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Synopsis
The present paper contains formulae and tables for the evaluation of multipl e

Coulomb excitation cross sections of rotational and vibrational states . For other
cases, general calculational procedures have been developed and these are illu-
strated through examples . For the larger part of the work, the collision time i s
assumed to be short compared to the nuclear period . The investigation is further -
more simplified by an approximate treatment of the dependence of the cross sec-
tion on the deflection angle of the projectile . The accuracy of the approximation s
is also discussed .
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1 . Introductio n

I n the last few years, the Coulomb excitation process has become a valu -

able tool for the investigation of low lying nuclear states . Several review
articles on the experimental and theoretical aspects of Coulomb excitatio n

have appeared, (1), (2), (3), (4) which contain bibliographies of the earlie r

work on this subject* .
The Coulomb excitation process has certain advantages over other nuclear

reactions . The fact that the forces responsible for the process are well under -

stood, and the theory is well developed, allows one from a careful analysi s

of the reaction to determine a number of quantities characteristic of th e

nuclear states . The main approximation in the existing calculations is the

use of perturbation theory which is valid if the probability for nuclear exci-

tation in a single encounter is small . If protons or a-particles are used a s

projectiles, and if the bombarding energy is kept so low that no nuclea r
reactions take place, this criterion will always be fulfilled . In these case s
there is, however, a strong limitation on the number of states which can b e

investigated . The limitation lies, firstly, in the selection rules for the low mul-

tipole interactions which are important for the excitation process . Secondly ,
only low lying states are accessible, since the reaction for higher excitatio n

energies soon becomes adiabatic . A way to overcome these difficulties is t o
use heavier ions as projectiles . The electric field exerted on the nucleus the n

becomes so large that higher order processes occur . While, e . g., a state with

spin 4+ in first-order perturbation treatment can only be reached from a

ground state of spin 0 + through an E4 interaction, it might already in secon d

order be excited through a state of spin 2 + by means of quadrupole inter -
actions . In many cases, one might still use the perturbation expansion to
calculate the excitation probabilities (see ref . 1, Chapt. II D, and ref. 2) .

If, however, the interaction becomes so strong that many levels are activel y
involved in the excitation process, one has to solve directly the set of coupled

* In the following, the notation of ref . 1 will always be used .

1*
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equations which describes the population of the nuclear states during th e
collision .

The feasibility of such multiple excitations with heavy ions has recentl y
been proved and, from these experiments as well as from the followin g
calculations, it seems that a number of new possibilities are opened for th e
investigation of nuclear states(5), (6) .

In the following we shall consider such multiple excitations . In Section
2, a discussion is given of the parameters which are important for th e
process . Section 3 contains the general formalism, while the following sec-
tions are concerned with special models and numerical tables .

2. Characteristic Parameter s

The Coulomb excitation process is characterized by a number of para -
meters . These quantities describe the kind of approximations which ar e
appropriate for the process in question .

A parameter which describes the motion of the projectile in the Coulom b
field of the nucleus is 17 defined by

Z1Z2 e 2
'17 =

h v

where Zl and Z2 are the charge numbers of the projectile and the targe t
nucleus, respectively, while v is the relative velocity of the incident particl e
and the nucleus. While for protons this parameter may be as small as two ,
it is, for the heavy ions which are being considered in the following, alway s
much larger than one. Since, furthermore, the projectile in a collision loses
only a small part of its energy, one may to a very good approximation us e
a classical description for its path . The hyperbolic orbit of the particle wil l
be described by the deflection angle î9 (see Fig. 1) .

The Coulomb interaction between the projectile and the nucleus is give n
by (see ref. 1, Eqs . (II A. 8) to (II A . 11))

,Elt)Zee`°(I)I1 d(t)'

	

(2 .2 )

where e (i) is the charge density operator at the position r of the nucleus an d
iip (t) is the position vector of the projectile, which for a given hyperboli c
orbit is a known function of time. The interaction can be expanded in mul-
tipole components
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Fig . 1 . Classical picture of the projectile orbit in the Coulomb field of the nucleus . The hyper -
bolic orbit of the projectile is shown in the frame of reference where the nucleus is at rest . Th e
coordinate system which is employed in the present paper, with the z-axis along the axis of
symmetry, is indicated . The charges of nucleus and projectile are denoted by Zee and/_ l e, respect -

ively, u is the initial relative velocity, and 0 is the deflection angle .

~~E(t)=4~Zle	 	 1-rp~-lYA

	

~, 4'p)~2`(E2,,u),

	

(2 .3)2R+1

	

Y

where (Ei, y) is the electric multipole moment of order A of the nucleu s
defined by

Tr2 (E, ,u) = S r~ Y7 u (79',

	

p (i) dr .

	

(2 .4 )

In first order perturbation treatment, one finds the following expressio n
for the total probability P for the transition from the nuclear state 1 to th e
state 2 in a given collision with deflection angle s (see ref. 1, Egs . (II A . 4) ,
(II A. 28), and (II A . 29)) :

2

• I 14,('a , )1 2 . (2 .0 )

Here, a is half the distance of closest approach in a head-on collisio n

	

Gi e 2

	

16 z2

	

1

	

P1-a2 =
h2U2

	

(2 À	 1)3 •
a2~

• B (EA)

~= 1

	

=- .a

Zl Z2 e, 2

lll U
a

	

2 (2.6)

where m is the reduced mass of the projectile and the target nucleus . The
reduced transition probability B (EX, I1 ->I2) is defined by



B(EA, I1 -I2) = SI <Il llll l

	

(EA, y)I I2 ~l~Iz>1 2
LG Ma

2 I1 +i I<I1II Ti(E A )III2>1 2 .

For two states with spins Ii and I2 , practically only one value of 2 will giv e
a contribution to the sum in (2 .5) .

The orbital integrals (7) Ia n (r9, e) depend on the deflection angle and
on the parameter C which is defined b y

Zl Z2 e2 E2 - Ei
~1--r 2 = nf-i

	

hu

	

2 E

The quantities '7i and of are given by (2.1), substituting for the velocity th e
initial and final velocities, respectively . Similarly, El and E2 denote the
energies of the nucleus in the states 1 and 2, while E is the energy of the
projectile . The parameter C measures the suddenness of a head-on collission .
In general, the suddenness is measured by the quantity

C('')_

	

•

	

(2 .9)

sin

If C (19) is large, the process is essentially adiabatic and the excitation proba-
bility small . If C 0) is small, the process has the character of a sudden
impact and one may use a sudden approximation .

In the case of multiple Coulomb excitation, the parameters is no mor e
a characteristic of a nuclear state . A definite nuclear state can in this cas e
be populated in different ways . The e which is important for the excitation

of the state in question need not be the one corresponding to the excitatio n

from the ground state, but is rather a set of C's corresponding to the transi-

tions through which it is populated .
The validity of the perturbation tr eatment which leads to the result

(2 .5) is guaranteed if P is small compared to one . We may introduce th e
square root of the contribution to P from a definite multipole order as a
measure of the strength with which the state 2 is coupled to the state 1

through the interaction with the projectile

(2 .8)

xla2> 2(#, s) = V Pe2, 2(V n S̀~) . (2.10 )

The sign is to he the same as the sign of the reduced matrix elemen t

<Ii I I J (EA) I112 > .



Nr . 8

	

7

If all the parameters x which connect the states of the nucleus are smal l
compared to unity, one may use a first order perturbation treatment . This
will practically always be the case when protons are used as projectiles .
For a-particles and heavier ions, the z's will also mostly be smaller tha n
one if the matrix elements are of the order of the single-particle value (se e
ref . 1, Chapt . HA) . One may, in such cases, still use the perturbation treat -
ment, when necessary, to second or third order (see ref. 1, Chapt . II D) . If,
however, the nucleus possesses excited states of collective type (8) with strongly
enhanced B (E 2) transition probabilities, x(2) might be as large as 5 . Then,
one has to use an approach which avoids the perturbation expansion . On
the other hand, states with large quadrupole transition probabilities hav e
usually small excitation energies, and one may use an expansion appro-

priate for small .

The parameter x (~, ) attains its largest value for = 0 and '0 = r . I t
will be useful to introduce this value as the fundamental parameter, in th e
same way as

	

is used instead of $ 0) . We thus define (see ref . 1 ,
Chapt . II E. 4)

0.)

	

V16~r

	

(A-1)!

	

Z1 e

	

< I,II J .(EA)II I2 %=x12 (2.11 )
(2A+1)!!

	

11v

	

aÀ. V2I1 + 1

It will also be convenient sometimes to introduce the value of x ) for
= 0, but arbitrary as a parameter . We call this x (0) and, according to

(2 .5), (2 .10), and (2 .11), it is defined by

TABLE 1

A survey of different limiting cases of the characteristic parameters p, f, and x.
In the table is indicated the kind of approximation which is appropriate for th e
different cases and the values of 2 for which computations have been performed .
The calculations mentioned under the heading "e arbitrary" are quoted in ref . 1 .
The computations for arbitrary p and f « 1 are given in ref . 11, while those men -

tioned in the last entry refer to the present work .

ri arbitrary p » 1
semiclassica l

f arbitrary
< 1

1 . order perturbatio n

= 1, 2

x< 1
1 . and 2 . order perturbation

=1, 2, 3, 4

se < < 1
sudden

approximation

x « 1
1 . order perturbatio n

2 =3,4

x arbitrary

multiple excitation

A = 2
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x1
x~ 2 (~) ~C1~ 2

(2
( ~
	 2= 	

1) .

	 1)i!

(2 n

	 n
+ 1) VL 'YAµ (2- ,0 )

	

0,0)1 2 1 2 .

	

(2.12)

P

In Table I, a survey is given of the different limiting cases for which com-

putations on Coulomb excitation have until now been made, including th e
present work . In the following, we shall limit ourselves mainly to the cas e
of quadrupole excitations (A= 2) .

3 . General Theor y

In this section, we investigate the equations which determine the mul-

tiple Coulomb excitation and discuss some general approximation methods .
It will be shown that the special solution for = 0 and 79 _ n is a convenien t

basic solution by means of which the excitation probability for small value s

of and arbitrary angles may be expressed .

A. Expansion Methods

The Schrödinger equation for the nuclear state vector I y > is

ih- I ?P> =

	

+ Sî E ( t )] I y>>

	

(3 .1 )

where Sao is the Hamiltonian of the free nucleus and E (t) the interaction

energy given by (2 .2), (2 .3), and (2 .4). It will be useful to introduce a ne w

state vector I 0> defined by

y > = e
of

l Ø>

	

(3 .2)

Before and after the collision this state vector is time-independent and i t
satisfies the equation

i1-1 ~t l Ø > = 6( t)I Ø > ,

where

(t) = en
~2ot

	

E (t) e n .

	

(3 .4)

The equation (3 .3) may also be formulated as a set of coupled differentia l

equations for the amplitudes on the nuclear eigenstates . If we thus define

an(t)=<njØ>,

	

(3 .5 )

where n > is the time-independent eigenstate belonging to the eigenvalue

En of iQ ,

(3 .3)
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(3 .6)

we obtain

t
i~ån=S~E (t) 1 n»

(Erz- Em )
e~

	

am (t) .

	

(3 .7 )

The solution of (3 .3) and (3 .7) can often conveniently be expressed as a

series in powers of SS E (t) . This is the usual perturbation expansion whic h

can be obtained by an iteration procedure . It can be written in a closed for m

due to Dyson
•t

(O dl

IØ(t)> = Te-0_6

	

I
(t= - 00) > ,

	

(3.8)

where the symbol T stands for the time ordered product, i . e . ,

ta S -
-- j (t ') dt'

	

Z t
Te ~ ~

	

= 1 -

	

(t ' ) dt '
h

i)2

	

t '

	

(_ j\3 t

	

t '

	

t „
+(

	

(t') dt'~(t")dt" + - ~ (t') dt' (t ")dt"(t"')dt,,
,

h

If the nucleus before the collision is in the ground state I 0 >, the solutio n

(3 .8) leads to the following expression for the amplitudes on the differen t

excited states after the collision :
i +o o

(t) dt

an (+00) _ < n I Te t
-00

	

I 0> .

	

(3 .10)

When one inserts the series (3 .9), one obtains exactly the usual perturbatio n
expansion for the excitation amplitudes .

As has been mentioned above, the case where = 0 for all states in-

volved is of special importance for the problem of multiple Coulomb exci-

tations. In this case, one has En = E. and 5') = , and one can then leave
out the time ordering in (3 .8). The expression (3 .10) now takes the simple

form

	

-Z

	

(t) dt

	

an(+co)=<nle h

	

I0>

	

(3 .11 )

characteristic of the sudden approximation . This formula is also applicabl e

in cases where Ss°, (t) dt» h since, for the evaluation, it is not necessar y

to perform a series expansion of the exponential function .

By means of formula (3 .11) one may thus avoid the perturbation ex-
pansion. On the other hand, the effect of the motion of the nucleus durin g

(3 .9)
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the collision has been neglected . The sudden approximation, however,
forms a convenient starting point for a series expansion in powers of 5) 0 .
Such a series expansion is generated by the following substitution :

-
~t

	

(t) dt
10> =e h -0°

	

IT> .

	

(3.12)

The Schrödinger equation (3 .3) then takes the form

t

	

( t

aI	 	
F(t)dt

	

-t. SiE( t) dt

	

- cro
a ~
	 = e

	

[ S2 (t)-SE(t)]e

	

(3 .13)

In this expression, one can expand (t) in powers of 5~o in the following way :

(

	

2

`~ ( t ) = S~E (t) + h t

	

(t)] +2 I ~
t) [s- [O ,

	

(t)]] + . . .

	

(3 .14)

and (3 .13) lakes the form

ih a å
t

) ={ t [OE (t)]+ 2( t) 2 [ o[N,,E(t)]]+ .}IØ>,

	

(3 .15 )

where

s
t

	

-Z Çt
~r (t) dt ~

a
c

'N = e~`

	

'N e ~

	

(t) dl
(3 .16)

The expression on the right-hand side of (3 .15) is a series in powers of

nuclear energy differences times the collision time, i . e ., it is a series in

powers of the 's involved . If we express the solution in a similar way ,

IT>=19)o>+1921>+IT2>+ . .

	

(3.17)

where I Ti > is of the order times I To > , 9)2> of the order 2 times 19'o > ,

etc ., we obtain the following set of differential equations for these 99n > 's :

ih a 990)-= 0
a t

l )
a t =

h
t [~o,

	

co ]Sc~EØo>

(
(

al~t2 /=

	

t(t)]19)1>+21~t)

2

[o[o,E(t)]]I To>

(3 .18)



Nr . 8

	

1 1

The initial condition determines I To > to b e

ITo>-10> .

	

(3 .19 )

From To > one may determine I (p t >, I cp2 >, etc. by means of quadrature s

I ~1> =h2

	

[~o (t') ,`~aE (t')] Io >

T2 > =	 (It' t' [ S-po (t') , E (t ')] ~tdt ø t" [sc~o (t~r) ,,~~E (t")] 0 >

t1 i
+

	

~ dt' 1 '2 [~o (t'), [S-'2o ( t '), ~E (OE 10 > .2 11 3

If the interaction energy •E (t) tends to zero sufficiently rapidly, all inte -
grals converge, and (3 .20) offers a systematic expansion in powers of the

s's . In the case of quadrupole Coulomb excitation, however, E (t) is of

the order of I t L3 for large times, and already the second term in I T 2 >

diverges . This difficulty is also encountered if one tries to expand the or -

bital integrals I2, L 0, e) in powers of e . The exact expression for thes e

quantities in terms of confluent hypergeometric functions (see ref . 1, Eq .

(II T. 50)) shows that the correct expansion is of the for m

I2,tt ('O',

	

ct+b$+c 2 +d$2 1oge + . . . .

	

(3 .21)

In the following, we shall calculate only the first order terms of (3 .20) .

For the evaluation of the higher terms a cut-off procedure might be used .

B. Choice of Coordinate System

In earlier calculations of Coulomb excitation, the orbital integrals wer e

evaluated in the so-called focal system . In this coordinate system the z-axis

is perpendicular to the plane of the orbit, and the x-axis is along the sym-
metry axis of the hyperbola . In this paper, another system will be used ,

where the z-axis is along the symmetry axis (see Fig . 1) . This system is of
special convenience for head-on collisions (5' = ar), where the invariance of
the entire Hamiltonian for rotations around the z-axis ensures the conser-

vation of the magnetic quantum number during the excitation process .

(3.20)



12 Nr. 8

The time-dependence of the interaction energy (2 .3) is, for a, = 2, given by
the collision functions

S2, (t) - rp3 ( t ) Y2, p Ea, ( t ), 99 p ( t )]-

	

(3 .22)

In the new coordinate system these collision functions are explicitly given by

	

~ 15

	

1

	

yp (t) 2
S2,2(0 52,-2 (t)

-

l/ 32 . (1 3 I) (0 2

	

1(t)-S2,- 1 (t)= i l/
15

	

1

	

zp (t) rdp (t)

	

VV 87Lrp ( t) 3

	

Ip (t) 2

S2 0 ( t ) _

For the perturbation treatment, the important quantities are the orbita l
integrals defined by

+~

	

zs~ v t
SE2 (P=

	

2,,u(t) e a dt .

	

(3 .24)

In the old focal system these orbital integrals were expressed by means o f
the tabulated functions 12 , i, (see ref. 7) in the following way :

SE 2, p,

	

,

	

ftUaz Y2„u (-2 0 ) I2, (P,) . (3.25 )

b1 the new coordinate system one can again express the orbital integrals
in terms of the I2, 12 .

1

	

3

	

3
SE2, o (9 ', ) = Ua2 I/ -16

5
z

1

I2 , o ( '19', $) + 412, 2 ( 19' , $) + 1 12,-2 09', $ )

1

	

15

	

1

	

1

	

SE2, ±1(0, ) = Ua2 /32 n

	

I2, -20, ) - ~ I2 2 ('0,

	

(3 .26)

S2, (3 .23 )

V
	 5

	

1

	

3 zp (t) 2 -rp (t) 2
16 nrp (t) 3

	

Ip ( t ) 2

-1

	

15 j 1

	

1

	

1
SE2, +2 0 , ) =

Ua 2 /32 sz 2 I2 , o (6, ) - 4 Is z ( 0 , ) - 4 I2, -2 (~, )

Since S2 ± 1 (t) is an odd function of time, one sees that S2, ±1 vanishe s
for $ = O. The two remaining orbital integrals can be expressed in a way
similar to (3 .25) :

SE2, ,u (~, ~ = 0) _ -
va2 Y2> t, ( 2 0 ) `I2, ,u (~),

	

(3 .27 )
where
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J2, f 2 (~) = ~I2, 0 (~, 0) - 12, 2 (~, 0 ) ~

J2, o (v.) ° 12, 2 (~, 0) = 2 I2, o (v, 0) .

These quantities can be expressed by elementary functions, since (see ref.1 ,

Eq. (II E. 71))

12, ±2 09', 0) = 3 sine
2

12,0 (i9, 0)=2tan2 ~ [1 -~ 2 ~tan 2

and they are tabulated in Table 2 .

TABLE 2 .

The classical orbital integrals for f = 0 in the coordinate system of Fig. 1 . In th e
two first columns, the functions J2 (see Eq. (3 .28)) are listed a s
functions of the deflection angle O .0

(0 )

The
and

third
J2 2(0)

column shows the ratio J2,2 (0 ) /
J20 (0) which is important for the z (0) approximation, while the last two column s
contain the quantities

xeff ('0')/z = J2,o (0) / J2,o ( ,'T) and x ( .%) I x V' (J2o (0)) 2 + 3 (J22 (0)) 2̀ / J20 ( n ) •
The entries are given in the form of a number followed (in paranthesis) by the powe r

of ten by which it should be multiplied .

a]' J2,o (9) J2,2 ( 0 ) J2,2/J2,0 xeff/x x (~)1 Y

0 0 .0000 0 .0000 3 .333 (-1) 0 .00000 0 .0000 0

10 1 .4257 (-2) 4 .1288 (-3) 2 .896 (-1) 0 .01069 0 .0119 6

20 5 .3589 (-2) 1 .3386 (-2) 2 .498 (-1) 0 .04019 0 .0437 9
30 1 .1360 (-1) 2 .4285 (-2) 2 .138 (-1) 0 .08520 0 .0908 5

40 1 .9054 (-1) 3 .4574 (-2) 1 .814 (-1) 0 .1429 0 .149 8

50 2 .8102 (-1) 4 .2878 (-2) 1 .526 (-1) 0 .2108 0 .218 0

60 3 .8180 (-1) 4 .8467 (-2) 1 .269 (-1) 0 .2864 0 .293 2

70 4 .8973 (-1) 5 .1078 (-2) 1 .043 (-1) 0 .3673 0 .373 2

80 6 .0169 (-1) 5 .0792 (-2) 8 .442 (-2) 0 .4513 0 .456 1
90 7.1460 (-1) 4 .7935 (-2) 6 .708 (-2) 0 .5360 0 .539 6

100 8 .2543 (-1) 4 .2997 (-2) 5 .209 (-2) 0 .6191 0 .621 6

110 9 .3125 (-1) 3 .6570 (-2) 3 .927 (-2) 0 .6984 0 .700 0
120 1 .0293 2 .9301 (-2) 2 .847 (-2) 0 .7720 0 .772 9
130 1 .1170 2 .1831 (-2) 1 .954 (-2) 0 .8378 0 .838 2
140 1 .1921 1 .4772 (-2) 1 .239 (-2) 0 .8941 0 .894 3

150 1 .2527 8 .6659 (-3) 6 .918 (-3) 0 .9395 0 .939 6
160 1 .2971 3 .9600 (-3) 3 .053 (-3) 0 .9728 0 .9728
170 1 .3242 1 .0393 (-3) 7 .848 (-4) 0 .9932 0.993 2
180 1 .3333 0 .0000 0 .000 1 .0000 1 .0000

(3 .29 )
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For the special case .
19' = r, one has Jp = 0, and the only non-vanishing

collision function is S2, o (t) . In this case, J2, 1, (7r) = 4/3 å , o . The special
simplification for backward scattering is connected with the symmetry o f
the problem around the z-axis .

Also for '19' � r one can obtain some general rules by symmetry consider-

ations . The Hamiltonian is thus always invariant under a reflection in the
plane of the orbit . This reflection brings a state vector I I, M > with spin I
and magnetic quantum number M into a state I I, -M > . One find s

I I, M> -> (- 1)p+M+I I, -M>,

	

(3 .30 )

where p is the parity of the state . This rule implies that the excitation prob -
abilities of states with magnetic quantum numbers M and -M are equal, i f

the initial state is unoriented . The equality of :S-2 , y and 2, _/2 follows also
from this symmetry .

For = 0, one has the additional symmetry that the Hamiltonian is in -

variant under a rotation of 180 degrees around the z-axis . This rotation give s
rise to the following transformation :

11,111> e ¢ ~M I I, M>,

	

(3.31)
which implies

(- 1)Mf -Mi = 1,

	

(3 .32)

where Mf and M2 are the magnetic quantum numbers in the final an d

initial states, respectively . The disappearance of S1, +i for = 0 is also a

consequence of this symmetry .

C . Dependence on Deflection Angl e

In the sudden approximation, the interaction energy S,''.)E (t) only enters

through the expression (see Eqs . (2.3), (3.22), and (3 .27))

1 .

	

t dt -
4 ~Zl e

hS+S:) ( )

	

5h va 2
(2, 0) J2

P
09.)

	

(E 2, ,cc)

	

(3 .33 )
7

p

In this expression it will be convenient to collect the dependence on Z1, u ,

and a in the parameter x, which corresponds to the excitation from the

ground state with spin Io to one of the excited states with spin I .

1/1 6n Zi e (I0 11)l(E2) Ii i
xo i

= 15 h vat

	

J%2 Io + 1
(3.34)
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The expression (3 .33) then takes the form

1 +`°

	

at

	

1*(E2,,u)V2Io+ 1
E(t)dt= xo,11/9gY2,µ 0)J2,µ(~) (10IT2(E2)IIi)

(3 .35)

The relative order of magnitude of the terms with I ,a = 2 and ,a = 0 i s

given by the ratio J2,2 0) / J2,0 0) . This ratio, which vanishes for '19. _ n ,

is given numerically in Table 2 and it is seen that it is very small for mos t

angles .

This observation gives rise to the convenient approximation of neglectin g
the terms with ,u I = 2 . In this approximation, (3 .35) has the same form fo r
all angles and one may write it as follows :

	

E (t) dt - xeff (9) k 7c Y2,0 (2, o) J2,o (9)
_ai(E 2,0) l/2Io + 1

	

(3 .36)(Io	
Jl(E2)Il )

where

J2,0 ( 'O') _ 3

	

/
xeff (~) ZO->l

_
J2 0 (7) 4 J2,0 (~) Z0-> 1 •

If one uses the approximate interaction Hamiltonian (3 .36), the final stat e

vector for arbitrary deflection angles I 00, x) > is simply related to th e

state vector for backward scattering, i . e .,

(3.37)

I Co ,

	

Ø x) >

	

I Ø(a, xeff ('o)) %• (3 .38)

J

The accuracy of this approximation can easily be estimated by writing

the state vector j (e, x) > in the form

%15 J22(0)

	

ti~2 Ie +1	
IØ(9,x)>=eZxeff(»)V 2 J20 (9)( lou t(E2) CI ,)µ

	

2

	

(E2,µ)I(m
xeff0))) ,

which follows from (3 .11) and (3 .35) . In this expression, a series develop -
ment of the exponential function may be performed, and one is thus led
to the following expansion which contains (3 .38) as the first term :

I Ø (~%', x) > = I Ø (2, xefl 09) )

15J220)	 V210+1

	

'i c x (E 2, P) Ø

	

reff 09)) >+ i xerr

	

l/ 2 J20 (9) ( I0 II
J(E 2) II I1) ,u=± 2

9 15 J22(29') 2_

	

2Io+1

	

I

	

-(xeff(?%'))- 4 \J20O) I (IoI TIt (E2)111)12

	

(E2,,u)Wi*(E2,,u')IØ(n,xeff@)))

(3.39)

(3 .40)
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An indication of the accuracy of the approximation (3 .36) can be ob-
tained by applying it to the old perturbation calculation . For = 0 one thus
finds, by considering only the term with ,r = 0, a total cross section which
only differs 5 per cent from the correct one, even though the forward angles ,
where the approximation is worst, here play a rather important role .

In the following, we shall apply the approximation (3 .38) and in a num-
ber of cases also investigate the accuracy by calculating the correction term s
in (3 .40) .

We have earlier, in Section 2, introduced a quantity x 0) (see Eq . (2 .12))
which is not very different from xeff ( 29') ; the connection between them is
given by

x ( z9') = x 4 {// (J20 (P))2 + 3 (J22 ('6))2

3 [J22(t9) 2

	

~ (3.41 )

xeff (z9)

	

+	 	 l -;- . . .

As can be seen from Table 2, the two quantities x (z9) and xeff 0) diffe r
at the most by 15 per cent, but for most angles the difference is much
smaller . For foreward angles where the difference is largest, the excitatio n
process can essentially be treated by the first order perturbation theory, wher e
the excitation probability is z 0) 1 2 . If we thus substitute x 0) for Zeff (~)
in the approximation (3.38), we have made a change only of the order o f
(J2,2 ( t% )/J2,o ( z9'))2 , but on the other hand obtained an expression which lead s
to the correct result for the excitation probability for foreward angles .

In the more general case where the sudden approximation is not applic-
able, the interaction energy (t) enters in a more complicated way int o
the problem. For z9 = 7r, again only the term with ,ci = 0 will appear . For
other angles, however, the order of magnitude of the terms with ,u 0
depends directly on the collision functions (see Eq . (3 .23)) . These, especially
S2,1 (t), are in general not very small compared to S 2, 0 (t), and the ap-
proximation is thus only valid in the neighbourhood of z9 = r . One may her e
investigate the angular dependence by considering the terms with ,u 0 i n

(t) as a perturbation in the Hamiltonian . In the sudden approximation,
this method would just lead to the result (3 .40) .

For the sake of completeness it should be mentioned that, once the fina l
amplitudes a7, m (cc) on the states with spin I and magnetic quantum num -
ber M are known, one may easily obtain all the quantities which are import -
ant for the experiments . Thus, the total excitation probability of a level o f
spin If is given by



1

	

2

P
_

lf J

	

2I2 + 1

	

alf Mt

	

(3 .42)
M i , Mf

The differential cross section do is obtained by multiplying P with th e

Rutherford cross section, i . e . ,

dcr =Plfri d6R

2

	

11= 4
Plfli

sin 4 2)
dQ .

The angular distribution of y-quanta emitted after the excitation is als o
calculable from the amplitudes . One must here take into account that a level

which emits the y-quantum under consideration may be populated not onl y

through an excitation, but also through the deexcitation by cascade y's from
higher excited states .

4. Diagonalization Method

In this section, we shall discuss a method of evaluating the multipl e

Coulomb excitation which does not use any specific nuclear model . We shall
thus consider the properties of the nuclear states, i . e ., energies and transi-

tion matrix elements as empirically determined quantities . Since, in this case ,

we have a very large number of parameters in the problem, it is not practi-
cally possible to give a systematic numerical tabulation of cross sections ,

etc ., and we shall therefore confine ourselves to a few numerical example s

which illustrate some important aspects of the problem .

A. Sudden Approximation

In the sudden approximation (3 .11), we have the following expressio n
for the final amplitude an on the state I n > :

` S2E (t) d !

an = <nle .jJI-°°

	

I o% ,

where the exponent is given by (3 .33) or (3 .35) . If the wave functions o f
the nuclear states are known, the problem is reduced to calculate matri x

elements of a known operator . Usually one will be interested, however, in

calculating the cross sections from a knowledge of the matrix elements o f
Mat. Fys . Medd. Dan.S id. Selsk. 32, no, 8.

	

2
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the multipole operators themselves . These matrix elements enter in other

processes also and are often determined from nuclear spectroscopy .
In order to perform this calculation, we introduce a unitary transforma-

tion U which diagonalizes the hermitian operator (3 .33) and which is thus

defined by the equations

U t U=(Jut -1 (4.2 )

1 ((+ "
<nI Ut~\S)E(t)dtUl q i =bnq 'Aq

..
1 •+ ` °

I Ut I m >< m l-~~E( t ) dt l p ><1~I UI g % .
_ ~,

and

The result (4 .1) can then be expressed in terms of U and the eigenvalues A q
in the following way :

-1 E

an =<nl UUte S-100

(t)at
UU t I6 >

= .Z<nlUlm>e
-zAm<1nIUt Ip >

m

_2< n I UIm><oI Ulln> "e I 'L.
m

The determination of U requires the knowledge of the matrix elements
of the operator (3.33) . If we specify the nuclear states by means of the spi n

In and magnetic quantum number Mn , these matrix elements are expressibl e
by the reduced multipole matrix elements' (9) defined by

Im 2 In - 1
1 (E2) 11 In j=( - 1)Im-Mm

	

11m~clVln
<ImNImI~JJ2 (E2, 1a)I In Mn~ . (4.5 )

For the diagonalization it will be convenient to apply the (V.) approxi-

mation . In this approximation, the operator SE (t) dt (see Eq. (3 .36)) i s
-oo

diagonal in M, and one may write the matrix elements in the for m

1
< I.m I

	

E (t) dt I IBM > Zeff ( 19' ) emn åMM ' ,

where the (symmetric) matrix

	

is defined by

(4.4)

< Im

(4 .6)

* For the angular momentum algebra we use throughout this paper the notation of ref . 9 .
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1 9

	 / I. 2 In\ <Im II

	

(E 2) II In >
emMz=(-1)Im Mv5(2T°+1)

	

1V10 ~11/ <Io II

	

E2)11 Ili
.

	

(4 .7 )
-\

The number of states which have to be included in the matrix (4 .6) by

the diagonalization depends of course on the x's . Only those states which

are mutually connected. with large (collective) matrix elements must be taken

into account . One may furthermore classify these in different groups wher e
states within a group are strongly coupled, while states from two different

groups are weakly coupled . A group consists, e . g., of the states in a rotationa l

band, and the different groups are the bands belonging to different single -

particle states . For each group one must perform the diagonalization and
must here take into account a number of those states which are most directl y
coupled to the ground state . This number will depend on the z's and must

be determined so that the inclusion of still more states would not chang e
the result . The weak interplay between the groups can be treated by a per-
turbation calculation .

Since the energy of the projectile and the deflection angle enter only

through the common factor xeff (0), the diagonalization can be used for all
energies and all s's .

The deviation from the xeff 0) approximation is given by the expression
(3 .40) which we may write explicitly in the for m

aliMi = altml (xeff 0)) åMiMj

+i

	

J220)
~ ~

	

If ~ I2 I~

xeff \ ) J20()

	

-/ J /3 ( 1z 22 -Mi1VIff \- Mi 0 Mi
z ,u +

J22	
(~)\ 2

	

\ -7 3/ Iz 2 Iz ~[ Iz 2 I ' \- 1
M

1

j
xeff

	

41

	

zz ,

	

±
2 4 \- Mi ,u Mz ~- Mi 0 Mi~

ezz
z
'

/ Iz 2 If

	

Iz 2 If \- 1 a(0)

	

~

X `-Mz F.6Mf, ~-MiOMi~z'f
IzM2lxeff( ) )

where a (0) indicates the amplitude in the xeff (~) approximation. Since, in
this approximation, Mi = Mf, it is seen that,,while the first term only contri-

butes to this substate, the second term proportional to J22 0) / J20 0) only
contributes to the states with Mf = Mi + 2 . The third term proportional to

(J22 ( 9' ) / J20 0))2 contributes to both Mf = Mi and Mf = Mi + 4 . The exci-

tation probability will thus contain no terms linear in J 22 (~) / J20 0) . The
2 *

_1
Mi

al
(0) (

zf Z M.i xeff())

(4.8)
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terms quadratic in this quantity will arise partly from the square of the secon d
term, and partly from an interference between the first and third term .

One may also avoid the z (û) approximation and the expansion (4 .8)
by directly diagonalizing the matrix of the complete Hamiltonian (3 .35) .
This matrix is no more diagonal in the magnetic quantum number M an d
is essentially different for different angles so that the diagonalization wil l
have to be performed for all angles .

For not too large values of z ('d') it may be advantageous to use the per-

turbation expansion to higher order instead of the diagonalization method .
The power series expansion of (3 .11) leads to the following expression for
the excitation amplitude :

-~ -)_g (I) a r

an = <In MI e

/

-~

	

I Io M>

_ åno - i x (~) Q o 21 x(q9 ) 2Z enr oo
r

+' 09)
3~_M_M_M ,

3 !

This expansion can also be useful for the discussion of small changes i n
the matrix elements, e . g., from a rotational model .

B. Examples

In this section, we shall consider some examples of the methods dis -
cussed above. They will mainly be given in order to illustrate how man y
levels one has to take into account in the diagonalization method, and se-
condly to illustrate the accuracy of the perturbation expansion and the z (~)
approximation. For the sake of comparison with the exact treatment (se e
Section 5), we shall use the matrix elements characteristic of a rotational
band .

For a pure rotational band, one may express the reduced matrix ele-
ments entering in (4 .7) by means of the constant intrinsic quadrupole mo-
ment Q 0. One find s

<Im II ~(K 2)II In> =
V 167r (

1)zm-x (2Im, +1)'Is (2In + 1) 'l'

/ Im 2ln)

`-K0K
e Qo ,

rs

(4 .9 )

(4 .10)
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2 1

where K is the (constant) projection of the total angular momentum on th e
nuclear symmetry axis . We shall consider only the case of an even-even
nucleus with ground state spin Io = K = O . In this case, the matrix emn (see
Eq. (4.7)) takes the form

I. 2 z

omn = 1~5 (2 I. +1)'I ' (2 In + 1)'!'
m I.

	

(4 .11 )
0 0 0

We shall now successively take more and more states into account . If
we include only the ground state and the first excited state Il = 2, we have
to diagonalize the matrix

JO

	

1

emn

	

1 2 V5

	

(4.12)

7

The eigenvalues of this matrix are

~o = Jr	
73
	 1/6 and ~ l =

1/-

	

(4.13)

The unitary matrix which diagonalizes (4 .12) is then found to be

<Inl Uln>=l

t

According to (4 .4) we thus obtain the result

. `75 (~) r

	

3 6
= e

	

Ilcos	 7-x(O) + i

	

71/6 -zx ~~)

	

7

=

	

e

	

77
/

6

	

V5F3U 6

YY

	

7a l
- 36

	

+	 36e

z 1

i 7

	

~c~)

	

36
= 86 e

	

sin	 ~ z (~) .

1! 18+V30
6

V18- V30

	

1/1 8 --1/30
6

	

6

1/18-v30

6
(4.14)

18+(/30 ix(O) 1/5
73 18-1/30 -i x(~9~)Vs

	~3 0s
ao =	 36	 e

	

+	 36	 e

54
5 sin3

7

6x(~),

(4.15)
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The excitation probability P2 = I a l 1 2 is then

49 2 3 V6
P2 = 54 sin -	 7 y (9) . (4.16)

This quantity and the probability that the nucleus is left in the ground state
Po = I a0 12 = 1-P2 are illustrated in Fig . 2 as a function of xO) .

In Fig. 3 and Fig. 4 are shown the extensions of the above calculatio n

to include two and four excited states in the rotational band . The matri x
o„zn , in the latter case, is explicitly given by

0

	

1 .0000

	

0

	

0

	

0
1 .0000

	

0 .6389

	

0 .8571

	

0

	

0

en

	

0

	

0 .8571

	

0 .5808

	

0 .8457

	

0

	

(4 .17)

0

	

0

	

0 .8457

	

0 .5692

	

0 .842 3

0

	

0

	

0

	

0 .8423

	

0 .5649

In the case that one includes only two of the excited states, one finds the
eigenvalues

Ao = -0 .9270, A l = 0 .3484

	

and

	

A = 1 .7984 (4 .18)

and the matrix U is then

- 0 .6006

	

0 .4139 10 .6840
<m l U ln> = -0 .6341 - 0 .2093

	

0 .7444 (4 .19)

0 .3605 0 .7717

	

0 .5240 J

The final amplitudes on the three states are thus, according to (4 .4) ,

ao = 0.4679 ez° .9270x
+ 0 .3608 é-io .3484x

+ 0 .1713 é-i1
.7984 x

a l = - 0 .4338 e10 .9270z +0 .1257 c:-io .34s4z +0 .3081 ø-î1 .7984y

	

(4 .20)

a 2 = 0.2466 eî °
.927o y, -0 .4635 e°3484 x + 0 .2169 é å 1 .7984 C

Similarly, one finds for the complete matrix (4 .17) the eigenvalues

Ao =-1 .043 7
A l = -0 .4880

A 2 = 0 .4302

A3 = 1 .3920

A4 = 2 .0633

4 .21 )

and the matrix U
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0 .5436 -0.5189 0 .4681 -0.3866 0 .2582
-0 .5674 0.2532 0 .2014 -0 .5381 0.5328

<In I UI n> = 0 .4795 0.2725 -0 .5951 -0 .0218 0.584 1
-0 .3461 -0.6010 -0 .0981 0 .5245 0.4840

0 .1812 0.4808 0 .6137 0 .5342 0.2721

2 3

(4.22)

2

	

3 X
Fig . 2 . The result of the two-state calculation for a rotational band on a 0 + ground state . Th e
probability for the excitation in the 2+ state, P 2 , and the probability for no excitation, P p ,
are given as functions of yo_).2 (sy) and as a function of the parameter q (0) characteristic of th e
rotational model (sec Eq . (5 .11)) . The broken curve shows the result of the first order perturbatio n

calculation.

Figs . 2, 3, and 4 show a very general feature of the multiple excitatio n
process . The excitation probability for a definite state has a maximum as
a function of x. Where this maximum is reached depends on how directl y
the state is connected with the ground state . The more intermediate states
that have to be passed, the higher is the value of x for which the maximum
is attained . For the rotational band on the 0+ ground state, the 2 + state i s
maximally excited for x 1, the 4+ for 2, the 6+ for 3, etc. The
heights of the maxima decrease as one passes to higher excited states, partly
because a small tail is left in the excitation probability of the lower states .
If the band is broken off as in the above calculation, the maximum in th e
excitation of the last state is much higher than that of any of the others .

A comparison of the curves shows that the deletion of higher state s
practically does not change the excitation probability of the lower states .
This is true at least as long as the last state included is not strongly excited .
In Fig . 2, the curve for Po is thus essentially correct until x = 0 .8 . In Fig. 3 ,
the curves for Po and P2 are similarly correct until x = 1 .5 and, in Fig. 4 ,
one expects Po, P2 , P4 , and P6 to be correct until x = 3 .
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3 x
Fig . 3 . The result of the three-state calculation for a rotational band on a 0 + ground state.

The excitation probability in the 2 + and 4 + states, P, and P 4 , and the probability for no exci -
tation, Po, are given as a function of zo_>2 0) and as a function of the parameter q (9) character -

istic of a rotational model (see Eq . (5 .11)) . The broken curves show the result of the second order
perturbation calculation .

It is interesting to compare the above results with the perturbation cal-

culation. According to the equation (4 .9) one finds

ao = 1

	

-0 .5000 x 0 ) 2 + i 0 .1065 x (~9) 3 + 0.0893 x 09) 4 -i 0 .0242 x 0)5
-0.0092 x (0) 6

ai = -i (0)-0 .3195 x 0) 2 + i 0.3571 x (~) 3 + 0.1210 x 0) 4 -i 0 .0551 x 0)5
(12 =

	

-0.4286 x (~)2 + i 0 .1742 x 0)3 + 0 .1274 0)4

+ i 0.1208 x 09) 3

The power expansion in x of the excitation probabilities contains (sinc e
- 0) only even powers of x . It is noted that, e . g., a third order perturbation

calculation leads to the correct answer for P 6 to terms of the order of x s
while P2 and P4 are correct only to terms of the order of x4 , and Po only
to terms of the order of z2 .

In the comparison of the perturbation expansion with the more exac t
treatment given above, we have calculated the excitation probabilities t o

second, fourth, and sixth order . In Fig . 2 is shown the calculation to secon d
order (first order perturbation) . This gives a good approximation only u p

to x 0 .4. In Fig. 3 is shown the calculation to fourth order in x . This i s

good up to x0 .7 . Similarly, the calculation to sixth order in x shown on
Fig. 4 is seen to be correct only up to x = 1 .0. It thus seems that the pertur -
bation expansion only offers a poor approximation for large values of x .

The accuracy of the x (s9) approximation which we have used can be

(4 .23)
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2 5

Z

	

X
Fig . 4 . The result of the five-state calculation for a rotational band on a 0 + ground state . Th e
excitation probabilities for the 2 + , 4+ , 6+ and 8+ states P s , P4 , Po and Ps, and the probability
for no excitation, P o , are given as a function of z0__2 (0) and as a function of the parameter q (a )
characteristic of a rotational model (see )q. (5 .11)) . The broken curves show the result of th e

third order perturbation calculation .

evaluated by means of Eq . (4.8) . We shall only do the explicit calculatio n
in the case of the two-state model (4 .12) to (4 .16) . One finds directly fro m
(4 .8) the following expressions to second order in J22 ( 79 ) / J20 0) :

J22 (~)

	

Vp

	

~
122 = i xeff (0) J20 ( 9') e

3cos 3 ~
/

6 xeff (~) + i 5 sin 3 	
7
~6 xeff 09)l

J220) \2 -j 7 ieff cri

	

3	 3	 6

	

5	v	 v6 3 1/6tso - al - (Zeff (~)
J2o (~

	

--
7

cos 7 zeff (~) - i	 14 sin	 ieff

	

(4 .24)

°l _

	

J22 ((';,)))2e-

b7
Cree (~> 3

	

3

	

V30

	

3 y6
too = ao

	

(xeff (î9) J2o

	

cos	 7V'	 ieff (7~) +	 4sin 7 ieff (~)~ •

In these expressions, a l"l are the amplitudes in the ieff @) approximation
(4.15) .

From (4 .24) one obtains the excitation probabilit y

Pz
(19, x) - 49

sin	
54

	

2 3 71/6
Yeff

	

+ (Zeff

	

J

J
2

zo (0 )1%))

2
[_65 + 163 cos2 3 V6

	

7 ieff (~')]

	

(4 .25)

One observes that the correction term is an oscillating function of Zeff 09)
which has its maxima where Pz°l shows its minima . The tendency of the
correction is thus to fill out the minima of the excitation probability .

To illustrate the magnitude of the correction we have evaluated (4 .25)
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TABLE 3 .

Comparison between the correct excitation probability P 2 (a9,, x) and the x (4) ap-
proximation in the two-state model for x = 3 . The quantity xeff() and the proba-
bility in the xeff (~) approximation P2 (xeff (0 )) as well as 0) and the correspond-
ing probability P 2 (x (0)) are listed for different angles together with P22 (el, x) .

180°

	

150°

	

120°

	

90° 60° 30°

P 2 (0, x)	 0 .000 0 .031 0.396

	

0 .880 0 .578 0 .072

xeff(~)	 3 .000 2 .820 2.315

	

1 .698 0 .859 0 .25 6

P 2 (xeff (~))	 0 .000 0 .030 0 .387

	

0 .868 0 .558 0 .064

x(~)	 3 .000 2 .820 2 .318

	

1 .709 0 .880 0 .27 2

P 2 (x (D.))	 0 .000 0 .030 0 .384

	

0 .863 0 .578 0 .072

numerically in the case of x = 3, and the result is given in Table 3 . One

observes here that the maximum correction (- 0 .020) appears for angle s
between 60 and 90 degrees . This is connected with the fact that J 22 (a) i s
maximal in this range . In the two last rows we have made a comparison wit h

the approximation where x (P) is used instead of xeff (P) . It is seen that thi s

approximation reproduces the correct excitation probability for small angle s

until the angle which gives the maximum probability . On the other side of
the maximum, the x 0) approximation is no improvement over the Zeff

approximation .

C. First Order Expansion in e

In this paragraph, we shall consider the first order corrections in C to
the results which were derived earlier in this section .

In Section 3A, we obtained the following expression for the amplitude

to first order in e :
a,L = a n ( =0)

1

	

-~ 7
eE (t) (II

	

~E (t' ) d t'

	

Çt~E (t) dt'

	

(+ 2 < n ~ e

	

dl l eh .,-

	

[~ o ,

	

( t )) e

	

0 > .

	

Jc- .,,

We shall here make the simplifying assumption that P = n . One may us e

the result which we shall obtain, for other angles also, by the usual sub-
stitution x xeff 0). As was discussed earlier, the approximation is her e

less accurate than it was in the case of the sudden approximation .

The simplification by considering only terms with fti = 0 in ,N(f) is that

(4 .26)
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the unitary matrix U (see Eqs . (4 .2) and (4.3)) diagonalizes not only
t

1
E (t) dt, but also 5 E (t) dt and S)E (t) . We thus hav e

t

< n I Ut
1h ,,_ ~

	

/

	

`~E (t) dt U I g> _ ~ g 8gn
~

+ h(t))

	

(4.27)

<nI Ut ~ .S.;2E( t) U I g > = 2q ågng( t),

	

(4.28)

where

h ( t ) ° (SE 2, o

	

0))-1 Ç S20 ( t) dl

	

(4 .29)
. o

and

g(t)=(SE2,o0,0)) 1S20( t ) .

	

(4.30 )

The functions SE 2, o and :5-2 , 0 are defined in Eqs . (3.23) and (3 .24), and one
sees that h (t) is an odd function while g (t) is an even function of t .

By introducing an appropriate number of factors UU t in (4 .26) one may
write it in the form

an = an(=0 )
i 1 0,1+imJ

-iX<n1 UIt>e 2

	

H(%1 -Am)Elm < rnI Ut 10> ,
i m

where the E matrix is the transformed energy matrix

a
U t`Jlm hU ( ~ 0 U )lm

=yo
I Ut IP>

	

<PI Ulrn> .
p

-1 5

Fig . 5 . The function H ()L) . This function is of importance for the evaluation of the deviatio n
from the sudden approximation in the diagonalization method (see Eq. (4 .31)) .

and

(4.31 )

(4 .32)
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Fig . 6 . The excitation probability P 2 (,7r, A) for backward scattering in the two-state model i s
shown as a function of y for = 0 and a' = 0.05.

Since a constant energy will give no contribution, one may replace th e

energies in (4 .32) by the 's corresponding to the excitation of the p's state

from the ground state, i . e .,
a(Ez,-Eo)

(4 .33)

One thus finds

~"-lm =L ep< p l U I l > X < p i U l m % . (4.34)
p

The function H (A) which appears in (4 .32) is defined b y

H A( ) _

	

A Çdi t g (t) sin (Ah (t)) . (4.35)
a

One observes that H (A) is a symmetric function of A, i . e . ,

H(-A)=H(A) (4 .36)

and that the E matrix is symmetric also in the indices 1 and m .

The function H (A) has been evaluated numerically and is given in Fig . 5 .

For small values of A it is quadratic in A, as may be seen from (4 .35), and

one finds

H(A) 0 .9172 A2

	

(2« 1) .

	

(4.37)

For larger values of A, H (A) is an oscillating function whose amplitude

increases slowly . From formula (4.31) one may thus draw the general con-

clusion that the first order correction in is only a slowly increasing (and

oscillating) function of z .

As an illustration we shall apply the result (4 .31) to the two-state model .

4 X
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Using the Eqs . (4.12) to (4.16) one finds the following expression for th e

excitation probability to first order in e :

~

	

49

	

2 3 1/6

	

491/30

	

(31/-6 ) (6V6 )
l 2 = 54 sin

7 x- 97 2
	 sin	 7	 x H7	 x .

This result is illustrated in Fig . 6, where the excitation probability for e =-

0 .05 is compared to the earlier calculated excitation probability for C = O .

5 . Excitation of Rotational State s

In this section we shall treat the excitation of a rotational band . It wil l
be shown that, in the sudden approximation, one can obtain a closed ex -

pression for the cross section including all (infinitely many) states in th e
band . The problem is analogous to the classical problem of a charged
ellipsoid which is set in motion by a fast projectile . At the end of the section
we shall make some comments on this classical treatment .

A. Sudden Approximatio n

We shall assume that we have a pure rotational band and that only thi s
hand is involved in the excitation process . The Schrödinger equation (3 .1 )

for the rotational motion may then be written in the for m

zh~=Hoy +I-i'(t)y~ ,

where y- only depends on the Eulerian angles a and ß describing the orien-

tation of the nuclear symmetry axis . The complete wave function yp is con-

nected with y- through the equatio n

E int. t -y°e jt

	

(a'ß,t)x(x) ,

where ti (x' ) is the intrinsic wave function and Eintr is the intrinsic energy .
The free Hamiltonian for the rotation Ho is given by

h2 a 2

	

a

	

1

	

0 2
Ho

	

2 ÿ
aß2 + cotß aß

+ sin2 ß aa2 }'

(4.38 )

(5 .1 )

(5.2)

(5 .3)
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where is the moment of inertia . Since the quadrupole operator can b e

expressed in terms of the intrinsic quadrupole moment Qo in the followin g
way :

(E 2„u) = Qo Y2 fc (ß, a) ,

	

(5 .4 )

the interaction Hamiltonian H ' (t) is given by

H'
(t) = 2 at51~2Qo

1-' S2 y (t) Y2~(ß, a) .

The evaluation of the excitation amplitudes in the sudden approximatio n

has now been reduced to the calculation of matrix elements of a known
operator . We shall specify the eigenstates of Ho by means of the spin I, the
magnetic quantum number M, . and the (constant) projection K of the tota l
angular momentum on the nuclear symmetry axis . The wave function may

then be written

1 ~
/2I + 1 I /

y~IMK - V 47r DMK \a, ß, ~) ,

where DMK is the rotation matrix . The excitation amplitude on the state
specified by If , Mf, and K is then, according to (3 .11), (3 .24), and (3 .27) ,

/(2Ii +1)(2If +1)(a2z

	

r
aIf Mf 1

	

(420 2
	 \ôa d ß sin ß (Dnif K ( a, ß, 0))*

Dr~. ~ a

	

0 ex
j z 2acZ1eQo

	

Y ~ (7r 0, J~ (0) l,~µ (ß a)
1

Mx( ß) pt 5 fina2

	

2

	

2 c

We shall now first show that the excitation of any rotational band with

ground state spin Ii and final state spin If can be expressed by means of the

amplitudes for the excitation of a band with ground state spin 0 . This fol -
lows from (5 .7) by expanding the product of the two D-functions on D -

functions . The amplitude (5 .7) may then be expressed in the following way :

arfMf=(21i+1)'fs(2 If+l)l~a(2I +1) (- 1)Mi- K

If Ii

	

I

	

If Ii I

X ( - Mf 11Ii Mf -Mi ÇKKO~
~z,Mf-MZ(2%,R) ,

where we have introduced the functions

(5 .5 )

(5 .6 )

(5 .7 )

(5 .8)
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AIM(7i, q) = [4rc(2I+ 1)]-'h

((~

	

i 85
qEY 2,u (Z , 0) J2('a) Y*2~ (ß, CO

x

2
dx

z
a1dßsinßYlM (ß,a)e

	

~
o

	

..11 0
One observes that these functions are proportional to the amplitudes on th e

state I, M in a rotational band with ground state spin 0, i . e . ,

1
A IM

	

q) _

	

- aim (I2 = Mi = 0) .

	

(5 .10 )
V2 I + 1

The quantity q is defined by

5 .9)

Zi eQo

q 4 h va 2 '
(5 .11 )

This quantity is independent of the spins in the rotational band and play s
the role of a common x . It is connected with the x corresponding to the first
excitation in an even-even nucleus with the same intrinsic quadrupol e

moment by the relation

45
q = V 16 xo,2• (5 .12 )

The calculation of the excitation cross sections of any rotational ban d
is then reduced to the determination of the functions AI, M (0, q) . From
Eq. (5 .8) one obtains, e . g., according to (3 .42), the following formula fo r

the excitation probability of the state of spin If :

I I. 1 2
PIfIz = (2If + 1)

	

(2 I + 1)

	

I
Alm

	

q) 1 2 .

	

(5 .13 )
\-K IL O

The functions AIM can most easily be evaluated in the z(V) approxi-
mation where the terms with 1 y = 2 in the exponential function ar e
neglected . The integration over a in (5 .9) shows then that AI, M vanishe s
except for M = 0, where one finds

a 3 geff (~) ` 1

	

-2 igeff (~) x'
Alo

	

q ) Al o (a, g eff (e)) = e

	

S dx PI (x) e

	

(5 .14)
o

We have here introduced a quantit y

gefß 0) -4 2 12('0') q (5 .15 )

which corresponds to the xerf(D) introduced in paragraph 3C . The function
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P1 (x) is the Legendre polynomial of order I. The integral (5 .14) can be
expressed in terms of a confluent hypergeometric function 1F1 with the
following result (see ref. 10, Vol. I, p . 171) :

The confluent hypergeometric function which appears here can always b e
expressed by means of Fresnel integrals . For I = 0,the expression (5 .16)
thus takes the simple form (see ref. 10, Vol. I, p . 266)

2

4 q
e2 3 q [C (2 q) i S (2 q)],

	

(5 .17 )

where C (x) and S (x) are the Fresnel integrals which are tabulated in refs .
12 and 13.

The functions A10 for higher values of I are most easily obtained by mean s
of recursion formulae . The existence of such relations is guaranteed by the
theorem that three confluent hypergeometric functions with parameters dif-

fering only by integer numbers are linear dependent . Accordingly, one find s
the following recursion formula for the functions A 70 :

(I + 2)(2I- 1)AZ_F2,0 (ac,q)= (2I-1)(247~g1)(27
+3)+2I +1~A10(n,q)

	

0 .1 8J

	

( r

	

)
+(I-1) (2I+3)4_2,0 (a, q) .

For the application of this formula one needs two consecutive A's . Instead
of A 2 0 it is practical to use the non-physical function A_ 2 0 which, accord-
ing to (5 .16), is a simple exponential function

3q

	

2

	

(1+ 2 2I+ 3
(- 2 iq) 	 	 2	 2 -, 2 iq

J
.

	

(5 .16)

Aoo ( 7c , q) =

A-2, o (2i, q) =

. 4
1

	

-t 3 4
- 4ig e (5 .19)

The functions Al 0 (7r, q) have been computed numerically in this way .
The result is given in Table 4 .

The excitation probabilities in a rotational band with ground state spi n
0 are easily found from these numbers . They are tabulated in Table 5 an d
the result is shown in Fig . 7 .
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TABLE 4 .
The functions AI 0 (vt, q) for backward scattering . The real part, Re Al, 0 , and the
imaginary part, lm AI 0, are tabulated as functions of the parameter q for spin

values up to 22 .

q Re A O 0 Im .9 00,0 Re A2 ,0 Im A 2 ,o Re A. 4 .0 Im A 4 , o

0 .0 1 .00000 0 .00000 0 .00000 0 .00000 0 .00000 0 .00000
0 .5 0 .95625 0 .00276 -0.01228 -0.12916 -0 .01236 0 .00150
1 .0 0 .83311 0 .02081 -0.04427 -0.23461 -0.04567 0 .0112 3
1 .5 0 .65268 0 .06336 -0.08317 -0.29888 -0.08980 0 .0337 2
2 .0 0 .44537 0 .12960 -0.11265 -0.31506 -0.13173 0 .0675 4
2 .5 0 .24234 0 .20825 -0.11852 -0.28773 -0.15978 0 .1.053 0
3 .0 0 .06838 0 .28073 -0 .09370 -0.23062 -0.16731 0 .1359 9
3 .5 -0.06252 0 .32687 -0 .04075 -0.16163 -0.15447 0 .1487 9
4 .0 -0 .14819 0 .33131 0 .02890 -0.09722 -0.12756 0 .1369 5
4 .5 -0 .19556 0 .28834 0 .09852 -0.04786 -0.09629 0 .1003 6
5 .0 -0 .21596 0 .20372 0 .15132 -0.01611 -0.06998 0 .0459 2
5 .5 -0.22000 0 .09300 0 .17549 -0.00242 -0.05425 -0.0145 4
6 .0 -0.21388 -0.02302 0 .16734 -0.01578 -0.04929 -0.0678 6
6 .5 -0.19840 -0.12396 0 .13171 0 .03154 -0.05024 -0.1035 0
7 .0 -0.17046 -0.19497 0 .07968 0 .05327 -0.04959 -0.1164 4
7 .5 -0.12642 -0.22953 0 .02453 0 .07913 -0.04044 -0.1080 7
8 .0 -0.06545 -0.22954 -0.02240 0 .10270 -0.01943 -0.0849 8
8 .5 0 .00816 -0.20297 -0.05466 0 .11574 0 .01177 -0.0561 0
9 .0 0 .08504 -0.16012 -0.07155 0 .11168 0.04694 -0.0294 8
9 .5 0 .15274 -0.11018 -0.07677 0 .08834 0.07745 -0.0097 9

10 .0 0 .1.9925 -0.05912 -0.07582 0 .04909 0.09538 0 .00255

(to be continued )

It is interesting to compare these curves with the excitation probabilitie s
which were obtained for the same situation by means of the diagonalizatio n
method . It is seen that the excitation curves for the five-state model (se e
Fig. 4) are in good agreement with the exact calculation for y values up to 3 .
It is interesting that also the secondary maxima of the excitation curves ar e
present in the calculation with infinitely many levels . These secondar y
maxima which for P 2 appear for q = 5 .5 and q = 9 must be understood a s
rudiments of the secondary maxima in the calculation with a finite numbe r
of states . In the two-state calculation the secondary maxima of P . appear
at q = 7 .5, 12 .5, etc. When more states are introduced, these maxima ar e
decreased (and shifted) due to the possibility of exciting the higher state s
which are introduced . One must expect that the secondary maxima ar e
rather characteristic of the multiple Coulomb excitation of a pure rotationa l

Mat . Fys . Medd. Dan .Vid . Selsk . 32, no. S .
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TABLE 4 (continued) .

q Re Ag o Im Ag 0 Re .9 8,0 Im A 8 0 Re l Im A 1o, o

0 .0 0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 0 .00000
0.5 0 .00012 0 .00087 0 .00006 -0.0000 3
1 .0 0 .00176 0 .00647 0 .00074 -0.00020
1 .5 0 .00813 0 .01934 0 .00324 -0.00143 -0.00014 -0.0004 5
2 .0 0 .02255 0 .03862 0 .00872 -0.00546 -0 .00104 -0.0016 0
2 .5 0 .04638 0 .06013 0 .01724 -0.01443 -0.00352 -0.0040 0
3 .0 0 .07751 0 .07799 0 .02728 -0.03002 -0 .00899 -0.0076 7
3 .5 0 .11025 0 .08694 0 .03601 -0.05229 -0.01881 -0.0119 2
4 .0 0 .13660 0 .08451 0 .04021 -0.07890 -0.03361 -0.0151 8
4 .5 0 .14878 0 .07217 0.03764 -0.10527 -0.05272 -0.0154 9
5 .0 0 .14179 0 .05491 0 .02823 -0.12555 -0 .07385 -0.0111 3
5 .5 0 .11535 0 .03947 0 .01454 -0.13437 -0.09335 -0.0015 7
6 .0 0 .07426 0 .03174 0 .00120 -0.12857 -0.10705 0 .01195
6 .5 0 .02704 0 .03448 -0.00650 -0.10847 -0.11151 0 .0263 5
7.0 -0.01664 0 .04613 -0 .00457 -0.07794 -0.10518 0 .0373 3
7 .5 -0 .04883 0 .06126 0 .00809 -0.04338 -0.08909 0 .0406 9
8 .0 -0.06558 0 .07250 0.02898 -0.01177 -0.06674 0 .0337 0
8 .5 -0.06765 0 .07320 0 .05252 0 .01150 -0.04311 -0.0163 2
9 .0 -0.05967 0 .05992 0 .07176 0 .02413 -0.02313 -0.0085 2
9 .5 -0.04797 0 .03368 0 .08053 0 .02740 -0.01011 -0.0354 8

10 .0 -0.03808 -0.00022 0 .07552 0 .02535 -0.00474 -0.05831

(to be continued )

band, and sensitive to any deviation . The maxima are also, as we shall see ,

less pronounced for finite , and the deviation from the q (0) approxima-
tion will also tend to wash out the oscillations .

The deviation from the q (0) approximation can be treated by means o f
the expansion discussed in paragraph 3 C . From (3 .40), (3 .34), (5 .4), and
(5 .12) one finds the amplitude arm to second order in J22( O)/J20(1)

aIM - aÎM

r/ 315 g eff (9)
J20 ('is')

	

< Bit Y24. (ß, «) ~ Iz 117z > ai°2Mz

IzMzµ=f 2

z
- - 15 g

J20 (O))

	

(I
II

	

a ) Yåµ' (ß, a) f Iz M z > aiZMz

I Mzct, µ'=t 2

where a (° ) are the amplitudes in the geff (0) approximation .

The formula (5.20) for the special case of Ii = Mi = 0 may, accordin g

16 r

(5 .20)
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TABLE 4 (continued) .

g Re A 12,0 Im A 12,o Re A 14,0 Im A14 , 0 Re A 16,0 Im A 16, 0

0 . 0

0 .5
1 . 0

1 .5
2 .0 -0.00025 0 .0001 3
2 .5 -0.00074 0 .00072

3 .0 -0 .00180 0 .00220 0 .00040 0 .0003 2

3 .5 -0 .00330 0 .00551 0 .00137 0 .00079 0 .00018 0.0003 1
4 .0 -0.00478 0 .01151 0 .00331 0 .00130 0 .00033 -0.0008 0
4 .5 -0.00531 0 .02089 0 .00691 0 .00157 0 .00041 -0.0019 7
5 .0 -0.00358 0 .03361 0 .01263 0 .00096 0 .00022 -0.0040 6
5 .5 0 .00172 0 .04865 0 .02065 -0 .00145 -0.00071 -0.00746
6 .0 0 .01128 0 .06390 0 .03052 -0.00667 -0.00305 -0.01228
6 .5 0 .02462 0 .07658 0 .04106 -0.01541 -0.00758 -0.0183 3
7 .0 0 .03983 0 .08387 0 .05050 -0.02764 -0.01492 -0.0249 6
7 .5 0 .05373 0 .08389 0 .05682 -0.04231 -0.02530 -0.0310 0
8 .0 0 .06255 0 .07637 0 .05836 -0.05723 -0.03822 -0.0350 8
8 .5 0 .06303 0.06298 0 .05444 -0.06944 -0.05230 -0.0358 7
9.0 0 .05349 0 .04698 0 .04574 -0.07585 -0.06541 -0.0326 6
9.5 0 .03460 0 .03232 0 .03437 -0.07411 -0.07500 -0.0256 4

10.0 0 .00945 0 .02241 0 .02338 -0.06344 -0.07872 -0.01619

(to be continued )

to (5 .10), be interpreted as an expansion of the function AI M . The speciali-
zation Ii M. = 0 may thus be done without any loss of generality, sinc e
the amplitudes for other ground state spins can be computed by means o f
(5 .8). Introducing this simplification we obtai n

2
<In

AIO

	

q) ° AIO(n , geff 0)) --3
8

(qe" (9)
J20 (~%))

rz r z

(I 2 Iz /I

	

2 Iz\ IZ 2 Iz

	

Iz 2 I .

xI1,0 0 0! \0 -2 2/(0 0 0~(-2 2 0

8
3

geff (0)
J22
(I + 1 )

J20 (15') ~~ z, (2

(5 .21 )

Ar,f 20, q) =

(5 .22)

(0z 0 0)(0 - 2 2/

Iz

A IzO (yc, q eff 0))
3 *
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TABLE 4 (continued) .

q Re A 18 0 Im A18 0 Re A 20 , o Im A 20 0 Re A 22,0 Im A 22, 0

0 . 0
0 . 5
1 . 0
1 . 5

2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 .5 -0.00051 -0.0000 9
5 .0 -0.00114 -0.00004 0 .00000 0 .0002 7
5 .5 -0.00236 0 .00027 0 .00009 0 .0006 9
6 .0 -0.00429 0 .00116 0 .00037 0 .0013 3
6 .5 -0.00706 0 .00312 0 .00111 0 .00240 0 .00071 -0.0003 4
7 .0 -0.01056 0 .00672 0 .00261 0 .00392 0 .00130 -0.0009 0
7 .5 -0.01435 0 .01248 0 .00530 0 .00580 0 .00209 -0.0019 9
8 .0 -0.01768 0 .02072 0 .00958 0 .00774 0 .00301 -0.0038 9
8 .5 -0.01958 0 .03125 0 .01575 0 .00922 0 .00384 -0.0069 2
9 .0 -0.01904 0 .04330 0 .02382 0 .00952 0 .00420 -0.0113 3
9 .5 -0.01540 0 .05540 0 .03334 0 .00788 0 .00354 -0.0171 8

10 .0 -0.00863 0 .06564 0 .04338 0 .00371 0 .00128 -0.02423

and.

2209)
Ar, ± 4 (0, q) = -

4
g eff (19.) J20 (~))

	

(2 Iz + 1) (2 Iz + 1)

Iz l z

/I 2 12 (I 2 Iz\ lIz 2 Iz) (Iz 2 Iz
X

\0 0 0/ 4-2-21\0 0 0\2-20/
AZz0

(76'
g eff

0)
)

In the excitation probabilities (see Eq . (5 .13)) only the squares of the AI, m
appear and to second order in J22 (Zi')/J20 ('a) only AI o and AI 2 contribute .
The seamplitudes have been calculated numerically for 1-0,2, and 4 by
means of the known functions Al, o ( 7r , g eff (O)) . The probability for the ex -
citation of the states in an even-even nucleus can be writte n

pI = PI°'(qeff(9)) + `
\IJ2

220(~) l

	 (~)111a
I (geff(~)),

	

(5 .24))
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6

	

7

	

6

	

9

	

10 q

Fig . 7 . The multiple Coulomb excitation of a pure rotational band in an even-even nucleus . The
excitation probability PI of the state with spin I is given as a function of the parameter q fo r
backward scattering . The excitation probabilities for other deflection angles and other groun d

state spins can also be inferred from these curves (see Sect . 5) .
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Fig . 8 . The coefficients 4 7 for the correction of the excitation probabilities in the
geff(0) approx-

imation. The coefficients d I (which are defined in Eq . (5 .24)) are plotted as functions of
gerf (i9 )

for the three lowest states I = 0, 2, and 4 in a rotational hand in an even-even nucleus .
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where PI°r are the probabilities given in Fig . 7 . The coefficients Al receive
a contribution, partly from AI, o partly from A1, 2 . The numerical result fo r
47 in the cases of I = 0,2, and 4 are given in Table 6 and are illustrated in
Fig. 8 .

It is seen that 4 1 is an oscillating function of geff (e), and a rough estimat e
shows that the correction may amount to about 0 .1, but usually it will b e
much smaller . If one compares the curves for 41 and PI , one sees that th e
tendency of the correction is to fill out the minima of Pr . The relative error
at the minima of PI might be rather considerable, as is shown on Fig . 9 .
The relative error in P2 is here plotted as a function of geff 0) for differen t
angles . The curves end at the value of geff(7i) where q reaches the value 10 .
The maxima on the curves appear as expected at the points where P2°r i s
minimal .

One sees also that for small angles the relative error is rather considerabl e
in the whole range of q . This discrepancy can, as was discussed in para -
graph 3 C, be removed by applying q 0) defined by

q
(
0

) = q 4 [(J2o \'+%))2 + 3 (J22 (7.5)) 2 ] l/ (5 .25 )

instead of geff (1i) . This approximation will lead to the correct result for angle s
where the perturbation calculation is applicable . In Fig. 10 we have plotte d
the relative error of this latter approximation . It is seen that for q (9) les s
than 2 one obtains a considerable improvement over the g eff (i) approxima-
tion (compare Fig . 9) . For q O larger than 2, the error is mostly larger tha n
the error of the geff (û) approximation, but it is here not very different fro m
this. As a net result the q 0) approximation is preferable .

In the case of a pure rotational band, one may calculate the excitatio n
amplitude for arbitrary angles directly from (5 .8) . This can be done in the
following way. We write the exponent in (5 .9) explicitly in the form

85 qX Y2u (72
, O J2/2 (0)Y2,(ß,

[J20 ()(1q

	

- 3 cos 2=

	

ß)+ 2 J22 (z~)sin 2 ßcos 2 a
1

I .

For the spherical harmonics we use the definitio n

YIM
(ß,

a) = _ (_ 1)nr (2I + 1) (I -M) !
iPM

	

4 (I +III)

	

(cos ß) e inl «

	

~c?

	

]

(5 .26)

(5 .27)
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The integration over a may then be expressed by means of a Bessel function
JM/2 of order M/2 with the following result" ) :

SI

	

(5 .28)
x dxP' (x) JM (-32 qJ22 (0) (1 - x2)) e i q J,0 0) 2a .

o

	

2

This formula applies to I and M even. For I or M odd, A l, m vanishes. One
observes furthermore the symmetry relation

Ar, _M ( s%', q) = Ar M

	

q) .

	

(5.29)

One may then proceed by using the following integral representation of the
Bessel function (sec ref . 10, Vol. II, p . 81)

Jn (J) _	
(8121

n

	

dte'yt (1 - 12 )n - .

	

(5 .30 )

P n+-
)Vn2

AIM 09, q ) = j'

	

- M)1 ei g
Jza <7i)

[(I + M)

1so°

ôq(s)

0 .3

0 .z

o_ t

Fig . 9 . The relative error of the qeff (~) approximation for the excitation of the 2 + rotationa l

state in an even-even nucleus . The error [P2 (d, q)-P2 (x, geff (0)]/P2 (z, q(d) is plotted a s
a function of geff (0) for different angles . The curves end at a value of geff (9) where q reache s

the value 10.

150° __ .~
to q m

03

02

0.1

Fig . 10 . The relative error of the q (0) approximation for the excitation of the 2 + rotationa l
state in an even-even nucleus . The error [P 2 (6, q) - P2 (x, q (P))]/P2 (7r, q (e)) is plotted as a
function of q (a) for different angles. The curves end at a value of q (I.9') where q reaches th e

value 10 .
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The integration over x can be done by expanding the exponential functio n
in power series in q [J2 0 (19)+LJ2,2 M] (see ref. 10, Vol . I, p. 172) . The
integration over t can finally be done when the powers of this quantity ar e
expanded according to the binomial formula . The result is a double serie s

/I-M+1\

	

I-M
(-1) 2

A

	

~
	 	 ! =

p
!	 2	

)
sIM (

,
g)

f(I +M )

	

(1- M) ! 2m +1 I ,(2I+ 3) (!11--

	

e-
i

e
+

	

ff

	 2 1

2 J

	

2 J

(I+M+ 2
I

~'

	

I -1V1

	

1Xi

	

7

	

M-1

	

2	 m	 )2n (2 igeff(~))m+ 2
b2n T

2
x~	

2I+3

	

1 M+2

	

ml

	

n !
m,n

2 )m

	

1 2 )n

	 J22 (1% )
b

	

2 J2o ('19') .

We have furthermore used the notatio n

a,n = a (a+ l) . . . . (a+m- 1) .

The formula (5 .31) holds for M 0 . The functions AIM for negative M are
determined by means of (5 .29) .

It is useful to perform the summation over M whereby (5 .31) may be
written in the form

(1+M) !	
~ zgeff(I 1V1)!] 2M +i (2I+3 I M+ 2

	

~

	

2 ) ( 2 )

	

M

	

~

	

b2 n

	

2
n
-I- M

X(- 2 igeff ('O'))2 (_W2 ~
!ÏI +2

az (geff 0))

	

2

n

	

~	 2	

~

n !

d2n
4(qeff

	

I -`u

	

fI +M+2 2I+3

	

/

X (dqefr (~))2

	

0))
2

iFi

	

2

	

,

	

2 , 2 igeff (6))

If one sets b = 0 the expressions (5 .31) and (5 .34) reduce to the simple re -
sult (5 .16) . The expression (5.34) is, similar to (5 .20), a systematic expansio n
in powers of J22 (m)/J20 (0) .

where

(5.32)

(5.33)

AIM ( 9', q) =
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B . First Order Correction in e

In paragraph 3 A it was outlined how one may calculate the deviatio n
of the excitation amplitudes from the sudden approximation . The result was
expressed in a power series in the 's which enter into the excitation process .
For rotational bands, one may define a common e in terms of the moment

of inertia in a similar way as, for such spectra, we defined a common x

in terms of the intrinsic quadrupole moment. We shall use the notatio n

3 ha
=

v
(5 .35)

where is the moment of inertia entering in (5 .3) . The quantity (5 .35) i s
identical to the corresponding to the excitation of the lowest rotationa l

state in an even-even nucleus .
The excitation amplitudes which were evaluated in the previous para -

graph are essentially complex numbers. The first order corrections mus t
also be expected to be complex, and it follows therefore that the excitatio n

probabilities have linear terms in e . This is in contrast to the first orde r
perturbation theory which is independent of to first order in this quantity .

To first order, the excitation amplitude an may be written in the form

an = a) + a (i )n

	

nto

	

n (5 .36)

where ag» is the amplitude (5 .7) in the sudden approximation . The first

order correction aV is, according to (3 .20), given by

S'H'(t)dt
(4,1) =<nle t

	

1

	

>
~

	

e
v

	

I-t' (t) dt

	

e S1H' (t') dt'

	

-

	

H ' (l') dt '

6 ~a <n
I e t ,) -~~

	

t [L 2 , H ' (Ole h -~

	

dt I 0 ) .
- ø

In this equation, H' (t) is given by (5 .5) and (5.11 )

H'
(t) _8~t

J

ua2q

	

S2y (t) nit (fl, 0C ) ,
tU

while Ho (see Eq. (5 .3)) has been expressed by means of and the angular

momentum operator L through

Ho = 6a L2 .

	

(5 .39)

(5 .37 )

(5.38)
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For the evaluation of (5 .37) we shall proceed in the following way : Firstly,

the differentiations of the operator L 2 are performed . Hereby the two exponen -

tial functions in > will cancel . The expression for 199 1 > will then b e

suitable for an expansion in terms of the eigenfunctions I ni> of Ho, and

the problem is reduced to the already performed calculation of matrix ele-

ments in the sudden approximation .
The result of the first step in this program can be written in the for m

s z

	

~.

Imi> - i
5

qf~Y I.,(ß, a)10 >

	

8n

	

(3Ÿ2~ 3

	

1 3Y2~ å

15 qf aß a-+ sin 2 ß ôa åa) 10 >

61 n2

	

3Y
2
~ 3Y2~ "

	

1 3Y
2
~ 3Y2

	

2

	

,tt .
+i- 75 q ~~fµµ"( åß d,8-+ sin 2 ß 3a 3 a

where the coefficients fit and ftv are defined by

f~=iv2 aÇtS2 (t) dt

fma" = v 3 a 3 S ç032y (t) t ~tS~ (t') dt' dt .

	

(5 .42)

From the symmetries of the , -S-2, m (t) (sec Eq. (3 .23)) one sees immediately
that fl = /L I is the only non-vanishing fu . The first two terms of (5 .40) also
appear in the first order perturbation treatment while the third, which i s
proportional to q2 , is characteristic of higher order excitations . The second
term arises from the initial motion of the rotator, and it disappears for th e
ground-state spin I = O .

For the evaluation of (5 .40) one has to use the properties of the eigen-
functions I 0 > which are given in terms of the D-function in (5 .6). We
note the following formula

3 D' 3Dr

	

1 3Dr 3DI "
2 3ß 3ß + sin 2 ß 3a 3a ]

= Dr L 2 (Dr) + Dr L2 (DI) - L2 (DI Dr)

= (I(I +1)+I'(I'+1)- L2)DIDr",

(5 .40)

(5 .41 )

and
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where we have suppressed the lower indices M and K on the D functions .

By means of this formula the problem of expanding I > in terms of I to
is reduced to the problem of expanding a product of D functions in term s
of D functions .

The result can be expressed by means of the functions AIM defined in
(5.9) in the following way :

-?
aÎfMt =- ~15~~

	

6,0) [1 + 6-I2. 2 + 1) 6
F -I- 1) +

II ' M [t = f 1
i

	

i
x(2Ii + 1) ' (2If + 162I+ 1) (2I' + 1 )

/2

	

\ /2 Ii I'\ / If

	

I'

	

I \ / If I' Il

X t-uM2• -M2•I \0 K KI \-Mf ,u - ilI
8
• 1 V II \- KK01

AIMC~,q)

+i8 q 2 e

	

(- 1) 7'1'4,0) (2 li +

	

(21f+ 1 ;2 (2 I+ 1) (21'+ 1 )
II 'Ml m

1 Ii

	

r

	

1 Ii 1'' If

	

I'

	

I

	

I~ r I
Alm C , q )

X -mMi m-Mi) 0 K-K (-Mfm-MiM)~ -K K 0

	

~

We have here introduced the notation

(5 .44)

fm('19) =(21 +1)
\

/2 2 1

000)
[12-1(l+1)]

	 t/2 2 1 )

\ltfti ,m f
Au

'
(5 .45)

for the tensors of rank 0,2, and 4 which can be built up of the fl,/1 ., given by

(5.42) .

The coefficients fi,O) and /10)(z9) which are necessary for the evaluatio n

of a t1> have been computed for a few angles and the result is given i n

Table 7 . We note the following property of the fm functions :

f-llm@@%) =

	

(5 .46)

The fm functions for odd values of m may be expressed by means of fl
and the functions J2,1,(19') defined by (3 .27) :

i- 3 V5
f1[3J220)+ J2o( .f 2 (ß)=

	

)] (5 .47)
281/n

f1 [2J20( ) - J22(~)] (5 .48)fiC9)=-i7~
.Tc

n M =

	

1
31

f1 J22 (19) . (5 .49)
V14
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Fig . 11 . The first order correction in for the excitation of a rotational band in an even-eve n
nucleus . The curves show the excitation probabilities of the states of spin 2 (P2) and of spin
4 (P4) and the probability that the nucleus stays in its ground state (P„) . The probabilities ar e

given as functions of q for backward scattering and for the cases = 0 and = 0 .05 .
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For backward scattering the only non-vanishing f-functions are fo, fô ,

and fô . This is a consequence of the fact that all f1 and of Eqs . (5 .41 )

and (5.42) vanish, except fo o
We shall here illustrate the first order correction in by considering th e

special case of backward scattering on an even-even nucleus . In this case ,
the only non-vanishing amplitude a (l) i s

alô=i85 g2e (2If+1)'fô(n)~(2I +1 )
I

l0 If 1 2 (2 I3 1 2 /4 If 12

	

(5 .50)

X \O 0 O) + \0 0 01 + 0 0 0~ }
Aro(~, q) .

We have here used that fg (az) = 5/7 fg (3r) and fô (7r) _ - 12/7 fg (a) which
follows from the definition (5 .45) . The excitation probabilities to first order
in may be written in the form

Pr (as, q) = Pr (e = 0) +111 (q) e .

	

(5 .51 )

The coefficient ~l r (q) has been evaluated numerically and is given in Tabl e

8 . It is seen that Al is an oscillating function of q which is of the order of
magnitude 1 . The corrections for $� 0 are thus not dominated by the facto r

q 2 in (5 .50) . The oscillations in Al follow the oscillations of Pr (e = 0) in

such a way that the first maximum of Pr is cut down, while the excitatio n
probability for larger values of q is increased . This increment is largest a t
the minima of Pr and the effect of e� 0 is thus essentially to smooth out the

whole excitation curve . This is clearly seen on Fig . 11 where the excitatio n

probabilities for I = 0, 2, and 4 and = 0 .05 are compared with the exci-
tation probabilities for = O .

For other deflection angles one may use the geff 0) approximation. One

must here substitute only the q in Aro (az, q) with geff (e) . Furthermore, th e
fg(a) should be replaced by f g (0) . As was discussed earlier, this approxi-

mation is much less accurate here than in the sudden approximation . An

indication of the accuracy can be obtained by comparing the limiting cas e
of (5 .50) for q « 1 with the second order perturbation calculation per -

formed in ref . 14 . This comparison shows that the approximation should

not be applied for angles less than 90 degrees .

The failure of the geff (d) approximation for e� O is due to the fact tha t

the relative importance of the different coefficients fm (9') in (5 .44) for angles
smaller than 90 degrees is completely different from the relative importance
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in the neighbourhood of 180 degrees where only foo is different from zero .

This means that one has to take into account also the amplitudes on the

states with magnetic quantum number .Il� 0 .
For � 0, one observes from (5 .44) that also the states with magnetic

quantum numbers which differ by an odd integer from the magnetic quan-

tum number of the ground state are populated. The amplitude on these

states will be proportional to f1 (9) and the excitation probability will thu s

only receive a contribution of the order 2 from such terms .

C. Numerical Results

In this paragraph we shall collect the numerical results which have bee n

obtained for the excitation of rotational states together with some formula e
which facilitate the application of these results to the experiments .

It is thus convenient to write the important parameters directly as func-

tions of the energy of the incident projectile in the laboratory system (se e
ref. 1, Chapter II C) . We shall here quote the expression for half the distanc e
of closest approach in a head-on collision

a= 0 .07199 1
+ A l Z1Z2

x 10-12 cm .
A 2, EMeV

(5 .52)

Here, Al , Zl and A2 , Z2 are the mass numbers and charges of projectile an d
target nucleus, respectively . The quantity EMeV is the bombarding energy
expressed in MeV .

The parameter e is similarly given b y

Zl Z2 Ai 4 EMev	
)3/2 '

12 .65 (EMeY -14E
' 2

	

2ev

where 4E' is connected with the energy difference E2 - El by the relation

4E' (1±)(E2E1).

	

(5 .54)

An expression for the parameter y (in the case 2 = 2) is found by insert -
ing (5 .52) in (2 .11), i . e .,

(5 .53)
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Al
i[B(E2,

'1'2)11' 2
(1 + A l/A2) 2 L1 72 41v

Y1 32 ° 14 .52

	

(5 .55 )

The reduced transition probability B (E 2) is here measured in units o f
e2 10-48 cm4 .

For the excitation of rotational states we have introduced two parameter s
which are related to X1_>2 and 1-+ 2 and are defined in terms of the nuclea r
moments, so that they are independent of the spin sequence in the rotationa l
bands. We have thus (see Eq . (5 .35)) defined a common $ in terms of th e
moment of inertia ç by means of (5 .53) wher e

l
4E'=(1+

A
-)

3
7„-)

	

.

	

(5 .56)
A2 tiS Me V

For an even-even nucleus this is identical with the 0 .__„ 2 for the excitation

of the lowest rotational state .

We have furthermore defined a quantity q by means of the intrinsic
quadrupole moment Q0 in the following way (sec Eq . (5 .11)) :

2

q=7.6241(1 +A1 /A 2 ) 2172

where Q0 is measured in units of e . 10-24 cm2. The quantity q is related to
the y for the excitation of the lowest state in an even-even nucleus by Eq .
(5 .12) .

The differential Coulomb excitation cross section is given by (3 .43 )
through the excitation probability PIf, I . , q, ) which is the probability

that the nucleus is excited from the ground state with spin I i into the stat e
with spin If when the projectile moves in an orbit with deflection angle 0
in the center of mass system .

The probabilities P as well as other quantities interesting for the experi-

ments can be obtained from the excitation amplitudes (see Eq . (3 .42)) . For
«(1 the amplitudes aIf Mf (z~, q, ) are easily obtainable from the func-

tions AIM q) (see Eq. (5 .8)). These functions can in turn be expresse d
by the functions AZ0 (ar, q) which are related to the amplitudes for the exci-
tation of rotational states in an even-even nucleus for = and = 0 b y

means of (5 .10) . These fundamental quantities have been calculated accord -

ing to the formulae given in paragraph 5 A, and the result is given i n

Table 4 .
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For other deflection angles, the functions A IM (t9, q) can be obtained

to a good approximation from those tabulated by means of Eqs . (5 .21) to

(5 .23) which we shall quote here for the cases M = 0 and M = + 2 :

J22(19) 12

	

(I-3) (I-2)(I-1) I
Ar o = AI0

	

geff) - ( qeff J20 (~9)) (2I - 5) (21- 3) (21-1) (2I+ 1)
AZ-4,0 (7 ,

4(I-1)I[(I-1)I-4]

(21-5)(2I-1)(2I+1)(2I+3)`41-2,0(7, geff )

2 [31 2 (1+1) 2 -141(1+1)+12 ]

+(2I-3)(2I-1)(2I+3)(2I+5)AI'0(7' g eff )

4 (I+1) (I+2) [(I+ 1) (I+ 2) - 4 ]

(2 I- 1) (2 1+ 1) (2 I+ 3) (21+ 7)
AI+2,o (', geff)

(I + 1)(1+ 2)(I+ 3)(I+4 )+

(2I+1)(2I+3)(2Id- 5) (2I+7) AI 4,°
(y gef )

and

A1,12 = I
.

	

J22 0)
qeff J20 (f!) [(I-1)

I(I +1) (I+ 2)] - { (2 	 I- 1)1(21+

	

Al _2,0 ( n , geff)

1(2I - 1)(2I +3)A1, o(~, geff)+(2 I+ 1)(2 I +3 ) A1+2,0(7 , geff) .

In these equations, geff (0) is given by (5 .15) . The ratio geff (t9)/q is shown
in Table 2 where also the ratio J22 (t9)/J20 (t9) has been tabulated .

The excitation amplitudes for arbitrary spin sequence in the rotationa l

band is given by Eq. (5 .8) . The first order correction in the amplitude fo r

� 0 is expressed by means of the AI, M (99, q) in Eq. (5 .44) . We shall i n
this paragraph only consider the application of AI M (t9, q) for the evalua -
tion of the excitation probability Pif Ii ( t9 , q , ) •

In the simplest case of the excitation of a rotational band in an even -
even nucleus for = 0 and ' = r, the excitation probabilities PI (q) _
PI, 0 (n, q, 0) are given by

PI (q) _ (2 I+ 1) I Al, o (n , q) 1 2 .

	

(5 .60)

These probabilities have been evaluated in Table 5, and they are plotte d
in Fig . 7 .

For other deflection angles the probability can be obtained from (5 .58)
and (5 .59) . To second order in J22 ( t9 )/J

220

(t9) it may be writte n

PI, 0 (0 , q , 0) = PI (geff ( 0` )) +
J22(t9) 2 4
J20 (f9')f I (geff 09)) .

Mat . Fys .Medd. Dan. Vid. Selsk . 8S, no . 8 .

	

4

(5 .61)

(5 .59)

geff) l
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TABLE 5 .

The probabilities for excitation of the rotational states in an even-even nucleus .
The result which is given for backward scattering and = 0 is tabulated as a func-
tion of q and of the spin of the excited state, The excitation probability for othe r

deflection angles and other spins can easily be inferred from these numbers .

q PO P 2 I

	

P 4 P6 P8 P 10 P 12

0 .0 1 .0000 0 .0000 0 .0000 0 .0000 0 .0000 0 .0000 0 .000 0
0 .5 0 .9144 0 :0842 0 .001 4

1 .0 0 .6945 0 .2850 0 .0199 0 .000 6
1 .5 0 .4300 0 .4812 0 .0828 0 .0057 0 .000 2
2 .0 0 .2152 0 .5597 0 .1972 0 .0260 0 .0018 0 .000 1
2 .5 0 .1021 0 .4842 0 .3296 0 .0750 0 .0086 0 .000 6
3 .0 0 .0835 0 .3098 0 .4184 0 .1572 0 .0280 0 .0029 0 .000 2
3 .5 0 .1108 0 .1389 0 .4140 0 .2563 0 .0685 0 .0104 0 .001 0
4 .0 0 .1317 0 .0514 0 .3152 0 .3354 0 .1333 0 .0286 0 .003 9
4 .5 0 .1214 0 .0600 0 .1741 0 .3555 0 .2125 0 .0634 0 .011 6
5 .0 0 .0881 0 .1158 0 .0630 0 .3006 0 .2815 0 .1171 0 .028 5
5 .5 0 .0571 0 .1540 0 .0284 0 .1932 0 .3105 0 .1831 0 .059 3
6 .0 0 .0463 0 .1412 0 .0633 0 .0848 0 .2810 0 .2436 0 .105 3
6 .5 0 .0547 0 .0917 0 .1191 0 .0250 0 .2007 0 .2757 0 .161 8
7 .0 0 .0671 0 .0459 0 .1442 0 .0312 0 .1036 0 .2616 0 .215 5
7 .5 0 .0687 0 .0343 0 .1198 0 .0798 0 .0331 0 .2014 0 .248 1
8 .0 0 .0570 0 .0552 0 .0684 0 .1242 0 .0166 0 .1174 0 .243 6
8 .5 0 .0413 0 .0819 0.0296 0 .1292 0 .0491 0 .0446 0 .198 5
9 .0 0 .0329 0 .0879 0 .0276 0 .0930 0 .0974 0 .0128 0 .126 7
9 .5 0 .0355 0 .0685 0 .0549 0 .0447 0 .1230 0 .0286 0 .056 0

10 .0 0 .0432 0 .0408 0 .0819 0 .0189 0 .1079 0 .0719 0 .0148

(to be continued)

The coefficient AI 0) has been evaluated numerically for I = 0,2, and 4 and
the result is given in Table 6 and Fig. 8 .

In many cases a simpler approximation for PZ, o q, 0) will be quite
adequate, namely the q (~) approximation. In this approximation the exci-
tation probability is given by

PI, 0 09, q, 0) Pr (q 0)),

	

(5 .62)

where the quantity q 0) is defined by (5 .25) . The ratio q (i~) / q is given in
Table 2. The accuracy of the approximation (5 .62) is illustrated in Fig . 10 .

As an illustration of the application of (5 .62) the differential and total
cross sections have been evaluated for the case q = 3, and the result is give n
in Fig . 12 . While the cross sections for all higher states tend towards zer o
for small deflection angles, the excitation of the I = 2 state reaches a finite
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TABLE 5 (continued) .

q P 14 I

	

P 16 P18 P 20 P22 P24 P 26

0 .0 0 .0000 0 .0000 0 .0000 0 .0000 0 .0000 0 .0000 0 .000 0
0 .5 0 .000 0
1 .0 0 .000 0
1 .5 0 .000 0
2 .0 0 .000 0
2 .5 0 .000 0
3 .0 0 .000 0
3 .5 0 .000 1

4 .0 0 .000 4
4 .5 0 .0014 0 .000 1
5 .0 0 .0046 0 .000 7
5 .5 0 .0124 0 .0018 0 .000 2
6 .0 0 .0283 0 .0053 0 .0007 0 .000 1
6 .5 0 .0558 0 .0130 0 .0022 0 .000 3
7 .0 0 .0961 0 .0279 0 .0058 0 .0009 0 .000 1
7 .5 0 .1455 0 .0529 0 .0134 0 .0025 0 .000 4
8 .0 0 .1938 0 .0888 0 .0274 0 .0062 0 .0011 0 .000 2
8 .5 0 .2258 0 .1327 0 .0503 0 .0136 0 .0028 0 .0004 0 .000 1
9 .0 0 .2275 0 .1764 0 .0828 0 .0270 0 .0066 0 .0013 0 .0002
9 .5 0 .1935 0 .2073 0 .1223 0 .0481 0 .0138 0 .0031 0 .0005

10 .0 0 .1326 0 .2132 0 .1622 0 .0777 0 .0265 0 .0069 0 .001 4

TABLE 6 .

The coefficient Al (q) for the correction of the geff (9 ) approximation (see Eq . (5 .61)) ,
in the case of a rotational band in an even-even nucleus for = 0 . The result is given

for the states of spin I = 0, 2, and 4 as a function of q .

q

	

I

	

d o

	

4 2

	

I

	

4 4

0 .0 0 .000 0 .000 0 .000
0 .5 -0.247 0 .239 0 .008
1 .0 -0.787 0 .678 0 .103
1 .5 -1 .225 0 .821 0 .347
2 .0 -1 .381 0 .585 0 .561
2 .5 -1 .477 0 .490 0 .404
3 .0 -1 .887 1 .120 -0.20 6
3 .5 -2 .712 2 .390 -0 .79 6
4 .0 -3 .608 3 .441 -0.61 0
4 .5 -4.084 3 .787 0 .63 0
5 .0 -4.000 2 .263 2 .214

q do 42 4 4

5 .5 -3.756 1 .178 2 .84 4
6 .0 -3.960 1 .387 1 .76 6
6 .5 -4.841 3 .078 -0.34 9
7 .0 -5.993 5 .048 -1.74 6
7 .5 -6.712 5 .700 -1.04 6
8 .0 -6.654 4 .538 1 .40 9
8 .5 -6.195 2 .733 3 .639
9 .0 -6.120 2 .156 3 .66 4
9 .5 -6.898 3 .655 1 .32 9

10 .0 -8.213 6 .188 -1.37 9

4 *
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30°
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Fig . 12. The differential cross sections for multiple Coulomb excitation of a rotational band i n
an even-even nucleus for q = 3 . The curves show the cross sections d al /d D for the excitation of

the state with spin I in the sudden approximation in units of a' . The curve for the first excite d
state has been scaled down by a factor 10.

value for V. = 0°. This is seen from the perturbation expression which i s
valid in this region . One thus finds

~da2

	

4

~dSd 0=0 1.5
gZCiL . (5 .63 )

From the differential cross sections the following values for the tota l
cross sections have been obtained.

aZ=2 =7 .93 a 2

a1 _ 4 =1 .06 a2

ai = 6 = 0.160 a 2

a1=8 = 0 .016 a 2 .

For other ground state spins the excitation probabilities of the rotationa l
band can be obtained by means of (5 .13) . Since K = Ii this equation may be
written

l If Ii 11 2

a(V'g'0)- (
2 If +l)

	

PI,0(z~,g,0 )
` Ii Ii 0 /

(If -Ii)!

	

(Ii+If+I+l)! (Ii -If +I)! (Ii +If -I) !

As an illustration, the case of Ii = 5/2 is shown in Fig. 13 for

	

= 180° .

(5 .64)

(21f +1)!(2I0! (Ii +If)!

	

(If -	 ~I•+I)! PI,o	 q, 0)

	

(5.65)
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Fig . 13 . The multiple Coulomb excitation of a pure rotational band in an odd A nucleus wit h
ground state spin 5/2 . The excitation probability PI of the state with spin I is given as a function

of the parameter q for backward:scattering .

TABLE 7 .

The coefficients fi (0) and fn (0) for the first order corrections in to the excitation
of rotational states (see Eq . (5 .44)) . The coefficients are given as functions of th e
deflection angle 0, (in degrees) for even values of m. For odd values of m the f,I , (8 )
are easily obtained from fl (0) and the functions J2, tt (9) given in Table 2 by means
of the Eqs . (5 .47) to (5 .49) . The entries are given in the form of a number followe d

by the power of ten by which it should be multiplied .

B

	

fi

	

fg

	

fô

	

fz

180 0 .000 3 .893 (-1) 2 .781 (-1) 0 .00 0

150 1 .917 (--1) 3 .423 (-1) 2 .423 (-1) 9 .405 (-3 )

120 3 .242 (-1) 2 .188 (-1) 1 .495 (--1) 2 .672 (-2 )

90 3 .586 (-1) 9 .615 (-2) 5 .915 (-2) 3 .181 (-2)

60 2 .904 (-1) 2 .370 (-2) 9 .662 (-3) 1 .920 (-2 )

30 1 .513 (-1) 1 .442 (-3) -1.047 (-3) 4 .078 (-3 )

e fo ~ f2 ~ t4

180 -6.673 (-1) 0 .000 0 .000

150 -5.935 (-1) 1 .015 (-3) -4.062 (-5 )

120 -3 .942 (-1) 4 .773 (-3) -4.713 (-4 )

90 -1.880 (-1) 8 .893 (-3) -1.373 (-3 )

60 -5.511 (-2) 8 .255 (-3) -1.654 (-3 )

30 -5 .787 (-3) 2 .628 (-3) -6.296 (-4)
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TABLE 8 .
The coefficients A l (q) for the first order correction in t to the excitation proba -
bility of even-even nuclei . The coefficient which is defined in Eq . (5 .51) is given fo r
backward scattering on even-even nuclei . An approximate expression for other de -

flection angles can be obtained from the table by means of Eq . (5 .67) .

q A2 A 4 A 6 A 8 A l o

0 .0 0 .000 0 .000 0 .000 0 .000 0 .000 0 .00 0
0 .5 0 .030 -0.029 -0.00 1
1 .0 0 .204 -0.186 -0.01 7
1 .5 0 .537 -0.422 -0.106 -0.00 8
2 .0 0 .890 -0.512 -0.325 -0.050 -0.004
2 .5 1 .084 -0.250 -0.636 -0.175 -0.022 -0.00 2
3 .0 1 .044 0 .337 -0.861 -0.427 -0.083 -0.00 9
3 .5 0 .861 0 .963 -0.773 -0.775 -0.234 -0.03 8
4.0 0 .714 1 .282 -0.278 -1.073 -0.509 -0.11 7
4 .5 0 .728 1 .159 0 .451 -1 .107 -0.880 -0.28 8
5 .0 0 .880 0 .783 1 .053 -0.735 -1.224 -0.57 8
5 .5 1 .033 0 .510 1 .216 -0.025 -1 .344 -0.96 6
6 .0 1 .061 0 .580 0 .919 0 .721 -1.080 -1.34 1
6 .5 0 .955 0 .930 0 .465 1 .136 -0 .433 -1.52 6
7 .0 0 .821 1 .266 0 .249 1 .039 0 .370 -1.35 1
7 .5 0 .780 1 .321 0 .456 0 .579 0 .969 -0.77 9
8 .0 0 .865 1 .082 0 .922 0 .148 1 .087 0 .03 1
8 .5 0 .995 0 .785 1 .278 0 .099 0 .728 0 .75 1
9 .0 1 .055 0 .701 1 .259 0 .480 0 .199 1 .06 3
9 .5 0 .996 0 .901 0 .920 1 .006 0 .089 0 .85 5

10 .0 0 .880 1 .204 0 .580 1 .282 -0.094 0 .322

(to he continued )

The first order corrections for � 0 must be calculated by means of Eq .
(5.44) from the quantities A IM (zi, q) and from the functions fn 09) and
f1 (29) . The latter have been evaluated numerically for some angles and th e
result is given in Table 7 .

The excitation probability may be written in the form (5 .51 )

PIfIi (0, q, ) P, (0, q, 0) +111 1.0, q) •

	

(5 .66)

The functions A have been calculated for the special case of t = n and
Ii = 0, and the result is given in Table 8 . The effect of the correction in th e
excitation probability is illustrated in Fig. 11 . The result (5 .66) may be
applied for angles in the neighbourhood of 180 degrees by the followin g
substitution :



Nr . 8 5 5

TABLE 8 (continued) .

q l112 11 14 A 16 A18 A 2 0

0 .0 0 .000 0 .000 0 .000 0 .000 0 .00 0

0 . 5

1 . 0
1 . 5
2 . 0

2 . 5

3 .0 -0 .00 1
3 .5 -0 .004
4 .0 -0.017 -0.00 1
4 .5 -0.055 -0.00 7

5 .0 -0.149 -0.025 -0.003

5 .5 -0.336 -0.073 -0.01 6

6 .0 -0.640 -0 .180 -0.034 -0.00 5

6 .5 -1.038 -0 .380 -0.092 -0.016 -0.00 1
7 .0 -1.436 -0.694 -0.210 -0.044 -0.00 7

7 .5 -1 .669 -1 .101 -0.421 -0.110 -0.02 1
8 .0 -1 .571 -1.516 -0.744 -0.238 -0.05 5

8 .5 -1.072 -1.788 -1.163 -0.459 -0.128
9 .0 -0.284 -1 .753 -1.586 -0.789 -0.26 6

9 .5 0 .511 -1 .324 -1.888 -1 .210 =0 .495

10 .0 0 .981 -0 .571 -1 .907 -1 .648 -0.832

11
1f 0 (P ' q)
	 q2f (	 - A geff \~))
( g eff ( V )) 2 f0 (Z)

Zf 0

This equation only holds as long as fo, fo, and fo dominate over the coeffi -

cients f2, fl, and f4 .
The collision between the target nucleus and the projectile may also lead

to an excitation of the projectile . The results which we have obtained for

target excitation can also be used for projectile excitations, since we have
worked in a relative coordinate system . The parameter (see Eq. (2.8)) is

thus given by the Eqs . (5.53) and (5 .54) where one must insert for E2 -El

the excitation energy of the projectile . Similarly the expression for x (see
Eq. (2 .11)) is given by

A1 12 [B(E 2 , 11 ->-12)1
1/2

3
X1 2 = 14 .52	

(1 + A 1/A2) 2 Z2 Zi
EMev'

	

(5.68)

where B (E2) now refers to the projectile . The formula for q1 0J has the same

relation to q in (5 .57) as f"j has to x in (5.55) .

(5 .67 )
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D. Classical Treatment

We shall make a few comments about the classical limit of the excita-
tion of rotational states, which can be used for large angular momenta an d
large q. The classical problem of a collision between a charged particle an d

a charged symmetric top leads to a non-linear equation of motion which ,

like in the quantum mechanical problem, can only be solved in closed form
in the limit where the collision time is short compared to the time of rotatio n

of the top .

The classical Hamiltonian can be written in the for m

	

H 6a

	

[P±S2ßP]
± 85 va2 q 2 (t)

	

Y (ß, a),

	

(5 .69)
µ

where pp and pa are the momenta which are conjugate to the Eulerian angles

ß and a, describing the orientation of the axis of the top .
We shall here consider only the case where one may neglect the term s

with ,a � 0, i . e ., we limit ourselves to the case of backward scattering or th e

q (0) approximation. In this case the angle a is a cyclic variable. For the
angle ß one obtains from (5 .69) the following equation of motion :

=

	

q av2s2o (t) sin 2ß .

	

(5 .70)

In the sudden approximation one assumes ß on the right-hand side to
be unchanged (equal to ßo) during the collision, and the final angular velo-

city ßf is thus given by

	

ßf = ßi + 3 a g eff O.) $ sin 2ßo .

	

(5 .71 )

We have here used Eqs . (5 .15), (3 .24), and (3 .27), and have denoted th e

angular velocity ß before the collision by ß¢ .

From (5 .71) we obtain the following simple expression for the transfe r
of angular momentum 4 Ll perpendicular to the symmetry axis of the orbit .

	

4 Ll = 2 geff (~) h sin 2ßo,

	

(5 .72)

while the component of L parallel to the axis is unchanged .
In the classical treatment one thus finds that the angular momentum

transfer depends on the initial orientation of the top and one sees that th e

projectile can transfer at most (for ß~ = n/4) an angular momentum of mag-

nitude
/J Lmax = 2 geff 0) h .

	

(5 .73)
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If one considers all initial orientations of the top to be equal probable, on e
may evaluate the classical energy distribution of the top after the collision . In

the simplest case where the nucleus is at rest before the collision, one find s

corresponding to (5 .73) also a maximum energy transfer Emax= 2 (geff (0 2 h 2/

In this case, the energy distribution can be written in the for m

P (E) dE =	
ds

4V _

where

E

£ Emax 2 (g eff (~%')) 2 112

E .

This energy distribution (5 .74) is illustrated in Fig. 14 .

The classical treatment gives a qualitative understanding of the result o f
the quantum mechanical calculations of Fig . 7 . In the classical limit, th e
excitation probability of a state of spin I is zero until q reaches the value 1/2 .

As a function of q the excitation probability thereafter goes through a maxi-

mum and finally decreases slowly . The quantum mechanical energy distri-

bution is a function of both q and the discrete excitation energies . For a
fixed value of q the points corresponding to the different energies oscillate
around the classical curve . On Fig. 14 we have illustrated the case of q =
10, and we have here, for illustrative purposes, connected the points
(indicated by circles) by a smooth curve . It is seen that the result is stil l
far from the classical limit .

Like in the quantum mechanical treatment, the case of e�0 can be solve d

for small values of e. One must then take into account that the nucleus i s
moving during the collision time . In first order one may consider the chang e
in the right-hand side of (5 .70) to be linear in ß . One is thereby led to a
hypergeometric differential equation which can be solved explicitly .

The result for the angular momentum transfer perpendicular to the z
axis can be written in the form

4L1=2geff( )Jsin2ßoF(gecos2130),

	

(5 .76)

where the correction factor F to the result for = 0 is given by

22F(x)

	

4nx(2x-1)

	

1-+ x for x«1 .

	

(5 .77)

Mat. Fys. Medd . Daa Vid. Sclsk . 32, no .8.

	

5

(5 .74)

(5 .75)
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0. 5

	

E
Fig . 14 . The classical energy distribution of a charged symmetric top after a head-on impact o f
a charged particle (full drawn curve) . The top is assumed to be at rest before the collision an d
the impact is assumed to be sudden . The scale of the abscissa is the ratio between the energy
of the top E and the maximum energy Eraax which can be transferred . The circles, which ar e

connected by a broken curve, show the corresponding quantum mechanical result for q = 10 .

It is illustrative to evaluate the average excitation energy of the nucleu s
after the collision . If we assume an isotropic distribution for the orientatio n
of the nucleus before the collision, we find from (5 .76) to first order in e
(and backward scattering)

_ 16g 2 11 2

	

44
< E~ 15

Zs'

	

-
63 g,

	

(5 .78)

This result must be correct also in the quantum mechanical treatment . In
the limit of q « 1 where only the lowest state in a rotational band in even -
even nuclei is excited, one may use it to calculate the excitation probability .
Since the energy of the state of spin 2 is E2 = 3 h.2 S, one finds

16 2(

	

44

	

1

	

P2 = 45 g 1- 63 qeJ .

	

(5 .79)

If one compares this result with the result (5 .51) in the limit of q« 1, one finds

fô( 7 )- 9
11

	

7 .2

	

7

J-r 5 tô(a) = - 12 fô( 7 )

in agreement with Table 7 .

(5 .80)



Nr .8

	

59

6. Excitation of Vibrational State s

Another important kind of collective excitations in nuclei is that con-

nected with the vibrational degree of freedom. In even-even nuclei a numbe r

of low-lying states have been identified as vibrational levels but, in general ,

the spectra are not as well understood as the corresponding rotational sta-

tes in deformed nuclei . A survey of the experimental and theoretical statu s
is given in ref . 1, Chapt. VC.

The excitation of pure vibrational states can be solved exactly not onl y

in the sudden approximation, but also for arbitrary' , , and x . The problem

is analogous to the classical problem of a forced vibration which can als o

be solved in an explicit form.

For a pure quadrupole vibration, the Hamiltonian of the free nucleus is

given by

Ho=2B I d 2 ~ 1 2 +2Ca2 ~ 1 2 ,

	

(6.1)

where B is the inertial parameter and C the restoring force . The parameters

a2,ß , where y = -2,-1, 0, 1, 2 describe the shape of the nuclear surface .
In the idealized case where the surface is sharply defined and where th e
nuclear density is constant, the nuclear shape is given b y

R

	

(p) = Ro [1 +1' a2,u 12 1u

	

(p) l .

	

(6 .2 )
P,

The eigenstates of the Hamiltonian (6 .1) can be classified according t o

the five vibrational quantum numbers nt,, where ri m = 0, 1, 2 . . . . The en-
ergy of a state I n, > can thus be written in the for m

E=lco (n12+2)=hw(N+2) .

	

(6 .3 )

Here, the frequency co is given by

w=(6.4)

while the principal quantum number N is defined b y

N -- n~

	

(6 .5)
,u

The degenerate nuclear states can also be labelled by this principal

quantum number together with the total angular momentum I and the mag -
5*
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netic quantum number M . For N c 3 these numbers are sufficient to specify

the state completely, while for N > 3 one needs additional quantum num-

bers (17) . The connection between the two labellings n~ and N, I, M is given

in refs . 15 and 16 for a number of cases .

In the following, it will be convenient to introduce a dimensionles s

coordinate xt, defined by the equation

a 2 ~

	

h	 x

I/BC

	

(6 .6)

instead of a2 . If we introduce furthermore by means of the equatio n

a
$=cv - ,

v
we may write Ho in the for m

H o

	

9a S[Ipu/h 1 2
I Ix, , l 2 l ,

where the momenta pl, are defined by

(6 .7 )

(6 .8)

(6 .9)

The nuclear multipole moments Dt (E 2, ,u) are related to the deformation

parameters a2 u by the following expression (see ref . 1, Eq. (V. 24)) ,

fft (E 2„u) = 4Z1 e Bo a2 .

	

(6.10)

By evaluating the reduced matrix element of (6 .10) between the ground

state and the first excited state one finds the following expression for th e

parameter x (see Eq . (2 .1.2)) :

Z1 Z2 e 2 Rô
x=-- ,	 	 (6 .11)

va 2 l/ 10Jch 1'B C

and one may therefore write the interaction Hamiltonian (2 .3) in the follow-

ing form :

H' (t) -

	

18 z

5
	 1iva2x.2Szµ (t) xP ,

	

(6 .12 )
P

where S" (t) is given by (3 .23) .
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The eigenstates of the free Hamiltonian Ho are give n

Hermite polynomials Hn (x), i .e .,

%
yn_, n-, na n, no (x)

	

UJ

	

n~ (x /,)

1

	

ß
x 2-

	

2

	

(x ,) ,	 e

	

Hat,

in terms of the

~ t/ Ilac 2 nw ny t

The excitation amplitude in the sudden approximation (3 .11) is now ver y
easily found .

The result for the distribution on the different energy levels (N) turns out
to be a Poisson distribution, where the mean excitation energy is the same
as that one would find in the perturbation calculation (see Eq . (6 .27) below) .

This result can be understood by noting that the excitation of an harmoni c

oscillator can always be interpreted as the collective motion of a large num -
ber of mutually uncoupled harmonic oscillators which are, each of them ,
only weakly excited . The weak excitation of these oscillators can be treate d

by a perturbation calculation and, since they are mutually uncoupled, th e
resulting total energy distribution must be a Poisson distribution .

Since the above argument is independent of the sudden approximation ,

we shall in the following give the details of the calculation in the more gene -
ral case of '-=h O.

The first step in the program will be to introduce a number of auxiliar y

variables xW , where i = 1, 2,	 91 and where x = x/A . The 5 (fit- 1 )

new degrees of freedom are supposed to be coordinates for free vibration s
which have the same frequency w as the x/A oscillators . Furthermore, w e
take them to be coupled, neither to each other nor to the old xp . Under

these circumstances they will be left undisturbed in the Coulomb excitatio n

process and will only change the problem in a trivial way . The total Hamil-
tonian will thus be

2
+ ,

x~> 121
+ I/18ac

~i va2xZS2 ~ (t) x( l ) ,

	

(6 .14)

~ (x) - Vn_ 2, 11_ 1, no n1 n2 (x(1))j y 0 (x~~ )
Y

i$ 1

where 'p is the ground state wave function (6 .13) with n,T = O .

t U ~

H 2a

P
t(: )
h

u, i

while the eigenstates which are of physical interest will be

(6 .15)
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We perform now a linear transformation on the coordinates x ) and in-

troduce hereby new coordinates (g ) and new momenta
mation matrix U is supposed to he unitary, i . e .

UUt = 1

	

(6 .16)

assumed to be diagonal in t.a, i . e . ,

Qc¢> = 2' U(~) x(~)
i.~

The new Hamiltonian i n

(6 .16), and (6 .18) to be

H

	

2 a

	

[IP
P
) /h 1 2 +I Q.ß ) 1 2 ] +

The Schrödinger equation for the variables Q ) is again separable an d

the eigenstates of the free Hamiltonian are

99n (Q) =
J V yn o) (C),

	

(6 .20)
i,u

where all 4) can take the values n p = 0, 1, 2 . . .
In the new Hamiltonian, however, the interaction term can be mad e

very small for all values of ,u and i by choosing 92 to be a large number .

In the new variables, the excitation process can therefore be treated by a

perturbation calculation, and one obtains for each of the oscillators (p, j)
only a very small probability that the oscillator is excited . In the perturbatio n

treatment one finds, for each oscillator the following excitation amplitud e

on the first excited state :

a~)
ih

<1 j~

	

18
~hva2 ~Z S2 ~(t)Qµ~ezwt dt~0> .

	

(6.21 )

5 Since the matrix element ofQµ ) between the states of one phonon I 1

P (i) .
1-4

The transfor -

and is

(6 .17)

Furthermore, we prescribe the first row of U Q' ) for

by

U tt )
1,j

	

v
9TI

the variables (g )

all values of ,u to be given

(6 .18)

and P ) is found from (6 .14)

187r Liva 2
~J2 Z2 y (t)

	

Qy") .

	

(6 .19)
5 V I

and the ground state I 0 > is given by
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<1IQk~)I o>- ( -1)~

v 2
one may write (6 .21) in the form

aµ)=

	

~(~,~),v
where (see also Eq . (3 .24))

V" 9n
0,

	

2
, 0 =

	

5 va (- 1SE2, 1,0, ~) •

	

(6.24)

We can now easily determine the total excitation probability . We ask
first for the probability that any one of the five oscillators belonging to a

definite value of j is excited . This probability is

P (J) = Z ag) 1 2 =

	

x

	

) 1 2 ,

	

(6 .25)
P,

where x (@, e) is given by Eq. (2 .12), i . e .,

0)12 µ (0, ) 1 2 .

	

(6 .26)

We can then calculate the probability that all the Y1 groups of five oscil-
lators have together the total excitation energy N h co . Since all groups have
the same probability (6 .25) of having the energy h w, we obtain in the limi t
of 91--> 00 a Poisson distribution for this probability PN

	 e

	

' " ~ x (19, ) ] 2 N .N

In the old variables 4) , this result must be interpreted as the total exci-

tation probability of the vibrational state with principal quantum number N .
We shall be interested also in the amplitudes on the eigenstates (6 .13) .

We shall evaluate these by calculating the amplitudes < (Q) Ø (Q) > of
the final wave function, Ø, on the eigenstates (6 .20) as well as the amplitudes
< It) (x (Q)) I q (Q) > of (6.13) on these eigenstates .

From (6 .23) one finds directly the amplitude on the states (6 .20)

< 99 n(Q) I

	

(Q) i

	

.,' l ~ a ) ~ nu2) [ 1 - (agi) I2](1 n(î))12,

	

(6.28)
,u ,

where the quantum numbers n;,i ) are all 0 or 1 .

(6 .22)

(6 .23)

9 .,r
xe) = x - - -

(6.27)
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The amplitude of (6 .13) on (6 .20) follows from the expansion of a Hermite
polynomial of a linear function of Q in terms of a product of Hermite

polynomials of (41 ) . One finds from ref . 10 (Vol. 2, p . 196)

<w(x(Q))Imn(Q)>_n
FL

(6 .29)

1,,

	

nl,o

According to (6 .28) and (6 .29), the expression for the excitation amplitude is

an_ non, na =~< (x (Q)) ~ T. (Q) > < (Q) I (Q) >n

	

(n~) r

	

o s~))2l2 -2 s7ç l

	

(6 .30)

J L

	

-1xl,(~ ,
J

L Y

	

n

	

V

	

/

	

-	 ç

	

;II

	

~ n l

We have here utilized that n ) = 0 or 1 and have performed the summation
over n ) with the restriction X n (i) = n m by multiplying with the number of

ways in which nt, objects may be chosen among W. objects . When we le t

9c - oo the expression (6.30) takes the form

ea ,
an- -, n-, na n, n, -

	

, ,
	

(4 (~,))nu
g 2 (C~

	

(6 .31 )

This equation offers the complete solution of the excitation of pure vibra-
tional states .

It is interesting to observe that the total excitation probability (6 .27)
depends on P and e only through the quantity x (~, e) . This means that the

excitation probability for arbitrary P and can be obtained from the pro -

	

babilities for 19 . = a and

	

= 0 by substituting x (z9, $) for x, i . e . ,

PN (P, s~, x) = PN (7c , 0, x (19 , ~)) • (6.32)

In the special case of e = 0 this equation shows that the x (P) approximation

(see Eq . (5 .62)) in the case of vibrational states is exactly fulfilled .

The function Pn, (z, 0, x) is illustrated on Fig. 15, as a function of x .

It is interesting to compare this result with the corresponding result for th e

excitation of a rotational band which is illustrated on Fig . 7 . The maximum

excitation probabilities are larger for rotational states than for vibrationa l

states . However, in the latter case, higher lying states are reached for a de -
finite value of x .

The ground state and the first excited state have the definite angular

momenta 0 and 2 . The second excited state, however, is a triplet with spin s

0, 2 and 4. Since the vibrational states in nuclei are not pure, the degeneracy
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Fig . 15 . The multiple Coulomb excitation of a pure vibrational band in an even-even nucleus .
The excitation probability Pn' of the state with principal quantum number N is given as a func -

tion of the parameter z (sy , ) .

is in actual cases removed, and it is thus interesting to find how the tota l

excitation probability (6 .27) is distributed on each of the substates .

To perform this calculation one needs the expression (6 .31) for the am-
plitudes on the states specified by n_ 2 , n_ 1 ,	 n2 . Furthermore, one needs
the coefficients for the transformation between the n,,, and the N, I, M labell-

ing (see refs. 15 and 16) .
One finds in the case of N = 2 the following result

P2 .I= o

	

1/5 P2

P2,1 = 2 = 2/7 P2

P2,1=4 = 18/35 P2

where P2 is given by (6 .27) for N = 2 . In this case the rule (6 .32) thus als o

holds for the excitation of the substates with I = 0, 2 and 4 . This is, how-

ever, not true any more for the excitation of the substates of the state wit h
principal quantum number N = 3 .
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7 . Excitation of Coupled Rotational Bands

In the two preceding sections, we have treated the multiple Coulomb
excitation of a pure rotational band and of a pure vibrational band, and w e
assumed there that only the rotational or vibrational degrees of freedo m
were involved in the excitation process . In actual cases several different
degrees of freedom can be excited . One might have cases, such as in most
deformed nuclei, where both rotational and vibrational degrees of freedo m
are involved, or one might have to consider the excitation of the intrinsic
degrees of freedom .

In this section, we shall consider a situation where the low energy nuclear
spectrum consists of a number of rotational bands which differ in interna l
(or vibrational) structure. The excitation of these bands can be treated rigor-
ously in the sudden approximation, in some cases when only a finite number
of bands have to be taken into account .

In most cases, however, one will find that the parameter x (see Eq. (2 .12) )
which describes the transition between the bands is small, and one may
then simplify the calculation by a perturbation expansion for the transitio n
from one band to the others . The transitions within any one of the bands mus t
in any case be treated rigorously .

We shall assume that the nuclear states are described by state vector s
of the form

Ip>=In,K>II,K,M>,

	

(7 .1 )

where I I, K, M> stands for a rotational wave function of the form (5 .6)
which only depends on the Eulerian angles describing the orientation of th e
nuclear axis, while I n, K> describes a state of the intrinsic and vibrational
degrees of freedom, which has a component of angular momentum K along
the nuclear symmetry axis . The state vector n, K> depends only on rela -
tive coordinates measured with respect to a coordinate system which has it s
z-axis along the nuclear axis .

In actual cases, the nuclear state vector will be a linear combination o f
state vectors of the form (7 .1). Firstly, it will always contain a term identica l
with (7 .1), except for a change of sign on K . Secondly, it may often contain
admixtures from other bands with different values of K and n. The actual
excitation probabilities can, however, easily be evaluated once the excitatio n
probabilities for states of the simple type (7 .1) arc known .

It is convenient to transform the interaction energy to the rotating co -
ordinate system which has its z-axis along the nuclear axis .
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For the multipole operator (2 .4) one finds

9N (E 2,,u)

	

(a, ß, 0) Mint (E 2, v),

	

(7 .2 )

where the intrinsic multipole operator dint (E 2, v) is independent of the

Eulerian angles a and ß .

If we adopt the ti (ii) approximation, the excitation amplitude in th e

sudden approximation (3 .11) may be written

l/64 2
~

aiivr t xf.= < Ifl~fMf1 <fKf1 e- F 45 v v

	

1
(ß, 0) j iKz>~IiKi llli >

	

(7 .3)

where the operator g.v 09.) is defined by

7c71 e2 T int (E2, v) 3
qv

	

5 - hva2

	

4 I
2,0 (7i) .

The expectation value of qv for states within a band is exactly the earlie r
defined quantity of geff (9') for this band (see Eq. (5.15)),viz . ,

< nK qv ( 19') I nK> = geßf 0) av0 N q(n) (9') av0 .

	

(7 .5)

If the matrix elements of qv between the bands are small, and if th e
expectation value of qv or the intrinsic quadrupole moment is not ver y

different in the initial and final band, one may use a perturbation expansion

to evaluate (7 .3). We may write the amplitude (7 .3) in the form

a (f) M=<
I K VII e

t

	

e V 645 4 co) Y2 0 (ß, 6 )

t f

	

f f f

x<fKfe

	

645

	

âO4()]Y2v(ß>o) iKi >liKiMi > ,

where q (î) is the q for the initial band . We then perform a series expansio n

of the second exponential whereby we obtain the following expression fo r
the excitation amplitude for a band different from the ground state band :

-
1/647c

a
Î

KtMi ~

	

45 < fKf I qxf -xi ( 5) I iKti %

64 z
45 4 (0) Y2,0 (ß, 0) I IiKi Mi >

The excitation probability in the perturbation treatment can thus be writte n
in the form

(7 .4)

(7.7)

x <IfKfMf Y2a,xi-xi(ß, 0) e

pIf) = 4NlfKt(g0))

	

(7 .8)
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where we have introduced the notatio n

<fKf j ciKi_Ki (0) I iKv> <fKf ll12(E2, v) I iKz >
r 2f =

q (~%)

	

<

	

(E 2, 0) I iK 1 >

From (7 .7), one observes that the total probability of exciting any member
of the final band is given by the simple expressio n

1 6p(f) _

	

Pit)
= 45 r f [q (J)] 2 .

This result is identical with the expression which would be obtained in th e
ordinary perturbation theory for q « 1, and one sees that the strong
coupling within the bands give rise only to a redistribution of the singl e
probabilities PIf

In the perturbation tr eatment which we have used here one may als o
approximately take into account the effect of finite e . If the energy dif-
ference between the ground states of the two bands is larger than the energy
of the lowest states in the hands, the e corresponding to the possible transi-
tions between the two bands will be approximately constant . One may then
take e into account by calculating the total transition probability (7 .10) fo r
the finite C in the ordinary perturbation treatment and apply the same distri-
bution Ph) /P (f) as for C = O .

The matrix element (7 .7) can be expressed in terms of the function s
AI M (7r, q) (see Eq. (5.9)) by expanding the product of D-functions i n
terms of D-functions (compare also Eq . (5.20)) . The result has been evaluated
in the special case of I,i = O . For a band with Kf - 2, one finds

ar2 o=-i3rif q(~)V6(I--1)I(I+1)(I+2)(2I+1 )

X {2(2I+1) (2I+3) AI+2,0 (q(9'))-(27-1)1(2I+3)`41,0(gm)

	

(7 .11 )

1
+2(2I-1)(2I+1)Ar-2,o(q) )

For a band with Kf = 0 one finds similarly

(f) o - - i 3r2f ' g ( 9)V2I + 1

J	 3(	 1)	 +2)

	

27(1+1)	
X 1(2 I+ 1) (2 7+ 3) A-, o(g 0)

) (2 I 1) (2 I+ 3) A l, o(g ( 5))

	

(7 .12 )
3(I_1) I

b (27-1) (2I+1) Ar-2, o (g(?9')) •

(7 .9)

(7 .10)
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The resulting excitation probabilities are given in Figs . 16 and 17 in
terms of the coefficients NVf Kf . This coefficient is plotted for Kf = 0 ,
I = 0, 2 and 4 and for Kf = 2, I = 2 and 4 . The states with odd spins in th e
K = 2 band are not excited in the q 0) approximation .

The perturbation treatment (7 .7) is only correct if the quantity r if q (iS,)
is smaller than one (compare Fig . 2) .

If the bands are strongly coupled through the interaction with the projec-
tile one may evaluate the matrix element (7 .3) by a diagonalization method .
We thus introduce a unitary transformation U which diagonalizes the matri x
elements of the exponent in (7 .3), i . e . ,

< UKa I UtX av O') Y2, v (ß, 0) U I bK6

	

å ab • 2.a .

	

(7 .13 )

The result (7 .3) can then be written in the for m

2 l /64 n A
a ltKtMt =Z<IfKfDIf I<fl UI z >e y 45 z < zlU t li>IIi Kz :lli > . (7 .14)

Since 2 and the unitary matrix U in the general case depend on the Eulerian
angle ß in a rather complex way, this result is of practical interest only i n
some special cases . We shall consider the case where only two bands ar e
involved in the excitation process . We assume that they have the sanie in-
trinsic quadrupole moment and that Ki = Kf . The matrix diagonalization i s
then easily performed and one finds the resul t

aIKM =
2

{CIIM [q (1 +r if)] -I- llIM [q (1 - rif)]}

a IKM =
2 Ia IM [q(1 -I-rif)] -GLIM [g(1 -rif')]f .

It is interesting to compare this result with the result (7 .7) from the per-
turbation treatment . In Fig. 18 we have plotted the excitation probability fo r
the state 2,0,0> as a function of q for different values of r . It is seen that
the perturbation treatment is correct if rq 1, as was to be expected . This
condition will in actual cases usually be fulfilled .

If I Kf -Ki I is larger than 2 the transition between the bands is K for -
bidden. A possible transition between the bands can then occur only if th e
wave function (7 .1) contains admixtures from other bands . Such admixture s
can also play an important role in K allowed transitions ns) .
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Fig . 16 . The excitation probability of a weakly coupled pure rotational band with K = 0 i n
an even-even nucleus . The figure shows the coefficient Netl o in the perturbation treatment (se e

Eq . (7 .8)) for I = 0,2 and 4 as a function of q (e), which is assumed to be the same for the two bands .
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Fig . 17 . The excitation probability of a weakly coupled, pure rotational band with K = 2 i n

an even-even nucleus . The figure shows the coefficient NIfl2 in the perturbation treatment (se e

Eq . (7 .8)) for I = 2 and 4 as a function of q (0) which is assumed to be the same for the two
bands . In the q (a) approximation, which has been used for the evaluation of N, the states wit h

odd I are not excited .

8. Conclusion

The multiple Coulomb excitation has until now been observed only in
a few cases, but, from these observations (see refs . 5 and 6) as well as fro m

the survey given in the present paper, it seems that a large number of ex-
perimental possibilities are offered. Especially it seems promising to in-
vestigate the excitation of the vibrational degrees of freedom of the nucleus ,

since our present knowledge on such states is rather limited . It is known

that the vibrational states are mostly rather impure and for a quantitativ e

comparison one may need some modification of the present theory . Simi-
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Fig . 18 . The excitation probability of a strongly coupled pure rotational band with K = 0 .
The figure shows the excitation probability of the I = 2 state for different values of the coupling
r (see Eq . (7 .9)) . The probabilities are given as functions of q (19) which is assumed to be equa l

in the two bands .

larly deviations from the pure rotational model have been observed .

These deviations introduce a number of new parameters in the theory, and
these can, in turn, be determined by a comparison of the experimental cros s
sections with the theory . On the other hand the increasing number of para -

meters make a systematic tabulation of cross sections increasingly difficult .
The larger part of the present paper was written during a stay of one o f

the authors (A.W.) at the Federal Institute of Technology in Zürich, Switzer-

land.We wish to thank Professor PAUL SCHERRER for making this stay possible .
Sincere thanks are due Professor AAGE BOHR for his continual interest i n
our work .
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