB in the zz-planc
is given by (B.13). More explicitly, we have from (B.12) and (B.13)

yr\’
Xy = (1 yz) a ‘ (B.14)
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which, together with (B.12), implies that ¢; and a, are positive if and only
if x4 is positive. I‘urthermore, one gets from (B.11)

(—wny2) .
ag = m :cgo) - {L‘3), (B 1‘0)

where

0) (g1 — yz)
3’)3 =
(—yry2)

(oY1 — X1 Ya) (B.16)

Figure 28. ®-manifold envelopes for the bubble configuration in the z,-plane.

is precisely the abscissa of the point I (Fig. 28) which is the common inter-
section of Fyg and F,, with the xy-cut.
Note that

x>0, for argzy>m+argz,

which is the relevance criterion for the bubble of Fig. 28. From (B.14),
(B.12), and (B.15), it is clear now that OF is the image of AB, since all
a, >0 if and only if

0<xp<a. (B.17)

This shows that in the case when the 3-point boundary is given by the
bubble, the 3-mass envelope for the ®-manifold is actually the segment of
the cut on the real axis lying inside the bubble. It will be shown later that
the end point E (where a3 = 0 on the 3-mass envelope) actually constitutes
the 2-mass envelope Ej, for the @-manifold in this case.



Nr. 3 79

Case 2: y,y,>0 (Hyperbola configuration).

In this case, the results become dependent on the ratios of the real and
imaginary parts of z; and z,.

(1) when y; = y;, we must have also x; = x, as a consequence of (B.11)
and (B.12). The allowed region in the a;-space becomes unbounded, being
the whole plane (B.12) within the octant a;>0 (i. e., a; = ay, az arbitrary).
The image in the zz-plane is a single point 3 = 0, viz., Eyy, is at the origin.

Figure 29. @-manifold envelopes in the z,-plane for the hyperbola configuration: P < 0.

(i) yy = ys. (B.14) and (B.15) now imply that all a,>0 if and only if
e > Max '0, 20 B.18
Thus * { 2 ¢ )
(iia) if xf” <0, Iy is the whole cut xy > 0. (Fig. 29).
(iib) if @’ >0, Eypy starts from a, = . However, this point has no
significance for the case y;y,>0, since the hyperbola Fj, (Fig. 30) inter-
sects the veal axis at P with

)2 N2
gcgp):ylyz{(ﬂgl L2)*+ (Y1t y2)*] (B.19)
(y1+ yo) (x1y2 + 2291)
In this case one has both
(P) (0)
x>
and oo | (B.20)
n:%P)>O J

for arg z; + arg z,< m, which is the criterion for Fy, to be relevant.
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II. Two-Mass Envelopes.

It can be easily seen that the 2-mass envelopes still lie on the cut along
the real axis.

We shall only treat E;5 here with ay set equal to zero; for the others the
analysis can be easily adapted. The envelope condition reads:

P K& =0, a real number. (B.21)

P VRs

3
\\\\z:/:/’/ \\
3.\ E23
o F P °
]
Fiz

Figure 30. ®-manifold envelopes in the z,planc for the hyperbola configuration: 2 > 0.

Case 1: y154<0

(B.12) and (B.14) now no longer hold, however, (B.11) with a; =20
is equivalent to (B.21). Furthermore, (B.13), which can be regarded as
the equation for the @-manifold in this case, is still valid. From these, one
gets rather unexpectedly that Ej, is just a single point at a; = 2, (viz., the
point E of Fig. 28). Geomeilrically, in Fig. 27, CD is now the path for £,
in the positive quadrant. The entire segment CD is mapped into the point
E, which is exactly the end-point az = 0 of Ejy,.5

In this case, it is interesting to note that the path OC along the a,-axis
and the path O along the a,-axis in Fig. 27 map respectively into the rele-

% The fact that the path for E,, is simply the projection of the plane for E 35 in 3-space
onto the 2-plane must be regarded again as a peculiarity of the 3-point case. This is not true
in the 4-point case (cf. Sec. VI), where we have shown that, although the path for E ,;, is also
a straight line in the 4-space, the paths for Eijk and By, are both not projections, and are very
far from being straight lines.
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vant portion of Fyy and Fj, in Fig. 28 (with the common end-point E be-
sides the origin). The occurrence of such multiple intersections of fj55 N
Ei, N E, NE;, must be regarded as a 3-point peculiarity (cf. Fig. 19
and the accompanying remark). In the 4-point case, we have seen, however,
that in general we have only the intersection between an m-envelope and
an (m-—1)-envelope (cf. Lemma 3).

Case 2: yiys>0

Following E,y; in this case, and the E;, for the above case, we see that
E;, for this case also consists of a point at x; = xg‘”. Now

(i) It <0, Ey, is irrelevant, and
(i) If 2’ >0, E;, is the point Fin Fig. 30, which is imbedded in the cut.

Appendix C
Some Algebraic Details for the 4-Mass Envelope

We give here the details for the values of the y,’s on Ejyg,, and the de-
pendence of their relative signs on the configuration of the y's.
Solving (72a), one gets

; = (C.1)
Ya¥4 Y YeYa Y2 YaYs Y3
or equivalenlly:
Y1 _ Ysya =V y1ysyays
Y2 — Y243
¥s _ 415 £V y1yyays (C.12)

Y2 —y2Ys

o _ =V yryayays
V2 YsYs ’

These may then be normalized according to (67). The (+) signs correspond
to the sign of Eiffig, in (74). From these, one immediately notes that, for
example, ’

+
on Fipgy,

v1vs2 0 according as y,y;= 0,
and

YoVa z 0 according as ysys z 0.



82 Nr. 3

The exactly opposite statements hold on gy -
We summarize the results in Table 1:

TasLe 1: Relative Signs of y, on Efg4 Versus Configurations

Configuration of y Relative Signs of y,’s
Cases
Up Down On Efs, On Ep,
. (D) Y1, Yall g, ys
I 1,3,4,5 2,6 all y, >0 -
(D) y1, Yol Yz vs
o - . (D) v, vall v, va
11 1,2,5,6 3,4 V1,V2”V3,V4 7
(i) all y,>0
L (W) v1 1l 7ss va, 74
1T 2,3,5 1,46 |[— 7allvi, va, vs
(1) y3lly1, 2. va
, @) vallve vi,vs
v 1,2,3 4,5,6 — rsll v, va, vy
(1) vall ve, 71,73

Remark: (a) These are the only four distinct configurations of -the y's for
which Efg, exists. The remaining case with all Y >0 is disregarded here,
since the 4-mass envelope is entirely irrelevant in this case (cf. remark
following (76)). The permutation of (3, 4) with (1,5) in case 11 is trivial.
So is the permutation of (2<>6) in cases III and IV.

(b) The subdivision into (i) and (ii) is based on
WD) lyys 1> ysy,

(1) |y1¥s|<|ysysl. respectively. Note that, when U1Us = Y3Ys, one of the
lines Efs, coincides with the cut.

() All signs except in the case when all v >0 are meant only in a re-
lative sense. Thus we use the double bars to denote that the y’s lying on
the same side of the double bar have the same sign, while any two y’s lying
on the opposite sides of the double bar have opposite signs.

(d) The above results can be briefly stated as follows:

(1) When the signs of the 6 y's break into 4 Il 2, the signs of the 4 y’s
break into 4 {0, or 2| 2.

(2) When the signs of the y’s break into 3 {l 3, then those of the y’s
break into 3 || 1.
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With Table 1, one can readily infer from (77) or (80) the signs of the
a;'s on the 4-mass envelope at oy + + co. For a; and aj, no other information
is needed; however, for a, and a,, there is a further dependence on the
magnilude of y, and y, (when the latter are positive). Table 2 illustrates

the situation for zg — —oo. Exactly opposite statements hold for the signs of
the g at the other end xg —+ +oo.

TaBLE 2: The Signs of a; on Efg, at xg— —oo.

a; and aq ds y
Cases* " — - I - T —
On Efy34/On Ejp3g) On Efosa On Efygy EYs34 Elogq
O+ | - - -
1
(ii) + — — -
1 - +
11 -
Gy | - * B _
1 (1 + - TS| =S| F( 1) -
(ii) + = [ FOID | 2| FpsD -
v (i) - + - FeID | 2GS | F S
(ii) - + |+ I | F@ID - F(yS )

* For the cases III and IV in Table 2, the signs of 4 ¢’s break into 3 [| 1. Table2 assumes
that 3 9’s > 0 and one y < 0.

The remainder of this appendix is devoted to the discussion of the case
when the (all q; positive) segment Ejy3, has an intersection with the set w,
of (82). For this, it will be convenient to divide the discussion into the fol-
lowing two classes of configurations:

(1) All vy positive.
In this case, we have

O<yp<1, Zy, =1, (C.2)

From Table 1, we see that this happens only for the following two configura-
tions (Figs. 31-32). We recall from Table 1 that all y,>0 hold for the con-
figuration (Fig. 32) only for y;y;< ysy, (otherwise 2 of the y’s become nega-
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tive). When gy, ys ~ ysy, — 0, the line Ejyy, collapses into the cut on the real
wg-axis. On Ly, we have, in general, by virtue of (72):

Z(Re i) viv; =0 1

"’7‘ (C.3)
Zj(lm Vi) vivy = 0. ]

t, .

Now the »’s of (C.2) may just be identified as playing the same role as our
original integration variables o;’s. Therefore for this case, the denominator D

g
3 7,

Figure 31. All y;’ > 0 on the 4-mass envelope for the configuration (I) of Table 1.

of (15) will indeed vanish identically on [y, (where all a;'s are positive).
When this segment has an intersection with the @,-manifolds, part of it
will have actual singularities.

One observes from Table 2 that [y, are finite for both of these con-
figurations, since two of the a’s (viz., ay, ¢;) are negative at xy— —oo, and
the other two (viz. a;, az) are negative at the other end (awy — + o).

(2) Not all y's positive:
In this case, identification of y, with oy is not possible, thus (C.3) do

not automatically imply that (16) will vanish on #,5,. In fact, it can be
easily seen that Re D never vanishes for xew, of (82).
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3

One notes from (16), after the substitution oy =1- > o,

=1
1 «
~ReD - -5 > (RelWy) e~ 1

! (C.4)

(%) A(x) F(z;a)

I PP ] _
g (o + o3)” 426 (otg + 0g)” +l()(l %) I A(x)

where

Figure 32. All y;’s > 0 on the 4-mass envelope for the configuration (II) of Table 1.

O 1 {62/1(%) 82/1(9c) Bdy(x; @)
2 2 g |01 820 0’1:401:2 Axadas

o 1 Jod@ D@ O] p o 35y ]
%“M@Jam * Das (Cf. Eq. (35)); (C.5)
NI GICIE)

L 4 A(x)

and ¥(x; a)= det| Re ¥} |
which vanishes identically on Ejzs,. Thus we see that (C.4) is positive de-
finite for xew,, unless simultaneously

aci:~ocg, for 1=1,2,3 (C.6)
<0, D (~ad)<1. i
7

and
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It is now casy to see that (C.6) cannot happen when at least one of the y,’s
is negative. We have on Epy,, after treating the det | Re ¥, | with exaclly
the same procedure which led to (64),

- - . €7

Now, without loss of generality, we may take’ y,<0. Then (C.5) im-
plies that of = ~y,>0, and (C.6) clearly cannot happen. Thus for all
cases with yp, not simultaneously positive, —Re D is positive definite on
@, N Ii153,, and it follows that this portion of the 4-mass envelope can never
be a relevant part of the boundary.

For completeness, we note the following identity on the 4-mass envelope:

QReDEZReSUij aiaj:%&j(ai—yi) (a;—vs) (C.8)
i,

(2%}

which can be easily verified with the aid of (77).

Appendix D

Note on the Determinant Expansion

We here observe that a great number of identities which have played
an essential role in our preceding discussion, such as (43), (44), (45),
(100), and (110), have a most natural interpretation in terms of their as-
sociated determinants. Take, for example, (43), which reads:

Iw\?
(%m) A (D) Py A W (25 @), (D.1)

Recalling the guantities following (57a), we have, for k = 2

1% o
20as v
24(z) = ¥4 (D.2)
20, =~ P2
—;tg _ lj/l2,12

37 Otherwise, a trivial permutation will bring (C.4) into the form where the last ozz cor-
responds to the desired negative yj.
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where Y1212 refers to the minor complementary to the 2x2 minor

Wil rie
. g2l a2
lP:z‘P:—gj——:— > (D.3)
Wiy Wy |
i Fa

Now identity (D.3) can be easily verified to hold for a general 4x4 deter-
minants Thus (D.1) is established for I = 2, and by symmetry the others
follow. At this point, the corresponding identities for the 3-point case (KW
(A 46d)) are seen to be also derivable from such a determinant expansion.

Ir appears, however, that identities of the form (D.3) are actually
very special cases of a general theorem, which, in various forms, has been
dated back to Gauss (also for symmietric determinants) and others. We
shall here quote a theorem due to Jacobi®8, which states that

Any minor of order k in A™' is equal to the complementary signed minor
in A’ (the adjoint of A), multiplied by [A|™.
In other words, this technique of determinant expansion relates the block I
in (D.4) with the block II in (D.5), their determinants being off by a factor
of the original determinant:

L{ ;K
1 :
A_l: ........ .......... (D4)

58 See, e.g.. an elementary text by A. C. Arrken, Deferminants and Matrices, 3rd ed.,
Edinburgh (1944).
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(o) } (k)

It is then a simple matter to derive all the identities we mentioned by
simply writing down the desired kxk minors in this fashion.
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