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‘ Introduction,

he following considerations ~are an attempt to discuss the

ancient and time honoured metaphysical concepts of continuity,
determinism, and reality with the help of a simple, almost frivial
example. Theoretical physics has, by its own efforts, come to a
point where it had to abandon a great deal of traditional philo-
sophical ideas and to replace them by new ones. But there are
still leading physicists, amongst them EinsTeIN (1), DE BRoGLIE
(2), and ScHRGDINGER (3), who have not accepted the new way
of thinking. Therefore, a careful analysis of the philosophical
situation in physics seems not to be superfluous. EinsTEIN him-
self has formulated on several occasions his objections against
the current interpretation of quantum mechanics not in obscure
philosophical terms, but with the help of simple models. The
same method will be followed here; in fact, the model discussed
is actually due to EiNsTEIN (4). It makes it possible to illustrate
abstract philosophical ideas by elementary geometrical con-
siderations; these provide of course no direct answer to the meta-
physical problems, but reduce them to clearly distinct alternatives
and help thus to clarify the logical situation.

Part 1. General Considerations.

1. Continuity.

I maintain that the mathematical concept of a point in a
continuum has no direct physical significance. It has, for instance,
no meaning to say the value of the coordinate x of a mass-point,
or of the centre of mass of an extended body, has a value repre-
sented in a given unit by a real number (like x = 1/5 inch. or
x = mem.).
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Modern physics has achieved its greatest successes by ap-
plying the methodological principle that concepts which refer to
distinctions beyond possible experience have no physical meaning
and ought to be eliminated. This principle was certainly operative
in many instances since Newton’s time. The most glaringly suc-
cessful cases are Einstein’s foundation of special relativity based
on the rejection of the concept of aether as a substance absolutely
at rest, and Heisenberg’s foundation of quantum mechanics based
on the elimination of orbital radii and frequencies of electronic
structures in atoms. I think that this principle should be applied
also to the idea of physical continuity. Now consider, for instance,
a statement like x = mem.; if x, is the approximation of & by
its first n decimals, then the diflerences =, — m,, are, for suf-
ficiently large n and m, smaller than the accuracy of any possible
measurement (even if it is conceded that this accuracy may be
indefinitely improved in the course of time). Hence, statements
of this kind should be eliminated.

That does not mean that I reject the mathematical concept
of real number. It is indispensible for applying analysis. The
situation demands a description of haziness of physical quantities
with the help of real numbers.

The proper tool for this is the concept of probability. It can
be assumed that sentences like the following have a meaning:
The probability for the value of a physical quantity to be in a
given interval (represented by two real numbers) has a certain
value (again a real number). Or, with other words, for any
quantity « there exists a probability density P(x).

This attitude is generally accepted in quantum mechanics.
But it has actually a more fundamental significance and is only indi-
rectly connected to the special features characteristic of quantum
mechanics. It ought to be applied to classical mechanics as well.

2. Determinism.

Classical mechanics has its roots, since Newton’s time, in
astronomy where the prediction of constellations was its main
aim. Thus, the deterministic character of the mechanical laws
is stressed in the traditional presentations. When mechanics is
applied to micro-phenomena, it is, however, necessary to analyse
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the meaning of the term determinism a little deeper. The mechan-
ical laws have the property that a precisely given initial state
(configuration and velocities) determines at any time a sharp
final state. There are two possibilities: Either a small change of
the parameters in the initial state (small compared with the total
range) produces only small changes of the final values for all
times; then the orbit defined by the initial conditions is stable.
Or this is not the case, the final deviations increase in time beyond
any limit; then the orbit is instable.

In astronomy, much work has been done to prove the stability
of the planetary system. For our purpose, the results of these
investigations are irrelevant. What matters is that there exist
simple mechanical systems of a type familiar in atomic physics
(kinetic theory of gases) for which all orbits are instable. These
systems display therefore only what 1 should call weak determ-
inism; the future state can be predicted only if the initial state
is defined absolutely sharply, in the sense of the mathematical
concept of a point in a continuum; the slightest initial deviation
produces an ever increasing vagueness of the final state. Thus,
for systems of this kind, there is a close connection between the
problems of continuity and determinism. If the point in a con-
tinuum has no physical meaning, it is impossible to maintain
that systems of this type behave in a deterministically predictable
way. Hence, for a wide class of mechanical systems, the traditional
form of (classical) mechanics ought to be replaced by a statistical
method which uses right from the beginning the notion of prob-
ability: There exists, for any coordinate x, velocity v, and any
instant, a probability density P(x, v, 1).

The simplest example of this type of systems is the model,
suggested by EInsTEIN with a very different intention, namely, to
demonstrate the incompleteness of quantum mechanics (a ques-
tion to which I shall return presently). It is the model of a
one-dimensional one-particle gas and consists of a mass-point
moving in a straight line (coordinate x) up and down between
two points (x = 0 and x = [) where it is elastically reflected?®.
In a diagramme, the motion is represented by a zig-zag line

1 If the assumption of an extensionless mass-point and perfect elasticity seems
to be too unrealistic, one may take the centre of mass of a finite body running
against high and steep potential walls at * = 0 and = [.
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inside the strip 0 << a < I with alternating constant inclinations
=+ vy, Where v, is the initial velocity. By taking successive images
of this figure at the boundary lines of the strip, the diagramme
Fig. 1 is obtained which is symmetric at vertical lines x = kI
(l=0,+1,+2,....) and has the period 2{. The zig-zag
motion is therefore equivalent to two sets of parallel, synchronized
straight line motion. It is obvious that x(?) is, for any ¢, determ-
ined by x5 = x(0) and wv,.

But, if xy, vy are changed by Ax,, Av,, the diagramme of
Fig. 2 is obtained, which illustrates that Ax increases propor-
tionally to ¢, Ax = 4 tAp,. After the time ¢, = [/Av,, the variation
of x is larger than the whole range [ of x. Hence, the system is




AV
A
AV

LAY

/7 A\

/A\

AN
LN/

\

,
\% /\
K \ /
\V/X

/
A
VA

Fig. 2.

perfectly instable and behaves, for ¢ > {,, in an indeterministic
manner.

Though this is perfectly trivial, I have never seen it pointed out?.

3. Reality.

The question what we mean by the expression “‘physical
reality” is closely connected with the previous considerations on

1 For an unbounded straight line motion, the question of stability has no
meaning as there is no range (like ! in the Einstein model) with which to com-
pare Azxz(f). The usual considerations on mechanical determinism miss this
essential point of a final range.
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continuity and determinism. EINSTEIN, in the paper quoted (4),
describes ‘“‘the programme that, until the introduction of quantum
mechanies, was unquestionably accepted for the development of
physical thinking” in the following way (translated from the
original German): “Everything is to be reduced to conceptual
objects situated in space-time and to strict relations which hold
for these objects. In this description, nothing appears which
refers to empirical knowledge about these objects. A spatial
position (relative to the co-ordinate system used) is attributed
to, say, the moon at any definite time, quite independently of
the question whether observations of this position are made or
not. This kind of description is meant if one speaks of the physical
description of a “real external world”. . ... EnsTEIN then
discusses the question whether quantum mechanics leads to a
description of the behaviour of macro-bodies, which corresponds
to this notion of reality, and his answer is no. He considers the
model of a one-dimensional one-particle gas (discussed above)
and compares the classical motion with fairly sharp initial
position and velocity with a special solution of the Schrédinger
equation

1

p = Ad% sin bx — 2LiAei(wf-|-bac)__2i A=) (1)

(a¢ and b being properly chosen constants); this represents a
state where the momentum has either of two opposite equal
values and the probability of position is, for sufficiently high
momentum, constant apart from small periodic variations. He
continues (translated): *‘For a macro-system we are sure that it
is at any time in a ‘real state’ which is correctly described with
good approximation by classical mechanics. The individual
macro-system of the kind considered by us has therefore at any
time an almost sharply defined coordinate (of its centre of mass)—
at least if averaged over a small interval of time—and an almost
sharply defined momentum (defined also in regard to sign).
None of these results can be obtained from the gp-function. It
contains only such statements which refer to a statistical ensemble
of the kind considered”. And a few lines later he concludes:
“Quantum mechanies describes ensembles of systems, not indi-
vidual systems. The description with the help of a y-function is
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thus an incomplete description of a single system, not a descrip-
tion of its ‘real state’.”

This consideration, as it stands, is not conclusive, as the
function y chosen by EINSTEIN is a very special solution of the
wave equation, not adapted to the initial conditions and therefore
not suited to illuminate the question whether quantum mechanics
is able to describe the individual macro-body in a ‘‘realistic”
manner—like classical mechanics—or can tackle only statistical
ensembles. This question will be treated in some detail in the
second part of this paper. Here another point must be discussed,
which is implicitly contained in Einstein’s publication and ob-
viously foremost in his mind®.

In the previous sections, it has been shown that no physical
meaning can be attributed to a sharp value of a co-ordinate
and that therefore the description of a position in Finstein’s
model should be given in a hazy but realistic manner through
a probability density P(x); that, further, the laws of classical
mechanics should be formulated not in terms of orbits, but of a
time-dependent probability density P(x, v, t). If this is done,
classical mechanics is actually not dealing with a single system,
but with a statistical ensemble, and Einstein’s criticism of quan-
tum mechanies, quoted above, taken literally, fails as it would
apply in the same way to the classical theory. However, what
EmnsTeIN Teally means, is evident from another sentence of his
article which reads (translated): “The fact that, for the macro-
system considered, not every function y satisfying the Schrédinger
equation corresponds approximately to a description of a real
Phenomenon in the sense of classical mechanics, is particularly
obvious by considering a y-function which is formed by the super-
position of two functions of the type (1) whose frequencies
(energies) are essentially different. For, to such a superposition,
there is no corresponding ‘real case’ of classical mechanies (still,
however, a statistical ensemble of such ‘real cases’ according to
Born’s statistical interpretation).”

Classical mechanics, formulated statistically as it ought to be,
is still a “description of reality” according to Einstein’s definition,

1 T have to thank Professor W. PauLr for giving me, in some letters, an ex-
planation of Einstein’s ideas, obtained in oral discussions at Princeton, and his
own comments.
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as one can think the single, sharp state as existing (though not
observe it with the accuracy demanded by the mathematical
concept of sharpness) and then obtain the physical vagueness by
applying the ordinary laws of probability. For instance, one can
think of a particle in a slraight line being at x; and then the
physical situation “we know that it is near x;”" by a probability
density p(x-— x;) (where the function p(zx) is different from
zero only near x = 0). If we only know that the particle is either
near x; or near x,, the probability density will be

P(x) = ayp(x—x) + as p(x—1x2), a; + ay = 1, 2)

according to the ordinary rules of probability calculus.

In quantum mechanics the situation, however, is different.
If o(x —x,) is the Schrédinger function describing a particle
being near x;, the probability density is p(x — x;) = ] p(x— x1)|2.
If we know that the particle is either near x; or near x,, the
situation is described by the Schrédinger function y(x) =
c1p(x — 1) + ;¢ (x — x,) and the resultant probability is

P(x) = |p@) P = ap(x — 2)) + a3 p(x — @) + J (), -
a = |C112: Uy = |c2}2,
where the additional term

J (@) = crefp(e—x) p¥ (v —ag) + cle @™ (x—xy) p(r—ay) (4)

represents the “interference of probabilities”. It has no classical
analogue; even if it is practically negligible for ¢ = 0, it may be-
come appreciable for certain a-values at later instances.

The existence of this interference phenomenon excludes the
possibility to think of the particle as having a definite position
(and velocity) at any instant and to connect these positions in
imagination to an orbit, and this is the reason why EINSTEIN
declares quantum mechanics to be incompletel. He insists that,
at least for macro-hodies, a theory cannot be regarded as satis-
factory unless it conforms with his idea of reality.

1 FinsTEIN discusses in this connection the ideas of pE Brogriz, Bomm,
SCHRODINGER a. 0. who tried, in different ways, to interpret the formalism of
quantum mechanics in terms of classical concepts, but he rejects these attempts
as unsatisfactory.
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This is a philosophical creed which can be neither proved
nor disproved by physical arguments. But whal can be done is
this: one can formulate another concept of physical reality which
takes account of the actual existence of the interference pheno-
menon in the atomistic region and goes over into the traditional
one (that accepted by EinsTrin) for macro-bodies. This I have
done in a systematic, but rather abstract way, at another place (5).
I shall not repeat these considerations here, but illustrate them
only with the help of the model used above, a particle oscillating
on a line between two elastically reflecting boundaries.

The main point is that the physicist has not to do with what -
can be thought of (or imagined), but what can be observed. From
this standpoint a state of a system af a time ¢, when no observ-
ation is made, is not an object of consideration. But as soon as
an observation is made, the situation found has to be regarded
as the final state of the phenomenon defined by a previously
observed initial state and, if future observations are envisaged,
also as the initial state of the further development. This ‘‘reduc-
tion of probability”” is not characteristic of quantum mechan-
ics, but has also to be applied to classical mechanies if it
is formulated in terms of probability: Any observation for
checking a predicted probability density “‘destroys’ it and pro-
duces a new one which has to serve as initial state for further
predictions.

But from this standpoint the interference phenomenon looses
much of its paradoxial character. For the one-dimensional model,
an actual observation determines not the complex amplitudes
¢, = Yaye'™, ¢y = Vase'™, but only the probabilities (relative
frequencies) a; = ’ ¢ % ag, = ‘ czlg; the phases «,, ¢y remain
entirely unknown and undetermined, and the interference term
vanishes if averaged over the phase difference a; — ;. For more
complicated systems (like the optical interferometers), the dis-
tribution in the final state may of course show interference fringes,
which classical theory cannot explain; but this appears only
paradoxial from the traditional (Einstein’s) standpoint’ where a
non-observed intermediate state is declared to be just as real as
an actually observed final state.

The situation can be illustrated by a detailed discussion of
our model. This will be done in the second part of this paper.
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Part II. Mathemétical Considerations.

The model which will now be investigated in more detail
seems to be the simplest mechanical system with a finite range
of the variables (co-ordinate, velocity) for which the exact solution
can be found. The Hamiltonian has essentially only a kinetic
part; the potential energy due to reflection at the boundaries can
be replaced by certain periodicity conditions, and the equations
of motion then can be solved, in the classical and quantum treat-
ment as well, with the help of Kelvin’s method of images. The
resulting formulae are simple and well suited for a discussion
of several important problems, as the transition from the initial
individualistic to the final statistical description, the characteristic
distinctions of classical and quantum treatment, the reduction of
probability through observation, and the interference of proba-
bilities.

1. Classical treatment of the one-particle
one-dimensional gas.
The orbit of a particle in Einstein’s model, starting at t = 0

from the point x = x, with the velocity v = vy, is analytically
given by

x = 2lk — xg— pot, tor_; <t < tyy,
0 0 2k—1 2k (1.1)
x:——2lk+x0+vot, t2k<t<t2k+1,
where 4
1('1—.760
t = 5 ,hk=0,41,+2,.... . 1.2)
0

It is convenient (as already indicated in Fig. 1) to replace the
one-particle system by a periodic system, consisting of an infinite
number of synchronized particles, by dropping the conditions
t>0, 0 <2</ (silently assumed in (1.1)). This procedure will
be denotéd by the short name “‘periodic continuation’. According
to the programme explained in Part I, the “‘deterministic”’ de-
scription (1.1), (1.2) shall be replaced by a statistical one, with
the help of a probability density, P(x, », f). We have to do with
a case of statistical mechanics where the system is not in statistical
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equilibrium, but develops in time from a given initial distribution
P(x,v,0). The only condition for P(x, v, t) is that which ex-
presses the conservation of probability; it follows from Lion-
ville’s theorem,
g—lt)Jr [P, H] =0, (1.3)
where H(x, p) is the Hamiltonian as function of coordinate and
momentum and
0P O0H 0POH

[P,H]:%%—%—a; ‘ 1.4)
the Poisson bracket.

H consists of the kinetic energy p?/2m, and the potential
energy representing the reflective power of the walls. As this force
is assumed to be infinitely strong, it can be replaced by certain
periodicity conditions which will be derived presently. With
H = p*/2m and p = mw, (1.4) reduces to

oP ap

The periodicity conditions follow from the consideration that the
solution must have the same value at a given point x (in 0 < = < 1)
after each reflection; for instance, after one reflection at x = 0,
one has

P(x, v, t) :P<a:,—v,l~21)—m> (1.6a)

and, after two reflections at * = 0 and * = [,

2
P(x,v, t) = P<x, v, t + ?l> (1.6b)
The general solution of (1.5) is
P(x,v, t) = f(x—1vt, v), (1.7)

where f(x, v) is an arbitrary function of two arguments, defined
for all values — oo << &, v << oo, which represents the initial state

P{x,v,0) = f(z, v). (1.8)
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The condition (1.6b) leads to

flx—vt,v) =flx—vt—21,v)
and (1.6a) to
f(x —vt,v) = f(—x+vi,—0v).

The first of these conditions says that f(a, v) is periodic in
with the period 21,

f(x, v) = f(x + 21, v); (1.92)

the second, that it is symmetric for the inversion

f(x,v) = f(—=x,—v). (1.9b)

These two periodicity conditions define the periodic continuation
of P(x, v, t).

The case of a particle having for ¢ = 0 almost a fixed position x,
and fixed velocity v, is of particular interest. In order to describe
it in a simple way we introduce a function ¢(x, v) restricted to
a narrow domain around x = 0, v = 0; assuming ¢ to be norm-
alized, the average of a function ¢(x, v) is defined by

<] &0

1 1 .
q = S Sq(x, vy p(x, v) dx dv, g S(p(x,v) dedp =1, (1.10)
0 Voo v0 Yoo
and we postulate
x=0,0=0,a*=0 ., (1.11)

where oo ({1, 1, vy.

Then, the function

f(x, v) :§{¢(2kz+x_xo, v—vg) +@(2kl—x—x5, —v—00) ) (1.12)

k=—w

has all properties requested: it satisfies (1.9a) and (1.9b) and it
has, in the interval 0 << x < [, only one sharp maximum corre-
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sponding to the first term for k = 0 (as the maximum of the
second term, at — xy + 2 kI, is outside the interval for all & = 0,
+1, +2,...)).

Hence, the probability density is, according to (1.7),

P(x,v, D)
w 1.13
= >’ 99(21([—]—30——900—0[,1}-—1)0)+<p(2kl—x»~m0—i—vt,v—vo)}; ( )
k= —o
it is properly normalized, for
1> 0 a% QI+ Dl —2— @ + MEaRE— 1T —xo— (0, + )¢
S SP(m,v,t) dedp = gcln[Stp(E, 7 d —-5¢(§,n)d5
0 v—m» k=-—ov—xn | Y2k — xf— (v, 2kl — x,— (v, Nt
M Bk (1.132)
= Sdngd&p(f, m =1,
in virtue of (1.10).
If ¢(x, v) is chosen as a Dirac d-function, i. e. gy = 0, 79 = 0,
this function (1.13) reduces to zero except for the points which
satisfy the equations (1.1), (1.2). But this limiting case does not
correspond to a real physical situation. We have to consider o,
and 7, as finite quantities.
By integrating (1.13) over v one obtains the spatial distri-
bution
Plx, t) = SP(x, v, t) dv
o (1.14)

=Z S{(p(2 kit x—xo—(o-Fmt, n)+e2 kl—x—xy—(vy+ n)t,n)}dn,

k=—c

and, by integrating (1.13) over x from 0 to /, the velocity distri-

bution
W o0 2k + 1)1 —xy— vt 2k— 1)1z, + vt
P, ) = SP(m, v, yde= >’ {S(p(é’, U—UO)dE—S(p(S,—U—DO)d§}. (1.15)
— o k=—o | Y2kl—x,— vt 2Kkl —x, + vt

These two formulae are the analytical expression of the fact that
at each reflection the velocity changes its sign. The distribution
of the absolute value of the velocity is obviously nothing but the
probability that the velocity is either v or — v, hence

P(v|, &) = P(v, &) + P(— 0, D). (1.16)
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This quantity is easily found from (1.15) to be independent of
time, as should be expected. For the two parts in (1.16) con-
tribute terms in the sum (1.15) which can be combined to inte-
grals from —oo to oo

o) = Si"’(f’ v— o) + ¢(§, —v—v))y & (1.17)

As an example for which all calculations can be performed in
detail, one can consider ¢(x, v) as a Gauss function in both
arguments. If we put

a2 u?
1 —

20 21'02, (1.18)

P, v) = 27:00106

the equations (1.11) are satisfied. (1.13) becomes

1 _o—)P o 1 Qktr—z—uvt)
P(x, v, — 27 207
(x v t) 27’600T0{e k=——eao
@ +0)? 1 (2kl—x—x,—uvil)? (1'19)
—|—-e—~—2‘60 Ze 20'0 }’
k= —o
and (1.14)
1 » (2KL + & — 20— vo1)? S Y
Plx, )y =—"—>= e 20(1)‘ e 200 ,(1.20
(@ o(t)1/2nk§m{ + (1.20)
where
o(t) 2 2t2 (1.21)

If now the averages of x, % and (Ax)* = (x — x)* are formed
with the distribution (1.20) one finds for £ exactly the expres-
sions (1.1), (1.2) and further

(Ax)® = o(b) (1.22)

Hence, the width of the distribution inereases with time. It becomes
equal to the whole range [ of x at a critical instant

t, = %01/12~ag . (1.23)
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If ¢, << I, this is approximately I, ~ I/7,, the value used in Part I.
For small 7, the epoch ¢, is very large but always finite.

It can now be shown that, for ¢t — oo, P(x, t) becomes con-
stant, independent of x and ¢ If t is large, one has o(f) — 7,f,
and (1.20) reduces to

P(x, t 2’200 *21 (¥—””)2
T .
(xs )_> otl/27tk_—uo e ’

if one puts #— ve = 7, then to an increment 4k = 1 there

corresponds An = 21/t which, for t — oo, tends to zero. Hence,
the sum goes over into an integral

P, >~ Sw Te dy = | (1.24)
e 2%’ .
* To l/2:z — = :
This is the properly normalized ‘‘geometrical” probability for
finding the particle anywhere in the interval of length [
However, the distribution for f-—» ocis not that of an ideal

gas, as the velocity distribution is different. Oné obtains from
(1.17) and (1.18)

1 _ (=05 ERCER DS
P(lv)) — —~{e 2TE e 2% } (1.25)
. Ty V2 T

that means two Gauss distributions with the mean velocities -+ vy,
but not a Maxwell distribution.

The result of this consideration is therefore that a motion
which starts as that of a practically individualistic particle, in
the course of time goes over into a state where the position
becomes completely indetermined while the magnitude of the
velocity remains unchanged, its direction indetermined.

The question how the model has to be modified so that the
final state is an ideal gas will not be investigated here in detail.
It is obvious that a mechanism for the exchange of velocitics
between several mobile objects is needed. I presume that it suf-
fices to replace one of the elastic boundaries by a model of a
thermal reservoir (a heavy body with a Maxwell energy distri-
bution) which exchanges energy and momentum with the particle
at each collision. :

Dan, Mat, Fys. Medd. 30, no.2, 2
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2. Quantum mechanics of the one-dimensional
one-particle gas.
To treat the same problem with quantum mechanics one has

to solve the time-dependent Schrédinger equation for the wave
function y(x, ),

h? 0%y Loy
with the boundary conditions
p(0, 1) =0, p(, b =0. (2.2)

There are two standard methods, that of d’Alembert and that of
Fourier. The d’Alembertian solution is, in the present case, pre-
ferable as it leads to results easily comparable with those of the
classical freatment. The fransformation in a Fourier series can
then be easily obtained.

DEe BrogeLIE has given, in one of his books (6), a solution?!
of (2.1) without boundaries, which corresponds to arbitrary
initial values f(x); namely

—im \Y2 ¢ BN
£ = 2ht
wix, D) (Mh t) S_]:gé-')e dE. (2.3)
This can be readily confirmed by direct calculation (substituting
into (2.1) and demonstrating that ¢ (x, £) = f(x) for { - 0). Then,
following DarwinN, he choses for f(x) the function

( 1 )1/2 ——(xﬁx“)2+%muu(m—xu)
= |7 . e

406*

) (2.4)

which represents an harmonic wave with momentum muv,,
modulated by a Gauss function with a crest at xy and width o, 1/2.
The probability for location l f(x) |2 is normalized,

S_flo(m)lz de — 1, (2.5)

1 DE BrogrLiE has actually treated the three-dimensional case.
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and the expectation values of coordinate, momentum, and their
mean square deviations are

o]

T = Sx ffAde = x,
- 2.6a
) o df (2.62)
pP= ——I‘qu*c @d:c = muy;
(Aac)f’:szff*dx—wg':ag, ]
-, (2.6b)
Gy = —n\ P S ey = [
p L, da? -
If we introduce the uncertainty of the velocity
= 1 = h
W =) = L V@pr =5, (2.7)
we have the Heisenberg uncertainty relation
———— h
]/(A x)2-(Ap)* = moyty = 9- (2.8)

If (2.4) is substituted in (2.3) and the integration performed,
one obtains after some reduction

v = (avez) o] = (g

im [ o} (2.9)
52 ni [U(; 2(:0——.%”9—1)01‘)2 —(x—wn)zj“]_:
where
s(t) = ‘la_%t;ﬁ s = 1. (2.10)

p(x, {) is the normalized probability amplitude for a group of

waves with a crest initially at x, moving with the velocity v,

(from left to right). Then, y(— x, {) corresponds to a group of

waves with a crest initially at — xy and moving with the velocity
2*
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— 1o (from right to left). For inspection of (2.9) shows that a
change of sign of x is equivalent to a change of signs of x4 and v,.
Applying the image method, we construct the function

Y(x,t) ~Z {wQk +a, ) —pkl —2a,0)); (2.11)

it is obviously periodic in a« with period 2!/ and vanishes for

x =0 and x = 1. If t > 0, one has approximately o (f) — oy,
s(t) — 1, and

1 V& 24kl 4
3 R R e

k=—x
. _ 2
— exp [—— (—’—“——ZM 22} a:o> lmvo (2kl — x — x0)2”

This can be written

J(2.12)

Y(x, 0) = Z {2kl + ) — F 2kl — )}, (2.13)

k=—ow

where f(x) is the function defined by (2.4). Hence, the initial
state consists in two groups of plane waves travelling to the right
and left, both modulated by Gauss functions of width ¢,, and
group crests at @y + 2kl and — xy + 2kl (k= 0, 41, £ 2,--+),
respectively. Inside the interval 0 < x <!, these waves are
equivalent to one wave with a crest initially at x,, which is
repeatedly reflected at the boundaries * = 0 and « = I. Hence
the solution describes, for small ¢, a repeatedly reflected single
particle with slightly uncertain initial position.
The probability of location is

P(x, ) — PW¥* —Z_ Z @K1+ 2,t)

(2.14)
— (2 kl—x, O 2kl +x, 1) —y*(2kl—x,1)}.

Now, each term 9 (2 kl 4+ x, ) corresponds, in Fig. 1, to a line
ascending from left to right (4 line), each term v (24l —x, t) to




Pfx,l) =

+e
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a line ascending from right to left (— line). Accordingly, the four
products obtained by multiplying out the bracket in (2.14) can be
classified into three types and the total probability split into
three parts:

P(x, 1) = P(x, t) + Py(x, 1) + Pz, D). (2.15)

For k = K, the terms y(2kl + x, ) p*(2kl + x, ) and (2Kl
—ux, §) p¥(2kl — x, t) represent the superposition of the Gauss
function of a (4 line) with itself and a (— line) with itself; they
contribute to (2.15)

o

which is identical with the probability (1.20) derived from the
classical theory.

The remaining terms for &k = &', namely —y(2kl + x, )
p¥(2kl — x, t) and — p(2kl — x, 1) p*(2kl + 2, 1), correspond
each to the intersection point of a (+ line) with an equally
numbered (—line); all these are (c¢f. Fig. 1) on the boundary
= 0. It is obvious that the other boundary x = [, where
k' = k'+ 1, contributes terms of the same type and similar
magnitude. Collecting all these terms, we obtain

—2 = [ -+ (2 kl—@o—vol)?]
. - 200
P, ) =5 (tmnkgw{e
2
“pot) — 2k
cos oy t[a(t)g (2 kl—xy—vot) H—mo}
[l—2p + 2 —m—nt)  [—x

‘70(1)” —9 }

cos - P [G(t)z 2kl — 2y — vy £) — 2kl + oco]}

These terms represent interference effects due to the super-
position of an incident with a reflected wave near one of the
boundaries. The fringes, described by the cos-terms, are restricted,
by the Gauss functions, to a neighbourhood of the boundary of
width o (#); if 0,{{ [, these regions of interference remain narrow
for a long time (7<{{{,). The remaining terms, all of the type

1 : (2Kl + 2 — 2y — v ) (2K— 2—wo— vl )
o ¢ 20(02 T ,(2.16
U(t) ‘/2 T =Z—-oo{ + ( )

(2.17)
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k== k', correspond either to the superposition of two different
(+ Lines) or two different (— lines) or to intersection points of
a (4 line) and a (—line); outside the region O0<x <1 If ¢(){ 1,
their contribution to the probability, P.(x, t), is small and can
be neglected for ¢ <{{t,.

The essential differences between the classical and quantum
treatment are now clearly seen to be of two different kinds; there
are, firstly, the interference effects near the boundaries, repre-
sented by P;, and, secondly, the Heisenberg uncertainty relation
which connects ¢, and 74(= i/2 mo,) and thus prohibits simul-
taneously sharp initial position and velocity. Both effects are
appreciable only for atomistic particles and negligible for macro-
bodies (m large).

It is now clear that whenever the interference terms P; can

be neglected, namely when o, {{ land 7y = 3 { vy, or, when

may

h
ém—vo«a"«l’

then P(x, t) approaches, for { — oo, the constant value 1/I as in
(1. 24).

‘We have now to investigate the relation of the solution for
an individual particle given above and the solution based on
eigenstates (which Einstein uses for his critical considerations).
For this purpose we expand the function ¥(x, t) in a Fourier
series; as it is antisymmetric we can write

2 nm
= in—— 2.
Y(x, b n=§'1A"(t) sin—-a, (2.18)
with

1
A, () = %S W (a, 1) sin “Tw do. (2.19)
- (4]

By substituting (2.18) in the differential equation (2.1), one sees
that A, (f) satisfies the equation

ki

04, n\?
é)t(t)h(th) QLmA"(t) — 0, (2.20)




An=v2(dov27z)/’{ (7.4 ™
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and as E = hi0/0t is the energy operator, one has

A (1) = A, eTnlil S (2.21)
where
whn\? 1
E, = (T) 5 (2.22)

are the eigenvalues of the energy. Therefore it suffices to cal-
culate the constants

o ol
L= A 0) = %S ¥, 0) sin 7% du. (2.23)
0

Substituting (2.13) one has

2 o ol . ol
=7 S { Sf(2kl+:c) sinml”dx—_s f(2kl — x) singilfda:
=— () o
) 2k+1
=2 > (f@) sin 2% ge,
l k=—w v2k— !
hence
4, — 273 f@) sin "2 d, (2.24)
which shows that the Fourier coefficient of ¥ (x, 0) in the interval
0 <x <! is the Fourier transform of f(x) in —oo < x <00
taken at the points ns/l of the reciprocal space.
It follows now readily that ¥ (x, ) is normalized for all ¢;
one has
1
G e =30 54,0, @m0 {n ™0 n 2 g
n—ln——ll ] (225)
= 5 2| 4aft = S|f(x)|2dx —1.

Introducing for f(x) in (2.24) the expression (2.4), one obtains

27T, 3

U no’m)ﬂJ_l’mx - TG 1T “¥innxl
i C

Tf' (2.26)



24 Nr., 2

The absolute value of the momentum in the state n is, according
to (2.22),

= (2.27)

hence, with oyvy = /2 m, (2.26) can also be written

]/E o 1 (oot pp/mP +ixep,/h __1_(vo—pn/1.n)2—-i.z.,pn/h]
A, = T(Go V2 )t {e 47" —e 47 I (2.28)
{
Assume vy > 0; since in (2.18) n=1,2,...., Pa 1s positive.

Hence only the exponent of the second term can approach zero,
namely for

mu,l muv?
Pr~ W0, Aimax ~ - Brax ~ =5 (2.29)
For this n one has
. § PR — LI, &,
Amaa: ~ l/_l (00 \//2 T[) /2 e imoy a:/h’ (2.30)

and the expansion (2.18) reduces, for small 7,, to the leading

term:
] ‘2‘ — —imu,Tofh . MUy
Y(x, )~ ZVT(GOV2 w)l=e sin - .
2.31
1 5 inﬂ(:c—.’l:o) *iw(m“l’xo) ( )
:ﬁ(aol/Qn)“‘ e n —e h .

This is the solution of the Schridinger equation used by Ein-
STEIN (cl. Part I, (1)) to demonstrate the incompleteness of quan-
tum mechanics. However, as the preceding considerations show,
it is only an approximation; the correct solution is the wave
packet with the coefficients (2.26) or (2.28), and this is com-
pletely equivalent to the d’Alembertian solution (2.11) which
exhibits the fact that, for a restricted time (# < ¢,), the motion
is properly approximated by the classical, orbital or individualistic
description.- The quantum formula (2.31) and the classical for-
mula (1.1) are therefore bridged by a continuous transition, and
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there is no paradoxial situation for macro-bodies which En-
STEIN believes to exist.

Einstein’s objections against quantum mechanics based on
the interference of probabilities can also be illuminated by this
model. The first point is that one must not add phase factors of
the form e'*k to the terms of the sum (2.11), because then the
boundary (periodicity) conditions would be violated. All the dif-
ferent terms in the sum are in phase; only a common phase
factor e'* can be added to the whole sum. But this cancels in
the probability expression (2.14). Hence, the interference term
given in (2.17) is genuine and cannot be destroyed by averaging
over phases; these interferences between incident and reflected
wave are of the same type as those in certain interferometric
optical experiments (standing waves).

But one can now consider the case, discussed at the the end
of Part I, where the injtial distribution has two sharp maxima,
one at x;, the other at x,; i. e. one knows only that the particle
is either near x; or near ax,. The solution ¥ (x, f) is then a linear
combination of the two single functions with complex factors;
but the relative phase of these is indetermined, one has to average
over it and thus no interference phenomenon results from this
situation. This must be so; for simple ignorance where a particle
is at £ = 0 cannot produce a physical interference phenomenon.
Observable interference can be obtained only by feeding in par-
ticles from one source at two places by a physical instrument
which divides one de Broglie wave into two ‘‘coherent’” beams in
a similar way as half-silvered plates and similar devices in optics.
As soon as an attempt is made to decide on which of the two
feeding branches the particle appears, there is a new initial state
and no interference is observable.

3. Summary.

It is misleading to compare quantum mechanics with de-
terministically formulated classical mechanics; instead, one
should first reformulate the classical theory, even for a single
particle, in an indeterministic, statistical manner. Then some of
the distinctions between the two theories disappear, others emerge
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with great clarity. Amongst the first is the feature of quantum
mechanics, that each measurement interrupts the automatic flow
of events and introduces new initial conditions (so-called *‘reduc-
tion of probability’’); this is true just as well for a statistically
formulated classical theory. The essential quantum effects are of
two kinds: the reciprocal relation between the maximum of
sharpness for coordinate and velocity in the initial and con-
sequently in any later state (uncertainty relations), and the inter-
ference of probabilities whenever two (coherent) branches of the
probability function overlap. For macro-bodies both these effects
can be made small in the beginning and then remain small for
a long time; during this period the individualistic description of
traditional classical mechanics is a good approximation. But
there is always a critical moment f, where this ceases to be true
and the quasi-individual is transforming itself into a genuine
statistical ensemble.
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