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Synopsis .
A method analogous to that developed in the new theory of superconductivity i s

applied to nuclei in order to investigate the influence of the coherent pairing inter -
action on various nuclear properties, especially on collective motion . The finite siz e
effects, in particular the shell structure of the single-particle levels, are considered .
The pairing correlation between two nucleons in states of opposite angular mo-
mentum projections is taken into account by means of a canonical transforma-
tion from the original interacting nucleons to new independent quasi-particles .

For strongly deformed nuclei, the moment of inertia is rather sensitive t o
the effect of pairing correlations and is found to be reduced from the value fo r
rigid rotation by a factor of the order of that observed . For nuclei in regions nea r
closed shells, the pairing correlations give rise to a spherical equilibrium shap e
and low energy vibrational modes of excitations . The vibrational frequencies and
inertial parameters obtained from the present model are in qualitative agreemen t
with experimental data and fit the observed trends .
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Introduction

The Fermi gas model, which neglects the interaction between nucleons ,

is the simplest microscopic model of the nucleus . The development of

nuclear models has progressed by taking into account certain parts of th e

nucleon-nucleon interaction . The great successes of the shell model, in
which the nucleons are assumed to move independently in a certain averag e

potential, showed that evidently the main part of interaction can be treated

as a spherically symmetrical, self-consistent field . In the unified nuclear

model, developed by A. BOHR, B . MoTTELSON,l . 2) and others3) , it is assume d

that, from the remaining part of the nucleon-nucleon interaction, an addi-

tional self-consistent part may be extracted, which is non-spherical an d

time-dependent . This procedure makes it possible to explain many of the
regularities in the low-lying nuclear levels in the language of collective

excitations .

However, the real interaction between nucleons cannot be reduce d

simply to a self-consistent field . After separation of the self-consistent part ,
there remains some interaction between the particles . This residual inter-

action is rather weak, but it may play an important role in various nuclear
properties4' 5 )

Recent work in the theory of superconductivity" has shown that eve n

small interactions between Fermi particles may give rise to a basic change

in the properties of the system, provided this interaction has a correlate d
coherent character . In a superconductor, the correlations between electron s

arise from the interaction with the lattice vibrations and make possibl e
quasi-bound states of electron pairs with equal and opposite momenta
near the Fermi surface 9j . This leads to a modification of the Fermi sea an d

to the appearance of a gap in the originally continuous energy spectru m
of the system .

After the appearance of the new theory of superconductivity the sug -
gestion was made 10) that the energy gap found in the spectra of even-even
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nuclei is caused by correlation effects of a similar type to those considere d
for the electron system in superconductors. Such correlations may also
affect other nuclear properties, which have no analogue in superconductors ,
connected with the finite size of nuclei and the shell structure of the single
particle levels . It is the aim of the present paper to investigate the effec t
of the pairing correlation on various nuclear phenomena, in particular ,
on collective nuclear excitations .

We extend the method of the new theory of superconductivity develope d
by N . BocoLYUBOV 71 in order to apply it to the nuclear system . The physica l
basis of the analogy is the similarity between the pairing energy of tw o
nucleons with opposite projections of angular momentum and quasi -
bound states of electron pairs with equal and opposite momenta . The corre-
lation effect between nucleons is taken into account by means of a canonica l
transformation from the original interacting nucleons to new independen t
quasi-particles - the elementary excitations . The ground state of the syste m
in terms of the new quasi-particles is the "vacuum" state . The essentia l
part of the pairing correlation enters into the "vacuum" energy and int o
the intrinsic structure of the quasi-particles . Therefore, even if the residua l
interaction between the quasi-particles is neglected, one may investigat e
the influence of the correlation interaction on various nuclear properties .
The general idea of the treatment is to take into account the coheren t
part of the residual internucleon interaction, but, at the same time, to retai n
the simple description afforded by the independent-particle model (wit h
a type of quasi-particles) .

In the first part, we consider the general formulation of the proble m
and select the canonical transformation required to take into account th e
effects of correlation between nucleons .

An explicit solution of the equation for the transformation coefficient s
is given in the second part . Here are also given, in the approximation o f
independent quasi-particles, the energy and the wave function of the groun d
state of the system and of the single-particle excited states .

The problems concerning the nuclear equilibrium shape and collectiv e
excitations are considered in the third part . Here, the moment of inerti a
for nuclear rotations and the inertial parameter and restoring force fo r
the quadrupole vibrations of spherical nuclei are found within the frame -
work of the cranking model .



I . Canonical Transformation

1 . Hamiltonian

We consider a system of nucleons which are moving in a certain axiall y
symmetric self-consistent well . (For simplicity, we do not distinguish between
neutrons and protons) . As basic functions of the second quantization repre-
sentation we choose the wave functions of a nucleon in this well . States ,
which differ only in the sign of the projections of angular momentum alon g
the symmetry axis, are degenerate . We call such states "conjugate" state s
and mark them with the index ko = (k+ ; k-)* .

The wave functions of the conjugate states are assumed to transfor m
into each other by complex conjugation and exchange of the spinor com-
ponents** .

Let us introduce the Fermi operators aka. ; ako which create and destro y
a particle in the state ka. The Hamiltonian for the system of interacting
particles is then

H' =

	

Ek (ak+ ak++ ak- ak-)

	

1k

-1

	

< kl Ql k 2 r2[.G l k'a k'

	

a+ a+ a

	

a

	

(

	

( 1 )
2 2 1

	

> k,7, ka6a k;o. å k ;6i ,

	

J4(k, e)

where Ek is the single-particle energy in the k-th state . (The sign of G i s
chosen to be positive for an attractive interaction) .

The Hamiltonian (1) describes a system with a fixed number of particle s
N . Therefore, in a perturbation treatment in which H' is split into two parts ,
each of these parts must commute with N. The problem is essentially
simplified if we make a transition from the system with fixed N ("N-system")

* In fact, even symmetry of reflection in a plane is enough for the definition of the conju-
gate states . We speak of axial symmetry only for definiteness .

** If yi+ = V2), then y_=
(

	

) . The transformation v+ -> 1p_ is equivalent to the tim e
reversal T .

	

//

	

-vr
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to one with a fixed value of the chemical potential A ("A-system"), whic h

is described by the Hamiltonia n

H = H' - AN.

	

(2)

The choice of A determines only the average value of N in the A-system .

Therefore, the solution which corresponds to the Hamiltonian, (2), wil l
describe only average properties of nuclei and does not pretend to describ e

the individual nuclear properties for which one needs a fixed value of N.

As will be shown later, the uncertainty in the value of N is small . I n

practice, the averaging is done only over a few neighbouring nuclei, eithe r

all even or all odd .

2. Canonical Transformatio n

Following the analogy with the model of a superconductor, we choos e

a canonical transformation of the form given by N . BOGOLYUBOV7) . In our

case, however, it is necessary to consider a transformation of a more genera l

type, because the interparticle interaction in (1) in general contains not
only pairing interactions, but a certain supplementary self-consistent field .

Therefore, we perform the following preliminary transformation to remov e

the self-consistent field :

bv + ~ ~kv ak+
k

bv-

	

9)kvak- ,
k

(3)

(4)

where the coefficients satisfy the condition s

9'kvfpkv' = bvv' ;

	

TkvPk ' v - S kk' .
k

	

v

The conjugate relationship defined above is preserved by this transforma-

tion . Inverting (3), we obtain

ak+ -

	

442, by+ ; ak- = G Tkv by- .

	

(5)
v

After the transformation to the new operators the Hamiltonian (2)

takes the form

H -~ ( EVV' ~ S vv') (bv+ bv' + + by- by-)
vv

< v161v2o.2IGIv2cr2v161> b1 b:d. b v ;a ; bvfat

where
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~
Evv' =

	

E k 99kv 95 kv' ,
k

and the interaction matrix element is taken between the new states .

( 7 )

The self-consistent field is caused by the correlation between a grea t

number of states . The character of the transformation (3) has this physica l

interpretation . After separation of the self-consistent field, each state i s

assumed to be correlated only with its conjugate state. The interaction

mixes the states of the conjugate pair . In order to take into account thi s

effect we introduce, instead of bve , the new Fermi operators

av = Uv bv+ - Vv bv_,

ßv = Uv bv-+ Vv b ,++ ,

where Uv and Vv are real numbers which obey the condition

(8)

Uv+Vv = 1 . (9 )

The special choice of Uv = 1 ; Vv = 0 for the states above the Ferm i

surface (rr > L), and Ur = 0 ; IT, = 1 for e, <A, leads to the well-known trans -

formation from particles and holes to elementary excitations . The com-

pletely occupied Fermi sea goes to the "vacuum ". In general, the new

particles (a ; ß) arc a superposition of a particle and a hole, and the

"vacuum" corresponds to a modification of the Fermi sea .

The transformation inverse to (8) has the form

b,,+= Uvav+Vvßv,

	

(10 )

by = Uvßv-Nu av .

Inserting (10) into (6), we obtain a Hamiltonian with the following

structure :

H= U + H2o+ H11 + Hint •

Here, U is a constant ter m

U = L'(8VV-~.-1<vv1 1 G 1 vlviVv,2Vv-L< vv GI vlvi%Uv,Vv,Cvvv . (12)
v

	

2 vl

	

J

	

vv ,

The terms H2O and H11 are quadratic in the new operator s

H20 =

	

{ (Evv ' - Svv .

	

< vvl I ii vl > Vv) (Uv Vv, + Vv up . )
vv' l

	

v'

	

1

-

	

< vv I GI vi y1 Uv Vv.(14 Uv'-
VvVv') J(atißv +ßv av' )v,

(13)



Hll = (EVV' - 28,,,,, -1' < v vl I G I v1 v' > v,2,,) ( Vv Vv' )
vv'

	

v '

+ < vv' I G I 1'1 v l> TŸ, Vv,(Uv Vv , + lv Uv') { (av av' + ßvAv) •

The matrix elements in (12)-(14) have the form

< v l v2 I G I v2 v 1> = <v1 +v2- I G Iv2-vl + > - <v1 +v2- 1 G I vi + v2 - >

< v l~'2l G l v
z

v i> = < v1 v 2I G l vz vi>

+ <v 1 +v2+I GIv2 +vi + >-<v1 +v2 +I GI vi+v2 + > .

The last term in (11), Hint, contains products of four operators an d
describes the interaction between the new particles (a ; ß) .

It may be written in the for m

Hint = H40 + H31 + H 22 ,

	

( 16 )

where the subscripts indicate the relative numbers of creation and destruc-

tion operators in the corresponding term, e . g ., the term H40 describes th e
creation of four particles from the vacuum (or the inverse process) an d

so on. (The explicit expression of Hint is given in Appendix A) . In the fol-

lowing, we consider mainly the independent quasi-particle model, neglectin g
the interaction term Hint . Effects of this term will be briefly discussed a t

the end of Part II .

3. Choice of the Transformation Coefficients

Neglecting the interaction between the new particles, let us conside r

the Hamiltonian

HO = U +H20 +H11 .

	

(17 )

Following the programme outlined in the Introduction, we choose the
coefficients of the canonical transformations so as to make H0 correspon d
to an independent-particle system. This is possible only if H2O = 0 and H1 1

is a function only of the occupation numbers of the new particles av av and
ß,5i ß.,, .'' From (13) it follows that the first condition leads to the equation

* The condition H25 = 0 may be easily shown to be exactly equivalent to the requiremen t
of a minimum "vacuum" energy U. Therefore, the ground state of the system in terms of th e
new particles is a "vacuum" state . The excited states are characterized by definite numbers o f
new particles, elementary excitations .

(14)

(15)
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<vv ' Gl vlvi>Ur,Vv,(UrUv,-Vv

	

O .
v

The solution of (18) for v' � v is equivalent to the diagonalization o f

the matrix kw . It can be carried out by arbitrary U,, V, only with an

appropriate choice of the coefficients in the transformation (3), i . e ., the

states v . The quantities U,, IT, might then be determined from the diagonal

part of (18) . In the general case, the choice of the states v depends o n

Ur , Vv , and the two transformations are not independent of each other .

The quantity lire in (18) is a linear combination of two non-diagona l

matrices

hvv' m-' (err ,

	

< vvi IG vl y'>Vv)(U„V5 .+Vv Uv)
vl

	

I

	

(18)

gvv = Evv <vvi lGl vi v" > Vv,

	

(19)

dvv' = < vv"Gvi v i> Uv,Vv, •

	

(20 )

From (19) it is seen that er r , is the energy of a particle in a self-consi-

stent field* . The diagonalization of fvv' corresponds to the transition to th e

single-particle eigenstates in this new field . Generally, it does not lead t o

the diagonalization of Apr , (and, therefore, h rv,) . But, in many cases o f

practical interest, the diagonalization of the single-particle energy Évv ,
gives rise to the following selection rule for the interaction matrix element :

<vv'IGIv i v 1 >=0 for v '� v .

	

(21)

(In the jj-shell model, v->mj and Eq. (21) is a consequence of the conserva-
tion of the angular momentum) . This makes both Évv and 4vv simultane-
ously diagonal . There remain then in the sum in (14) only the terms with
v' = v, and H11 takes the form of a Hamiltonian for independent particles .
For simplicity, we restrict ourselves to this case** .

Assuming the diagonalization of fvv , and Jr, ' to be fulfilled, we obtain
from (12)-(14)

U=7(Év-A)2Vv-JrUrVv+~<vv' IGjv' v>VvVv,

	

(22)
v

	

v

	

vv '

* If the Fermi sea is not modified, the sum in (19) spreads only over the occupied states
for which VŸ = 1 . In the general case, Vÿ describes the average distribution of the particl e
among the states .

** In the general case, one more transformation of the type (3) is needed for the diagonal-
ization of H 11 . It corresponds to the separation of a self-consistent field of the new quasi-par-
ticles a and ß .
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H20 = {(EV - A)2UV Vv 4i,(Uv-Vy) 1 (avNv + ßv av),

	

(23)v

H11=(EV-(Uv -Vv)+d V 2Uv Vv%(av av+N- lgv)

	

(24)v

where éV and 4v are diagonal terms of (19) and (20) ,
The condition H2O = 0, which determines LI, and Vv , has now the form

(Év-A)2U1Vv-dv(Uv-Vv)=0 .

	

(25)

4. Analysis of the Equation for Uv VV

It is convenient to use an alternative form of equation (25). To obtain
this, we express U, and Vv through 4V from (25) and (9) :

u,2, -Vv =	 4 -2	
V ( EV - ~)2 + 4v

2_ l rVV

	

1	
~V -

2 	2	 	 l
V(EV

2)21 d
v J

Using (26) and (20), we find the following equation for 4 V :

A'

	

<vvGv'v '
= -

2 v , V (ev , - 2) 2 + 4 12 ,

To make clear the physical sense of the quantity 4 v, let us consider
the energy of a quasi-particle Ev . From (24) and (26) follow s

	

Ev = V (ev - A)2 + 4v

	

(28)

As is seen from (28), in the case of a continuous spectrum, the quantitydv is an energy gap in the spectrum of the quasi-particles . For a discrete
spectrum 'iv , it is meaningful to speak of a gap only for values of J r which
are greater than the distances between the levels

Év .

The equation (27) has a trivial solution :

4 V = 0 or UV VV =

	

0,

	

(29)

which corresponds to the sharp Fermi surface . If we choose in this case

A v
2UV VV

V(sV - 2) 2 + 4ÿ
,

U,2_[1+	
ÉV 	 A

1/(EV -
A)2+4v)'

(26)

(27)



Uv = 1 ; Vv =O for év >À ,

Uv =0 ; Vv =1 for 4<0,

then the new quasi-particles a, ß should correspond to the old particles
outside the Fermi sea and to the old holes inside . If the interaction is suffici-
ently weak, the trivial solution (30) remains the only solution of (27) .

However, if the inequality

is fulfilled, then there is also a non-trivial solution of (27), which corresponds
to the modification of the Fermi sea (the analogy of the superconductin g
stater .

The equation (27) contains two matrix elements of the two-body poten -
tial which play entirely different roles . The matrix element < v v ' I GI v ' v >
is shown from (19) to contribute only to the self-consistent field . The matrix
element < v v I G I v ' v ' > ("pairing interaction"), on the contrary, determine s
a qualitatively new effect which corresponds to a modification of the Ferm i
sea. From (31) one can see that this modification is possible only if th e
pairing interaction for sufficiently many states has a coherent character ,
e. g., for a sufficiently broad region of the states the matrix elemen t
<v v I G I v ' v ' > must have the same sign, because otherwise there will occur
a cancellation .

Lets us expand the two-body interaction potential in spherical harmonic s

G(PI-i2) =Gi (ri r2) Pa(cos 012)•

	

(32)

and ask the question : "Which part of the two-body interaction contribute s
to a self-consistent field and which part determines a coherent pairin g
interaction?"

We believe that the following considerations may provide a qualitativ e
understanding of this point . Assume that the spherically symmetric par t
of the interparticle interaction has determined a certain self-consistent
isotropic field . The single-particle levels in this field are degenerate and
characterized by the value of the angular momentum j (shell model) .
Let us consider the particles in the . same level j, neglecting their interactio n

* Eq . (27) differs from the analogous equation in ref . 7 for a superconductor by the characterof the spectrum î . In the case of the superconductor, the continuous spectrum allows a non -trivial solution of (27) for any value of the interaction .

> 1
I E V'- a I

(31 )
7 < vv IGIv 'v ' >
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with the particles in the other shells . The term with I= 2 (quadrupole )

gives an essential contribution to a self-consistent field producing an ellips-
oidal deformation which splits the single-particle levels 20) . But its contribu-

tion to the pairing interaction is small, because it connects only the neares t

levels (I v- v' 2), which might not be enough to satisfy the inequality (31) .

The term in (32) with I= 4 connects the more distant levels (I v-v ' < 4) ,
but its contribution to the self-consistent field is not so important, and s o

on. Therefore, the main contribution to the pairing interaction is from th e

high harmonics of the two-particle potential . The self-consistent field, o n
the other hand, is essentially determined by the low harmonics .

II . Ground State and Single-Particle Excitation s

1 . Solution of the Equation for d v

We assume that the condition (31) is fulfilled and that a non-trivia l

solution of the equation (27) exists . For an explicit solution of (27), assump-
tions have to be made about the character of the single-particle spectrum É v .

For strongly deformed nuclei, where the shell structure almost completel y

vanishes, the distribution of the single-particle levels is approximatel y
uniform in each interval, and the average level density is a smooth functio n
of the energy . The sum in (27) spreads practically only over an effective

region of the coherent interaction where the matrix element <v v I G j v' v ' >
differs appreciably from zero . The single-particle levels of spherical and

not strongly deformed nuclei exhibit a shell structure, i . e ., are divide d

into sharply separated groups ll) . The most essential contribution to the sum
(27) is given, in this case, by transitions between the states in the same shell .

Neglecting the transitions between different shells (which will be discusse d
later), we can treat each shell independently . Therefore, in both cases ,
we have to consider a separated group of levels with approximately unifor m

distribution . For strongly deformed nuclei, this level group, determine d
by the effective region of interaction, may be assumed to be symmetrical

with respect to the Fermi surface . In the second case, the level group coin-

cides with the shell and may, in particular, reduce to one highly degenerat e
level . The position of the Fermi energy, in this case, is not fixed and depend s
on the number of particles in the shell . (A symmetrical position correspond s

* We do not necessarily here mean j-shells .



approximately to a half-filled shell) . We shall consider this general case,

keeping in mind that the case of strongly deformed nuclei is equivalent

simply to a half-filled shell .
To simplify the problem, we assume that the matrix element < v v ~ G I v'v '

is constant for the transitions between any levels inside the shell . With

this assumption, the equation (27) for 4 (which is now constant) takes

the form

	

~

	

1

	

1= Z G ~	 	 (33)(EV - ~)2 +42 .

For A larger than the distance between levels, which is the case we ar e

interested in, the sum in (33) can be replaced by an integral . Then, we get

G
b

2
~å

(s)	 d+4 2
where

a =s ' - A ; b =E" - ; ,

and e', r " determine the boundaries of the shell .

Defining a certain average level density

	

according

♦b

	

b

de

	

e (e) de
{r82+42

	

Ve2+42 '
a

	

a

and introducing the dimensionless quantity

rj = OW,
we obtain from (34)

Binh-1 d - sinh-1 4 = 2

and, therefore,

4 =	 1	 [b 2 + a 2- 2 ab cosh 2 vl r- . (39)
sinh 2 2

2. Influence of the neighbouring shells

Up to now, we have not taken into account the matrix element s
<v v ~ G } v ' v ' > between different shells . Here, we consider briefly their effect .
By separating out those terms of the sum (27), for which v ' is in the shel l

(34)

(35 )

to

(36)

(37)

(38)



nearest to the Fermi surface (A-shell), we can rewrite the equation (27)
in the following form :

_l~f,l <vvI Glv'v'>

	

+ 1<vvlGlv'v'>
dv 2

	

V( -é,,.v 2

	

V(4,-A)2+4, v
v .

	

V

	

!

	

v '

Treating the last term as a perturbation, we may in this term replace d v, by
dv , determined from the main part of (40) . Further, in the denominator
of this term, dÿ can be neglected, since the distance between shells is greate r
than the gap* . The equation (55) may then be expressed as

(41 )
1 ~r,<vvI GIv„ v„><v„ v„ IGIv, v , >

+2 v .,

	

IÉV" -A I

Eq. (41) has the same form as the corresponding equation in which inter -
shell transitions are neglected, but with a new value of the interaction .
Therefore, the influence of other shells only increases the effective inter -
particle interaction .

The efficiency of the pairing interaction depends on the region of inter-
action, i . e ., on the number of states connected by the transitions < v v I G I v'v'> ,
and on the value of the matrix element . Inclusion of intershell transition s
means, in fact, some extension of the interaction region, but, as it has bee n
shown just now, it can be described as an effective increase in the valu e
of the matrix element. It is of interest to see how this solution for d, in th e
case when the shell structure disappears, goes into solution with the un-
renormalized matrix element, but with an extended region of interaction .
For simplicity, we consider the case of a uniform level density inside th e
shells and assume a constant matrix element for all transitions in an energy
region (- w, w) measured from the Fermi surface A . Then, we have for th e
last term in (40)

a S
w l	

+2 d 1J-w + J b+S/ 2 d2 ,

where b is the distance between the shells . Neglecting the quantity d in the
square root, and performing the integration, we obtain for the equation (40 )

* This is, in fact, the condition for the existence of a shell structure in our treatment .

(40 )

A
Av

	

~	 v '

1/(Er,_ A)2 +2 v , V(év,- A) 2 + dv,
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2

sivli-1 - sivli-1 4 = 2 - In
(b + b) (ô - a) 2 ?ef r

In the limiting case of 'r7err>% 1, one finds for 4

4=2V- ab éne ff =2w	 ab	V 	(b + S) (a-6)

which, for 6-> 0, goes into the usual solution for a system with unifor m
level density (Fermi gas) .

The matrix element <v v I G I v ' v' > decreases with the atomic number a s
A-1 . On the other hand, in heavy nuclei, the distance between the shells
decreases and intershell transitions become more essential . Therefore, the
effective interaction parameter G decreases somewhat more slowly than A-' .

v

The average number of particles in the ground state ("vacuum") i s
determined by the constant term in (42). Comparing it with a given value N,
we find the following equation which determine s

Ë- .l21 2 Vÿ -

	

YV 22 (43)

or, replacing the sum by an integral ,

3. Elimination of the Chemical Potentia l

The operator for the total number of particles in the system has the for m

Nakå akaX' 2Vv( Uv- Vv)(av av + Nv Nv )
ka

	

v

	

v

	

(42)
+X' 2 Uv Vv(av + Yv av)

Sb (
	 1

1Ia1 vg2 +4 2
s

	

/
( E) dE=N . (44 )

We shall approximate the level density g (e) by a straight line, takin g
into account only the first derivative e' (r) . Introducing two parameter s

eo = 1 [e (b ) + e (a )] ; e =	 (b) -(a)

	

(45)2

	

e(b)+(a) '
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we have in this approximatio n

e( E ) = eo[ 1 -b + a+ ba e
J

.

	

(46)

The average density eo is connected with the total number of pairin g
states in the shell Q by the condition

eo(8„ - s' ) = 52 .

Performing the integration in (44) and inserting for d the expression (39) ,
we get

	

21-
-
N -

b+
atanhr~-2 (1 -

sih2 ) Goth '
b

	

(48)
(b+a

)
2 ( 	 	 2 '7	 )

+ 2 b- a 1 sink 2

	

tanh r~ = 0 .

It is convenient to introduce the quantity xN according to

b+a=(b-a)ZN cothi =(r " -s ') xN cothri .

	

(49)

Inserting (49) into (48), one finds the following equation for xN :

xN

	

y (n)xN = 1- -(n) ,

where

y01)=coth(1-	 2n	 ) .
sinh 2 7

From (50) follows

(47)

(50)

(51)

-2 y(1-~)+ey2
(52)

From (45) and (51), one can see that ~ c 1 and 0 < y< 1 . Thus, from
(52) it follows that xN I < 1 . The limiting values ± 1 are reached on th e
boundaries of the shell (N = 0 and N= 2Q) :

1 for N = 0 ,

ZN =

	

0 for N = (1 - 2 y),

	

(53)

-1 for N = 212 .
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Thus, the quantity ZN characterizes the occupation of the shell an d
may be called "occupation factor" . For the uniform level density ( - 0) ,

ZN'x
o
1v=

	

(54)

The chemical potential 2 may be expressed from (49) and (35) a s

2= s" 2 	
2

(s„_ E ' )xzvcoth77 .

	

(55)

The average density 0 introduced in (36) (and therefore )7) in genera l
depends on N . Inserting (46) into (36) and performing the integration ,
we find

= go [1 - xN coth)7 -,r
7

1

)] .

	

(56)

With the aid of (55) or (49) A can be eliminated from all final results .

4. Criterion for the Existence of a Gap

Eliminating 2 from (39) we get for 4 *

4
= E/'-

s
(1 _ ZN)Ils

** .

	

(57 )
2 sink z

This result has been obtained with the assumption that 4 is not smalle r
than the distance between levels . This condition may be written as Ago > i
or, with the aid of (57) and (47), a s

2 sinhn
(1- x2N)1l, > 1 .

	

(58 )

This inequality gives the condition for a modification of the Fermi sea
and for the existence of an energy gap for the nucleus . To estimate the left
side of (58), we may use the expression (54) for xN and obtain

2 sinh n
* We avoid calling zi an "energy gap" . It will be seen later, that in the case yj < 1, the

energy gap is determined by another quantity .
** Far from the boundaries of the shell, where xN(( 1, (57) coincides with the solution i n

references 6, 7 for a superconductor if (s" - e' ) is identified with the region of the coheren t
interaction (see also pages 14-15) .

1

	

I/N(20-N)> 1 .

	

(59)

2*
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In the case of n»»1, (59) is satisfied only by a sufficiently broad regio n
of coherent interaction, i . e ., for sufficiently large values of N(2Q - N) .

On the other hand, if

	

1, this condition is always fulfilled .

5. Energy of the Ground State

The energy of the ground state (of the "vacuum") is the quantity U give n
by (22) . The last term in (22) is connected with the energy of the selfcon-
sistent field . We shall come to this term later and consider here only th e
two first terms in (22), i, e . ,

U ' = 7 (E., - 2) 2V,2-~d U,,V,, .

	

(60 )
v

	

v

The sum over closed shells, for which d„ = 0 ; V„ = 1, give s

Ugl =

	

-A) =

	

é,,-ANcz

	

(61 )
v

	

v

Using the constancy of d„ and replacing the sum by an integral, w e
get for the unfilled 2-shell

b

	

2

U~=

	

1-	 £	 Q(e)ede-- ..S a (

	

Ve 2 +d2

	

G

After the integration and subsequent elimination of 2 with the help o f
(49), we find

U~ = 4
(e , ' - e') ( 1 - xN) 2 [cothl - 3 (2 -F xN), .

	

(62 )

The quantity U corresponds to the ground state of the auxiliary Hamil-
tonian (2) with the chemical potential . The energy which corresponds to
the original Hamiltonian according to (62) and (55) is given b y

WA = Ui + .IN,l = ['+ e"± (e"- e')] NA

2(e" - e') ( 1 - xN) totil + xN (1 - 3y (~7) coth ) - 3 y (n)] .

The last term in (63) contains the factor (1-l) and disappears for
the closed shell, which has, thus, the energ y

Wct = [e ' + e" + 3 (e" - e' )] 2 Q .

	

(64)
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It is known that the energy of the closed shell in the first approximation
does not change for a small variation 8ß of the equilibrium deformation .
Therefore, the quantity

E), =
[e ' + E" 13 ( e" - E ') 1

is at least quadratic in 8ß* .
In the absence of the interaction (n-÷ 0o ; y-~ 1), it follows from (63) tha t

=N_S
24(E„_E')(1-xN)[-3xN- 2] .

	

(65)

In the opposite limiting case < 1, one finds

Y ' 3 i ; xN xN

	

0N yJ 3 2 xN ON
ry72

(66)
t 2

E"- E ' er . G7Î 1

Ir1

3 xNn +
9

eN i2 ]L

where x°, is given by (54), an d

ON

	

(xN) 2 =

	

1

	

~N
~

	

(67 )
.Q

	

2 Inserting (66) in (63) and restricting ourselves to n2-terms, we fin d

1,17), =ESN-4D2GON- GONG- 3 N In2 .

	

(68)
1 2

For small deformations ß of a spherical nucleus,

q

(e"-E')/QG' ß .

The expression (65) is thus a linear function of ß . On the other hand, (68)
is proportional to ß2 . Therefore, the pairing interaction changes the depend-
ence of the energy of the outside nucleons on deformation . This turns ou t
to be very important for the problem of the nuclear equilibrium shape .
(See Part III) .

6 . Energy Spectrum of Quasi-Particle s

The ground state of the system expressed in terms of the quasi-particle s
x ß is a vacuum . Acting on the vacuum wave function by the operator s
x+ and ß+ , we get excited states with one or more quasi-particles . Such
states we shall denote as single-particle excited states . The energy of these

• For a correct approximation the quantity ; must be chosen to satisfy this condition .
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states measured relative to the ground state is given by the sum of th e
quasi-particle energies E,, .

From (28), (55), and (57) we find for E,,

E12 = (åv- A)2 +4 2

~= (E ET (1-xN)(coth2 n-1)+ e -
E2E

+ 2 (E 8')xNCOth

	

(69 ),

In the absence of a pairing interaction, E„ coincides with the particl e
energy measured relative to the Fermi surface :

E° = I E, - A° I _ + (Ey - A°) = + { 4- 1
(Err+ E'

) -1-

I- (s"- E')
xN J '

	

(70)

where xN = xN (n = oo) . With the aid of (70), the expression (69) takes th e
form

g = (E" - E ')2 coth 2 Y~ - 1 + (xN ZN)2- 2 ZNiXN (Goth - 1)

4 E
°

	

4 E02

	

(71 )

(xN COthYl - ZN) +

	

E , ) 2

In the limit of n>> 1 (weak interaction or small level density), we get

EyEi)2(1 - xN)E
2n +E0 2 = V42 +E30 2

In this case, the value of the energy gap is given by the quantity A . Because
of the factor (1 - A) the gap disappears, in this case, at closed shells .

In the opposite limiting case of < 1, it follows from (71) that

Ev=VID2G2± z?v QGE°+E02 .

	

(73)

In (73) the role of the gap is played by the quantity 1 / 2 QG . It does no t
depend on the number of particles in the shell and does not coincide wit h
A which, for n < 1, is equal t o

d 2 QG ( 1 -(xN) 2 ) 112 =2sQGer .

	

(74 )

For the first excited states, E° is of the order of the distance betwee n
single-particle levels (in the absence of degeneracy E° „ e 1 ) . Therefore, th e
terms in (73) containing E° are small . These terms determine the leve l
density of the quasi-particles above the gap . For small E°, we have from (73)

- D Gt(xN ± S GE° .

	

(75 )

(72)



Nr . 11

	

2 3

(The term, quadratic in E°, may be important only in the middle of th e

shell, where xN 0) . Comparing the level density for the quasi-particle s

with that for the original non-interacting particles 2°, one finds

2 E°

	

N 2 E°

	

°/° ZN+QG=1-,+QG .

	

(76)

Near the closed shell, where I xN I - 1, the ratio (76) is of the order of

unity. As one moves away from closed shells, the level density of quasi -

particles increases and in the middle of the shell becomes of the orde r
of Qo° .

7. Wave Functions of the Ground- and Excited States

We consider now the question of the meaning of the wave function s
of the ground- and excited states in terms of the old particles . Let us introduc e
the wave function of the vacuum state of the old particles Yfo° l , for which

ak,T t = O . The first transformation (3), which removes the self-consisten t
field, does not mix up creation and destruction operators and, therefore ,
does not change the vacuum state . After introduction of the operators a,,
and ßv , the new vacuum state To is defined by the equation s

a v iP° = (Uv b v + - Vv bv) iPo =0 ,

ßv = ( Uv b v +Vv bv+) tPo =O .

It is easy to prove that these equations are satisfied by the function

To =17 ( Uv+ Vv b v+ bv ) To =O .

	

(78)

In this representation, the wave functions of the excited states with onl y
one quasi-particle have the form

ßv 1Po vIv

	

(79)
( Up,+Vv' by + by-) by Wr ,

and the function corresponding to the excitation of the pair i s

av ßv
tPo=II(Uv,+Vv,b, + b.v-)( Uv bv+ bv -Vv) Wo)* •

	

(80)v + v

* The expressions (78)-(80) are similar to those obtained in reference 6 for a superconductor .

avY'o
v

17 ( Uv . + Vv' bv + bv-) by+ q-1ô° ) ,
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As it follows from (78), To describes a superposition of states wit h

different numbers of particles . This is true also for the functions (79) and
(80). It must be pointed out that (78) and (80) are formed only by state s

with even numbers of particles . The functions (79), on the contrary, de -
scribe only superpositions of states with odd N . Therefore, these function s

belong to different physical systems .

The "vacuum" function ¶ describes the ground state only of the even- N
system (even-even nuclei) . Excited states in such systems contain an even
number of quasi-particles a + or ß+ and are separated from the groun d
state by twice the energy gap .

For the odd-N systems, the ground state is given by the lowest of the
states (79), i . e ., the state with one quasi-particle, say a,+,. To. The excita-

tions of this odd quasi-particle, which are obtained by acting with the
operators a,+, a vo or ßv

	

have no energy gap .

Therefore, the excitation spectra in even-even and odd nuclei turn ou t
to be completely different . On the other hand, the properties connected with
the energy of the ground state exhibit no essential differences, since th e
energy of the odd particle may be neglected with comparison to the "va-
cuum" energy .

8 . Uncertainty in the Number of Particles

To estimate the uncertainty in the number of particles in the state s
(78)-(80), one can consider the average quadratic fluctuation of N, say,

in the . "vacuum" state To. Using for N the expression (42), one easily finds

4 2
< N2 > - < N> 2 = 4 U, Vv

	

dv + (éy-

;
.)2 .

v

For simplicity, we restrict ourselves to the case of a uniform level density
( = 0). Replacing the sum in (81) by an integral, we find, after som e

elementary calculations ,

<N2~
<N>2 sihn

ONtan1 (Or;sinhn) ,

where ON is the occupation factor (67) . In the limiting case of i» 1, we ge t

N2i-<N>2 . n	 	 ( rl>i l)•

	

(83)< 2 Binh ri

(81 )

(82)
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This expression differs from the left side of the inequality (58) onl y
by the factor r . Therefore, for this case, we can write

	

<N2> -<N>2 N rr0d

	

(ri» I ) .

	

(84)

For strongly deformed nuclei for which this case is realized, the valu e

0 A is significantly smaller than N, the number of the particles in the u n

closed shell .
In the case of r < 1, (82) takes the form

/

	

AT
<N 2 >-<N> 2 QON =2N11-	 ; ( r7< 1 )•

	

(85)

For N = 2 (one pair), åN, the average width of the distribution i s
approximately 2, i . e ., there are admixed practically only the nearest eve n
neighbours . In the middle of the shell (N S2) the width is of the order of VN.

One might suspect that the uncertainty of N, in spite of its smallness, i s
of principal importance, because it might permit solutions which are im-
possible for fixed N . It must be pointed out that the removal of the condition
N = const by the introduction of the chemical potential A does not exten d
the scope of possible solutions . This method means only a replacemen t
of the system under consideration (N-system by A-system) . There are n o
physical reasons to expect a significant change in the ground state and i n
the properties of quasi-particles caused by this replacement . We can see thi s
in the limiting case n = 0 (complete degeneracy), where our results may b e
compared with the exact solution* . The energy spectrum of the system wit h
N particles is given in this case by- t2l .

t1~Ni - 2Q GN(1
2~ +S2 Gm (1 - nl~1 )

	

(86)

The corresponding expression in our case (A-system) follows from (68 )

	

and (73) by substituting ri = 0, E° = 0,

	

= 0 by

Wm = - 2 0GN(1 - + S2 Gm

	

(87 )

(the last term corresponds to in excited pairs) . Comparing (86) and (87 )
it is seen that relative corrections both to the ground state and to excite d
states are of the order of .Q-1 * *

* The Hamiltonian is given by H = - GEb+ b+ b b
vv s v+ v- v ' - v'+

** The interaction, Hint, between quasi-particles gives corrections of the same order . There -
fore, in the approximation of independent quasi-particles, the equations (87) and (86) do no t
differ from each other.
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9 . Effect of the Residual Interaction between Quasi-Particles

The nature of the canonical transformations performed above might b e

explained in the following way . The interaction between the original partic -
les contains a coherent pairing energy. This interaction, in principle, could

be treated in a direct way by rejecting of the independent-particl e
model . We had another aim, namely to keep this model, but to take int o
account the pairing interaction, or at least its main part, by introducin g
a new type of independent particles . The pairing energy, which was a n

interparticle interaction, then determines the intrinsic structure of th e

quasi-particles .
With the aid of the canonical transformations, we can take into accoun t

the pairing interaction only in the form of the matrix elements (v 7/W I v'v'> .
The question might quite naturally arise as to whether these matrix elements
are the main part of the pairing interaction . Other matrix elements coul d
possibly cause results which are basically different .

The residual interaction between the new quasi-particles is describe d
by the Hamiltonian Hint (16) . To answer the questions mentioned above
one might tr eat Hint as a perturbation. In our case, the perturbation treat -
ment has a special feature, since the coefficients of the canonical trans -
formation Uv , Vv have to be corrected in each order . In the second order

in Hint, the structure of the equation (27) for 4 v does not change, but th e
matr ix element <vvlGlv'v'> is replaced by an expression of the form"

(vv l G I v 'v'> +

	

<vv1 l GIv 1 v ,
><v 1 vl GI v'>

Uv,Vv1Uv1Vp ,Ep +Ev-+Ep +Ev'

In other words, the graphs of the perturbation theory correct the pairin g
interaction . One can expect that the sum of the graphs would lead to re -
placing the matrix element <v vi G I v'v'> by a certain effective pairing inter -
action, but not to a basic change of the results *. In this sense, the influenc e
of the residual interaction Hint on the properties of the ground state an d
the quasi-particles is not essential .

* See the analogous analysis for a superconductor in reference 13 .
** The analogous procedure in the Brueckner-Bethe theory of nuclear matter 11) leads t o

a replacement of the interaction matrix elements by those of the transition matrix . A simila r
situation might be pointed out also in the theory of superfluidity in a Bose system . In reference
15, a spectrum of quasi-particles has been obtained with the aid of a canonical tranformation .
The sum of graphs of the perturbation theory, which has been performed in ref . 16, gave th e
same result but with replacement of the interaction matrix elements by exact scattering ampli -
tudes .

v,v i
+ terms of similar form
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Besides that, the interaction between quasi-particles contains the lo w

harmonics of the nucleon-nucleon interaction (32) which remains almos t

untouched by the canonical transformation . These harmonics, which giv e

rise to collective excitations in nuclei, require other methods of considera-
tion20) . On the other hand, collective excitations in nuclei can be treate d
directly in the framework of the unified nuclear model by introducing a
time-dependent deformed self-consistent field .

III . Collective Excitations in Nuclei

The nature of collective excitations in nuclei and the methods of their
investigation are explained in detail in the literature (see, e . g ., Chapter V
of reference 3). We briefly sketch some essential points which will b e
needed later .

Let us introduce a parameter which describes a particular type o f
the collective motion . Using the adiabatic character of the collective motion
one may first consider the intrinsic motion of the nucleus for a fixed valu e
of 79' . The energy eigenvalues for this motion are denoted by Wi (10) . Then ,
the Hamiltonian of the collective motion is given approximately b y

Heon = Wi (1% ) + 2
Bi 0)2 ,

where the inertial parameter Bi (e), obtained by the adiabatical pertur-
bation theory, is given by 17>

(88 )

7$i

,I< j
Bi (li) =2 t1 2

a
å~

Wj - Wi .

i> 12

(89)

The potential energy of the collective motion Wi (0) and the inertia l
parameter Bi (0) are essentialy determined by the intrisic nucleon motio n
and their calculation is possible, in practice, only for simple models . It i s
known that the hydrodynamical model of irrotational flow gives too smal l
a value for B (8) . The independent-particle model (using an oscillato r
potential) leads to a very large value of B (') for rotations (rigid-body mo-
ment of inertia) and to a very small B (0) for vibrations, which violate s
the adiabatic condition .

Below, the parameters of the collective motion will be found for th e
model of independent quasi-particles (which is equivalent to a model of
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the old particles with the pairing interaction included). It is not our aim

to make here a detailed investigation of the collective excitations or a com-

parison of the results with experimental data . The main problem is to esta-
blish what role the pairing interaction plays in collective nucleon motio n

and what qualitative results it leads to .

1 . Dependence of the Nuclear Energy on the Deformatio n

Here, we restrict ourselves only to the axially symmetric quadrupol e
deformations . In the liquid drop model, the deformation is defined in a
natural way as a deviation of the uniform drop from the spherical shape ,
and is uniquely connected with the nuclear quadrupole moment* . In single -

particle models where one considers the nucleons in a certain potential well ,
such a simple picture is valid only for nuclei with closed shells . In the

presence of particles in an unfilled shell, the nucleus does not behave as a
homogeneous system . The nuclear quadrupole moment is not determined
only by the deformation of the well, but depends essentially on the confi-

guration of the particles in the unfilled shell . The energy of the nucleus will
also depend, in this case, on both factors . However, one must take into

account the self-consistent nature of the nuclear potential . Self-consistenc y
requires that the distribution of the potential must be the same as the den-

sity distribution (which is the consequence of the short range nucleon-nuc-

leon forces) . Therefore, for a given value of the eccentricity of the well ,
only such configurations of the outside nucleons are allowed, which provid e

the same eccentricity of the density .
In Section II . 5, we have not used this self-concistency argument ; there -

fore the ground-state energy obtained there applies to the system in a n
external potential . In order to introduce the self-consistency, we now as k
for the lowest state of the system with a fixed value of the quadrupol e
moment. Due to a relatively small coupling between the closed-shell cor e
and the outside nucleons, we shall consider the deformations of these tw o
components as distinct degrees of freedom and shall be looking for th e

nuclear energy as a function of two deformation parameters, say, th e
quadrupole moments both for the closed-shell core and the outside nucleons .

Let us assume, first, that the closed-shell core is spherical and undeform-
able. In this case, we have to find the energy of the lowest state of the outsid e
nucleons for a fixed value of their quadrupole moment Qx (which, in thi s

case, represents the total nuclear moment Q) . To satisfy the subsidiary
condition of a constancy of Q, we add to the Hamiltonian the term -,u O ,

* Here and below, we mean the quadrupole moment of the mass, but not that of the charge .
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where Q is the quadrupole moment operator, and look for the groun d
state of the Hamiltonian

H = H- ,uO .

	

(90 )

Then, the Lagrangian multiplier ,u has to be eliminated by using th e
condition <0> = Q.

The quadrupole moment Q, represented by the sum of the single -
particle operators, has the for m

Q =L'g vv, 2Vv

	

((Iv Up . -Vv Vv . ) (av av' + Nv' Nv )
v

	

vv'
(91 )

+ G gvv'( Uv Vv +Vv Uv')(av !3v + Pr av' )
vv'

where qvv. are the matrix elements of the single-particle quadrupole moment .
We neglect, as always, the interaction between quasi-particles and conside r
instead of H the Hamiltonian Ho = U+ H2O + Hu. . Comparing (90) with
(22)-(24) one can see that the inclusion of the term -,ts Q is simply equiva-
lent to a renormalization of the single-particle energy e,,,,, .->- (En .- N qvv , ) .
Assuming that the new single-particle energy has been diagonalized b y
an appropriate choice of the states v, we get the Hamiltonian of the form
(22)-(24), where the levels f, are given by

Év = 8v-~` < vv' I G I v'v > Vv' pgvv -

	

(92)

In producing the deformation of nuclei, the quadrupole part of th e
interaction between particles (the term 1 = 2 in (32)) is of great importance .
The main effect of this quadrupole interaction can be described as a n
interaction of each particle with the total nuclear quadrupole moment .
Therefore, we assume that

vv'IGI v'v > V. = x Q gvv ,v '

where x is a constant coefficient .* * *

* In the unified nuclear model, the analogous expression is considered as a coupling energ y
of a single particle to the nuclear surface . Comparing (93) with the equation (II . 26) of ref . 2
(TVeo,, r,i -k Y 20 ), we obtain the following relation between x and the "coupling constant" k :

5 k
x

		

(93 )
12 ARl r 2

where we have used the connection between ß and Q (see below, Eq . (105)) and the equation

17-4

	

Y20 r 2 . The equation (93') implies, in particular, that x is proportional to

** The-single particle energy in a potential well is given by the sane equations (92), (93) ,
provided the quantity Q means the quadrupole moment of the potential . Identification of Q
with the particle quadropole moment leads to the self-consistency discussed above .

(93)
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Inserting (93) in (92) one finds for the single-particle-level s

Ev = Ev-(+ x Q) q vv =E V -qv, .

	

(94 )

The quantity Ev , according to (7), is given by Ey = Z e
k q;,

kv 94v, where Ek
k

is the energy of the degenerate single-particle levels in the spherical nucleus ,
and q'kv are the coefficients which transform the single-particle wave functi-
ons in the spherical field to those in the deformed field . The splitting of r ,
by the deformation is caused only by the change of the single-particle wav e
functions and can be neglected for the outside nucleons for which the mai n
splitting is caused by the last term in (94), associated with the direc t
quadrupole interaction. (Cf. an explicit solution in Appendix B) .

The energy of the ground state of the auxiliary Hamiltonian (90) is.
given by the quantity U in (22) . The lowest state with a given value of th e
quadrupole moment Q of the original Hamiltonian has the energy

W(Q) = U+AN+,uQ .

With the aid of (22), (43), and (95) we obtain

(95 )

W (Q) =XEV 2Vv-~xQ 2 - G2, (96)

where 4 is given by (57) . The first term in (96) corresponds to the energy
of non-interacting particles, while the last two terms represent the energy
of the quadrupole and pairing interactions.

According to (91) and (94) the quadrupole moment of the outside nucleon s
is given by

Neglecting the splitting of e',, we may replace Er by the average energy o f

the A-shell EA = 2 I (E" + E' + 3 (E" - E')] . With the aid of (43) we find

Qa . _ (EA-A) N-

	

(E,-A) 211.

	

(97)

Replacing the sum in (97) by an integral we obtain, after calculations simi-
lar to those performed in Part II ,

Q,1 = qoA (n),

	

(98)
where

QA =

	

gvv 2 Vv =
P

	

(E, 4) 2 Vÿ .

qo = max
qvv-

min qvv, = q (E') - q (e") =
E„~ E ,

	

(99)



is the amplitude of the single-particle quadrupole moment, and

(~?)=4(1-zN)L11-r) Y(i) -2 xN(Y(~7)cothr~-3

	

(100)

where the function y (n) is given by (51) . The equation (98) connects th e
quadrupole moment of the outside nucleons with the parameter n . There-
fore, the equation (96) gives the nuclear energy as a function of i in the
case of a spherical undeformable closed-shell core .

Now, let us go to the general case and consider also deformations o f
the core . Here, we require fixed values of the quadrupole moments bot h
for the outside nucleons and the closed-shell core, and introduce into th e
Hamiltonian two Lagrangian multipliers

H=H -4'A -u' Qct ,

where Q41 is the quadrupole moment of the closed shells . The equatio n
(93) is valid also in this case, provided Q means the total quadrupol e
moment. The expressions (92) and (94) now correspond to the outsid e
nucleons ; for the closed shells, one needs simply to replace ,u by u ' . After
simple calculation, one finds that the energy of the lowest state with give n
values of QA and Q,l is given by the equation (96), where Q is now the tota l
quadrupole moment (= (41 + (4) and the sum in the first term is extended
over the closed shells as well as the unfilled A-shell .

The single-particle quadrupole moment qvv, can be written, for smal l
deformations of the self-consistent field, a s

qvv = gvv + ,u) ,

where qvv is determined by wave functions in the spherical field, and C ) is
a correction caused by a dependence of the wave functions on the deformation .
For the closed shells,

	

' qvv = 0, and therefore Qa is determined only b y
v

the quantity qvv ) which is proportional to the deformation . On the other
hand, the quantity qvv, gives the main contribution to the quadrupole moment
of the outside nucleons Q . The contribution of the quantity & to th e

value of QA turns out to be small, as 8"-e' , where eF is the Fermi energ y
eF

(see Appendix B). Thus, we can use, for Q;, , the expression (98), wher e
the dependence of the single-particle wave functions on the deformatio n
was neglected .

(101 )

(102)
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The first term in (96) corresponds to the energy of non-interactin g

particles, provided one considers their new distribution among the level s
(V 2 � 0,1) . The dependence of this term on the deformation of the fiel d
is caused only by a change in the single-particle wave functions . This leads
to a quadratic dependence for small deformations . Choosing the value of
the quadrupole moment of the closed-shell core as the deformation para -
meter, one may write

ev 2Vv =Wo +kQ,2 c,

	

(103)
v

where Wo and k do not depend on the deformation* . Inserting (103) in (96) ,
one finds

2

W (Q)Wo+2(k - x)Q 2 -kQQa,+2kQ,21- 	 G .

	

(104)

Let us introduce the deformation ß which is associated with the total quad-
rupole moment Q by the equation )

Q v5 ARôß = Qß,

	

(105)

where A is the atomic number and Ro is the nuclear radius . Inserting (98)
and (105) in (104), we obtain

W (Q) = Wo 2 (Ic - x) 02 132 - k goQ ßA (n) + 2 kgô A2 -G .

	

(106)

The equation (106) determines the nuclear energy as a function of the de -
formation ß and the parameter n associated with the configuration of th e
outside nucleons.

2. Equilibrium Shape of the Nucleus

In the absence of pairing interaction (n-* co) one finds from (57) and (100 )

4 2
G 0 and A (n) S2

	

[2
~ 2

7 (i -xN

	

3 , (107)

* The quantities Wo and k depend somewhat on the occupation of the unfilled shell .
We shall neglect this weak dependence . In order to add to the understanding of the nature o f
these coefficients, as well as of the approximation made in the derivation of equation (104) ,
a particular problem is solved explicitly in Appendix B .
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where xN = xN (r! _ co) . The energy W(Q) in this case depends on ß only . The
equilibrium deformation ß0 always differs from zero, except in the case
of the completely closed shell . Therefore, the spherical shape turns out to
be unstable for any number of outside nucleons and the deformation
increases smoothly when the occupation of the shell increases .

For a fixed value of 17, the equilibrium deformation ßo determine d
from (106) is equal to

ßo(n) (1-4k)QA(,) .
This equation can be written as

QÂ _ (1-x/k) Q,

	

(108 ')

which indicates that the quantity x/k describes the polarizability of the cor e
by the outside nucleons* .

In the case of equilibrium between ß and 22, W(Q) takes the form o f

x 2

	

4 2

	

W(Q) = Wo - 2 (1 -xIk) A2 (n) - G •

	

(109)

seen to be equivalent to (96), (98). The only effect of th e
(k� oo ) is an effective increase in the quadrupole force

one finds from (57) and (100 )

G2 42GON
12GON(1 3) ?2

A@I) 6
(1-9 0N y7

Combining (109) and (110) we get
2

	

2W(Q) = Wo-4 GON +2 C,1 7 .

where

Cri
62GON(1

32 )L 1 6G ( 1gxJ k)( 1 3,ON,'

	

(112)

* The quantity x/k can be estimated empirically from the values of the quadrupole momen t
for nuclei with one particle outside of closed shells (e. g ., O il or Bî209 ) . These nuclei exhibi t
quadrupole moments of the order of single-particle values, which implies that x/k - 0 .5 .

Mat . Fys. Medd . Dan . V id . Selsk. 31, no.11 .

	

3

(108)

This equation i s
deformable core

x
(xetf = 1 -x/k) '

For small n,

(110 )(n< 1) .
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The stability of the spherical shape depends on the ratio of the two terms
in the square brackets of (112) . The first term, which is associated with
the pairing interaction, tends to produce stability . The second term gives th e
effect of the quadrupole interaction between nucleons and, in the case o f
attraction (x>O), tends to produce instability of the spherical shape . In-
troducing the quantity ON0 by the equatio n

	 x	
ON 6G(1 ox/k)(1- 3) '

we can rewrite (112) in the form

	

1
C,i = 6GON (1- 32 1(1-ON/ONo ) .

	

(114)

The quantity ON, represents the value of the occupation of the unfilled shel l
required to make the spherical shape unstable . The value of ONo change s
from shell to shell. If ONa > 1, then the nucleus remains spherical for an y
occupation of this shell .

When the condition ONo < O N c i is fulfilled, the spherical nucleus is un -
stable . The equilibrium deformation is determined in this case by the extre-

mum of (109) for n � 0 . To simplify the calculations, we restrict ourselve s
to the case of uniform level density ( = 0) . Using (57), (100), and (113) ,
one finds from (109)

rio

	

2

	

no

	

(113 )

W (Q) =

	

G
(
	 + -

	

(115)n

The extremum of (115) is determined by the equatio n

(coth no

	

) [1 - 3 0N/ONo .7(~10) - =O .

	

(116)

The solution corresponding to the first factor in (116) gives an extremum
for no = O . Since 3y/2 n<l, the second solution of (116) occurs only fo r
ON>ONa . Using this solution, one finds the equilibrium deformation ßo from
(108) :

DgoON

	

17 )
ßo=4(1-x/k)Q7o'

	

(117 )

In the absence of pairing interaction, the equilibrium deformation is given b y
the same equation (117) without the factor y o . Therefore, this factor repre-
sents a relative reduction of the equilibrium deformation arising from the



Nr. 11 35

1 .0

	

1 .5

	

2.0
Fig. l

Fig.1 . Relative reduction of the equilibrium deformation arising from the pairing inter -
action .

The figure shows the ratio of the equilibrium deformation to that in the absence of pairing inter -
action, in the region of deformed nuclei (ON<OW . The reduction factor y o is obtained from

the equation (116) .

pairing interaction . The function y ° (ON/ONo), determined from the equatio n
(116), rises rapidly with increasing occupation O N near ONo and quickly
approaches its limiting value y° = 1 . (see Fig. 1) . Near the point of instablity ,
one finds
	 No 15

1-ON0

	

(

	

V15 (1 1
2

Yo 3 ON

	

2

	

ON ' 1 io

	

2

	

ON !-

)

and from (117) it follows that

	 YO QeNa

	

15(
1-

ONO
l~° 6(1-x/k)Q

	

2 1 ON~

(118)

(119)

3*
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Fig . 2
eN

Fig.2 . Dependence of the equilibrium deformation on the occupation of the unfilled shell .
The equilibrium deformation N0 is plotted as a function of the occupation factor ON for two

different values of the quantity 0,x ° given by (113) .
The dashed line shows the deformation ß(o) in the absence of pairing interaction. The maximum

value of (ib ) (for a half-filled shell, i .e ., O N - 1) is chosen as a unit .

Therefore, the transition from the spherical nucleus to the deformed on e
is rather sharp. The minimum value of the possible deformation may b e
estimated from (119) by setting N = No + 1 (i . e. (1-ON)ON) V) :

QQ	 	 qo 	 V 1 5
Nmin 3 (1 - x/k) Q

	

2 N°'

	

(120)

For large values of ON/0N° , one finds from (116 )

Yo 1- 2(3ON /ON° -1)exp(-3ON/ON° )

	

(121 )

and, therefore ,

3o ' 6 ( 1

	 qo

-

	 00N

/k)
	 l

'

	

1- 2 (3ONIeN°-1) exp (- 3ON/ON° )} .
x Q

(122)
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a

FI g. 3

Fig .3 . Dependence of the nuclear energy on the configuration of the particles in the unfille d
shell .

The figure shows the nuclear energy as a function of the quadrupole moment of outside nucleon s
for five different occupation factors. The energy is measured as the difference from that in a

1
spherical nucleus, in units 4-Q2 GON (total pairing energy in the spherical nucleus) . The quadrupole

moment, Q z , is plotted in units of its maximum value Qz max = qu 4 ON . (The weak dependenc e

of Q,1 on the change in wave functions upon deformation has been neglected) .

In this region (near the middle of the shell), the main dependence ß p
of the occupation is given in (122) by the quantity ON ; thus, we may write
approximately
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ßO ~ ßmax 0N ,

	

(123)

where ßmax is the value of the deformation for the maximum occupatio n

of the shell (ON = 1) :
	 qoQ	

Pm" 6 (1- x/k) Q

Consequently, the values of the equilibrium deformation have a lowe r
bound and change smoothly near the middle of the shell .

The equilibrium deformation ßo as a function of the occupation facto r

ON is illustrated in Fig . 2, where the dashed line corresponds to the absenc e

of pairing interaction .

It is of interest to point out the dependence of ßmin and ßmax on the
atomic number A. Since the quantity - A-713 (cf. footnote, p . 29) and

G -A-1 *) q o - Rô - A213 , it follows from (113) that ON0 is independent of A
(and, therefore, No - .Q - A213) . From (105) we have also Q - A51s Using thes e

facts, we obtain from (120) and (124 )

ßmin - A213, ßmax-A-113,

	

(125)

which is in agreement with the observed trends** .

The dependence of the nuclear energy on the configuration of the out -
side particles (for the equilibrium deformation of the core), which is give n

by the equation (115), is illustrated in Fig . 3 . The value of the quadrupol e
moment of the outside nucleons is chosen as the variable . Due to the finit e

nature of the quadrupole moment Q,l , the curves have terminal points .

This fact may violate the possibility for vibrations of outside nucleons

in a deformed field .

3. Inertial Parameter

As is seen from (89), for the calculation of the inertial parameter B (9 )
it is necessary to know the dependence of the ground-state wave function o n
the collective parameter O . To this end, we consider vo in the representation
of occupation numbers of the old particles (78 )

lPo=II (Ur +V,r by+b-)T0° i

	

(126)
ti

* Here, we neglect effects of intershell transitions, which changes this dependence to som e
degree (cf . p . 17) .

** For strongly deformed nuclei, the levels of different shells cross ly. Redistribution of th e
particles might occur, however, only when the levels of the low shell cross the empty levels o f
the unfilled shell . The number of such crossings is rather small, and we may expect that the y
do not change qualitatively the results concerning the equilibrium deformation .

(124)
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The change of the parameter means a certain variation of the self-consistent
field ; in the rotational case, it is equivalent to a certain rotation ; in the cas e
of quadrupole vibrations of a spherical nucleus, it is a quadrupole deform-
ation, and so on . In the general case, we can associate with 0 a certai n
operator of the infinitesimal displacement K . The associated variation o f
the self-consistent field changes the single-particle states and, therefore, the
operators of the old particles N-0. . Since the bv correspond to independent
particles, the operator 0 expressed in terms of bå may be represented by
a sum of single-particle operators

K _

	

kv' (bv+bv'+ bV'_ bv_)

	

(127 )
vv '

where k - = <v + ~ ke I v ' +> is the matrix element of the single-particle operator .
The sign fis due to the condition

<v' - I ke I v - > = +<v+ I ke I v ' + >

and is defined by the behaviour of the operator k under time reversal .
In addition to the change in the wave functions of the original particles ,

the deformation causes a shift of the single-particle energy levels, which give s
rise to a change in U„ and V . Therefore, the total effect of the deformatio n
can be written in the following form :

i
0 (3

(128)

	

- K+

	

,) b
,

where the last derivative is taken, keeping the operators bY6 constant . Per-
forming in (127) the transition to the operators a, ß we ge t

K0 =k (1+1)Vv+~k, (Ur Uv- +V„ V,v.)(4-cc , . + PvPv)
v

	

vv'

	

R

	

(129)
+ (Ur Vr .+Vv Ur')(av0v +Pray') •

vv '

The result of the operation of Ke on the vacuum state is given b y

K0To
ke( 1+1 ) 11 -T o + Z kew( Ur Vv' +Vv Uv')4- PvTo . (130)

v

	

vv '

Now, consider the last operator in (128) . From (126) it follows that

( OP.o )

	

(ô
; + aa-V; by+bv) 17

'
(Uv'+bi,t-)(131 )I, -

	

ver
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With the aid of the normalization condition U 2 + V 2 = 1, the first factor in -
side the sum takes the for m

a,~y+ aovbv+bv

	

vv a~v(Uvbv+bv vv)

Thus, by comparing (131),with (80), we get

(aTol _ _~ 1 a Uv +Ai;

b

	

Vy a~ IXv ~o •

v

from (130) and (133),
ap

causes transition s

states with two quasi-particles

As it is seen

(132)

(133 )

from the va-

cuum only to

~

	

ayy a Uv
0)_- ikyy , ( Uy Vy, + Vy Uv ,) - v- a (134)

a

0 0
<

IXv y+ ß+,

There is no interference between two terms in (134) provided the diagonal
matrix element kit is equal to zero . In this case, the inertial parameter fo r
the vacuum state is given by

B(0)B1 +B2

i 14 , 1 2 (Uyvy,+ Vy U02

	

r 1

	

y 1

Ey + Ey,

	

+h2

	

17,2

(aU\ 2

0'01 E,, '
v

where Ey is the energy of a quasi-particle (71) . The expression (135) defines
the inertial parameter for even-even nuclei . The ground state of odd nuclei
is given by the function of the form (79), say, a o vo . Performing simila r
calculations with this function we get

= 2 h2

v

(135)

vv'
v'# vo

+~2

	

1 aUyl 2 1 +2 ' I
k~° I 2 (Uv Uv° =F vy v

v° )
( Vv

	

Ep - Evo

2

	

r ' Ikt, 1 2 (Uy Vy,+Vy Uy ,) 2

Dodd= 2 k Gl 	 Ey+Ev,

vivo

	

v#v u

This expression can he rewritten in the for m

D odd = + B2 +B3 , (136 ' )

where Bl and B2 are given by (135) and correspond to even-even nuclei .



The term B3 , which determines the difference in the inertial parameter s

for neighbouring even-even and odd-A nuclei, is then given b y

k~ 2
B3=2h2~

	 2 vv°	
2 1]( Uv -V,)( Uv- Vô) +4Up 17p Uv° Vvo] Ev +EvoÎ

	

vov. EI v E1

	

(136" )

h 2
(1

a Uv°
2

Evo l Vvo â
)

The two terms in (135) have an essentially different nature . In terms of

original particles a nuclear deformation, which corresponds to the collectiv e

parameter t9, gives rise, in the first place, to single-particle transitions int o

the higher states and, secondly, to a change of the Fermi sea without particl e

excitations . B l corresponds to the first effect . The pairing interaction doe s
not change the structure of this term, but makes only quantitative alterations ,
which are connected with the new energy spectrum and the new distributio n
of the particles (Ur , Vv � 0,1) . The term B 2 is connected with the chang e
of the Fermi sea by the deformation . This qualitatively new effect is caused
by the pairing interaction and disappears for non-interacting particles (whe n
Up , Vv = const) . In the case of rotations, the term B 2 is equal to zero, sinc e
Up , Vv do not depend on the nuclear orientation . For vibrations, on the other
hand, the term B 2 will be shown to make the main contribution in th e
inertial parameter . Therefore, the pairing interaction basically changes th e
character of the vibrational motion .

4. Rotational Moment of Inerti a

In the case of rotations of axially symmetric nuclei about an axis per-
pendicular to the nuclear symmetry axis, the mass parameter B gives the
moment of inertia J . In this case, k is the operator of the particle angula r
momentum jx . Therefore, one finds from (135) for the moment of inerti a

of even-even nuclei
2

J =2h2~~IÉ+vEI . (UvVv'-VvUv,)2 .

	

(137)
v

	

v
vv '

Since jx changes sign under time reversal, the sign (-) has been chosen in
(135) .

In the absence of the pairing interaction, we have U p , IT,- 1,0 and
Ev = E° = I ev - 2 I, and (137) takes the form

J (O) = 4 } -i 2

	

r

ICOW12
U2 V 2. = 4

h 2l~
. I(MVP ' I 2

E°+Ev .
v v

	

8 v -ev ,

	

(138)
vv'

	

e„> ).> s,
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which coincides with the ordinary value for the moment of inertia in a n
independent-particle model .

Inserting the expressions (26) for Uv , IT, in (137), we get for the case wit h
a constant gap 4 :

J = h2\'	 (Jx)vv' 12 1 -42	 (ev- '1) (8v' - A)

	

(139)E , + Ev'

	

Ev Ev 'vv .

In order to analyse this expression we split it into two parts . J = J' + J" ,
where

J ' = 2
h

2(Jx)vv'I2 1+E°E° '- 42

	

(140)
Ev + Ev'

	

Ev Ev' )
Ey>%> Ep

J„ _ h2A2

	

I(Jx)vv'12

	

(EV -
~ v , ) 2

Ev + Ev .

	

Ev Ev . (Ev Ev' + E° E° . + 4 2 )

J' contains only transitions connecting states below with those above the
Fermi surface. Comparing (138) and (140) one can see that J' < J (0) (an
equality is achieved for non-interacting particles, when 4 = 0) . A decrease
of J ' with respect to J (0) occurs, in the first place, because of an increase o f
the energy denominator and, secondly, owing to the modification of the
Fermi sea . (The probability of finding an occupied state below the Fermi
surface and an empty state above has decreased) . The term J" contains
transitions only on one side of the Fermi surface and gives a relativel y
small contribution for strongly deformed nuclei .

To estimate the term J ' we rewrite (140) in the form

=

	

' I(Jx)vv'12 FE?, + E . 1

	

E° E . 4 2
J

4h2 ~

	

E°+E°. LEv +E°, 21 1+ Ev Ev -JJ
.

	

(142)

vy>A>e

(11
A 2-31 2

J' /Jrig =

	

E°)

where Jrig is the moment of inertia in the /absence of the interaction (A - 0 )
which coincides with the moment for rigid rotations . It is seen that the mo-
ment of inertia is rather sensitive to the effect of the pairing correlations ;

(141)
(er-A) ( s ' -A) > 0

Assuming that (Jx)vv . is a sharp function of v and v', we may take out o f
the sum the smoothly changing factor in the square brackets, evaluating i t
for certain average values E° and 4 . Assuming that É° É° . = E°, we
obtain

(143)
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thus, for 4 (0 .7 - 0 .8) E°, which approximately corresponds to the situa -
1

lion in the most strongly deformed nuclei, one obtains J'/J .r ;g 2

In order to estimate the term J " , we assume that the matrix element
j,,,,, connects the levels, separated by the same energy as in (143), namely ,
E,, . - E v 2 E°. Then, introducing a certain average distance of such tw o
levels from the Fermi surface,

Ey av ,
E°

+
2
	 - R

and using the approximate relation s

4E2,, Eÿ =E.-°2 +4 2

Ev +E,,, 2Ev= 2j/E02 +42 '

Assuming, further, that the value of I j,,,, . I 2 does not strongly vary in the
effective region of the sum, and taking into account that, in this case ,

4 h2
Ijvv'12

	

J ro)
Ev - Ev ,

we find

J"/J (0) 1 4 2 (2 E°) 3~ 	 1	 	 (144 )4

	

(E o2 + 4z) e la '

v>T,

For simplicity, we consider an oscillator-like level scheme, wher e

E° = 2 E°v (v = 1,2 . . .) . For strongly deformed nuclei, when 2E6 < 1, the

terms in the sum (144) decrease very rapidly, and we may restrict ourselve s
only to the first term . Then, we obtain

J,,/j(o) N	 I 4
16 (E°)

2 .
' (2E0 < 1) ,

which is very small compared to the ratio (143) . When we go to less de-

formed nuclei, the ratio 2	 Eo increases and more transitions make a sig -

nificant contribution to the moment of inertia . In the case of 2Eo %> 1, al l

transitions inside the energy region 4 are almost equivalent, but only one o f

we obtain from (141 )
J„ _hz 4 2

	

Élvv Éz

	

EEO2+

	 4 ))f ~

v - v

	

(v

	

'A< ev'< ev
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them is included in J' (viz . that which crosses the Fermi surface) . There-

fore, we can expect that, in this case, the J"-term becomes larger than J'

by the factor -
E-°

(which represents the number of effective transitions) .

For 2	E° >1 , we can replace the sum in (144) by an integral . Then, we

obtain

	

J"/J (O)
52

(EA0)2 ; (>i)

which confirms our expectation .

5 . Inertial Parameter for Quadrupole Vibrations of Spherical Nuclei

As has been shown above, deviations of nuclei from the spherical equi-
librium shape can be characterized by two parameters : the quadrupol e

moment of the closed-shell core Qel and that of the outside nucleons Q,t

(or by the parameter proportional to QA ) . The deformation associated
with Q,1 changes only single-particle states, so that it contributes only to th e

term B l in (135) . In the harmonic oscillator model, the operator K in thi s
term is proportional to the single-particle quadrupole moment . Since the

quadrupole transitions inside one shell are forbidden, the value B 1 in thi s

case is very small, because the energy denominator is large . Let us introduce
the deformation ß ' of the closed-shell core connected with Q,l by the equation

(105). Then the inertial parameter Bß, related to ß ' in the absence of pairing

interaction coincides with that for the oscillations of an irrotational liqui d
drop")

3

	

2Birr = AmRo2.t

(m is the nucleon mass, Ro and A are the radius and the atomic number
of the nucleus) . One might expect that this result is not sensitive to th e
model . The pairing interaction does not significantly change the value of Bß, .

The inertial coefficient En related to ai is given only by the term B 2 in
(135)

	 ) 2 --tB,~ = J 24f (vv åu!

	

(146)

	

77

	

v
v

The parameter B,1 is absent for non-interacting particles and, therefore, i s
of special interest.

(145)
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Using (26) and (28) we obtain

	 Uv 	
åUv 2 E

1

2 [d

	

(Ev -

-
(EV-~,)dd

.

	

(147 )
IT,
	
an 2 UvVv n

	

an

	

a n

In the case of vibrations of spherical nuclei, we are interested in the valu e
Br1 for n = 0 . The expansion of d for small n, as can be seen from (110), doe s

Ev -~,~ SZGxN+,QG EV-E
A ~

E

	

E'

The average energy of the 1-shell, in the first approximation, is not shifte d
by the deformation . The ratio (E, - 8,1, )/(e",1, ) / (e" - E ' ) remains constant for smal l
' and, therefore ,

a
(E,~, - a,) F.r ,Q G (149)

-

	

E~' - É

With the aid of (149) and (147) we get from (146 )

B'2

1

	

\J
+d2

	

E 12
(S2 G) 2 (er .

tt2 G..1

(150)
4

	

Ey

	

-

	

1

Inserting in (150) the values of d and Er , which for n «« 1 are given by

4
2

GON2 ; E„ Çe-2 G,

we get
2h 2ON

B (:,1:)2.

	

(151 )

v

Replacing the sum in (151) by an integral, we obtai n

B6G r
1--

'I

	

N .

	

(152)

The equation (152) contains the value of the interaction G in the denomi-
nator. It must be pointed out that the transition in (152) to the limit G -+ 0
is not valid, since the condition n (E" - e ' )/SQG < 1 has been used in it s
calculation. As can be seen from the exact formula (146), B,1 --> 0 for

not contain a linear term and therefore
4

vanishes for n = 0 . The quan-

tity ey - 2 for small n is given by

(148)
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G-+ O. When G decreases, then the number of outside particles, needed t o
make the spherical shape unstable, also descreases . For a certain value o f
G, the spherical shape becomes unstable even for one outside pair (N = 2) ,
which makes the inertial parameter (152) meaningless . The minimum valu e
of G in the equation (152) can be estimated from (113) if one requires
that ON. > 02 , which leads to

$ 2

2

	

1	 3

	

xq ô xq ô
G

>3 1-x/k S~

	

2

To analyze the quantity Bn we compare it with the mass coefficient Bir r
(145). To this purpose, we need a relation between 7p and the equivalent de -
formation of the nucleus in the hydrodynamical model . Assuming the
equilibrium ratio between ß and n we get from (108) and (110) *

6Q(1-xfk)
2

ßreq qo(1- )5203

	

v

From (145), (152), and (154) it follows that

	

(m) 2 Bn

	

16 .7(1 - x/k)2
h2 (Q \ 2 A

	

ß/ Birr

	

1 :2

	

mR ô ll, g0 A l Q 2 GON
.

3

Using (105), and setting qo/Rô = 2 ; = 1 according to the oscillator model ,
one obtains from (155)

B

	

Ai s

	

('22-o ) 2	
Btrr 100

MeV (1 - x/k)2
QGN .

(156)

The ratio (156) is significantly larger than unity and is in qualitative agree -
ment with the observed trends . Thus, for the single particle, excitation energy
f~G % 1 .5 MeV and x/k = 0.5, A' 13 = 5 ; N = 6 the ratio is equal to 10 and
decreases when the number of outside particles increases .

6. Normal Vibrations of Spherical Nucle i

The potential energy of collective vibrations is given by (104) . Introduc-
ing the variables m and ß ' (the deformation of the core, associated wit h

Qet by : Qet = Qß ß ), we obtain for small n
* In the general case, the equilibrium polarizability of the core x/k may be replaced b y

ax/k, where 0 e a ' 1 .

(153)

(154)

(155)
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D2
.

	

1 , .

	

Q-2
, 2 ~

	

r / . '2 1 „ p'n

(157)

T = 1
2

13,1 i2 + 12 Bß,ß/2 ,

	

(158)

where B,i is given by (152) . Because of the smallness of the coefficient Bß, ,
the second term in (158) is much smaller than the first one. Making us e
of this fact in the transformations of (157) and (158) to the normal vibrations ,
we obtain for the normal coordinates *

a

	

B

	

{ "0"N 1-2 Bß ß . l
i ~~ l

~~~ 6(k -x) Q(

	

3)B J~ ,

VBß

	

x qo S2ON

	

2 )ß 6 (k-x) Q 1
3

The corresponding eigenfrequencies are given b y

	

/C,l

	

k- x) Q 2

	

col=Y
B

	

w2

	

B

	

(161 )
v n

where Cn is determined by (112) or (114) .
The normal vibration of the first type (a2 = 0) preserves the equilibrium

relation between ß' and )7 . Indeed, using (98) and (110) and employing
the relation between ß ' and Qed , one may write the condition a 2 = 0 as

+ 2 GON (1-32)11 6(1-3J )O
NJ

~72

As has been established in the previous section, the kinetic energy has th e
form

(159)

(160 )

or
Qo - k - x Qa, Q,1 = (1 -x/k) Q, (162)

which is equivalent to the equilibrium relation (10 8 ' ) . Therefore, in the vibra -
tion of the first type, the closed-shell core adjusts itself adiabatically to the
deformation of the outside nucleons . According to (161), (114), and (152) ,
the energy of this vibration is given by

Mani -= G

	

ON
(163)

No

* In terms of these coordinates the Hamiltonian of collective vibrations is given b y

Heal = T+w(Q)= 2(a:+z;+w;a:+co:a :) .
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and decreases as the occupation of the shell increases . Only when On,
approaches the value ONa , needed to give instability of the spherical shape ,
does the vibrational energy become appreciably smaller than the intrinsi c
excitation energy QG, as required by the adiabatic condition* . In the absence
of pairing interaction this type of vibration vanishes .

The collective motion considered above corresponds to vibrations of the
average value of the quadrupole moment . Such a simple physical pictur e
is meaningful only when fluctuations of the quadrupole moment do not
exceed the vibrational amplitude. According to (91), the quadratic fluctu-
ation of the qudrupole moment is given by

(Ô Q) 2 = < Q 2 >-<Q> 2 =Zgvv'1 2 (UvVv . +VvUv.)2 .

	

(164)
vv '

For simplicity, we shall consider only the outside nucleons . In a proper
representation, when the states v are eigenstates in the self-consistent field ,
the matrix element qvv' is diagonal (cf. (94)) so that we have

( å Q) 2 =

	

g vv 1 2 4 U, v;'' .
v

For spherical nuclei (ri = 0), one finds 4 Uv Vv = ON and, after simple cal-
culations, we obtain

S2

	

2

(6 QR)2 - ONI' I gvvI2 = 1o ON 1-
3 !

On the other hand, using the relation (98) between Q 4 and ri and substitu-
ting for the amplitude of zero vibrations,

p2)1-1/2

n o = V	 h	 _ [	 	 -
2B wi 3 G

ON ~1 -
3'

	

(166)
~

we find for the zero-vibration amplitude of the quadrupole momen t

2 \
(Q,°Z) 2 ° 12 gp eN 1 3) 12w .

	

(167)

Comparing (165) and (167), we obtain

(165)

(168)

* Here, we are referring to even-even nuclei . In odd nuclei, this adiabatic condition i s
not fulfilled because of the small excitation energy of the odd particle .
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As it is seen from (168), the requirement that this ratio be small coincide s

with the adiabatic condition .

Consider, now, the second normal vibration (a l = 0) . The closed-shel l

core participates mainly in this vibration . The outside nucleons are only

slightly deformed . The ratio of the amplitudes and ß ' , in this type of vibra-

tions compared to that in the first type, is given by

' !z y - 1~ /> Bn

	

} ' li ~ ßn 1 y~, } 1 }
.

Since Bp is of the order of Birr it is seen from (169) that the polarizatio n
2

of the outside nucleons is reduced by the factor (ß) BirrfB given by (156) .

The second type of vibration occurs with a high frequency which i s

determined by the properties of the core and does not depend appreciabl y

on the pairing interaction and on the number of the nucleons in the un-
filled shell . Since there is almost no coupling between this vibration and

the outside nucleons, the adiabatic condition requires the vibrational energ y
hwt to be small only compared with the distance between the shells . *

Concluding Remarks

Starting from the basic assumption that a pairing correlation of a "super -

conducting" type exists between nucleons, we have attempted to investigat e

consistently the effects of this correlation in different nuclear phenomena .
Although the calculations are based. on a rather idealized model, a great

number of experimental facts of a different kind are explained in a natura l
way from a single point of view, viz . ,

a) Stability of the spherical shape of nuclei near the closed shells ;
h) Sharp transition between spherical and deformed nuclei ;
e) Significant reduction of the moment of inertia from the value for rigi d

rotation ;

d) Existence of low-energy vibrations in spherical nuclei near the bound o f
instability .

* In the oscillator model, h0) 2 turns out to be two times larger than the distance betwee n
the shells ; this violates the adiabatic condition 1s, .

Mat . Fys.Medd .Dan.Vid .Selsk .81, no .11 .

	

4

(169)
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The equilibrium deformations, the moment of inertia, the vibrational
frequencies, and the inertial parameter obtained from the present model ar e
of the order of magnitude observed, and exhibit a reasonable dependenc e
on the parameters . Besides these collective effects, some particular feature s
of the single-particle spectra are explained (energy gap in even-even nuclei ,
increased level density just above the gap) .

It is outside the scope of this paper to relate the pairing correlation to
explicit forms of nucleon-nucleon forces . Here, we are restricting our -
selves to a semi-phenomenological description of this correlation* . The
matrix element < vv I G I v' v ' > which represents the pairing interaction has
been assumed, for simplicity, to be constant and its value G is the onl y
additional parameter introduced in order to describe the pairing correlation .
A dependence < vv G I v ' v ' > on v and v' might be essential for a more de -
tailed description . For example, the constancy of < vv G I v ' v ' > (and ,
therefore, d v) leads in spherical nuclei to the same energy for all quasi -

particles Ev = VA + (ev -Ay = 2 QG and, therefore, to a degeneracy of th e

excited states . A dependence of 4v on v eliminates this degeneracy. The
residual interaction between quasi-particles causes the same effect and ma y
also be important for a detailed analysis of single-particle spectra .

To simplify the problem, we did not distinguish between protons an d
neutrons. If we do not consider any pairing interaction between neutron s
and protons, or if they occupy different shells, then the generalization o f
the problem is straightforward . The case with some neutron-proton pai-
ring correlation included remains to be investigated .

For spherical nuclei, we have considered the idealized scheme of strongl y
degenerate levels removed from each other (shells) . The validity of th e
present results for shells with a small number of states, as well as the effec t
of the splitting of a shell into subshells, will need further analysis .

Finally, it may be added that the pairing correlation may affect als o
other nuclear phenomena such as quadrupole and magnetic moments ,
electromagnetic transitions, etc .

* Only a few qualitative remarks have been made in I . 4 in order to indicate which parts o f
the nucleon-nucleon forces are responsible for the pairing interaction.
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Appendix A

Here, we write down the expression for Hint = H40 + H31 +H22 . For
compactness, we rewrite (10) in the following way :

where
bvv - Uvv xv6 +Vva yvå,

	

(A . 1)

xv+- yv- =av ; xv =yv+=Åv

Uv f = Uv ;

	

Vvf =+Vv .

In this notation, Hint is given by

H40 = - Y< 12 I G2'1' >Ul U2 V2/V1,x1xz+conj .

H31 = -~~ < 12 IGI2' 1' >( U1 U2V2'Ul'-V1V2U2rV1,)x l x2 y2' xl .

+ conj .

02 I G 1 2' 1' > (U1 U2 U2 , U1 . + V1 V2 V2 , V1 ,) xi4x2 , x1 ,H22 =- ~

+

	

<12IGI2'1' > U1 V2 V2 .U1' xi ys'y 2 x1' ,

where the indices correspond to v and a (e . g ., 1 = v1 a1) and the matrix
elements are antisymmetrized

<12IG ~ 2' l '><vl Erlv2 0'2IGIv2 Q 2 v1< v1 cr1 v2 62I G I v 1 61 v2 a2~•

	

(A. 4)
4*
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The matrix elements have the symmetry properties following from the defi-

nition of the conjugate states :

	

< val v2 a2 I G 1 v2å2 v1 Q > < v

	

a 1 v 2 ad I G I
v2 -a'2 v1 - >* (A-1

	

1 - 1

	

1

	

)

from which it follows, in particular, that

<vl +v 2 -IGIv'2 - vi+ = <v2+vl-1GIvl - v 2 +j .

	

(A. 6)

Appendix B

Here, we shall calculate the nuclear energy (104) for small deformation s

of the self-consistent field . The main point will be to show that the effect

of a variation of the single-particle wave functions with deformation may b e

neglected for the outside nucleons . The following calculations will explicitl y

exhibit also the procedure of the extraction of an additional self-consisten t

field and the choice of the new single-particle eigenstates v, which demon -

strate the nature of the first canonical transformation (3) .
Let us look for the ground state of the Hamiltonian (101) . The single -

particle eigenstates v in a deformed field are determined by the requiremen t

of diagonalization of the single-particle energies Évv, i .e ., according to

(94), by

_

	

0

	

0
Evv ' du qvv ' =

	

Ek wkv Tkv' _P

	

qkk ' (Pkv (Pk ' 'v ' = Ev ~vv
k

	

kk'

which can also be rewritten as

l( Ek -Ev) (PkvP

	

gkk'Pk ' v
k '

where the states k and the quantities Ek and qx k • correspond to the spherica l

field . We assume that the states k, corresponding to the saine degenerat e

level, are chosen to make the matrix elements goke diagonal inside each

shell . Assuming that Tkv = Skv + q)kiv where the deviations from the spherica l

symmetry cpk„ are small, we find in the first approximatio n

	

a)

	

,ûgkv

	

(B .2)

	

(Pkv

	

0

	

0
8k- 8 v

and, therefore,

Igvv'I2 _ 0

	

2 0
Evv = E O +

~ 2

	

0 0 = Ev + r pv
v ' Ev' - E v

(B . 1 )

(B . 3)
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q°v' 1 2

	

0
2fuf

	

2 B . 4)(

	

)
qvv = qv° +

	

o

	

o = qv v, +

	

f~pv

v'

	

E v - Ev

20

	

D
Evv = Evv - fti gvv = Ev - ri

qvv - f~ p
0
v

(B . 5)

(For the closed shells, ,û = u + x Q must be replaced by ,û ' ,u ' + x Q) . From

(B . 5) it follows that the total splitting of the unfilled shell is given by (cf .

(99))

E" - E' ° fi go -I-,û2 po,

	

(B . 6)

where

po - pv (EL = E/ ) pv ( E V - E/y)•

	

(B . 7 )

Using (B. 4), one obtains for the quadrupole moment s

Q,1=2,û'f'2p°2,û'P', (27 '

	

= 0)

	

v(B.8)

Q,1 =2Vv+ 211'2 g, 1217,2, .

	

(B.9)
v

	

v

The quantity Vv depends on the total splitting of the 2-shell, i .e., on the

parameter q . Therefore, we may write

Âq °v 2Vv =go A ( q )
v

(B . 10 )

p°2Vv =po A' (q) .
v

(B . 11)

The function A (rf) has been calculated earlier and is given by (100) . The

function A' (ri) is of the same order as A (n) .
The energy of non-interacting particles (the first term in (96)), is ,

according to (B . 3), given by

7 evv 2 V,ÿ =Ze° 2 V
v

+11 '2Y' 2p°+f"42Àp° 2V
ÿ

.

	

(B. 12 )
v

	

v

	

v

	

v

Note that the first term in the right hand side is constant, sinc e

Le° 2Vÿ =L' 2 e° + E,1

	

Wo .
v

	

v

Using (B. 8) and (B . 11), we obtai n

Evv 2Vÿ = Wo +,}PP ,

	

+ f c2 p o A' ( 1 ) .

	

(B . 13)
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To estimate the expressions obtained above, we asume now that th e

states k correspond to the oscillator potential . In this model, the quantitie s

qo and po are given, in the usual notation, b y

3t-in

	

3hn
qo- rnw ' Po- 2rn 2 co3

(B . 14)

(n is the principal quantum number) . From (B. 14) and (B . 6) it follow s

that

p,- Po

	

Po	 fqo

	

E- s

	

q o
= f~qo

qo

	

1 ,
6 h w n 6 sr

where EF is the Fermi energy. Within the accuracy of the small factor (B . 15) ,

we may neglect the last terms in (B. 6) and (B . 9) ; then, these equation s

coincide with (99) and (98) . The last term in (B . 13), which depends o n

, is to be compared with other n-dependent terms in (96), say, -2 xQ
2

.

Then, we find

fùpoA' _Apo
[LA,

	

(B . 16)

	

xQ7

	

q o x Q~ A

Since A' A and l 02, the ratio (B . 16) is of the order of the smal l

factor (B . 15) . Therefore, the last term in (B . 13) may be neglected, and thi s

justifies the equation (103) .

(B. 15)
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