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Synopsis
A theoretical discussion is given of the range of heavy ions with moderat e

velocity . The treatment is based on the theory of quasi-elastic collisions given
elsewhere . The region where electronic and nuclear stopping compete is of par-
ticular interest . Use is made of a simple velocity proportional Thomas-Fermi type
formula for electronic stopping, and a universal approximate differential cros s
section for scattering. Simplified models of nuclear scattering assuming powe r
law scattering are also included . They turn out to be useful for exploratory com-
putations of various range quantities .

The straightforward theory of ranges is studied in § 2 . Range curves are
computed for any atomic numbers of particle Z l , and substance Z 2 . It is found
that when nuclear stopping is dominating, a e - s plot gives a universal range energ y
description .

Probability distribution in total range and various averages are studie d
(§ 3), in order to assess corrections to measurements when necessary . Similarly ,
corrections to measurements of projected ranges are obtained (§ 4) . The range
correction due to nuclear stopping is obtained for ions of high initial energy .

In § 5 a survey is given of numerous recent measurements of range . They
are found to be in fair accord with theoretical results, for energies between 10 0
MeV (fission fragments) and . ., 1 keV .

Printed in Denmark
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§ 1 . Introduction

The present paper is a theoretical study of ranges of heavy ions of low

velocity, and their connection to the basic problem of quasi-elastic collisions

between ions and atoms . Three characteristic features give rise to com-

plications . First, both electronic and nuclear stopping must be studie d

thoroughly, because they are similar in magnitude . Second, because of the
frequent large deflections of the ions one must distinguish carefully be-

tween various range concepts . Third, the variety of choice of atomic number

of both ion and substance gives an additional difficulty . We shall try t o

show that our present knowledge of quasi-elastic collisions, in spite of th e
above complications, can give us a simple and fairly accurate range theory .

In point of fact, in the following we use a much simplified description o f

quasi-elastic collisions, which could be improved upon without difficulty .
Aspects of quasi-elastic collisions are studied also in three associated papers :

Notes on Atomic Collisions I, III, and IV. The aim is to exploit similarity

properties of Thomas-Fermi type in collisions between heavy ions and atoms .

In fact, similarity enables us to treat in a comprehensive way both slowing -

down and damage effects by heavy ions .

The total range of a swift particle may be observed in track detector s
like photographic emulsions . The observation of many tracks can then giv e

the probability distribution in total range . In measurements of this kind the

observed range depends on energy losses only, and not on scattering of the
particle . For energetic heavy particles this separation of energy loss from
scattering is especially valuable, since the two are due to unconnected pro -
cesses, i . e . respectively electron excitation and Coulomb scattering by th e
atomic nuclei .

However, in nearly all other cases one observes somewhat different and
less well-defined types of ranges . It is then customary to make correction s
for multiple scattering in order to obtain the total range, but since these

corrections are not insignificant-even in cases like high energy protons wher e

deflections are small-it would seem appropriate to introduce explicitly thes e
other types of ranges .
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The scattering of a particle-in contrast to its energy loss-is alway s

dominated by nuclear collisions, i. e . deflections in the screened electri c
field of the atom. In the case of electrons, large scattering angles are quit e
common during slowing-down. For heavy particles of high energy (e . g .

protons with MeV-energies), scattering effects are relatively small, but sinc e
a high precision is desirable here, the distinction between different type s
of ranges again becomes important . Although the description in the followin g

could be applied to electrons and to fast heavy particles, we shall aim at
the case mentioned in the beginning of the introduction . In fact, for heavy

ions of low velocity, e . g . v---vo = e2/1, scattering effects are large and th e

scattering can not be completely separated from energy loss, simply be-
cause the nuclear collisions here begin to dominate the energy loss too .
This somewhat complicated case will be used as a basic example in ou r

general discussion of range concepts .

The following discussion does not at all pretend to give an exhaustiv e
treatment of range concepts . Thus, we are throughout concerned with stop -

ping by a random system of atoms, i . e . uncorrelated atoms and separate d

collisions . This might never seem to include stopping of a relatively slo w
heavy ion in a solid, where the interatomic distance is short and atoms are

arranged in a periodic lattice . Still, the effects are only sometimes large ;

they are not well understood and appear to be dependent on the structur e
of the lattice (cf. § 5) .

Before turning to the various-and often complicated-range concept s

and range distributions, we may take a more straightforward point of view .

In § 2 we proceed as if the energy loss along the path was a nearly con-
tinuous process . This is not at all a poor first approximation . It both

enables us to get a clearer picture of the essential points and permits com-

parisons with experiments (cf. § 5) .

§ 2 . Simple Unified Range Theory

Suppose that the range along the path is a well-defined quantity, so that

we need not distinguish between e . g. average range, most probable range,

and median range . We may introduce first the simple concept of specific

energy loss, (dE/dR) ,-or average energy loss per unit path length-defined by

dE-N S =+°'T,

	

(2 .1 )
dR
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where N is the number of scattering centres (e . g . atoms) per unit volume

and S the stopping cross section per scattering centre . Further, da is the

differential cross section for an energy transfer T to atoms and atomi c

electrons .
The basic range concept is then obtained simply by integration of (dE/dR) ,

(E) _ - S
E dE'

	

1 E dE '

	

o (dE'/ dR) N.)o S (E')

	

(2 .2)

The formulations (2 .1) and (2 .2) give a simple connection between range ,
specific energy loss, and differential cross section . We do not at present
distinguish between different types of ranges . A better understanding of the
connection between (2 .2) and e. g. the average range is obtained in th e

detailed discussions in § 3 .
In an analogous way we may introduce the range straggling (cf . Boli n

(1948)). Similarly to (2 .1) the average square fluctuation in energy los s

becomes

(4E) 2 = NS2 2 dR = NdR S d a T 2 ,

	

(2 .3)

if the individual events have average occurrence NdRd a, and are uncor-

related . We may next derive the average square fluctuation in range, (4 R) 2 ,
using the present assumption that fluctuations are small ,

(4R)2

	

dE'NQ2 (E') = 1 ('EdE'• .Q2(E')_
Jo (dE'/dR) 3

	

N2 ,j o S 3 (E')

If we were precise, we would say that the interpretation of (2 .4) as the
average square fluctuation in range is not quite correct . For the present pur-

poses, however, we have by means of (2 .2) and (2 .4) defined the range ,
R, and its fluctuation, 4R, and the results are sufficiently accurate for mos t
purposes . We now use (2 .2) and (2 .4) in a first study of the ranges of slo w

heavy ions .
Quite apart from using at first simple expressions like (2 .2) and (2 .4),

it seems important-at the present stage of accuracy of theory and ex-

periments-to be able to give a comprehensive description of slowing-down .
It would for instance be futile to aim at an individual stopping curve fo r
every one out of -104 possibilities for the set of atomic numbers (Z1 , Z2 ) ,

where the suffixes 1 and 2 denote the penetrating particle and the atom s
of the medium, respectively . If we are concerned with very high velo-
cities, where the Bethe-Bloch stopping formula applies, the question of

(2 .4)
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dependence on Zl drops out because the stopping is simply proportiona l
to Z . In that case the dependence on Z2 is not far from being given by a
Thomas-Fermi description, i . e . Bloch's relation I = Z2 . 10 , and only whe n

high accuracy is demanded need we introduce deviations from the Thomas -
Fermi results . Considering again the present case of comparatively lo w
velocities, where the stopping is not proportional to it is very important
that descriptions of a Thomas-Fermi-like character are introduced, eve n
though the resulting accuracy might not be high .

In point of fact, we hope to show in this section, and in § 5, that a Thomas -
Fermi-like treatment of the dependence on both Z l and Z2 has a quite
satisfactory accuracy at the present stage of experimental precision . Our

treatment should be based on a self-contained theory of the quasi-elasti c
collisions between ions and atoms . This theory will not be derived here ;
it is studied in two associated papers (Notes on Atomic Collisions, I an d

1V, unpublished) . We shall merely summarize a few results of interest t o
us in the present connection (cf. also LINDHARD and SCHARFF, (1961)) .

Electronic stoppin g

It is well known that for penetrating charged particles of high velocity, th e
energy loss to atomic electrons is completely dominating . The corresponding stopping
cross section per atom is denoted by Se, so that the specific energy loss is N-Se ,
where N is the number of atoms per unit volume . At high velocities Se increase s
with decreasing particle velocity and has a maximum for a velocity of order o f

vl = vo - Zi /3 . However, we shall consider low velocities only and in fact assume that
0 < v < vl . In the whole of this velocity region simple theoretical considerations lead to
velocity proportional stopping, and a Thomas-Fermi picture shows that (Notes o n
Atomic Collisions, IV ; see also LINDHARD and SCHARFF (1961))

2

	

Zl	 Z2 v

	

2/3

	

Se=se-8xe ao - Z . , v< v i =vo .Z 1 ,

	

(2 .5 )
0

where the constant $e is of order of Zi /s , and Z213 =
7113

+
43 . It is interesting that

the approximate formula (2 .5) holds down to extremely low velocities, i . e . also fo r
v < < up, in contrast to previous theoretical descriptions, where Se was assumed t o
vanish for v<vo (cf . BOHR (1948), SEITZ (1949)) .

It should be emphasized that (2 .5) is approximate in more than one sense . Th e
constant in (2 .5) is based on Thomas-Fermi arguments, and it is to be expecte d
that fluctuations around this constant can occur, especially for Z 1 ,<, 10* . Moreover ,
a precise proportionality to v will not be correct over the whole of the velocit y
region v < vi . However, in the present context we shall not analyse electronic stoppin g
in detail . As to stopping near the maximum v v l , cf . NORTHCLIFFE (1963) .

* The presence of such ionic shell effects is confirmed in the systematic measurements b y
ORMROD and DUCKWORTH (1963), WIJNGAARDEN and DUCKWORTH (1962) .
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Another important circumstance may be mentioned . The energy loss to elec-
trons is actually correlated to the nuclear collisions, and in close collisions con-
siderable ionization will take place . Although the correlations are fairly well known ,
we disregard them in first approximation and consider electronic stopping as a
continuous process . The correlation may be of some importance especially in stragg-
ling or higher order moments of the range .

Nuclear stopping and scattering cross section

A basic quantity is the nuclear stopping cross section, Sn . However, since the
energy transfer in individual collisions can be quite large, the slowing-down b y
nuclear collisions cannot always be considered as a nearly continuous process . It
is therefore important to know the differential cross section too . We shall here con-
sider various approximations, of which the first one lends itself to a particularl y
simple mathematical treatment .

Suppose that there is a potential V(r) between the ion and the atom, such
that V(r) = (Z 1 Z 2 e 2 as-l/s r s), with as a = 0 .8853 ao Z -113 (the number 0.8853 =
(9 x2)1!3 2-7 /3 is a familiar Thomas-Fermi constant) . It is interesting that then th e
classical differential scattering cross section may be obtained approximately fro m
an extrapolated perturbation procedure (Notes on Atomic Collisions I), leading t o
the simple result

Gn

	

dT

	

(2 .6 )dan = Z-1!s Tl+Ifs' s>1 ,
m

for an energy transfer T from the ion of energy E to an atom at rest . Here T < Tm =

yE = 4MI M2(Ml +M2 ) -2 E, Tm being the maximum energy transfer in the col-
lisions . Furthermore, the constant Cn is connected to the stopping cross section Sn ,
and is approximately given by

en =
S

b2 . ass- 2 .
3 8s

52
1 \ 1/S

Tm = (1 - S) Sn '

where the collision diameter b is equal to 2 ZI Z2 e2 /Mo o2 , Mo = M1 M 2/(Ml +M2) .
In the particular case of s = 1, i . e . simple Coulomb interaction, equation (2 .6) als o
gives the correct Rutherford scattering, but in this case Sn in (2.7) does not represent
the stopping cross section, the convergence of which is a result of adiabaticity in
distant collisions .

As we shall demonstrate below, formulas of type of (2 .6) are valuable for ex-
plorative purposes, interesting values of s being 1, 3/2, 2, 3 and 4 . The cross section s
(2 .6) are furthermore in accord with the Thomas-Fermi scaling of units . Corre-
sponding to the case of s = 2, we shall sometimes approximate Sn by constant
standard stopping cross section S° (similar to that quoted by Bonn (1948)) ,

S° = (n2 / 2 .7183) e2 ao Zi Z2 MI • Z-1/a (MI + M2 ) -1 .

	

(2 .7')

Beside the simple power potential we study the case provided by a screene d
potential, U(r) _ (Zl Z2 e2 /r) • To (r/a), where To is the Fermi function, and furthe r

(2 .7)
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a = ao . 0 .8853 (Zl/3 +X2/3)-1/2, which is a fair approximation to the ion-atom force .
BOHR (1948) has employed a similar potential, with exp (-r/aB) in place of To(r/a) ;
however, an exponential function falls off too rapidly at large distances .

A screened Coulomb potential, involving only one screening parameter, a, lead s
for dimensional reasons to a natural measure of range and energy, for an ion col-
liding with atoms at rest . In fact, we may introduce, respectively ,

M1

	

aM2
e = RNM2 . 4 7r a2

	

and e = E

	

. 8
(Ml+m2) 2

	

ZiZ2d2(M1+M2)

	

(2 )

as dimensionless measures of range and energy. Note that e- 1 is essentially th e
parameter ç used by Boxx (1948) . The scattering in the screened potential, U(r) ,
is obtained by means of the extrapolated perturbation method for classical scatterin g
used in deriving (2 .6), and one obtains a universal differential cross sectio n

do = a2 2~s/z f (tl/2) ,

where 11/ 2 = e . sin (0/2) and d is the deflection in centre of gravity system . When
elastic collisions are assumed, we find sin 2 (6/2) = (T/Tm), where T and Tm are the
energy transfer and its maximum value, respectively, in a collision with an ato m
at rest. The function f (t1 /2 ) is shown in Fig. 1 . At high values of t it approaches
the Rutherford scattering . In Fig . 1 is also shown (2 .6) for the case of s = 2 .

It may be noted that the power law (2 .6) leads to / = fs, where

(2 .9)

1 1
is

(t1J2)
= As

• t 2

	

, (2 .6' )

In the above, we have at first considered approximate potentials representing th e
ion-atom interaction and next, in an approximative way, derived the scattering
from the potentials . However, we shall in the following take a simpler and mor e
direct point of view. We consider (2.6) and (2.9) directly as approximations to th e
true scattering cross section and disregard the connection to a corresponding po-
tential . This is the more justified, since the scattering is only quasi-elastic an d
cannot in detail be described by a potential between two heavy centres .

From (2 .9) and Fig . 1 may be derived the nuclear stopping cross section, b y
e

means of the formula (de/de),, = C dx /(x) e -1 . The result is shown in Fig . 2, togethe r
0

with the stopping from (2 .6) for s = 2 . Also the electronic stopping may be ex-
pressed ill e - e units, and is then (de/de)e = k • e1 / 2, where the constant k varie s
only slowly with Z 1 and Z2, and according to (2 .5) is given by

0 .0793 Z'12Z2 f 2(A1+A 2) 3/2

	

1 6k = see

	

(Z1J3+ Z2/3)3"4
Ai/2 A2

	

'2 ,
'el

Z 1 ~

	

(2 .10)

Thus, k is normally of order of 0 .1 to 0 .2, and only in the exceptional case of Zl< < Z2
can k become larger than unity. If Zl = Z2 , A l = A2 , the constant k is given by

the simple expression k = 0.133Z2/3A2 1/2 . A representative case of electronic stop-
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Fig . 2 . Theoretical nuclear stopping cross section in g - s variables . The abscissa is s 1 12 , i . e .
proportional to v. The full-drawn curve is (da/de)n, computed from Fig . 1 . The horizonta l
dashed line indicates (2 .7') . The dot-and-dash line is the electronic stopping cross section, ,k sl/2 ,

for k=0 .15 .
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Fig . 3 . Universal range-energy plot for s<1, cf . § 2 and § 3 . The curve Th .-F . gives T;,(e), i . e .
(2 .2), as a function of e with neglect of electronic stopping . Curves for various values of th e
constant k in electronic stopping are also shown . Dotted straight line is the standard range,

e= 3 .06E .

ping, k = 0.15, is shown in Fig . 2 . Formula (2 .10) applies for v <vi , or approximately
s < 10 3 . In the above we have for simplicity distinguished between electronic ex -
citation and elastic nuclear collisions . This is not quite justified, since in close col -
lisions there is a strong coupling between the two, i . e . the nuclear collisions ar e
not elastic . In first approximation this need hardly be taken into account ; the
reader is referred to Notes on Atomic Collisions IV for a more detailed treatmen t
of quasi-elastic collisions .

The nuclear scattering cross section is expected to be fairly accurate, but whil e
shell effects should be of little importance, a systematic overestimate may occur ,
due to neglect of inelastic effects . A more thorough discussion is given in Note s
on Atomic Collisions I . At low energies nuclear stopping dominates over electronic
stopping (2 .5) . It must be emphasized though, that at extremely low e-values ,
e < 10- 2 , the nuclear scattering and stopping becomes somewhat uncertain, be -
cause the Thomas-Fermi treatment is a crude approximation when the ion and th e
atom do not come close to each other .

Range-energy relation s

By means of the simple formula (2 .2), and the above stopping cros s

sections, we are now able to estimate total ion ranges . Now, if we consider
nuclear stopping only, and one screening length a in the scattering, th e

2. 5
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Fig . 4 . The continuation at higher e-values of the ranges P 1 (e) in Fig . 3, for various values o f
constant k in electronic stopping . Straight dot-and-dash line is hypothetical range withou t

nuclear stopping and k = 0 .1 .

dimensional arguments leading to (2 .8) apply, and in these units the rang e

in (2.2), e, must be a function of e only, . i . e .

° (e)

for all ions and atoms . This formula holds both when (2 .7) and when (2 .9)

is introduced in (2 .2). The resulting range, based on (2 .9) and f(t1 / 2 ) from
Fig. 1 is shown by the solid curve in Fig. 3, for relatively small values o f

e . The particular approximation of s = 2, i . e . the constant standard stoppin g

cross section in (2 .7 ') and Fig . 2 leads to the straight line e = 3 .06 e in
Fig . 3 . This standard range is closely similar to the range formula used b y
BOHR (1948) and also by NIELSEN (1956) . For small e-values the numerical

curve remains above the straight line and has a downward curvature ,

corresponding to the effective power of the potential being higher than 2 ,
in fact of order of 3. The detailed behaviour of the range curve can b e
easily understood from the stopping curves in Fig . 2 . If we use the straight
line as a standard in Fig . 3, i . e . the horizontal line as a standard in Fig . 2 ,
the range must at first be higher than the standard straight line in Fig . 3 .

Next, since the actual stopping rises above the horizontal line, the rang e

2
.5 /0 /coo.So o2o so/.o 100
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must drop considerably relative to the straight line, and actually fall belo w

it. Finally, since the nuclear stopping becomes small in the high energ y

region with Rutherford scattering, the range must again increase above the
straight line as may be seen in Fig . 4 .

In this description we have so far omitted electronic stopping . This

omission is justified at low energies because Se/Sn tends to zero for smal l
velocities, but at higher energies it becomes less and less adequate until th e

range finally is dominated by the electronic stopping, as may be judge d

from the stopping cross section in Fig. 2. Let us therefore take electronic
stopping into account and write

de
=

do -

(d e

- n
+k e 1/2 ,

	

(2 .11)

where (de/de). is shown in Fig . 2, and the electronic stopping is assume d
to be proportional to e1 / 2 , i . e . we are concerned with moderate velocities ,
u < vl . We choose a number of representative values of the constant k ,

k = 0 .05, 0 .1, 0 .2 and 0 .4 . Values of k between 0 .1 and 0.2 are quite com-
mon, according to (2.5). In Figs . 3 and 4 are shown the range curves for

the above four values of k . The most conspicuous effects of electronic

stopping are, first, that it leads to appreciable range corrections even a t
quite low e-values . Second, for e large compared to unity, the reduction in

range always dominates, so that the range never increases above the straigh t

line e = 3 .06 e, in contrast to the range with neglect of electronic stopping .
In Fig. 4 is also shown the hypothetical range e = (2/k) e1/2, which would

result if there were no nuclear stopping, in the case of k = 0.1 .
By means of curves like those in Figs . 3 and 4 we are able to compar e

or estimate ranges for all ions in all substances . But only for e-values below,

say, e = 10 are curves for the various k-values fairly close together an d

easy to compare. For light ions in heavy substances deviations start at eve n

smaller e-values, because k becomes quite large. Moreover, only for thes e

low values are we able to check in a direct manner the nuclear stopping ,

which here remains dominating .
Although we may well use Fig . 4 for estimates of ranges when e» 10 ,

we can in this case introduce a more critical comparison between theory

and experiments . In fact, it is apparent from Fig. 2 that for high values of

e the range is mainly determined by the electronic stopping, and only a

minor range correction is due to nuclear stopping which dominates at lo w

values of e . Since nuclear stopping drops off quickly while electronic stoppin g

increases, the nuclear stopping correction to the range remains fairly con-
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Fig . 5 . Range corrections for nuclear stopping, (k/2) 4 (k, s), from equ . (2 .12) . Curves are show n

for k = 0 .1, 0 .2, 0 .4 and 1 .6 . Asymptotic values are roughly 4 -+1 .76 • k-31 2

stant above a certain value of s . We then introduce an extrapolated elec-
tronic range

	 de'

	

So(de' l
ds'

	

`E (ds'/dP)n' d s '
ee(E) - S o(ds 'Ide)e

	

de) + .)o(dE'lde)'(dE'lde)e

	

(2 .12)

0(E) +4(k,E) .

The quantity 4 (k, s) can be computed from the above formulas, and addin g
A to an observed e(e), we obtain the extrapolated electronic range, whic h
in our case of v < v l should be equal to ee = (2/k) e112 (cf. dot-and-dash line
in Fig. 4) .

The function 4(k, e) is shown in Fig. 5 for k-values between 0.1 and

1 .6 . This procedure is probably the most direct way of comparing theoretica l

predictions of electronic stopping like (2 .5) with range observations . The
point is here that 4 often is a relatively small correction, and in estimatin g

the range correction 4 we may use (2.5), even if this formula be not too
accurate. Examples of the application of (2 .12) and Fig . 5 are shown in
§ 5, cf. Figs. 14 and 15 .
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Another circumstance may be noted in this connection . Since 4 tends
to a constant at high e-values, we may moreover use (2 .12), together with

Fig. 5, for comparisons with measurements at high e-values, e . v>> vl ,
where, electronic stopping no longer increases proportionally to v, but in -
stead decreases approximately as v to a power between -1 and - 2 .

In the present paragraph we do not make comparisons with actual range

measurements, one of the reasons being that measured ranges requir e
corrections of the kind discussed in § 4 . Instead, we have presented thes e

comparisons in § 5, where recent measurements are compiled . We do not
discuss critically the accuracy of the measurements ; this is perhaps un -

satisfactory, because several new experimental methods have been applied.

We merely make approximate and obvious range corrections, correspondin g

to the results in § 4 . One result emerging from § 5 is that the theoretica l
nuclear stopping, as leading to the range curves in Figs . 3 and 4, for moderate

e-values appears to be in good agreement with observations, perhaps withi n

-20 percent . It should be noted that the theory is somewhat uncertain a t
quite low e-values, i . e. e 10-2 .

Beside the general experimental checking of the present range-energ y
relations there are several other ways of comparison. An immediate pos-

sibility is to measure directly stopping powers, which has been done in a

few cases, but mostly when electronic stopping dominates . We shall no t
enter more critically into these questions, since the theory of electronic

stopping is not the topic of the present paper . Nor will we attempt a detailed.

discussion of individual inelastic collisions between energetic ions and atom s

at rest. But it may be mentioned that more subtle comparisons of ranges ma y

be made. For instance, isotope effects are quite informative, and can elucidat e

both electronic and nuclear stopping, cf. § 5 .

Range stragglin g

The simple description used here, with a range along the particle pat h

based on (2 .2), may now be extended to include an average square fluctuation

in range, given by (2 .4). This description contains the assumption that rang e

fluctuations are relatively small . We may suppose that the fluctuations
around the average correspond nearly to a Gaussian . In fact, if this were

not so, the distribution in range would have a sizable skewness . Then we

would have to distinguish between e . g. the most probable and the average

range, and the simple relation (2 .2) would have to be revised . Still, even

in such cases the results in the present paragraph may be useful . We can

in fact consider the present ranges, i . e . (2 .2) as an approximation to the



Nr . 14 1 5

(9, •92)
2

4R,92
./4

. /2

/0

.06

16

2

e0
.0/

	

.a2

	

.05

	

.1

	

.2

	

.5

	

o

	

2

	

S

	

10

	

20

	

so

	

/co

Fig. 6 . Relative square straggling in range (4R 2), /R 12 , divided by y = 4M,M 2 /(M,+M 2) 2 .
Curves are shown for several values of constant k in electronic stopping .

average range, and similarly consider the present range fluctuation, i . e .
(2 .4), as an approximation to the average square fluctuation in range . These

averages are defined irrespective of the skewness of the distribution ; they

are studied in more detail in § 3, where also the accuracy of the presen t
treatment is discussed more closely .

It is convenient to consider the relative square straggling in range ,
(4 Q /e) 2 = (4 R) 2 /R2 . Consider first nuclear stopping only, and in particular
the power potentials represented by (2 .6) . Then we easily fin d

	

2	 s - 1	

(e

	

s(2s-1) y '

where y = 4 M1 M2 /(Ml +M2) 2 . We thus obtain the extremely simple resul t

that the relative straggling is independent of the range itself . It is moreover
interesting to note that the result (2 .13) is rather insensitive to s in the neigh-

bourhood of s = 2 . When s increases from 2 to 3 the relative square straggling

decreases by only 20 percent . Thus the simple model predicts that at low
energies (4e/e)2 should be of order of y/6 (cf. also LINDHARD and SCHARFF

(1961), LEACHMAN and ATTERLING (1957), HARVEY (1960)). We have here

(2 .13)
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Fig. 7 . Absolute straggling in range ( .1p 2),, at high values of e . Saturation values of the straggling
are indicated .

considered the application of (2 .6) to the simple formulas (2.2) and (2 .4) .
A more detailed study of the probability distribution in range is made in
§ 3, on the basis of the power law scattering (2 .6). It is shown there tha t

the right hand side of (2 .13) is only the first term in a power series expansio n
in y

We next apply the numerical Thomas-Fermi-type cross section (2 .9) for

scattering in nuclear collisions . We do this at first with neglect of electronic
stopping, and by means of (2 .4) we compute (4Of e)2

• ÿ 1 against e, as shown

by the upper curve in Fig . 6 . The relative straggling is seen to behave a s

expected from the simple power potential . Next, we include electronic
stopping, using (2 .5) and assuming that the contribution to straggling from

electronic stopping is negligible* . Clearly, it must lead .to a reduced relativ e
straggling . The results are shown in Fig . 6, for k = 0 .05, 0 .1, 0 .2, 0 .4 and

1 .6 . At e-values around 1 to 10 a considerable reduction in the relativ e

straggling sets in . The reduction corresponds to the circumstance that in thi s

* This assumption can be questioned, since quasi-elastic collisions imply a correlation be-
tween the two types of energy loss, i . e. nuclear and electronic stopping . The assumption re -
quires that a considerable part of electronic stopping occurs at impact parameters where recoil
of the atom is small or moderate .
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region electronic stopping has become quite dominating, and the absolut e

value of the square straggling, (4 0) 2 , does not increase much beyond this

point . For high e-values it is then convenient to consider the absolute valu e
of the range straggling. The corresponding curves are given in Fig. 7, for

various values of k . We therefore conclude that accurate measurements o f

straggling in range at high energies, where the electronic stopping does no t

at all correspond to (2 .5), may give information about the predicted value s
of k, as given by (2 .10) .

The above treatment of simple ranges and range straggling is intended to b e
fairly comprehensive, and from the accompanying curves it is easy to obtain rea-
sonable estimates of these quantities for any value of Z 1 , A l , Z2 , A 2 and v. How-
ever, we have disregarded completely those cases where the substance contain s
several atomic elements, Z211 , Zr) , etc ., in given ratios . In all such cases, the nuclear
stopping contribution from each element may be derived from the solid curve i n
Fig . 2, with a resealing of units . The electronic stopping contributions are obtained
from (2 .5) or (2 .10) . The resulting ranges can be derived by numerical integration .
However, considerable simplification occurs in an energy region where, e . g . the
stopping cross section Sal, due to any atomic component i, is proportional to the
same power of E, because in this case straightforward computations of averages ma y
be made. For two components, a and b, we have R = RaR b (R bxa+Ra (1 -xa))- 1 ,
where Ra and Rb are the ranges in a and b, and xa and 1 -xa are the relative
abundances of a and b . Similar procedures may be used in the case of stragglin g
in range .

§ 3 . Distribution in Range Measured Along the Pat h

In the present chapter we shall try to go one step beyond the treatment
in § 2, where only a simple range straggling was considered, and where it

was tacitly assumed that straggling effects were small . We wish to check
the validity of this picture and also to extend it . A basic reason for th e
extended treatment are the large fluctuations, known to result from encounter s
between slow heavy ions and atoms . We therefore attempt to study the proba-
bility distribution in range measured along the path . Although this distributio n
is much simpler than the distribution in space of the endpoint of the path ,
it is not easily obtained . One might perhaps employ Monte Carlo methods *
for the solution of representative cases, but we shall limit the treatment t o
typical and simple approximations, and in particular consider the power la w
scattering cross sections given by (2 .6) .

Consider again a particle (Z1 , A 1) with energy E, in a medium (Z2 , A 2 ) .

* Monte Carlo methods were applied by e. g . ROBINSON, HOLMES and OEN (1962) to variou s
models of nuclear scattering, but with neglect of electronic stopping, cf. also HOLMES (1962) .

Mat.rys .Medd .Dan .Vid.Selsk . 33, no . 14 .
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We denote by R the range measured along the particle path, i . e . the tota l

distance traversed by the particle . Let p (R, E) dR represent the probability
that the particle has a range between R and R + dR, so tha t

S p (E, R)dR1 and <Rm >=Çp(E,R)Rm dR .
0

	

0

An integral equation for p (E, R) may be derived as follows . Suppose that
the particle with energy E moves a path length SR in a medium containin g
N atoms per unit volume . There is then a probability NSRdan e for a col-
lision specified by energy transfer ' Tea to electrons (electrons labelled

by suffix i) and by an energy transfer Tn to translational motion of the

struck atom. The particle will thus have an energy E - T. -Y Tee . If the col -

lision takes place, the particle has a probability p (R - 6R, E- Tn -~ Tei )

of obtaining the total range R . Multiplying by the probability of collision ,
NåRd an, e, we get the contribution from this specified collision to the tota l
probability for range R . We next sum over all collisions . There is left a

probability 1 - N6R clan, e that no collision occurs . In this event we clearly

get a contribution (1 - N6R d an, 8 ) . p (R - SR, E) to the total probability for
the range R .

Collecting the above contributions we have an alternative expressio n

for p (R, E),

p(R,E)= NåRjdan .e p(R- 6 R, E -Tn
JJ

	

i

+(1 - N6R ~ dan,e)'p(R - 6R , E) ,

and in the limit of SR~ 0 ,

p_(R, E_)
= N

J
d a n, e p(R, E- Tn

	

Tei) - p(R, E),

	

(3 .1 )
aR

	

fi

t)

which expression constitutes the basic integral equation governing the pro -

bability distribution in range along the path . In the remainder of this chap -
ter we study the integral equation (3 .1) and its consequences, using a num -

ber of approximations . We shall not further elaborate on the derivation o f

(3 .1), but it may be noted that the formal limit of 6R--> 0 corresponds to
separability between consecutive collisions . If there is no separability, the

equation still holds, or may be easily amended, as long as collisions wit h

moderate or large T-values remain separable .
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Besides separability we have assumed that successive collisions are not correlated .
This holds if the atoms in the substance are in fact randomly distributed, or if e . g .
impact parameters corresponding to sizable deflections are extremely small com-
pared to interatomic distances, giving effectively uncorrelated events . A system
where collisions are separated and uncorrelated may be termed a random syste m
of atoms . The derivation of (3 .1) is based on a random system, and we limit ou r
treatment to this case . A solid with periodic lattice is for many purposes a rando m
system, but at low ion energies deviations from (3 .1) can occur . These deviation s
contain directional effects and are sensitive to lattice structure, cf . p . 32 .

On the assumption that energy losses to electrons are small and sepa-

rated from nuclear collisions, we obtain

Op
(R'E) N S d o-n jp (R , E- Tn) -p (R, E) }aR

	

t

- NSe (E) aEp (R, E) ,

which formula is somewhat less general, but applicable to our previou s
cross sections for scattering .

We may rewrite (3 .2) on the assumption that the Thomas-Fermi-lik e
scattering formula (2 .9) applies (note that this also includes (2 .6) and (2 .6')) ,

and then introduce the variables o and e . We readily obtain

/

	

1
aA I7 (P E)

= Y

(`10E'

~ ~g~2 f \
t 2 ) {H(e. E Ét I - TT (P, £ )l

1

/dEl1 a
\--de lea E 17(0 ' 0 '

NSdan , e Rm(E)><Rm(E-Tn-~. Tei)>}•

	

i

where H(o, Ode is the probability that a particle with energy parameter e

has a range between e and + de, and where y = 41111 M2 /(M1 +M2) 2 . We
have seen that in a wide region (v< e . roughly e < 10 s), one may write
(de/de), = k • e " 2 . In equation (3 .3) we then have two parameters, k and y .

A simple approach to the study of the integral equations (3 .1), (3 .2) or
(3 .3) is to obtain from these equations the moments < Rm >, whereby-at
least in principle-the probability distribution itself may be determined too .

From (3 .1) we obtain directly, when multiplying by Rm and integrating
by parts

{<
m <Rm-1 (E) > _

(3 .2 )

(3 .3 )

(3 .4)
2*
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Similarly, if (3 .3) holds we arrive at a somewhat simpler relatio n

l22

	

= ÇE'L dt
f(tl`2)3/2

	

I
< em (E) > -

1! - Y
E` )

	

<~Om-1(E)>t	

	

y o	 	 <~Om 1

(de) d

	

m
do e d e

By means of equations (3 .4) or (3 .5) we may successively derive the first ,

second, etc ., moments of the range. In the resulting formulas the equations

(3 .4) are applied, because they have a wider applicability . In actual evalu-
ations, however, we turn to (3 .5), and to the analogous reformulations o f

(3.6) to (3 .13) in e - e variables, although the reformulations are not ex-
plicitly stated. Let us ask for the average range R(E) = <R(E)> . Ac-

cording to (3.4)

1 =NSdvn e{R(E)-R(E-Tn -

An obvious procedure in solving (3 .6) is to make a series development in

powers of T = Tn +~ Tei . This approximation might seem poor whe n
a

M1 -M2 , because E- T can then take on any value between E and O .

However, we can profit from the circumstance that the energy transfer t o

electrons, . Tei , is normally quite small, and that the nuclear scattering

cross sections (2 .9) are strongly forward peaked, since f (tl/z)t-3/z decreases

approximately as t to a power between -1 and -2 . We shall presently

look into the accuracy of the various approximations .

Take at first only the first order terms in the brackets and denote the

corresponding approximation to average range by fll(E) . We obtain from (3 .6)

dRl(E) =
1

	

E dE'
dE NS (E)'

R1 (E) = So NS (E') ' (3 .7 )

where S(E) = Sn (E)+Se(E) is the total stopping cross section . The formul a

(3.7) is exactly the straightforward equation (2 .2) used in § 2 .

Similarly, we can include higher order terms from (3.6) ,

z

	

1 = NS(E) dE R(E)-2NQ2 (E) ~EzR(E)+	 (3.8 )

where the quantity S2 2(E) = S dan, e T2 is related to the straggling . If we in-

clude only the second order term we obtain a second order differential

(3 .5 )

ei (3.6)
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equation which may be solved directly . Still, since the second order term

may be considered small, we may express the second derivative by means
of RI . This leads to R2(E), the second approximation to average rang e

E dE'

	

Q2 (E') d

	

1
R2 (E) - So NS (E') 1 + 2

	

dE' (S (E)

	

(3 .9)

The average square fluctuation in range, d R 2 (E) = R 2 (E) - R 2 (E), i s
obtained from the second moment in (3 .4), if we multiply (3 .6) by 2R(E)
and subtract

2

S do'n e R(E)-R(E-Tn ~Teø) .

i
e14R2(E)-dR2(E- TnTZ Tet) =

In this equation the right hand side is a known source term . If we take

the same successive steps as in the computation of we make a serie s
development in (3 .10), in powers of T. The first terms on both sides of the
equation lead to the approximation (A R 2 )1 ,

S (E)
dE

(4 R2)r -D2 (E) (dam R (E))
z
,

	

(3 .11 )

where for R(E) we should use the first approximation, RA(E) . Therefore ,

also (3.11) brings us back exactly to our previous assumptions in § 2, i n

this case to (2 .4) .
Including terms in (3 .10) up to second order, we get

S (E) dE (4 R 2 ) - Q2 2 	E) dE 2 (A R2) _

d R1 2Q2 K(E) d d n\ 2 ' (3.12)

~dE !

	

2 dE ~dE

where K(E) = 5dcT . When assuming the new terms in (3.12) to b e

small, we obtain the second approximation to (AR 2 ) ,

d	 S2 2 (E)

	

K 5 S2 2 dS 1 dQ 2
dE

(4 R2)2 = S 3 (E) N2 1 + ~SZ 2S 2 S2 ! dE + 2 S dE

	

(3.13)

By means of the expression (3 .13) we are able to estimate the accuracy of
the straightforward formulas (3 .11) and (2 .4) . It is important to notice that
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TABLE 1
Comparison of first and second approximation of expansion in y, for power la w

scattering. Results for average range and range straggling .

s R 2/R1 (n R2)2/(d Rz ) 1

3/2	 1+y/24 7

	

I- y • 0.1 0

2	 1 1+ y/6

3	 1+y/15 I +y•0 .14

the successive approximations made above are simply series expansions o f
average range and straggling to successive powers of y = Tm/E .

It is of interest to compare the above approximations . For simplicity let

us consider low energies and disregard electronic stopping . Since electronic

stopping here tends to diminish fluctuation effects, we obtain in this way
slightly exaggerated differences between successive range approximations .
Moreover, we use power law scattering cross sections (2 .6) or (2 .6 '). Thi s
permits exact computation of R(E) . Note that according to (2 .6) the ranges
are proportional to E 2!s , while the square straggling in range behaves a s

E418 . We may compare PI , R2 and R, and similarly (4R2)1 , (4R 2 ) 2 and

4R2 . The results depend on y, i . e . on the mass ratio. For small values of

y, a series development in powers of y is accurate . Since y is often close t o
its maximum value, y = 1, we also compare the approximations in thi s

case. The results are listed in Table 1 (y<< 1) and Table 2 (y = 1), in th e

cases s - 3/2, 2 and 3 . Notice that at low energies values of s between 2

and 3 are of particular interest .

In the approximation used in Table 1 the range R2 and its fluctuatio n

(4 R 2 ) 2 are equal to the exact average values R and A R 2 , respectively . From

Tables 1 and 2 it is apparent that R2 (E) is always a very good approximatio n

to R(E), and one need not distinguish between the two . The range R 1 (E)

is somewhat less accurate, but deviates from R(E) by no more than 10 per -

cent in the least favourable case (y = 1) . In actual range observations the
deviation is reduced by electronic stopping and by the change in effectiv e

s with particle energy. There remains a difference between Ri and R only

at the lowest values of e . For our present purposes where all range curves
(e . g. Figs. 3 and 4) are stated in terms of R1 (E) we need hardly distinguis h

between R1(E) and R(E), because of obvious uncertainties in theory and

experiment. Still, one might ask why the range curves are computed fo r

R 1 in place of R 2 . This is simply because a universal range curve would no t
result when R2 is used .



Nr. 14 2 3

TABLE 2

Comparison of first and second approximation with exact formula when y = 1 .
Average ranges and range straggling for power law scattering .

s R /Rl R/R 2 (d R a )/(A R Z)i (4 RE )/(4 Rz) a

3/2	 1 .053 1 .01 1 .03 0 .94

2	 1 1 1 .20 1 .03

3	 0 .904 0 .97 1 .20 1 .10

The straggling approximations (A R 2 ) 1 and (4 R 2) 2 are, as a rule, a littl e

smaller than 4R2 when y = 1 . This deviation becomes quite pronounce d

if instead we consider the relative straggling in range . Thus, in the extreme

cases of s = 3 and y = 1 we have (d R 2)1/n1 = 0 .133 according to (2 .13) ,

while AR2 /.R 2 ' 0 .20 for y = 1 and 2 <s <3 . At quite low values of e, an d

y = 1 , the straggling in Fig. 6 is therefore somewhat lower than the straggling

in average range ; still it is noteworthy that the electronic stopping has a

considerable influence on straggling also for quite low values of e . We infer

moreover that the absolute values of range straggling in Fig . 7 are expecte d

to represent dR 2 quite accurately, i . e . they are superior to the relative

straggling values in Fig . 6 . Note that the deviations are only important whe n

y 1 . The outcome of the discussion in the present chapter is therefore tha t

the simple quantities R1 and (AR 2)1 , introduced already in § 2, are satis-

factory estimates of average range and average square fluctuation in range .

Results for power law scattering

In the interesting case of power law scattering, (2 .6'), the formula (3 .3) take s
a particularly simple form if electronic stopping is neglected . In fact, we then obtai n

a

	

dy

dr P(r,E) S

1
oy1+1/s{(1-Yy)-2/sP(r . [1-Yy]-2/s, E .[1-Yy])-P(r,e)},(3 .13 )

where r = Ase • (2 yel l s) - 1 and
Jo

P (r, s) dr = 1 . If the power law holds down to zer o

energy, equation (3 .13) permits us to choose P(r, s) independent of s, and an ex-
tremely simple recursion formula is obtained for the moments of the distribution,

('1	 	 dy
I (Y, m, s) =

So

1 ( 1 - Yy)2mis} y1+1/ 's
m <rm-1>

	

<rm>•I(y,nu,s), (3 .14)

The moments therefore only depend on one parameter, y, for any given power law
scattering .

This result, where virtually the whole range distribution is determined im-
mediately for any energy when merely the power s is stated (and y is known), i s
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clearly a direct consequence of universal cross sections, f (t 1/2 ) . In a more qualitative
sense, it is apparent that if at one particle energy a cross section is given as a functio n
of TIT,.,,, = sin2 )9,/2, this cross section leads to a certain ion-atom potential from
which the scattering at all lower energies may be derived . This circumstance i s
expressed in an approximate way by the unified cross section, (2 .9), and the result s
happen to be analytically simple for a power law cross section .

The integral I(y, m, s) may be expressed by means of the incomplete bet a
function (cf . ERDÉLYI et al . (1953)),

/

	

1 2m'

	

I ( y , m, s ) = - s - ( 1 - y) 2an/s }
+ 2 mylis By 1 ss

	

(3 .15 )

and is particularly simple when y < < 1, in which case a power series in y converge s
rapidly,

2my~

	

y s- 1
I (y,m,s) =	 1 --

	

(2m-s)s-11

	

2s 2s- 1

y 2 s- 1
+3s2

3s
-1(2m-s)(m -s)+ 	 y«1 .

An interesting case is also y = 1, where the incomplete beta function in (3 .15) be-
comes the usual beta function B1 (p, q) = I'(p)T(q)/I'(p+q) .

The results in (3 .14), (3 .15) and (3 .16) were used in Tables 1 and 2 for the com-
putation of the first and second moments in various approximations . It is easy t o
derive also higher moments .

§ 4. Projected Ranges and Associated Quantities

Average projected range

An interesting quantity appears to be the projection of the range on th e
initial direction of the particle path . This quantity is often observed directly .

Thus, one might be concerned with a collimated beam of particles passin g
through a number of foils perpendicular to the direction of the beam ; the
number of particles collected in each foil gives just the distribution in rang e
projected on the initial direction of the beam . We may, in fact, define th e
concept of projected range as follows . A particle starts inside an infinit e
homogeneous medium from the origin in the direction of the x-axis ; the
value of x for the end point of the path is the projected range, Rp . The
distribution in x is the distribution in projected range . Quantities of particula r
interest here are the average projected range, Rp = Rp (E), and the average
straggling in projected range, AR; = Rep -Tep .

(3 .16)
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An integral equation for the average projected range may be obtaine d

in analogy to the derivation of (3 .1). We find readily

	

1 =Ndan,e {R p (E)-Rp (E-T)cosq'),

	

(4 .1 )

where T = Tn +~Te1 , and q' is the deflection of the ion in the laborator y

system . There is a close similarity to the integral equation (3 .6) for the
average range, the only difference being the factor cos q' in (4.1) .

Let us consider some approximations which can be useful in solvin g

(4 .1) . If always T<< E, i . e . y<< 1, or if Rp is nearly proportional to E ,
we may write

1=R2, 1 (E)NSdan,e (1-cos(p)+4, 1
E) NSdan •T•coscp .

	

(4 .2)

This approximation is similar to the one for RI in (3 .7) and (2 .2), and we
therefore use the notation R 221 for the projected range in (4.2) . Actually, if

the deflection cp may be neglected, we obtain (dfp1/dE) = N•S, i . e . 1-?2,1
becomes equal to RI .

When solving (4 .2) we can introduce the familiar transport mean fre e

path, Atr , and a transport stopping cross section, Str ,

1 =

	

do-n,e (1 -cos

	

S - dun, Tcos

	

4 . 3
A tr

With this notation, equ . (4.2) becomes

1 _ R
2'1(

E ) + dRp1(E) . NStr (E) ,

	

(4 .4)

	

'tr (E)

	

dE

which equation (4 .4) has the solution

(
Rpl (E) =

SE

	 dE	
exp { S E	 dE	 	 (4 .5 )

0 NStr (E')

	

t E )Itr (E") N. Str (Ell

and this result should be a good approximation to Rp (E) if y is small, or
if Rp is nearly proportional to energy . We may solve the equation for Rp
in the lowest approximation . This corresponds to taking the leading term
in a series development in ,a = M2 /M1 , assuming ,u to be small . The ap-
proximation is similar to that in § 3, for y« 1 . In the limit of small ,u, the
angle cp is always small and we need only include T 2-terms in (4 .3). Using
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Fig . 8 . Correction for projected ranges ("1 - pl)/p, = pup, to first order in the mass ratio

= M2/M l . Curves are shown for pure nuclear stopping and for three values of electroni c
stopping parameter k .

the nuclear scattering cross section (2 .9) and electronic stopping (ds/de)e =
k•e1/2 , we have computed the first order correction from average projecte d

range to average range along the path . The resulting curves are shown i n
Fig. 8, for various values of k, and also for pure nuclear stopping .

It is more difficult to obtain accurate approximations to Rp when tt i s
large, corresponding to large angles of scattering, q. . We use the approximate

equation (4 .5) and profit from the circumstance that P p is not far from being
proportional to energy . By means of (2 .9), solutions were obtained for = 1
and = 2, and a few representative values of the electronic stopping para -

meter k . The results are shown in Fig. 9 .

The power law approximation of nuclear scattering, (2 .6), with neglect
of electronic stopping, permits accurate solutions for Rp . We utilize the cir-

cumstance that Rp ccE21s . As an example, we consider the useful case o f
s = 2 . The exact solution of (4 .1) and (3 .6) leads to (LINDHARD and SCHARF F

(1961))

1

	

1+

	

1

	

1
R/Rp = 4 -1 - 3 ,u + (5 +,u) 2 X112 arccos 1+  ^ 1 + 3 ,u, s - 2 . (4 .6)

6
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Fig . 9 . Approximate curves for 6/41 for large values of the ratio i = M,/Ml and a few values

of k .

As may be seen from Fig . 8, the rule-of-thumb R/R p = 1 +,a/3 is a fair

approximation at low energies .

As a further example we may quote the value of R/Rp for small ,u, and
any value of s,

s2
R/1p^' 1 + 1u 4(2s -1) '

which approximation is quite accurate up to ,a -

Associated range concept s

The average projected range is determined by one closed equation .
However, the equations governing the higher moments of the projecte d
range are far more complicated . If we treat the average square of the pro-

jected range, RI, we must also introduce the average square of the rang e
projected on the plane perpendicular to the initial direction, Rl . The average
square of the distance between the starting-point and the end point of th e
path is then R2, = Rep +RI . We may describe R e as the chord range (als o
referred to as vector range). These range concepts are illustrated in Fig . 10 .
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Fig . 10 . Sketch illustrating definition of range concepts R, R 9 , Re and R 1 .

The integral equations for Rp are derived in a similar way as (3 .1). The
following two equations are obtained, after rearrangement of terms ,

2 .Rp (E) = N
J

d 6n e LRc (E) - RO (E - T) },

	

(4 .8)

2Rp (E) =Nd crn e {RT(E)-
1
1- sin2 q~)Rr (E-T)(4.9)

ll

	

JJJJJI

where

R~=R22 +Ri and R,2. =Rp2 -2R2

	

(4.10)

The two equations (4 .8) and (4.9) may be solved separately, and then Rep
is found from (4 .10) .

First order solutions of (4 .8) and (4.9), for p<< 1, can be obtained in
a direct manner . However, we shall merely consider the case of power law
scattering, with neglect of electronic stopping . The exact solutions may then
be expressed as beta functions . In Table 3 we quote the results for = 1
and various values of s . It is seen that in these cases AR; is of order of 2R 2 .
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TABLE 3

Straggling in projected range for power law scattering and p-1.

s 3/2 2 3

R a/d Rp	

A RP/~P	

1 .2 5

0 .204

1 .3 3

0 .275

1 .38

0 .341

§ 5. Comparison with Experiments

As an illustration of the connection to experiments, we present a brie f

survey of recent experimental results, interpreted on the lines of the theor y

of this paper . Before that, it may be worth-while to summarize briefly and

comment on the salient features of this theory .

A primary result is that a simple-minded theory of ranges and thei r

fluctuations, as described in § 2, is quite accurate and that corrections o f

various kinds for projected ranges, etc ., may be made without much dif-

ficulty, if necessary . A second result, somewhat independently of the details

of the theory of collisions, is that a e - e plot is useful for a study of range s

of particles with e <1000, and particularly for e,:., 10 . A third result is tha t
for any ion of high energy a range correction, A, for the effect of nuclea r

stopping has been obtained, which permits a more accurate study of elec-

tronic stopping. Fourth, e . g. various isotope effects can serve to check

several details of the theory, as may also observations of range straggling .

A theoretical result of special interest is that for Z l = Z2 the electroni c

stopping constant is k-0.15, except when Zl = 1 . Therefore, the range
energy curve for Zl = Z2 should be closely a single curve in a e - s plot .

However, the corrections for e . g. projected ranges are not negligible in
this case .

The numerical results computed here are based on a much simplified
model of collisions. It is certainly possible to introduce a more detaile d

description of the collisions (cf. Notes on Atomic Collisions I and IV), and
thereby improve on the present theoretical results . However, it may be mor e
important to remove uncertainties and to correct misconceptions in the theor y
by measurements of range and stopping .

Another important circumstance is that direct comparisons with measure d
ranges may be made preferably in gases, where successive collisions are
uncorrelated . In several respects stopping in solids may also answer th e
purpose, but experiments at low ion energies clearly seem to indicate th e
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kind of correlation of collisions described as tunnelling (cf . PIERCY et al .
(1963)), with strong directional effects and range lengthening in certai n

crystal structures . Although these range effects are in themselves highly

interesting, their special character make them less suited in a general firs t
comparison between range theory and experiments . In e. g. amorphou s

solids the effect appears to be absent, as was to be expected .

It should be appreciated that in the following we have merely made a

compilation of measurements ; not all of them are plotted in the figures .
We are not in a position to make any critical examination of the experiments ,

some of which are in mutual disagreement or obviously inaccurate . We

have included primarily the more recent measurements . A review of previou s

observations is given by HARVEY (1960). We are mainly interested in ex-
periments where nuclear stopping is dominating, and do not discuss electro-

nic stopping . NORTHCLIFFE (1963) has given a valuable survey of measure-

ments on stopping in the energy region just above the one considered here ,

i . e . when electronic stopping dominates and goes through a maximum .

In plotting the results we have made approximate corrections for pro-

jected ranges, etc . Normally, the range measurements are plotted directl y
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Fig . 11 . Comparison between theoretical curves for 1 (e) given by (2 .2), (2 .9), (2 .10) and (2 .11) ,
and measurements for e < 2 . As indicated on the figure, numbers 1, 2, 3, 4, 5 and 6 refer to stopping

gases H 2 , D 2 , He, N 2 , Ne and A, respectively . For further comments cf . text .
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on the figures, and range corrections are indicated by arrows . In some cases

our knowledge of the measurements was too scanty to permit a range cor-

rection. As a general rule, we have corrected for projected ranges, etc ., only

if the correction exceeds -10 percent .

Fig . 11 shows the theoretical range curve for values of e smaller than 2 ,

where nuclear stopping is quite dominating. The ranges for pure nuclear
stopping are given by the upper solid curve, denoted as Th .-F. on the figure .
A curve for exceptionally large electronic stopping, i . e . k = 0 .4, is also

shown. The actual k-values are quite small, and thus the expected ranges

should be close to the Th.-F. curve . Further, note the dashed straight lin e
corresponding to range proportional to energy, = 3 .06e . It should be
emphasized that for extremely low energies, e,:, 10 -2 , the theoretical curve

is not too well-defined .
HARVEY, `VADE and DONOVAN (1960) observed projected ranges fo r

At205 and At207 ions in bismuth . The At recoil ions were produced by a-boin-

bardment of a bismuth foil, leading to an (a, xn) process . This resulted i n
At ions with various energies between 400 and 900 keV ; the energies were
not sharply defined . Approximate corrections for projected range are show n

by arrows in Fig . 11 . The observations of HARVEY, `VADE and DONOVA N

are in satisfactory accord with the predicted ranges .
POWERS and `HALING (1962) studied projected ranges of monoenergeti c

ions of nitrogen and inert gases in several solids . The depth of penetratio n

of the ions was obtained from a subsequent analysis of the distribution i n
angle and energy loss of protons scattered from the ions imbedded in the
target. The ranges of POWERS and WHALING are generally in good agreement
with the theoretical curves . In the figure, we have included only their rang e
measurements for Xe in Be and in Al . The corrections for projected range s
are quite small and are omitted . The ranges in Al may be compared with
those of DAVIES et al . in Fig . 12 . These two range observations for Xe in Al giv e
quite different results and are placed on either side of the theoretical curve .

VALYOCSIK (1959) made accurate observations of ranges of Ra 224 and
Th226 recoil atoms with, respectively, 97 and 725 keV energies . Ranges are
measured in gases using the electrostatic collection technique of GHIORS o
and SIKKELAND . Ranges and range stragglings were observed in deuterium ,
helium, nitrogen and argon, and in hydrogen and neon (only for Ra ions) .
The observations are shown in Fig . 11 . They are in good agreement with
theory (between 0 and 20 percent below theoretical ranges), and correspon d
to k = 0 .12, except in hydrogen where k = 0 .16 .



32

3.o

Nr. 1 4

o

	

NQ -- Nlk - .15 W
•

	

f/

n

	

Xe

q

	

Cs

-;!i!
~. /1!

---l1/

k - .12

k = . /!

k s .1o

pav/es

~

é a/.

~~ , •bier

Ad
rh . -F /

/

k- .4 i
o

q
i
i~, 93.o6E

A few measurements by the Copenhagen group (SIDENIUS, private com-
munication) are also included in Fig . 11 . The projected range of Au198 ions
of energy 50 keV is measured by electrostatic collection . The correction fo r

projected range is negligible . The ranges are slightly above theoretical curves .

The k-values are as in VALYOCSIK's measurements .
DAVIES et al . (1960, 1961 and private communication) have observed

projected ranges in Al, for the following ions : Na24, A 41, K 42, Rb86, x e 13 3

and Cs 137 . Monoenergetic radioactive ions of energies between 1 keV and
2 MeV enter a polished Al surface . Thin layers of Al are removed suc-

cessively by electro-chemical means and the residual activity is measured .

In this way the distribution in projected range is obtained . The range values

of DAVIES et al . in Fig. 12 are median ranges . At the higher energies ther e

is good agreement with theoretical curves .
The measurements by DAVIES et al . were made with polycrystalline Al .

It has turned out that the structure of Al is such that tunnelling of the ions

may occur, whereby the average range becomes considerably larger tha n

for a random system, and the range distribution has an exponential tai l

(PIERCY et al . (1963)) . The results of PIERCY et al . for Kr 85 in Al and A1 2 0 3

at 40 keV are compared with theoretical estimates in Table 4 . There i s
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Fig . 12 . As Fig . 11 ; measurements of median ranges by DAVIF.S et al . in Al . Ranges at low energies

exceed theoretical curves, probably as an effect of tunnelling in crystal lattice .
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TABLE 4
Ranges (in ,ug/cm2) of 40 keV Kr" in Al and A1 2 0 3 , and average square straggling in
range. Experimental results by PIERCY et al. Computed results (columns 3 and 5 )

are for random system, as indicated .

Rmep
Rex p R rand (

	

)ez d R ex(

	

)

	

p d R r2an d

Al	 9 .0 11 .5 7 .1 91 4 . 6

A1 20 3	 7 .7 7 .7 6 .5 7 .8 3 .5

satisfactory agreement in the amorphous substance A120 3, both as regard s

ranges and straggling . It appears also from Table 4 that the experimental

median range in Fig . 12 is probably somewhat larger than the average range s

of a random system of Al atoms . We therefore infer that the results of
DAVIES et al. in Fig. 12 are not in contradiction to the theoretical range s
of a random system . Note the very large experimental range straggling in

Table 4 for Al, characteristic of an exponential distribution, where d R 2 = W
There are several other measurements in the regions of energy cor -

responding to Figs . 11 and 12 . Thus, BAULCH and DUNCAN (1957) obtain

ranges of a-recoils (ems 0 .1) from 0 to 10 percent below theoretical curves .

The results of VAN LINT et al . (1961) are at the higher energies at least about
a factor of 2 above theoretical expectations, while at lower energies (r- 0 .04)

agreement is fair . However, these measurements show a very considerabl e

scatter . GUSEVA, INOPIN and TSYTKO (1959) measured ranges of mono -
energetic Si30 ions in Ta and Cu backings, at energies between 10 an d
25 keV. The depth of penetration was estimated from proton energies

necessary for a (p, ).) process, together with knowledge of proton stopping .
Their results are about a factor of 2 above the theoretical curves .

Fig . 13 shows some observations for 1 < e <100, and corresponds t o
Fig. 4 in § 2 . We are here in a region where the electronic stopping begin s
to take over . It is then important to know the value of the constant k . Some
of the projected ranges observed by POWERS and WHALING (19.62) are shown

in Fig. 13, including one where the ratio ,u = (M2 /Ml)-2, i . e . the corrections
for projected range are large . The agreement with theoretical curves is good .

WINSBERG and ALEXANDER (1961) and ALEXANDER and SISSON (1962)

measured projected ranges for Tb 14° ions in aluminium, at energies be-
tween 4 and 30 MeV, and for At and Po ions in aluminium and gold, a t
energies between 3 .5 and 13 MeV . The projected ranges and the range

stragglings were obtained from the activities in stacks of catcher foils . In
Fig. 13 we have included results for At and Po in gold and for Tb 149 in

Mat .Fys .Medd.Dan .Vid .Selsk . 33, no. 14 .
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Fig . 13 . Comparison with range measurements in the region 1 < e < 100, where electronic stoppin g
becomes important . Theoretical k-values are given, indicating the theoretical curve with which

to compare the observations .

aluminium. There is good agreement with the theoretical curves . It may be

noted that the ions were formed in a nuclear reaction with subsequen t
neutron evaporation .

In the case of A 41 in aluminium, DAVIES et al . (private communication )

performed measurements at energies so high that electronic stopping is im -
portant. The ranges are in good agreement with the theoretical curves i n
Fig . 13 .

BRYDE, LASSEN and POULSEN (1962) measured projected ranges for

radioactive Gass recoil ions in gases using electrostatic collection . As typical

representatives of their observations we have in Fig . 13 included ranges i n
hydrogen and deuterium. These ranges are about 40 percent above theoretica l

ranges . BRYDE, LASSEN and POULSEN also observed projected ranges fo r

Gass in copper ; the latter ranges are in good agreement with the theoretica l
curve. Also included in Fig . 13 are three measurements by POSKANZER (1963)
of 1-3 MeY Ne22 ions in aluminium ; these ranges are smaller than
theoretical ranges . Finally, in Fig. 13 is shown the early measurements
of ranges by LEACHMAN and ATTERLING (1957), where recoil ions of At20 3
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Fig . 14 . Comparison between theoretical curve and range measurements for fission fragments ,
nuclear stopping being eliminated . For large values of e the representation shown here is superio r

to that in Fig . 13 .

and At2o5 penetrated a stack of aluminium foils, and projected ranges wer e
measured . There is fair agreement, but apparently some fluctuations be-

tween individual measurements .
As mentioned previously, in the present paper we do not attempt a

systematic study of electronic stopping as obtained from measurements a t

high values of e . We may merely show two sets of representative measure-

ments, where the nuclear stopping is eliminated, so . that the extrapolated
electronic range is obtained. For v<vl the theoretical extrapolated electroni c

range is ee = le i/2 /k . Using theoretical range corrections for nuclea r
stopping, d (k, s), as indicated in Fig . 5, we have plotted in Figs . 14 and 1 5
values of (k/2) {e + 4 (k, e)) obtained from measurements of e . The theoretica l

curve is the straight line kee/2 = 81/2 . Fig. 14 contains only measurement s
of ranges of fission fragments . In Fig. 14 is shown measurements by NIDAY

(1961) of fission fragment ranges in uranium . NIDAY used a thick uraniu m

foil packed in aluminium catcher foils . Fission fragments resulted fro m
thermal neutrons . The fragments ending up in aluminium were separated
by radiochemical means . In this way an estimate of the ranges along th e
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Fig . 15 . Some recent measurements of projected ranges for light atoms in gases, corrected fo r
nuclear stopping only, like in Fig . 14 . Full-drawn curve is theoretical range e l /2 . Points stan d
for following ions in air : x Li, + B, p C, AO, q F, •Ne, ONa, and following ions in argon : •Li ,
v B, ♦ N (measurements by TEPLOVA eL al .) . Further, Qindicates F in nitrogen, measured by

BRYDE, LASSEN and POULSEN .

chord was obtained. The ranges of NIDAY should be corrected by approx-

imately + 5 percent in order to obtain true ranges . The agreement with th e
theoretical range is good .

In Fig. 14 is also included observations on fission fragment ranges by

ALEXANDER and GAZDIIi (1960), FULMER (1957) and LEACHMAN and SCHMITT

(1954). In the case of gold, about 5 percent should be added in order t o

obtain true ranges . There is agreement within -10 percent .
A number of other authors have measured ranges of fission fragment s

(SMITH and FRANK (1959), KATCOFF, M.ISKEL and STANLEY (1948), GOO D

and WOLLAN (1956), BØGGILD, ARRØE and SIGURGEIRSSON (1947), DOUTHET T

and TEMPLETON (1954), SUZOR (1949), PORILE and SUGARMAN (1957), cf .

also the review article by HARVEY (1960)). Some of the earlier measurements

may be less accurate than those shown in Fig. 14, but generally there is

approximate agreement with theory .
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As an example of light ions with substantial energies we have take n

measurements of projected ranges by TEPLOVA et al . (1962). A number of

ions, from Li to Na, with energies in the interval 1-10 MeV, were slowed

down in air, argon and hydrogen . Many of these measurements are shown

in Fig. 15. On the figure is also shown a range value for F18 in nitrogen gas ,

measured by BRYDE, LASSEN and POULSEN (1962) . We have not indicated

corrections for projected ranges on Fig . 15, since the largest correction would

be -+8 percent (for Li in argon gas) .

In connection with electronic stopping it should be noted that at lo w
atomic numbers, and particularly at low values of Z1 , there may be de-
viations from the theoretical k-value based on a Thomas-Fermi treatment .

At low atomic numbers one may expect variations in the measured k-value s
due to shell effects . As an extreme example from a Thomas-Fermi point of

view, in the case of Li ions in hydrogen, deuterium and helium, it appear s

from measurements of stopping (ALLISON and LITTLEJOHN (1957)) and of
ranges (CLERC, WAFFLER and BERTHOLD (1961)) that the electronic stopping
may be as much as 2-3 times less than given by (2 .5). Measurements by

ORMROD and DUCKWORTH (1963) of electronic stopping in carbon for all ion s

with Zl 11 indicate minor shell variations around the value in (2 .5) .

Range straggling

As to straggling in range (cf. p. 14) we have not attempted any closer
analysis . High accuracy is difficult to obtain in range straggling, and at lo w
e-values (e < 0.5) the rule-of-thumb (4 e/e)2 = y/6 = Ml M2 (Ml + M2)-2 .(2/3)

is often sufficient. In many experiments a considerable fluctuation was
present in the initial ion beam, e . g. because the ion resulted from a com-

pound nucleus after neutron evaporation . The experimental range straggling s

are often considerably above the curves . The measurements by VALYOCSI K

on 97 keV a-recoils (cf. HARVEY (1960)) correspond to rather well-define d
conditions . For 97 keV Ra the straggling in nitrogen, neon and argon is

comparable with the theoretical one (cf . Fig. 6), but in the light gases ,
hydrogen, deuterium and helium, the straggling is much in excess of theo-

retical estimates . When subtracting a common constant of order of 0 .01 6

from the experimental straggling (4 o)e xp , one obtains a relative straggling

1' 1 (4 e/e) 2 = 0.14-0.18, in excellent agreement with theory (since efl 0 .03-0 .07 ,
and k 0 .12). For 725 keV Th ions, where e~ 0 .4-0 .5, the experimenta l

relative straggling is much too large in deuterium and helium . A reduction

of (4e)éx2, bye 0 .04 in all gases would give a reasonable order of magnitud e

of the straggling . As a further example, many measurements by the Copen-
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hagen group show rather large straggling effects, but some results (e . g .
ranges of 50 keV Ga ss in hydrogen, helium, nitrogen and argon, shown i n
Fig. 11) with s 0 .3-0 .5, have a straggling (A o/o)2 Ÿ r 0 .15-0 .25 . Even in
the difficult case of the lightest gases, where the theoretical straggling i s
extremely small, there is reasonable accord with theory .

Isotope effects

It is of interest to study isotope effects in range measurements . We shal l
treat the question of different isotopes used as stopping medium Althoug h
electronic stopping may dominate in the value of the range itself, isotop e
effects can still give direct information about the nuclear stopping . An in-
structive example is provided by the measurements of BRYDE, LASSEN and
POULSEN (1962, and private communication). They observed ranges of Ga ss

in hydrogen and deuterium ; at high energies RD is slightly larger than RH ,

while at low energies RH exceeds RD . Now, if there was only electronic

stopping, the two ranges would be equal, so that differences are due to
nuclear stopping. It is seen from (2 .7) that the nuclear stopping behaves
as Sn « MZ2/s, when 11/11 >>1112 . At quite low energies, where the ion canno t

penetrate deeply into the atom, the effective power of the potential is o f
order of s = 3, and thus SnD >SnH . At high energies, where the screening

is weak, the effective power approaches s = 1, and therefore SnH > SnD
(LINDHARD and SCHARFF (1961)). According to Fig . 2, the change-over i n

stopping occurs at an s-value smaller than 0 .5 . Correspondingly, in Fig . 4

the change-over in slope-from lower to higher than that of the straigh t
dashed line-occurs at 8-4 for the Th.-F. curve .

Instead of this qualitative explanation of experimental results we ma y
directly compare experimental range differences with theoretical ones de-
duced from Figs . 3 and 4 . The results are shown in Table 5 . Agreement
between theoretical and experimental range differences is quite good ,

TABLE 5
Differences between ranges in D2 and H2 for Ga sh ions. Ranges are in mm at 300° K ,

760 mm Hg .

Energy (keV) 1190 790 610 5 0

(RD-RH)th	

( RD- RH)exp	

0 . 9

1 .5

0 . 7

0 .8

0 . 6

0 .5

-0 .0 5

-0 .05

* A measurement, where different isotopes are chosen for the incoming particle, is discusse d
by LINDHARD and SCHARFF (1961).
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especially at the lower energies . This result is obtained in spite of the fact

that at the three higher energies the absolute ranges of BRYDE, LASSEN and

POULSEN are as much as-40 percent higher than theoretical ranges (Fig . 13) .

In further measurements by the Copenhagen group (SIDENIus, privat e

communication), other examples of isotope effects were obtained for 50 keV

ions . Thus, for Na24 in hydrogen and deuterium (e = 2 .4 and 4 .65) one foun d

(RD - RH)exp = + 0.157 mm, while (RD - RH)th = + 0 .104 mm, the ranges

themselves being of order of 0 .9-1 .0 mm, and -50 percent larger than

theoretical ranges. For Au198 ions in hydrogen and deuterium, e is so small

(r = 0 .024 and 0.047) that the effective power has shifted to s> 2, an d

(RD - RH)exp = - 0 .061 mm, while (R D - RH)th = - 0 .087 mm ; experimenta l

ranges are - 0 .4 mm, i . e . about 30 percent larger than theoretical ranges .

Finally, for Gass in helium isotope gases (e =0 .4) one found (RHe4 - RHe a)ex p
-0.016 mm, to be compared with (RHe 4 - RHea )th = - 0.006 mm ; ex-

perimental ranges are -0 .4 mm, or 20 percent above theoretical ranges . Al l

ranges quoted here are in mm at 300° K, 760 mm Hg . The agreement wit h

theoretical isotope shifts of ranges is thus fairly good, and it is interesting

that normally the change from larger to shorter range in the heavier isotop e

occurs at e -' 1 .

Acknowledgments

A few of the above results were obtained seven years ago, followin g

discussions with Dr . R. B. LEACHMAN on his observations of range distri-

butions . They have been referred to various times in the literature . A brief

summary of the present work (LINDHARD and SCHARFF (1961)) was pub-

lished at the time of MORTEN SCHARFF ' S death .

We are much indebted to Drs . R. B. LEACHMANN, J . M. ALEXANDER ,

B . G. HARVEY, N . O . LASSEN, N. O. Roy POULSEN, W. WHALING, J . A .

DAVIES, H . F. DucxwoRTH, Mr . G. SIDENIUS and many others for discussion s

and communication of experimental results prior to publication .
We wish to express our gratitude to all who have encouraged us an d

assisted in this work, in particular to P . V . THOMSEN, M . Sc .

We are much indebted to Miss S . ToLnI and Mrs . A . GRANDJEAN for as-
sistance in the preparation of the paper .

Institute of Physics ,
University of Aarhus.



References

J. M. ALEXANDER & M . F . GAZDIx (1960) . Recoil Properties of Fission Products .
Phys . Rev . 120, 874 .

J . M. ALEXANDER & D . H. SISSON (1962) . Recoil Range Evidence for the Compound -
Nucleus Mechanism in Reaction between Complex Nuclei . UCRL-10098 .

S . K . ALLISON & C . S . LITTLEJOHN (1957) . Stopping Power of Various Gases for Li
Ions of 100-450 keV Kinetic Energy . Phys. Rev. 104, 959 .

D . L . BAULCH & J. F. DUNCAN (1957) . The Range-Energy-Relation for a-Recoi l
Atoms. Austral . J . Chem . 10, 112.

N . BOHR (1948) . Penetration of Atomic Particles through Matter . Mat . Fys . Medd .
Dan . Vid . Selsk . 18, no . 8 .

L . BRYDE, N. O. LASSEN & N. O. Roy POULSEN (1962) . Ranges of Recoil Ions from
a-Reactions . Mat . Fys . Medd . Dan . Vid . Selsk . 33, no. 8 .

J . K. BØGGILD, O . H. ARRØE & T. SIGURGEIRSSON (1947) . Cloud-Chamber Studies o f
Electronic and Nuclear Stopping of Fission Fragments in Different Gases . Phys .
Rev. 71, 281 .

H. G . CLERC, H. WAFFLER & F . BERTHOLD (1961) . Reichweite von Li e-Ionen der
Energie 40-450 keV in H 2, D 2 und He. Zeitsch . f . Naturf . 16a, 149 .

J . A. DAVIES, J . D . MCINTYRE, R . L . CUSHING & M . LOUNSBURY (1960) . The Rang e
of Alkali Metal Ions of Kiloelectron Volt Energies in Al . Can . J . Chem. 38, 1535 .

J . A. DAVIES & G. A. Sims (1961) . The Range of Na 24 Ions of Kiloelectron Volt
Energies in Al. Can. J . Chem. 39, 601 .

J . A. DAvIEs, J . D . MCINTYRE & G. A . SIMS (1961) . Isotope Effects in Heavy Ion
Range Studies . Can. J . Chem . 39, 611 .

B . DOMEIJ, I. BERGSTRÖM, J . A . DAVIES & J . UHLER (1963) . A Method of De-
termining Heavy Ion Ranges by Analysis of a-Line Shapes . To appear i n
Arkiv f. Fysik .

E. M. DOUTHETT & D . H. TEMPLETON (1954) . The Ranges of Fragments from High
Energy Fission of Uranium. Phys . Rev . 94, 128 .

A. ERDÉLYI, W . MAGNUS, F. OBERHETTINGER & F. G. TRICOMI (1953) . Higher
Transcendental Functions, I. McGraw-Hill .

U . FANG (1953) . Degradation and Range Straggling of High Energy Radiations .
Phys . Rev. 92, 328 .

C . B . FuLMER (1957) . Scintillation Response of CsI(Tl) Crystals to Fission Frag-
ments and Energy vs . Range in Various Materials for Light and Heavy Fissio n
Fragments . Phys . Rev. 108, 1113 .

W. M. Goon & E. O. WOLLAN (1956) . Range and Range Dispersion of Specific
Fission Fragments . Phys . Rev. 101, 249 .



Nr . 14

	

4 1

M. I . GusEVA, E . V . INOPIN & S . P . TSYTKO (1959) . Depth of Penetration an d
Character of Distribution of Atoms Injected into Si" Isotope Targets . Sovj .
Phys . JETP 9, 1 .

B . G. HARVEY (1960) . Recoil Techniques in Nuclear Reaction and Fission Studies .
Ann . Rev. of Nucl . Sci . 10,. 235 .

B . G. HARVEY, P . F . DONOVAN, J . R . MORTON & E. W. VALYOCSIK (1959) . Range
Energy Relation for Heavy Atoms . UCRL-8618.

B . G. HARVEY, W . H. WADE & P . F . DONOVAN (1960) . Recoil Studies of Heavy
Element Nuclear Reactions, II . Phys . Rev. 119, 225 .

D. K . HOLMES & G. LEIBFRIED (1960) . Radiation Induced Primary Knock-Ons i n
the Hard Core Approximation . J . Appl . Phys . 31, 1046 .

D. K . HOLMES (1962) . The Range of Energetic Atoms in Solids . "Radiation Damage
in Solids", vol . I, IAEA, Vienna .

F . JoLIOT (1934) . Ranges of a-Recoils in Cloud Chamber . J . Phys . Rad . (7), 5, 219 .
S . KATCOFF, J. A. MISKEL & C . W. STANLEY (1948) . Ranges in Air and Mass Iden-

tification of Plutonium Fission Fragments. Phys . Rev. 74, 631 .
R. B. LEACHMAN & H. W. SCHMITT (1954) . Fine Structure in the Velocity Distri-

bution of Slowed Fission Fragments . Phys . Rev . 96, 1366 .
R. B . LEACHMAN & H . ATTERLING (1957) . Nuclear Collision Stopping of Astatine

Atoms . Arkiv f . Fysik 13, 101 .
J . LINDHARD & M. SCHARFF (1961) . Energy Dissipation by Ions in the keV Region .

Phys . Rev. 124, 128 .
J . LINDHARD, V. NIELSEN, M . SCHARFF & P. V. THOMSEN (1963) . Integral Equation s

Governing Radiation Effects . Notes on Atomic Collisions, III . Mat . Fys. Medd .
Dan . Vid . Selsk . 33, no . 10 .

V. A . J . VAN LINT, R . A. SCHMITT & C . S . SUFFREDINI (1961) . Range of 2-60 ke V
Recoil Atoms in Cu, Ag, Au . Phys . Rev. 21, 14517 .

J. B . NIDAY (1961) . Radiochemical Study of the Ranges in Metallic Uranium of th e
Fragments from Thermal Neutron Fission . Phys . Rev . 121, 1471 .

K. O . NIELSEN (1956) . The Range of Atomic Particles with Energies about 50 keV .
"Electro-Magnetically Enriched Isotopes and Mass Spectrometry" . Proc. 1955 .
Harwell Isotope Conf .

L. C . NORTHCLIFFE (1963) . Passage of Heavy Ions through Matter . To appear in Ann .
Rev . Nucl . Sci .

J . H. ORMROD & H . E. DUCKWORTH (1963) . Stopping Cross-Sections in Carbon fo r
Low Energy Atoms with Z < 12 . To appear in Canad . J . Phys .

G . R . PIERCY, F . BROWN, J . A. DAVIES & M . MCCARGO (1963) . An Experimental
Study of a Crystalline Structure on the Ranges of Heavy Ions . Phys . Rev .
Letters 10, 399 .

N. T. PORILE & N . SUGARMAN (1957) . Recoil Studies of High-Energy Fission of
Bi and Ta . Phys . Rev . 107, 1410 .

A. M. POSKANZER (1963) . Range of 1-3 MeV Ne az Ions in Al and the Analysis o f
Some Na" Recoil Data . Phys . Rev . 129, 385 .

D. POWERS & W . WHALING (1962) . Range of Heavy Ions in Solids . Phys . Rev .
126, 61 .

M. T . ROBINSON, D . K . HOLMES & O. S . OEN (1961). Monte Carlo Calculation of th e
Ranges of Energetic Atoms in Solids . ORNL-3212 .



42

	

Nr. 1 4

R. A. SCHMITT & R . A . SHARP (1958) . Measurement of the Range of Recoil Atoms .
Phys . Rev. Letters 1, 12 .

F . SEITZ (1949) . On the Disordering of Solids by Action of Fast Massive Particles .
Disc . Far . Soc. 5, 271 .

E. R . SMITH & P . W. FRANK (1959) . Recoil Range of Fission Fragments in Zir-
conium. WAPD-TM-198 .

F. SuzoR (1949) . Tracks in Various Materials of Uranium Fission Fragments . Ann .
Phys . 4, 269 .

YA . A . TEPLOVA, V . S . NIKOLAEV, I . S . DMITRIEV and L . N . FATEEVA (1962) .
Slowing Down of Multicharged Ions in Solids and Gases . Sovj . Phys . JETP
15, 31 .

E. W . VALYOCSIK (1959) . Range and Range Straggling of Heavy Recoil Atoms .
UCRL-8855.

W. WHALING (1958) . The Energy Loss of Charged Particles in Matter . Hdb. d . Phys .
vol . 34, 193 .

A. VAN WIJNGAARDEN & H. E . DUCKWORTH (1962) . Energy Loss in Condense d
Matter of Hl and He' in the Energy Range 4 to 30 keV . Can. J . Phys . 40, 1749 .

L . WINSBERG & J. M . ALEXANDER (1961) . Ranges and Range Straggling of Tb 199 ,
At and Po. Phys . Rev. 121, 518 .

Indleveret til Selskabet den 24 . april 1963 .
Færdig fra trykkeriet den 17 . oktober 1963 .






