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Introduction .

T
he following considerations are an attempt to discuss th e
ancient and time honoured metaphysical concepts of continuity ,

determinism, and reality with the help of a simple, almost trivia l

example. Theoretical physics has, by its own efforts, come to a

point where it had to abandon a great deal of traditional philo-
sophical ideas and to replace them by new ones . But there are
still leading physicists, amongst them EINSTEIN (1), DE BROGLI E

(2), and SCHRÖDINGER (3), who have not accepted the new wa y

of thinking. Therefore, a careful analysis of the philosophical

situation in physics seems not to be superfluous . EINSTEIN him-
self has formulated on several occasions his objections against
the current interpretation of quantum mechanics not in obscur e

philosophical terms, but with the help of simple models . The

same method will be followed here ; in fact, the model discussed

is actually due to EINSTEIN (4) . It makes it possible to illustrate

abstract philosophical ideas by elementary geometrical con -

siderations ; these provide of course no direct answer to the meta -
physical problems, but reduce them to clearly distinct alternative s

and help thus to clarify the logical situation .

Part I . General Considerations .

1 . Continuity .

I maintain that the mathematical concept of a point in a

continuum has no direct physical significance . It has, for instance ,
no meaning to say the value of the coordinate x of a mass-point ,
or of the centre of mass of an extended body, has a value repre-

sented in a given unit by a real number (like x = 1/2 inch . or
x=ncm.) .
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Modern physics has achieved its greatest successes by ap-

plying the methodological principle that concepts which refer t o
distinctions beyond possible experience have no physical meanin g
and ought to be eliminated . This principle was certainly operative
in many instances since Newton's time . The most glaringly suc-
cessful cases are Einstein's foundation of special relativity based
on the rejection of the concept of aether as a substance absolutely
at rest, and Heisenberg's foundation of quantum mechanics base d
on the elimination of orbital radii and frequencies of electronic
structures in atoms . I think that this principle should be applie d
also to the idea of physical continuity . Now consider, for instance ,
a statement like x = ri cm . ; if nn is the approximation of n by
its first n decimals„ then the differences rR - rr, are, for suf-
ficiently large n and m, smaller than the accuracy of any possibl e
measurement (even if it is conceded that this accuracy may b e
indefinitely improved in the course of time). Hence, statement s
of this kind should be eliminated .

That does not mean that I reject the mathematical concep t
of real number . It is indispensible for applying analysis . The
situation demands a description of haziness of physical quantitie s
with the help of real numbers .

The proper tool for this is the concept of probability. It can
be assumed that sentences like the following have a meaning :
The probability for the value of a physical quantity to be in a
given interval (represented by two real numbers) has a certain
value (again a real number) . Or, with other words, for any
quantity x there exists a probability density P(x) .

This attitude is generally accepted in quantum mechanics .
But it has actually a more fundamental significance and is only indi -
rectly connected to the special features characteristic of quantum
mechanics . It ought to be applied to classical mechanics as well .

2 . Determinism .

Classical mechanics has its roots, since Newton's time, i n
astronomy where the prediction of constellations was its main
aim. Thus, the deterministic character of the mechanical law s
is stressed in the traditional presentations . When mechanics i s
applied to micro-phenomena, it is, however, necessary to analyse
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the meaning of the term determinism a little deeper . The mechan-
ical laws have the property that a precisely given initial stat e
(configuration and velocities) determines at any time a shar p
final state . There are two possibilities : Either a small change o f
the parameters in the initial state (small compared with the tota l
range) produces only small changes of the final values for al l
times ; then the orbit defined by the initial conditions is stable .
Or this is not the case, the final deviations increase in time beyon d
any limit ; then the orbit is instable .

In astronomy, much work has been done to prove the stability
of the planetary system . For our purpose, the results of thes e
investigations are irrelevant . What matters is that there exis t
simple mechanical systems of a type familiar in atomic physics
(kinetic theory of gases) for which all orbits are instable . These
systems display therefore only what I should call weak determ-
inism ; the future state can be predicted only if the initial stat e
is defined absolutely sharply, in the sense of the mathematica l
concept of a point in a continuum ; the slightest initial deviation
produces an ever increasing vagueness of the final state . Thus,
for systems of this kind, there is a close connection between th e
problems of continuity and determinism . If the point in a con-
tinuum has no physical meaning, it is impossible to maintai n
that systems of this type behave in a deterministically predictabl e
way. Hence, for a wide class of mechanical systems, the traditiona l
form of (classical) mechanics ought to be replaced by a statistica l
method which uses right from the beginning the notion of prob-
ability : There exists, for any coordinate x, velocity v, and an y
instant, a probability density P(x, v, t) .

The simplest example of this type of systems is the model ,
suggested by EINSTEIN with a very different intention, namely, t o
demonstrate the incompleteness of quantum mechanics (a ques-
tion to which I shall return presently) . It is the model of a
one-dimensional one-particle gas and consists of a mass-point
moving in a straight line (coordinate x) up and down between
two points (x = 0 and x = 1) where it is elastically reflected i .
In a diagramme, the motion is represented by a zig-zag line

If the assumption of an extensionless mass-point and perfect elasticity seem s
to be too unrealistic, one may take the centre of mass of a finite body rusinin g
against high and sleep potential walls at x = 0 and x = I .
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Fig . 1 .

inside the strip 0 < x < 1 with alternating constant inclinations
± uo, where vo is the initial velocity. By taking successive images
of this figure at the boundary lines of the strip, the diagramme

Fig. 1 is obtained which is symmetric at vertical lines x = kl
(k = 0, + 1, + 2, . . . .) and has the period 2 1. The zig-zag
motion is therefore equivalent to two sets of parallel, synchronize d
straight line motion. It is obvious that x(t) is, for any t, determ-
ined by xo = x (O) and uo.

But, if x0 , vo are changed by 4 xo, 4 up, the diagramme of
Fig. 2 is obtained, which illustrates that 4 x increases propor-
tionally to t, 4 x = + t4 vo . After the time t~ = 1/4v° , the variation
of x is larger than the whole range 1 of x . Hence, the system is
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perfectly instable and behaves, for t > t e , in an indeterministi c

manner .

Though this is perfectly trivial, I have never seen it pointed out' .

3 . Reality.

The question what we mean by the expression "physical

reality" is closely connected with the previous considerations on

For an unbounded straight line motion, the question of stability has n o
meaning as there is no range (like 1 in the Einstein model) with which to com-
pare Ax(t) . The usual considerations on mechanical determinism miss thi s
essential point of a final range .

X
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continuity and determinism . EINSTEIN, in the paper quoted (4) ,

describes "the programme that, until the introduction of quantum
mechanics, was unquestionably accepted for the development o f
physical thinking" in the following way (translated from th e
original German) : "Everything is to be reduced to conceptual

objects situated in space-time and to strict relations which hol d
for these objects. In this description, nothing appears whic h

refers to empirical knowledge about these objects . A spatial

position (relative to the co-ordinate system used) is attribute d
to, say, the moon at any definite time, quite independently o f
the question whether observations of this position are made o r

not. This kind of description is meant if one speaks of the physica l

description of a "real external world" 	 EINSTEIN then
discusses the question whether quantum mechanics leads to a
description of the behaviour of macro-bodies, which correspond s

to this notion of reality, and his answer is no . He considers the

model of a one-dimensional one-particle gas (discussed above )
and compares the classical motion with fairly sharp initial

position and velocity with a special solution of the Schrödinger

equation

- Ae
iat sin bx = 1 Aei

(«t + bx> _ 1 Ae
i

(at-bx)

	

(1)

2 i

	

2 i

(a and b being properly chosen constants) ; this represents a
state where the momentum has either of two opposite equal
values and the probability of position is, for sufficiently hig h

momentum, constant apart from small periodic variations . He

continues (translated) : "For a macro-system we are sure that it
is at any time in a `real state' which is correctly described with

good approximation by classical mechanics . The individual

macro-system of the kind considered by us has therefore at any
time an almost sharply defined coordinate (of its centre of mass)-
at least if averaged over a small interval of time-and an almos t

sharply defined momentum (defined also in regard to sign) .

None of these results can be obtained from the v-function . It
contains only such statements which refer to a statistical ensemble

of the kind considered" . And a few lines later he concludes :

"Quantum mechanics describes ensembles of systems, not indi-
vidual systems. The description with the help of a v-function is
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thus an incomplete description of a single system, not a descrip-
tion of its ` real state ' . "

This consideration, as it stands, is not conclusive, as the
function v chosen by EINSTEIN is a very special solution of the
wave equation, not adapted to the initial conditions and therefore
not suited to illuminate the question whether quantum mechanic s
is able to describe the individual macro-body in a "realistic"
manner-like classical mechanics-or can tackle only statistical
ensembles . This question will be treated in some detail in the
second part of this paper . Here another point must be discussed ,
which is implicitly contained in Einstein's publication and ob-
viously foremost in his mind' .

In the previous sections, it has been shown that no physical
meaning can be attributed to a sharp value of a co-ordinat e
and that therefore the description of a position in Einstein' s
model should be given in a hazy but realistic manner throug h
a probability density P(x) ; that, further, the laws of classical
mechanics should be formulated not in terms of orbits, but of a
time-dependent probability density P(x, v, t) . If this is done ,
classical mechanics is actually not dealing with a single system,
but with a statistical ensemble, and Einstein's criticism of quan-

tum mechanics, quoted above, taken literally, fails as it woul d
apply in the same way to the classical theory . However, wha t
EINSTEIN really means, is evident from another sentence of hi s
article which reads (translated) : "The fact that, for the macro-
system considered, not every function y satisfying the Schrödinger
equation corresponds approximately to a description of a rea l
phenomenon in the sense of classical mechanics, is particularl y
obvious by considering a y'-function which is formed by the super -
position of two functions of the type (1) whose frequencie s
(energies) are essentially different . For, to such a superposition ,
there is no corresponding ` real case' of classical mechanics (still ,
however, a statistical ensemble of such ` real cases' according to
Born's statistical interpretation) . "

Classical mechanics, formulated statistically as it ought to be ,
is still a "description of reality" according to Einstein's definition ,

1 T have to thank Professor W . PAULI for giving me, in some letters, an ex-
planation of Einstein's ideas, obtained in oral discussions at Princeton, and hi s
own comments .
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as one can think the single, sharp state as existing (though no t

observe it with the accuracy demanded by the mathematica l

concept of sharpness) and then obtain the physical vagueness b y
applying the ordinary laws of probability . For instance, one can
think of a particle in a straight line being at x 1 and then th e

physical situation "we know that it is near x 1 " by a probability

density p(x - x1) (where the function p(x) is different from
zero only near x = 0) . If we only know that the particle is either

near x 1 or near x 2 , the probability density will be

P(x) = a ip(x x1) + a2 p(x - x2) , a l + a 2 = 1 ,

	

(2 )

according to the ordinary rules of probability calculus .

In quantum mechanics the situation, however, is different .

If 99(x - x 1) is the Schrödinger function describing a particle
being near x 1 , the probability density is p (x - x 1 ) = 99(x - x 1) 2 .

If we know that the particle is either near x1 or near x 2 , the

situation is described by the Schrödinger function y(x)
c 1 p (x - x1) + c 2 9 (x - x 2) and the resultant probability i s

P(x) = 'P(x) 12 = a1p (x - xl) + a 2 p(x - x 2 ) + J(x) ,

where the additional term

J(x) = ele 99 (x-xl) 99*(x -x2) + cic 2 99* (x-x1 ) gJ(x -x2 ) (4)

represents the "interference of probabilities" . It has no classical
analogue ; even if it is practically negligible for t = 0, it may be -

come appreciable for certain x-values at later instances .

The existence of this interference phenomenon excludes th e
possibility to think of the particle as having a definite positio n
(and velocity) at any instant and to connect these positions i n

imagination to an orbit, and this is the reason why EINSTEI N

declares quantum mechanics to be incomplete r . He insists that ,
at least for macro-bodies, a theory cannot be regarded as satis-

factory unless it conforms with his idea of reality .

I EINSTEIN discusses in this connection the ideas of DE BROGLIE, BOHM ,
SCRRODINGER a . o . who tried, in different ways, to interpret the formalism o f
quantum mechanics in terms of classical concepts, hut he rejects these attempt s
as unsatisfactory.

(3)
al-Icll2

a2_Ic212

	

)
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This is a philosophical creed which can be neither prove d
nor disproved by physical arguments . But what can be done i s
this : one can formulate another concept of physical reality whic h
takes account of the actual existence of the interference pheno-
menon in the atomistic region and goes over into the traditiona l
one (that accepted by EINSTEIN) for macro-bodies . This I hav e
done in a systematic, but rather abstract way, at another place (5) .
I shall not repeat these considerations here, but illustrate the m
only with the help of the model used above, a particle oscillatin g
on a line between two elastically reflecting boundaries .

The main point is that the physicist has not to do with wha t
can be thought of (or imagined), but what can be observed . From
this standpoint a state of a system at a time t, when no observ-
ation is made, is not an object of consideration . But as soon a s
an observation is made, the situation found has to be regarde d
as the final state of the phenomenon defined by a previously
observed initial state and, if future observations are envisaged ,
also as the initial state of the further development . This "reduc-
tion of probability" is not characteristic of quantum mechan-
ics, but has also to be applied to classical mechanics if i t
is formulated in terms of probability : Any observation fo r
checking a predicted probability density " destroys " it and pro-
duces a new one which has to serve as initial state for further
predictions .

But from this standpoint the interference phenomenon loose s
much of its paradoxial character . For the one-dimensional model ,
an actual observation determines not the complex amplitude s
c l = Va l e i"1 c 2 = j/a 2 e l" , but only the probabilities (relativ e
frequencies) a l = c l 12, a 2 = I c 2 1 2 ; the phases al , a 2 remai n
entirely unknown and undetermined, and the interference ter m
vanishes if averaged over the phase difference al a2 . For more
complicated systems (like the optical interferometers), the dis-
tribution in the final state may of course show interference fringes ,
which classical theory cannot explain ; but this appears only
paradoxial from the traditional (Einstein's) standpoint where a
non-observed intermediate state is declared to be just as real a s
an actually observed final state .

The situation can be illustrated by a detailed discussion o f
our model . This will be done in the second part of this paper .
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Part II . Mathematical Considerations .

The model which will now be investigated in more detail
seems to be the simplest mechanical system with a finite rang e

of the variables (co-ordinate, velocity) for which the exact solutio n
can be found. The Hamiltonian has essentially only a kinetic
part ; the potential energy due to reflection at the boundaries ca n

be replaced by certain periodicity conditions, and the equation s
of motion then can be solved, in the classical and quantum treat -
ment as well, with the help of Kelvin's method of images . The

resulting formulae are simple and well suited for a discussio n

of several important problems, as the transition from the initial
individualistic to the final statistical description, the characteristi c
distinctions of classical and quantum treatment, the reduction o f

probability through observation, and the interference of proba-
bilities .

1 . Classical treatment of the one-particl e

one-dimensional gas .

The orbit of a particle in Einstein's model, starting at t = 0

from the point x = xo with the velocity v
given by

is analyticallyvo ,

12k-1 C t

	

t2k'~C C

x = 2 lk - xa - vat ,

x = - 21k + xo + v o l ,

	

t2k t t2k+1 ,

where
k1 - xa

tk =

	

, k = 0,+ 1, + 2, . . . .

	

(1 .2)
v o

It is convenient (as already indicated in Fig. 1) to replace the

one-particle system by a periodic system, consisting of an infinit e
number of synchronized. particles, by dropping the conditions

t > 0, 0 c x < I (silently assumed in (1 .1)). This procedure wil l

be denoted by the short name "periodic continuation" . According

to the programme explained in Part I, the " deterministic " de-

scription (1 .1), (1 .2) shall be replaced by a statistical one, with

the help of a probability density, P(x, v, t) . We have to do with
a case of statistical mechanics where the system is not in statistical
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equilibrium, but develops in time from a given initial distributio n
P(x, v, 0) . The only condition for P(x, v, t) is that which ex-
presses the conservation of probability ; it follows from Lion-
ville's theorem,

O P
åt +[P,H] =0 ,

where H(x, p) is the Hamiltonian as function of coordinate an d
momentum and

åPÔH ÔPÔH
[P, H]

	

ax åp - Op ax

	

(1.4)

the Poisson bracket.
H consists of the kinetic energy p2/2m, and the potentia l

energy representing the reflective power of the walls . As this force
is assumed to be infinitely strong, it can be replaced by certain
periodicity conditions which will be derived presently . With
H = p 2 /2m and p = mv, (1 .4) reduces to

OP

	

O P
åt +v ax

=0 .

The periodicity conditions follow from the consideration that th e
solution must have the same value at a given point x (in 0 < x c 1 )
after each reflection ; for instance, after one reflection at x = 0 ,
one has

P(x, v, t) = P (x, -v, 1- 21

	

(1 .6a)

and, after two reflections at x = 0 and x = 1 ,

2 1P(x, v, t) = P (x, v, t +
U

v	 ) .

	

(1 .6b)

The general solution of (1 .5) is

	

P(x, v, t) = f(x - vt, v),

	

(1 .7 )

where f(x, v) is an arbitrary function of two arguments, define d
for all values - cc < x, v < co, which represents the initial stat e

P(x, v, 0) = f(x, v) .

	

(1 .8)
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The condition (1 .6b) leads to

f(x-ut, v) = f(x-vt-21, u)

and (1 .6a) to
f(x - vt, v) = f(- x -}- vt, -v) .

The first of these conditions says that f(x, v) is periodic in x
with the period 21 ,

f(x, v) = f(x + 21, u) ;

the second, that it is symmetric for the inversion

f(x, u) = f(- x, - v) .

These two periodicity conditions define the periodic continuatio n

of P(x, u, t) .
The case of a particle having for t = 0 almost a fixed position x o

and fixed velocity vo is of particular interest . In order to describe
it in a simple way we introduce a function 99(x, v) restricted t o

a narrow domain around x = 0, v = 0 ; assuming (p to be norm-

alized, the average of a function q(x, v) is defined by

p i °o

	

1

q = 1 1 q(x, v) q~(x, v) dx dv, ~ S q) (x, U) dxdv = 1,

	

(1 .10)
o -m

	

.o -co

and we postulat e

x-

	

0, U
-

= O, x 2 =6ô, v z - tô,

	

(1 .11)

where ao « 1, r o « vo .

Then, the function

oo

f(x, v)

	

(2kl + x-xo, v -vo) -}-(p(2k1- .x-xo,- v -vo) ) (1 .12)
Ic= - w

has all properties requested : it satisfies (1 .9a) and (1 .9b) and it

has, in the interval 0 < x < 1, only one sharp maximum corre-

Nr . 2

(1 .9a)

(1 .9 b)
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sponding to the first term for k = 0 (as the maximum of th e
second term, at - xo + 2 kl, is outside the interval for all k = 0 ,
+ 1, + 2, . . . .) .

Hence, the probability density is, according to (1 .7) ,

=

	

(2kl + x -xo-vt, v	 vo) +(2k1- x -xo+vt, v -vo)} ;
k= -

(1 .13)

P(x, v, t)
00

it is properly normalized, for

S

o o

I ` °'

	

o0

	

00

	

(2 k +1)1 -xo -(vo+~)tç(2k-1)1-xo- (vo+rf) t
P(x, v, t) dx dv =~ ~ dnl

s(2
q~(e, 17) de

	

- y ~(~, rt)d ~
O J ~

	

k =-oo•-o0 2kl - xû- ( vo +Y1 )t

	

J2k1 - xo-(va+7J) t

SS c9( ,

00

	

00

=

	

~1) =1 ,
-00 -cc

in virtue of (1 .10) .
If tp(x, v) is chosen as a Dirac 6-function, i . e . ao = 0, ro = 0 ,

this function (1 .13) reduces to zero except for the points whic h
satisfy the equations (1 .1), (1 .2). But this limiting case does no t
correspond to a real physical situation . We have to consider d o
and zo as finite quantities .

By integrating (1 .13) over v one obtains the spatial distri-
bution

P(.x, t) = SP(x, v, t) dv
00

(1 .14)

S{( kl+ x -xo -(u0 + ‚7)t, ‚7)+(2 kl -x-x0 -(u0 + ‚7)t, 7)}d'7 ,k = - oo Ø

and, by integrating (1.13) over x from 0 to 1, the velocity distri-
bution

°0

	

00

	

+1)I-xo-vt

	

.(2k-1)lxo+vt

	

l

P(v, t) = P(x, v, dx

	

Ç(2k
v - vo)d

	

J ep(e, - v - vo)d$ } . (1 .15 )
k21d-x,-vt

	

2k1-xo+vt

	

))J

These two formulae are the analytical expression of the fact tha t
at each reflection the velocity changes its sign . The distributio n
of the absolute value of the velocity is obviously nothing but th e
probability that the velocity is either v or - v, henc e

	

P(Ivl, t) = P(v, t) + P(- v, t) .

	

(1 .16)

1 .13a)
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This quantity is easily found from (1 .15) to be independent o f
time, as should be expected . For the two parts in (1 .16) con-

tribute terms in the sum (1 .15) which can be combined to inte -

grals from - 00 to co :

P (Ivl, t)= P (lUl ) ={W,v-Uo)+cP O-,- v -vo)j ca . (1 .17 )

As an example for which all calculations can be performed in

detail, one can consider (x, v) as a Gauss function in both

arguments . If we put

T(x , u)
=	 1	 e 2Uo'2i'

	

(1 .18)
2sTao To

the equations (1 .11) are satisfied . (1 .13) become s

1

	

(v-vo)' ao

	

1 (2ld +x-xo-ut) '
P(x, u, t) =

	

e

	

2xa'

	

e
26o'

	

2at o'oro

	

k= -oo

	

+

	

(u +uo)' co 1 (2kI- x-xo-ut)'~

1
e 2To' X e 2 6o'

Ic = -oo
and (1 .14)

(1 .19)

1

P(x' t) f a(t)1/2 Mc -

where

(e
20(t)'(2kl+x-xo-uut)'+e 2 Q(t)Y (21cl-x-xo-vot)' l

{

	

},(1 .20)

6(t) = 1/~o+Tat 2 .

	

(1 .21 )

If now the averages of x, x2, and (4 x) 2 = (x - x)2 are formed
with the distribution (1 .20) one finds for exactly the expres-

sions (1 .1), (1 .2) and further

(4 x)2 = a(t)2 .

	

(1 .22)

Hence, the width of the distribution increases with time . It becomes

equal to the whole range 1 of x at a critical instant

t, =
~o

v12 - ao .

	

(1 .23)
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If a o «« 1, this is approximately te /fro, the value used in Part I .
For small ro, the epoch tc is very large but always finite .

It can now be shown that, for 1-> Do, P(x, t) becomes con-
stant, independent of x and t . If t is large, one has o1(t) -± rot ,
and (1 .20) reduces to

1

	

00

	

_ 1
z

(21k

	

v ) 2

P(x , t) -->- 	 - 2

	

e 2zo t
o

rotV2n k =_ ø

if one puts
2fk

- vo = 17, then to an increment 4 k = 1 there

corresponds An = 21/t which, for t -~ co, tends to zero. Hence ,
the sum goes over into an integral

1

	

1 r' t~

	

1
P(x, t) -~

	

J e
2zo' d?7 = - .

	

(1 .24)
roV2 .z 1

	

~,

	

1

This is the properly normalized " geometrical" probability for
finding the particle anywhere in the interval of length 1 .

However, the distribution for t -3 oc is not that of an idea l
gas, as the velocity distribution is different . One obtains from
(1 .17) and (1 .18)

j

	

(u-v4)

	

(I) -I-uo) "

P(I vl) -->

	

e

	

2tE
+ . e

	

2zo°

	

(1 .25 )
z o V2 2 {

-	

that means two Gauss distributions with the mean velocities vo ,

but not a Maxwell distribution .
The result of this consideration is therefore that a motion

which starts as that of a practically individualistic particle, i n
the course of time goes over into a state where the positio n
becomes completely indetermined while the magnitude of th e
velocity remains unchanged, its direction indetermined .

The question how the model has to be modified so that th e
final state is an ideal gas will not be investigated here in detail .
IL is obvious that a mechanism for the exchange of velocitie s
between several mobile objects is needed . I presume that it suf-
fices to replace one of the elastic boundaries by a model of a
thermal reservoir (a heavy body with a Maxwell energy distri-
bution) which exchanges energy and momentum with the particl e
at each collision .

Dan .Mat .Fys .Medd . 30, no .2 .
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2. Quantum mechanics of the one-dimensional

one-particle gas .

To treat the same problem with quantum mechanics one has
to solve the time-dependent Schrödinger equation for the wav e
function p(x, t),

h2 ö2v

0at2m
åx2+tti

	

= (2 .1 )

with the boundary condition s

v(0, t) = 0,

	

y(1, t) = 0 . (2 .2)

There are two standard methods, that of d 'Alembert and that of
Fourier . The d'Alembertian solution is, in the present case, pre-
ferable as it leads to results easily comparable with those of th e
classical treatment . The transformation in a Fourier series ca n
then be easily obtained .

DE BROGLIE has given, in one of his books (6), a solution s
of (2 .1) without boundaries, which corresponds to arbitrary
initial values f(x) ; namely

v(x , t) = (un 112ç f(~)e2tt(x,zd~ .
2nht~ -~

This can be readily confirmed by direct calculation (substituting
into (2 .1) and demonstrating that (x, t) ->- f(x) for t -- 0). Then ,
following DARWIN, he choses for f(x) the function

1
f(x) = ( \

	

1

12 e(4o'oa)Q+

h
mo0 (x-xo) ,

	

(2.4)
coV2 n

which represents an harmonic wave with momentum nw 0 ,
modulated by a Gauss function with a crest at xo and width oo y2 .
The probability for location I f(x) 1 2 is normalized ,

S1kx)12 dx = 1,

	

(2 .5)

1 Dr BnoGLIE has actually treated the three-dimensional case .
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and the expectation values of coordinate, momentum, and thei r
mean square deviations are

x = x ff*dx = xo ,

i-'Sc ~~dx =P -

(2.6a)

mv o ;

(4x) 2 = S x2ff*dx_xa = 6ô ,

0 0

	

2
h.2 f^ xf dx - m2 vô

J-~
(4 P) 2 =

(2 .6 b)

If we introduce the uncertainty of the velocit y

h
zo = V(4 v ) 2 = m V (4 P)2 = 2 om,

we have the Heisenberg uncertainty relation

1/(4 x)2 - p)2 = mm

If (2.4) is substituted in (2 .3) and the integration performed ,
one obtains after some reductio n

x' t

	

s ( t)	 1112
CxP

	

x -xoU°
t

1 2

(

	

)

	

((t)V2 a )

	

{( 2a( )t

	

1
im	 /

2 ~i t v(t)2 (x-x°-v°t)2 - (x-x °) 2

where

s(t) _ ~ 0 6	 Ît°t ,

	

s(t) 1 2 = 1.

	

(2 .10)

y(x, t) is the normalized probability amplitude for a group o f
waves with a crest initially at x ° moving with the velocity v o
(from left to right) . Then, v(- x, t) corresponds to a group o f
waves with a crest initially at - xo and moving with the velocity

2 *

(2 .7 )

(2 .8)

(2.9)
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- vo (from right to left) . For inspection of (2 .9) shows that a
change of sign of x is equivalent to a change of signs of xo and vo .

Applying the image method, we construct the functio n

T(.x, t) - ~ {y(2k1 + x, t) -y(2kl - x, t)} ; (2 .11 )
k= -Go

it is obviously periodic in x with period 21 and vanishes fo r
x = 0 and x = I . If t -± 0, one has approximately cr(t) - - ao ,
s(t) -- 1, and

This can be written

T(x, 0) _ f {f(2k1 + x) - f (2k1 x)},

	

(2.13)
k= -co

where f (x) is the function defined by (2 .4) . Hence, the initia l
state consists in two groups of plane waves travelling to the right
and left, both modulated by Gauss functions of width ao, and
group crests at xo + 2kl and - xo + 2k1 (k = 0, ± 1, ± 2, • •) ,
respectively . Inside the interval 0 < x < 1, these waves ar e
equivalent to one wave with a crest initially at xo, which i s
repeatedly reflected at the boundaries x = 0 and x = 1 . Hence
the solution describes, for small ao, a repeatedly reflected singl e
particle with slightly uncertain initial position .

The probability of location is

x

P(x, t) =

	

=

	

{y (2k'1+ x,t)
k= -oo k~ = - co

	

(2 .14)

-y(2 kl-x, t)}{y*(2 kl +x, t)-y.;. ( 2kl-x, t)} .

Now, each term yß(2 kl + x, t) corresponds, in Fig . 1, to a lin e
ascending from left to right (+ line), each term y (2k1- x, t) t o

=

	

2 imvo

	

~
(x' 0) - (ßo1

	

{ exp ~- (2kl+xxo
2 Q0

	 ) +	 ~(2k1 + x- alxo)
1=-x

- exp
L-

(2kl -x- xo) 2 + i
}i

mv o

2 60

	

(2kl - x - xo) 2
J

1 .
L
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a line ascending from right to left (- line) . Accordingly, the four

products obtained by multiplying out the bracket in (2 .14) can be

classified into three types and the total probability split int o

three parts :

P(x, t) = P,(x, t) + P:(x, t) + Pr(x, t) .

	

(2.15)

For k = k ' , the terms yp (2k1 + x, t) y *(2k1 + .x, t) and y(2k1
- x, t) y*(2k1-x, t) represent the superposition of the Gaus s

function of a (+ line) with itself and a (- line) with itself ; they

contribute to (2 .15 )

1
P,(x, t)

	

( t ) i/rnk le
2 a(ty

	

x xo-uot)'+_ 	e 2U(t), (21d- x -x~-uot)al
(2.16)

which is identical with the probability (1 .20) derived from th e
classical theory .

The remaining terms for k = k' , namely - p(2kl + x, t )

p (2k1 - x, t) and - y'(2kl - x, t) p*'(2k1 + x, t), correspon d
each to the intersection point of a (+ line) with an equally
numbered (-line) ; all these are (cf . Fig. 1) on the boundary

x = 0 . It is obvious that the other boundary x = 1, where

k ' = k + 1, contributes terms of the same type and similar

magnitude . Collecting all these terms, we obtai n

- 2
Pl (x, t) =

6
(t) /2 {e2o' 1)'

a[x'+(2kI-xo-uoI)' ]~
k = _ co

	

Ø

	

l	 x [ a,
cos

6 0t0 t 6(t) 2

	

J
(2kl-xo- Dot) -2k1-{-xol

	

e- 2 c(o) [(I-x)'+(2ku-xo-vot)']cos 1-x ß	
(2k1-xo- ao t)- 2k1 + xo] .

2
s	 	 o	

(f020t (Y(t) 2

These terms represent interference effects due to the super -

position of an incident with a reflected wave near one of th e
boundaries . The fringes, described by the cos-terms, are restricted ,
by the Gauss functions, to a neighbourhood of the boundary o f
width a(t) ; if ao« 1, these regions of interference remain narro w
for a long time (t « t e ) . The remaining terms, all of the type

(2.17)
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k + k ' , correspond either to the superposition of two different

(+ lines) or two different (	 lines) or to intersection points o f

a (+ line) and a (-line) ; outside the region 0<x<1 . If a(t)<< 1 ,
their contribution to the probability, P, .(x, t), is small and can
be neglected for t<< tc .

The essential differences between the classical and quantu m

treatment are now clearly seen to be of two different kinds ; there
are, firstly, the interference effects near the boundaries, repre-

sented by Pi , and, secondly, the Heisenberg uncertainty relation

which connects ao and zo(= h/2 mao) and thus prohibits simul-
taneously sharp initial position and velocity . Both effects ar e
appreciable only for atomistic particles and negligible for macro -

bodies (In large) .

It is now clear that whenever the interference terms P i can

be neglected, namely when ao « 1 and -to =

	

«
2 m

	

vo, or, when
a o

2m vo «ao «l ,

then P(x, t) approaches, for t --> oc, the constant value 1/1 as in
(1 . 24) .

We have now to investigate the relation of the solution fo r

an individual particle given above and the solution based o n
eigenstates (which EINSTEIN uses for his critical considerations) .
For this purpose we expand the function Yr(x, t) in a Fourier

series ; as it is antisymmetric we can write

T(x, l) =

	

A n(t) sin nj x,

	

(2 .18)
n - 1

A n (t) = 2 S I YJ(x, t) sin nr x dx .

	

(2 .19)
1 0

By substituting (2 .18) in the differential equation (2 .1), one sees

that An (t) satisfies the equation

2hiaan

t

	 t)

	

h	

1

	 n

2m An(t) = 0,

	

(2 .20)

h

with
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and as E = IIi å/åt is the energy operator, one ha s

A n (t) = A n e 'Eni/h ,

	

(2 .21 )

where
E

=	
n z 1

	

(2 .22)n

	

1 / 2 m

are the eigenvalues of the energy. Therefore it suffices to cal-

culate the constant s

An = A„(0) =
i

1 Y'(x, 0) sin
n

1

x
dx .

	

(2 .23)
0

Substituting (2 .13) one has

2

	

`°
An =i

I k= -co
Çf (2 kl + x) sin

n

1

	 x
dx - Si

0
f(2kl - x) sin

n	
t

	 x
dx

ç2k + 1
= 2 ~

Z f(x) sin n ~x dx ,
1 k = -co k 2k -1

	

1

hence

r'
A n = 2 f(x) sin

n	
1
	 dx,

	

(2 .24)
_o,

which shows that the Fourier coefficient of F(x, 0) in the interval

0 < x < 1 is the Fourier transform of f(x) in - oc < x < o0

taken at the points nn/l of the reciprocal space .
It follows now readily that '(x, t) is normalized for all t ;

one has

Introducing for f(x) in (2 .24) the expression (2 .4), one obtains

~1 2

	

Uo 2~on 1 znx

	

vo ,Z6on

	

ainx

A n =

	

(~ 0 V 2 1ï)~ /s e ~27 0 ~

	

~ t

	

e ~2 To

	

~
-

~

	

~il

dx =

	

An An r : ei(En-Et) t/k sin	 1	 sin
n
j

n'x
dx ~

•o

	

n-

	

=I

	

0.
1 2 = Sl f(x )12dx = 1 .I `9 n=1

. (2 .26)
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The absolute value of the momentum in the state n is, accordin g
to (2 .22),

zct2 n
Pn = j/2mEn = 1 ;

	

(2.27 )

hence, with o'o T o = h/2 rn, (2 .26) can also be written

_

	

1(uo+p n /m) s +ixapaJt

	

1 (uo-p n /nt)~-ixoprt Jtt ~

An = Vl
(a•01~ 2 ~)' ~e 420=

	

- e 4202

	

(2 .28)
1

Assume v O > 0 ; since in (2 .18) n = 1, 2,	 p, t is positive .
Hence only the exponent of the second term can approach zero,
namely for

mv 0 1

	

mv
o2

pn mvO, nmax ~
	

hn Emax

	

2

	

(2 .29
)

For this n one has

Amax ''' Z

l9
(c)' o ~

/2 at)'IQ
e imuoxolh

(2 .30)

and the expansion (2 .18) reduces, for small To, to the leading
term :

,/

	

-imuoxo/t~

	

mU x 1
~(x t)

i
1~ (~o V 2 ~) / e

	

sin	
~

Ill
1

_ 1/21(00j/2 zt
)'(ae i 7t ° (x-x o)

	

e-im°o (x +xo )

This is the solution of the Schrödinger equation used by EIN-
STEIN (cf . Part I, (1)) to demonstrate the incompleteness of quan-
tum mechanics . However, as the preceding considerations show ,
it is only an approximation ; the correct solution is the wav e
packet with the coefficients (2 .26) or (2.28), and this is com-
pletely equivalent to the d'Alembertian solution (2.11) which
exhibits the fact that, for a restricted time (t < t o), the motion
is properly approximated by the classical, orbital or individualisti c
description . The quantum formula (2 .31) and the classical for-
mula (1 .1) are therefore bridged by a continuous transition, an d

(2 .31)
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there is no paradoxial situation for macro-bodies which EIN -

STEIN believes to exist .

Einstein's objections against quantum mechanics based o n

the interference of probabilities can also be illuminated by thi s

model . The first point is that one must not add phase factors of

the form e`ak to the terms of the sum (2 .11), because then the

boundary (periodicity) conditions would be violated . All the dif-

ferent terms in the sum are in phase ; only a common phase

factor el" can be added to the whole sum . But this cancels i n

the probability expression (2 .14) . Hence, the interference ter m
given in (2 .17) is genuine and cannot be destroyed by averagin g

over phases ; these interferences between incident and reflecte d

wave are of the same type as those in certain interferometri c

optical experiments (standing waves) .
But one can now consider the case, discussed at the the en d

of Part I, where the initial distribution has two sharp maxima,

one at x 1 , the other at x 2; i . e . one knows only that the particle

is either near xi or near x 2 . The solution W(x, t) is then a linear
combination of the two single functions with complex factors ;

but the relative phase of these is indetermined, one has to averag e

over it and thus no interference phenomenon results from this

situation . This must be so ; for simple ignorance where a particle

is at t = 0 cannot produce a physical interference phenomenon .
Observable interference can be obtained only by feeding in par-

ticles from one source at two places by a physical instrument

which divides one de Broglie wave into two "coherent" beams i n
a similar way as half-silvered plates and similar devices in optics .
As soon as an attempt is made to decide on which of the tw o

feeding branches the particle appears, there is a new initial state
and no interference is observable .

3. Summary .

It is misleading to compare quantum mechanics with de-
terministically formulated classical mechanics ; instead, one
should first reformulate the classical theory, even for a singl e
particle, in an indeterministic, statistical manner . Then some of

the distinctions between the two theories disappear, others emerge
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with great clarity. Amongst the first is the feature of quantum
mechanics, that each measurement interrupts the automatic flow
of events and introduces new initial conditions (so-called "reduc-
tion of probability") ; this is true just as well for a statistically
formulated classical theory . The essential quantum effects are of
two kinds : the reciprocal relation between the maximum o f
sharpness for coordinate and velocity in the initial and con-

sequently in any later state (uncertainty relations), and the inter-
ference of probabilities whenever two (coherent) branches of the
probability function overlap. For macro-bodies both these effect s
can be made small in the beginning and then remain small fo r
a long time ; during this period the individualistic description o f
traditional classical mechanics is a good approximation . But
there is always a critical moment to where this ceases to be true
and the quasi-individual is transforming itself into a genuin e
statistical ensemble .
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