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Synopsis
The theory of the collective properties of the nuclear shell model has progressed recently

clue to the introduction of the simple pairing force to simulate the residual nucleonic interaction .
Working within the framework of the adiabatic approximation, the present paper studies th e
consequences of this model for the y-dependent terms of the nuclear potential energy surface . Th e
simplified case of nucleons in a harmonic oscillator potential is considered first . Then, the energies
and transition probabilities are calculated for y-vibrations of deformed nuclei of axial symmetri c
shape . In addition, numerical calculations, based on realistic wave functions for nucleons i n
deformed nuclei, have been performed in a few cases and are compared with empirical data .
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I. Introduction

In recent years, promising progress has been made in deriving the nuclea r
collective properties, starting from a description in terms of independent -
particle motion .

On the one hand, it has been recognized that the shell model binding
field may be associated with the effect of the long range part of the nucleoni c
interaction . In particular, the deformations of ellipsoidal shape can be show n
to be a consequence of the quadrupole component of the effective two-body
force(')(2) . On the other hand, it was recognized that there are important
effects of this force which cannot be incorporated into a smoothly varyin g
binding field, such as the inertial properties of the collective motion( 3) or
the potential energy of the nuclear deformation .

To represent this "residual" force, an interaction of especially simpl e
properties has been suggested( 4 ) . This is the so-called "pairing force" whic h
is analogous to that used in the recent theory of superconductivity( 5 >, and
which is a generalization of the force in terms of which seniority is defined(s > .
Preliminary investigations have shown that such a nuclear model contain s
many of the qualitative features of the observed nuclear spectra( 7 )( 8 )0)a°) .
A more quantitative test of this model has been performed for nuclei i n
the regions near closed shells(" )

The aim of the present investigation is to study in greater detail som e
of the features of the nuclear potential energy surface which follow fro m
this model. In particular, we consider the dependence on the parameter y ,
which describes the departure from axial symmetry of an ellipsoidal nuclear
deformation . We also investigate the properties of vibrations in the y-co-
ordinate, which are expected for nuclei of spheroidal shape .

For a quantitative analysis of the collective nuclear properties it is
necessary to start from a nuclear shell model with the appropriate single -
particle level spacings and wave functions . However, in order to explor e
some of the qualitative features, we first consider the simplified case of a
harmonic oscillator well . Subsequently, we present some calculations base d
on a realistic single-particle spectrum, and compare the results with ex-
perimental data .

1*
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II . Formulation of the model

The basic assumption of many studies of nuclear structure is that it i s
sufficient to consider the degrees of freedom associated with the particle s
outside closed shells, the particles within closed shells manifesting them -
selves only through the Pauli principle and through a renormalization o f
the effective interparticle force .

In this chapter, we give (a) a brief description of the solution of th e
problem of identical particles moving in a certain shell coupled by th e
pairing force ; (b) a discussion of the deformed part of the single-particl e
field ; and (c) the calculation of the potential energy surface and mas s
parameter .

a) The independent quasi-particle approximation .

We assume that the matrix of the single-particle Hamiltonian has bee n
diagonalized and that sv is the eigenvalue corresponding to the degenerat e
single-particle states labelled by v+ and v- . These states are related b y
the operation of time reversal . Using the formalism of second quantization ,
the total single-particle Hamiltonian can be written

Han =

	

Cv (Cti+Cv++cv-c„-)'

	

(1 )

Here, c t, and cv are, respectively, the creation and annihilation operator s
for the single-particle state v . They obey the usual anti-commutation relations .

In this formalism, the pairing force is given by

= GSC.v +~

	

` )Hpair -

	

CV-c .-c.+ .

	

( ~
v, w

The lowest eigenvalue of the total Hamiltonian H = H an + Hpair can be
approximated by means of a variational procedure . One uses a trial function(5 )

0 > = H [Lv+% c,,t + cv_] I vacuum .

	

(3)
v

The condition U, +Vÿ = i ensures that the wave function (3) is normalized .
From (3) it is seen that v,,2 is the probability that the states v+ and v- are
occupied . The Vv are variational parameters to be determined by the con-
dition that they minimize < 0 H I 0 > . This leads to the equatio n

2/G =~ (eÿ + !12 ) -1/2 ,
v

(4)
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where 4 .= G~U,,V, . The excitation spectrum ha s
v

Ev = (EV + 4 2 ) 1/2 .

5

energies E,+ E n) , where

(5 )
In consequence, the energy of the first excited state is always greater than 24 .

An elegant formulation, equivalent to the above procedure, has bee n
developed by BOGOLUBOV (12) and by VALATIN (13) . IL has been applied to nucle i
by BELYAEV (7) . We now summarize some of his results . One starts by in-
troducing two new operators (4, ßti) defined by the following canonica l
transformation

Because this is a canonical transformation, the new operators obey th e
same anti-commutation relations as the old . Thus, they can be regarde d
as creation operators for "quasi-particles" obeying Fermi statistics .

By means of the transformation inverse to (6), we can express H in
terms of 4, ßv, ß,,, and av . Using the anti-commutation relations, H can
be put into normal form, i . e ., with the 4, ßy to the left of the ß,,, at, . H has
then the following structure :

H = U +Hn +H2O + Hint .

The term U is a constant . H11 contains terms proportional to (aÿ a v + ßv ßv) ,
H2O terms proportional to (4ß, + ßv av)• Hint, the remainder, is suppose d
to have a small influence on the properties of at least the lowest states .
The requirement that the coefficient of (4ßv + ßv av) vanishes leads to (4) .

If Hint is neglected, the remaining

U+H11Ysv2Vv-42/G+ SE„( at, av+ßvßv)

	

( 8 )
v

	

v

describes a system of non-interacting quasi-particles . The single quasi -
particle energies are given by (5) . The wave functions can be characterize d
by the number of quasi-particles present . In particular, the ground state
has no quasi-particles . Expressed in terms of the original particle-creatio n
operators, it is just the state (3), so tha t

avl0> = ßv1 Q > = 0 .

The excited states all have even numbers of quasi-particles . Those with
two quasi-particles are denoted by

I vw> = 4ßu, I O >•

	

(10)

avt

	

fi
= (iv cv +- Vv cv _

ßv = Vv cv-+ Uv cv+ •

( 7 )

( 9 )



6

	

Nr . 2

Unfortunately, the solutions (3) and (10) are not eigenstates of the operato r
representing the number of particle s

non= ~~(ct+t°v+=c„-)•

	

( 11 )
v

However, we can at least ensure that the average particle number in th e
ground state has a prescribed value n, by using a Lagrange multiplier .
That is, we replace H by H-2n op . The Lagrange multiplier 2 is to be de-
termined by the conditio n

n=<01nop l0> = 2

Since the formal effect of the subtraction of 7~n op is the replacement of th e
rv by eM1,-A, we see that 2 can be interpreted as an effective Fermi energy .

b) The deformation-dependent terms of the Hammiltonian .
We have been using a representation in which the single-particle Hamil-

tonian is diagonal . However, the spherical part of this Hamiltonian is no t
necessarily diagonal . We denote its matrix elements by e°u, . The non-spherica l
part, associated with ellipsoidal deformations, is represented by the scala r
product of the single-particle and the total nuclear quadrupole moments .
This lifts the degeneracies characteristic of the central field, and has bee n
successfully used(r4 )( 15 ) in the explanation of many properties of deforme d
nuclei . Thus, the total single-particle matrix element i s

Evw evw -

	

QFc (gµ)vw -

	

(13)
M1~

where x is a coupling constant ultimately determined by the quadrupol e
force, and

(c7,u)va, =4 1 <v~r21.'" (B)~ w i

	

(14a) .

T I'x Y2 Fti (0k) drl . . . tie ], . . . dtM1a,

	

(14 h )

E being the total nuclear wave function . Therefore, (13) and (14h) imply
the self-consistency condition that the quadrupole tensor of the field is th e
sum of the quadrupole tensors of the orbits determined by that field an d
the pairing force .

If we were to take <Y' H ~ Y'> as the total energy, the contribution of

r9_

v . (12 )

QT _
f~
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the quadrupole force would be - (Qµ) 2 . This is a factor of 2 too large ,

since it effectively counts each particle pair twice . Thus, the expectatio n

value < P. (H+9-T(QT)2) 'F>, regarded as a function of the Q , give s

the potential energy surface for quadrupole deformations . This picture i s
reasonable, if the frequencies associated with changes in the Qµ are smal l
compared to the single-particle frequencies (adiabatic hypothesis) .

Since we prefer to treat only the degrees of freedom associated wit h
particles outside closed shells, we should like to replace (13) by an ex -
pression involving the quadrupole tensor, of these particles alone . The
ratio Qµ/Q1 has been studied(9> (17)(la) in several single-particle models fo r
the equilibrium values of Qµ . We make the additional assumption that this
ratio is independent of Q1, . Consequently, Qµ in (13) can be replaced b y
j , and x renormalized .

It is useful to perform a principal axis transformation so that the five
degrees of freedom (14b) are replaced by three Eulerian angles specifyin g
the orientation of an intrinsic system of axes, and two parameters describin g
the shape of the ellipsoid . In this intrinsic system Q 1 = Q_ 1 = 0 and Q . = Q_2 .

Following(-6), we use the shape parameters ß and y defined b y

Q 0 = Q =P cos y
( 15)

Q2 = Q_ 2 =S/1/2-ßsin

This definition of ß differs from that given ini ib> by a factor of dimensio n
(length) 2 . Consequently, the single-particle matrix elements can be writte n
in the form

£vw = Eÿw - xß Hos y (q0),,, +sin y Svw] = Ey6m , (16)
where

svw = ] 11 /2 [ (g2)vw + (R 2)vwl • ( 17 )

The self-consistency conditions can now be writte n

Q = 1' (g 0)vv 2 ti~
2

S

	

v

	

i
( 18)

=Xsvv2~ÿ .

	

J
These can be taken into account by means of two additional Lagrang e
multipliers and 6. One must thus replace the e„ in (1) by

* In the following, all the directed quantities refer to Lhe intrinsic axes, unless otherwis e
specified .
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e vw - r 116 vw - 1 (~Îo)vw -svw =Ev S„w, (131 )
where

,u - HQ+,u

	

a = xS+â . (19)

In order to clarify the role of these Lagrange multipliers it is convenien t
to return to the original description of the quasi-particle approximation in
terms of a variational procedure . The expectation value of <0 I H I 0 > has
to be minimized with respect to the Vv . The result is a set of Vv which de-

pend on A, ,u, and a, which are in turn determined from (12) and (18) .
Then, if we allow small variations from this set of Vv , but keep A, ,u, and a

fixed, we hav e

0 -8<0IHI0)=S<0lHspher l0~-,ccdQ-a6S . (20)
Thus,

8< O I
Hspher I ~>

	

~< 0 I
Hspher

I 0 >= (21 )
h Q

	

6 S

The energy for the optimum Vv , which we take to define the potential energy

surface, is
E - <O I Hspher

0> + 7n - 1/2 x Q2 - 1/2 xS 2

	

(22)

(cf . p. 7), and so

iiE
l~ xQ = û ;

	

ô E

åQ

		

(23)
S S

At equilibrium, the Lagrange multipliers û and â therefore vanish, and th e

Hamiltonian used to generate the wave functions has the same deformatio n

as the one used to calculate the energy .

c) Calculation of the potential energy siu•face and mass parameters .

We seek an expansion of the potential energy as a power series in Q

and S . According to (23), it is sufficient to calculate the partial derivative s

~mIG

	

am a

tSQ ålt-
	 and å Qm_nåsn . If we wish to calculate the restoring forc e

we require second derivatives, and in most cases these are convenientl y

obtained as follows . For simplicity, we treat only one independent variabl e
which we call R . We write

R = Hspher CRop

Hspher -X (4,-2) ( ±cv+ +ev v_) +Hpair .

* This method was suggested by A . Borax (privaLe communication) .

(24)

(25)
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We assume that the problem defined by (25) has been solved within th e
quasi-particle approximation . Thus we have values of A, A, and the V, .
Rop can then be written

2
Rop = )vv

v

T~ 1 vw ( up (Jw-1'v Vw) (av xw+ 13 v 8w)

	

(26)vw

-~, 1 ww ( Uv Vw + Uw Vv)(av~w + Nvw) •
v w

Treating - eR op as a perturbation, the new ground state 10 ' > is given in
first-order perturbation theory by

0 ' > = 0> + -,rvw 	( Uv Vw +UwVv)
vw> .

	

(27)
Ev +Ew

Here again the value of e is determined from the assigned expectation valu e
of Rop ,

	

i . e .,
(UyVo,+ Uw ) 2

R = ( 0'IRop10')=2e~' v

	

. (28)-
v, w

	

Ev ,Ew

å 2EAccording to (23) and (28), the

	

force C

	

isrestoring

	

given by= åR2

6 1
C= 6R

- ~ c . (29)
( Uv Vw + UVv ) 2

-

v, w

	

Ev + Ew

A simple physical interpretation can be given for the terms in (29) .
The first one, which tends to preserve the spherical shape, equals the in -
crease in the expectation value of Hspher due to the deformation . To second
order in R,

( Uv Vw +Uw Vv)
Ev +Ew

The second term corresponds to the expectation value of the interactio n
which produces the deformation .

However, some precautions must be taken when using 10 ' > given by
(27), since its average particle number differs from that of I0> . In fact, t o
first order,

vw

R2
< 0 I Hspher I o > - < 0 I Hspher 10 > =

	

z -

	

(30)

4 L
v, w
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< 0 , InepI0 ,>_< Olnep10 >_2

	

v"

	

(31 )
'E3Y

	

9,

The linear term in (31) can produce a spurious contribution in (30) . In
order to eliminate this linear tern . and thus this spurious effect, we mus t

require

		

Ivs = O . (A second order variation in the number of particles does
Ev

not affect (30), since the expectation value of Huller is stationary in the
number of particles) .

~v

vL3

fvIn the Appendix, it is shown that the additional condition

	

= 0
i v

must also be satisfied, due to the requirement that matrix elements of th e
form <0 ' I H int I

(vw) ' > should contain no terms linear in o .

The conditions

	

3 =0 and j
Ivv3v = 0 are satisfied for quadrupol e

v T v

	

v Ep

vibrations about spherical equilibrium shape . The methods of this sectio n
can also be used to study the vibrations about non-zero equilibrium de -

formations. In this case, the conditions >' s--'-' -'' = 0 and >-'
IvvE'

= 0 are satis-
v E3

	

v E3v
fled for y-vibrations about y = 0 or y = ÿr, . However, for fl-vibrations they
are not satisfied, because the quadrupole operator connects the ground stat e
to the spurious 2-quasi-particle state . Hence, one may not fix R and A an d
then do the perturbation calculation ; one must rather determine first the
effect of the perturbation on the single-particle energies and wave functions ,
and then solve (4) and (12) for A and A . Although we will not need th e
general expressions so obtained, we give them in the Appendix for com-
pleteness .

We calculate the mass parameter, using time-dependent adiabati c
pertubation theory (the "cranking" model) . (See also eq . (15) of ref. «>) .

B = 2 1T

	

I<vwl
åR l0 ~~ 2

y w

2h2(
dR)

Ev + E, u,

I< vw l( 6e-)1 Q >1 2

v7,'

	

Ev +

(32 )

Using the relation So = [ o , Hj , (32) can be shown to be equivalent to ( 19 )
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, d 2

	

ICv , wl`~H ld>1 2
B= 2h2

	

d g

dR 1, , co

	

(Ev + E(o)3

	

-2h2(de
) 2

	

< v , wRop>1 2
_-- ----

dR v ,

	

(ET + Ew) 3

	

2

	

l vco( Uv vw + Uw b'v) 2
=2h w

	

(E.v + Ew )3

The replacement of åô by -R0 is valid only if A and A have no first orde r

terms in P (cf. eq . (10A)) . The formulae for the restoring force and mas s
parameters of the vibrations simplify if the single-particle quadrupol e
moment has only diagonal elements (e . g., the harmonic oscillator )

1.
C=

	

2 -
I vv

v EY
2

rvv
Eÿ

B = h 2 	
2

	

(34b)

\
2 AY

	

	
Iwv

Ev

Another simple case arises when the single-particle states are degenerat e

C =
2

G~, - x

	

(35a)

(33)

(34a)

nL ' v
v, w

B =
2 GS26 n % rv

v ,

h.w=G.Q (1- 0
n

GSZ vw

h2
(35 b)

)1/ 2

,w (35 c)

Here,

	

= 1 - xn and xn = b, while Q is the total number of pairs of states
available .

The above adiabatic treatment of the quadrupole vibrations requires th e
energy of the first vibrational excitation hw to be small compared to twic e
the quasi-particle energy . A different approach to this problem has bee n
given by B . Mori :LSON ('0) . He considers particles moving in degenerate
states, and coupled by pairing and quadrupole forces . The quadrupole force
affects only one of the I = 2 two quasi-particle states, whose energy is given
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by this model to be exactly the same as (35 c) . Here the conditions of validity
are complementary to ours, since they effectively imply* a small depressio n
of the vibrational state compared to the 2-quasi-particle energy . Since (35c )
holds at both limits, we may expect it to be a reasonable approximatio n
in between .

III . Expansion of the energy about the spherical equilibrium shap e

BELYAEV (7) has already studied the dependence of the nuclear surfac e
energy on an axially symmetric deformation, using a single-particle Hamil-
tonian with diagonal intrinsic quadrupole moments ( g o)vw = (go)n, åv, a, and
an assumed density of states . In the following, the simplified case of nucleon s
moving in a harmonic oscillator shell will be treated', but the restrictio n
to axial symmetry will be omitted .

	

Sn~

	

6 n a
In order to calculate the partial derivatives åQn_måS_m and

we can proceed as follows : 2. and A are expanded as power series in th e
variables ,ci and a. It is then possible to construct the power series for 4

and V22, and, therefore, the right-hand side of the basic equations (4) an d
(12) . We must put equal to zero the coefficients of the successive power s
of ,u and a in the expressions for G and n, since these quantities are inde -
pendent of the deformation . This provides us with a set of equations fro m
which the coefficients in the expansions for .1 and A can be derived . Thes e
coefficients are inserted in the power series for V . The power series for Q
and S can then be immediately obtained by using equation (18) . After
reversing these last two series and performing the necessary differentations ,
we obtain the following expression for the energy :

C

/

	

1

\5 (l + Qmax ~ \ 2 + 64
4ß

	

9 /

	

3 Ø,f2 )W\2 G/3 2 J

	

4 /3
+ h J 26n ß' 2 1 5(l+Qmax

rn"S3y +

`

	

4 ß
5 (1 + a) Qmax

s /83 D n
_(

	

!
xn -- ~cos3y

	

(36)
/

	

\56 2
	 4 ß	 4 [3635 6 77955 + 62 553 5

+ (5 (l +a) ()max ) L 448

	

n 1 792

	

n 128

+ (56 -
B n X974 + 6 12047 )

	

X

cos t 3 yl + . .

* More precisely, the senioriLies of the states mixed by the quadrupole force into the groun d
state should be small compared to Q .

** A more general type of shell has been considered by J . M . ARAùJO (private communication) .
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W' 2 G
G = ( `

Y1

.h
~

On N2

	

.

	

(36 a)

ß and y are defined in (15), M is the mass of the nucleon, and W the frequenc y
of the oscillator field . N, which is assumed to be large compared to unity ,
is the principal quantum number of the oscillator shell . We also define n z
and nl to be the numbers of oscillator quanta along and perpendicular t o
the z-axis, respectively .

Qmax is the maximum value of Q which can be obtained with a give n
number of particles in the shell . One gets this value in the "aligned couplin g
scheme" (2) .

a is defined so that aN is the maximum occupied value of n 1, for prolate
deformation, with a given number of particles nl and no pairing force .
In consequence, 0 < a< 1/V2 . For values of n > S2 (a > 1/V2), Qmax occurs
for oblate deformation . In this case the previous expression also holds, holes
playing the role of our previous particles .

A few comments can be made on equation (36) .
1) The y-dependence of the terms of a given order in ß can be under -

stood on the basis of general invariance arguments . The energy of the system
must be invariant with respect to rotations . Therefore, it can be expresse d
as a linear superposition of the solutions of the five-dimensional quadrupol e
oscillator corresponding to zero total angular momentum . The y-dependen t
part of these solutions can be expressed in terms of Legendre polynomial s
in the variable cos 3y(1ß > . The solutions for I = 0 can be characterized c21 >

by the quantum numbers (nß, 1), where nß is the number of quanta for the
fl-motion and 1 is an integer that RARAVY .(22 ) has called the "seniority" . It
is related to i, the total number of phonons, by the equation 9i = 2nß +3 1 .

The y-independence of the term proportional to ß2 simply reflects the
fact that no function of cos 3y can be formed from linear combinations o f
quadratic expressions in cosy and sin y . The only invariant expression tha t
can be made proportional to ß 2 is the fl-excitation built on the ground state .
This wave function is characterized by the quantum numbers (1,0) . For
3 phonons only one solution is possible, and is proportional to ß3 cos 3y (0,1) .
The only allowed I = 0 state with 4 phonons is the second /3-excitation o f
the ground state (2,0), which does not depend on y . Also in the case of
5 phonons only the solution (1,1) appears . It corresponds to the fl-excitatio n
of the (0,1) state and, therefore, has the same y-dependence, namely cos 3y .
Two i = 6 states appear for I = O . The triple /3-excitation of the ground
state with no y-dependence (3,0) and the (0,2) state which is proportiona l
to ß 6 cos 2 3y.
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In general, one can predict that terms which contain odd powers o f
cos 3y are multiplied by odd powers of ß ; even powers of cos 3y are mul-
tiplied by even powers of ß .

2) The existence of a negative ß 3 term" ensures that, for sufficientl y
small positive values of C, there is a maximum in the expression for th e
energy as a function of the axially symmetric deformation . It is situated at

5(1+a)
ßmax = 3 X x (.~max C -I?,

The smallness of C (and therefore of ßmax) allows us to consider only the

ß 2 and ß 3 terms in (36) . One can then easily derive (37) .
The existence of a maximum ensures the existence of a second minimum ,

provided the system does not collapse. Thus, the system has started to

deform even before reaching the transition point C = O .
It is interesting to note why there do not occur two minima in the curv e

which BELYAEV used to illustrate the energy of the system as a functio n

of the axially-symmetric deformation . Let us consider a degenerate shel l
whose levels are split by a deformation in such a way that the final single -

particle spectrum is symmetric with respect to the original energy . This

system will have no preference for prolate rather than oblate deformations ,

or vice versa . Thus, no odd powers of ß will appear in an expansion o f

the energy such as (36), because these terms are associated with odd power s

of cos 3y, which can distinguish between y = 0 and y = r . In particular ,

no ß 3 term can occur and therefore the sufficient condition for the existence
of two minima no longer holds . BELYAEV has found the ground-state equi-

librium deformation for a system of this kind (constant density of levels) .

One should remember, however, that this system has some kind of y-un-

stability, because prolate and oblate deformations are equally favoured .
Neither does the energy surface for the y-deformation of an n l-subsh .ell in

an axially symmetric harmonic oscillator field present two minima .
The density of states of an axially symmetric harmonic oscillator is

proportional to the energy ; the density in a deformed j-shell is inversel y

proportional to the magnitude of the magnetic quantum number . In both

cases, the equilibrium deformation is such that the density increases wit h
energy. If the shell is less than half filled, this favours prolate deformatio n

* A discussion of the ß3 terms, including their effect in the kinetic energy, has been made
independently by A . KERMAN (to be published) .

(37)
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Fig. 1 . Level spectra for (a) a harmonic oscillator field of cylindrical symmetry, (b) an axiall y
symmetric field superposed on the spherical field giving rise to a single j-shell .

for the harmonic oscillator and oblate deformation for the j-shell (see Fig . 1) .
Past the middle of the shell the above arguments apply to the hole states ,
and thus the roles of prolate and oblate deformations are interchanged .

The most direct consequence of the existence of two minima would b e

the appearence of a sudden change in the deformation when the second
minimum falls below the first . We have seen that the existence of two minim a

requires a 33 term, which in turn implies y-stability . This is consistent

with the empirical fact that the transition to deformed nuclei is more abrup t
at the beginning of the rare-earth region where the nuclei are y-stable ,
than at the end where they approach y-unstability . More accurate prediction s

cannot be given at present, because neither the harmonic oscillator nor th e
j-shell provides a realistic description of the actual single-particle spectra .

3) In the spherically symmetric harmonic oscillator, the consequence s
of the terms proportional to cos 3y and cos 2 3y have been studied by con-
structing their matrices and diagonalizing them in perturbation theory . The
necessary y-dependent part of the wave functions is given in rcference( 20 ) .

The term cos 3y shifts the first 2+ and 4+ states towards the positions tha t
they would occupy in a rotational band . The second 2+ state is pushed
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rather high. On the contrary, the cos 2 3y term tends to bring the second 2 +
state below the first 4+ state .

The discussion of the influence of these terns on the transition rates i s
simplified by the existence of a "y-parity "(20) which is equal to the parity
of 1. Any interaction which can be expanded in even powers of cos 3 y
preserves a selection rule which forbids the transition from the second 2 +
state to the ground state ; the odd powers of cos 3y violate this selection rule .

Most non-deformed, even mass nuclei( 23) have their second 2+ level

below their first 4+ level ; in addition, the transition from the second 2 +

level to the ground state is strongly retarded . The previous arguments suggest
that both these features can be attributed to the effect of a terni proportional

to /f cos2 3 ,y. One can imagine situations in which the coefficient of the fi 3

term would be reduced, for example if the single-particle spectrum is inter-
mediate between those of the harmonic oscillator and the j-shell, or if protons
and neutrons are filling opposite ends of similar shells (see 2) . The main

effect or a 94 term would be on the position of the second 0+ state, abou t
which very little is known experimentally .

We have considered only the ß- and y-dependence of the nuclear sur -

face energy . Similar terms in the mass parameter should also be taken int o

account in a more detailed study of nuclear vibrations .

IV. Gamma vibrations in a deformed harmonic oscillator fiel d

We assume that the system has a prolate axially symmetric equilibriu m

deformation (y = 0), and we study the change in the potential energy fo r

small changes in y. In this chapter we consider the case of a harmonic
oscillator field . Because of the very particular degeneracies associated with

this field, we do not expect quantitative agreement with actual nuclei . How-

ever, the oscillator gives a first qualitative picture of a realistic nuclear shell ,

and has the advantage that closed expressions for the vibrational parameter s
can be obtained. In addition, we assume that N(= nz +n1 ) is much greater

than unity .
The operator corresponding to the y-deformation has only diagona l

matrix elements in a single-particle representation characterized by th e

quantum numbers N, n1 and ny .

h

/

;

3141W1
-2 fl y ) . (38)



Nr.2

	

1 7

Here, W1 is the characteristic frequency for oscillations perpendicular to

the z-axis .

We can therefore apply equations (34) . One can easily evaluate the

vibrational coefficients in two simple cases .
a) The deformation is so great compared to the pairing force that th e

problem reduces to coupled particles in the n1-subshells . The necessary

condition for the validity of this approximation is that the two quasi-particl e

energies are small compared to the distance between 2 subshells, i . e . ,

Gi n «1SxQeq, hMW'

where G1 is the effective strength of the pairing force which acts between par-
ticles belonging to the n1-subshell .

Due to renormalization effects of the other n 1-subshells, G1 is greater

than the G to be used if the entire N-shell is treated . We can calculate the

renormalization by means of a procedure similar to those employed in( 7 )
and (10) to account for the influence on a particular unfilled shell of th e
presence of other shells. Let us call Gm) (= G) the pairing force matrix

element corresponding to a scattering of a pair of particles from the state s

(v+, v-) to the states (w+, w-) . According tod o > ,

G ucoGW V'

	

w>=,° Gwv'Gvc o

2(ew ev)w-n1 -1 2 (Ey -Ew )

	

1

	

i

	

' (40)

= Gyy,

	

G MW'w=N.-,nlco+n1 co°n1

nl1 - 6 Qeq h

	

w_

	

co (0=1,71 _ 1 w

By performing the above summations, and using condition (39), we ge t

1

G =G

	

Gn MW

	

(41)
1

	

1- 6 x 1 h
In [n1 (N-n1 )

1

	

Qe q

In this case, a) the simple expressions (35), corresponding to the "de -

generate model", can be used for the vibrational parameters

G1 (MW1
C=

	

x
2 O n ni h

(39)

w = N

( Gl)vv' = G,,,-+
=--

M 2

2 G 1ni0n ~ h
Mut: Fys . Medd. Dan .Vid . Selsk. 33, no. 2 .

	

2

B = -h 2

	

1



18

	

1

	

Nr . 2

where On -
n2

- nl I, and n' is the number of particles in the n 1 sub-

shell . If O°" is the value of On for which the axial shape is no longer stable ,
(42) and (36) imply that

O°

	

G11 /MW1/

2

O° G1

N1

(W1 )2

(43 )
2 xn 2 n

	

2 G n 2 W

Neglecting the renormalization effect expressed by (41), we see that o?, ,
and o °,, are roughly of the same order of magnitude . This implies that th e
fraction of nuclei with axially symmetric equilibrium deformation is of th e
same order of magnitude as the fraction of nuclei which are spherical .

Nuclei with 0<0n <O1 . have an axially symmetric stable deformation .
The ratio between the frequency of the y-vibrations and the gap i s

hwy =

h w
Here the adiabatic condition implies that

	

« 1 .
G1n1

For nuclei in the region of transition between axially symmetric an d
y-deformed nuclei, the potential energy surface does not exhibit two minim a
(cf . p. 14) .

b) We can also easily treat the deformed harmonic oscillator field if we
replace summations over the variable n 1 by integrations, using a leve l
density proportional to the single-particle energies (see p . 15) . This is a
particular case of the level density used by BELYAEV in his investigation
of axial deformations. Equations (46)-(54) are a transcription of some o f
his results into our notation .

The single-particle energies a, can be labelled by n 1. 'With a convenient
choice of the zero-point energy, they are given b y

en - en1= 3 ,u mw n1 - A .

W is the frequency of the harmonic oscillator . In neglecting the differenc e
between W1 and Wz we make an error of the order of the deformation, i . e . ,
of order A-113 or

N-1
for the equilibrium deformation . This can be neglected

in our limit N» 1 .

A new parameter 77 characterizing the deformation is introduced :

r

	

h

	

2
2

O ,
n

1 1 2
] 2x	 n	

1

	

1 1J
G1n1

	

MW

	

G
. (44)

(45)



3 hp,
'7

_

MWG '

is defined by the conditio nwhere

(46)

SN

(Il l) dnl

o

	

En,.

	

P . o

dn1

Ent
(47 )

In the axially symmetric harmonic oscillator, the level density, e(n 1 ), equal s
n1 . Therefore, the parameters used by BELYAEV in order to characterize
the level density are here

N
Po= 2 ; (48)

The parameters A and 4 are always determined from (4) and (12) :

A=3
h1,uN

(49)
2MW

(1-xn cothn) ,

/3h,uN" (1 - .xn )42
(50)

=
\2MW1

	

sinh2

	

'

where xn measures the number of particles in the shell and is also a slow-
varying function of

(51)

with

y-coth 7(1-	 2'7 smh

2 One One can eliminate P in (46) by its expression as a function o f
and n

M6V~ (-
2N +3n1)n1

E

i

nl

	

ni

3~W4 (1 xn) coth -xn 1 I
sih2	 )+ sinh2 ~

(3xn coth n-1)

The quadrupole moment Q is given by

Q 111WG (2N-3n1) n1 2Vn,.

,u h GN
mw

	

[n -xn (~~coth

(54)

2 *



20

3

	

la q

Fig . 2 . The right-hand side of equation (55) represented as a function of n = n eq , for several

n
values of D . The intersection of these curves with the horizontal dashed line yields the value s

of ri for which the energy is a minimum if the
x 2 (

	 )
2 is such that 0°= 0 .55 .

G , 211W n

Equations (53) and (54), plus the condition of the vanishing of the

Lagrange multiplier at equilibrium (Fi = Q), define an implicit equatio n
for the equilibrium value of n .

xN2 / h \2

	

4sinh2r7[n-xn(r7coth37-1)]

	

( 55)
G \MWJ 3(1-x2 ) [sinh2r~2xn (3+sinh2 r7)+2r7(3xn coth~7-1) ]

2

Nr.2
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At ai - 0 the right-hand side becomes indeterminate . However, (36) shows
that in this case there is always an extremum in the potential energy surface .

The right-hand side of (55) is plotted as a function of ai in Fig . 2 for T _
0 .1, 0 .3, 0 .5, 0 .7, and 1 . It is seen that, for a particular

	

and sufficiently
x 2

	

2
small

G

	

W) , there are no solutions to (55) and thus the only ex -
xN2 h 2

tremum is the minimum at ai = O. For larger	
G ~MW )'

there are tw o
values of ai satisfying (55), the lower corresponding to a maximum and th e
upper to a second minimum (cf. discussions on p . 14) . For still larger
xN2 h 2 .1 2

,G MW1

of the restoring force and mass parameter, are to be calculated for the valu e
of ay which corresponds to the equilibrium situation . We find

, there is only one solution to (55), and thus only one mini -

mum (the extremum at ai = 0 is now a maximum) . One can also see tha t
for each 2 � 1 there is a minimum value for stable deformation .

2

	

2

The expressions

	

sva and

	

sv5, needed in (34) for the evaluatio n
E

	

Ev

	

v vv

1

(56)

S2
v Ij

/ h ~2 nl~Y n~ - nl n- 2 n3

	

~ ( 1

	

,) 2
-

O

=N
D 2

MW ~ 7aL
al p n t

(	

h

	

)2

SN ni dnl
MW p Lnl

J °

	

L nl

2
S vv

v Ev

2

	

8
MW N 2 G 3 [ai - xn (ai co th ai 1)f [i + (1 - xn) sinh2 a7 J

{xn [3+(4- 3x2n)sinh2 r~ -(3 +x2n )sinh4 a7]

	

}

h.

(57)
+ sinh n cosh ~ (- 3 + (1 +3 xn) sinh2 ]
+3 r~ (1- xn cothrJ) [1-1-(1 - x2n)sinh2 a7)] }

	

Svv

	

h	 \ 2

	

256 sinh5 ai

	

v Ev

	

IlIW/ 3N6 G 5 [a7-xn (aicothai- 1)] 5 [1+(1 -x2n)sinh2 r7 ] 3
{cosh ai [3+(4 +8xn)sinh 2 ap +(1 +2xn - 3xn)sinh4 a7 ]

- xn sinh ai [9 + 12 sinh2 17 + (3 - 2 xn - xn) sinh4 ai ] } .

(58)
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In the limit of vanishing G, 77-+Go and equations (50), (51), (55), (57), an d

N4 G2 2
42 =

	

-
	 1'2	

16 sinh 2 (1 - xn)3 (1 +xn) .

	

(501)

1-
2 n

(58) reduce to

1+{2 1 1/ 2

S2

=
3 xN2 h l 2

77 1)]	 2	
(MW, (1

xn) 2 (1 +xn)

	

(501)

xn =

lim G [77 -

S Yy

	

8 f h 2 s1n112 7 7

,

	

N2 G3 `11W 773(1 -xn)
(571)

3vY

	

256

Ev 3N s G5 71 5 (1 -xn) 2 (1 -x
2n

) 2 •

h
2

MW
(581)

sinh4 a7

According to (34), the restoring force for y-vibrations is then given b y

c
= 2

(1 +2 xn)
,

1 - xn

which implies that the axial symmetry is preserved until xn = - 1/2, which

corresponds to n =- Thus the first half of the shell < 1 I has stable

prolate deformation .

The mass parameter for the y-vibrations diverges as 7700 . However ,

the significant quantity is the ratio between the energy of the y-vibratio n

by

hmy 1+2 xn
1/2

24

	

1 +xn

hug
For non-zero G, we must solve (55) for 77 and then evaluate 2 d, using

(50), (51), (57), and (58) . The constant xN2
h 2

has been chosen so
G

	 (

1lIW}

that Bn = 0 .55, corresponding to a situation in which the spherical shape

becomes unstable when the

h = 3
. The results are shown in Fig . 3. The

corresponding curve for oblate deformation is obtained by reflecting th e

curve for prolate deformation about the line = 1 .

(59)

and 24 . This ratio remains finite, and is given

(60)
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It is seen that the adiabatic condition for y-vibrations is satisfied fo r

0 . 5 < 12- < 1 .5 . For prolate (oblate) deformation the frequency of the vi-

bration decreases as the number of particles (holes) increases . Fig. 3 also

tw r
2,&

o

	

0,5

	

q

~Rayion of porsible-
å- vibrations

Fig . 3 . The ratio between the energy of the y-vibrations and twice the value of s plotted as a

function of , for 0
n

= 0 (G = 0) and 00 = 0 .55 . The full and dashed lines represent th e
5
2 two cases in which the calculations were done by replacing the summations by integrations .

The dotted line represents the result of the calculations done without this approximation, fo r
Øn = 0 .55 and n such that nl = 4 is at the Fermi surface for G = O .

hi tU
shows that the ratio 2 å is not significantly affected by the presence of th e
pairing force .

If G 0, so that ri - cc, we might expect to approach the situation dealt
with in a) above . Nevertheless, the fact that Fig . 3 shows no subshell effects
implies that the two methods do not lead to the same result . In fact, for
fixed N, the validity of method a) places an upper limit on G (sec (39)) ,
whereas the validity of method b) places a lower limit on G . Evidently
these regions of validity do not overlap . It is probable that the actual nuclear
case is better represented by method b). On the one hand, the reductio n
in the observed moments of inertia compared to the rigid values implie s
a mixing by the pairing force of different n l-subshells . On the other hand ,
performing the sums in (4), (12), (54), (56), and (57) exactly for 0° = 0 .55,
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N = 7, and n such that nl = 4 is at the Fermi surface for G = 0, leads to
the dotted curve in Fig . 3 . Although subshell effects do appear, the averag e
ratio agrees well with the result given by method b) .

V. Gamma vibrations in a realistic shell model

In the previous section we found that the occurrence of low-energ y
y-vibrations requires states with high values of n1. However, the oscillator

model has very special features, in particular the degeneracy of the n l-
subshell . Before attempting a detailed comparison with experiment we mus t
give up these special features and make the single-particle Hamiltonian

more realistic .

The Nilsson model (24) has been very succesful in explaining the properties
of odd-particle states in deformed nuclei(15 ) . The nucleons are supposed to
be in states very similar to those of a deformed harmonic oscillator . The

states are labelled by (N, nz, A, A+E) . N and n z have the same meanin g
as before, and A and .' are the components, along the symmetry axis, o f

the orbital and spin angular momenta, respectively . However, this mode l

differs essentially from the harmonic oscillator in that states with the sam e
nz are no longer degenerate .

We must now consider nuclei with both neutrons and protons outsid e

closed shells . Apart from some very exceptional cases, there are no nucle i

in the deformed region in which an external neutron and proton are oc-
cupying time-reversed states . Thus, the pairing force we have been using (2)

will not couple the neutrons and protons. They will, however, be coupled

by the deformed field . The matrix for the single-particle neutron Hamiltonian
is, in the Nilsson representation ,

(En)vø = (£å )v Svco - ( x n Sn ' ?Ç np Sp) ( s n)vtn

A corresponding expression holds for protons . The coupling constant s
x n , xp , xnp and xpn are to be determined, in principle, by the isotopic spi n

dependence of the nuclear force plus renormalization effects . It will be

assumed in the following that xn = xp and xnp = xpn . The sn' are the single-

particle energies calculated by NILssoN''' . They already contain the terms
depending on the axially symmetric part of the deformation . The subscripts
n and p indicate neutrons and protons, respectively .

* Relatively small shifts will be made in the energy of some of Nilsson's levels in order
to get closer agreement with empirical level ordering in odd-mass nuclei (cf . p . 30) .

(61)
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One has then to solve the equations (4) and (12) for neutrons and proton s

separately* . The neutron-proton coupling is expressed by the terms

xpnSn(Sp)op and -xnp Sp (Sn)op . In the absence of these terms, we can cal-
culate the vibrational parameters for separate neutron and proton y-vibra-

tions*' . The problem is then equivalent to that of two coupled harmonic

oscillators

Hy = n .S 2 + 9 S 2 2-nS,n+
2p

Spnp Sp Sn .

The last term contains the usual factor of 1/2 .
We can now decouple the oscillators by transforming t o

ordinates . The lower eigenfrequency is given b y

1 Cp

	

2
4 2np ht 2 1/2 1/ 2(

	

C

	

xCn

	

} p

	

n
2 Bp B. Bp B +

	
Bp B.

We can also calculate the probability of the electric quadrupole transitio n

connecting the first y-vibrational state with the ground state . For this pur -

pose, it is convenient to regard the y-vibration as a superposition of tw o
travelling waves l22 >, Q 2 and Q_ 2 , with definite angular momentum pro-

jections along the symmetry axis, and with the same vibrational parameters .
The operator 1(E2,,u) responsible for the E2 transilions l14 > is related to
Q ,u by

n , p (E2, ,u) = 4 l/la- enp Q m ,

	

(64)

where en p is the effective electrical charges carried by the neutron or th e
proton, respectively . Using eq . (V.34) of ref.( 14> the square of the transitio n
matrix element for a single oscillator is found to be

e 2
I< 2 I

	

(E 2 , 2 ) I o> I2 =

	

(63)16n 2 [BC] 1 " 2 '

For the coupled harmonic oscillators it i s

5 h e 2

	

e2

	

e e
<2 I 9N(E2,2) I0>12	 p(1 - cosb)+ n (1 +cos b)+ 	 p n_sinb~, (66)

647r u~y Bp

	

B,,, I/Bp B.

	

j
where

	 2 ;e.p l/Bp Bn

	

tgb =
(Bn Cp BpCn)

	

(67 )

* Some of the wave functions were kindly supplied by S . G . NlLssoN ; others were derive d
in collaboration with Z . SZYMANSRI .

** As the operator .x z-y 2 is not diagonal in the Nilsson representation, we have to use (29 )
and (33) .

Mat. Fys . Nedd . Dan .vid . Selsk . 83, no . 2 .

	

3

h.cvy =

(62)

normal co -

(63)
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The reduced transition probability from the ground state to the firs t
y-vibrational level may be written (cf. eq . V.33 and note 175 of ref . 14)

ß(E2 ; 0-- 2)=2 I< 2I 9Ji(E2, 2)I 0> 1 2 .

	

(68)

We must now discuss the choice of the parameters G n , Gp , %n, xnp ,
en and e p r .

In the deformed region, there is no clear distinction between fille d
and unfilled shells . Therefore, one has no definite prescription for the state s
into which the pairing force is allowed to scatter . However, states whic h
lie far from the Fermi level contribute to the wave function only through
a renormalization of G(7 ) (10) . Therefore, we have chosen to allow the pairing
force to scatter only amongst the 24 states nearest to the Fermi level .

One has to choose an effective value of G . and Gp such that 2A n and 24 p
reproduce the average differences between the neutron and proton binding
energies of even and odd-mass nuclei . Furthermore, the predicted quasi-
particle excitations should be tested with experimental data . However, one
should expect some shillings due to quasi-particle interactions, to the block -
ing of some states near the Fermi surface, etc . Therefore, the empirica l
quasi-particle energies give only a lower limit on the value of G .

Finally we have chosen a value of Gn = 2Å 5 Mev and of G p = 32 .1 Mev .

The values of x n and Y np enter into the calculation of the ground stat e
quadrupole moment . The method used here is analogous to that used i n
the derivation of (55) .

The part of Nilsson's potential responsible for the deformation i s

bNIW2

	

2

	

2

	

2---3 (2 z - x - 9 ) •

	

( 69 )

Comparing (69) with the corresponding term in our single-particle Hamil -
tonian (13 1), we gest

bMW 2-	 3

	

Q+u .

	

(70)

Using the Nilsson single-particle energies corresponding to a given value o f
b, we solve (4) and (12) and thus obtain the electric Q e and mass Q qua-
drupole moments as a function of b . The inverse of the first function enable s
us to determine b eq from the observed equilibrium electric quadrupole

* The determination of these constants is only outlined here . It is given with more details în(25) .



moment . At equilibrium, fi vanishes and thus the value of x which woul d
yield these values of 6eq and Q (deq) is given by

MW 2 ôe q

3 Q (åeq)
.

In the rare-earth region, the observed electric quadrupole moments ar e
reproduced by e`

In the calculation of Q e and Q, 17,, has been chosen to be unity for th e
states below the selected 24, and zero for those above . The single-particle
mass quadrupole moment is given b y .; . ::

h

	

2 z ' 2 x' 2 + y'2\

9vø-17<r!W

	

IW >
1

<r2w
< v (2z' 2 x' 2 - y '2)

	

>

+ 3~(1+~8+ . . .)<rl(2z'2 - x'2- y')Iu>> +(2 +6 + .

(71 )

= 122A-5 / 3 ()2 iev .

	

(72)

(73)

lYf j~%
where Xi2 3

1
- __ hW1 x2 . y i2

	

h-

1 y 2 ; z
2 JIWz 2
-

Use has been made of the relations(24 )

iT'z = W (1 3 å)

	

w 2 = W 2 (1 + 3 ~5) .

	

(74)

It has been verified that the contribution to the total quadrupole momen t
from the terms multiplied by å in (73) is equal to the contribution due t o
the first term. In other words, the saine results could be obtained by using
a renormalized value of x equal to twice( 9 > the value given in (72), and
using for the single-particle quadrupole matrix elements the value given by
the first term in (73) . The coupling parameter x, calculated in this way ,
is to be considered here as an average value of xn and xro, .

We are going to calculate the energy and transition probability for th e
y-vibrations in three cases, namely xn =

xnP -
x ; 6 xn = 2 xno, = 3 x and

* The A- ` 13 dependence of x has been pointed out by BELYAEV (7) .
** The single-particle matrix elements have been obtained using the expression of the wav e

functions in terms of the asymptotic representation (26) .

3*
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x n =xnp = 1 .3 x . The value of x to be used is equal to twice that given i n
(72) . The single-particle matrix element will b e

-
1, 3<yI(x"- u" J)I tu > .

	

(75)çvw MW

Determination of e n and ep . It was found above that renormalization ef-
fects doubled the mass quadrupole moment . We have used for the additiona l
charge due to these effects a value of Z/A times the additional mass . Ac-
cordingly,

	

ep =e(1+Z/A)

	

e n eZ/d,

	

(76)

where e is the charge of a free proton .

Results of the calculations . Table I a contains the value of the summations
S vw( UvVw + UWVv)2

	

~

	

SvwUvvw UW Vv) 21 =

	

and
~r 3 =Z

	

-, calculated for-
V, CO

	

Ev +Ew

	

v, w

	

(Ev +Ew ) 3
some neutron numbers and for the deformation listed in column 1 . Columns 4 ,
5 and 6 contain the restoring force for the neutron vibration, assumin g
x n xnp = x ; 6 xn = 2 xnp = 3 x and xn == xnp = 1 .3x, respectively . Column
7 lists the mass parameter. Table lb is the analogous table correspondin g
to protons .

Table II contains the predicted energy of the first y-vibrational leve l
and the experimental value .

The two first calculations show that the value of the energy of the firs t
vibrational level does not depend on the ratio xn/xnp . At the beginning of
the deformed region the predicted energies are about 80 per cent greate r
than the empirical ones . There is, however, a correlation between the em-
pirical and theoretical trends (i . e ., decrease in the energy for Er 16e ) . This
decrease is due mainly to the relative large values of nl for the states which
come near to the Fermi energy .

At the end of the deformed region, the predicted trends and order o f
magnitude of the energy are in good agreement with the experimental values .
However, a detailed comparison is hindered in the region of W and O s
by the uncertainty in the parameters used. The predicted energies ar e
rather sensitive to the position of the (5101/2) and (5123/2) neutron levels .
In the calculations, these levels have been depressed. by 250 kev in order
to fit the spectrum of W183_ Calculations with the original Nilsson energie s
would decrease the energy of the y-vibrations for 112 neutrons and increas e
it for 110 neutrons (keeping S = 0.20) and would thus give a somewha t
better fit . Furthermore, the experimental evidence on the value of å is not
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TABLES I a and Ih. The rare-earth region. The units of 1 are
(MW)

x Mev 1 .

Those of X3
are l ' 11tiT') x Mein 3 . The units of C, C ' and C " are the invers e

of those of XI . Column C refers to the case x n = xn7, = x ; column C ' to the

case 3 x,, = xnp = x and column C " to the case x 7,

	

= x 1 .3 . The unit s
of B are (MW) 2 x Mev 1 .

TABLE I a .

å E', ~3 C ,n C n C n B, z

90
0 .25 39 .8 3 .3S 0 .0070 0 .0098 0 .0053 0 .00107
0 .30 38 .1 3 .47 75 103 58 11 9

92	 0 .30 34 .3 3 .03 92 119 76 129
94	 0 .30 34 .5 3 .94 93 119 77 165
98	 0 .30 38 .6 5 .29 81 105 66 177

100	 0 .30 37 .2 4 .32 88 111 74 156
106	 0 .25 54 .5 9 .22 48 70 36 156
108	 0 .20 60 .6 10 .81 41 62 28 147
110	 0 .20 67 .7 14 .0 33 53 21 153

0 .15 75 .7 15 .8 26 46 15 138212	
0 .20 68 .2 14 .2 34 53 22 152

114	 0 .15 74 .1 14 .4 28 48 17 131

TABLE I b .

Z s I

	

~1 E3 G 7, CP I

	

Ba

0 .25 24 .8 2 .01 0 .0145 0 .0173 0 .0128 0 .0016 362	 1
0 .30 22 .2 1 .74 169 197 151 17 6

64	 0 .30 24 .9 2 .85 147 173 131 23 0
66	 0 .30 31 .1 5 .74 109 135 94 29 7
68	 0 .30 30 .8 5.65 114 138 99 29 8
70	 0 .30 21 .0 1 .95 191 215 177 22 1
72	 0 .25 26 .2 1 .98 147 169 133 14 4

74
0 .15 40 .0 5 .14 84 105 72 16 1

l 0 .20 34 .3 3 .82 105 126 93 16 2

7G	 ~
0 .15 44 .2 6 .95 74 93 62 17 8
0 .20 43 .2 6 .65 76 95 64 176
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TABLE II . The rare-earth region. Columns 2, 3 and 4 are in blev . They cor -

respond to the case xn = x, t p = x ; 3 x,np = ~x
and x. = x,np = x 1 .3, respect -

ively. Column 6 lists the experimental energy .

Nucleus ô (~iw y) th (ßw y)t h (~ wy)th (hwy)exp . 2 ') ")

0 .25 1 .79 1 .84 0 .77
62S1I1196	 1 .09?.

0 .30 1 .91 1 .97 1 .18 1
Sm I ,, 	 0 .30 2 .11 2 .14 1 .5 0

64 GdI~à	 0 .30 1 .90 1 .91 1 .30 1 .15 2
GUT,	 0 .30 1 .81 1 .82 1 .26 1 .18 2

66 Dy1så	 0 .30 1 .45 1 .46 0 .89 0 .96 4

DYlôé	 0 .30 1 .38 1 .38 0 .7 8

66Er l yÿ	 0 .30 1 .43 1 .43 0 .88 0 .78 7
Erlaa	 0 .30 1 .52 1 .52 1 .03 0 .82 2

76ybio	 0 .30 2 .05 2 .10 1 .6 4
72~lflås	 0 .25 1 .44 1 .56 0.7 1

;4 W ôå	 0 .20 1 .16 1 .24 - 1 .22 2
W ;eo	 0 .20 0 .92 1 .09 - 0 .90 3

Ia6

	

f 0 .15 0 .65 0 .76 -
~u2	 0 .20 1 .02 1 .10

0 .730
J

76 0s iin • •	 0 .20 0 .75 0 .81 - 0 .76 8

Iaa

	

( 0 .15 0 .53 0 .64 -
OsII,	

0 .20 0 .80 0 .85
0 .62 8

190	Os 1 1 4 0 .15 0 .66 0 .73 - 0 .558

so precise for the W and Os isotopes as in other rare-earth nuclei . Table II
indicates good agreement for W 184, using å = 0 .20, and for \\1186 using a
value of å intermediate between 0 .15 and 0 .20 .

In addition, the restoring force becomes very small, so higher order
terms in S could become more important .

We have also performed the calculations using a coupling constant x

which is 30 per cent greater than the one determined by considerations on
the axially symmetric equilibrium deformations . These calculations give
good agreement for the y-energies at the beginning of the deformed regio n

and they lead to y-instability in W and Os . 1f such would be the case, th e

y-vibrations in Elf should be especially low . However, this fact does not ap-

pear to be supported by experimental data .

One can estimate roughly the effect of the neglected Coulomb interactio n

by assuming an ellipsoid with constant density of charge( 24 ) . The Coulomb
energy i s
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3 Z2 e 2E`5 _R. 5(Q 2 +S2)
1- 36 A 2R4

(77 )

	 (Z)2 e 2 2
The ratio

	

1 .40 x 10-3 A 273 is 0 .04 if A = 170 . (R = 1 .2 x 10-13
12 AR5 x

A113 cm ; - = 0 .4) . Thus the effect of the Coulomb interaction amounts only

to a 4 per cent change in x in the middle of the first deformed region .

Table III contains the reduced transition probabilities calculated by

means of (68) and parameters determined above. In the Gd, Dy, Er, and

W-isotopes, the predicted values of the reduced transition probabilities ar e

in agreement with experiment. In Os188 and Os190 , however, the predicte d

transition rates are about three Limes the experimental values . The disturbin g

aspect of the discrepancy is the fact that, experimentally, no increase i n

the transition rate occurs as the energy of the y-vibrations decreases . We

expect such an increase since the decrease in the y-energy is principall y

due to a reduction in the restoring force, which should lead to oscillation s

of greater amplitude . On the other hand, if the restoring force goes to zer o

(y-unstable oscillations (L1)) the transition from the second 2+ state to the

ground state is completely forbidden . This reveals an incompleteness i n

the present treatment, due to the fact that our wave functions do not have

the required symmetry properties( 16 ) . This symmetrization would give rise
to interference terms which are responsible for the cancellation of the above -

mentioned matrix element as the system approaches y-instability . But these

interference effects should be small if the root mean square value of y is

small compared with 70 . Estimated values for this quantity are also listed

in Table III . They have been calculated by means o f

~ 2 Q2 _ /B(E2 ; 00 22),,,
Yr . m, s _ 1/	

0 20

	

B(E2 ; 00 -~20)m

where B(E2)m is the usual reduced transition probability calculated, as-

suming the same charge for neutrons as for protons. However, the ratio

(77) can be well approximated by the ratio between the reduced transitio n

probabilities obtained with the effective charges (76) .

It seems that for Os188 and for Os190 the above-mentioned interferenc e

effects could begin to be important . The inclusion of higher-order term s

which may have "y-parity" would increase these interference effects .

The present estimates of y, m . s may provide also a test about the validity

(78)
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TABLE III . Reduced transition probabilities, in units af 10-48 e 2 cm4 , for the
transition from the ground state to the first y-vibrational level . The las t
column lists estimated root-mean-square y-values in units of n/3 . The inter-

aference effects neglected here are unimportant if y r . m . s . « 3

Nucleus

	

S

	

I B(E2 ; 0~Y)th B (E2 ; 0-~y)t,h 1B(E2 ; 0->y)th
l

ae l

B(E2• 0± y)exp
ax)

1 Yrms

152

	

10
.25 . . . . 0 .12 0 .12 0 .30 - 0 .20

82 Sm °°

	

10 .30 . . . . 0 .10 0 .10 0 .17 - 0 .2 0
S1n 1 92

	

0 .30 . . . . 0 .09 0 .10 0 .13 - 0 .1 7
o4 Gd l ~ å

	

0 .30 . . 0 .10 0 .11 0 .16 -0.16 0 .1 7

Gd 1 ~4

	

0 .30 . . . . 0 .11 0 .11 0 .14 ,..0 .16 0 .1 6

SsDYlså

	

0 .30 . . . 0 .13 0 .13 0 .24 - 0 .1 8
Dy1Je

	

0 .30 . . . . 0 .12 0 .12 0 .22 - 0 .1 6

eslErl se

	

0 .30 . . . . 0 .12 0 .12 0 .19 -0.22 0 .1 6

~riôô

	

0 .30 . . . . 0 .13 0 .13 0 .18 ti 0 .22 0 .1 6

zo Yli iôô

	

0 .30 . . . . 0 .07 0 .08 0 .09 - 0 .1 3
72E01;4

	

0 .25 . . . . 0 .10 0 .10 0 .21 -- 0 .1 7

74«iô

	

0 .20 . . . 0 .16 0 .18 .~ 0 .12 0 .23
W114',;

	

0 .20 . . . 0 .17 0 .19 - 0 .17 ± 0 .05 0 .2 6

l 0 .15

	

. . . . 0.37 0 .34 0 .4 0
Wli2

	

0 .20 . . . . 0 .17 0.18 - 0 .17 f 0 .03
0 .2 8,,Oslo

	

0 .20 . . . . 0 .19 0 .22 - - 0 .3 3

1aa

	

f 0 .15 . . . . 0 .58 0 .47 -
0s9"

	

0 .20 . . . . 0 .19 0 .23 - 0 .20 10.06 0 .3 6
04-704

	

0 .15 . . . . 0 .35 0 .37 0 .14 ± 0 .03 0 .48

All measurements of ref . 28 carry an experimental uncertainty of a factor of 2 .

of the models which take into account only the degrees of freedom associated

with an asymmetric rotor .

In order to summarize our results, we can say that, without any fre e
parameter, we have been able to predict energies for the y-vibrations which
are in good agreement with experimental data at the end of the deforme d

region . At the beginning, the predicted y-energies are too high, but the struc-
ture in the empirical curve is predicted theoretically . The experimenta l

transition rates are also well accounted for, with the exception of the O s

isotopes .

Some calculations have still to be performed in order to test the validit y
of some of our assumptions . For instance, we have to treat the closed shell s

explicitly in order to check the renormalization idea . In addition, the use

of a central potential which is essentially an harmonic oscillator one, ma y
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overestimate the dependence of the matrix elements s, w on the asymptoti c

quantum numbers .
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Appendix

General calculation of the restoring force and mass parameters .

We consider a system at its equilibrium deformation . We assume tha t
we already know the values of A,, A and the Vv . We allow a small change, R ,
in the previous single-particle field . The matrix (13 1 ), with ,cc = x Qequilibrium ,
6 = xSequüibrium, has to be modified by the addition of a term which i s
generally not diagonal

4' 2 = 4 2 + e4 i

We diagonalize the single-particle Hamiltonian by means of perturb-
ation theory

and use a procedure similar to the one outlined in p . 12 . The expressions
for Ev and Ver are

(I•vv +,`i) 42 ~ .

* Since the quadrupole operator is even under time-reversal (r'v+w+ = rr_w_ ) it follow s
that the + sign in the second equation (3A) holds for both cv+ and cv_ . In consequence )
Hpair = Hpair+0 (p 2 ) . When this condition is not satisfied (i . e ., for the Coriolis force) the fol-
lowing treatment may not be valid .

- (xR+ Â)rvw

	

e l'vw•

	

(1A)

is again a Lagrange multiplier .

The quantities denoted by a prime will refer to the new single-particle
field . We shall expand in e and keep only linear terms .

A '= A +QÀ 1

(2 A)

Ey = 8v - P (r vv + 'I 1 )

r v w
~

	

cw

Ew - E,r,

cv=cv + O

4
E l = Ev +

E 2
(1 vv +

	

Ev
v

Vv2-Vv
+2 E 3,

4
2
1 Ev

2

(4A)



The two basic equations (4) and (12) must be satisfied independentl y

of the value of O. From the requirement that the terms proportional to P
vanish, it follows that

=0

(5A)

The solution of this system of equations i s

1

) 2

	

/

	

1)

2

+g
yEv

,
el,

	

, r vv	 Ev

	

~
2

~

	

rv v

~Ev~~' I:ÿ + LI

	

1~ Ev l ~
2q. =

[ ~	 Ev
t

	

E3
v

	

y

(GA)

Using equations (3A), (4A) and (6A), the new values of Vv and LT, can be
calculated . Then the new ground state wave function 10') can be expressed
in the representation corresponding to the equilibrium deformatio n

10' > = II [Uv +Vv cv~ cv'] I vacuum )
v

=I0>
1

	

42 LJ
2

Ev
+ Q v 4	 (Iv Vv

	

+7 1 )

	

+

	

s av ß 10 >

	

(7A)
v

	

v v

	

v

v

	

lvw(~vNw+aw~v)1o> .

	

Jv W +V E CO - E v

Because of the identity (Ev + Ew) (Uw Vv - (Iv Vw) = (ew - E v ) (Uw Vv + Uv Vw )
the third term in (7 A), which contains non-diagonal single-particle matri x
elements rvw , can be cast into the form

e rvw (Uv Vw +	 Uw Vv) + +T.., 	
av P. ~ 0

~

	

(8A)
v,aw

	

(Ev + Ew )

Using the relations < 0 I Rol, aÿ It, 10) = rvw (Uv Vw + ( To) Vv ) and 2 Uv Vv
= E

,
and equations (7 A) and (8A), we find

	

v



R - < O' I Rop1 0' >

< O I Rov1 0 >

(U,,V

wZ

-1,

	

+

	

2 - vv
+

Ev+E,3,3 2

	

Ev3

from which the derivative dR, and thus the restoring force (eq . 29), can be
immediately obtained .

The calculation of the mass parameter is done according to the pre-
scriptions of the "c.ranc.king model" :

<vw

	

o>1 2
E„ + Eu,

_ 2 h
d

e
' 2

	

I<vwld 10>1 2

2	
, dR) v

	

E v + Ew

_

	

2

	

2P
2
	 	 ((iv v.+UU Vv)2

2
(IR

	

v, w

	

(E r + Ew)

4

	

4 2

	

11 c-, 1

	

4
4, -414v + A l di a y +2 71 4 2r„v -.-dlr vv s v +t .

r E

	

J
We see that if Y' =

	

yy3y - 0, it follows that 21 = di
E,3,

	

E v

	

case, formulae (29) and (33) are correct . The first condition

	

` = 0 i s
v Ey

related to the non-conservation of the particle number (31) . To interpre t

the second condition

	

t yy3y = 0 we construct the two quasi-particle per -
t E v

turbed wave function in analogy to (27) .

(vw)'>=vw>-Q<vcolRoioI0>10>+e

	

<0IR o,,Ien>
vco >,

	

(11 A )
Ev +Ew

	

,7 E +En

where I )i vco > = 4,8+n a,,, ßw 1 0 > represents a four quasi-particle wave
function. We require that the matrix element of Hznt between I <v w) ' > and
10 ' > contains no linear term in Q, and therefore can lead to no quadrati c
term in the expression for the total ground-state energy . From Appendix A
of BELYAEv (7 ) we have

B =2h
v, ru

(1OA )

. In this
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(~yJvc> Hint 0 >Zww~( Uv VÉ+q tw)

	

(12A)

G
«r1l H in t ~Uw-2

	

(U~ Uÿ +VvVD +2Uv Vv llw Vw l

	

(13A)

The last term in (13A) is of order compared to the first, as it contain s

no summation over all the single-particle states . Neglecting it and using
(27), (11A), (12A), and (13A) ,

<0 Hint (vw) i

	

<7I RopI o >< O !Hi n t I7vw >

	

< 0 I RopI/><I HintI vw >

E +En

	

E +E 11

	

(14A)

	

_ - 04 ~vw( Uv vv )

	

<dIRooopI >
U 2 Vÿ

Thus the validity of (27) implies the vanishing of (14A) . This in turn re-
quires

<olRolss~%
(ï1~2

	

øp

	

-V~ - 4

	

P E
_o .

	

(15A)
5

	

E~

	

= E
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