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Introduction.

his paper describes the theory of interference filters of various

types (especially interference filters with three and four silver
layers, § 4 and § 5).

It will be shown how all the optical properties (such as
reflectivity, transmission, phase changes at reflection, transmis-
sion, ete.) of an interference filter can be exactly calculated when
the indices of refraction v—ix, n and the thicknesses ¢, d of the
different thin layers are known as a function of the wavelength 1
(»—ix is the index of refraction and ¢ the thickness of a metal
layer). Furthermore relations are deduced between the optical
constants of the reflective layers which give optimum conditions
for the different types of filters.

In a following paper, it will be discussed how it is possible
to measure the thicknesses of the dielectric layers on the filter
base itself with an accuracy of about 20 A and how such a filter
can be made by means of the high-vacuum evaporation process
for a filter area of 22 x 22 cm.

§ 1. Fresner’s Equations.

Retlection of light from and transmission through a boundary
(fig. 1) between two materials 0 and 1 with indices of refraction
ng and n; are determined by FrESNEL’s equations derived from
the MaxwELL equations of electrodynamies [1] & [2].

The following notations will be used:

¢ angle of incidence, y angle of refraction, and n index of
refraction. s used as index means the component of the electric
vector perpendicular to the plane of incidence and p used as
index the component parallel to the plane of incidence.

1%
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% is determined by S~err’s law:
ng-sin ¢ = n;sin y. 1,1

If (E,, E,) are the components of the electric vector of the
incident plane light wave, the components of the electric veclor

Fig. 1.
@: Angle of incidence.
x: Angle of refraction. .
E: s or p component of electric vector of incident light wave,

of the reflected light wave (E{, Eg,m) and of the transmitted wave
(ED, Eg)T)) are determined by

Ny Cos@—1i cos Yy

.
Iy COS @+ 1ty COS ¥

82

P~ | (1, 2)

8§

F =g .p . p =220 70K 1,3
P pop P njcosp4 ngcos g (1. 3)

ED = Bt t, =141, (1, 4)
It
EP —E, t,; t,=(1+ 1-,))-1—)3. (1, 5)
The direction of the light is 0 — 1.

If the direction of the light is the opposite 1 — 0, n, must be
interchanged with n; and ¢ with 4.
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The following relations are satisfied:
Top = — Iy (1, 6)
tor- tio — rp1ryp = 1 1,7

(valid either for the s or the p component).

At a normal angle of incidence (¢ = y = 0) only one com-
ponent of the electric vector is present, and the FRESNEL equations
in this special case are the following:

y—m
gy =— —— .
n,+ ny

(1, 8)

ton =1 4 ro1. (1,9

Direction of the light: 0 — 1.

(The reason why ry = —r, when ¢ = 0 is that £, = — E,
for the incident wave by definition [1]).

All these equations are also valid when the material 1 is
absorbent (especially a metal). In this case the index of refraction
n; is represented by a complex number n; = »—ix and yx
is a complex angle determined by (1, 1).

In accordance with [3] we define a —ib = nycos y; from

(1,1) we get a—ib = )/(v—in)?—nisin?ep =i|/g+i-2vx
(with ¢ = %%+ nj sin2¢—»?), and from this equation we then
obtain

b= /3 ). (1, 10)
and
a = %‘ (1, 11)

By introducing n; cosy = a —ib into (1, 2) and (1, 3) the
FresNEL equations can be written as follows:

! T n (i)s (a—1b)
rg = gs-elas = 0 1 ? (1,12)
+ o (a—ib)

1, Cos @
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TasLe 1. Angle of incidence ¢ = 45°,
a ’ b
S~y v
e 0.1 0.2 N 0.0 0.1 0.2
1.0 | 0.08174 0.16402 1.0 1.2247 1.2234 1.2194
1.5 .09048 18114 || 1.5 1.6583 1.6578 1.6561
2.0 .09429 18865 | 2.0 2.1213 2.1211 2.1203
2.5 09623 19249 2.5 2.5981 2.5979 2.5975
3.0 .09734 19468 3.0 3.0822 3.0821 3.0819
3.5 09803 .19605 3.5 3.5707 3.5707 5.5705
4.0 .09847 19695 4.0 4,0620 4,0620 4,0819
4.5 .09879 19759 4.5 4,555 4,5552 4,5551
5.0 .09902 .19803 5.0 5.0498 5.0497 5.0497
5.5 09918 .19837 5.5 5.5453 5.5453 5.5453
6.0 .09931 19863 6.0 6.0415 8.0415 6.0415
\
c : h
14 v
x 0.1 0.2 » 0.0 0.1 0.2
1.0 | 0.10893 0.21819 1.0 0.8165 0.8165 0.8166
1.5 .10690 .21378 1.5 1.3568 1.3570 1.3578
2.0 .10476 .20045 2.0 1.8856 1.8858 1.8863
2.5 .10335 20668 2.5 2.4056 2.4057 2.4061
3.0 .10245 220490 3.0 2.9200 2.9201 2.9203
3.5 ~.10185 20372 3.5 3.4307 3.4307 3.4309
4.0 10146 .20201 4.0 3.9389 3.9390 3.9391
1.5 10117 20232 4.5 4.4455 4.4455 1.4456
5.0 .10096 20191 5.0 4.9507 1.9508 4.9508
5.5 .10080 20159 5.5 5.4551 5.4551 5.4551
6.0 .10068 20134 6.0 5.9588 5.9588 5.9588
cos .
(1 — f—ﬁ(c_zh)>
i Iy .
r, =g, €% = — cos (1, 13)
(1 + J(c~ih)>
iy
with
. 202 (3 —? 22 LB g\
C——lh:(—‘-zg—z——)‘ ca—1 _‘—‘)—;)7'b. (1, 14)
a?+ b a’+ b*

If the light wave with the angle of incidence ¢ coming from
air (n, = 1) is first to pass under the angle of refraction ¥ through
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TasLE 2. Angle of incidence ¢ = 60°.

a — )
| o 02 | 0 0.0 0.1 0.2
I
1.0 | o.o7569 | o0ds102 | 10 | 1.3229 1.3213 . 1.3165
15 | .08664 7349 | 15 | 17321 1.7313 1.7292
20 | o078 18365 || 20 | 21704 2.1791 2.1780
2.5 | .00450 18904 || 25 | 26458 2.6456 2.6449
3.0 | .09608 A9218 | 3.0 | 31225 3.1224 3.1220
35 | .09708 19416 | 3.5 | 3.6056 3.6055 3.6052
a0 | 09774 19548 | 40 | 4.0927 4.0026 4.0925
45 | 09820 19640 | 45 | 4.5826 4.5825 4.5824
5.0 | .00853 19707 || 5.0 | 5.0744 5.0744 5.0743
5.5 | 00878 | 19756 | 55 | 5.5678 5.5678 5.5677
6.0 | 00898 19795 | 6.0 | 6.0622 | 60622 | 6.0621
¢ ‘ I
e 02 |2 oo ‘ 0.1 “ 0.2
1.0 | o10s00 | o216s0 | 10 | 0.7559 0.7555 0.7542
15 | 10826 21658 | 15 | 1.2000 1.2002 1.2008
2.0 | 10625 21240 | 20 | 1.8352 1.8355 1.8361
25 | .10461 20020 | 25 | 2.3623 2.3624 2.3628
3.0 | 10346 20602 | 3.0 | 28823 2.8823 2.8827
3.5 | .10268 20534 | 35 | 3.807 3.3976 3.3078
a0 | 10211 20422 | a0 | 3.9004 3.9095 3.9006
a5 | 10170 20341 | 45 | 4.4189 4.4190 4.4191
5.0 | 10141 20280 ]\ 5.0 | 40266 4.9267 4.9268
55 | 10117 20235 | 55 | 5.4331 5.4331 5.4332
6.0 | 10099 20199 | 60 | 59385 5.9385 5.9385

a djelectric layer with the index of refraction n (before reaching
the boundary) (a, b) and (¢, h) will be unchanged as g is un-
changed. (n,-sing = n-siny) and in (1, 12) and (1, 13) we
have only to change n, to n and cosg to cosyp.

In Tables 1—3 (a, b) and (¢, h) are given as functions of
(v, ») with angles of incidence ¢ = 45°, 60°, and 75°, respectively,
and with n, = 1,0 (only to be used for silver). From these tables
it is apparent that for v < 0.2 it will be sufficient in most cases
o use the approximation:
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TasLE 3. Angle of incidence ¢ = 75°.
\
a “ b
v i ¥
x\\ 0.1 0.2 ‘x 0.0 I 0.1 0.2
1.0 | 0.07202 0.14457 1.0 1.3903 1.3886 1.3834
1.5 08412 .16846 1.5 1.7841 1.7833 1.7808
2.0 .09006 .18023 2.0 2.2210 2.2206 2.2198
2.5 .09329 18663 2.5 2.6801 2.6798 2.6791
3.0 09519 19041 3.0 3.1517 3.1515 3.1510
3.5 .09640 19282 3.5 3.6308 3.6307 3.6304
4.0 09721 .19442 4.0 4.1150 4.1149 41147
4.5 09777 19555 4.5 4.6025 4.6024 4.6023
5.0 .09819 19637 5.0 5.0924 5.0023 5.0923
5.5 .09849 19699 5.5 5.5842 5.5842 5.5841
6.0 .00873 19746 6.0 6.0773 6.0772 6.0772
c ” h
I —
S ! S
. 01 02 ” - 0.0 0.1 0.2
1.0 10677 .21428 \ 1.0 0.7193 0.7185 0.7163
1.5 10874 21758 1.5 1.2611 1.2612 1.2616
2.0 10708 .21415 2.0 1.8010 1.8011 1.8017
2.5 .10538 .21076 2.5 2.3320 2.3321 2.3326
3.0 10413 .20823 3.0 2.8556 2.8557 2.8560
3.5 10321 20641 3.5 3.3739 3.3739 3.3742
4.0 .10256 .20512 4.0 3.8882 3.8883 3.8885
4.5 10208 .20416 4.5 4.3998 4.3998 4.4000
5.0 10171 .20344 5.0 4.9092 4.9092 4.9093
5.5 10144 20288 5.5 5.4171 5.4171 5.4172
6.0 10122 20244 || 6.0 5.9237 5.9238 5.9238
— Vv %2
bzl/g; a = : h=2_ and c:<2%

In the case

Ve’ Vg

(g = %* =+ nf sin2g).

of normal incidence (¢ = 0) we obtain

Tor = @9 €

id _

1—(1~i

L

1+Cﬂ—i
Ity

x

n,

X

g

)

j

(1, 16)
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TarrLe 4. 180 — 4§, (in degrees).

\;\\ 0.0 0.1 0.2 0.3
1.0 90.000 89.713 88.850 87.423
1.1 84.547 84.289 83.517 82.235
1.2 79.611 79.380 78.690 77.547
1.3 75.137 74.931 74.317 73.300
1.4 71.075 70.892 70.346 §9.444
1.5 67.381 67.218 66.732 65.931
1.6 64.011 63.866 63.435 62.723
1.7 60.931 60.803 60.419 59.785
1.8 58.109 57.995 57.652 57.088
1.9 55.517 55.415 55.109 54.605
2.0 53.130 53.039 52.765 52.314
2.1 50.927 50.845 50.599 50.194
2.2 48.888 48.814 48,594 48.229
2.3 46.997 46.930 46.732 46.103
2.4 45.240 45.180 45.000 44.703
2.5 43.603 43.548 43.386 43.117
2.6 42.075 42.026 41.878 41.634
2.7 40.647 40.601 40.467 40.244
2.8 39.308 39.267 39.144 38.941
2.9 38.051 38.014 37.902 37.716
3.0 36.870 36.836 36.732 36.563
3.1 35.757 35.726 35.632 35.475
3.2 34.708 34.679 34.592 34.449
3.3 33.717 33.690 33.610 33.478
3.4 32.779 32.754 32.680 32.558
3.5 31.891 31.868 31.800 31.686
3.6 31.048 31.027 30.964 30.859
3.7 30.248 30.228 29.170 20,072
3.8 29.487 29.469 29.414 29.824
3.9 28.763 28.746 28.695 . 28.611
4.0 28.072 28.057 28.009 27.930
4.1 27.414 27.399 27.355 27.281
4.2 26.785 26.771 26.730 26.661
4.3 26.184 26,171 26.132 . 26.068
4.4 25.609 25.596 25.560 25.500
4.5 25.058 95.046 25.012 24.955
4.6 24.529 24.519 24.487 24.433
4.7 24.023 24,013 23.983 24,932
4.8 23.537 23.527 23.499 23,451
1.9 23.069 23.060 23.033 22,988
5.0 22.620 22.611 22.586 22.544
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TaBLE 4 (continued).

|
N 0.0 | 01 i 0.2 0.3
5.0 22.620 22.611 22.586 I 22.544
5.1 22.187 22.179 22.155 ! 22.116
5.2 21.771 21.763 21.741 21.703
5.3 21.370 21.363 21.341 21.305
5.4 20.983 20.976 20.956 20.922
5.5 20.610 20.603 20.584 20.552
5.6 20.249 20.243 20.225 20.194
5.7 19.901 19.895 19.878 19.849
5.8 19.565 19.559 19.543 19.515
3.9 19.239 19.234 19.218 19.192
6.0 18.925 18.920 18.905 18.879

The FrESNEL equations in reflection (1, 12—13—16) are all

. 1—(x—i
written in the following manner: o-¢'% = ﬁ :z; (x and
y are positive numbers). v
The reflectivity is
14ax?+y> —2x
R =p%= 5 1,17
S NP (1, 17)
and the phase change ¢ at reflection is determined by
2y
lgd = ——; — 1,18
g P (1, 18)

To calculate (gq, 9o) at normal incidence and (e, 6,); (0,. 9,)
at oblique incidence, mathematical tables of o (1, 17) and d (1, 18)
as a funclion of (x, y) would have been of great value.

(0 <y<20 and 0 <x<2,0).

By calculation of g intervals in a: 0.01 and in y: 0.1 and by
calculation of 4§ intervals in z: 0.1 and in y: 0.01. However,
such mathematical tables are not available.

In this paper only a small table of § as a function of (v, %)
is given (Table 4).

When once r is caleulated, ¢ = & e'f can most easily be
calculated from (1, 4—5—9) by means of 4 Table for Use in the
Addition of Complex Numbers calculated by JorGEN RysNER and
K. STEENBERG SORENSEN [4].
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§ 2. “Fresner’s Factors” for a System of Thin Layers.

We consider a plane infinite incident wave of light; just belore
it reaches System I fig. 2 the s or p component of the electric
vector at the point A we shall denote E, (complex number).

Fig. 2.

A system of thin layers I sandwiched between material 0 and material 1. System I
may consist of one or more thin layers, the thickness of each being less than a
few wavelengths of light.

E: s or p component of the electric vector.

After reflection from System I the component considered has now
at the point 4 the value EYY and after transmission through
System I the value ED at the point B. We now define the FRESNEL
factors (z, ) for the system of thin layers I by the following:

I'gy — and tOl = .
EA —A

Direction of light: 0 — 1 and s and p components still considered
separately (indices not written).

When the direction of the light is the opposite: 1 — 0 the
Fresner factors belonging to I are defined by

ER B
rgp = 2 and iy = -4
B Ep
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Fig. 3.
Another system of thin layers sandwiched between material 1 and material 2.

Next we consider a second system of thin layers II (fig. 3).
The IFresneL factors of this System II are defined in the same
way as for System I by:

E@® ED
Py = oy by = (direction of light: 1 — 2)
E. E,
and
B O
Pey = ——; lg = — (direction of light: 2 — 1)
Ep Ep

Now Systems I and II are combined to form a new system
of thin layers I + IT as shown on fig. 4.

E®
It is now easy to express the FrREsNEL factors rg; = Z4  and
D Eq

D belonging to I 4 II by the FresNEL factors ryy, fo1:

too =

A
ry, tip and ryy, fip; rey, fz;, belonging to Systems I and II,

respectively.

If we consider the oscillations of the plane (infinite) wave
. which takes place in the layer between Systems I and II, we
find by superposition of the wave systems in reflected light at
point A directly from fig. 4 (by considering the plane wave front):
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S
N
<
A
0 \\\ ?
NN
VAVAVAN
= [
/":
7 -~ ~
//I-,é’\ LS
o éosx Lo oin <>
7 j//il\<\: \:::\nf\d
o A e2s
7 =1 > P
~Sof
T
2 0

Fig. 4.
System I (fig. 2) and System II (fig. 3) combined to make a new System I + 1L
Material 1 forms a thin layer with thickness d between 1 and IL

. X .Z
E® — E rgy=E 13+ Ey-tg-e 121,613

E.J ;e ;= _4E
Ey -ty-e "2-rppre "2-rgre '3y e 1201

=
o

x

—iZ —iZ —iZ iZ i —
L E oty € 2 rg @ 2erpr € P2 rqg € 3 rgg€ '3rrgp-e

@O
. —ix e m_—imx
+etc. = E -rgn+ E - lor tipr - € 5 (rig-ryg)™-e "
m=90
tor-tip Tz e i
= E;lro+

1—rproe

ix
From which follows:

. . —ix
T01_112(101"'10_ to1-tie)-e

@1

g —

1%1’12'110'6_

with
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27 ny

x:ngcosx:MM

. 2 2)

(derived direclly from fig. 4).
In transmission we find in the same way by superposition of
all the plane waves oscillating between 1 and II:

A X
—i= . L. N, —imX
toe = fp1- tar € 2 2 (riz-ri0)" € s
m=0

from which follows:
.
1'01't12'6_l§

tog = —— . (2, 3)

. — iz
1—ryp-rigme

The reflectivity of System I + 1I (with direction of the incoming
light 0 — 2) is
Rys = roz-Tos (2, 4)

(Fo2 means the complex conjugate number of ry).
The transmitted energy through I 4 II can be derived from
PoynTiNG's theorem of electrodynamics [1] to be

1, COS 5
ngeos g’

(2, 5)

Too = tog-Loa*

where y, is the angle of refraction in material 2.

To derive ryy and t,, we only have to interchange the indices
0 and 2 in (2, 1) and (2, 3).

The foliowing relation is valid:

Los Loy Ly
2= R 2,6
log tw : t21 ( )

The fundamental formulae (2, 1—3) have been developed by
ABELES [5] in much the same way as hcre by summing an
infinite system of interfering wave systems. Recently, however,
Isuicuro and Karo [6] have developed (2, 1—3) directly from the
boundary conditions of electrodynamics by using a matrix
representation. This rigorously proves that (2, 1—3) are valid
also when material 1 is absorbent, with an index of refraction
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v —ix. In this case we have to put

x = fliz-d(a—vib),
A
where (a, b) are determined by (1, 10—11), and we obtain
. 47d-b dmd-a
e — o 7 el

First we consider a special case of the fundamental equations
(2,1—3), where System I is only a boundary (all layers in

m+1

o

|
|
I

Fig. 5.
The direction of the light is the opposite of that used in fig. 4.

System I have zero thickness) and System II consists of m — 1
thin layers (fig. 5). In this special case we obtain from (1, 6—7)

'm+i,m — " Tm,ym+1 and tm+1,m' tzn,m+1_1'm+1,m'rm,m+1 =1

and when this is introduced into (2, 1) and (2, 3) and when the
notations ryy = ry, o and ty, = ¢, , are used, we get the fol-
lowing fundamental recurrence formulae: (s or p component)

— 1

— ity (2’ 7)

rm+1,m+ I'm,o0°¢€

r =
m+1,0
1 Im4+1,m Tm,0'€
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t —i%
'nl—i-l,m'tm,u'e 2
t +1,0 - i (2) 8)
m-1, 1_|_ . L ltm
Imy1,m Im,0°€
4 mdy - ngccos g (2, 9)
Ly = ) s

A

mtt,m> tm+1,m are determined by (1,2—3) (when n, = n,
Ny = Ny fm.1 = ¢ and g, = y are introduced),
i. e.

n *+COS i 41— I, " COS
(s) _*tm+1 Km+1 m Xm
I'm—)—l, m (9’ 10)
N 41°COS Y 1 T 1y COS oy
A Ny COS ¥ 11— N 4 | * COS Xm @ 11)
[ nm'COSXm,+1+nm-{—l'COSXm
s _ (s
tgn)—I—l, m 1 + rm)-i—1,m (2: 12)
i) — (1 P Mm 1 2,13
m+1,m — ( + rm-'rl,m T, ("" )

m

The reflectivity of the system is determined by:

Riy1,0 = Tmi1,0Tmt1,05 (2, 14)
the cnergy transimitted through the system is:

, - n, €08 %,

T = { -t s (2, 15)
+1,0 m+1,0"tm+1,0 s s
Ny 1°COS Yy

and all other optical properties (such as phase change by
reflection, transmission, etc.) of a system of m thin layers
(absorbent or not) can be calculated when d,, and n,, are known.

From the fundamental formulae (2, 7—15) it is now easy to
show that the following relations are valid:

S = o (s and 0 components) (2, 16 a)
m-+1,0 tf;?o-e_‘"z_

R T b
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P n | —ix
1-l_lm-i—l,()_ 1+rrrz,0 € o nmj—l

) im° . (p components) (2,16 b)
fn1, 0 (P i gy
m,Q =
and
1— J'Srb;)ﬁ—l,o — Iy, - COS erL‘ . (1 —I‘E;),O’ e_'x’") (2 17 a)
1+ 1'§rsl)+1, 0 ImygtCOSyy, gt +1'1(}?, ore m

() . i
1—11111-1—1,0 . Nyt cosxm_(l I'mio"€ m)

- - — 1
1+I‘51{l))-{—1,0 Iy COS Y1y 1+1’£r11320'e m

(2,17 b)

Further, if the upper layer m (with thickness d,,) is transparent
(dielectric layer), we get

(1—r7, -r )
. m+1,0"Tm 1,0
By 17 COS Ymgq- = =

im—l—l,()'tm-i—l,(]

(2,184a)
(1—F1n,0']'m,0)
s COS Yy — =
m,0" tm, 0
(valid both for s and p components).
By means of (2, 14—15) this can be expressed by

l—ﬁm+1,0: 1~'1{Ifl,0’ (2’ 18 b)

Tm +1,0 Tm, 0
i.e. if to a system of thin layers (absorbent or not) is added one

1—R

or more transparent layers, T remains constant, This theorem

has first been proved to be generally valid by F. ApeLis [7].
For only one layer we deduce from (2, 6) and (2, 10—13)

and by induction we gel generally for a system of m —1 layers

[}m *COS ¥y

t (2, 19)

= { .
m, 0 0,m HO'COSXO

Dan. Mat, Fys, Medd. 29, no,13. 2
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The transmission through the system is (2, 15)

1y COS % - 1, COS ¥,

r
:tO,m'l'O,m' R :TO,m (2’20)
Nyt COS Ilg* COS Yo

Tm,O = Z(m,O' m, 0"

i. e. al a system of thin layers the transmission remains the same
if the direction of the light is reversed. (The layers can be absorbent
or not, the material above and below the system of thin layers
must not be absorbent). Other general proofs of this theorem
have been given by Maver [2] and AserLEs [7].

§ 3. Interference Filters with Two Systems of Reflective
Layers I and II. (Spec. two silver layers).

An interference filter can very generally be defined as a thin
dielectric layer enclosed between two Strong reflective systems
of thin layers I and II (fig. 6).

We now make the assumption that the reflectivity and the trans-
mission (and phase change by reflection or transmission) of each

of the systems I and Il considered separately, only show a small

variation with the wavelength [within each spectral region of 10
or expressed more simply: I or II must not be interference fillers

themselves.
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For this simple. type of interference . filters many general
properties can be derived directly from (2, 1-—3).
If in (2, 1—3) the following substitutions are made:

ror = I//R_m' elon ryg = ]/FM, el do ryg = L/El; el%  and
tol _ V T01' eiﬁal th — [//TIO' eiﬂm t12 — I/le. eiﬁlz

(6 is the phase change at reflection and f the phase change at
transmission) and if we further introduce

- eia -1 _ioilﬁ =1 _‘/M .ei(ﬁmﬁ‘ﬂlu*au*am). (3’ 1 a)

TS Ry, - Ry
R = |/Ryy- Ry (3,1b)
and
y= X —— Oy — 012, (3, 1 (:)

we get the following general formulae:

VR_()l(l —oR- e—i(y—a)) eié“‘
(1 QR'e_iy) (31 2)

Toe = V/Roz (l)'eidm(l) =

T )

Loy = [/ Tyu (3)-e!fn® — R

(3, 8)

The intensity of the reflected light Ry, (1) and of the trans-
mitted light I'(1) (in proportion to the intensity of the incident
light I =1 or 1 ;30) = 1; s and p componenls are treated separately)
are from (3, 2—3) and (2, 4—5) determined to be:

Ry (1 —2aR -cos(y—a)+ (oR)?)

Roz (4) = (1—2Rcosy+ R?) (3, 1)

(direction of light: 0 — 2),
and if we define
Ny Cos Ny - COS
T, = M COS ¥ Ty and T, = Rg COS X2 Tys
g COS @ I, cos x
2*
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we get the intensity distribution for the transmitted light

Tl'T2 J
I = T SReosy T R (3, 5a)
or written in a more convenient manner
T, -T 1
I(A) = L =2 —_ 3.5
) (1*13)2( N 4R_.sz£,> (3,5 b)
(1—R)® 2 '

(I (1) will according to (2, 20) be the same if the direction of
the light is reversed).

The wavelengths A, at which I (1) reach a maximum are
delermined by

y = 360°(m —1) m=1,2,3......
and the wavelengths 4, +§ at which 7(2) becomes a minimum by

y = 1802 m—1) m=1,2,3......

The Determination of y () or of i (y).

This determination is important in calculating A, and I (1)
in the neighbourhood of A,.

360 (when y is mea- .
= "9 . _ :
v a2 dmeosy (010 +012) { sured in degrees) } (. 6a)
or '
360 1y 1 (360 — (830 +615)) >
LY e § g 10 T 122 g
360 1 ( dnycosy + 360 J (3,6Db)
dop and J;, are dependent on the wavelength 1.
We now define
360 —8,,(4) —dy9 (l))
= : A
Z(A) ( 360 3,7

By introducing Z (4) and Z,, (corresponding to y = 360-(m — 1))
into (3, 6 b) we get the following fundamental equations:



Nr.13 21

mi, = 2 dn,- cosy + Z (Ay) (3, 8)
and
360+y 1
T z(m- Am + Z () — Z (). 3.9

If T and II (fig. 6) each consist of only one silver layer, Z (1)
will only show a small dependence upon 1 (fig. 8 below). If,
however, 1 and II consist of a combination of one silver layer
and several quarter wavelength layers of dielectrics with low and

high index of refraction or of %-dielectric layers alone, the

dependence of d; -+ d;; upon A in the neighbourhood of 4,
must in each case be calculated by means of (2, 7) and next
y (1) by (3,6 a). (The results of such calculations of y (1) arc
shown in fig. 49 p. 86 and in fig. 51 p. 90).

From (3, 5—9) we are now able to calculate / (1) in detail
However, it will often be sufficient to deseribe I (1) by means
of the following quantities:

. 1. The values of 4, (from (3; 8) or direct from (3, 6 a));
2. The values of

T,(4,) Ty(2
s = 1 (hy) = 220 T2 o),

3, 10
d RO (3. 10)

3. The contrast factor

F =

Imax I (}'m) Tl (;‘m) i T2 (lm) (1 + R (ﬁ.m+})>2
(3, 11 a)

3
Imin I (&nﬁ-é) T, (lm—{—%) -T, (zm+ %)
If R and T with sufficient accuracy are independent of A

within the wavelength region Zm+% < A <2m_§) the contrast

factor is simply expressed by

Iﬁlax 1 R 2 B R |
= (-l—j:—R> ; (R = VRm'Rlz)' (3,11 b)
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4. The half intensity band width W, defined by

R 1
1 <Am:': E) = 5 -1 (Zm)

and the tenth intensity band width Wy, defined by

KWIO . 1
I(lmr 2)“%'1(7"")'

If we introduce y = 360°(m — 1)+ y; (where y, is a small
angle corresponding to the k’th intensity band width W), we find
(from (3, 5 b))

I(z ﬁ) _ L1 1
m 9 - 1—R 2’ A
)

=

and this is by definition equal to

- X _ R 1
= 81N~ (y—k> = k—1 and sinz‘/i\ — (lh)/gll (3, 12 El)
2 2/R

yp = 220 A=) 3,12 b
R= VR ( )

degree.
In the neighbourhood of 4 = 4, we have approximately

}'—;Lu d ;”m
y(A)=360°- m—l—f-f(' i 1)),Wherc f:—(dii)l:-lm%—d,(&ll’)a)
Wi
and as y = 360-(m— 1)+ y, corresponds to A, — i = 5

. Vi f- Wi
e obt — =
we obtain 80

, and from (3,12b) we finally get

m
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b (1—R) e
W,=2. 2. /17F,
, f =n VR /
and in particular we get
—R
W, = Eﬁ—l‘,) (3, 14)
I = VR
and
‘VID = S'Wz. (3, 15)

When I and II (fig. 6) are silver layers we have approximately
y () = 360-(51%}21) according to p.21 and in this case

we simply get
f=m (m=1,2,3...... ).

In case of filters where I and II (fig. 6) consist of several layers
f will be different from an integer.
If the mean rveflectivily R = J/Ryy- Ry, is increased W,

(3, 14) will decrease and F = -™= (3, 11) will increase. However,
min )

because of absorption in I and II (fig. 6) I . (3, 10) will rapidly

decrease. If we assume lhat the absorption in both I and II is

A = (Ayy = Ay), Iy is expressed by:

[ (1—Ry—A) (1—”7R1zfA).
> (1 —]/Rio'Rlz)z

(3, 16)

It is now easy to show that for a definite (constant) value of
R = J/R,;- R, (i. e. for a definite value of the contrast factor)
Ipax will reach its highest value when Ry, = Ry, = (R) (i. e.
when I and IT have the same reflectivity; for a definite (constant)
value of Ry, however, I, will reach its highest value when
Ry = Rpp- (1 — 4)?).

From the above considerations it is obvious that one of the
greatest problems in producing interference filters is that of
finding a material (consisting of one or more thin layers) with
a sufficiently high reflectivity R\throiighout a spectral region of
reasonable length (as great as possible).
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In most applications an interference filter is used at normal
incidence (¢ = 0). A small deviation Ag from parallelism of
the incident light gives rise to a shift, say A4, towards violet
ZA)—Z (A - A}»m)

m

according to (3, 8). If is sufficiently small

we get ‘
5. Adyy = I(A‘p)z (zm—Z_@ﬁ>. (3,17)

2 n? m

However, the dependence of Z upon wavelength often makes
this calculation of A4, more difficult.

At an oblique angle of incidence all the formulae (3, 1—16)
must be wrilten separately for s and p components. (3, 8) espe-
cially will split up into

m- A = 2.dn; cosy + Zy (A (3,18 a)
and
mP = 2 dn, cosy -+ Z, (AP). (3,18 b)

Because of the difference in d; and &, (evident from (1, 12—14))
Zg and Z, will usually be unequal and result in a splitting up
into two transmission peaks at A8 and A%, respectively, the one
polarized perpendicular upon and the other parallel to the plane
of incidence.

At an oblique angle of incidence ¢ a small deviation A¢ in
the angle of incidence will give rise to a shift in wavelength of
AA,, determined by means of the derivate of (3, 8):

z
(l,r (m)) sin2
A = —— T 1 . Ag (3,19)

2 —sinee)
2\ —sin? g

(Z regarded as constant and angle of incidence ¢ in material
with index of refraction n).

It should be noticed that this is a filst order devlatlon in Ag
as opposed: to (8, 17) at ¢ = 0,
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The Properties of the Filter (fig. 6) in Reflection.

If no absorption takes place in I and II we have
I(24) 4+ Ry (A) = 1 (conservation of energy)

(in this special case we have Ry, = Ry, according to (2, 20)).
From (3, 4—5 a) we get

(1—R))(1—Ry,)
1—2Rcosy-+R?

Ry (1-—26R-cos(y—«) +(a R)?)
1—2Rcosy+R*?

1(2) + Roz(2) = +
with R = VRw' Ris.
This will only be equal to 1 if
1 1
« =0 and 0= _— (: ¥) (3, 20) -
R\ Ry
as o-¢'® at the same time must satisfy (3, 1 a).

With a thin metal layer (such as Al or Ag) absorption takes
place in I and then « will no longer be zero, but with layers
which are almost opaque « will only have a small negative value
(less than one degree). In this case we get as a first approximation

1—4

o = — (A absorption in I). (3,21)
Ry

The condition for obtaining Ry () = 0 at a definite wavelength
is (from (3, 4))

1—20cRcos(y—a)+ (cR)? =0
or
_1+(oRy
-~ 26R

cos (y— a)
This quantity is always > 1, i.e. Ryp(A) = 0 only if
and this takes place at

y = a” + 360° (m—1).
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If I is nol absorbent
/IT
oR = — . R .-R,. = l ﬁ;
RIO ]/ 10 12 Rl()

in this case the condition for zero intensity of Ry, (4) is Rys = Ry,
(it is immaterial -whether II is absorbent or not).

If I is absorbent and R;; = Ry, no value of 1 exist at
which Ry (1) = 0; however, it is possible to find a value of Ry,
at which the equation (3, 22) is satisfied (as a first approximation
we get Ry = (1 —A)% Ryy). In this case Ry (d) = 0 s
satisfied at wavelengths determined by y = o + 360:(in —1) in
combination with (3, 9). The wavelength at which the maximum
of transmission occurs is determined by y = 360-(m—1). Hence
it follows that a small difference results between 4,5 in transmis-
sion and Ay, in reflection. The same will be the case if Ry, = Ry,
and I is absorbent.

The FaBry-PEroT Filter MLom M.

The simplest of the types of interference filters treated above
is the Fapry-Peror filter which simply consists of two silver
layers M with a dielectric layer L,,, in between. (Lo, means a

2 m~£ layer). The name of this filter originates from the fact

that the filter is a Fabry-Perot interferometer with a very small
spacing between the reflecting surfaces. The first production and
description of filters of this type are due to GerrcreEN [8].

It is important to note that the filter blank need not be more
accurately polished than an ordinary optical surface as the
different thin layers all follow the irregularities of the blank.
(It is unnecessary to use an interferometer plate as filter blank).

In order to calculate the properties of this filter the first step
is to make numerical calculations of R, 7, 6, 8, ¢, & ..... , ete.,
for silver layers of different thicknesses ¢ and at different wave-
lengths 4.

The reflectivity R_ and the phase change 8, at the boundary
between an opaque silver layer and a dielectric with an index
of refraction n, are determined (at normal incidence) by (1, 17—
18) when we put x—iy = ni¥l§ When n, increases R_
decreases, which means that oilly diglectrics with a low index
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of refraction can be used for interference filters of the type
A . . .

MLy, M. (L means a Z-layer with low index of refraction).

In the numerical calculations (the results of which are given
in Tables 6—13) il is assumed. that n = 1.36. on beth sides of
the silver layer (fig. 7). In practice one side of the silver layer is
bounded by glass (or cement) with n = 1.5; the influence upon
R,y and T will, however, he small as compared with the experi-
mental uncertainty in determining » — i». n, = 1.36 has been
chosen because this corresponds to the index of refraction obtained
by slow evaporation of cryolite. The index of refraction of Mgl
too is only slightly higher than 1.36.

The different values of » — i»x published [2] vary greatly,
depending partly upon the conditions by producing the silver
layers and partly upon the different optical methods by which
vy — i» is measured. The most reliable values of » seem to be
those published by Scuurz [9], which were determined by measu-
rements of &, at the boundary between the air and a nearly
opaque silver layer. Furthermore from accurate measurements
of R and T at nearly opaque silver layers published by Kuu~
[10] » can be calculated from R = R+ T. We get

v

102 4% (1—R_
N 2 (1 + Rw)
when as a f(irst approximation »* = 0.02 is adopted.

The values of » —ix employed in the following numerical
calculations are given in Table 5.

TABLE b.

A v % R
3800 0.20 1.77 0.82
4000 0.18 1.95 0.86
4500 0:14 2.42 0.92.
5000 0.14 2.89 0.94
5500 0.13 3.36 0.95
6000 T 015 3.82 0.96
6560 0.13 427 0.97
7100 0.14 4.68 0.97
7680 0.15 5.11 0.98
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TasLe 6. 1 = 4000 A »—i% = 0.18 —{ 1.95.

t ( T )Z 1+R>2 O{ le] l o
il B T A il \icr 180—4° f g ‘| —«
150 | .1852 | 7179 | .0969 |. 7762 | 2.2 | 75°13 | 7°38 | 4.8495 | 11°92
2001 .2881 .5956 1163 | . .6999 3.27 73.44 8.79 | 3.0427 10.48
250 ) .3889 | .4809 | .1302 | .6194' | 5.17 | 7216 | 9.72 |2.2145 | 8.98
300 .4802 .3801 .1397 5347 8.11 71.23 | 10.24 {1.7719 7.53
350 | .5585 | .2054 | L1461 | .4477 | 125 | 70.56 | 10.43 [1.5118 | 6.21
400 .6231 | .2266 | .1503 | .3615 | 18.6 | 70.11 | 10.36 |1.3489 | 5.05
500 .7155 .1297 .1548 .2080 36.4 69.61 9.66 | 1.1706 3.25
550 | 7469 | L0072 | 1559 | 1475 | 47.6 | 69.49 | 0.13 [1.1211 | 2.57
600 .7709 0725 L1566 .1001 59.8 69.42 8.52 [1.0865 2.03
oo | .8414 | .00 1586 | .00 69.48

TABLE 7. A = 45004 »—ix = 0.14—{ 2.42.

! T )2' 1+R\2
wal R T A (14? 1__R) 180—5| B 6 | —a
150 ] .2560 6662 0778 8017 2.85 70.29 14.39 \3.5903 7.69
200| .3838 | .5266 | .0896 | .7304 | 5.04 | 67.08 | 17.40 {2.3613 | 4.66
2501 4997 | 4042 | 0961 | .8527 | 9.00 | 64.64 | 19.57 |1.7997 | 5.18
300 .5970 | .3038 | .0092 | .5683 | 15.7 | 62.84 | 21.06 |1.5012 | 4.11
3501.-.6748 7.2_250 1002 | 4785 2_6.5 61.54 } 2200 1.3271 3.22
400 .7351 .1649 1000 .3876 42.9 60.62 22.53 1.2191 2.50
5001 .8150 | .0869 | .0081 | 2204 | 96.2 | 59.57 | 22.74 |1.1031 , 1.47
o | .9060 | .00 0940 | .00 58.55

TaBLE 8. 1 = 50004 »—ix = 0.14—1{ 2.89.

t T )2_ 1+R>2] s
wal B T A (1_H (1-3 l18 — 8 o —a
150 | .3200 | .5955 | .0755 | .7878 | 3.92 | 64.56 | 20.62 | 2.8009 | 6.21
200 | .4717 | .4456 | .0827 | 7114 | 7.76 | 60.35 | 24.63 |1.9374 | 4.88
250 | .5902 | .3247 | .0851 | .6279 | 15.1 | 57.29 | 27.34 |1.5439 | 3.81
300| .6825 | .2328 | .0847 | 5375 | 28.1 | 55.12 | 29.12 |1.3363 | 2.825
350 .7516 | .1652 | .0832 | .4422 | 49.7 | 53.61 | .30.49 [1.2160 | 2.119
400] .8022 | 1165 | .0813 | .3470 | 83.0 | 52.56 | 31.17 [1.1422 | 1.582
5001 .8649 | .0573 | 0778 | .1799 |190.6 | 51.35 | 31.57 [1.0644 | 0.873
=] .9282 .00 0718 .00 50.32 ’
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TABLE 9. 1 = 5500A v—ix = 0.15—1{ 3.36.
t T \3/1+R\®
in A R T A (CE (m) 180—4§ [)’ a —
150 ] .4009 5234 0757 7633 5.44 59.11 26.22 | 2,2978 5.201
200 | .5495 .3713 0792 6792 11.8 54.29 30.83 | 1.6697 3.932
250 .6634 2582 0784 5884 24.4 50.95 33.92 | 1.3847 2.872
300 .7462 1779 0759 .4913 47.3 48.67 35.89 |1.2349 2.087
350 ] .8051 .1220 0729 .3914 85.8 47.13 37.09 | 1.1488 1.513
400 | .8463 0834 .0703 2076 | 144.3 46.10 37.76 | 1.0965 1.097
500 | .8951 .0389 0660 1377 | 326.4 44,94 38.10 | 1.0422 0.575
fes) 9399 .00 0601 ,OO 44.00 |
TaBLE 10. 2 = 60004 »—ix = 0.15—1{ 3.82.
4 T )2 1+ R\?
in A R T A iR iR 180—0 ﬁ ] —
J \
150] .4690 4609 .0701 .7535 7.65 54.47 1 81.27 [1.9771 | 4.222
200)] .6179 L3119 0702 6661 17.93 49.28 36.27 | 1.5007 2,986
2501 .7239 L2087 0674 5712 38.98 45,82 39.48 11.2853 2.100
3001 .7965 .1392 .0643 L4681 77.93 43.54 41.48 | 1.1726 1.479
3501 .8466 .0930 .0604 3676 :144.9 42,03 42,66 | 1.1082 1.045
400 ] .8803 0622 L0575 .2698 | 246.7 41.04 43.31 | 1.0693 0.741
5007 .9188 .0278 .0534 1175 | 558.4 39.96 43.63 |1.0296 0.374
co L9516 .00 .0484 .00 39.12
Tasre 11. 1 = 6560 A y—ix = 0.13 —1 4.27.
¢ T \® (1+R‘ 2 ‘
mal E T A (1*1{) 17R) 180—68| B o —u
1501 .5291 4149 L0560 7764 | 10.5 50.86 35.76 | 1.7811 | " 2.971
200] .6748 L2709 .0543 .6937 26.5 45.40 40.96 | 1.3991 2.084
2501 .7728 1763 .0509 L6022 60.9 41.87 44,39 |1.2265 1.386
300 .8375 1152 .0473 5023 | 127.9 390.59 46.45 |1.1364 0.956
3501 .8802 .0756 .0442 3975 |246.3 38.10 47.66 [ 1.0850 0.668
4001 .9084 L0498 L0418 2956 | 434.1 37.14 48.36 |1.0542 0.466
500 .9398 L0218 .0384 .1305 | 1038.3 36.09 48,80 |1.0228 0.230
oo L9654 .00 (0346 .00 35.31
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TaBLe 12. 1 = 71008 »—ix = 0.14 —{ 4.68.
f
t i ( 7 >2 (1 +R)2
mal R 1 4 N\i—g)\izg)|180—8 8 a —u
150 ] .5711 .3739 0550 7600 13.4 47.63 39.00 | 1.6518 2.669
200 .7104 2375 0521 6726 34.9 42,13 44.34 |1.3324 1.770
250 .8004 1517 0479 5776 81.4 38.65 47.62 11,1881 1.187
300 | .8582 0977 0441 4747 171.7 36.43 49.60 11.1128 .808
3501 .8957 .0634 0409 3695 330.3 35.00 50.77 |1.0701 .5b8
400 | .9202 0414 0384 2691 579.0 34.09 51.41 | 1.0445 .386
450 .9363 0271 0366 1810 924.0 33.50 ¢ 51.70 |1.0286 269
500] .9470 L0173 .0357 .1066 ;1349.5 33.11 51.78 |1.0180 .182
fo's) L9685 .00 } L0315 00 j 32.38
TasLe 13. 1 = 7680A »v—ix = 0.15—1 5.11.
t . jr )2(1+R 7
in A R 7 A i(l—'R \1?}-} 180—¢ It o —
150} .6100 .3363 0537 7436 17.0 44.63 42.01 [1.5489 2.384
2001 .7419 L2085 0496 L6527 45.5 39.14 47.34 11.2794 1.543
250 .8241 .1310 .0449 5544 107.5 35.75 50.54 | 1.1578 1.017
3001 .8756 0834 0410 4498 227.3 33.62 52.44 |1.0944 .684
350 | .9086 .0537 0377 3447 436.1 32.26 53.54 ;1.0585 468
400] .9299 .0348 .0353 2464 757.9 31.39 54.14 |1.0370 .321
450 .9438 0227 .0335 1632 11196.3 30.82 54.40 |1.0237 .223
5001 .9530 0148 L0322 0997 11726.7 30.46 54.45 {1.0153 | .155
<] L9713 .00 0.287 .00 29.78 | ' y
0 n=1,36

N NNNNNANNNNWN
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Tables 6—13 are calculated by means of (2, 7—9) and (1, 16—

18), which in the special case indicated in fig. 7 become:
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Vﬁ. LU Tot ) —?31 S (3, 23)
— 1—rf '3
]/T‘ elﬁ (1 ';]1) ewm" (3, 24)
—Tlove
1 ——(—y — l'i)
) n n
= (3.25)
R
and
. 47t 4wt
e = e T2 e . (3, 26)

To calculate R (1) of a Fasry-Prror filter we must further cal-
culate oe'® = 1 —%ei(zﬁ_g‘s) from the calculated values of (R, §)
and (T, f).

Al these calculations have been carried out directly from
(3, 23—26) by means of RYBNER’s tables [4].

In the calculations it is assumed that » — ix at a definite
wavelength 4 is independent of the thickness ¢ of the silver layer.

The formulae (3, 23—26) depend only upon the variable
() —ix () and v(l)——i%(l)t.

n, A

If the index of refraction n, is changed to n’ the tables can
still be used if the 1 scale is changed to 4’ and the ¢ scale to t;
the transformation is determined by

quantities in the combinations

y(AY—1ix(2") _v ) ~/ix Q) and v(i’)—li%(l') v y(A)—ix (1) "
n n A A
e /=1 T {, and if approximately » (1) —ix (1) = (Jy—1iky)- 4,
Iy

then 4" = Iﬁ,) - and ¢" = ¢. (This will be a good approximation
n EY

for & because it only slightly depends upon »).

180 — 6, (4, ¢
From Tables 6—13 graphs of Z (A, f) = (TOO(“> jl

can be made for different thicknesses ¢ of the silver layers (fig. 8).
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If the filter consists of two silver layers of dillerent thicknesses
¢ and t”’
360 — 9, ()=, (") 1

Zires 360 - ;(Z(j'l’ t’)+Z(j'1’ t”))'

These graphs (fig. 8) are important because it is possible
when Z (1) is known to determine the optical thickness nd which

t=A
C 150 . e e .
Za) ] : 1430
y ]
1800 —— | PMOM
,700, 2004 _7700
[ 200—
SN R s R S R Y
’- 2504 —— | 1500
1600
/\
/ s M/?
r 25()‘_“;“__,_’4/l /‘/jso / j
1500, / v 1500
L / 504
[ 300— / ]
1400 7400
50— - ]
o ——“L—"//
1300+ 500 ] 1300
) I
e —]
1200 ey - NN 12004

TR0 000 6500 6000 5500 5000 4500 3 20604

Fig. 8.

corresponds to a definite 4,,. (From (3, 8)). Inversely, if 1,, are
measured spectroscopically and d is measured for one definite
wavelength, Z (4) can be determined directly by experiment.
(This has been done by Scuurz [9]; with n = 1 this gives a
determination of x (4)).

The half intensity band width W, has not been calculated
in the tables for each i, 4 value. For this reason a table of

(1—R) 5500

W= R

is added (Table 14) corresponding fo a filter with 4, = 5500 A
and m = 2. From this table W, corresponding to another A,
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can easily be calculated by means of

! 2
Wa(R) = Wy (R): S
2750
TaBLE 14.
R W,in A R W,in A R W, in A
0.75 252.7 0.84 152.8 0.93 63.5
.76 241.0 .85 142.4 .94 54.2
77 229.4 .86 132.2 .95 44.9
.78 218.0 .87 122.0 .96 35.7
.79 206.8 .88 112.0 .97 26.7
.80 195.7 .89 1021 .98 17.7
.81 184.8 .90 92.3 .99 8.8
.82 174.0 .91 82.6
.83 163.3 .92 \ 73.0

When R, T, y (4) are calculated it is possible to calculate
line shapes at different wavelengths and thicknesses of the silver
layers. In all the following graphs it has simply been chosen to
calculate the wavelength scale by means of (3, 9) with the approx.
Z(A) =Z(Ay). If y=2360-(m—1)+9y (y a small angle),
we get:

. 360m -4,

—— m 3, 27
360m+y ( W
and this combined with (3, 5 b)
T? 1
I(l)z(l—R)z ]+ iR 2)}) (3,27Db)
_ R)zsm

determines the intensity distribution in the neighbourhood of a
peak.

Furthermore R and T of the silver layers are regarded as
constant in all the following graphs throughout the spectral region
considered in the graphs. If the variation of R, T, etc., upon
wavelength within the line were taken into account, the calcula-

tions would be rather tedious and only result in deviations in
Dan. Mat, Fys. Medd. 29, no.13. 3



34 Nr. 13

040t
FJA)
oJor W= 1804
B W,=5404
020+
010 -
I W,
) L L 1 | ! { 1 I 1 1
0'05000 5500 50004
Fig. 9.

2nd order filter. W, calculated from (3,14) is 181 A and W, = 3- W, = 543 A
p — ix = 0.15 — { 3.36.

MLM
4 Ag
4=037
315§ A = 55004
360 360
n=136

Fig.10.
(All measures in A).
Farrvy-PERor filter 2nd order. The peak of the 1st order is at about 10800 A and
the peak of the 3rd order at about 3750 A. The line shape (2nd order) is shown
in fig. 9.



Nr.13

T T T
Ja)
MLM
osol - A R
g A 3004 ]
B: 3504
C: 4004
0.40F D: 5004 8 i
0.30F C ]
0,20 i
0
010 L ]
00 : ] —
7500 7000 6500 60004
Fig. 11.
MLM
AF Ag
J.= 050

18501 ) = 65604

300 300

n=136
Fig. 12.
1st order filter (m = 1) (the peak of the 2nd order is at 3400 A).
(Curve A in fig. 11).
3*



36 Nr.13

the ““wings” of the line and even here the effect is small as com-
pared with the experimental uncertainty in » — i%. The devia-
tions will be the greatest for a filter of the first order.

In fig. 9 is shown the line shape of a Fasry-PEROT filter of the
2nd order, and fig. 10 shows the relative thicknesses of the thin
layers. In fig. 11 line shapes have been calculated with different
thicknesses t of the silver layers and with peak transmission at
6560 A. The rapid dccrease in I, with increasing ¢ is apparent.

Furthermore is it possible to calculate R (4) for a filter of the
type MLy, M by means of (3, 2) or (3, 4). (3,2) becomes

R-|1—oR-¢~ 10—
[1—R-o O] ; (R=R). (3, 28)

R(A) =

The wavelength scale is calculated by means of (3, 27 a). Fig.
13 and in fig. 14 show the results of such calculations of the
intensity distribution R (A1) in reflected light (at normal incidence).

In fig. 13 the same filter is considered as in fig. 11 Curve C
in transmission. (Each silver layer has a thickness of 400 &;

7'00_\](;‘) ______ MLZM fé400/4 . -

0.80

0.60

040

0.20

‘‘‘‘‘‘‘

i I 1 " n 1 . L L
7500 7000 6500 60004

Fig. 13.
R (1) and I (1) for a Fasny-PERoT filler with the silver layers of equal thickness
(= 400 A&).

0.00
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N p | T=2684
: F=4004
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060

040

0.20

000

Fig. 14.
R (A) and I (1) for a Fasry-Prror filter. The silver layers are of unequal thickness
" = 400 A and ¢ = 288 A) ¢ is determined in such a way that ¢R = 1;

(R = VR R

R = 0.908). The small negative value of « = — 0°.466 (Table 11)
gives rise to an asymmetric line shape of R (1). Furthermore
it should be noted that the minimum value of R (1) turns out
to be as high as 0.20 and the minimuwn is found at a wave-
length a little higher than the wavelength at which I (A1) has a
maximum in transmission.

In fig. 14 a filter M'L. M’ is considered with the two silver
layers of unequal thickness. t’/ = 400 A and # = 288 A is
determined in such a way (from Table 11) that ¢R = 1;
of the filter), R(1) = 0 at y = « = — 1°.060 (see page 25).
This calculation shows that it is possible to extinguish a spectral
line by means of a reflection interference filter. I ., = 0.34
(Inax = 0.45 of a filter with the two silver layers of equal thickness
and with a reflectivity equal to the mean reflectivity of the filter
in fig. 14. R = J/R-R" = 0.86).

Reflection interference filters with an opaque metal layer at
the bottom (e. g. aluminium) have first been treated in theory
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Fig. 15.
A TFaBrRY-PEROT interference filter used as phase plate. Unbroken lines: A. The
filter is on one side bounded by air. B. To the filter is added a thin dielectric
layer in such a way that the phase difference at the peak is — 180°, Broken line:
I(A) for the filter (the same as the filter in fig. 10).
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and practice by HaprLey and Denxison [11]. These reflection
filters have the great advantage of also bheing applicable to the
infrared and ultraviolet spectral region, but have the disadvantage
that rather broad spectral regions are reflected.

By means of (3, 2—3) and RyB~ER’s tables [4] it is furthermore
easy to calculate the phase change at reflection and transmission,
as a function of the wavelength, in the neighbourhood of a peak.
As the phase change at transmission by interference filters is of
special interest in the phase contrast microscope as shown by
Locguin [12], a calculation has been made in the case of the
filter in fig. 10. The resulis are given in fig. 15. In the case of
A the phase difference between P, (light passing through the
phase plate) and P; (light passing outside the phase plate) is
(from (3, 3))

360 360

£ = [t =" nd e )+ @i v @y @29)

t is the thickness of the silver layers and & (1) is determined
from g- e — 1 _R-¢%. — The phase changes al transmission
through the silver layers are determined from Table 9. The
approximations fy = f, = f and g = f,— k-2 have been
made. If, as in the case of B (fig. 15), a thin dielectric layer (with
index of refraction n and thickness d;) is added to the phase

plate, the phase difference _3;(/310 -(n—1)-d; has to be added

to £ (A) in (3, 29). In fig. 15 curve B, d; is determined in such a
way that the phase difference is — 180° at 4, = 5500 A. The
graphs correspond very closely to those previously published by
Durour [13]. By the use of a combination of the type B (fig. 15)
it is possible to change from a negative to a positive contrast
of the image by a variation of wavelength.

Calculation of I(4), and I1(2), at an Oblique Angle of Incidence.

~ When the angle of incidence ¢ is increased from ¢ = 0, a
shift of 1, towards violet, and a splitting up in two components
A and AL result. The first problem now is to calculate S Ae)

when A%, n (1) and v (A) —i» (1) are known. The calculation



