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Synopsis
LANDAU has shown that a non-ideal Fermi gas at zero temperature can sustai n

collective oscillations of the acoustical type (zeroth sound) . The present work con-
cerns itself with the attenuation of zeroth sound in a dilute Fermi gas with repulsiv e
interactions. The problem is formulated in terms of the Green function Csï which
describes the propagation of density fluctuations through the system . The simples t
approximation to ßS leads to Landau's dispersion law which is analyzed in some
detail . The contribution of the phonons' zero point oscillations to the ground state
energy is estimated, and shown to lead to a term which has an essential singularity
at the origin of the coupling constant plane. The energy and width of the phonon
are given by the poles in the spectral representation of and the location of thes e
poles is determined from the Fredholm solution of an approximate integral equation
satisfied by O. In this way it is shown that the width, divided by the displacemen t
of the collective state above the single-particle continuum of the free gas, vanishe s
linearly in the long wavelength limit . It is also shown that in the limit of extrem e
dilution the correct damping can be obtained by merely taking the finite lifetim e
of single-particle excitations into account, and ignoring the dissipative effects o f
the non-instantaneous interactions between the particles in the medium . Finally, i t
is also argued that the Fredholm method is the natural tool for discussing man y
problems in the theory of collective motion .
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Introductio n

ANDAU has shown (1) that a Fermi gas at the absolute zero of temperature

I, can sustain collective excitations provided the inter-particle forces have a
finite range and are predominantly repulsive . In the long wavelength limi t

he found that these excitations have a phonon spectrum, i . e ., an energy

proportional to their momentum, but that their velocity exceeds the classica l

sound velocity by V3 (1 +b), with ô depending on the strength of the force s

in a very non-analytic fashion . By examining the appropriate density matri x
LANDAU has also shown that the mode in question can he described by a

rather peculiar distortion of the Fermi sphere which is quite different fro m

what one would expect for an ordinary sound wave, and in order to em-

phasize these distinctions he has called this motion zeroth sound . If the
temperature of the system is raised, the damping of zeroth sound rapidl y

increases, as ABBIKOSOV and KHALATNIIiOV have recently demonstrated (2) •

In deriving the results just summarized, LANDAU employed the somewha t

semi-classical theory of Fermi liquids which he previously developed (3) .
This theory does not readily lend itself to a systematic study of correction s
to lowest order results, nor is it clear what approximations have tacitly bee n

made in order to arrive at these results . It is therefore of some interest tha t

Landau's findings have been retrieved from the more general field-theoreti c
formulation of the many-particle problem by GALITSIUI and MIDGDAL (4) ,

and by GLASSGOLD, HECKROTTE and WATSON (5) . From this work it appears

at first sight that Landau's approximations are essentially* the same as thos e
invoked in the theory of plasma oscillation of an electron gas (0-9) . As these

approximations are known to be strictly valid only in the high density limit
for an electron gas (10) , it is natural to ask whether Landau's results ar e
characteristic of the approximations used, or whether they will also be found
in a more accurate treatment .

In order to answer these questions we have investigated the correction s
to Landau's results for the case of a dilute gas. This is the natural syste m

* We use the qualification "essentially" because Landau's treatment automatically include s
a certain class of self-energy effects, and replaces the actual inter-particle potential by a scatterin g
matrix .

1*
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to choose for this purpose, since one can hope to make systematic expansion s
in the small parameter k F ao (kF being the Fermi momentum, and ao th e
scattering length associated with the inter-particle forces) . One then finds a

complex correction to the phonon energy, the imaginary part representin g

the decay (or damping) of the highly organized motion into more complicate d
excitations. This damping is found to vanish in the long wavelength limit,

and Landau's conclusions are thereby substantiated .

Unfortunately our considerations cannot be applied to any existing
physical system without greatly transcending our basic approximations . 1-lea

is, from our point of view, a very dense liquid, and a semi-phenomenologica l

theory such as Landau 's appears to us the only possible way of describin g
this system. Nuclear matter is a much more dilute Fermi gas, but in nuclea r

physics the problem of practical interest is the collective motion of a finite

system, with the attendant breakdown of translational invariance . In view
of these remarks, the work presented here constitutes a contribution to th e

mathematical physics, but not the theoretical physics, of many-body systems .

In Section II, the problem is formulated in a general way, and an integra l

equation for the Green function which describes the propagation of density
fluctuations is derived . The phonon's dispersion law in Landau's ap-
proximation* is discussed in Section III, and the phonon contribution t o

the ground state energy is estimated ; it is shown that the ground state energy
has an essential singularity at kF ao = 0 . A systematic discussion of damping

by means of the Fredholm theory is presented in Section IV . As we shal l

see, the Fredholm method is the natural tool for investigating the dispersio n

law of any collective motion, because it leads directly to the poles of Green ' s
function in the complex energy plane . The method is, moreover, ver y
practical because the diagonal terms in the Fredholm determinant exist in

the many-body case, and do not have to be eliminated as in three-dimensiona l
scattering problems .

II . Formulation of the Problem

A. The Response to an External Fiel d

The most natural way to formulate the problem at hand is to ask for th e

response of the system to a time-dependent, externally applied field F(t) .**

We shall assume that the resulting interaction Hamiltonian W(1) is linear

* For an elementary account of this matter, see ref . e3 )
** This approach has, of course, been used by many authors . Cf., e .g., references ( z- '°)
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in F (t), and that F (t) can be made weak enough for the Born approximatio n
to be valid. We shall, furthermore, assume that F (t) interacts with the
particles of the target one at a time, that is to say, we assume that W(t)
is a sum of one-particle operators . In the case of H e 3 , for example, an external
field satisfying our requirements would be provided by a beam of light (15) ,
a magnetic field, or perhaps by the interaction with cold neutrons .

Since W(t) is assumed to be linear in F(t), we can restrict ourselve s
to an external field having a single frequency w and one wave number q,
in which case W(t) _ {Wq,

w e i cot + h.c .} . In terms of second quantized
operators we shall write Wq w as*

Wq w = (d3x) ei' • x z{' t (x) [Fgo)w +
a •

Fgl)wl
y (x)

	

(1)

F go1 and F411 w are the parameters which characterize the interaction . Thus ,
if we apply a magnetic field {Ha, w e i ( (I ' x-w t) + c.c .) to He 3 , Fq°), = 0 and
Fq° 1r„ _ ,uHq, w , with ,u the magnetic moment of the Hei nucleus, whereas
for neutron diffraction

~°) ^
~

F

	

(as + 3 at ) ,

F(1 ) ^ 1 a- a4(t

	

s) n >

where a s and at are the singlet and triplet scattering lengths, and an is the
neutron's spin vector . If we choose the spin quantization axis of the targe t
particles parallel to F (1 ), we can rewrite eq . (1) as

Wq , - V2 Ç d3 x e i4 ' x [Fg) ,, eo (x) -F Fgl)w e1 (x) ] ,

	

(2)
with

o(x)_I (x)vT(x) -F 4ÿ(x)vy(x)1,

	

(3a)

(x) °
v2

P
VT

(x) PVT (x)- PVT (x) yy (x) }

	

(3 b)

The density operators eo and e l are, respectively, scalars and vectors in th e
total spin space of the target ; if we restrict ourselves to transitions out o f

*

	

(x) destroys a particle with spin s at the point x, is the Pauli matrix, (cis x) in -
dicates integration over all space, and a sum over spin indices . Frequently, the spin variable s
are suppressed . Of course, eq . (1) is not the most general form Wq w can have, since we
assume that the interaction is both local in x-sp ace and velocity-independent . A more general
form for W q would only lead to tedious complications which are completely irrelevant to ou r
consideration .
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a ground state with total spin zero, this means that the states which can b e
excited by eo and e l are, respectively, singlets and triplets, and therefor e
incoherent .

We define the response of the system, i (qw), to be the total transitio n

rate out of the ground state 10> induced by the external field . Thus ,

(gw) = To(qw)+ Nl(gw),

	

(4)

with (h = 1 )

T.1 (g w) =4 a FewI 2 ~, 8 (w -En)I< iid3x C2 (x) e ~ q I0> I2 •

	

( 5 )
n

Here, I n> is an exact eigenstate of the system with excitation energy En .

For purposes of calculation, and also for intuitive considerations, it i s
very convenient to express NÂ as a ground state expectation value . This may
be achieved by introducing the autocorrelation function of the densit y
fluctuations

(q w) = - i dt

	

ç d xd 3 x

	

< (à (x , t) å eA (x'))+ %o,

	

( 6 )
~J1 pp

where ( )+ is Wick's time ordering symbol . The time-dependent density
fluctuation is defined a s

6 ga . (x , t ) = eixt
PR (x) é

iHt -
< PA (x) > 0 ,

where H is the Hamiltonian of the target (in the absence of the externa l
field) . If w �- 0, 8 9 may of course be replaced bye itself in (6) . Upon rein-
troducing the eigenstates I n> of H, (6) becomes

03' (q w) = lim

IS

	

rj~o

	

w -En +

I<nlJd3 xe-ig-xg (x)~0>I2
+2TCi(w) I <d3 e iq ' x P À. (x) >o 1 2 .

w +En -iri

Comparing eq . (5) with eq. (7), we have

N2 (gw)=-4IFq , I2Imß3~Ow )
if w > 0 .

According to eq . (7), the poles of 0;, (q co) lie at the system 's excitation
energies (resonant frequencies), while the residues at these poles are pro -

I< n ~ S d3 x e
ig x P~ (x)

I O> I 2

(7)

(8)



Nr. 13

	

7

portional to the transition probabilities for exciting the corresponding states .
If the system is a free Fermi gas, these poles are confined to the region o f
the q- w plane bounded by the curves w (q2 /2 m) = qkF /m . The residues
at these poles are squares of single-particle matrix elements, and therefore
independent of the number of particles N.

Q(q,w)

,,,,,,\\\\\\\\\\\\\\\4
C i

SZ q
Fig . 1 . The response as a function of w for fixed q is sketched here . The shaded portion sho w
the response in the absence of interaction, and we is defined by eq. (33) . The collective resonant

is centered at Q .
q

When the interactions in the system are turned on, C~ij(q w) acquires

singularities throughout the entire q- w plane, the residues at these new
poles being in general quite small if the interactions are weak. In the ap-
proximation of Landau (and Galitskii - Migdal), however, only a line o f
new singularities appears, but their residues are anomalously large . They
therefore correspond to states having transition probabilities out of th e
ground state which are vastly greater than the single-particle probabilities
mentioned earlier, and it is therefore natural to call these collective ex -
citations .

A more accurate treatment exhibits the other singularities, and th e
the huge residues of order N are spread over many poles in the vicinity
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of the line of singularities discovered by Landau . For fixed q and as a function

of w, ~t (q w) then has the form shown in Fig. 1, with the sharp resonance

centered at Qq coming from the collective excitation .

B . The Propagation of Density Fluctuations

We now turn to the evaluation of (i)(q w) . It is not possible, in general ,

to find an equation which determines Cbj(gw) itself*, and it is necessary t o

consider the most general 4-point propagator**

(Pl s 1 , P2 s 2> P3 S 3 , P4s4) =
(2

7r)-8 d4 xl . . . (1j4 x4 e-t (P, xi -Pz' xe+pa xa Pa' xn )

.< (vs, (xl) vs, (x2) vse (x3)

	

(x4))+>0 .

The physical significance of the expectation value in eq . (9) is quite clear :
when t1, t 2 > t3 , t4, it represents the probability amplitude for finding a

"particle-hole" excitation superimposed on the true ground state at (x l , x2) ,
if such an excitation was originally prepared at (x 3 , x4) . The relationship

between the function defined by eq . (9) and

	

(q w) will now be given .

First, note that translation invariance requires eq . (9) to contain the factor

å (pl-P2 +p3-p4) ; it is therefore convenient to introduce the variable s

P = (Pl +P2)/2 , P = (P3 + P4)/2 , P = Pi - P2, P' = P4 - P3 •

Functions which describe singlet (2= 0) and triplet (2 = 1) excitations can
now be defined throug h

8(P - P')(il-2,(PP ;P)='<201-s1s2MPlsl, . . . , P4s4)<-s3s420>, (11 )
s, . . .se

`where <20 I s s ' > is the usual Clebsch-Gordan coefficient for spin 1/2 . Again
because of translation symmetry, it is more convenient to conside r

* In Hubbard' spapers on the electron gas (7) , an equation which employs the notion of ir -
reducible polarization parts is derived for di ' (gw) itself. We, however, are concerned with strong ,
short-range forces, for which direct and exchange diagrams are of the same magnitude, an d
which, moreover, must be represented by a rather complicated pseudo-potential (see Figs . 3
and 4, and eq . (24)) . Therefore, it does not appear to be possible consistently to define simpl e
polarization parts, and a technique such as the one described here seems to be required .

** Our notation is : x = (x, 0, p = ( k, s), x • p = x k-si, and )p(x) is the Heisenberg operator
euny (x) 1Hti

(10)

(9)
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(s ip (x) = - i (2 703 S d4x e-iY
a < (ed (x) ea (0))+>o,

	

(6')

= (q, co) being the 4-vector of momentum transfer ; since x = 0, the relationship
between eqs . (6) and (6 ') is simply lj (x) = (V/8n') 133Å(x), where V is the

volume of the system . Upon comparing eq . (6 ') with eqs . (9) and (11), we
arrive at the required connectio n

=

	

_

	

_
(x) 2ni~+d4p~+d4p(pp~x) .

	

( 12)

The subscript "+" on the integral signs indicates that in carrying out hte
integrations over the energy components of p and p the contours are to b e

P6

	

p 5

	

P6

	

P 5

(a)

	

(b )
Fig . 2 . The definition of 11(15 ; 26) . Double lines represent the "dressed" propagator G (p) .

closed in the upper half plane ; this prescription produces the correct se-
quence of equal-time field operators as demanded by eq . (6 ' ) .

As GALITSKII and MIGDAL have noted, the function defined by eq . (9)
satisfies the identity (16-18 )

03 (12 ;34) = (°(12 ;34)+G(l)G(2)E(15 ;26)0i(65 ;34)(d4p5)(d4p6 ) ; (13)

here G (p) is the one-particle Green functio n

and
G (p) = - i 5 d4xe-ip'x <(v(x)v t (0))+> ,

	

(14)

0° (12 ; 34) = G (p2) G (p4) [ S (p2 p3) å (pi-p4)-- å (P1-P2) å (P3 -p4) ]

The kernel (15 ; 26) is the sum of all diagrams of the type shown in Fig .
2(a) which cannot be reduced to diagrams like that shown in Fig . 2 (b) .
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If the interparticle force v is weak, the leading contribution to this kernel
is just proportional to the matrix element (15 v 26) . When the forces ar e

strong, but have a range small compared to the mean interparticle spacing,
E can be expanded in powers of the free space scattering amplitudes . We
postpone a more detailed discussion of 3 for a moment, because it is possibl e
to effect a considerable simplification of eq . (13) on general principles'* .

Invariance considerations immediately lead to the conclusion that* *

'~' (P1 S1, P5 S 5 ; P2 S2 , P6 S6 )

- a (Pl+P5-P2-P6)< s1 s 5~ SM > ES(P, P' ; P)<SMls2s6>,

	

(15)

with

	

S M

P = (P1-P5) /2 , f' = (P2 -P6) / 2 , P = Pi +P 5

Therefore, if we change variables according to eq . (10), employ eq . (15)
and the inverse of relation (11), and integrate over p', we find that eq . (13)
reduces to

with

	

(P x) =

	

(p
01

1+ (Pp 'Re ) (PIP ')

	

(P' ;1,

	

(16)

(p ;

	

= 1+ d 4T) ~~. (PP ; x)

	

(17 )

(P ;x)=G(P+2x)G(P-2x)•

	

(18)

The kernel in eq . (16) is related to the functions defined by eq . (15) through

Rx°) (P I p') = 1/2 ( 3 El (Qi , Q2 ; Q) + ûo (Q1, Q2 ; Q) } ,

RP (PIP') =1 /2 ( Ei (Q1,Q2 ;Q)- Eo(Qi,Q2 ; Q) ) ,

Q1 = (P-p' +02 , Q2 = (p-p'-x)/2, Q = p + p' .

Eq . 16 is our basic equation ; its solution 'b (p ; x), after integration ove r
p, gives us the desired quantity 02 (x) from which we can immediately
deduce the response . The reader will have noted that eq . (16) has the sam e

* In ref . (4 ), a homogeneous particle-hole wave equation is derived from eq . (13) . As GELL-
MANN and Low ü 71 have pointed out, such a wave equation exists only if the eigenstate in question
is a discrete one (e . g ., the deuteron in the meson-nucleon system) . In our problem, the collective
mode is degenerate with a host of more complex excitations (i . e ., it is damped), and so the
Galitskii-Migdal equation (their eq . 40) only holds in the no-damping approximation. Our
procedure is always valid, and is, in fact, just as easy to work with as the particle-hole wave
equation .

** Here we assume that there are no tensor or spin-orbit forces, i . e ., that the system's tota l
spin vector is a constant of motion .

and (x � 0)

with



structure as the integral equation for a two-particle Green function in norma l
scattering theory . Loosely speaking, 02 (p ; x) describes the propagatio n
through the medium of a particle-hole pair with total 4-momentum x, re-

lative 4-momentum p, and spin 2 . It is impossible, however, to extract a

complete orthonormal set of particle-hole wave functions from Oh. (p ; ) .
It is of course not possible to solve eq. (16) with arbitrary kernels, an d

approximate solutions must be sought . But the approximation techniqu e

must be capable of producing resonances in the response, and ordinary
perturbation theory is therefore ruled out . (In fact, as we shall see in th e
next section, the ground state energy itself has an essential singularity at
the origin of the coupling constant plane .) The Fredholm method (19) , on
the other hand, constructs the solution as the ratio of two entire function s
of the coupling parameter, and is therefore well defined even if OA (x)
is not an analytic function of the coupling constant. The Fredholm solutio n
reads

% (x) = II(x)	
k(%)

2ari `~,t(x) '

H(x) 2ari
Ç 4PG (P+ x/2) G (P- xl2) ,

with

(20)

(21 )

G'0%A (x) _ Y~t~n~ (x) , zd ( x ) =
n

z(n)
(x) ,n-l (22)

9rql 1 ( x ) Ç d4p S d4P' &° (P ; x) Rx~`1 (P I P ' )

	

(P' ; x),

	

(23a)

9-t (2)
(x) _ d4p Sd4P'd4

p„

	

(p ; x) Re' (p I p') 0(°'(n' > x) RP (p' I p")

	

(P" ; x)J+
(x)

	

,

(p ; x) Re ) (p I P) 0
° (p

; x) R~7`)
(P I P ' )

o° (P ' ; x) RP (P ' I P)

	

(P ' ; x) RP (P' I P')
etc .

We now return to a closer specification of E, and thereby of the kernel s
of eq. (16). As stated in Section I, we shall be interested in the dilute gas ,
and so an expansion of E in terms of free scattering amplitudes is required .
For this purpose, we introduce the T-matrix in the ladder approximatio n
(see Fig. 3) ; this quantity plays the role of a non-singular pseudo-potentia l

VP (x) d4p (P ; x) RP (PIP) ,

`,ij > (r) - 1/2 `dop d4p '

(23b)

(23e)

(23d)
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--•
k 2 + W 2

+

k3,w3

	

k 4 ,W 4

Fig. 3 . The T-matrix is represented by the shaded vertex, and the two-particle potential v b y
the heavy dot. The T-matrix is the sum of all the diagrams shown. The single lines in this figure

represent the free-particle propagator Go (p) defined by eq . (27) .

(a)

	

(b)

	

(c)

	

(d )

Fig . 4 . The two lowest order diagrams contributing to the kernel are shown in (a) and (b) .
The second order diagrams (c) and (d) are not to be counted because they are already include d

by the integral equations for 0(p ; x) and the T-matrix .

in terms of which expansions can be carried out, the lowest contribution s
to E being those of Figs . 4(a) and (b) . To each T-vertex there correspond s
a factor <k1 s1 k2s2 T (E) k3s3 k 4 s4 >, where k1 s1, k 2 s 2 (k3 s3 , k4 s 4) are the
momenta and spins of the lines leaving (entering) the vertex, and E = w1+ w t

= w3 + w 4 is the sum of the energies entering or leaving the vertex . Now le t

k = (k1-k2)/2 , k ' = (k3-k4)/2 , K= k1 +k2 , and

< k 1 sl k 2 s2 T (E) k3's3 k4s4 !
å(k- k3 - k

(2 :,T) 3 < s1 s 21 SM ) <kl
Ts(E,

K)k i<Slbls3 s4 ~ .

We wish to express <k T I k' > in terms of quantities which describ e

the free-space scattering . The most convenient parameters are the amplitudes
fs (k I k ' ), which are related to the center-of-mass differential cross section s

for unpolarized particles throug h

SM
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2
dokF k' l 1 /4 Ifo (k I k') 1 2 +3 /4 lfi (k l k' )1 2 1( 47-r1

d ,Q .

If these f' s satisfy outgoing wave boundary conditions at infinity, then th e
relation

k ' ) - -m

	

fs(kIk„) f's'	

(k/

	 I	 k")
k' 2 -k"2 +IYI

Sm

	

(k ~~ )

	

-> (k„ )
+ 1/2

	

d3k„	 x	 	
fs (k I k„) f(k' I k") (24)

rnE- 4K 2 - k„2 +t~? rnE-4K2 - k 02 -i~

gives the T-matrix correctly to second order in f('')) . The other new symbols
are

Ak) (k) = 1 (K/2 + k) O± (K/2 - k).
with

O+ (k) = 1-O_ (k)

1 if k>kF

	

(25)

0 if k<kF

The factor 1/2 in front of the integrals in eq . (24) is due to the fact that our
amplitudes are already antisymmetrized : if primes denote unsymmetrized
amplitudes, then

fs(k I k' ) = fs(k I k') +( - 1)s f's (k I -k') .

We arc now in possession of the formal apparatus required for ou r
investigation. We begin by summarizing the situation when damping i s
ignored .

III . The Undamped Approximation

A . Collective Frequency and Cut-off Momentu m

The inhomogeneous term 03° (p ; x) of eq. (16) has branch cuts along th e
entire real axis of w, and therefore the solution of this equation must b e
expected to have the saine analytic property, no matter what approximatio n
for the kernel R is used . In physical terms, therefore, eq . (16) has no un-
damped solutions . This is of course due to the fact that the single-particle



14

	

Nr . 1 3

propagators G which we have used describe " dressed quasi-particle" ex-
citations which are themselves damped . if we are to get undamped solutions ,

we must therefore replace 0 0(p ; x) by

1 \

	

(

	

1 1

	

f (p ; x) = Go p+ 2 x)Go p- 2 x1,

	

(26)

Go (p) = Go (k , a) -

The lowest order contributions to the kernels of eq . (16) are linear in
the f's, and therefore arise from Fig . 4(a) . They are simply

Rn°j(plp') =

	

i(2 7c) 4 { 3 fi(QiIQ2)+fo(Ql IQ2)j,

	

(28 a )

RP (p p') = -21 i (270' { t (Q1I Q2) -fo (Qi I Q2)} ,

	

(28 b )

the Q' s being the spatial parts of the 4-vectors defined by eq . (19 '). The

momentum transfer involved in these scattering amplitudes is q, which i s
always small compared to kp (long wavelength disturbances) . From eqs .
(26) and (27) it follows that k and I k ' I lie in the vicinity of kp, and

therefore I Ql kp, j Q 2 I < kp . Hence in the dilute gas, where the effectiv e
range is small compared to 4 1 , we can replace the amplitudes in eq. (28)
by their zero-energy limits . Since f1 only contains states with odd angula r
momentum, we have

fl ->- 0 (29 a)
in this limit, whereas

fo-,
8

	

ao, (29b)
m

ao being the conventional S-wave scattering length (21) . With these simpli-
fications eq . (16) becomes trivially soluble ,

	 -no(x )	

with

	

% (x) =
1-(-1)2 (ao / 2 z2 in) Ho (x)

,

	

(30)

Ho(x) = 1/2Jeid4p Go(p+ x/2 ) Go(p-x/2) .

	

(31 )

Note that eq . (30) has the same structure as the Fredholm solution (20) o f
the complete equation .

where Go (p) is the free-particle propagator,

	 (k)	 +	 0- (k)	

E
2m lk12+irk e-

2 1n
Ik12-in

(27)
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According to our previous discussion, the resonant frequencies of the

system are determined by the poles of 6 ,t (x), i . e ., in present approximatio n

by the condition

1
- ( -1)

A
2z

2
m

H
o(x) -

The solution of this equation has been extensively discussed in the literature

for the case of Coulomb interactions (7-9) . We recall that @52 (x) is an even

function of w, and so we can confine ourselves to w > 0 ; it has a cut along

the real w-axis when co < co,, where

qkF q 2
w c =

	

+
m 2 m

This cut corresponds to a perturbed continuum of simple "particle-hole "

excitations which is present whatever the forces, and is of little interest t o

us. If, however, (-1)2 a0 >0, another isolaled solution of eq . (32) can exis t

for w > co, . This is because H0 (q, w) has the propertie s

	

a170 (q,	 ~

	

(34)

	

aw

	

< 0 , Ho(g , w)w-~a 0 ,

when w > w e . The explicit form of eq . (32) for w > co, is

1 = ( -1)2' (kF ao/ n) A (q , w),

	

(35)

w w ,
(q,w)=

	

F ((w+wo2(3 -we)ln
w-wo

+(w->- w)
q

	

(36)

w 0 = q q2 /2 .

In eq. (36) and all subsequent formulae of this section, momenta and energie s
are expressed in units of kF and (4/m), respectively .

We are only interested in the case ao > 0, since for negative scatterin g

lengths superconductivity is to be expected, and then the whole theory

developed here is certainly not valid* . Thus we have a collective root only
for spin singlet excitations . From eq . (35) we find that this root exists pro -

vided q< q°, the cut-off momentum being given b y

with

* Unlike GLASSGOLD et. al. (5 ), we only find a complex root if kF ao <- n/2 . It is therefor e
clear that these pathological roots bear no simple relation to the occurrence of superconductivity ,
since they only appear when the forces are extremely strong.

(32)

(33)

Im1Io(q,w)=0, I70 (g,w)>0,
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kF ao
g° = 0 .736 e-11~,

	

=

	

,

when « 1 . The collective root has the phonon form as (q/q°) -'- 0 :

Qqq°

	

q { 1 + 0 .270 e-11E [1 + 0 .309 (q/q°) 2 + . . .1} .

	

(38)

A plot of the phonon energy in the weak coupling limit will be found in Fig . 5 .
Another quantity of interest is the excitation probability of the collectiv e

state . We recall that this probability is proportional to the residue of O A (x)
at the phonon pole. A simple calculation yield s

q

	

50 nq e -1I ~q

for this residue, n = (kF3 /3 ßr2) being the density. Furthermore, %->- 0 a s
q->

	

as is to be expected .
A word concerning the accuracy of eqs . (37) and (38) is in order here .

It is, of course, an easy matter to compute the leading correction terms t o
these expressions ; for the extreme case kF ao = 1 (i . e., = 1/7r), we then
find that eqs . (37) and (38) are in error by 9 and 7 per cent, respectively .
Furthermore, Fig. 5 reveals that eq . (38) reproduces the actual q-dependenc e
quite well for the entire range below q° . We therefore conclude that eqs .
(37) and (38) adequately characterize the collective root in the present ap-
proximation for all reasonable values of the scattering length ao .

On the other hand, once we depart from the extreme low-density limi t
( 0), the approximation of eq. (29) must be modified, and then th e
simple solution (30) is no longer valid . We shall therefore resort to th e
Fredholm solution as given in Section II . If we retain the kernel given b y
eq. (28), we find that the .I = 0 secular equation i s

1 - 16
1

7L3
[fo (q/2 I Q/2 ) - 3 fi (g/2 I q/ 2)] ~o (x) = 0

	

(40 )

instead of eq . (32) . The contribution from the second Fredholm determinant,
eq. (23d), has been neglected here because it already leads to a result o f
higher order in than we shall obtain from eq . (40) . We now expand thes e
forward amplitudes about q = 0. Retaining terms up to q2, we find tha t

1 =( + g2 C) A ( q , w)

	

(41 )

replaces our previous eq . (35) . Here

(37 )

(39)
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C
4 7c kF (~

roap-aå- 3

ro being the S-wave effective range (21) , and a 1 the P-wave scattering length
(i . e ., the P-wave phase shift år - - (ga l)3 as q-> 0) . In deriving eqs . (41 )
and (42) we have only kept the real parts of fs (qf 2 j q/2) . The imaginary
parts of the amplitudes should not be taken into account in the presen t

0 . 5

0 .4
~--~

i 0 .3
o C

`-.- 0 . 2
~

0 .1

0
0 . 5
q/q c

Fig. 5 . The phonon energy S24 as a function of the momentum q can be obtained from this graph .
The abscissa shows q divided by the cut-off momentum (the latter quantity being given b y
eq . (37)) . The ordinate is 0

(~4 -1 exp ( 1 ls~) ,

where 520 is the solution of 1 = A (q, S2°° ) , i . e. it does not include the parameter appearing i n
eq . (41) . The present curve is therefore "universal" in the sense that it gives .(20q or all kv a0 !( 7t .
The broken line indicates the top of the single-particle excitation continuum in these variables ,

i. e . (coc q
-1

-1) exp (1/) = 0 .368(q/q0c ) .

no-damping approximation ; the reason for this will become clear i n
following section (see discussion following eq . (58)) .

From (4) we readily find that the cut-off momentum is now

o f
qc =q, 1+q°(1+ 2 +-2(4)2+0((gc°)3)} ,

whereas the collective state lies at

(42 )

1 .0

the

(43)

2

	

0

	

\
S2q =q {1+2ao[l+eo ç 5+ + z

+ .30 9

~

	

(~

	

(qc)/
q 2 + . . .1} ,

Mat. Fys. Medd. Dan.Vid . Selsk. 32, no. 13 .

(44)

2
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with eo = exp (- 2- r 1 ) . It is important to note that for all reasonabl e
values of and C the cut-off q, lies well below the Fermi momentum . For ,
even if we take a rather dense gas with kF ao = 1, we find that q° = 0 .032 ,
and so the parameter C, which contains the P-wave and the momentum -

dependent part of the S-wave, has a very minute ef fect on eq. (43), the same
being true of eq. (44) .

B . Phonon Contribution to Ground State Energ y

The contribution of the phonons ' zero point motion to the ground-stat e
energy can be evaluated by using the variational principle and invoking th e
well-known connection between the frequency integral over the respons e

and the equal-time pair correlation function in the ground state . The ground-
state energy per particle is then ( ' )

d3 q	 'A (q . w)(Eo / N)
4 icn

	

(2 7c)3 d
co

1 -' A (q, co) '
o

	

+

whence the contribution of the collective pole i s

1 de' d 3 q	 ~q(~' )
(Eo I N)cou•- 2n $' (2Z) 3 27ckFm '

0

where Rq O is the residue at this pole. One obtains an upper limit to this
integral by assuming eq . (39) to be valid for all q's, and cutting the q-inte-
gration off at q° . One then finds

(Eo/N)con. < 0.005 e-51 (4/2 m) .

(The s-dependence of the exact result for (Eo/N)eoll . is of the same form
as this upper bound .) This contribution to the ground-state energy is, o f
course, completely negligible for all practical purposes . Nevertheless it does

show that the ground state energy of a hard sphere gas has an essential singu-
larity at the origin of the coupling constant plane, a result which is hardly
surprising if one recalls that changing the sign of = kF ao/7c leads to a

drastically different physical system - the superfluid .



Nr.13

	

1 9

IV . Attenuation of Zeroth Soun d

A. Definition of the Complex Phonon Energ y

We now consider 0 (q, z) as a function of the complex variabl e

z, with w = Rez . According to the spectral representation (7), (1(q, z) ha s
the following properties : it is analytic throughout the plane except for pole s

and cuts along the real axis ; across these cuts Im 0 is discontinuous while

Re OS is continuous ; it is an even function of z ; for w > 0, Im OS < 0 as z-y w + i0 .
We recall that eq . (7) follows directly from the definition of 0, and therefor e

the preceding statements are generally valid . It is also clear that the excitatio n

energies E. entering eq . (7) will extend to infinity, and that for a large system

they must be expected to form a continuous spectrum . In our case, therefore ,

O (q, z) should have cuts along the entire real axis* .

In the approximation considered in the last section, (1(q, z) was found t o
have a cut in the interval -W C < Re z wc , and simple poles at z = + s-4' .
The manner in which these results will be modified by higher approximation s

can be seen most easily by retaining the simplest kernel in the low-density
limit, eq. (29), but leaving the dressed single-particle propagators in th e
inhomogeneous term of eq . (16) . Instead of eq. (30) we then hav e

(j (g )	
H(q,z )z

1 - (aa/2 7c 2 m)17 (q, z) .

This solution already has the infinite cut, because Im Il(q, z) is discon-
tinuous along the entire real axis . In fact, H (q, z) can be easily evaluated
in terms of the spectral densities q- (p, e) appearing in the representation (4)

G (p , e) - d e ' (	 P+ (p,	 (p,e')	
.,Q

	

e - ,G e ' + i7? e- ,cc +e' - '

where ,u is the separation energy (i . e ., the chemical potential) . According
to eq. (21), therefore ,

II (q , z)+3p~ de 1de o +(1% +R'I, E ) q-(p, e' )(	 1	 ---	 1	 ) .

	

(47 )
p

	

z -e-e' z +e+e'

The densities p 1 (p, r) are real and positive definite for real e, and satisfy

the relatio n

* Since we shall only interest oursel ves in the singlet excitation (R = 0) we drop the sub -
script R henceforth.

(45)

(46)

2*
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da [e+ (p, e) +e-(P, r)] = 1 .

Thus, H (q, z) has the analytic properties listed in the preceding paragraph,

and therefore the same holds for eq . (45) . In other words, the poles a t
z = +2q° have now disappeared. However, since -Im II (q, co + i0) is smal l
(actually 0 (f2), as we shall see) when w 2 > 04, the denominator of eq . (45)
nearly vanishes if, for some S4> 4 ,

	

1- (ao /2 zc 2 rn) Re TI(q , 2q) = 0 .

	

(48)

When this is the case, the discontinuity of 0 (q, z), and ipso facto the re-
sponse, will have sharp resonances (see Fig . 2) of approximately Lorentzia n
shape centered at Re z = ± 2q , with 2q near 12: since Re (H-Ho) is also

small . The parameters describing the line shape are then identified in th e
standard way with the energy 2 q and width rq of the phonon. The solution

(q, z) that we shall find can be used immediately to determine the actual

shape of the absorption line (i . e ., the deviations from the Lorentz form) ,

but we shall confine ourselves to the evaluation of the parameters S2q and Pa .
As is well known (4 ' 9 ' 22) the occurrence of a resonance is associate d

with a pole in the analytic continuation of (si (q, z) from Im z > 0, Re z > 0 ,

onto the next Riemann sheet in the lower half plane, the location of the
pole being z = 2q-'/ 2 irq + 0 (rgl2q) . This continuation can be effected
easily by means of the Fredholm solution (20). All we need do is to evaluate

Z (q, z) as a power series in z about some point in the first quadrant o f
z-the obvious choice being the zeroth order collective frequency 2 q°, + i0-
and look for a root of Z (q, z) = 0 with Im z< O . The Fredholm method

has the additional advantage of providing Z (q, z) as a power series in the
coupling parameter, since the kernel R,, (p I p') of eq. (16) is itself such a
power series . In this connection it is interesting to note that the Fredholm

denominator ,̀3J(q, z) consists of terms which never appear in perturbatio n

theory. The perturbation series is contained in the numerator 92 of eq . (20) ,

which does not enter into the determination of the pole .
The location of this pole will now be given . Let

	

(q, z) = 1 - $A (q, z) - B (q, z),

	

(48)

where A(q, z) is the function introduced in Sec . III A (cf . eqs . (35) and (36)) ,

and B(q, z) contains all the corrections, both those arising from higher

order kernels and higher order Fredholm determinants, as well as thos e
due to using dressed one-particle Green functions in the inhomogeneou s
term of eq . (16). Expansion of eq . (48) about 2q gives
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(q, z) ~-~(z-SZQ
0 O A
)

ôz

This expansion in (z-Qq) converges extremely well because (z-000) is pre-
sumably small compared to (4-w0, the zeroth order level displacement ,

and this latter quantity, it will be recalled, tends to zero exponentially a s
O . Therefore, if Qq° is a meaningful approximation to the energy, eq .

(49) provides an accurate representation of Z(q, z) for the z's of interest
to us. Except for terms which vanish exponentially, we thus have

~ -~°-	 B(q,S2g+i0 )

q

	

q

	

åA (q, w)
åw

	

Do

for the location of the pole . If q« q° and q°<( 1, (we shall confine ourselve s
to this domain throughout),

2q+i0-B(g^ Dg+i0 (49)

(50)

åA (q, w)

Ow

1

	

1

S2q N q- S2g

	

Dq°
(52)

Here, DQ is the displacement of the collective state above the continuum o f
single-particle excitations in the approximation of Section III . Hence the
"exact" displacement of this state i s

.Qq-qDq[1+eB(q,Qq+iO)] .

	

(53)

In particular, therefore, the width Pg divided by the zeroth order displace -
ment is

To
= -~ImB(q, S2 g° +i0) .

D q

In the following pages we shall confine ourselves to a calculation o f
(hq f Da°), for which we require only ImB . It is of course possible to con -
sider the real part of the correction to DQ, but this is of rather less intrinsic
interest, and is also much more difficult to compute in detail . Our calculation s
of eq. (54) will be found in the following section . Readers who are no t
interested in such details can, with but little loss of continuity, procee d
directly to Section I`'C.

(54)
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B . Corrections to the Fredholm Denominator

The complete Fredholm denominator, Z(q, r), was given in Section
II B. To second order in the free space amplitude the kernel R,, (p I p') has
contributions from only two diagrams, those of Figs . 4. (a, b) ; we call these
kernels`R' and R", respectively . Since we shall not go as far as fourth order ,

we only require the diagonal elements

R w(p EI p E)= (
- 2 1/2 { 3 ( g/2I Ti(2p , 2E)I - g/2 i

+ < gl2 I To (2p, 2 E) I- g/2 >}

Rsw (p E 1 p E) - (2 8)4i( m) Ho (0,0) + 0 (ap) ,

	

(56)

where II° (k, w) is given by eq. (31) .

In computing the first Fredholm trace with eq . (56), we can replace
° (p ; x) by Go (p + x/2) Go (p- x/2) _ (fif (p ; x) : the difference betwee n

0° and (3f leads to terms of order aô in Im Z, and does not concern us .
Therefore the contribution of R" to eq . (23c) is

2

dop Rx (p I p) (p ; _ -is (-a-°- Ho (0 , 0 ) Ho (q , .

	

(57)
m

Since w>we, ImHo (q,co)=0 ; furthermore, Imllo(k, 0)=1m110 (0,w)= 0

for all k and w . Thus eq. (57) is real, and Fig . 4(b) therefore does not

contribute to the damping in the present approximation .
Using the representation of the T-matrix given in eq. (24), the Fredholm

trace of eq . (55) is found to b e

1 / 2 2

	

' 3 2 e

. dap
(2 )3G (p+ 21 x) G (p 2 x)

X [fog/2g/2)-3fl(q/2q/2)]

	

mdi k fo(q/2k)I2 	 3
lfi(q/2 l k)1 2

l

	

2

	

1
4 q 2-k2 + i n

1+ 2 rn ~ d3k [Ifo q/2 1 k)I 2 -3Ifi(q/2 Ik)1 2 ]

A 2p (k)	 _	 nzp (k)	
X [2rnE- p2 -k 2 +2mE-p 2 -k2 -i~7]

} .

and

(58)
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The imaginary part of the first two terms inside the curly braces of eq . (58)

vanishes in virtue of the optical theorem . Because of this, only the real part s

of the f. 's were retained in Section III . The third term of eq. (58) is already

0 (f2), and so we can use free propagators Go in computing its contributio n
to Z(1) (x) . Therefore

Z(1) (q, w) ° 16 7
c317(q ,w)Re[fo(g12q/2) - 3fi(q/2q/2)] . +2 :-,r,e J (q,w) ,

where .H (q , w) is given by eq. (47), and

~

J(q, w)

	

2aid3kd3pGo(jp+gl2 I, E+w/2)Go(lp-q/2~, e- w/2)
- Q0

112p(k)

	

11gp (k)

	

P.V.

2 8-p2 k2 +ir~ 2a- p 2 -k2 -irp q 2/4-k2 }

In order to arrive at eq. (60) we have retained only the S-wave scatterin g

in the effective range approximation (eq . (29)), and expressed momenta an d

energies in units of k1, and kF,/rn, respectively.

We proceed directly to the evaluation of Im J. After carrying out the
s-integration, we find that

-lm J(q, w+i0)=r+(q,w)+1 (q,w)

	

(61)

I+(q , w)

=n~d3pd3k112n (k)0-(p -q/2) -_
å	 ((p -gl2)2 - (p2 + k2)+ w

x

with

(62+)

= :rd 3pd 3 kA"

I (q, w)
å ((p+q/2)2- (p2+k2)-w) ( 62-)

(k) 0+(p + gl 2 ) w-p . q

and.

provided w > co, . In proceeding further it is necessary to consider the integral s

d 3 k' å (k 2 - k' 2) A g) (k ' ) = 2 Tc k x1 (p, k) .

	

(63 )

The functions x± vanish in certain domains :

x+(p , k) =0 if k2 +p 2 < 1,

	

(64+)
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1

	

P

Fig . 6 . The function x+ (p, k) defined by eq. (63) . The functional form of x+ changes in the in-

dicated manner upon crossing the heavy solid lines . The integrand of I+(q,w) lies within th e
shaded domain, which does not intersecL the line k = p +I if w c (( 1 .

(p , k) = 0 if Ice +p2 >1 .

	

(64_)

The functional form of x+ in the balance of the k-p plane is shown i n

Fig . 6. Fortunately only one form of x+, namely

x+(P k) = k2	
2pk
	 1

'

	

(65 )

enters into our calculation if w > we, and we « 1 . This can be proven as follows .
From the step and delta functions in I+ we have

1ck 2 +p2 61 +w,

	

(66a)

l + q/2 >p > j/ 1-w-q/2 .

	

(66h)

A lower bound on k for fixed magnitude of p i s

k2 > (w +q2/4 -pq) = k ô

To show that x+ always has the form given by eq. (65) we must have
kô

	

(p-1)2 . However, by using eq . (66 b) we find that
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ko-(p-1) 2 w-we ,

and so for c o> w e we have the desired result .

The situation with respect to L is quite different . From the 6-function
we have

q 2/4 -w-pq < k2 < q2/4 -w+pq .

On the other hand, p < 1 according to eq . (64_), and therefor e

k2 <4q2 -w~+ q

if co > co, . Since the right hand side of this inequality is negative, 1 = O .
We therefore conclude that after the k-integration eq . (61) read s

-ImJ(q,w+i0) = z2Ç(p-q/2)2+w-1 da p

1-co

	

-1q) 2 <1
q

	

P

27E 3 li1

	

('Vs+åq

	

s+w- 1
l ds 1 dp

	

2

	

2
P e.l-w .)Vs-zq w+s-p -q /4 ,

with s = (p-q/2)2 . We are interested in the behaviour of the functio n
defined by eq . (67) in the immediate neighbourhood of q = 0, co = 0, bu t
for finite values of the velocity v = w/q . It is therefore convenient to mak e
the transformation y = (1-s)/q, in which case eq . (67) reduces to

-ImJ(q,vq+i0) 3 q dy
+ q iJv

-
-
y

	

2
o l~l

	

(y)
- q/

4

x

	

v+V1+q(v-y)-q2/4
1n	

v- V%1 + q (v-y)- q2/4

In the long wavelength limit eq . (68) simply becomes

-ImJ(q,vg +i0) 	 q,o 2n3 gv2 1n (
u

+ i (69)

provided qv < (v -1) .

Finally we come to the first term of eq . (59), i . e ., to the evaluation of
Im II (q , w) . From eq. (47) we have

-Imll(q,w +i0) _ 7rÇd 3 p
1
ds e+(1p+q I , w -8)P-(p,a) . (70)

,o
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One can readily compute the spectral densities of in perturbation theory ,

and for small w and q the further integrations demanded by eq. (70) can
be easily carried through. The resulting expression is, however, linearly

divergent as w --> w c , and it is not possible to tell from the perturbation cal -

culation itself whether this expression is still valid when w Da°, which ,
we recall, is extremely close to w, (cf. Section III A). A more accurat e

evaluation of eq. (70) is therefore required. With this purpose in mind, w e

ecall that

are immediate consequences of eq . (46) . Upon introducing the selfenerg y

E (p, s) in the usual jvay (4) ,

G(P E)

G o i (P, s) - E(p, s )

we see from eq . (71) that

(
E

	

1

	

ImX(p,,u±e)
Pf P, ) _

+

.'7-c I G~ 1(p, ,u+e)-ReE(p, ,u+s) 1
2

+1 ImE(p, ± E) 12 .
(72)

E(p, s) has been studied by GALITSIuI 20) to order f 2 . For p kF , EN,u ,

ReE(p, 6) is found to be a relatively slowly varying function and can, for

our purpose, be thought of as having been absorbed into the definition o f
an effective mass m* and the energy ,u . These changes have no effect on

(Pq /Dq°), however, and so we shall retain the "bare" mass m, and put

,u. ,u.0 = (4/2 tn) hereafter . On the other hand, for p kF ,

Cf (P, s) _- ~ 1/Tc Im G(P, ,u = s)

	

( 71 )

1

c 2 (E - p0)2 m /kF if
ImE(p, s)

2c (,uo - s) 2 m /kF if

c2 = 7L4 2 .

with

Putting eq . (73) into eq . (72), and this in turn into eq. (70), we have

L(q, w)--(kF m)-1 ImTI(q, w+i0)

1

	

3 Ç c'' 0242

	

c 2 2

	

(75)

J d p o [1/2 + 4 - (p +q)2/2]2 +c44 4 (1/2 -E-p2 /2) 2 +c4 E4

where all momenta and energies in eq . (75) are again dimensionless, and
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Integrating over the orientation of p we hav e

2 rdeÇp''

	

c262

	

(P + q) 2 /2 - 1/2 - ri
L (q, w=-

	

dp

	

2 )2 c484 arctgt	 2 2c

2 S ac44 2 2 Çd	 	 (p+q)2/2-1/2- 4
= q o

	

s dE Y~ øPoo [(1/2-e-p2/2)2 + c4 r4]«¢£4+Y2[(p+02/2-1/2 4] 2l .

The p-integral is now elementary, but the resulting expression is rather

l

clumsy, and must moreover be handled with great care if one wishes t o

evaluate L (q, co) when w is in the immediate neighbourhood of wc . If,

however, the inequality

_ .	 	 1
w-we

«

is satisfied, a considerable simplification of the expression referred to be -

comes possible . Putting co = Da° in eq. (77), and using eqs . (37) and (38) 0
we have

c2 D)2
--~ 2 .73 c 2 (10 ) as

ô

q -÷ 0 ;
q

	

c

	

q c

	

q c

therefore eq . (77) is satisfied if q « q° . When q- q°, the inequality (77) wil l
of course break down at w = Do° .

After carrying out the approximations permitted by eq . (77) we find tha t

eq . (76) reduces to

27rc2r

	

1

	

w +
1 4 d4 dy 2

	

2 ¢ ¢ (q ~ - q )
2	 	 q	

q eO

	

o Y (w+g) +c 4
¢

	

('vo

	

(('' 1

e, O2g c
	 Im

\42s2de1d Y([Y(w +g) -ic242]2+(q~-g)

r
)

B at c2 w3

3 w2_ gz

This is just the result one obtains by using perturbation theory for the spectra l
functions e± . The only thing that our calculation has achieved is th e
inequality

8 .6 e (g/qb « 1

c2 2w
(77)

L (q, w) =

(78)

+0 (c 6 ) .

(79)

(76)

which must be satisfied if L (q, .Qo°) is to be given by eq. (78). If one wants
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to compute the width as q

	

a more accurate evaluation of eq . (76) is
required .

Collecting our results from eqs . (59), (69), (75), and (78), we finally have

0 2

	

0

	

2 +q)
-ImB(q, S~q+i0) gz4

2q`~l
in (-4	 + 2~ q

	

(80)
q i

	

Q° q

	

3 D q

and according to eq. (54), the expression for the width follows immediatel y
from this .

C . The Width

In view of our calculation of the preceding subsection, it is instructiv e
to break the leading contributions to Fa into two partial widths, TQress and
Taint . The former arises from "dressing" the single particle excitations, th e
latter from the modifications of the interaction law between the particles
due to their immersion in the Fermi sea (cf. eq. (24)) . Recalling our results
of Sections IIIA and IVB, we find

Tin t
~0

	

270

	

1 (1+2 ),
q

whereas
Tdres s

g o =11 . 4~ 2
Dq

At first sight it would appear that Tnt >> IT'. This is somewhat fal-
lacious, however, because q must be less than and this cut-off momentu m
should be explicitly introduced in (81) . When this is done, the more per-
spicuous expression

riot

v~ - 144 e-11 u
g

	

q e /
emerges .

It is quite clear that higher order corrections to the interaction kernel ~.
(as well as higher order Fredholm determinants) will only append a power
series in to eq. (83). The reason for the very great difference in the e-de-
pendence of eqs . (82) and (83) is a result of the fact that 17(q, w), which
describes the one-particle damping, must grow very rapidly as w tends t o
we, because for c o< co, Im 1I (q, w) does not vanish even if the system i s
free (see Fig . 1) . On the other hand, the contributions resulting from th e

(81 )

/q \

\q/ (82)

(83)
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corrections to the kernel E naturally do not display any dramatic increas e
as the single-particle excitation continuum is approached from above .

We therefore conclude that, in the limit C-> 0, the phonon damping

which results from the fact that the one-particle excitations have a finite

lifetime completely dominates the dissipation arising from the non-instan-

taneous nature of the interaction law between one-particle excitations .
However, for more moderate values of C = kl,aoPr the large numerica l
coefficient in eq. (83) implies that l+aress and Pint can be of quite comparabl e
magnitude .

Another lesson we have learned is that the Fredholm method is ideally
suited to an investigation of the present type where one is mainly intereste d
in the isolated poles of a Green function . It may perhaps be fruitful to apply
this method to transport problems in a system with non-trivial interactions ,
such as He3 (2)
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