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Synopsis

It is shown that the energy-momentum complex ?!f` introduced by MØLLEn
into the theory of general relativity is uniquely determined, when taken as a
function of the metric tensor and its derivatives of the first and second orders ,
by two transformation requirements : 1) 'r; is an affine tensor density (of weigh t
one) so that the total energy and momentum of a closed system are transformed
as a vector in linear (affine) transformations, just like the energy and momentu m
of a free particle ; 2) Tl is a scalar density in arbitrary spatial transformations s o
that the total energy in a volume of space is independent of the system of spatial
coordinates used . Further it is shown that in empty space it is possible, in ac-
cordance with the principle of equivalence, to introduce coordinates along a
geodesic such that the gravitational energy-momentum complex vanishes alon g
the geodesic .
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1 . Introduction

When EINSTEIN introduced the law of conservation of energy an d
momentum into the theory of general relativity' , several objections wer e
raised against it . These arose from the fact that the energy-momentum com-

ponents tl of the gravitational field did not form a tensor, whereas the com-
ponents 71 of matter did . It was, e . g ., shown by BAUER that for an inertial
system in which no mailer was present, i . e . no gravitational field, the in-
troduction of polar instead of Cartesian space coordinates into the metri c
of special relativity led to components ti different from zero . In particular ,
the total energy turned out to be infinite . Levi-CIVITA and LORENTZ proposed
an alternative expression for the energy-momentum components of th e

gravitational field, viz . the tensor - Gk, where Gk = Ri - 2 d2R. This pro -

posai was rejected by EINSTEIN on the grounds that, since Ti + - Gk = 0

always and everywhere, according to the field equations, the total energy
of a system is zero from the start, and therefore this law of conservatio n
does not require the continued existence of the system. A material syste m
can disintegrate into nothing without leaving any trace (2) .

Finally EINSTEIN (3) showed that his formulation of the law of con-

servation of energy and momentum led to an unambiguous and satisfactor y
definition of the total energy and momentum of a closed system, independent
of the choice of coordinates inside a surface surrounding the system . How -
ever, no unambiguous definition could be given of the energy or momentu m
of a part of a closed system. Therefore it was generally accepted that th e
localization of energy and momentum had no meaning in the theory o f
general relativity .

In recent papers, MØLLER 4, 5 ' 6 ) has derived and discussed extensivel y
a new energy-momentum complex in general relativity . (The term "com-
plex" is used, as by LORENTZ, to denote a quantity which is not trans-
formed as a tensor in arbitrary space-time transformations .) In the firs t
paper, "On the Localization of the Energy of a Physical System in th e
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General Theory of Relativity", it was pointed out that the . 44-component o f
Einstein's energy-momentum complex was not transformed as a scala r

density even in purely spatial transformations . It was therefore not suitabl e

for defining an energy density . This was the reason for the above-mentioned
absurd result derived by BAUER . Using the fact that the energy-momentum

complex is not uniquely determined by the requirement that its ordinary
divergence vanishes, MOLLER succeeded in deriving a complex 7f having
all the satisfactory features of Einstein's energy-momentum complex, bu t
such that 74 and 7'4 (n = 1, 2, 3) behaved like scalar and 3-vector densities ,

respectively, in arbitrary spatial transformations . With this new expression

for 71, the energy of a part of a closed system is invariant in spatial trans -
formations .

As was shown by MØLLER0' 7l , 7k can be derived from a variational

principle, where the quantity to be varied is the curvature scalar density
= V g R. However, it is possible to define in the theory of general relativity,

as in any generally covariant theory where the field equations can be derived

from a variational principle, an infinite number of quantities which satisfy

conservation laws f8l . It is desirable to select among these a unique, physicall y

significant quantity describing the energy and momentum of the field . The

question of the uniqueness of Møller's energy-momentum complex 7f has

been considered by himself in another paper (5) , where he shows that 7i
is determined uniquely by the following three conditions :

1) 7i is an affine tensor density .

2) 74, 74 (x = 1, 2, 3) are scalar and 3-vector densities in arbitrary spatial

transformations .

3) The superpotential

	

iotential xi
ka from which 7 is derived, 7

	

xi ,kaa
.r

depends on=
first-order derivatives of the metric tensor up to the second degree, and doe s

not contain higher derivatives .

71 maybe separated into a matter part, V -g 71, and a gravitational part ,
l/-gtk . According to the principle of equivalence it should be possible t o
eliminate the gravitational field, and thus make tk vanish, at any point by
a suitable choice of coordinate systems . Since If depends on the second

derivatives of the metric tensor, it will not vanish in all coordinate system s

which are geodesic, i . e . in which gik, l = 0 . MØLLER has shown, however,

that tZ can be made to vanish at any point where no matter is present, i n

a wide class of geodesic coordinate systems, viz . those which are "locally
normal" at the point f6l .

* A comma denotes partial and a semicolon covariant differentiation .
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The present paper falls into two main parts . The first part deals with

the uniqueness of Moller's energy-momentum complex . After considerin g

conservation laws and the transformation properties of the energy-momentu m

complex we show that the complex Tl, satisfying a conservation law an d

depending on the metric tensor and its derivatives of the first and secon d

orders, is uniquely determined by conditions 1) and 2) above, i . e . that Tk
is an affine tensor density and T4, T4 are scalar and vector densities in

spatial transformations. The restriction on the degree of the first-order

derivatives of gik in ykl can be dropped . Derivatives of gik higher than the

second are excluded from T? , and therefore derivatives higher than the firs t

from yzl , since the field equations themselves are restricted to the secon d
order. It is also easily seen that it is impossible to form a quantity T ik such

that T44 is a scalar density in spatial transformations .

In the second part it is shown that along a geodesic one can introduce

coordinate systems such that, with no matter present, the gravitational energy -
momentum complex 4 vanishes along the geodesic . This is an extension of
Moller's result for a point where no matter is present . It shows that an

observer falling freely in a gravitational field can introduce a system o f

coordinates such that the effects of the gravitational field are eliminated .

2. Conservation Laws and Transformation Properties

The conservation laws of energy and momentum are originally integra l

laws . For a closed system they state that a certain well-defined space integral

over the system at a certain time, called its energy or momentum, remain s
constant in time :

dl ,l T dxl dx2 dx3 = O .

For a part of a closed system the conservation laws state that the rat e

of decrease of, say, the energy in a space volume V at a certain time i s

equal to the flux of energy through the boundary surface S of V :

d t T
dxl dx2 dx3 = 1 ~x dS~ .

	

(2)
V

	

S

It is, however, more convenient to have the conservation laws in differ-
ential form. The differential conservation law equivalent to (2) is, by Gauss '
theorem,

(1)



ö T a~x
at + axY

= O .

In special relativity the differential conservation laws for energy an d
momentum are

aTk

axk T
k k - 0 ,

where T7 is the energy-momentum tensor of matter . The natural generali-
zation of (4) in general relativity is obtained by equating the covarian t
divergence of the tensor

	

to zero :

Tk;k
v l

	 gak(V
gTi)

2 axkl
Txa o .

	

(5)

As is well known, this equation does not lead to integral conservatio n
laws of the form (1) or (2), i . e ., there is no conservation law for matter
alone. Only an equation of the form (4) is equivalent to integral conservatio n
laws . It is possible, however, to bring (5) into the required form by mean s
of the field equations . One then obtains the conservation laws for matter
and gravitational field in a differential form :

aT k

axk T~ k
- 0

where

(3 )

(4)

(6)

(7)

Here T2` is the energy-momentum tensor of matter, and t2 refers to the

gravitational field . Of course and therefore tk, are not uniquely deter -
mined in this way, for a quantity with a vanishing divergence can be added
to ‘Ti. By means of the field equations the matter variables can be eliminate d

and Tl expressed solely in terms of the metric tensor and its derivatives .

As noted in section 1, it is natural to exclude derivatives higher than the
second from

	

but there is still a wide choice of expressions for Tz, whic h

it is desirable to restrict .

The principle of general relativity requires the validity of equation (6)

in all systems of coordinates. This puts restrictions on the transformatio n

properties of It is clear, e . g . from eq. (5), that Ti cannot be a tensor

density (of weight one) in arbitrary space-time transformations, but only

in linear (affine) space-time transformations, i . e . it can be an affine ten-
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sor density. Further it can be shown that in arbitrary spatial transfor-

mations, x" = f ` (xx ) , x' 4 = x4 , (t, x = 1, 2, 3), T4 and T4 can be scalar

and tensor densities, whereas T4 and T$ cannot be vector and tensor den-

sities .

Turning now to the question of determining physically reasonable trans -
formation properties of Tl,„f, we first consider the total energy and momentum

of a closed system

P~ = 1 T4 dx i dx2 dx3 .

	

(8 )

It is natural to require that this is transformed like the energy and momentum
of a free particle, i . e . as a vector, in linear transformations . This means
that Ti must be an affine tensor density (of weight one) .

Now consider the gravitational energy in a small, or infinitesimal, region .
It is clear that this energy will depend on the coordinate system used . Ac-
cording to the principle of equivalence it is possible to introduce a coordinate

system in which the gravitational field vanishes . In such a system all the

components of the gravitational energy-momentum complex, in particula r

the energy density, should vanish . The elimination of the gravitational field
requires the introduction of an accelerated (freely falling) frame , of reference ,

and hence the energy-momentum complex cannot be a tensor density i n

transformations to such a frame . The transformations involve time, but not
linearly ; so they are not affine . Thus it follows from the principle of equi-

valence that TI cannot be a tensor density in arbitrary space-time trans -

formations, whereas it can be an affine tensor density.

Within a given frame of reference, an arbitrary change in the spatia l

coordinates only will not eliminate or affect the gravitational field . It i s

then natural. to require that the gravitational energy in a spatial region b e

invariant in arbitrary spatial transformations x" = f'' (x'), x' 4 = x4 , (t ,
1, 2, 3), which simply amount to a renaming of the points of referenc e

(points with constant spatial coordinates) without any change of the rate o r

setting of the coordinate clocks . This is the case if T4 behaves like a scalar
density in such transformations . Further, if T4 is a 3-vector density, the

integrals in (2) with T = T4 and Tx = c 74 are invariant in spatial trans-

formations . In that case one may talk of conservation of energy in an y

region of space within a given frame of reference, regardless of the syste m
of spatial coordinates used .

The situation is different as regards the momentum . 71, T~ cannot be

vector and tensor densities in spatial transformations . Even if they were,
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the corresponding integrals in equation (2) would not have simple trans -

formation properties in such transformations (see reference 4, § 4) .

Thus it is possible, within any given frame of reference, to give a n

unambiguous interpretation, i . e . one independent of the choice of spatia l

coordinates, of the conservation of the energy in any region of space, provide d
T4 and 74 have the above-mentioned properties, but not of the conservatio n

of the momentum .

On the basis of these considerations we may set up the following trans -

formation requirements for consistent with eq . (6) being valid in all

coordinate systems :

1) Ti` must be an affine tensor density ;

2) T4, T4 must be scalar and vector densities in spatial transformation s

x" = f t (xx) x' 4 = x4 , (t, x = 1, 2, 3) .

Now, equation (6) is satisfied identically in all coordinate systems if on e

writes
Tif = _ 1cl

i
where

xz t = - xis

	

( 10)

With Ti restricted to second derivatives, xz t must be restricted to first -

order derivatives of the metric tensor .

Then TV will have the required transformation properties i f

1) xzt is an affine tensor density ,

2) ti4
A

, x4~ are vector and tensor densities in spatial transformations (x, A _

1, 2, 3) .

We shall now show that the superpotential xr formed from the metric

tensor and its first-order derivatives is uniquely determined by these trans -

formation requirements . Hence T1 is uniquely determined by the corres-

ponding requirements .

3. Spatially Covariant Expressions Containing First-Order Derivative s

of the Metric Tenso r

Consider the problem of forming a rational integral function of the

metric tensor and its first-order derivatives which is covariant in the spatial

transformation

(9 )

xt=f t (xr), x '4 =x 4, (t,x= 1,2,3) .

	

(11)
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The transformation coefficients for (11) are

= åa = 0,54 = 1 .

The first-order derivatives of the metric tensor can be written in term s
of the Christoffel symbols of the second kind and the metric tensor a s
follows :

gij , k - g i.rjk + gjmrink'
gij,

=
gim

rmk -
g9m

rmk

Any expression containing the first-order derivatives can therefore be writte n
in terms of the Christoffel symbols and the metric tensor . The problem i s
then to form a spatially covariant expression in terms of gik, gik and I'k l .

For an arbitrary space-time transformation the transformation law fo r
ri is (9 )kl

r i

	

i s t r
kl = ar ak al rsl -i- ar ak l

Thus FL is not a tensor in general, because of the second term on th e
right-hand side . This term vanishes when the transformations are linear ,
i, e . rkl is an affine tensor . For the spatial transformation (11) it is easil y
seen that the extra term vanishes if one of the indices i, k, 1 is equal to 4 .
Therefore

r4

	

i
, rol - rl4

are tensors in spatial transformations . Any expression containing only these
symbols (and the metric tensor) will be spatially covariant . This is not the
case with a general expression in FL, but it is possible that some particula r
combination of rkl will be spatially covariant . For that to occur the extr a
non-tensor terms in the transformation law for the expression, arising fro m
the extra term in (13), must somehow be cancelled . We shall now show
that this is impossible .

Consider first an expression linear in II, e . g. with a term of the type

Fla
gmn grs ,

where i, k, 1 $ 4. The transformation law for this term is

i ax 'i

	

ax"
t

	

4

=
axk :ax= a xx, a4

t
=a t =0, a 44 = 1

i

	

ax2

	

axt

åk = a
x'

k .CCx = ax,'x, a 4

(12)

(14)

(15)

(16)
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'mn
'

	

i' u-v m n
-

y

	

t wx
rxa

i
g grs at ak al aw a x ar asruv g gy z

+ a, ax
~t

, 1 awm n y ax ar asz g
wx

g y z

All the terms are symmetric in the same pairs of indices, (k, 1), (m, n) and
(r, s), and in no others . The only nontrivial way to cancel the extra ter m
is to subtract a corresponding expression where the indices in which the ter m

is symmetric are interchanged . Since all the terms of (17) are symmetric

in the same pairs of indices, they would all be cancelled by such a sub -
traction, and nothing would remain .

For an expression containing products of P the extra, non-tensor ter m

in (14) would lead to several extra terms in the transformation law, similar
to that in (17). Since, however, all the terms would be symmetric in th e
same pairs of indices, and in those only, it would be impossible to cance l

the extra non-tensor terms without cancelling all the others as well .

The only way to obtain a covariant expression is to make the extra term
in (14) vanish . For an arbitrary spatial transformation (11) this means tha t

only the Christoffel symbols given in (15) can occur in the expression .

4. The Uniqueness of the Superpotential x k 1

The considerations in section 2 led to the following requirements for the

transformation properties of the superpotential el depending on the metric.

tensor and its first-order derivatives :

1) xî
1 must be an affine tensor density ;

2) x4 '1 , x42 must be vector and tensor densities in arbitrary spatial trans -
formations .

Since x1t is to be a density (of weight one), it can be written

z =V -gXzl ,

	

(18)

where Xr is an affine tensor and X4 7> a vector in spatial transformations .
Being an affine tensor, Xt 1 must be a rational integral function of the metri c

tensor and its first-order derivatives .

In a spatially covariant expression for X4
1
there can only be one uppe r

and one lower index equal to 4 since X4 1 is associated with an affine tensor

of rank three, Xi1

A spatially covariant expression for X4 1 , antisymmetric in 4 and 1, mus t

be formed of the following quantities, and these only :
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r4 rn r

	

rl

	

g
gmn g 4 n gin

a4
Al

mn,1m , 4m

	

4m, gmn, 4n>

	

,

	

,

m and n representing dummy indices . g4l cannot occur since the expressio n
is to be antisymmetric in 4 and 1, and åm, , å4 would simply mean re -
placing a dummy index by 4 or another dummy index .

It is not possible to form X4 l from gik , gik , å alone, for a quantity formed
from these would always have the same number of upper and lower indices .
Every term must therefore have one or more Fki . Tcrins of the third or a
higher degree in ni cannot occur as they would have three or more indices
equal to 4. This excludes, according to section 3, terms of the third an d
higher degrees in the first-order derivatives . Terms of the second degree i n
ni cannot occur since it is impossible to form from a product of two Fki ,
the metric tensor, and the Kronecker symbol, a quantity with one mor e
index on top than at bottom . This excludes terms of the second degree in
the first-order derivatives. The only remaining possibility is to have term s
linear in the Fki , i . e . terms of the first degree in the first-order derivatives .

To form the quantity
~r41X

4
l 4

4 -

from the quantities in (19) and so that it is linear in the Fkl , consider first
the use of F,,n with m, n dummy indices . Interchange of 4 and 1 in ac-
cordance with (20) would give Fmn , which is not covariant . Hence the only
F's which can occur are IT., F4m and F4m . This, however, excludes g4n ,
å4 and 64 since there can be only one lower index equal to 4 . The quantitie s
left to form X4 l are then

rn r4 rl

	

mn

	

l n
4m , 4m, 4m , gmn, g ,

,4n
, g

The possible positions for 4 and 1 as upper indices are given b y

r4nm g
4 r gis,

4
r4m gis, ri m 9,4 r

Matching the dummy indices m, n, r, s in all possible ways, one finds thre e
expressions :

m gim, F4 m g4 m F4m g 4 1F4

	

•

The last one is symmetric in 4 and 1 and therefore cannot occur in X4 l

From the other two one can form only one antisymmetric quantity

X4 i ° a (F4m
g4rn_r

4m gim),

	

(24)

which is thus uniquely determined, apart from an arbitrary constant .

(19)

(20)

(21 )

(22)

(23)
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It is clear that the quantity

/

	

X4 1 = a (FL gnm-T4n gÀm)

	

(25)

is spatially covariant, as required .
Expressing the Christoflel symbols in terms of first-order derivatives o f

the metric tensor, one finds

4m l n
- 41 -a (g4n,m gom,n) g

	

g

The superpotential xi`d is then given by

(26)

xi = a j/ - g (Tim gkm -rm glm)

x¢l= a V-g (gin,

	

g in, n)
gkm gln

(27 a)

(27b)
or

This is just the expression derived by MOLLER, and it is thus seen to b e
uniquely determined by the two transformation properties given at th e

beginning of this section . It follows from Moller•'s work that the constan t
a is given by

a = 1/x = c4 /8 grk,

	

(28)

where k is the Newtonian gravitational constant .

It is now easily seen that it is impossible to form an energy-momentu m

complex Tik such that T44 is a scalar density in spatial transformations . To

do so one would put Tik = where el = - xiikand x441 must be a vector
density in spatial transformations . To form this latter quantity one woul d
have to use

Tmn gmn, g
mn g4m , g dn g 4 i

It is not possible to form it from gm, and g'nn alone, nor from products of

two hk l since there must be three free upper indices . Products of three or
more I xi would give too many 4's, so only a linear expression in I'k l re-
mains . Matching indices in

Tmn
gor

gds Tmn
g 4 l

one finds the following expressions :

Tmn g
4l gmn j'

mn g
4m gin .

(29)

(30)

(31 )

The index 4 in I'mn cannot be replaced by I in the process of forming
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x414 = y441 since r,nn is not spatially covariant . The expressions in (31 )

are symmetric in the remaining 4 and 1 so that an expression antisymmetric
in 4 and 1 cannot be formed from them . Thus it is impossible to form th e
required quantity x44 1

5 . The Energy-Momentum Complex of the Gravitational Fiel d

The energy-momentum complex of matter and gravitational field, Ti ,
can be expressed solely in terms of the metric tensor and its first- and second -
order derivatives . By means of equations (9), (27) and (28) Tk may be
written

k
`T i °

V -g /

	

1

	

km_

	

k

	

hn i (32 a )(rim, g

	

r-img .
) J, 1

or

T ~Tik =
	 g

	

km ln
(g in, 7n - g i., n) g

	

g

	

} 1 (32 b)

Tz can be split up into a matter part, 1/--g Tk, and a gravitational part ,
V-g td, as in equation (7),

= V- g ( T~ + t %) .

	

(7 )

This is, however, rather artificial and arbitrary since Tik can be expressed
in terms of the metric tensor and its derivatives alone, the matter variable s
being eliminated entirely from the expression . Further, T2 and t~ are not
conserved separately in a general coordinate system ; only their sum is con-
served. In general one has from (6), (7) and (5 )

(v g tk), k = - ( I/- g 7l) k =-
) y giTki

	

(33)

It is possible to introduce at any given point a geodesic coordinate syste m
such that g ik, l = 0 and therefore also P , = 0 at the point . As was first shown
by Fermi, it is also possible, for any open curve in space-time, to introduc e
coordinate systems such that gik 1 = 0 at every point of the curve. At points
where gik, 1 = 0, it is reasonable to talk of a matter part and a gravitationa l
part of TÉ since these are conserved separately at such points, i . e .

(V-gtz),k=(V-gT%`),k=o .

	

(34)

MØLLER has shown (6) that t can be written
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1
tki -2x R8~+tk

where

xti = (ril)
,

k (rl)
,
lri (gl,m

+glmr
mn) -rnrmgln

(rkl)' m = (rkl), ngnm

At the origin of a geodesic coordinate system, (36) is reduced t o

xt~ = (r'll)' k
-

(r
z l
k)' 1 .

By means of (37) and the relatio n

	

ri

	

ir r

	

kl

	

g

	

r, k l

(38) may be written

7L t~ _ [(rn,

	

m - (rm, il) , n~ ,y
m g l n

Since this expression depends on second-order derivatives of the metri c

tensor, ti will in general not vanish at the origin of a geodesic system o f

coordinates .
According to the principle of equivalence it should be possible, however ,

to eliminate the effects of the gravitational field at a point by a suitable

choice of coordinates . MØLLiR has shown(6) that where no matter is present,
i . e . where R = 0, tli does vanish at the origin in a large class of geodesi c
coordinate systems, the so-called normal or Riemannian systems. The

physical significance of normal coordinates has also been discussed by othe r

authors, who point out their correspondence to Minkowskian coordinate s
of special relativity(l° )

MØLLER suggested that it would be possible to introduce coordinate s

along a geodesic such that ti = 0 along it, i . e . t2 = 0 where no matter i s
present . This is physically reasonable, for it means that an observer falling
freely in a gravitational field can introduce coordinates such that the effect s

of the gravitational field are approximately eliminated in his neighbourhood .

It actually turns out to be possible .

In the appendix it is shown that for a geodesic in Riemannian space, 1 74 ,

there exist coordinate systems such that for every point of the geodesi c

rkl = 0, i,k,1=1,2,3,4,

	

(41 )

S (To), = 3 (rxa, µ + r r, + r,~u x) = 0 , x, 2, cc = 1, 2, 3 .

	

(42)
(x2u )

with

(35)

(36)

(37)

(38)

(39)

(40)
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The coordinates are called Fermi coordinates for a geodesic . The spatia l
coordinates x1, x2 , x3 are just Riemannian or normal coordinates in th e
hypersurface orthogonal to the geodesic since (see A16 )

x~ = zh`, ,u = 1, 2, 3,

	

(43)

where i'` is a vector at the geodesic in this surface and z is the arc lengt h
along a geodesic in the surface whose direction is specified by . The fourth
coordinate x4 is proportional to the arc length along the geodesic . For a
time-like geodesic it can be taken as c times the proper time. This coordinate
system is clearly time-orthogonal, and with the above choice of the fourth
coordinate one finds that g44 = - 1 . Thus

g 44 = - t (44)g4µ =0 ,
so that the metric is

(45)ds 2 = gm, dx ,'` dx v- (dx4)2 .

The Fermi coordinates are a special case of geodesic coordinates . From
(41) it is seen that

gix,t =0 , g;å=0 .

Equation (40) therefore holds in this system of coordinates . Since (41) an d
(46) hold at every point of the geodesic, it follows tha t

(rkd), 4=(rz kd),4 = 0, gik, l, 4 = g Zi, 4 = 0

because x 4 is proportional to the arc length along the geodesic . From (44)
one has

g41 = 0 and g44 = - 1 .

	

(48)

Using (44), (47) and (48), one finds from (40) that

t4 = -el = t~ = 0

	

(49)
and

xt~ =

	

a7), ,u - (ry, a), v] gx~ gRv

	

(50)

From the condition (42), satisfied by Fermi coordinates, it follows tha t

3 S (r2, x7 ), y _ (ra, xa), + (r2, ,ux), À+(r2, Ày), = 0

	

(51 )
(xÄa)

Putting i = t, one has

(rt, x7.), fti+ (r1, [ix), + (rc, ;41), x = 0 .

	

(52)

(46)

(47)
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From (41) it is seen that

r'i xd = 0 .

	

(53)

Equations (53) and (52) are the very equations satisfied by Riemannian

coordinates in 3-space. From these it can be shown (see reference 6, ap-

pendix B) that

(r~, x7.), ,u = (ru, ;a), •

	

(54)

Hence, from (50) and (54) one has

ÎL = 0 .

Thus all the components of the complex it vanish along the geodesic .

Where R = 0, i . e . where no matter is present, or only an electromagneti c

field, it is therefore possible to introduce along a geodesic coordinates suc h
that the energy-momentum complex of the gravitational field vanishes o n

the geodesic .
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Appendix

In this appendix it will be shown that for a geodesic in an affinely con-

nected space AN it is possible to introduce coordinate systems such that

Iki =O

	

i,k,I=1,2, . . ., N

3SIxl =1tiA +1'ßx R+F, l, =0,

	

x,A,,u = 1, 2, . . ., N-1

	

(A 1 )
(x), )

etc .

at every point of the curve. A complete proof for a general curve in AN has

been given by SCHOUTEN" . The present proof is a simplified version o f
his . Of course the results hold a fortiori for a Riemannian space VN .

Let the equation of the geodesic be given b y

Veô=fi (0) .

Consider the hypersurface orthogonal to the geodesic at the point Po
with coordinatesô . For a neighbouring point Q0 in this surface, with co -
ordinates there is a unique geodesic passing through Po and Q 0 . Its direc-

tion at Po is given by the vector

å=
( de'_

ti
dz

0 (A3 )

where z is an affine parameter on the geodesic . In a Riemannian space ,
z can always be taken as the arc length along the (non-null) geodesic.

The equation of the geodesic through PO and Q0 i s

d2i

	

i d~ k d~ l

dz2
+I'ka

dz dz
= 0 .

One may expand the coordinates of Q0 in a series as follows, puttin g
z = 0 at P0 :

(A 2)

(A4)



18

	

Nr . 6

+( dzloz+2 ! ~dz2il0z2+3 !d3iJOZ3+
. . .

	

(A5 )

Differentiation of (A4) gives

d3
3a = [(Fla)

i

	

d ~x d~l d~rn

	

i dz 2k d ~a l

-

	

' m
dz

	

dz dz dz
	 + 2I kl	

dz dz J

_- 1(rkl), m - 2 rklrmr~
de l' de d~m

dz dz dz

z
d~x dl d~ m

- - rkam
dz dz dz '

where
i

	

i

	

r i
rklm = S [( rkl), m - 21

1
1'1,1 .

(kam)

S is a symmetrizing operator defined b y

S Pklm = 3 (Pklm + Pmkl + Plmk + Pmlk + Pkml + Plkm)
(klm )

In general, S Pn.n, . . .nY is the sum of all p ! quantities Pn,ns . . .n with al l
(n, n : . . . n,,)

permutations of ni ne . . . n p , divided by p ! .
Then one finds tha t

dp ~ z

	

di;ki*d$kt

	

dekt

dz

	

rk . . .ktP

	

dz dz

	

dz

where

rk,kz . . .k}, =

	

S [(rkiks . . .kn-~), kt (P- 1 ) rk i ka l ka . . .kyr 1
(ki k ., . . . ka, )

The coordinates ei of any point Q0 in the neighbourhood of the geodesi c
can then, by (A5), (A9) and (A3), be expressed by the equation

= Ç ô + to z 2! rkl (tô) to to z 2 - i l'%lm ( , 0) t0
k to t0

rn, z3

- 1ri

	

(~ô) tô to tô tô z4 - . . . .
4 ~ L.

	

•

For every point Q 0 there is one vector tô orthogonal to the geodesic . If one
makes a parallel displacement along the geodesic from Po to a genera l
point P, with coordinates ei = fi (t), the vectors tp at Po go over into vectors
t i at P orthogonal to the geodesic. The vector t i will depend on the parameter
t of the geodesic and the parameters specifying the vector 4 . To every

(A 6)

(A 7 )

(A8)

(A 9)

(A 10)

(All)
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neighbouring point Q in the orthogonal hypersurface at P corresponds on e

vector t i giving the direction at P of the geodesic from P to Q. The coordinates

of the point Q can then be expressed by an equation corresponding to

(All) -

= fi(t)-~tiz - 2i

	

(t)}
tktlz2-3i

~klm{f(t)}
tktltmz3

1

	

- 4
	 ri

amn {fz(t)} t k tl t m tn z 4 - .

	

~

	

k

Nov at Po introduce N linearly independent vectors eV, e2 i ,	 eN such

that eV is tangential to the geodesic and emi , ,u = 1, 2, . . , N-1 are orthogona l

to it . The vectors ei span the orthogonal hypersurface at Po so that the vector s

to can be expressed in terms of them :

tô = t ,` e i ,

	

= 1, 2, . . , N- 1 .

	

(A13)

The tP will depend on the parameters specifying the vector to . If one makes
a parallel displacement along the geodesic from P o to P, the vectors eN
go over into N linearly independent vectors ef,, er, such that eN is tangentia l
to the geodesic and the em orthogonal to it . Thus the eis span the orthogona l
hypersurface at P, and the t i can be expressed in terms of them :

t2 = PR' eam
. (A 14)

Unlike the vectors e~, the to are independent of t, depending only on th e
parameters specifying the original to . This is due to the fact that the covarian t
derivatives of ti and em vanish along the curve .

The coordinates of a point in the neighbourhood of the geodesic ma y
then be expressed by the equation

f(t) - (t) -2i rka{t} r2t 'utveuk (t) ev( t )

rklm{t}Z 3 t~tv te e~(t) eÿ(t)e'Q'i (t )

4~

1 klmn { t} z4 tk` tv t-a e~ (t) ev (t) 1(0 e å ( t)- . . . .

The i can thus be given in terms of the N independent variables ztt`, t .
Thee are known functions of t, depending on the initial choice of e ,V . Along

the curve the .Pka are functions of t only .

(A15)
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Introducing a new coordinate system, defined b y

= ztµ, ,u = 1, 2, . , N-1 ,

rlv = t

we shall now show that the basis vectors of this system on the geodesic ,
i . e . the vectors along the coordinate curves or parametric lines, are the ver y
vectors em, eN already defined at every point of the curve . The coordinat e
system (r) is then defined at every point of the geodesic .

Substituting from (A16) in (A15), one has

f i (riv ) = r e~ (rN) - 2 I rka {rN} ru 7Iv
e~ (~7 N) ev ( N)

- 3 ~ ri am {nN) r rv r~ e',('e) ev
(rN)

el; (rN)

- 4 rkamn i'7n }
e

riv 77 e ?7 ? etc (nut) e ~ (rn ) eô ('7 N ) ec (nN )

The equation of the geodesic in the new coordinate system is

r/` = 0, ,u=1,2, . .,N-1 .

	

(A18)

The kt5 basis vector of the new system, i . e . the vector along the k th co-
aei

ordinate curve ri = coast ., i k, is a7	
k in the old coordinate system sinc e

aet

drkd =ark

	

. On the geodesic one finds from (A 17 )

(i)	

i
`-c(rN)

`
~a ~Tl

	

dd t = e (A19)
rFL o

	

~7 r1 P-o

which was to be shown .

Equation (A17) expresses the general coordinates ei in terms of the
particular coordinates r k . This equation holds for any coordinates

	

in

t =	 art

	

iparticular for i = ri . In that case one has e k ark = S k so that equation
(A17) becomes

r~ = f
i
(rN) +

r/I
~ ,''

-
~

j r~ i N} r'''rv

-

3

	 ~r~vP i rN } ri
y

rv r
n

4 ff
j~~ ~ { 'IN }

rvrP ro - ,

(A17)
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Differentiating this equation with respect to (7111, 17),

	

)f , )ie ), ()l(` , )', e, ~7 a)
etc., and putting )7 ," = 0, one finds that on the geodesic

I v {7J N} - 0

i

	

~
TµVQ {77 N ~ = 0

T'(tvQ(Y { 71 N} = 0 ,

etc .

Along the curve Shi = f i ( t) the covariant derivatives of the vectors 4 vanish
(k = ,u, N is not a vector index, but a label for the different vectors), b y
definition, i . e .

dz

	

i

	

f s

di
+I'rs{tJek dt

	

0

	

(A22)

or, by equation (A10),

(A21 )

det
dt +1' { t1 et elv = O . (A 23)

In the coordinate system (rl ) one has 4 = å . Therefore, in that system
(A23) shows that on the curve

rkN{'1
N } = 0, k = 1, 2, . . ., N.

	

(A24)

Nov, since Tyv = 0, one has

.11,De (~ ) [I

	

- 2 I , Iôr] c ß) T7,, , e

	

(A 25)

17",`

	

2

	

9' n2

]

	

2d = S [l7 ~~.GVQ, 6 -3 ` ~.t7~ 1 Q6T - S 1 "ve Q.= S l 7v

	

a .
(ttvoa)

	

(/"Q 6)

	

(,uvQa )

(A21) and (A24) -- (A26) it is then found that

I'Y 1 =0

	

i,lc,l=1,2, ., N

S

	

h~v =0

	

,u,v, . . =1,2, . . .,N- 1
((uvQ )

S r(tv,Q, =O ,
(µvoa)

	

etc .

at all points of the curve . The coordinates for which the equations (A27 )
hold are called Fermi coordinates by SCHOUTEN, for Fermi was the first to
show that coordinates can be chosen along any curve in Riemannian spac e
VN so that I'7ia = 0 at every point of the curve .

and

From

(A 26)

A27)
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