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Synopsis .

The cross section for ejection of K-electrons by slow ions is evaluated in th e
Born approximation for the incident particles, using relativistic electron wav e
functions . Numerical results are given for lead (and silver) and compared with
experimental cross sections for excitation of characteristic K x-rays . For silver ,
the relativistic corrections are small, but for lead they are appreciable and improv e
the agreement with experiment . Still, the theoretical cross sections for Pb as wel l
as for Ag are not in quantitative agreement with the experimental values . The
discrepancy is attributed mainly to a failure of the Born approximation .

Printed in Denmark .
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I . Introduction .

T
he characteristic x-rays following the ejection of inner atomic electrons
by the impact of heavy charged particles have been investigated by

several authors in the past''' . Recently, more precise experimental data hav e
become available1) 2) 3) 4) . The process has received increasing attentio n

since it yields electrons and x-rays in the same energy range as nuclea r

tr ansitions following Coulomb excitation of heavy nuclei . From the point

of view of the nuclear physicist, the atomic process constitutes an undesir-

able background, and it is thus necessary to know its dependence on variou s
parameters . On the other hand, it is, at least in principle, accessible t o
exact calculation and might therefore serve as a reference for calibratio n

of nuclear cross sections .
Following the fundamental stopping power calculations by BETnE,

HENNI BERGS) has presented a theory of the ionization of the K-shell by
the impact of slow protons and a-particles . He neglected the Coulomb interac-

tion between the incident particle and the nucleus . He justified the use of
the Born approximation for the impinging particles by proving that th e
effective part of the product of initial and final wave functions of the heavy

particle does not differ appreciably from its plane-wave substitute, thoug h

the wave functions themselves are heavily distorted" .
Assuming the Born approximation for the bombarding particles, th e

cross section for ejection of a K-electron is given b y

a=
4

Zl e 4 M~ J dg.
g

~ mi n

* For historical details, see reference 1 .
** One arrives at the same conclusion looking at the collision classically, which is permitte d

for slow bombarding particles. The main contribution to the cross section should arise from
particles with impact parameters of the order of atomic dimensions. If their energy is not too
low, these particles are but slightly deflected by the Coulomb field of the nucleus . Thus, th e
influence of the field is not very important for the calculations and the wave functions fo r
the particles may be described throughout by plane waves .

( I )
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Here Zi , M, and E l are the charge, mass, and energy of the incomin g
particle, respectively . The momentum transfer in the collision is given b y

h (Po- K), where hko and h.K are the momenta of the incident
particle before and after the collision, respectively . gmin is defined a s
gmin = Ko - K and, if the energy 4E lost by the heavy particle is smal l
compared to its initial energy E l , we have approximately

2 " (4E)2 M (

	

4E1 1
gmin

	

2h2E 1+ 2E)

	

(2)
The quantity J is given by

qr

	

~ 2

Jf
rç ei

	

vi (r ) iVf( r) dr ,

where yi(r) and lpf(r) are the initial and final wave functions of the electron ,
respectively . The squares of the matrix elements for the different final
states are summed, since we are not interested in the angular distributio n
of the ejected electrons .

HENNEBERG obtained his results by using non-relativistic Coulomb wav e
functions for yq(r) and WO) . He roughly corrected for the screening by
adding a constant term to the Coulomb potential and arrived at the followin g
expression for the cross section for excitation of K x-rays* :

3,51Zî
a - Z4
	 Øo (fl) X 10-16 cm2 .

	

(4)

Z is the charge of the nucleus, O is the ratio of the observed K-shel l
ionization energy EK to the "ideal ionization energy in the absence of oute r
screening", and Øo (ip') is defined by

l
(5)

The quantity n' is given by
, _ 4mEl

itilOEK '

m being the mass of the electron. The above formulae are derived on th e
assumption that 71 ' is small . Accordingly, the cross section depends mainl y
on the factor Zi î'4Z-4 * *

The experiments confirm qualitatively Henneberg's theory, particularl y
the dependence of the cross section on the energy and mass of the inciden t

* We quote this formula as given in reference ] . .
** A simple derivation of essentially the same result has been given in reference 4 .

(3)

Øo (o =
2

e
_ 4

	

4rß ' ) 4 {i

	

1/4. n '
~(14 + 12+n +
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particle and on the energy of the K-shell . However, there are serious quan -

titative discrepancies . Especially in heavy elements, the experimental cros s

sections are up to several times larger than those derived from formula (4) .

This deviation is just in the direction expected, considering the neglect

of the relativistic effects in the heavy atoms . As it can be seen from expres -

sion (2), the value of 1 /q,n i n is in cases of interest considerably smaller than

the radius of the K-shell . The factor e t q' in the matrix element (3) is thus
a fast oscillating function and any increase in the electron density at th e

origin, as caused by relativistic effects, will therefore raise the cross sectio n

appreciably .

Consequently, it seemed of interest to repeat the calculations, usin g

relativistic wave functions for the electron . In the following chapter th e
derivation is outlined and the final formulae are given ; mathematical detail s
are, however, deferred to the Appendix . In Chapter III, the results ar e

discussed and compared with experiments .

II. Framework of the Calculation .

We insert into the matrix element (3) the stationary6)' 7) Coulomb solu-

tions of the Dirac equation . They can be written 8 )

~V((
if(r)z-x(O,99)

	

x=+1,+2, . . .
gx (i) 4 0, m)

with

xÿ -

	

< 1 (x), 1 12 , ,u r, s ~ 1(x), 112, j, ,u > xi~2 ~~~ (x> (~~ y)

and

1/2

	

1(x)

	

if x> 0

-j_~lt <J

	

1(x)ifx< 0

We write the radial wave functions in the form

fx (r) Dr- 1 u (r)

	

9x (r) = Dr_ ' v (r) .

For a discrete state, these quantities are given by9 )

)=-V1-19' rYx e £~r[n' (-n'+1,2 yx+ 1,2 sN r)

+ (N- x) Ø(- n ' , 2 yx + 1, 2 sN r) ]

v(r) = V1 +'19 r•Yx e EN r [-n' (-n' + 1, 2 yx - I- 1, 2 eNr)

+(N- x) ( - n',2yx - I-1,2en,r)]

(6)

(7 )



(7 )zi = E/mc 2 = G-z)2 -
1 I

(n' +y,)' yx = 6/I x l2-(4-z) 2
-1/ 2

Z
EN = Nao

N - 1/
,n2 _

2 n' (l xl - yx)

	

n=n ' +lx l

l(2yx +n ' +1) (2ep,) Yx+11 2

4(n'I)N(N -x) T(2yx +1) .

Here, ao is the Bohr radius, the fine structure constant, and E the tota l
energy of the electron . We use the symbol Ø for the confluent hypergeometri c
function, regular at the origin. For the special case of a K-electron, we hav e
=-1, n ' =0, and

/ (r) = l/1 -yl CrY' -1 e -e r el = ll

	

1
0

g(r)=l/1 + ylCrY' l e a~r c

	

(2 £ l)yi+ 11 2
=-	 	 JI

I/21'(2y 1 -- 1 )

In the continuum, we have 10 )

u(r) -=- 2 VW- lrvx lm[é17'r+', n (Yx+ia)Ø(yx +1 +ia,2y,,+1,2rkr)] l

v (r) = 2V W +1 rvx Re[e-ikr+ "n (yx + i a) (yx + i + ia,2 yx +1,2 ikr) ]

2i?/=- x -Iß

	

El

	

_

	

_

	

,//

	

G1î1 2
e

	

yx + ia ß k a - ~ li

	

W E~mc 2 V 1+ mcll

	

>

	

( 9 )

D=
E

(8)

D _

	

2yx 1

T(2yx + 1)Ci
ni kYx- 1 / 2 e ;cal2 I j' (Yx + i a) ,

where lm and Re denote the imaginary and the real part of the expressio n
in parentheses, respectively . These wave functions are normalized per uni t
energy interval .

In the matrix element (3) we integrate over the angles, sum over th e
final magnetic quantum numbers, and average over the initial magneti c
quantum numbers, using standard techniques . We ge t

J=
X
X xfl{S .la(xf) Or) [fiff+gig; ]r2al.}2,

	

(10)

j e (qr) being the spherical Bessel function .
The radial integration can be carried through, as outlined in the Appen-

dix. The result is a power series in e1/q . We may write
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with
j = ~ 1c (gr) [faff + g ig; ] r2 dr = Ag (Y1 +yf+i) S (£ 1/q)

S(x)=F2 Pm( - 1)m x2m +(1Z Qm(_1)m x2m + l
m

	 Ac)

	

I'(c -1 )
F

_
I'(a --1/2).P(1 -b)' G

	

1 '0/2 -b)

A =BDf B =C vn l'(a)21+1

Pm (a). (b).
(e)m n1 ! Pm

a- y1+ yf +1+ 1
2

(a -I- 1/2),,(b + 1 /2)m
Qm

	

(c +1)mm!

	

q m

b = y1 +2 -t
c=1/2

am = a (a+ 1) . . . (a+m-1) .

The quantities pm and qm are different according to whether the fina l
state is in the discrete or in the continuous spectrum . In the discrete spectrum ,
we have

p-,n= [s(Nf -xf)F( -2m, -n' f , 2yf +1, y)
-1n'fF(- 2m, -n'f+1, 2y), + 1 , y)]v2 m

qm = [ s(Nf -xf)F( -2m-1, -n ' f , 2yf +1, y)
-tn'fF(-2m- 1 , -n'f-I- 1 , 2yf +l, y)]p2m + 1

s = V1 + y 1 1/1 ~f +

	

- y i V' 1 -

t = v'l+y1J/1+ vf-vl-y 1 ~~1-?9'f

y= 1 ~Nf

	

v=1 +--~ ,

--

	

1 !

where F is the usual symbol for the hypergeometric function .
For a final state in the continuum, we hav e

pm=2Re{F(-2m, yf +l+ia, 2yf +1, y)v2nn X}

qm 2Re{F(-2m-1, yf +l+ia, 2yf•+1, y)v2m + 1 X}
2 ilc

	

k
y e l + ilc

	

v = 1 + i
E 1

X=(1/w+1Vt+y,-iVw-1Vi-y1)(yf +ia)e") .

(12 )

(13)



The limit k = 0 is not entirely tr ivial . We get

pry,z=y/2( l +yi)[(yf +l -yi-xf)Ø(-2zn,2yf +1, --2)

4m
(-2ni-I-l,2yf +2,-2)]

2 Yf - 1

2( 1+y~)[(Yf+1-yl-(-2m- 1,2yf +1,-2)

4n? 2)]
.~-

2
-	 I-1 O( -2 rn ,2 yfl-2, -

Yf

The radii of convergence of the series S are in the three case s

z

	

1\ 2
q 2 - El 1 +

	

, q2 , £1 + k 2 , q 2 = al ,
1

	

L%f
respectively.

The arguments of all complex quantities have to be taken betwee n
-a and +a .

The screening is taken into account by assuming an effective nuclea r

charge Zeff = Z-0 .3 and by adding to the corresponding Coulomb poten -

tial a constant term e-1 V, representing the effect of the outer electrons. The
energy V is the difference between the observed binding energy of the K-
electron and the value which this binding energy would have in the absence

of outer screening .

The electron wave functions are thus as given above with Zeff instead o f

Z and the effective energy equal to Et - V, where Et is the true total energy

of the electr on. Therefore, the wave functions of the electrons with Et< mc2 + V

are of the form given for the discrete spectrum, only that n' is in genera l

non-integer .

In order to obtain the total cross section for ionization of the K-shell,
we have to square I, given by (11), integrate over q (cf. (1)), sum over

different xf (cf. (10)) and, finally, integrate over the energies of the outgoin g

electrons . The last two steps can only be done numerically .

III. Results and Discussion .

The cross section for K x-ray production by protons has been evaluate d

for two elements, lead and silver, and for the impact energy range in which

the experiments were performed, i . e . 1-3 11-ieV . The numerical work o f

evaluating the series S was considerable, since the series is alternating wit h

increasing coefficients . We calculated it for three different energies of th e

ejected electrons and all contributing final x-values, taking into accoun t

(14)
qm =
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up to 15 terms . This was sufficient for 0< x < 0 .3. In Table I, we give

the quantity

T=(q/ai)1y+4~~
x2y2yf +3 S 2 (x)dx

as a function of 61/q for lead. Also the normalization factors as calculated

from formulae (7) to (9) are listed .

TABLE I .

4 E
T~~t(Wf)

88,0 kev 101 kev 123 kev
1,0000 (0,9749) 1,0251 (1,0000) 1,0686 (1,04351

`~~

	

f
e l /q \ -1 I

	

1 -2 -1 -I- 1 -2 -1 - -+ 1 -2

0 .00 0 .3542 0 0 0 .3333 0 0 0 .3414 0 0

0.05 0 .5030 0 .00023 0 .00036 0 .4749 0 .00055 0 .00035 0 .4890 0.00071 0 .0003 6

0.10 0 .6341 0 .00116 0 .00236 0 .6001 0 .00280 0 .00232 0 .6205 0 .00362 0 .0024 0

0 .15 0 .7266 0 .00299 0 .00718 0 .6889 0 .00722 0 .00708 0 .7145 0 .00935 0 .0073 4

0 .20 0 .7694 0 .00557 0 .01521 0 .7302 0 .01354 0 .01503 0 .7589 0 .01759 0 .0156 5

0 .25 0 .7626 0 .00861 0.02574 0 .7239 0 .02082 0 .02549 0 .7524 0 .02707 0 .02660

0 .30 0 .7150 0 .01155 li 0 .03728 0 .6781 0 .02788

	

0 .03690 0 .7028 0 .03608

	

0 .0385 0

1%1'1 A" 2 .309 8 .596

	

2 .804 2 .521 4 .284

	

4 .304 2 .576 4 .377

	

5 .758

The quantity T, defined in the text, is given for Pb as a function of e 1 /q and xf
for three different energies of the ejected electrons . Wt and Wf are defined by Wt=Et/mc2
and Wf=(E t - V)/mc a . In the last row the corresponding normalization factor is listed in
units of e 1 2y1 +2yf m/fie , i . e . A a =A '2 e 1 2y+2yf m/ha . Only those final states which contri-
bute more than 1°/ U Lo the total cross section are taken into account .

From Table I it is seen that the values of T for the important transitions

are not sensitive. to the energy of the ejected electron and that, consequently ,

nearly the whole dependence of the cross section on this energy is containe d
in qm i n . The interpolation and extrapolation of the data in Table I and th e
subsequent integration over the energy of the ejected electrons could there-

fore be performed with sufficient accuracy . The cross sections for productio n

of lead K x-rays, as calculated from the data listed in Table I, are presente d
in Table II and Figure 1 and compared with experiments and previou s

theory. The computational accuracy of our results should be better than
5 0 / 0 . For silver, we had to extrapolate our values for T towards highe r
values of ei/q in order to come into the region covered by the experiments .
Hereby, errors of the order of 20 0 /0 could easily be introduced . The result -
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TABLE 11 .

Element E, (MeV) 0'exp ( cm2) 0.thl (eln2)

	

'1th2 (cm 2 )

Pb 1 .00 1 .04 x 10- 2 7
1 .50 3 .5 4
1 .92 3 .6 x 10-27 1 .56 x 10 -27 7 .0 *
2 .00 7 .9 1
2 .17 5 .9 2 .48 9 .9 *
2 .40 10 .5 3 .43 13 .1 *
2 .50 14 . 8
2 .88 30 .5 6 .30 22 .0 *
3 .00 24 . 2

Ag 1 .70 0 .69 x 10 -24 0 .76 x 10- z4
1 .92 1 .3 1 .1 5

2 .17 2 .1 1 .6 1
2 .40 3 .0 2 .2 0
2 .64 4 .3 2 .7 7
2 .88 8 .2 3 .49

Experimentall) and theoretical cross sections as a function of the proton energy .
The last column gives the relativistic cross sections . Those marked with an asterisk have bee n
obtained by graphical interpolation . The last but one column includes cross sections as calcu-
lated by LEWIS et al .1) according to ]-enneberg's theory . They have been partially corrected
for relativistic effects since a relativistic screening factor e is used . A consistent non-relativisti c
procedure would yield cross sections smaller by ten to fifty per cent . In the case of silver,
our relativistic cross sections agree with the semi-relativistic ones within computational errors .

ant cross sections are, however, somewhat accidentally equal to thos e
evaluated by Lnwls et al l ) from Henneberg's theory .

It is seen that, as expected, the use of relativistic electron wave function s
increases considerably the cross section for heavy elements, and the agree -
ment with the experimental data is thereby improved significantly . Still ,
there remains a discrepancy between theory and experiment, especially a s
regards the energy dependence of the cross sections.

Some uncertainty in the theoretical calculations arises from the manne r
in which the screening effect is taken into account . Work in related lields ll )

indicates that the form of the electron wave functions which we have em-
ployed is adequate, since, in the central regions of the atom which contribut e
to the integral J, the assumed potential is rather accurate . An improvement
of the treatment would, however, be obtained by adjusting the normaliza-

tion factors for the final state wave functions to take into account the mod-
ification of the potential at large distances . The effect is found to be small ,
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Fig . 1 . The figure is taken from ref. 1 (Fig . 4) and includes our results . The points give the ex -
perimental quantity

	

= 2 4 0/3,51 x 10 1 cm-2 as a function of q' . The left-hand curve re -
presents the function 0 obtained in the same way from the relativistic cross sections for lead .
The right-hand curve represents the function 0 0 . In the case of silver, both curves coincid e

within computational errors . Relativistic screening factors e are used throughout .

except for very low electron energies, as is also indicated by the results
obtained for the screening effect in other problems, such as internal con-
version12 ) . Still, since the low energy end of the spectrum of the ejecte d
electrons contributes most of the total cross section, the correction might
be significant . While no quantitative estimates have been made, it can b e
seen that the effect tends to decrease the cross section . In fact, the correct
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normalization factor is expected to be smaller than that in (7), which cor -

responds to hound states . Moreover, the effect on the energy dependenc e

of the total cross section appears to be small . It thus seems unlikely that
the discrepancies between theory and experiment can be removed by im -
proving the electron wave functions and their normalization factors .

Another source of error arises from the use of the Born approximatio n

for the bombarding particles, which neglects the deflections of the inciden t
particle in the Coulomb field of the nucleus .

The deflection prevents particles with low energy from coming clos e

enough to the nucleus and thus decreases the cross section for K-shell ioni-
zation . One is tempted to consider the quantity ro qmin, where ro = Z i Ze/E 1
is the distance of closest approach, as a measure of the significance of thi s
deflection' rather than the less stringent criteria of HENNEBERG . It would
seem that, if ro qm i n > 1, the ionization cross section must be considerabl y

less than predicted by the Born approximation and that, only if rogmin « 1 ,
can the influence of the Coulomb field on the incident particle be neglected .

Now, for electrons ejected with zero energy, we have rogmin = 1 at a proton
energy of about 1 .1 MeV in lead and about 0 .3 MeVin silver . It should thus b e
understandable that, at proton energies of this order of magnitude or smaller ,

the cross sections fall below the predictions of the Born approximation .

While thus the failure of the Born approximation may account for th e

small cross sections observed at low energies and for the rapid energ y
dependence, it seems more difficult to explain the large experimental cros s
sections at higher bombarding energies . Additional measurements, especially

of the absolute cross sections for silver, would therefore be of value as a
further test of the theoretical calculations .
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Appendix .

We have to evaluate the integral

I = ji (qr) [fit; + gig; ] r2 dr .

The functions fi and gi are defined in formula (8) . We write the deriva-
tion for the case when the final wave functions ff and gf are as given in (9) .
The other case is analogous . We express ji (qr) as a confluent hypergeometri e

function

J1(gr) l'(l+3/2)21+i(gl)1e
igr 0(1+1,21+2,2igr) .

Using integral representations for the occurring confluent hypergeometri c
functions we are able to carry out the radial integration and arrive at th e
following expression :

{X(ri+ ik± iq)Fs 2a, 1+1, yf +1 +ia,21+2 ,

2
iq	

21k	 ll2yf+1, r i. +zk+iq ' ei+ ik + iq

)

}

Here, the definition of the various quantities is the same as in the text .
F2 is the symbol for one of the Appell functions as defined in reference 13,
page 230 .

We may transform F2 into H4 using the equation i-4)

x
0'114

	

1	 x2	 2 g
2)

	

(a,ß,ß+2'y'4(2 -x)2' 2-x)

q 2

	

2 ik2yf+1 ; - 4(e 1 +ik)2, sl + ik

I,/7r I' (2 a)

	

g `

I'(l -- 3/2)
CD

(2 )

F2(a,ß,ß',2ß,y' ;x,y)=(1

and get

=

~I 2 a
T(1+3/2)CD(q)Re {X(si +ik)_ 2a H4 (2a . yf +l+ia,l+3/2,
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114(a ,N,y,å ;x, y

We require the analytical continuation for large values of q. It can b e
obtained in the following way . Using the notation of reference 13, we hav e

la+
1 )(a)2m+n (ß)n

	 	 ,(a/2). \ 2 na
(a + 2m )n(P)n

(Y)m (å)n in! n1 xm 6 n
mn

	

(Y)m(å )n min!

	

(4x)m d n

a
(a/2)m

	

1

(Y)mn?!
mF+2m , å ,1)(4x)m

	 1,(å)

	

slß-1(1-u)`~-ß-l(1-gu)-aF.(
2a '

a2+1
Y ( 1
	 4	

q
	 x

u)

	

P (ß) P(å

	

o

	

\

	

z) du .
ß)

Applying here the equation for analytic continuation of the ordinar y
hypergeometric function and working the same way backward, we arrive a t

H4(a,/1, y , å ; x , y)

-7 (a / 2 )m 1-y+ a}

( l/2)mJn2
,m F(- 2m ,ß,å , y)(4x)-mI' ( 1 12)l'(Y)	 ( -4x)-z

2

	 )
1~(

	

a

y
m

a+1\ (
2

	

3/2-y+
a 1
	 !	 2

~

	

(3/2) zzzl

	

mF(-2m-1,P,S,q)(4x) -na
m

Applying this result to the matrix element I, we get the final expression ,
given in formulae (11)-(14) .

+

	

/	 a+1-~(-4x) 2
I ' (a/2) l'f y-	

\

	

2 ,

	 l'( - 1 /2) r(Y) a=1
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