Matematisk-fysiske Meddelelser

udgivet af

Det Kongelige Danske Videnskabernes Selskab Bind **33,** nr. 12

Mat. Fys. Medd. Dan. Vid. Selsk. 33, no. 12 (1963)

THE INFRARED SPECTRUM OF CH₃D

BY

FLEMMING ALLAN ANDERSEN

København 1963 i kommission hos Ejnar Munksgaard

CONTENTS

		Page
I.	Introduction	. 3
II.	Experimental	. 4 . 4 . 5
III.	Fundamental Bands 1. Parallel Bands (A1 Fundamentals) 2. Perpendicular Bands (E Fundamentals) 3. Results	. 5 . 5 . 8 . 30
IV.	Overtones and Combinations	. 32
	References	. 35

Synopsis

The infrared spectrum of CH_3D has been measured in the region 400–6000 cm⁻¹ by means of a prism instrument (Beckman IR 3) of medium resolving power. The band-centre frequencies have been derived by rotational analysis of the fundamental bands. The results are compared with previous prism and grating data, and a slightly revised set of normal vibration frequencies is given.

A value of the rotational constant $A''(\dot{A}_0)$ has been obtained, which agrees within the limits of error with a recent Raman value.

Coriolis coupling constants have been derived for the three doubly degenerate fundamentals.

Possible assignments of the observed combination bands are given.

Printed in Denmark Bianco Lunos Bogtrykkeri A-S

I. Introduction

The infrared and Raman spectra of methane and its deuterated species, CH_3D , CH_2D_2 , CHD_3 , and CD_4 , have been the object of several investigations.¹ However, when one examines the literature, it is obvious that several of the fundamental frequencies of the partly deuterated methanes are uncertain. As the investigations cited above¹ of these molecules are now more than 20 years old and the experimental technique since then has improved considerably, a re-investigation of all the fundamental bands of the partly deuterated methanes appeared to be desirable.

In 1953 BOYD and THOMPSON² and later ALLEN and PLYLER³ (1959) have measured the band near 2200 cm⁻¹ connected with the C–D stretching in CH₃D with high resolution. At the time when this investigation had been started, in 1956, REA and THOMPSON⁴ published normal vibration frequencies of CHD₃ obtained from infrared measurements. The assignments of two of the fundamental bands as well as the frequency value of one more fundamental are, however, in disagreement with infrared results of WILMSHURST and BERNSTEIN⁵ (1957). The latter authors have published fundamental frequencies of all the deuterated methanes obtained with low resolution, the frequency values being the position of maximum intensity in the bands rather than the true band centre frequencies.

Recently JONES⁶ (1960) has published the results of an infrared study of the degenerate C–H stretching fundamental of CH₃D at 3016 cm⁻¹ using medium resolution (≈ 1 cm⁻¹). Only the central part and the high frequency side of the band were measured. Some of his band constants deviate somewhat from the results of a recent Raman investigation of this band by RICHARD-SON et al.⁷

The present paper will deal only with CH_3D . Similar results obtained for CH_2D_2 and CHD_3 will be given in separate papers.

1*

II. Experimental

1. Preparations

CH₃D was prepared from CH₃I by allowing the halogen compound to react with a mixture of Zn-dust, acetic anhydride, and heavy water (99.83 $^{0}/_{0}$ D₂O) at about 30° C. The methyl iodide was carefully distilled before use. The Zn-dust and acetic anhydride were of the highest purity commercially available. The acetic anhydride was carefully distilled and kept for a few days over metallic sodium in order to remove a small content of acetic acid.

The reaction was carried out by adding the methyl iodide dropwise to the mixture of Zn-dust, acetic anhydride, and D_2O (vigorous reaction!). The CH₃D evolved was collected in a gasometer and from there passed through a dry ice trap and then condensed in a liquid air trap. A volume of the gas first collected, equal to the volume of the reaction vessel, was rejected, as it would mainly consist of air. The CH₃D was then distilled *in vacuo* to another liquid air trap. This procedure was repeated once more. In this way the deutero-methane was separated from less volatile impurities (e.g. H₂O from the gasometer).

In a similar way CH_2D_2 and CHD_3 can be prepared from respectively CH_2I_2 and $CHCI_3$.

It follows from the method of preparation that the deutero-methanes will be contaminated by some D_2 and air. These contaminants were removed by successively pumping off small fractions of deutero-methane kept in a liquid air trap until an equilibrium pressure of 20–25 mm Hg was obtained.

In each sample the only spectroscopically detectable impurity was the nearest lower deuterated methane, the amount of this, about 5 per cent., being spectrally of little significance. Table 1 gives the results from the preparations.

Deuterated compound	Mol halogen compound	Gram atom Zn	Mol (CH ₃ CO) ₂ O	Mol D ₂ O	Yield Litre and %
$\begin{array}{c} \mathrm{CH}_{3}\mathrm{D} \ \ldots \ldots \\ \mathrm{CH}_{2}\mathrm{D}_{2} \ldots \ldots \\ \mathrm{CHD}_{3} \ \ldots \ldots \end{array}$	0.29 (CH ₃ 1) 0.21 (CH ₂ I ₂) 0.05 (CHI ₃)	1.26 1.33 0.21	$0.54 \\ 1.00 \\ 0.13$	3.75 2.50 3.10	$\begin{array}{c} 3.5 & (50) \\ 3.7 & (73) \\ 0.36 & (30) \end{array}$

Table 1. Results of preparations.

2. Spectroscopic Procedure

The spectra were taken on a slightly modified Beckman IR3 infrared spectrometer equipped with KBr, NaCl, and LiF prisms.⁸ The path length could be varied from 10 to 2000 cm. The effective slit width, s_{eff} ,⁹ is indicated at each spectrum reproduced below together with values of the gas pressure in mm Hg (p) and the path length in cm (l).

The relative positions of the fine structure components within a single band are believed to be accurate within $\pm 0.1 - 0.2$ cm⁻¹. The absolute accuracy of the frequencies given is estimated at about ± 0.5 cm⁻¹. All the frequencies are in cm⁻¹.

III. Fundamental Bands

The molecule CH_3D is a symmetric top belonging to the point group C_{3v} and therefore has 6 normal vibrations: 3 totally symmetric of species A_1 and 3 doubly degenerate of species E. They are all infrared active. The A_1 vibrations give rise to parallel bands while the E vibrations appear in the spectrum as perpendicular bands.

1. Parallel Bands (A_1 Fundamentals)

The parallel bands corresponding to the vibrations v_{4a} , v_{3a} , and v_1 lie in the regions 1200–1400 cm⁻¹, 2050–2300 cm⁻¹, and 2900–3000 cm⁻¹ with observed band centres at 1306, 2200, and 2970 cm⁻¹, respectively. The *J* fine structure of the *P* and *R* branches was easily resolved because of the high value of the rotational constant B'' (≈ 3.9 cm⁻¹), the spacing in the branches being roughly 2B''.

On the low frequency side, the v_{4a} band at 1306 cm⁻¹ is overlapped by the strong perpendicular band, v_{4bc} , at 1157 cm⁻¹, and on the high frequency side by the weak perpendicular band, v_{2ab} , at 1471 cm⁻¹. Furthermore, fine structure components from the strong band $v_4(F_2)$ of CH₄, the band centre of which nearly coincides with v_{4a} of CH₃D, were present in the spectrum indicating a small content of CH₄ in the CH₃D sample. However, because of the high intensity of the v_{4a} band, assignment of P and R lines up to J = 11 could be made quite easily.

The 2200 cm⁻¹ band (v_{3a}) has been analyzed by BOYD and THOMPSON,² and recently by ALLEN and PLYLER.³ The author's measurements of the

Fig. 1. $v_1(A_1)$ and $v_{3\,bc}(E)$. 2830–3170 cm⁻¹. p = 93 mm. l = 10 cm. $s_{eff} = 2.1-2.3$ cm⁻¹.

same band are in good agreement with their results in spite of the lower resolving power of the IR3 instrument. In this way a satisfactory check on the spectroscopic procedure used in the present investigation was obtained.

The high intensity of the nearby overtone $2v_{4bc}$ (2×1157 = 2314 cm⁻¹) observed at 2316 cm⁻¹ indicates a Fermi resonance between the A_1 component of this overtone and v_{3a} . I have estimated the unperturbed frequency of v_{3a} at 2210 ± 5 cm⁻¹.

Also v_1 (Figs. 1 and 4) appears in the spectrum as one of the components of a doublet caused by Fermi resonance with the A_1 part of the overtone $2\nu_{2ab}$ (2×1471 = 2942 cm⁻¹). The components are observed at 2970 and 2910 cm⁻¹, WILMSHURST and BERNSTEIN found 2973 and 2914 cm⁻¹. If we assume that the anharmonicity of the overtone $2 v_{2ab}$ is -10 cm^{-1} —as seems reasonable—then the unperturbed level v_1 has been raised 22 cm⁻¹, which means that the unperturbed frequency of v_1 is close to 2970 - 22 = 2948cm⁻¹. As the most probable value, $v_1 = 2948 \pm 5$ cm⁻¹ has been adopted (see note added in proof, p. 34).

Since the observed band at 2970 cm⁻¹ is of low intensity and badly overlapped by the strong perpendicular band, v_{3be} , at 3016 cm⁻¹, the assignment of the P and R lines is rather uncertain and must be regarded as tentative only. The analysis of the rotational structure has been carried out by means of the well-known "method of combination differences". Neglecting the effect of centrifugal distortion, the P and R branches can be represented by

$$P(J) = v_0 - (B' + B'') J + (B' - B'') J^2$$
(1)

and

$$R(J) = v_0 + 2 B' + (3 B' - B'') J + (B' - B'') J^2.$$
⁽²⁾

Double-primed quantities refer to the vibrational ground state, single-primed constants to vibrationally excited levels. The combination relations are:

$$R(J-1) + P(J) = 2\nu_0 + 2(B' - B'')J^2$$
(3)

$$\Delta_2 F''(J) = R(J-1) - P(J+1) = 4 B''(J+1/2)$$
(4)

and

$$\Delta_2 F'(J) = R(J) - P(J) = 4 B'(J + 1/2).$$
(5)

If we take centrifugal distortion into account, D'_J and D'_J being the centrifugal distortion coefficients, the following relations hold:

$$R(J-1) + P(J) = 2v_0 + 2(B' - B'')J^2 - 2(D'_J - D''_J)J^2(J^2 + 1)$$
(6)

$$\Delta_2 F''(J) = 4 B''(J+1/2) - 8 D''_J(J+1/2)^3$$
⁽⁷⁾

and

$$\Delta_2 F'(J) = 4 B'(J+1/2) - 8 D'_J (J+1/2)^3.$$
(8)

The difference between D'_J and D''_J can be ignored. Eq. (6) then becomes identical with Eq. (3). Eqs. (7) and (8) can be rewritten

$$\frac{\Delta_2 F''(J)}{J+1/2} = 4 B'' - 8 D''_J (J+1/2)^2$$
(9)

and

$$\frac{\Delta_2 F'(J)}{J+1/2} = 4 B' - 8 D'_J (J+1/2)^2.$$
⁽¹⁰⁾

Graphical representation of Eqs. (3)–(5) and (9) and (10) give the bandcentre frequencies v_0 , the rotational constants B'' and B', and the difference B'-B''. The results are summarized in Table 2. Only for the v_{3a} band, values (approximate) of D''_J and D'_J could be obtained. For this band the results agree well with the results of the high resolution study by ALLEN and PLYLER. The observed frequencies of the fine structure components have therefore been omitted. Observed frequencies and their interpretation for two of the bands (v_1 and v_{4a}), together with calculated frequency values, are given in Tables 3 and 4. The agreement appears to be satisfactory.

	cm^{ν_1*}	ν _{3 α} ** cm ⁻¹	$v_4 a \ \mathrm{cm}^{-1}$
$ \begin{array}{c} $	$\begin{array}{ccc} 2970.1 & \pm 0.5 \\ - & 0.02 \pm 0.02 \\ & 3.90 \pm 0.02 \\ & 3.92 \pm 0.04 \\ & \\ & \end{array}$	$\begin{array}{rrrr} 2200.0 & \pm 0.5 & (2200.03) \\ & - 0.040 \pm 0.002 & (- 0.0422) \\ & 3.875 \pm 0.005 & (3.880_{o}) \\ & 3.835 \pm 0.005 & (3.837_{s}) \\ & 4{4} \times 10^{-5} & (5 \times 10^{-5}) \\ & 4{4} \times 10^{-5} & (5{5} \times 10^{-5}) \end{array}$	$\begin{array}{cccc} 1306.5 & \pm 0.5 \\ - & 0.088 \pm 0.002 \\ & 3.89 & \pm 0.01 \\ & 3.80 & \pm 0.01 \\ & - \\ & - \\ & - \end{array}$

Table 2. Band constants obtained for parallel bands.

* High frequency component of a Fermi doublet. The unperturbed value of v_1 is close to 2948 cm⁻¹ (see text).

** The values in brackets are those obtained by Allen and Plyler³ (see text).

*** In Table 14 of this paper ν_0 values obtained by other investigators are compared to the author's.

	P(J)				R	(J)	
J	Obs. cm ⁻¹	Calc. cm ⁻¹	A Calcobs.	J .	Obs. cm ⁻¹	Calc. cm ⁻¹	∆ Calcobs.
		l l		0	2978.3	2977.9	- 0.4
1	2962.1	2962.3	0.2	1	2985.7	2985.6	- 0.1
2	2954,0	2954.5	0.5	2	2993.5	2993.3	-0.2
3	2946,4	2946, 6	0.2	3	3001.0	3000.9	-0.1
4	2938.5	2938.7	0.2	4	3009.0	3008.5	-0.5
5	2931.1	2930.7	-0.4				
6	2923.3	2922.7	- 0.6				
7	2914.0	2914.7	0.7				
8	2906.7	2906.6	-0.1				

Table 3. Observed and calculated fine structure lines of $v_1(A_1)$ band.

Effective slit width $s_{eff} = 1.3-1.4 \text{ cm}^{-1}$.

2. Perpendicular Bands (E Fundamentals)

The perpendicular bands arising from the normal vibrations v_{2ab} , v_{3bc} , and v_{4bc} are, as already mentioned, observed at 1471, 3016, and 1157 cm⁻¹ (Figs. 1, 2, 3, 4, and 5). The K fine structure was resolved for all three bands. The average Q line spacings Δv_{2ab} and Δv_{3bc} were found to have approximately the numerical values 5.8 cm⁻¹, respectively 1.9 cm⁻¹. Each of the spacings can be either 'positive' or 'negative'. If the Q line spacing of a band is 'negative', it implies that the ${}^{R}Q_{K}$ lines occur on the *low* frequency

P(J)					R	(J)	
J	Obs. cm ⁻¹	Calc. cm ⁻¹	⊿ Calcobs.	J	Obs. cm ⁻¹	Calc. cm ⁻¹	$\left \begin{array}{c} \varDelta \\ \text{Calcobs.} \end{array}\right $
1		1998 7	-	0	1313.7	1314.1	0.4
2	1290.2	1290.8	0.6	2	1328.0	1328.8	0.8
3 4	$ \begin{array}{c} 1282.3 \\ 1274.4 \end{array} $	$1282.6 \\ 1274.3$	0.3 - 0.1	3 4	$1335.8 \\ 1342.3$	$1335.9 \\ 1342.8$	0.1 0.5
5 6	1265.8 1257.6	$1265.9 \\ 1257.2$	0.1 - 0.4	5	1349.5 1356.0	$1349.5 \\ 1356.1$	0.0 0.1
7 8	$1248.3 \\ 1239.5$	$\begin{array}{c} 1248.4\\ 1239.4\end{array}$	0.1 - 0.1	7 8	$1362.4 \\ 1368.6$	$1362.4 \\ 1368.7$	0.0
9 10	1230.0 1220.8	1230.2 1220.8	0.2	9	1374.6	1374.7	0.1
11	1211.1	1211.3	0.2	11	1386.5	1386.2	-0.2

Table 4. Observed and calculated fine structure lines of $r_{4a}(A_1)$ band.

Effective slit width $s_{eff} = 1.8-2.4$ cm⁻¹.

side of the band centre. For ν_{3bc} the sign of the spacings can be established in the following way. Using the approximate formula for the Coriolis coupling coefficient given by MEAL and POLO¹⁰

$$\zeta_{\mathbf{3}bc} = \frac{(1 - \cos \alpha) m_H}{m_C + (1 - \cos \alpha) m_H},$$

we find $\zeta_{3bc} = 0.10$. From the value of ζ_{3bc} we can calculate an approximate value for Δv_{3bc} . The average spacing, Δv_i , in a perpendicular band corresponding to the vibration v_i is equal to $2 [A'_i (1 - \zeta_i) - B'_i]$. Setting $A'_{3bc} \simeq A'' = 5.25 \text{ cm}^{-1}$ (see page 30) and $B'_{3bc} \simeq B'' = 3.88 \text{ cm}^{-1}$ (see Table 2), we obtain $\Delta v_{3bc} = 1.7 \text{ cm}^{-1}$, which is close to the observed value. This shows that the sign of Δv_{3bc} is positive.

The question whether Δv_{2ab} is positive or negative is connected with the magnitude of the spacing in the third perpendicular band v_{4bc} . To a good approximation the average Q line spacings of the perpendicular bands will obey the sum rule¹¹

$$\Delta v_{2ab} + \Delta v_{3bc} + \Delta v_{4bc} \simeq 6 A'' - 7 B'' = 4.34 \text{ cm}^{-1},$$

where $A'' = 5.25 \text{ cm}^{-1}$ and $B'' = 3.88 \text{ cm}^{-1}$. From the relation it follows that at least one of the bands must have a 'negative' spacing, which means that $\zeta_i > 1 - B'_i/A'_i \simeq 1 - B''/A'' = 0.26$. Setting $\Delta v_{2ab} = +5.8 \text{ cm}^{-1}$ and $\Delta v_{3bc} = -5.8 \text{ cm}^{-1}$

+1.9 cm⁻¹ in the sum rule, one obtains $\Delta v_{4bc} = -3.4$ cm⁻¹, while $\Delta v_{2ab} = -5.8$ cm⁻¹ and $\Delta v_{3bc} = +1.9$ cm⁻¹ gives $\Delta v_{4bc} = +8.2$ cm⁻¹. For $|\Delta v_{4bc}|$ the value 3.4 cm⁻¹ is found experimentally. Consequently, the spacings of the v_{2ab} and v_{4bc} bands must be respectively 'positive' and 'negative'.

This result is also supported by the observed relative intensities of the Q branches near the two band centres. As ${}^{R}Q_{0}$ is the strongest of the Q lines, and ${}^{P}Q_{1}$ is stronger than ${}^{R}Q_{1}$, the spacing in the ν_{2ab} band (see Fig. 2) should be positive. In the ν_{4bc} band (see Fig. 5) it follows from the same kind of argument that the spacing is negative.

The rotational analysis of the bands is based on the preceding discussion.

A characteristic feature of all three perpendicular bands is the strong central part caused by an agglomeration of the Q lines near the band centre, and the complicated fine structure, consisting of ${}^{P}Q_{K}$, ${}^{R}Q_{K}$, ${}^{P}P_{K}(J)$, and ${}^{R}R_{K}(J)$ lines and the much weaker ${}^{P}R_{K}(J)$ and ${}^{R}P_{K}(J)$ lines. The K numbering of the Q lines was carried out in the usual way, and the observed frequencies are shown in Tables 8, 9, and 10. The assignments were to some extent complicated by the limited resolving power of the instrument and the overlapping by other bands.

On the high frequency side of the band v_{4bc} some of the fine structure lines are masked by the strong band at 1306 cm⁻¹. The low frequency side of the weak band v_{2ab} is overlapped by the absorption at 1306 cm⁻¹. For this reason, only a few ${}^{P}Q_{K}$ lines and one ${}^{P}P_{K}(J)$ line could be picked out of this band. On the other hand, the high frequency side of the band seems to be free from overlapping by other bands and has therefore been used for the evaluation of the band constants as discussed below. In the band v_{3bc} there is an overlapping on the long wave side by the weak parallel band

Fig. 3. $v_{3bc}(E)$. 3000–3030 cm⁻¹. p = 65 mm. l = 10 cm. $s_{eff} = 1.4$ cm⁻¹.

at 2970 cm^{-1} . However, from the fine structure analysis band constants could be obtained which gave satisfactory agreement between calculated and observed frequencies.

The positions of the Q branches of a perpendicular band, neglecting centrifugal distortion, are given by

$$PQ_{\kappa}(J) = [v_{0} + A'_{i}(1 - \zeta_{i})^{2} - B'_{i}] + (B'_{i} - B'')J(J + 1)$$

$$- 2[A'_{i}(1 - \zeta_{i}) - B'_{i}]K + [(A'_{i} - A'') - (B'_{i} - B'')]K^{2}$$

$$(11)$$

and

Disregarding the difference between B'_i and B'' the following combination relations can be obtained:

$$\Delta_2 F''(J,K) = {^RQ_{K-1}} - {^PQ_{K+1}} = 4 \left[A'' - A'_i \zeta_i - B'' \right] K$$
(13)

$$\Delta_2 F'(J, K) = {^RQ_K} - {^PQ_K} = 4 \left[A'(1 - \zeta_i) - B'_i\right] K$$
(14)

$${}^{R}Q_{K} + {}^{P}Q_{K} = 2 \left[\nu_{0} + A_{i}' \left(1 - \zeta_{i} \right)^{2} - B_{i}' \right] + 2 \left[\left(A_{i}' - A'' \right) - \left(B_{i}' - B'' \right) \right] K^{2}.$$
(15)

Plotting these expressions for the bands v_{3bc} and v_{4bc} , we obtain the values of the band constants given in Table 5.

Fig. 4. $v_1(A_1)$ and $v_{3bc}(E)$. Upper curve: 2905–3010 cm⁻¹. Lower curve: 3030–3125 cm⁻¹. $p = 152 \text{ mm}, \ l = 10 \text{ cm}, \ s_{\text{eff}} = 1.3-1.5 \text{ cm}^{-1}.$

Table 5. Preliminary values of band constants for perpendicular bands.

	v_{2ab} cm ⁻¹	v_{3bc} cm ⁻¹	v_{4bc} cm ⁻¹
$\begin{array}{c} A_{i}'(1-\zeta_{i})-B_{i}' & \dots & \dots \\ A''-A_{i}'\zeta_{i}-B'' & \dots & \dots & \dots \\ (A_{i}'-A'')-(B_{i}'-B'') & \dots & \dots & \dots \\ v_{0}+A_{i}'(1-\zeta_{i})^{2}-B_{i}' & \dots & \dots & \dots \end{array}$	$\begin{array}{rrr} 2.91 & \pm 0.03 \\ (2.95) \\ - 0.040 \pm 0.01 \\ 1476.1 & \pm 0.5 \end{array}$	$\begin{array}{c} 0.944 \pm 0.005 \\ 0.954 \pm 0.005 \\ -0.011 \pm 0.003 \\ 3016.8 \ \pm 0.5 \end{array}$	$\begin{array}{rrr} -1.69 \pm 0.02 \\ -1.68 \pm 0.01 \\ 0.013 \pm 0.003 \\ 1154.6 \pm 0.5 \end{array}$

As only two ${}^{P}Q_{K}$ lines of the band ν_{2ab} could be utilized, another procedure was attempted. From the observed values of ${}^{P}Q_{5}$, ${}^{P}Q_{6}$, ${}^{R}Q_{5}$, and ${}^{R}Q_{6}$ we calculate for $A'_{2ab}(1-\zeta_{2ab})-B'_{2ab}$ from Eq. (14) the values 2.905 cm⁻¹ and 2.913 cm⁻¹, the average value being 2.91 cm⁻¹.

p = 323 mm. l = 10 cm. $s_{\text{eff}} = 1.3-1.9 \text{ cm}^{-1}$.

In order to get a rough estimate of $(A'_{2ab} - A'') - (B'_{2ab} - B'')$, Eq. (15) was used. Taking the observed ${}^{R}Q_{0} = 1476.3 = v_{0} + A'_{2ab}(1 - \zeta_{2ab})^{2} - B'_{2ab}$, and using the observed frequencies of ${}^{P}Q_{5}$, ${}^{P}Q_{6}$, ${}^{R}Q_{5}$, and ${}^{R}Q_{6}$, we obtain the values -0.03 and -0.05 cm⁻¹, the average being -0.04 cm⁻¹.

In order to make use of the observed ${}^{R}Q_{K}$ lines, Eq. (12) was written in the form

$${}^{R}Q_{K}-2\left[A_{2\,ab}^{\prime}\left(1-\zeta_{2\,ab}\right)-B_{2\,ab}^{\prime}\right]K=\left[\nu_{0}+A_{2\,ab}^{\prime}\left(1-\zeta_{2\,ab}\right)^{2}-B_{2\,ab}^{\prime}\right]$$
$$+\left[\left(A_{2\,ab}^{\prime}-A^{\prime\prime}\right)-\left(B_{2\,ab}^{\prime}-B^{\prime\prime}\right)\right]K^{2},$$

neglecting the term $(B'_{2ab} - B'') J (J+1)$. From a plot of this expression, where $A'_{2ab}(1-\zeta_{2ab}) - B'_{2ab} = 2.91 \text{ cm}^{-1}$, we obtain

$$v_0 + A'_{2ab} (1 - \zeta_{2ab})^2 - B'_{2ab} = 1476.1 \text{ cm}^{-1}$$
$$(A'_{2ab} - A'') - (B'_{2ab} - B'') = -0.040 \text{ cm}^{-1}$$

.

in good agreement with the values above.

The assignment of the ${}^{P}P_{K}(J)$ and ${}^{R}R_{K}(J)$ lines of the three bands was carried out in the following way.

The positions of the ${}^{P}P_{K}(J)$ and ${}^{R}R_{K}(J)$ lines are given by the equations

$${}^{P}P_{K}(J) = {}^{P}Q_{K}(J) - 2 B'_{i}J + 4 D_{J}J^{3}$$
(16)

and

$${}^{R}R_{K}(J) = {}^{R}Q_{K}(J) + 2 B'(J+1) - 4 D_{J}(J+1)^{3},$$
(17)

where the following approximations have been made: $D''_J = D'_J = D_J$, $D''_{JK} = D'_{JK} = 0$ and $D''_K = D'_K = 0$. It should, however, be emphasized that for higher J and K values, i.e. $J \ge 10$ and $K \ge 6$, approximately, it may not be permissible to ignore the D_{JK} and D_K terms. The D_{JK} and D_K values found by RICHARDSON *et al.* for the v_{3bc} band show this.

In order to calculate approximate values for the ${}^{P}P_{K}(J)$ and ${}^{R}R_{K}(J)$ lines of the three bands, Eqs. (16) and (17) were used together with Eqs. (11) and (12), the band constants given in Table 5 being inserted, and $B'_{i} = B'' =$ 3.88 cm^{-1} . D_{J} was taken to $5.5 \times 10^{-5} \text{ cm}^{-1}$, which is close to the value of D'_{J} and D''_{J} for v_{3a} obtained by BOVD and THOMPSON² and ALLEN and PLYLER.³ Then, calculating the relative intensities of the transitions from the formulae quoted by HERZBERG,¹² taking $B'' = 3.880 \text{ cm}^{-1}$ and A'' = 5.245 cm^{-1} (see page 30), it was possible to pick out a number of ${}^{P}P_{3}(J)$ and ${}^{R}R_{3}(J)$ lines in the v_{3bc} and v_{4bc} bands. For the analysis, the following combination relations were used:

$$\left. \left. \begin{array}{c} {}^{R}R_{K}(J) - {}^{P}P_{K}(J) = 4 \left[A_{i}'(1 - \zeta_{i}) - B_{i}' \right] K + 4_{i}' B \left(J + 1/2 \right) \\ - 4 D_{J} \left[(J + 1)^{3} + J^{3} \right] \end{array} \right\}$$
(18)

$${}^{R}R_{K}(J-1) + {}^{P}P_{K}(J) = 2 \left[v_{0} + A_{i}'(1-\zeta_{i})^{2} - B_{i}' \right] + 2 \left[(A_{i}' - A'') - (B_{i}' - B'') \right] K^{2} + 2 (B_{i}' - B'') J^{2},$$
 (20)

where K = 3. The small term $4D_J [J^3 - (J-1)^3]$ has been omitted. Using the values of $A'_i(1-\zeta_i) - B'_i$ and $(A'_i - A'') - (B'_i - B'')$ from Table 5, and $D_J = 5.5 \times 10^{-5}$ cm⁻¹, graphical representations of Eqs. (18), (19), and (20) gave

and

	^v 3 bc cm ⁻¹	^v 4 bc cm ⁻¹
<i>B</i> ′	3.873 ± 0.005	3.86 ± 0.01
<i>B</i> ″	3.882 ± 0.005	$3.88 \hspace{0.2cm} \pm 0.01$
$B' - B'' \dots$	-0.011 ± 0.002	-0.013 ± 0.005
$v_0 + A'_i (1 - \zeta_i)^2 - B'_i \dots \dots$	3016.9 ± 0.5 .	1154.7 ± 0.5
D_J	5.5×10^{-5}	<u> </u>

Table 6. Preliminary values of band constants for v_{3bc} and v_{4bc} bands.

the values of B'_i , B'', $B'_i - B''$, and $v_0 + A'_i(1 - \zeta_i)^2 - B'_i$, listed in Table 6. For the v_{3bc} band, it was possible to obtain a value of D_J . Using the approximation $J^3 + (J+1)^3 \simeq 2(J+1/2)^3$, Eqs. (18) and (19) were written:

$$\frac{{}^{R}R_{3}(J) - {}^{P}P_{3}(J) - 12 \left[A_{i}'(1 - \zeta_{i}) - B_{i}'\right]}{J + 1/2} = 4 B_{i}' - 8 D_{J} \left(J + 1/2\right)^{2}$$
(21)

and

$$\frac{{}^{R}R_{3}(J-1) - {}^{P}P_{3}(J+1) - 12\left[A_{i}'(1-\zeta_{i}) - B_{i}'\right]}{J+1/2} = 4 B'' - 8 D_{J}(J+1/2)^{2}.$$
 (22)

Graphical representations gave B'_i , B'', and D_J (5×10⁻⁵ and 6×10⁻⁵ cm⁻¹, see Table 6).

For the v_{2ab} band, it was assumed that $B'_i - B'' = -0.015 \text{ cm}^{-1}$, which then gives $B'_i = 3.865 \text{ cm}^{-1}$.

Table 7 shows the final values of the band constants used for calculating the frequencies in Tables 8, 9, and 10. As will be seen, some of the band constants have been slightly adjusted in order to improve the agreement between observed and calculated frequencies.

It has been possible to explain nearly all the observed lines as ${}^{P}Q_{K}$, ${}^{R}Q_{K}$, ${}^{P}P_{K}(J)$, and ${}^{R}R_{K}(J)$ lines. Only a few lines had to be interpreted as ${}^{P}R_{K}(J)$ and ${}^{R}P_{K}(J)$ lines. Although ${}^{P}R_{K}(J)$ and ${}^{R}P_{K}(J)$ lines generally contribute to the intensities of the observed lines, it was thought permissible to omit them in most cases because of their low intensity and the limited resolving power of the instrument. ${}^{R}P_{K}(J)$ lines have, however, had to be included in the *low* frequency region of the v_{4bc} band in order to get reasonable agreement between observed and calculated intensities.

The frequencies of the ${}^{R}P_{K}(J)$ and ${}^{P}R_{K}(J)$ lines were calculated from the expressions

$${}^{R}P_{K}(J) = {}^{R}Q_{K}(J) - 2 B_{i}'J + 4 D_{J}J^{3}$$
(23)

$${}^{P}R_{K}(J) = {}^{P}Q_{K}(J) + 2B'_{i}(J+1) - 4D_{J}(J+1)^{3}.$$
(24)

	v_{2ab} cm ⁻¹	$v_{3 bc}$ cm ⁻¹	$\frac{v_4 bc}{cm^{-1}}$
$\nu_0 + A'_i (1 - \zeta_i)^2 - B'_i \dots \dots$	1476.1	3016.8	1154.7
$A'_i(1-\zeta_i)-B'_i\ldots\ldots\ldots\ldots$	2.91	0.944	- 1.7 0
$(A'_i - A'') - (B'_i - B'') \dots \dots$	-0.040	- 0.011	0.013
B''	3.880	3.880	3.880
B'_i	3.865	3.869	3.865
$B_i' - B'' \ldots \ldots$	-0.015	-0.011	-0.015
D_J	5.5×10^{-5}	5.5×10^{-5}	5.5×10^{-5}

Table 7. Finally adopted values of band constants for perpendicular bands.

For higher K and J values, deviations between observed and calculated frequencies can be expected due to the neglect of the D_{JK} and D_K terms in Eqs. (16) and (17). In those cases the assignments must be regarded as tentative, although they are often supported by the observed relative intensities of the lines (see Table 10). The relative intensities have been calculated by the author for the ${}^{P}P_{K}(J)$, ${}^{R}R_{K}(J)$, ${}^{R}P_{K}(J)$, and ${}^{P}R_{K}(J)$ lines. For the v_{2ab} and v_{4bc} bands, the relative intensities of the Q lines will not deviate much from the corresponding Q line intensities of the v_{3bc} band, calculated by JONES.⁶

Obs. cm ⁻¹	Assignment	Calc. cm ⁻¹	⊿ (Calcobs.)	Calc. relative intensity
4 100 00	$(-PP_{1}(5))$	1431.1	-1.7	3.1
1432.8 ^a	$P_{P_{2}(4)}$	1433.1	0.3	4.6
1435.4	$PP_{3}(3)$	1434.9	-0.5	14.0
1420 5	$\int PQ_6$	1439.7	0.2	
1439.5	$P_{P_1(4)}$	1439.0	-0.5	3.1
1441.5 ^a	$PP_{2}(3)$	1440.9	-0.6	4.8
1446 4	$\int PQ_5$	1446.0	- 0.4	
1440.4	$PP_{1}(3)$	1446.8	0.4	2.9
1448.3 ^a	$^{P}P_{2}(2)$	1448.8	0.5	4.8
1453.0ª	PQ_4	1452.2	- 0.8	
1455.0ª	$PP_{1}(2)$	1454.7	-0.3	2.5
1460 7	$\int PQ_3$	1458.3	- 2.4	
1400.7	$PP_{1}(1)$	1462.4	1.7	1.8
1465.8	PQ_2	1464.3	-1.5	

Table 8. Observed and calculated fine structure lines of $v_{2ab}(E)$ band.

Table 8 (continued).

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Obs.		Calc.		Calc relative
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cm^{-1}	Assignment	cm ⁻¹	(Calcobs.)	intensity
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1471.3	PQ_1	1470.2	-1.1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1476.3	R_{Q_0}	1476.1	-0.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1481.8	R_{Q_1}	1481.9	0.1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1482.9 ^a	$^{R}R_{0}(0)$	1483.8	0.9	3.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1487.4	R_{Q_2}	1487.6	0.2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1492.1	$R_{R_0}(1)$	1491.5	- 0.6	5.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1493.0 ^a	R_{Q_3}	1493.2	0.2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1496.0	$R_{R_{1}(1)}$	1497.3	1.3	5.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1498.0 ^a	RQ_4	1498.8	0.8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1500.2	$R_{R_0(2)}$	1499.2	-1.0	6.9
$ \begin{bmatrix} R_{R_1}(2) & 1505.0 & 0.5 & 5.7 \\ R_{R_0}(2) & 1506.8 & 0.6 & 7.7 \\ 1509.4 \dots & \begin{cases} R_{Q_6} & 1509.6 & 0.2 \\ R_{R_2}(2) & 1510.7 & 1.3 & 8.3 \\ R_{R_0}(4) & 1514.3 & 1.2 & 8.0 \\ R_{R_1}(3) & 1512.6 & -0.5 & 5.7 \\ R_{Q_7} & 1514.8 & 1.7 \\ \end{bmatrix} $	1504 5	$\int RQ_5$	1504.2	- 0.3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$R_{R_1(2)}$	1505.0	0.5	5.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1506.2	$R_{R_{0}}(2)$	1506.8	0.6	7.7
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1509.4	$\int RQ_6$	1509.6	0.2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$R_{R_{2}(2)}$	1510.7	1.3	8.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\binom{R_{R_0}(4)}{R_{R_0}(4)}$	1514.3	1.2	8.0
$ \begin{bmatrix} R_{Q7} & 1514.8 & 1.7 \\ R_{Q7} & 1514.8 & 1.7 \\ R_{R_1}(4) & 1520.1 & 2.1 & 5.6 \\ R_{R_2}(3) & 1518.3 & 0.3 & 7.9 \\ R_{Q8} & 1520.0 & 2.0 \\ \end{bmatrix} $	1513.1	$R_{R_1(3)}$	1512.6	- 0.5	5.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		R_{Q_7}	1514.8	1.7	9.7
1518.0 $R_{R_2}(3)$ 1518.3 0.3 7.9 1522.7 R_Q_8 1520.0 2.0 1522.0 1522.7 $R_R_0(5)$ 1522.0 -0.7 7.8 1527.3 $R_R_1(5)$ 1527.8 0.5 5.2 1531.3 $R_R_2(4)$ 1529.5 -1.4 7.3 1531.3 $R_R_2(5)$ 1533.5 2.2 6.5 $R_R_3(4)$ 1531.5 0.2 18.1 1535.8 $R_R_1(6)$ 1535.3 -0.5 4.6 $R_R_4(4)$ 1537.0 1.2 10.7 1540.2 $\int R_R_2(6)$ 1541.0 0.8 5.6		$\begin{pmatrix} R_{R_1}(4) \end{pmatrix}$	1590.1	2.7	5.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1518.0	$R_{R_0}(3)$	1518 9	4.1	5.6
1522.7		$R_{O_{R}}$	1520.0	0.5	7.9
1522.7 $R_{R_3}(3)$ 1522.0 -0.7 7.8 $R_{R_3}(3)$ 1523.9 1.2 20.2 1527.3 $R_{R_1}(5)$ 1527.8 0.5 5.2 $R_{R_2}(4)$ 1525.9 -1.4 7.3 1531.3 $R_{R_2}(5)$ 1533.5 2.2 6.5 $R_{R_3}(4)$ 1531.5 0.2 18.1 1535.8 $R_{R_1}(6)$ 1535.3 -0.5 4.6 $R_{R_4}(4)$ 1537.0 1.2 10.7 1540.2 $\int R_{R_2}(6)$ 1541.0 0.8 5.6		$\begin{pmatrix} \infty 0 \\ R P_{-}(5) \end{pmatrix}$	1520.0	2.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1522.7	$R_{D_{-}}(2)$	1522.0	-0.7	7.8
1527.3		$(-\pi R_3(3) $	1523.9	1.2	20.2
$RR_2(4)$ 1525.9 -1.4 7.3 1531.3 $RR_0(6)$ 1529.5 -1.8 7.2 $RR_2(5)$ 1533.5 2.2 6.5 $RR_3(4)$ 1531.5 0.2 18.1 1535.8 $RR_1(6)$ 1535.3 -0.5 4.6 $RR_4(4)$ 1537.0 1.2 10.7 1540.2 $RR_2(6)$ 1541.0 0.8 5.6	1527.3	$\begin{pmatrix} R_{R_1(5)} \\ R_{R_1(5)} \end{pmatrix}$	1527.8	0.5	5.2
1531.3 $RR_0(6)$ 1529.5 -1.8 7.2 1531.3 $RR_2(5)$ 1533.5 2.2 6.5 $RR_3(4)$ 1531.5 0.2 18.1 1535.8 $RR_1(6)$ 1535.3 -0.5 4.6 $RR_4(4)$ 1537.0 1.2 10.7 1540.2 $\int RR_2(6)$ 1541.0 0.8 5.6		$R_{2}(4)$	1525.9	-1.4	7.3
1531.3 $RR_2(5)$ 1533.5 2.2 6.5 $RR_3(4)$ 1531.5 0.2 18.1 1535.8 $RR_1(6)$ 1535.3 -0.5 4.6 $RR_4(4)$ 1537.0 1.2 10.7 1540.2 $RR_2(6)$ 1541.0 0.8 5.6		$\int R_{R_0}(6)$	1529.5	-1.8	7.2
1535.8 $\begin{bmatrix} R_{R_3}(4) & 1531.5 & 0.2 & 18.1 \\ R_{R_0}(7) & 1537.0 & 1.2 & 6.3 \\ R_{R_1}(6) & 1535.3 & -0.5 & 4.6 \\ R_{R_4}(4) & 1537.0 & 1.2 & 10.7 \\ \end{bmatrix}$ 1540.2 $\begin{bmatrix} R_{R_2}(6) & 1541.0 & 0.8 & 5.6 \\ \end{bmatrix}$	1531.3	$\begin{pmatrix} R_{R_2}(5) \end{pmatrix}$	1533.5	2.2	6.5
1535.8 $R_{R_0}(7)$ 1537.0 1.2 6.3 1535.8 $R_{R_1}(6)$ 1535.3 -0.5 4.6 $R_{R_4}(4)$ 1537.0 1.2 10.7 1540.2 $\int_{-R_{R_2}(6)}^{-R_{R_2}(6)}$ 1541.0 0.8 5.6		$\binom{RR_{3}(4)}{2}$	1531.5	0.2	18.1
1535.8 $RR_1(6)$ 1535.3 -0.5 4.6 $RR_4(4)$ 1537.0 1.2 10.7 1540.2 $RR_2(6)$ 1541.0 0.8 5.6	1505 0	$R_{R_0}(7)$	1537.0	1.2	6.3
$ \begin{bmatrix} R_{R_4}(4) & 1537.0 & 1.2 & 10.7 \\ \int R_{R_2}(6) & 1541.0 & 0.8 & 5.6 \end{bmatrix} $	1535.8	$\binom{R_{R_1(6)}}{-}$	1535.3	-0.5	4.6
1540.2 $\int R_{R_2}(6) = 1541.0 = 0.8 = 5.6$		$R_{R_4}(4)$	1537.0	1.2	10.7
	1540.2	$\int \frac{R_{R_2}(6)}{1}$	1541.0	0.8	5.6
$R_{R_3}(5)$ 1539.1 -1.1 15.7		$RR_3(5)$	1539.1	-1.1	15.7
$\begin{bmatrix} R_{R_0}(8) & 1544.4 & -0.1 & 5.2 \end{bmatrix}$		$\int RR_0(8)$	1544.4	-0.1	5.2
1544.5	1544.5	$\binom{R_{R_1(7)}}{R_{R_1(7)}}$	1542.8	-1.7	3.9
$R_{R_4(5)}$ 1544.6 0.1 9.1		$R_{R_4(5)}$	1544.6	0.1	9.1
$\binom{R_{R_1(8)}}{1550.2}$ 1.4 3.2		$\int R_{R_1(8)}$	1550.2	1.4	3.2
$R_{R_2}(7)$ 1548.5 -0.3 4.7	1548.8	$R_{R_2(7)}$	1548.5	-0.3	4.7
$R_{R_5}(5)$ 1550.1 1.3 10.3		$R_{R_{5}(5)}$	1550.1	1.3	10.3
$R_{R_3(6)}$ 1546.6 -2.2 13.2		$R_{R_{3}(6)}$	1546.6	-2.2	13.2

Mat.Fys.Medd.Dan.Vid.Selsk. 33, no. 12.

.

(To be continued) 2

17

Obs. cm ⁻¹	Assignment	Calc. cm ⁻¹	⊿ (Calcobs.)	Calc. relative intensity
	$\binom{R_{R_0}(9)}{8}$	1551.8	-1.7	4.1
1553.5	$\begin{cases} R_{R_3}(7) \end{cases}$	1554.1	0.6	10.8
	$R_{R_4(6)}$	1552.1	-1.4	7.6
	$R_{R_0}(10)$	1559.2	1.2	3.1
	$R_{R_{1}}(9)$	1557.6	-0.4	2.5
1558.0	$R_{R_{2}(8)}$	1555.9	-2.1	3.7
	$R_{R_{4}}(7)$	1559.6	1.6	6.1
	$R_{R_{5}(6)}$	1557.6	-0.4	8.4
	$(R_{R_2}(9))$	1563.3	1.7	2.8
1561.6	$R_{R_{3}(8)}$	1561.5	- 0.1	8.5
	$R_{R_6(6)}$	1563.0	1.4	18.2
	$R_{R_0(11)}$	1566.5	- 1.1	2.2
1567.6	$\begin{cases} R_{R_3}(9) \end{cases}$	1568.9	1.3	6.4
	$R_{R_4(8)}$	1567.0	- 0.6	4.7
	$R_{R_2(10)}$	1570.8	- 0.1	2.1
1570.9	$R_{R_{5}(8)}$	1572.5	1.6	5.1
	$ R_{R_6(7)}$	1570.5	-0.4	14.3
	1	1	1	

Table 8 (continued).

 $s_{\text{eff}} = 2.0-2.5 \text{ cm}^{-1}.$ ^a Not resolved.

Obs. cm ⁻¹	Assignment	Calc. cm ⁻¹	⊿ (Calcobs.)	Calc. relative intensity
2914.0	$\begin{cases} P_{P_4}(12) \\ P(7)(v_1) \end{cases}$	2914.8 2914.7	0.8 0.7	0.9
2916.6	$ \begin{pmatrix} PP_{3}(12) \\ PP_{7}(11) \\ PP_{8}(11) \end{pmatrix} $	$2916.8 \\2916.7 \\2914.7$	$0.2 \\ 0.1 \\ -1.9$	1.7 1.6 1.6
2920.1	$\begin{cases} & PP_{1}(12) \\ & PP_{10}(10) \end{cases}$	2920.6 2918.4	0.5 -1.7	0.6 1.2
2921.5 ^ª	$ \begin{pmatrix} P_{P_5}(11) \\ P_{P_9}(10) \end{pmatrix} $	2920.8 2920.5	-0.7 -1.0	1.5 4.7
2923.3	$ \begin{cases} PP_4(11) \\ PP_8(10) \\ P(6)(\nu_1) \end{cases} $	2922.8 2922.6 2922.7	-0.5 -0.7 -0.6	1.3 2.4

Table 9.	Observed and	calculated fine	e structure lines	of $v_{3bc}(E)$ band.

.

Table 9 (continued).

cm^{-1}	Assignment	Calc. cm-1	⊿ (Calcobs.)	Calc. relative intensity
2924.8	$\begin{cases} {}^{P}P_{3}(11) \\ {}^{P}P_{7}(10) \end{cases}$	2924.7 2924.6	-0.1 -0.2	2.4 2.3
2927.0	$ \begin{cases} & {}^{P}P_{2}(11) \\ & {}^{P}P_{6}(10) \end{cases} $	2926.7 2926.7	$-0.3 \\ -0.3$	1.1 4.5
2929.4	$\begin{cases} & P_{P_1}(11) \\ & P_{P_5}(10) \\ & P_{P_9}(9) \end{cases}$	2928.6 2928.7 2928.4	-0.8 -0.7 -1.0	$0.9 \\ 2.1 \\ 6.9$
2931.1	$\begin{cases} PP_4(10) \\ PP_8(9) \\ P(5)(\nu_1) \end{cases}$	2930.7 2930.5 2930.7	-0.4 -0.6 -0.4	1.9 3.4
2932.8	$ \left\{ \begin{array}{c} PP_{3}(10) \\ PP_{7}(9) \end{array} \right. $	2932.6 2932.5	-0.2 - 0.3	3.5 3.3
2934.8	$ \left\{ \begin{array}{c} {}^{P}P_{2}\left(10 \right) \\ {}^{P}P_{6}\left(9 \right) \end{array} \right. $	2934.6 2934.6	-0.2 - 0.2	$\begin{array}{c} 1.5 \\ 6.3 \end{array}$
2937.1 ^a	$ \begin{cases} & {}^{P}P_{1}(10) \\ & {}^{P}P_{5}(9) \end{cases} $	2936,5 2936.6	$-0.6 \\ -0.5$	1.3 2.9
2938.5	$\begin{cases} PP_4(9) \\ PP_8(8) \\ P(4)(\nu_1) \end{cases}$	2938.6 2938.4 2938.6	$\begin{array}{c c} 0.1 \\ -0.1 \\ 0.2 \end{array}$	2.7 4.7
2940.6	$\begin{cases} PP_{3}(9) \\ PP_{7}(8) \end{cases}$	2940.5 2940.4	-0.1 - 0.2	4.8
2942.8 ^a	$ \begin{cases} & P P_2(9) \\ & P P_6(8) \end{cases} $	2942.5 2942.5	-0.3 -0.3	2.1 8.6
2944.2 ^a	$ \begin{pmatrix} & PP_1(9) \\ & PP_5(8) \end{pmatrix} $	2944.4 2944.5	0.2 0.3	$\begin{array}{c} 1.7 \\ 4.0 \end{array}$
2946.4	$ \begin{cases} & PP_4 (8) \\ & P (3) (v_1) \end{cases} $	$2946.5 \\ 2946.6$	0.1 0.2	3.6
2948.2	$ \begin{cases} PP_3(8) \\ PP_7(7) \end{cases} $	2948.4 2948.3	0.2 0.1	6.2 6.1
2950.6	$ \begin{cases} PP_2(8) \\ PP_6(7) \end{cases} $	2950.4 2950.4	-0.2 - 0.2	2.6 11.4
2952.6	$\begin{cases} PP_1(8) \\ PP_5(7) \end{cases}$	2952.3 2952.4	-0.3 - 0.2	$\begin{array}{c} 2.2 \\ 5.2 \end{array}$
2954.0	$ \begin{cases} PP_4(7) \\ P(2)(\nu_1) \\ P \nu_1 = 0 \end{cases} $	2954.4 2954.5	0.4 0.5	4.6
2956.4	$ \begin{cases} PP_{3}(7) \\ PP_{2}(7) \\ PP_{6}(6) \end{cases} $	$2956.3 \\ 2958.3 \\ 2958.2$	$ \begin{array}{c c} -0.1 \\ 0.1 \\ 0.0 \end{array} $	7.9 3.3 14.7

(To be continued) -2*

19

Table 9 (continued).

Obs. cm ⁻¹	Assignment	Calc. cm ⁻¹	⊿ (Calcobs.)	Calc. relative intensity
2960.2	$\int PP_1(7)$	2960.2	0.0	2.6
	$PP_{5}(6)$	2960.2	0.0	6.6
2062-1	$\int PP_4(6)$	2962.2	0.1	5.7
2502.1	$P(1)(v_1) = $	2962.3	0.2	
2964.4	$^{P}P_{3}(6)$	2964.2	-0.2	9.6
2966.0ª	$^{P}P_{2}(6)$	2966.1	0.1	3.9
2971.9	$^{P}P_{3}(5)$	2972.0	0.1	11.2
2974.1	$PP_{2}(5)$	2974.0	-0.1	4.3
2976.0	$^{P}P_{1}(5)$	2975.9	- 0.1	3.2
2078 2	$\int PP_4(4)$	2977.9	-0.4	8.1
2970.0	$R(0)(v_1)$	2977.9	- 0.4	
2980.2	$PP_{3}(4)$	2979.8	-0.4	12.7
2981.7 ^a	$^{P}P_{2}(4)$	2981.8	0.1	4.7
2984.0ª	$^{P}P_{1}(4)$	2983.7	~ 0.3	3.2
2085 7	$\int RP_0(4)$	2985.6	-0.1	3.8
2300.7	$\left \left(R\left(1\right)\left(\nu_{1}\right) \right) \right $	2985.6	-0.1	
	D (a)			(Ref. 6)
2988.2	$PP_3(3)$	2987.7	- 0.5	14.1 15.1
2989.8ª	$P_2(3)$	2989.6	-0.2	4.8 5.2
2991.9 ^a	$PP_{1}(3)$	2991.5	-0.4	3.0 3.2
2993.5	$\int \frac{\kappa P_0(3)}{\Gamma(3)}$	2993.4	-0.1	3.0 3.2
	$(R(2)(v_1))$	2993.3	-0.2	
2995.28	$\int PQ_{11}$	2994.7	-0.5	0.8
	$ = {}^{R}P_1(3)$	2995.3	0.1	0.5 0.5
2000.9	$\int PQ_9$	2998.9	- 0.3	5.2
2999.2	$PP_{1}(2)$	2999.4	0.2	2.5 2.7
0001.0	$\int PQ_8$	3001.0	0.0	4.7
3001.0	$R(3)(v_1)$	3000.9	-0.1	
3003.1	PO7	3003.0	-0.1	7.7
3005.0	$P_{O_6}^{\sim}$	3005.1	0.1	24.5
	$P_{O_5}^{\sim 0}$	3007.1	0.1	18.3
3007.0	$P_{P_1(1)}$	3007.1	0.1	1.8 1.9
	(PO	3009.1	0.1	26.0
3009.0ª	$R(4)(n_1)$	3008.5	-0.5	20.0
3010.6	P_{O_2}	3011.0	0.4	70.0
3012.9	$P_{O_{2}}^{\times \circ}$	3013.0	0.1	44.3
3015.3	P01	3014.9	-04	52.4
3016.7	$R_{O_0}^{\times 1}$	3016.8	0.1	100 107 5
3018.3	$R_{O_1}^{\times 0}$	3018.7	0.4	45.4
3020.8	$R_{O_{2}}^{\times 1}$	3020.5	-0.3	36.0
002010	1 42	0020.0	1 0.0	0.00

.

Table 9 (continued).

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Obs. cm ⁻¹	Assignment	Calc. cm ⁻¹	⊿ (Calcobs.)	Calc. 1 inte	elative nsity
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3022.3	ROa	3022.4	0.1		(Ref. 6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(R_0)	2094 9	0.1		34.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3024.2ª	$RB_{\alpha}(0)$	3024.2 3024.5	0.0	1 9 0	19.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2025 58		2024.0	0.5	3.0	4.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3023.3 °	RO RO	3026.0	0.5		13.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3027.3 ************************************	R_{Q_6}	3027.7 2020 #	0.2		17.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3028.5	R_{Q7}	3029.5	0.0		5.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3030.9	1.08 1 Ro	3031.2	0.3		3.0
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	3032.5	RQ_9	3032.9	0.4	3.4	3.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{bmatrix} \kappa R_0(1) \end{bmatrix}$	3032.3	-0.2	5.5	5.8
$ \left\{\begin{array}{c c c c c c c c c c c c c c c c c c c $	3034.3	$\int RQ_{10}$	3034.6	0.3		1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ = RR_1(1)$	3034.2	- 0.1	5.4	5.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3036 1 8	$\int RQ_{11}$	3036.2	0.1		0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3030.1	$PR_{2}(2)$	3036.1	0.0	0.6	0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3037.9	$PR_{1}(2)$	3038.1	0.2	1.7	1.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3039.9	$^{R}R_{0}(2)$	3040.0	0.1	6.8	7.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3042.2	$R_{R_{1}(2)}$	3041.9	~ 0.3	5.6	5.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3043.7ª	$R_{R_{2}(2)}$	3043.7	0.0	8.3	8.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3045.7 ^a	$^{P}R_{1}(3)$	3045.7	0.0	2.3	2.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3047.8	$R_{R_{0}}(3)$	3047.6	-0.2	7.6	8.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3049.4	$R_{R_{1}(3)}$	3049.5	0.1	5.7	6.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3051.4	$^{R}R_{2}(3)$	3051.3	-0.1	7.8	8.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3053.3	$^{R}R_{3}(3)$	3053.2	- 0.1	20.1	21.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3055.4	$^{R}R_{0}(4)$	3055.3	0.1	7.9	8.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3057.4	$R_{R_{1}(4)}$	3057.2	- 0.2	5.5	5.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3059.0	$^{R}R_{2}(4)$	3059.0	0.0	7.2	7.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3061.2	$R_{R_{3}}(4)$	3060.8	- 0.4	17.9	18.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3062.9	$\int R_{R_0}(5)$	3062.9	0.0	7.7	8.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$R_{R_4}(4)$	3062.7	-0.2	10.7	11.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3064.4	$R_{R_{1}}(5)$	3064.8	0.4	5.1	5.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3066.9	$R_{R_{2}(5)}$	3066.6	- 0.3	6.4	6.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3068.4	$R_{R_{3}}(5)$	3068.4	0.0	15.5	16.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3070 7	$\int RR_0(6)$	3070.5	- 0.2	7.0	7.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5010.7	$R_{R_{4}(5)}$	3070.3	- 0.4	9.1	9.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9079.99	$\int R_{R_{1}(6)}$	3072.4	0.1	4.5	47
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3072.3ª	$R_{R_{5}}(5)$	3072.1	- 0.2	10.2	10.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3074.1 ^a	$R_{R_{2}(6)}$	3074.2	0.1	5.5	5.7
$3078.2 \dots \dots \left\{ \begin{array}{c c} R_{R_0}(7) \\ R_{R_4}(6) \\ \end{array} \right. 3078.0 \\ -0.2 \\ -0.3 \\ -0$	3076.3	$R_{R_{3}(6)}$	3076.0	- 0.3	13.0	13.5
3078.2		$R_{R_0}(7)$	3078.0	- 0.2	2010	6.0
	3078.2	$R_{R_{A}}(6)$	3077.9	-0.2		0.3

Table 9 (continued).

Obs. cm ⁻¹	Assignment	Calc. cm ⁻¹	⊿ (Calcobs.)	Calc. r inter	elative 1sity
					(Bef. 6)
	$\int R_{R_1}(7)$	3079.9	-0.2	3.8	3.9
3080.1	$R_{R_5(6)}$	3079.7	-0.4	8.4	10.1
0001.0	$\int R_{R_2}(7)$	3081.7	-0.1	4.5	4.7
3081.8	$R_{R_6(6)}$	3081.4	- 0.4	18.1	21.8
3083.6	$R_{R_{3}(7)}$	3083.6	0.0	10.6	10.9
3085 6	$\int R_R R_0(8)$	3085.5	- 0.1	5.1	5.2
0000.0	$R_{R_4}(7)$	3085.4	- 0.2	6.0	6.2
2007 4	$\int R_{R_1(8)}$	3087.4	0.0	3.1	3.2
3007.4	$R_{R_{5}}(7)$	3087.2	-0.2	6.6	6.8
2020 4	$\int R_{R_2}(8)$	3089.2	-0.2	3.6	3.7
3089.4	$R_{R_6}(7)$	3088.9	-0.5	14.1	14.5
2001.0	$\int R_{R_3}(8)$	3091.1	-0.1	8.3	8.5
3091.2	$\int R_{R_7(7)}$	3090.7	- 0.5	7.4	7.6
2002.0	$\int R_{R_0}(9)$	3093.0	0.0	4.0	4.1
3093.0	$R_{R_4(8)}$	3092.9	-0.1	4.6	4.7
0005.0	$R_{R_1(9)}$	3094.9	-0.1	2.4	2.4
3095.0	$R_{R_{5}}(8)$	3094.7	- 0.3	5.0	5.2
0000 0	$R_{R_2(9)}$	3096,7	- 0.1	2.8	2.8
3096.8	$\int R_{R_6}(8)$	3096.4	-0.4	10.7	10.9
0000 K	$R_{R_3}(9)$	3098.6	0.1	6.2	6.4
3098.5	$R_{R_{7}(8)}$	3098.2	-0.3	5.5	5.7
	$R_{R_0}(10)$	3100.5	- 0.1	3.0	3.1
3100.6	$R_{R_4(9)}$	3100.4	-0.2	3.4	3.5
	$R_{R_{8}(8)}$	3099.9	- 0.7	5.7	5.8
0400.4	$R_{R_1(10)}$	3102.4	0.0	1.8	1.8
3102.4	$R_{R_{5}(9)}$	3102.2	- 0.2	3.7	3.8
0404.0	$R_{R_2(10)}$	3104.2	0.0	2.0	2.1
3104.2	$\begin{bmatrix} R_{R_6}(9) \end{bmatrix}$	3103.9	-0.3	7.8	8.0
0.100 ($R_{R_3}(10)$	3106.0	-0.4	4.5	4.5
3106.4	$R_{R_{7}}(9)$	3105.7	- 0.7	4.0	4.1
	$\int R_{R_0}(11)$	3107.9	0.5	2.2	2.2
3107.4 ^a	$R_{R_4(10)}$	3107.9	0.5	2.5	2.5
	$\left \left R_{R_8(9)} \right \right $	3107.4	0.0	4.1	4.2
	$\int R_{R_1}(11)$	3109.8	0.4	1.3	1.3
3109.4	$\binom{R_{R_5}(10)}{R_5}$	3109.7	0.3	2.6	2.7
,	$\begin{bmatrix} R_{R_9}(9) \\ R_{P_9}(9) \end{bmatrix}$	3109.1	-0.3	8.1	8.3
3111.9	$\left \left\{ \begin{array}{c} R_{R_2}(11) \\ R_{R_2}(11) \end{array} \right. \right.$	3111.6	- 0.3		1.4
	$ = \kappa R_6(10)$	3111.4	-0.5	5.5	5.6

${}^{\text{Obs.}}_{\text{cm}^{-1}}$	Assignment	Calc. cm ⁻¹	⊿ (Calcobs.)	Calc. relative intensity
				(Ref. 6)
0440 5	$\int R_{R_3(11)}$	3113.4	- 0.1	3.1 3.2
3113.9	$\begin{cases} R_{R_7}(10) \end{cases}$	3113.2	- 0.3	2.8 2.9
	$\binom{R_{R_0}(12)}{R_{R_0}(12)}$	3115.3	0.0	1.6 1.5
3115.3	$R_{R_4(11)}$	3115.3	0.0	1.7 1.7
	$R_{R_{8}(10)}$	3114.9	-0.4	2.9 2.9
	$\int R_{R_1(12)}$	3117.2	0.7	0.9 0.7
3116.5	$R_{R_{5}(11)}$	3117.1	0.6	1.8 1.9
	$ = R_{R_9}(10)$.3116.6	0.1	5.6 5.7
9110 0	$\int R_{R_2}(12)$	3119.0	0.1	1.0 1.0
3118.9	$R_{R_{6}(11)}$	3118.8	- 0.1	3.8 4.5

Table 9 (continued).

 $s_{\text{eff}} = 1.3 - 1.5 \text{ cm}^{-1}.$ a Not resolved.

Table 10. Observed and calculated fine structure lines of $v_{4be}(E)$ b	and.
--	------

Obs. cm ⁻¹	Assignment	Calc. cm ⁻¹	⊿ (Calcobs.)	Calc. relative intensity
028.6	$\int \frac{RP_2(15)}{P}$	1029.2	0.6	0.1
	$RP_0(16)$	1027.8	- 0.8	0.2
	$PP_{1}(16)$	1031.2	0.5	0.1
.030.7	$\begin{pmatrix} PP_{3}(17) \\ PP_{3}(17) \end{pmatrix}$	1030.1	-0.6	0.1
	$({}^{\kappa p}{}_4(14)$	1030.5	-0.2	0.1
	$\begin{cases} PP_4(17) \end{cases}$	1033.6	0.6	0.1
	$^{P}P_{6}(18)$	1031.3	-1.7	0.1
033.0	$\binom{RP_1}{15}$	1032.5	-0.5	0.1
	$^{R}P_{3}(14)$	1033.8	0.8	0.3
	$R_{P_{6}(13)}$	1032.1	-0.9	0.1
	$(PP_2(16))$	1034.7	-0.3	0.1
035.0	$R_{P_0(15)}$	1035.9	0.9	0.3
	$R_{P_{5}(13)}$	1035.3	0.3	0.1
	$\int P_{2}(16)$	1038.1	0.2	0.2
027.0	$^{P}P_{5}(17)$	1037.1	-0.8	0.1
037.9	$R_{P_2(14)}$	1037.2	-0.7	0.2
	$R_{P_4(13)}$	1038.6	0.7	0.1
	$PP_{1}(15)$	1039.3	-0.7	0.2
040.0	$R_{P_1(14)}$	1040.5	0.5	0.2
	$R_{P_6(12)}$	1040.1	0.1	0.2

Table 10 (continued).

Obs. cm ⁻¹	Assignment	Cale. cm ⁻¹	⊿ (Calcobs.)	Calc. relative intensity
	$ \begin{pmatrix} PP_{2}(15) \\ PP_{4}(16) \\ PP_{5}(15) \end{pmatrix} $	1042.8 1041.6	$\begin{array}{c} 0.2 \\ -1.0 \end{array}$	0.2 0.1
1042.6	$\begin{cases} P_6(17) \\ R_{P_6}(17) \\ R_{P_6}(11) \end{cases}$	1040.7	-1.9	0.1
	$R_{P_0(14)}$	1043.9	1.3	0.4
	$P_{3}(13)$	1041.9	- 0.7	0.4
	$(P_5(12))$	1043.3	0.7	0.1
	$\int P_{P_1}(14)$	1047.3	0.2	0.3
1047.1	$PP_{3}(15)$	1046.2	- 0.9	0.4
101111	$PP_{5}(16)$	1045.1	- 2.0	0.1
•	$R_{P_4(12)}$	1046.6	- 0.5	0.2
1010.1	$\int P_{P_A}(15)$	1049.7	0.3	0.2
1049.4	$R_{P_1(13)}$	1048.6	-0.8	0.2
	(Br (1)	1010.0	- 0.0	0.3
	$P_{2}(14)$	1050.8	- 0.6	0.3
	$P_{P_{6}(16)}$	1048.7 .	-2.4	0.3
1051.4ª	$PP_{8}(17)$	1047.8	- 3.6	0.1
	$\ - \frac{RP_0(13)}{2} \ $	1052.0	0.6	0.7
	$RP_{3}(12)$	1049.9	-1.5	0.5
	$\left[\frac{RP_{5}(11)}{11} \right]$	1051.3	-0.1	0.2
	$PP_{3}(14)$	1054.2	1.2	0.6
	$PP_{5}(15)$	1053.2	0.2	0.2
1053.0 ^a	$P_{P_{7}(16)}$	1052.2	- 0.8	0.1
	$^{R}P_{2}(12)$	1053.3	0.3	0.3
	$R_{P_4(11)}$	1054.6	1.6	0.3
	$(PP_{1}(13))$	1055.4	-0.6	0.4
1056.0	$P_{P_{9}(17)}$	1051.5	- 4.5	0.1
	$R_{P_1}(12)$	1056.6	0.6	0.4
	$\int P_{P_2}(13)$	1058.9	-0.1	0.5
	$^{PP_{4}(14)}$	1057.7	- 1.3	0.3
1059.08	$P_{P_{6}}(15)$	1056.8	-2.2	0.4
1009.0	$PP_{8}(16)$	1055.8	-3.2	0.1
	$RP_{3}(11)$	1057.9	-1.1	0.7
	$RP_{5}(10)$	1059.3	0.3	0.2
	$PP_{3}(13)$	1062.3	0.8	1.0
	$PP_{5}(14)$	1061.2	- 0.3	0.4
	$ P_{P_7(15)}$	1060.3	-1.2	0.2
1061.5	PPo (16)	1058.6	-29	0.2
	$RP_{0}(12)$	1060.0	15	1.0
	$\ R_{P_2(11)} \ $	1061.3	-0.2	0.5
	$\left\ \frac{R_{P_A}(10)}{R_{P_A}(10)} \right\ $	1062.6	- 0.2	0.0
	1 ~ 4 (* 9)	1002.0	7+7	1 0.3

Table 10 (continued).

Obs.	Assignment	Calc.	4	Calc. relative
GIII		em	(Calcobs.)	Intensity
	$(PP_{1}(12))$	1063.4	_11	0.6
1064.5	$\int \frac{P_{P_e}(12)}{P_{P_e}(14)}$	1064.8	0.3	0.0
	$R_{P_1}(11)$	1064.6	0.5	0.6
		1004.0	0.1	0.0
	$P_{2}(12)$	1066.5	-1.1	0.7
1067.6	$P_{P_{4}(13)}$	1065.8	- 1.8	0.6
	$ \begin{bmatrix} P_8(15) \\ P_8(15) \end{bmatrix} $	1063.9	- 3.7	0.2
	$ (P_0(11))$	1068.0	0.4	1.5
	$\int P_{3}(12)$	1070.3	0.1	1.6
	$PP_{5}(13)$	1069.3	- 0.9	0.6
1070 98	$P_{P_{7}(14)}$	1068.3	-1.9	0.4
10,012	$PP_{9}(15)$	1067.6	2.6	0.4
	$RP_{2}(10)$	1069.3	-0.9	0.6
	$\left \left {R_{P_4}(9)} \right \right $	1070.5	0.3	0.3
1071.0 ^a	$PP_{1}(11)$	1071.4	0.4	0.9
	$\int P_{P_4}(12)$	1073.9	0.8	0.9
	$PP_{6}(13)$	1072.9	- 0.2	1.2
1073.1	$P_{P_8(14)}$	1071.9	-1.2	0.4
	$R_{P_1}(10)$	1072.6	~ 0.5	0.8
	$ = R_{P_3(9)}$	1073.8	0.7	1.0
	$\int P_{P_2}(11)$	1074.9	-1.4	1.0
1076.2	$PP_{5}(12)$	1076.9	0.6	0.9
1070.3	$P_{P_0}(10)$	1076.0	- 0.3	2.0
	$ RP_2(9)$	1077.2	0.9	0.8
	$\int PP_{3}(11)$	1078.3	- 0.2	2.4
1000	$P_{P_{7}(13)}$	1076.4	-2.1	0.6
1078.5	$P_{P_{9}(14)}$	1075.6	- 2.9	0.8
	$R_{P_4(8)}$	1078.5	0.0	0.3
	(PD. (10)	1070.4	0.5	1.0
1079.9	$R_{P_{1}}(0)$	1079.4	-0.5	1.2
	(-11(9)	1080.5	0.6	1.0
	$\int \frac{P_{P_2}(10)}{1}$	1082.9	1.0	1.5
	$PP_{4}(11)$	1081.8	- 0.1	1.3
1081.9	$\int_{-}^{P_{e}} P_{6}(12)$	1081.2	-0.7	2.0
	$P_{P_{8}(13)}$	1080.0	- 1.9	0.6
	$\left \left(-\frac{RP_3(8)}{2} \right) \right $	1081.8	- 0.1	1.1
	$\int PP_{5}(11)$	1085.3	0.7	1.4
1084.6	$\begin{pmatrix} RP_0(9) \end{pmatrix}$	1083.9	-0.7	2.7
	$ = RP_2(8)$	1085.2	0.6	0.9
1097 1	$\int P_{P_1(9)}$	1087.3	0.2	1.7
1001.1	$PP_{3}(10)$	1086.3	-0.8	3.4
		ц., , , , , , , , , , , , , , , , , , ,	1	1

Table 10 (continued).

Obs. cm ⁻¹	Assignment	Calc. cm ⁻¹	∠ (Calcobs.)	Calc. relative intensity
1087.1	$\begin{cases} & {}^{P}P_{7}(12) \\ & {}^{P}P_{9}(13) \end{cases}$	1084.4 1083.7	-2.7 -3.4	1.0 1.3
1089.3	$ \begin{pmatrix} & PP_4 (10) \\ & PP_6 (11) \\ & PP_8 (12) \end{pmatrix} $	$1089.8 \\ 1088.9 \\ 1088.0$	$\begin{array}{c} 0.5 \\ -0.4 \\ -1.3 \end{array}$	1.9 3.0 1.0
1091.2	$\begin{cases} & ^{R}P_{1}(8) \\ & ^{R}P_{3}(7) \\ \\ & \int & ^{P}P_{2}(9) \\ & ^{R}P_{2}(8) \end{cases}$	1088.5 1089.7 1090.8		1.2 1.0 2.0
1092.8	$\begin{cases} PP_{5}(10) \\ PP_{7}(11) \\ PP_{9}(12) \end{cases}$	1091.9 1093.3 1092.4 1091.7	$ \begin{array}{c c} 0.7 \\ 0.5 \\ -0.4 \\ -1.1 \end{array} $	0.9 2.1 1.5 2.0
1095.8	$ \begin{pmatrix} RP_{2}(7) \\ PP_{1}(8) \\ PP_{3}(9) \\ PP_{2}(10) \end{pmatrix} $	1093.1 1095.3 1094.2	$ \begin{array}{c c} 0.3 \\ -0.5 \\ -1.6 \\ 1.1 \end{array} $	0.9 2.1 4.6
1098.0	$ \begin{cases} P_{P_{2}(8)} \\ P_{P_{4}(9)} \\ P_{P_{4}(9)} \end{cases} $	1096.4 1098.8 1097.7	$ \begin{array}{c} 1.1 \\ 0.6 \\ 0.8 \\ -0.3 \end{array} $	$ \begin{array}{c} 4.4 \\ 1.3 \\ 2.6 \\ 2.6 \\ 2.6 \end{array} $
1100.5ª	$ \begin{cases} PP_{8}(11) \\ PP_{5}(9) \\ PP_{7}(10) \\ PP_{9}(11) \end{cases} $	1096.0 1101.2 1100.4 1099.7	$egin{array}{c c} -2.0 & \ 0.7 & \ -0.1 & \ -0.8 & \ \end{array}$	1.6 2.9 2.3 3.1
1101.5ª	$ \begin{pmatrix} R P_{0}(7) \\ P P_{3}(8) \\ P P_{1}(7) \end{pmatrix} $	$1099.8 \\ 1102.2 \\ 1103.2$	$ \begin{array}{c c} -0.7 \\ 0.7 \\ -1.4 \end{array} $	3.8 6.1 2.5
1104.6	$ \begin{cases} PP_{6}(9) \\ PP_{8}(10) \end{cases} $	1104.8 1104.0	$0.2 \\ -0.6$	6.2 2.3
1106.3 ^a	$ \begin{pmatrix} PP_2(7) \\ PP_4(8) \\ PD_4(7) \end{pmatrix} $	1106.7 1105.7	$\begin{array}{c} 0.4 \\ -0.6 \end{array}$	$\begin{array}{c} 3.2\\ 3.5\end{array}$
1109.1	$P_{3}(7)$ $P_{5}(8)$ $P_{7}(9)$ $P_{7}(10)$	1110.1 1109.2 1108.3	1.0 0.1 -0.8	7.7 3.9 3.3
1113.2	$\begin{cases} P_{9}(10) \\ P_{4}(7) \\ P_{6}(8) \\ P_{D}(0) \end{cases}$	1107.7 1113.6 1112.8	-1.4 0.4 -0.4	4.7 4.5 8.5
1114.8	$ \begin{cases} P_{P_{0}}(9) \\ P_{P_{0}}(9) \\ RP_{0}(5) \end{cases} $	$ 1111.9 \\ 1114.6 \\ 1115.6 \\ $	-1.3 -0.2 0.8 0.8	3.4 3.8 6.8 4.2

Table 10 (continued).

Obs. cm ⁻¹	Assignment	Calc. cm ⁻¹	⊿ (Calcobs.)	Calc. relative intensity
	$PP_{2}(6)$	1118.0	0.4	9.4
1117.6	$P_{P_5(7)}$	1117.1	- 0.5	5.1
	$ _{PP_{7}(8)}$	1116.3	- 1.3	4.5
1119.1 ^a	$^{P}P_{1}(5)$	1119.0	-0.1	3.1
	$(P_{P_2(5)})$	1122.5	0.7	4.3
	$PP_{4}(6)$	1121.5	- 0.3	5.6
1121.8	$PP_{6}(7)$	1120.7	- 1.1	11.4
	$PP_{8}(8)$	1119.9	-1.9	4.7
	$R_{Q_{10}}$	1122.0	0.2	
1122.8ª	$^{RP_{0}(4)}$	1123.5	0.7	3.8
1123.4 ^a	$PP_{7}(7)$,	1124.2	0.8	6.1
	$\int PP_{3}(5)$	1125.9	- 0.2	11.1
1126.1	$PP_{5}(6)$	1125.0	- 1.1	6.5
	R_{Q_9}	1125.2	-0.9	3.3
1405 02	$\int P_{P_1(4)}$	1126.9	-0.1	3.1
1127.0ª,	R_{Q_8}	1128.3	1.3	
	$\left(\begin{array}{c}P_{P_{2}}(4)\end{array}\right)$	1130.3	0.3	4.6
1130.1	$P_{P_A(5)}$	1129.4	-0.7	6.8
	$P_{P_6(6)}$	1128.6	-1.5	14.6
	(R_{0})	1191.5	0.0	
1131.58	$P_{P_{r}}^{27}$ (5)	1139.0	1.4	8.1
	$\begin{bmatrix} 1 & 5 & (0) \\ R P_0 & (3) \end{bmatrix}$	1134.9	-0.2	3.0
		1101.0	- 0.2	0.0
1194 5	$\begin{bmatrix} nQ_6\\ PD \end{pmatrix}$	1134.8	0.3	
1154.0	$P_{1}(3)$	1134.7	0.2	2.9
	$(P_{3}(4))$	1133.8	-0.7	12.6
1400 F	$\begin{pmatrix} RQ_5 \\ R \end{pmatrix}$	1138.0	-0.5	
1138.5	$\begin{pmatrix} PP_2(3) \\ PP_2(3) \end{pmatrix}$	1138.2	-0.3	4.8
	$(PP_4(4))$	1137.3	-1.2	8.1
	$\int RQ_4$	1141.3	-1.5	
1142.8	$PP_{1}(2)$	1142.6	-0.2	2.5
	$PP_{3}(3)$	1141.6	-1.2	14.0
1144.4	R_{Q_3}	1144.6	0.2	
1147.0 ^a	$PP_{2}(2)$	1146.1	- 0.9	4.9
1148.0 ^a	RQ_2	1148.0	0.0	
1151.3	$\left \right = \frac{RQ_1}{D}$	1151.3	0.0	
	$ = \frac{PP_1(1)}{P_2}$	1150.3	-1.0	1.8
1154.8	R_{Q_0}	1154.7	- 0.1	100
1158.0	PQ_1	1158.1	0.1	
1161.3	$\left \right = \frac{PQ_2}{PD}$	1161.6	0.3	
	$ = {}^{R}R_{0}(0)$	1162.4	1.1	3.8

Table 10 (continued).

Obs. cm ⁻¹	Assignment	Calc. cm ⁻¹	A (Calcobs.)	Calc. relative intensity
1164.9	POs	1185.0		
440E M	$\left(\begin{array}{c}PO_{A}\\PO_{A}\end{array}\right)$	1168.5	0.1	
$1167.7\ldots\ldots$	$R_{R_{1}(1)} = \frac{84}{R_{R_{1}(1)}}$	1100.0	0.8	
		1100.7	-1.0	5.5
1171 4	$1 \frac{1}{25}$	1172.0	0.6	
*****	$R_{R_2(2)}$	1171.1	- 0.3	8.3
1174 7a	$R_{R_0}(1)$	1170.1	-1.3	5.5
1175.2a	$R_{R_1(2)}$	1174.4	- 0.3	5.7
1175 7	$R_{3}(3)$	1175.3	0.1	20.2
	f_{χ_6}	1175.6	-0.1	
1177.8	$\begin{bmatrix} n_{R_0}(2) \\ B_{R_0}(0) \end{bmatrix}$	1177.8	0.0	6.9
1179 08	$R_2(3)$	1178.7	0.9	7.9
1180.78	PQ_7	1179.1	0.1	
	(R_{14})	1179.6	- 1.1	10.7
1182.8	$\begin{bmatrix} n_{R_1(3)} \\ B_{R_2(4)} \end{bmatrix}$	1182.0	- 0.8	5.7
1102.0	$R_{R_3(4)}$	1182.9	0.1	18.1
	L^{FQ_8}	1182.7	-0.1	
1105 0	$\begin{bmatrix} R_{R_0}(3) \end{bmatrix}$	1185.4	0.4	7.7
1185.0	$\binom{R_{R_2}(4)}{2}$	1186.3	1.3	7.3
1100 - 0	$\begin{pmatrix} R_{R_5}(5) \\ - \end{pmatrix}$	1183.9	-1.1	10.3
1186.1 ^a	PQ_9	1186.4	0.3	
1187.6	$R_{R_{4}}(5)$	1187.2	-0.4	9.1
	$\int R_{R_1(4)}$	1189.6	0.2	5.6
1189.4	$\int R_{R_{3}}(5)$	1190.5	1.1	15.7
	$R_{R_{6}(6)}$	1188.2	-1.2	18.2
	$P_{Q_{10}}$	1190.0	0.6	
	$\int R_{R_{5}}(6)$	1191.3	-0.9	8.4
1192.2	$\begin{pmatrix} R_{R_7(7)} \end{pmatrix}$	1192.4	0.2	7.5
	$P(13)(v_{3a})$	1191.7	- 0.5	
	$\int R_{R_0}(4)$	1193.0	-0.7	8.0
1193.7	$\begin{pmatrix} RR_2(5) \end{pmatrix}$	1193.9	0.2	6.5
	$R_{R_4(6)}$	1194.6	0.9	7.6
	$R_{R_{1}}(5)$	1197.2	0.6	5.2
1196.6	$R_{R_{6}}(7)$	1195.7	-0.9	14.3
	$R_{R_{8}(8)}$	1196.6	0.0	5.7
1198.6	$\int R_{R_3(6)}$	1197.9	-0.7	13.2
	$R_{R_{5}}(7)$	1198.9	0.3	6.7
	$\int R_{R_0}(5)$	1200.6	- 0.7	7.8
	$R_{R_2(6)}$	1201.5	0.2	5.6
1201.3ª	$R_{R_4(7)}$	1202.2	0.9	6.1
	$^{R}R_{7}(8)$	1199.8	-1.5	5.6
	$P(12)(v_{3a})$	1201.6	0.3	
1203.5	$R_{R_{6}}(8)$	1203.1	-0.4	10.8

Table 10 (continued).

cm^{-1} Assignment cm^{-1} (Calcobs.) inten	
(Jakie 000)	isity
	<i>c</i>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
1205.0 $R_{R_3}(7)$ 1205.5 0.5 10.	.0
$\begin{pmatrix} n_{R_8}(9) & 1204.0 & -1.0 & 4. \\ (n_{R_8}(9) & 1200.4 & 0.4 & -1.0$.1
$\begin{bmatrix} R_{R_0}(6) & 1208.1 & 0.4 \\ R_{R_0}(7) & 1208.2 & 0.4 \end{bmatrix}$.2
1207.7	.7
$R_{R_5(8)} = 1206.3 - 1.4 5.$.1
$\left \left(\begin{array}{c c} R_{7}(9) & 1207.2 & -0.5 \\ \end{array} \right) \right $.1
$\begin{pmatrix} R_{R_1}(7) & 1212.2 & 0.8 \\ & 3. & 3. \end{pmatrix}$.9
$R_{R_3}(8)$ 1212.9 1.5 8.	.5
$R_{R_4}(8)$ 1209.6 -1.8 4.	.7
1211.4 $ \langle R_{R_6}(9) 1210.5 -0.9 8.$.0
$R_{R_8}(10)$ 1211.4 0.0 2.	.9
$R_{R_{9}}(10)$ 1208.3 -3.1 5.	.7
$P(11)(v_{3a})$ 1211.3 -0.1	
$RR_0(7)$ 1215.6 1.1 6.	.3
1214.5	.8
$R_{R_7(10)}$ 1214.6 0.1 2	.9
$R_{R_2}(8)$ 1216.3 -1.4 3	.7
$R_{R_4}(9)$ 1217.0 -0.7 3	.5
$R_{R_6(10)}$ 1217.9 0.2 5	.6
$R_{R_9}(11)$ 1215.6 -2.1 3	.9
$\begin{bmatrix} R_{R_1}(8) & 1219.6 & -1.2 \end{bmatrix}$ 3	.2
$R_{R_3}(9)$ 1220.3 -0.5 6	.4
1220.8	.7
$R_{R_8(11)}$ 1218.7 -2.1 2	.0
$P(10)(\gamma_{33})$ 1220.8 0.0	
$\begin{bmatrix} R_{R_0}(8) & 1223.1 & -1.0 \end{bmatrix}$ 5	.2
$R_{R_2}(9)$ 1223.7 - 0.4 2	.8
$R_{R_4}(10)$ 1224.4 0.3 2	.5
1224.1 $R_{R_{6}}(11)$ 1225.2 1.1 3	.9
$R_{R_7(11)}$ 1221.9 -2.2 2	.0
$R_{R_{0}}(12)$ 1222.9 -1.2 2	.5
$\binom{R_{R_1}(9)}{1227.0} = -1.0$.5
1228.0^{a}	.7
$R_{R_{s}}(12)$ 1226.0 -2.0 1	.3
$\begin{pmatrix} -2.5 \\ P(9) \\ (920) \end{pmatrix}$ 1230.2 0.1	
$ R_{R_0}(9) 1230.4 0.3 4$.1
1230.1 $R_{R_{9}}(10)$ 1231.1 1.0 2	.1
$\begin{vmatrix} & -1.7 \\ & -1.7 \\ & -1.7 \\ & 1 \\$.9
$ \frac{R_{R_{7}}(12)}{R_{R_{7}}(12)} \frac{1229.2}{1229.2} -0.9 1$	3
$\begin{pmatrix} R_{R_{0}}(11) \\ R_{R_{0}}($	3
1235.9 $\begin{vmatrix} & -35(21) & -250(10) \\ R_{R_5}(12) & 1235.7 & -0.2 \\ \end{vmatrix}$.2

 $s_{\text{eff}} = 1.3-1.9 \text{ cm}^{-1}$. ^a Not resolved.

3. Results

From the rotational analysis values have been derived for the rotational constants A'' and A'_i , the Coriolis coupling factors ζ_i , and the band-centre frequencies v_0 . It can be shown¹³ that to a good approximation the following expression is valid:

$$A'' = \frac{1}{3} \sum \left[A'_i (1 - \zeta_i) - B'_i \right] - \frac{1}{3} \sum \left[(A'_i - A'') - (B'_i - B'') \right] + \frac{7}{6} B''.$$

As the magnitude of B'' is known $(3.880_0 \text{ cm}^{-1})$, A'' can be calculated. From the known values of $B'_i - B''$, $(A'_i - A'') - (B'_i - B'')$, and A'', A'_i can be evaluated for the three perpendicular bands. The values of A'_i , B'_i , and $A'_i(1-\zeta_i) - B'_i$ have then been used for the calculation of the ζ values. Finally, the band-centre frequencies were obtained from $v_0 + A'_i(1-\zeta_i)^2 - B'_i$. The results are given in Table 11. The value $A'' = 5.25_7 \pm 0.02 \text{ cm}^{-1}$ derived here from the analysis of the three perpendicular bands is close to the one (5.245 cm^{-1}) calculated from B'', assuming $r_{\text{CH}} = r_{\text{CD}}$ and regular tetrahedral structure, and it also compares well with the value 5.243 cm^{-1} obtained from the Raman study of the v_{3bc} band.⁷

Table 11. Rotational constants A', Coriolis coupling factors ζ , and bandcentre frequencies v_0 for perpendicular bands.

	^v 2 ab	^v 3 bc	^v 4 bc	
$A_{i}^{\prime}(cm^{-1})$	5.202	5.235	5.25_{5}	
ζ_i ν_0 (cm ⁻¹)	$\begin{array}{c} -0.302\\ 1471.2\end{array}$	0.081 3016.2	0.588 1157.7	

In Table 12 the results for the v_{3bc} band are compared with the values obtained from the Raman investigation by RICHARDSON *et al.* (E.H.R.) and the infrared study by JONES (L.H.J.). It is seen that the author's results are in somewhat better agreement with the Raman investigation than with the infrared study.

In Table 13, experimental ζ values are compared with theoretical values calculated recently from force constants by JONES and MCDOWELL,¹⁴ and by MILLS.¹⁵ The agreement between the values obtained by the present investigations and the theoretical work seems satisfactory, except in the case of ζ_{3bc} .

The sum of the zetas must satisfy the ζ sum rule:¹⁶ $\Sigma \zeta_i = B_e/2A_e$, as far as anharmonicity can be neglected, and no resonances occur. As the "equilibrium" rotational constants, A_e and B_e , are not known, one has to use the

	Raman ⁷ E.H.R. et al.		Infrared ¹⁴ L.H.J.	This invest.	
$A'(1-\zeta)-B'.\ldots\ldots$	0.955		0.924	0.944	
$A'' - A'\zeta - B''$	0.961		0.920	0.954	
$(A' - A'') - (B' - B'') \dots \dots$	-0.0058		0.004	- 0.011	
$\nu_0 + A'(1-\zeta)^2 - B'$	3017.17		3017.4	3016.8	
Å'	5.223		5.24	5.23 ₅	
B'	3.863		3.865	3.873	
<i>B</i> ″	3.877			3.882	
$B' - B'' \dots \dots \dots$	-0.0138		-0.013	- 0.011	
ζ	0.0775		0.086	0.081	
ν_0	3016.59		3016.9	3016.2	
D'_J D''_J	5×10^{-5} 4.7×10 ⁻⁵	}	5.5×10 ⁻⁵ a	5. ₅ ×10 ⁻⁵	

Table 12. Band constant values for the v_{3bc} band in cm⁻¹.

^a Assumed value.

Table 13. Experimental and theoretical ζ values for doubly degenerate normal vibrations.

	ζ2 ab	ζ3 bc	ζ ₄ bc	
Experimental values: N. GINSBURG and E. F. BARKER L. H. JONES E. H. RICHARDSON et al This investigation	-0.218 to -0.312 -0.302	$\begin{array}{c} 0.261 \ \ to \ \ 0.213 \\ 0.08_6 \\ 0.0775 \\ 0.081 \end{array}$	0.625 to 0.692 0.588	
Theoretical values: L. H. Jones and R. S. McDowell I. M. Mills	-0.260 - 0.263	0.040 0.044	0.589 0.588	

values for the vibrational ground state. This must, however, be considered a rather good approximation. Thus, the ζ sum rule may be written: $\Sigma \zeta_i = B''/2A'' = 0.370$. The sum of the zetas is 0.367, which should be compared with 0.668 to 0.593 found earlier by GINSBURG and BARKER.¹⁷

A comparison between the present fundamental frequencies and values from¹ previous investigations is given in Table 14. The values adopted here mean a revision of the results of WILMSHURST and BERNSTEIN regarding the fundamentals v_{3a} , v_{4a} , v_{3bc} , and v_{4bc} .

Symmetry Normal vibration		Present investigation	Other investigations	Adopted values	
	(v ₁	2948*	2945a	2948	
$A_{1} \qquad \begin{cases} \begin{array}{c} & & \\ &$	2210*	2200 a 2200.03 b	2210		
	1306.5	1306.8°	1306.5		
$E \begin{cases} v_2 ab \\ v_3 bc \\ v_4 bc \end{cases}$	1471.2	1477.1°	1471.2		
	3016.2	3021 a	3016.6		
	1157.7	3016.59 ^e 3016.3 ^e	1157.7		

Table 14. Comparison of the present results with previous grating or prism data (cm^{-1}) .

^a See Ref. 5. * Estimated unperturbed frequency (see page 6).

^b See Ref. 3.

^c See Ref. 17.

d See Ref. 6.

e See Ref. 7.

IV. Overtones and Combinations

Overtone and combination bands have been observed in the region $2000-6000 \text{ cm}^{-1}$. Thirty-six pronounced absorption bands have been measured and interpreted as summation bands. It was possible to explain sixteen bands as binary combinations, whereas the rest of the bands have been interpreted as ternary and quaternary summation bands. Only in three cases, however, it has been necessary to make use of quaternary combinations.

The results are given in Table 15. In the column with observed frequencies square brackets indicate the possible presence of Fermi resonance, which makes definite assignments uncertain.

Only below 5000 cm⁻¹ the bands have been characterized as parallel (II) or perpendicular (\perp) bands. The reason for this is the limited resolving power of the spectrograph at high frequencies and the increased possibility of interactions between bands, which may change the shape of the bands considerably.

For the calculation of the combination frequencies, observed frequencies have been used rather than calculated values. In some cases this gives more

Table 15. Possible assignments of overtones and combinations.

Assignment	Symmetry	Band structure	Intensity	Frequency (cm ⁻¹)		Δ (Calc
	-55	obs.		Obs.	Calc.	obs.)
$4 bc + 4 bc \dots$	$A_1 + E$	11	S	2316ª	2315	-1
4a+4bc	Ε		vw	ca. 2460	2464	ca. + 4
4a+4a	A_1	н	w	2597	2613	+16
2ab + 2ab	$A_1 + E$		S	29108	2942	+ 32
3a+4bc	E	LI LI	w	3337	3358	+21
3a + 4a	A_1		m	3498	3506	+8
$4a+4bc+4bc\ldots$	$A_1 + E$		vw	3617	3622	+5
2ab+3a	E		vw	3670	3671	+1
4a+4a+4bc	E	L	vw	ca. 3750	3771	ca. + 21
2ab+4bc+4bc	$A_1 + A_2 + 2E$	L	vw	ca. 3795	3787	ca 8
4a+4a+4a	A_1		vw	3874	3919	+45
2ab+4a+4a	E		w	4056	4084	+28
2ab+2ab+4bc	$A_1 + A_2 + 2E$		w	4072	4100	+28
$1+4 bc \dots \dots \dots$	E		w	ca. 4126	4128	+2
2ab+2ab+4a	$A_1 + E$	н	vw	4216 ^b	4249	+33
$3 bc + 4 \alpha$	E	L	Ŵ	4313	4323	+10
3a+3a	A_1	11	vw	4342	4400	+ 58
$2ab+3bc\ldots$	$A_1 + A_2 + E$		w	4474	4488	+14
3a+4a+4a	A_1		vvw	4783	4813	+ 30
$4a+4a+4bc+4bc \ldots \ldots$	$A_1 + E$			4002	∫ 4928	+26
$2ab+4bc+4bc+4bc\dots$	$A_1 + A_2 + 3E$	1	V V W	4902	4944	+42
2ab+3a+4a	E	L 1	vvw	4962	4978	+16
$2ab+2ab+3a\ldots\ldots$	$A_1 + E$		vw	5105	5142	
1+3a	A_1	1 1	vw	5164	5170	_
3a+3bc	E .		vw	5223	5217	_
$1+4bc+4bc\ldots$	$A_1 + E$		vw	5257	5285	_
$3 bc + 4 bc + 4 bc \dots \dots$	$A_1 + A_2 + 2E$	1	vw	5311	5332	
$2ab+4a+4a+4a\ldots$	E		vw	5367	5391	+26
3a+3a+4bc	E		vvw	5494	5558	
$2ab+2ab+4a+4a\ldots$	$A_1 + E$	l l	373/367	5558	∫ 5555	·
2ab+2ab+2ab+4bc	$A_1 + A_2 + 3E$	ſ	~ ~ ~ ~		5571	_
$1 \div 4a + 4a \ldots$	A_1	l I	1710	5585	∫ 5583	
$1+2ab+4bc.\ldots$	$A_1 + A_2 + E$	ſĮ – –	¥ **	0000	€ 5599	
3bc+4a+4a	E		vw	_5626	5630	
$3\alpha + 3\alpha + 4\alpha$	A_1		vvw	5692	5706	+14
$1+1,\ldots,$	A_1		w	5762	5940	-
2ab+3a+3a	E		w	5860	5871	
$1+3bc\ldots$	E		w	5983	5987	
$3 bc + 3 bc \dots$	$A_1 + E$.		w	6024	6033	-

^a Displaced by Fermi resonance with fundamental.

b CH₄?

reasonable agreement between calculated and observed frequencies. Also from a theoretical point of view this procedure is the more correct.

In general quite large negative anharmonicities are observed, e.g. the difference $v_{calc.} - v_{obs.}$ is positive. However, a few of the observed combination frequencies show small positive anharmonicities.

The prominent absorption at 6024 cm⁻¹ has been interpreted as the first overtone of the carbon-hydrogen stretching frequency, 3bc+3bc, the anharmonicity being -7 cm^{-1} . This anharmonicity is, however, much smaller than one should expect for the first overtone of a C-H stretching frequency, in which case an anharmonicity of the magnitude of -100 to -200 cm^{-1} would seem reasonable. A probable explanation is that the band, because of Fermi resonance, has been displaced towards higher wave-numbers. Another possibility would be that the band is the quaternary combination 3a + 4a + 4a + 4a, the calculated frequency being 6120 cm⁻¹. The observed intensity of the band, however, seems too high for a quaternary combination, although Fermi resonance may have increased it.

Generally, it must be emphasized that on account of the great anharmonicities and the possible effects of Fermi resonance and other interactions, the assignment of the bands to specific combinations, especially in the region $5000-6000 \text{ cm}^{-1}$, is only tentative.

Acknowledgments

I am greatly indebted to the late Professor A. LANGSETH for suggesting the present investigation, for many helpful discussions on the subject and for much good advice. My thanks are also due to Dr. SVEND BRODERSEN for having recorded the spectra on the infrared spectrometer.

Note added in proof: A calculation of the unperturbed frequencies using firstorder perturbation theory¹⁸ and assuming that the intensity ratio $I(2 v_{2ab})/I(v_1) = 0.5$ (see Fig. 1) gives $2 v_{2ab} = 2930 \text{ cm}^{-1}$ and $v_1 = 2950 \text{ cm}^{-1}$.

References

- 1. See G. HERZBERG, Infrared and Raman Spectra of Polyatomic Molecules (D. van Nostrand Co., New York, 1945), p. 306 and 309.
- 2. D.R.J. BOYD and H.W. THOMPSON, Proc. Roy. Soc. A 216, 143 (1953).
- 3. HARRY C. ALLEN, Jr., and EARLE K. PLYLER, J. of Research of the Nat. Bur. of Standards 63A, 145 (1959).
- 4. D. G. REA and H. W. THOMPSON, Trans. Faraday Soc. 52, 1304 (1956).
- 5. J. K. WILMSHURST and H. J. BERNSTEIN, Canad. Journ. Chem. 35, 226 (1957).
- 6. LLEWELLYN H. JONES, J. Mol. Spectroscopy 4, 84 (1960).
- 7. E. H. RICHARDSON, S. BRODERSEN, L. KRAUSE, and H. L. WELSH, to be published (private communication from Dr. BRODERSEN).
- 8. SVEND BRODERSEN and A. LANGSETH, Mat. Fys. Skr. Dan. Vid. Selsk. 1, no. 1 (1956).
- 9. SVEND BRODERSEN, J. Opt. Soc. Am. 43, 877 (1953).
- 10. JANET HAWKINS MEAL and S.R. POLO, J. Chem. Phys. 24, 1126 (1956).
- 11. G. HERZBERG, loc. cit. p. 436.
- 12. G. HERZBERG, loc. cit. p. 426.
- 13. F. ALLAN ANDERSEN, BØRGE BAK, and SVEND BRODERSEN, J. Chem. Phys. 24, 989 (1956).
- 14. LLEWELLYN H. JONES and ROBIN S. McDowell, J. Mol. Spectroscopy 3, 632 (1959).
- 15. I.M. MILLS, Spectrochim. Acta 16, 35 (1960).
- 16. W. H. SCHAFFER, J. Chem. Phys. 10, 1 (1942).
- 17. NATHAN GINSBURG and E.F. BARKER, J. Chem. Phys. 3, 668 (1935).
- 18. G. HERZBERG, *loc. cit.* p. 216.

Indleveret til Selskabet den 31. marts 1962. Færdig fra trykkeriet den 20. maj 1963.