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Introduction .

This paper describes the theory of interference filters of various
types (especially interference filters with three and four silve r

layers, § 4 and § 5) .

It will be shown how all the optical properties (such a s
reflectivity, transmission, phase changes at reflection, transmis-
sion, etc.) of an interference filter can be exactly calculated whe n
the indices of refraction v---ix, n and the thicknesses t, d of th e
different thin layers are known as a function of the wavelength A
(v	 ix is the index of refraction and t the thickness of a metal
layer). Furthermore relations are deduced between the optical
constants of the reflective layers which give optimum conditions
for the different types of filters .

In a following paper, it will be discussed how it is possibl e
to measure the thicknesses of the dielectric layers on the filte r

base itself with an accuracy of about 20 Å and how such a filte r

can be made by means of the high-vacuum evaporation proces s
for a filter area of 22 X 22 cm .

1 . FRESNEL ' S Equations .

Reflection of light from and transmission through a boundar y
(fig . 1) between two materials 0 and 1 with. indices of refraction
no and nl are determined by FRESNEL's equations derived fro m
the MAXWELL equations of electrodynamics [1] & [2] .

The following notations will be used :
cp angle of incidence, angle of refraction, and n index of

refraction. s used as index means the component of the electric
vector perpendicular to the plane of incidence and p used a s
index the component parallel to the plane of incidence .

1*
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x is determined by SNELL ' S law :

n o - sin (p = n 1 sin x .

	

(1, 1 )

If (Es , E p ) are the components of the electric vector of th e

incident plane light wave, the components of the electric vecto r

q) : Angle of incidence .
x: Angle of refraction .
E : s or p component of electric vector of incident light wave .

of the reflected light wave (ESR°, E
(pR)

) and of the transmitted wav e
(EST , E,T)) are determined by

ET) = ES ;
I =	s

	

no cos gl -n ( cosx
n o cos q +n l cos x

E~R~ = E

	

- n1 cos 9) - no cos x
1>

	

f' •r ' r"

	

R i cos 9) + na cos x

E(sT) = Es . i s ; is = 1 + Ps .

EuT)
= EpE . tP ; t~ _ (1. + r ) ) • n- .

nl

The direction of the light is 0 - 1 .
If the direction of the light is the opposite 1 . -+ 0, no must be

interchanged with n 1 and cp with x .

( 1 2 )

( 1 , 4)
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The following relations are satisfied :

roi =

t oi - do - roi'rxo = 1

(valid either for the s or the p component) .
At a normal angle of incidence (cp = = 0) only one com-

ponent of the electric vector is present, and the FRESNEL equation s
in this special case are the following :

=
no - nl

,(1, 8)

to l =

no -~-n t

; (1, 9)

Direction of the light : 0 ->- 1 .
(The reason why rs = - r7 when q' = 0 is that Es =

for the incident wave by definition [1]) .
All these equations are also valid when the material 1 i s

absorbent (especially a metal) . In this case the index of refractio n
n l is represented by a complex number , n l - v - i x and x
is a complex angle determined by (1, 1) .

In accordance with [3] we define a - ib = ni cos z ; from
(1, 1) we get a - ib = y/(v-ix) 2 -nosin 2 q) = ij/g+i• 2 v

(with g = x 2 +no sin 2 g)-v 2 ), and from this equation we then
obtain

and

b =

l
(g+ I/g s + (2 vx) 2), (1, 10)

By introducing n l cosz = a - ib into (1, 2) and (1, 3) th e
FRESNEL equations can be written as follows :

1 - 1

I'

	

(a -ib)
t8`,

	

no cos 92

s = Cs'~ =

	

1

	

- -
1 { -

	

- (a- ib )
n 0 CoS (p

(1, 12 )
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TABLE 1 . Angle of incidence 92 = 45° .

a

	

b

0 .1 0 .2 x

	

v I

	

0 .0 0.1 0 . 2

0 .08174 0 .16402 1 .0 1 .2247 1 .2234 1 .219 4

.09048 18114 1 .5 1 .6583 1 .6578 1 .6561

.09429 .18865 2 .0 2 .1213 2 .1211 2 .120 3

.09623 .19249 2 .5 2 .5981 2 .5979 2 .5975

.09734 .19468 3 .0 3 .0822 3 .0821 3 .081 9

.09803 .19605 3 .5 3 .5707 3 .5707 3 .570 5

.09847 .19695 4 .0 4,0620 4,0620 4,061 9

.09879 .19759 4 .5 4,5552 4,5552 4,555 1

.09902 .19803 5 .0 5 .0498 5 .0497 5 .049 7

.09918 .19837 5 .5 5 .5453 5 .5453 5 .545 3

.09931 .19863 6 .0 6.0415 6.0415 6 .041 5

h

0 .1 0.2 v 0 . 0I 0 .1 0 . 2

0 .10893 0 .21819 1 .0 0.8165 0 .8165 0 .816 6
.10690 .21378 1 .5 1 .3568 1 .3570 1 .357 8

.10476 .20945 2 .0 1 .8856 1 .8858 1 .886 3

.10335 .20668 2 .5 2.4056 2 .4057 2 .406 1

.10245 .20490 3 .0 2.9200 2 .9201 2 .920 3

.10185 .20372 3 .5 3.4307 3 .4307 3 .430 9

.10146

	

.20291 4 .0 3 .9389 3 .9390 3 .93d 1
.10117 .20232 4 .5 4 .4455 4 .4455 4 .145 6

.10096 .20191 5 .0 4 .9507 4 .9508 4 .950 8

.10080 .20159 5 .5 5 .4551 5 .4551 5 .455 1

.10068 .20134 6 .0 5 .9588 5 .9588 5 .9588

1 . 0

1 . 5
2 . 0

2 . 5

3 . 0

3 . 5

4 . 0
4 . 5

5 . 0

5 . 5

6 . 0

1 . 0

1 . 5
2 . 0

2 . 5
3 . 0

3 . 5

4 . 0
4 . 5

5 . 0
5 . 5

6 .0

cos lp

	

\
(1_(cih---

	

)iå

	

no

	

lr7, _ e i,• e P =
(i + "s

1,
2 l•b . (1, 14)

If the light wave with the angle of incidence q) coming fro m

air (no = 1) is first to pass under the angle of refraction y through

with

(c ih )
n o

c ih

	

(2b 2- (x 2 - v 2)

	

/2 a2 -~ xz
a 2 b2

	

~' ai

	

a
2+

b 2

(1, 13)
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TABLE 2 . Angle of incidence

	

60° .

a

	

b

ti~ v 0 .1 0 .2 x

	

v I 0 .0 0 .1 0 . 2

1 .0 0 .07569 0 .15192 1 .0 1 .3229 1 .3213 1 .3165

1 .5 .08664 .17349 1 .5 1 .7321 1 .7313 1 .7292

2 .0 .09178 .18365 2 .0 2 .1794 2 .1791 2 .1780

2 .5 .09450 .18904 2 .5 2 .6458 2 .6456 2 .644 9

3 .0 .09608 .19218 3 .0 3 .1225 3 .1224 3 .122 0

3 .5 .09708 .19416 3 .5 3 .6056

	

3 .6055 3 .605 2

4 .0 .09774 .19548 4.0 4 .0927

	

4 .0926 4 .092 5

4 .5 .09820 .19640 4 .5~ 4 .5826

	

4 .5825 4 .582 4

5 .0 .09853 .19707 5 .0 5 .0744

	

5 .0744 5 .074 3

5 .5 .09878 .19756 5 .5 5 .5678

	

5 .5678 5 .567 7

6 .0 .09898 .19795 6 .0 6 .0622

	

6 .0622 6 .062 1

c h

\ 0 .1 0 .2 0 .0

	

0 .1

	

0 . 2

1 .0 0 .10809 0 .21680 1 .0 0 .7559 0 .7555 0 .754 2

1 .5 .10826 .21658 1 .5 1 .2990 1 .2992 1 .299 8

2 .0 .10625 .21249 2 .0 1 .8352 1 .8355 1 .836 1

2 .5 .10461 .20920 2 .5 2 .3623 2 .3624 2 .362 8

3 .0 .10346 .20692 3.0 2 .8823 2 .8823 2 .8827

3 .5 .10268 .20534 3.5 3 .3975 3 .3976 3 .397 8

4 .0 .10211 .20422 4 .0 3 .9094 3 .9095 3 .909 6

4 .5 .10170 .20341 4 .5 4 .4189 4 .4190 4 .419 1

5 .0 .10141 .20280 5 .0 4 .9266 4.9267 4 .926 8

5 .5 .10117 .20235 5 .5 5 .4331 5.4331 5 .4332

6 .0 .10099 .20199 6 .0 5 .9385 5 .9385 5 .9385

a dielectric layer with the index of refraction n (before reaching

the boundary) (a, b) and (c, h) will be unchanged as g is un-

changed. (no- sing) = n . sin v) and in (1, 12) and (1, 13) we

have only to change no to n and cos to cos ip .

In Tables 1-3 (a, b) and (c, h) are given as functions of

(v, %) with angles of incidence cp = 45°, 60°, and 75 0 , respectively,

and with no = 1,0 (only to be used for silver) . From these tables

it is apparent that for v < 0 .2 it will be sufficient in most case s

to use the approximation :
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TABLE 3. Angle of incidence = 75° .

n

	

b

x\~ (

	

0 .1 0 .2 0 .0 0 .1 0 . 2

1 .0 0 .07202 0 .14457 1 .0 1 .3903 1 .3886 1 .383 4

1 .5 .08412 .16846 1 .5 1 .7841 1 .7833 1 .780 8

2 .0 .09006 .18023 2 .0 2 .2210 2 .2206 2 .219 3

2 .5 .09329 .18663 2 .5 2 .6801 2 .6798 2 .6791 .

3 .0 .09519 .19041 3 .0 3 .1 .517 3 .1515 3 .151 0

3 .5 .09640 .19282 3 .5 3 .6308 3 .6307 3 .630 4

4 .0 .09721 .19442 4 .0 4 .1150 4 .1149 4 .114 7

4 .5 .09777 .19555 4 .5 4 .6025 4 .6024 4 .602 3

5 .0 .09819 .19637 5 .0 5 .0924 5 .0923 5 .092 3

5 .5 .09849 .19699 5 .5 5 .5842 5 .5842 5 .5841

6 .0 .09873 .19746 6 .0 6 .0773 6 .0772 6 .077 2

e h

0 .1 0 .2 0 .0 0 .1 0. 2

1 .0 10677 .21428 1 .0 0 .7193 0 .7185 0 .7163

1 .5 .10874 .21758 1 .5 1 .2611 1 .2612 1 .261 6

2 .0 .10708 .21415 2 .0 1 .8010 1 .8011 1 .801 7

2 .5 .10538 .21076 2 .5 2 .3320 2 .3321 2.332 6

3 .0 .10413 .20823 3 .0 2 .8556 2 .8557 2 .8560

3 .5 .10321 .20641 3 .5 3 .3739 3 .3739 3 .3742

4 .0 .10256 .20512 4 .0 3 .8882 3 .8883 3 .8885

4 .5 .10208 .20416 4 .5 4.3998 4.3998 4 .400 0

5 .0 .10171 .20344 5 .0 4 .9092 4 .9092 4 .9093

5 .5 .10144 .20288 5 .5 5 .4171 5 .4171 5 .4172

6 .0 .10122 .20244 6 .0 5 .9237 5 .9238 5 .9238

b = Vy . a _ vx 1i = x_

Vg

	

Vg
and c = r2 -e

~
a

g (1, 15)

(g = x 2 + Rp 5111 2 (p) .

In the case of normal incidence (99 = 0) we obtai n

°o' e iso = (1, 16)roi

	

v

	

x
-i-

	

(

no

	

no

}
1 + `n o -i nol
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TABLE 4 . 180-åo (in degrees

v 0 .0

	

0 .1

	

0 .2

	

0 . 3

1 .0 90.000 89 .713 88 .850 87 .42 3

1 .1 84.547 84 .289 83 .517 82 .23 5

1 .2 79.611 79 .380 78 .690 77 .54 7

1 .3 75.137 74 .931 74 .317 73 .30 0

1 .4 71 .075 70 .892 70 .346 69 .444

1 .5 67 .381 67 .218 66 .732 65 .93 1

1 .6 64 .011 63 .866 63 .435 62 .72 3

1 .7 60 .931 60 .803 60 .419 59 .78 5

1 .8 58 .109 57 .995 57 .652 57 .08 8

1 .9 55 .517 55 .415 55 .109 54 .60 5

2 .0 53 .130 53 .039 52 .765 52 .31 4

2 .1 50 .927 50 .845 50 .599 50 .19 4

2 .2 48 .888 48 .814 48 .594 48 .22 9

2 .3 46 .997 46 .930 46 .732 46 .40 3

2 .4 45 .240 45 .180 45 .000 44 .70 3

2 .5 43 .603 43 .548 43 .386 43 .11 7

2 .6 42 .075 42 .026 41 .878 41 .63 4

2 .7 40 .647 40 .601 40 .467 40 .24 4

2 .8 39 .308 39 .267 39 .144 38 .94 1

2 .9 38 .051 38 .014 37 .902 37 .71 6

3 .0 36 .870 36 .836 36 .732 36 .56 3

3 .1 35 .757 35 .726 35 .632 35 .47 5

3 .2 34 .708 34 .679 34 .592 34 .44 9

3 .3 33 .717 33 .690 33 .610 33 .47 8

3 .4 32 .779 32 .754 32 .680 32 .55 8

3 .5 31 .891 31 .868 31 .800 31 .68 6

3 .6 31 .048 31 .027 30 .964 30 .85 9

3 .7 30 .248 30 .228 29 .170 29 .07 2

3 .8 29 .487 29 .469 29 .414 29 .32 4

3 .9 28 .763 28 .746 28 .695 . 28 .61 1

4 .0 28 .072 28 .057 28 .009 27 .93 0

4 .1 27 .414 27 .399 27 .355 27 .28 1

4 .2 26 .785 26 .771 26 .730 26 .66 1

4 .3 26 .184 26 .171 26 .132 26 .06 8

4 .4 25 .609 25 .596 25 .560 25 .500

4 .5 25 .058 25 .046 25 .012 24 .95 5

4 .6 24 .529 24 .519 24 .487 24 .43 3

4 .7 24 .023 24.013 23 .983 24 .93 2

4 .8 23 .537 23 .527 23.499 23 .45 1

4 .9 23 .069 23 .060 23 .033 22 .98 8

5 .0 22 .620 22 .611 22 .586 22 .544



10 Nr . 1 3

TABLE 4 (continued) .

x

	

v 0 .0 0 .1

	

0 .2

	

0 . 3

5 .0 22 .620 22 .611 22.586

	

22 .544
5 .1 22 .187 22.179 22.155

	

22 .11 6
5 .2 21 .771 21 .763 21 .741 21 .703
5 .3 21 .370 21 .363 21 .341 21 .305
5 .4 20 .983 20.976 20 .956 20 .92 2

5 .5 20 .610 20 .603 20 .584 20 .55 2
5 .6 20.249 20 .243 20 .225 20 .194

5 .7 19 .901 19 .895 19 .878 19 .84 9
5 .8 19 .565 19 .559 19 .543 19 .51 5
5 .9 19 .239 19 .234 19 .218 19 .19 2
6 .0 18 .925 18 .920 18 .905 18 .879

The FRESNEL equations in reflection (1, 12-13-16) are al l

written in the following manner :

	

e t b

	

1 -(x -ig)
=	 (x and

y are positive numbers) .
1 -F (x- ix)

The reflectivity i s

R
_

-

2 _ 1-F- x 2 -- g 2 -2 x
P

	

1+ x 2 -}- g2 -}- 2 x

and the phase change å at reflection is determined b y

Igo

	

x2+2
g2-1

	

(1 , 18 )

To calculate (0o, ô 0 ) at normal incidence and (y ., b s) ; (e,) , bt , )

at oblique incidence, mathematical tables of e (1, 17) and b (1, 18 )
as a function of (x, y) would have been of great value .

(0<y<20 and 0 < x < 2,0) .

By calculation of e intervals in x : 0 .01 and in y : 0 .1 and by
calculation of b intervals in x : 0.1 and in y : 0.01 . However ,
such mathematical tables are not available .

In this paper only a small table of b as a function of (v, x )
is given (Table 4) .

When once r is calculated, t = eiß can most easily be
calculated from (1, 4-5-9) by means of A Table for Use in the
Addition of Complex Numbers calculated by JØRGEN RYBNER and
K. STEENBERG SØRENSEN [4] .

(1, 17)



§ 2 . "FRESNEL 'S Factors" for a System of Thin Layers .

We consider a plane infinite incident wave of light ; just before
it reaches System I fig . 2 the s or p component of the electric

vector at the point A we shall denote EA (complex number) .

Fig . 2 .
A system of thin layers I sandwiched between material 0 and material I . System I
may consist of one or more thin layers, the thickness of each being less than a

few wavelengths of light .
E : s or p component of the electric vector .

After reflection from System I the component considered has no w

at the point A the value ET ) and after transmission through

System I the value EB) at the point B. We now define the FRESNE L

factors (r, t) for the system of thin layers I by the following :

E(BT )
and

	

to l =
EA

	

EAroi =
ET)

Direction of light : 0 -* 1 and s and p components still considere d

separately (indices not written) .
When the direction of the light is the opposite : 1 - 0 the

FRESNEL factors belonging to I are defined by

E (2)
and

	

do = =rio =
ET)
EB EB
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Fig . 3 .
Another system of thin Iayers sandwiched between material 1 and material 2 .

Next we consider a second system of thin layers II (fig . 3) .
The FRESNEL factors of this System II are defined in the sam e
way as for System I by :

ET)

	

E~)
(direction of light : 1 --->- 2 )

Ec

	

Ec
1' 12 -

	

, t 12 =

and

ED(R)

	

E((T )
1. 21 - --- , t21 -

ED

(direction of light : 2 ---> 1 )
ED

Now Systems I and II are combined to form a new
of thin layers I + II as shown on fig. 4 .

It is now easy to expres s
E(D

toe =

	

belonging
EA

the FRESNEL factors roe =

system

and
E(AR )
EA

to I + II by the FRESNEL factors rol, tol ;

r io, t lo and 1' 12, t 12 ; r21, t21, belonging to Systems I and II ,
respectively .

If we consider
which takes place

the oscillations of the plane (infinite) wav e
in the layer between Systems I and II, w e

find by superposition of the wave systems in reflected light at
point A directly from fig . 4 (by considering the plane wave front) :
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2

Fig . 4 .
System I (fig . 2) and System II (fig . 3) combined to make a new System I + II .

Material 1 forms a thin layer with thickness d between 1 and II .

EÅl= EA' r o2 = EA- I' o l + EA' to é 2 ' 1'12'
e 1 2 . t 10 +

.x

	

.x

	

_
-

,x

	

,

	

EA' tol' e-12 . r12' Ç 7

	

l' 10 ' e 1 `~' r 12 ' e 72' t 1 o

.x

	

x

	

.x

	

.x

	

_
-

,x

	

• x

	

i E A ' t01 ' e 12'r 12 ' e 12'r10' C

	

212' C 1?'1.10- e 1'r 12- e

	

-' t 1 0

+ etc. = EA . r + EA . f O1 ' t 10 r ]2 ' é 1x , ~(r r) rri _ e
-i'ol

	

'

	

12 ' 1 0

7n = o

to l ' 1 1 0 ' 1 ' 1 2 ' e ix 1

1
I

	

- EA ( I. ol +	
-

/1 -1'12'1'1o•e
tix

From which follows :

rol- 1 '12( I'01• r1o- t o1' t i p ) '
e-i x

roe -
l -l'Y2' T10 C-ix

with
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x _ 22n1 • 2 d cos x = 4 dAcosx

t20

	

t 10 • t21

	

(2, 2 )

(derived directly from fig . 4) .

In transmission we find in the same way by superposition o f

all the plane waves oscillating between I and II :

t02

	

t01• t12' e

	

2
m = o

from which follows :

'12'r10)m e
- imx

. x

t

	

-~ -ol' t 7.2 e

	

z
- ix •

- r12' r1o' e

(2, 3)t 02 =

The reflectivity of System I + II (with direction of the incomin g

light 0 > 2) is

Bo2 - r 02 'r 02 (2, 4)

(r02 means the complex conjugate number of r02) .
The transmitted energy through I + II can be derived fro m

POYNTING'S theorem of electrodynamics [1] to b e

n2 cosx2
= t02 . toe'

	

_-n0 COS92
(2, 5 )

where x2 is the angle of refraction in material 2 .
To derive r 20 and t 20 we only have to interchange the indices

0 and 2 in (2, 1) and (2, 3) .

The following relation is valid :

t 02 _ 1 01 '112 .

	

(2, 6 )

The fundamental formulae (2, 1-3) have been developed by

ABELEs [5] in much the same way as here by summing a n

infinite system of interfering wave systems . Recently, however ,
ISHIGUno and KATO [6] have developed (2, 1-3) directly from the
boundary conditions of electrodynamics by using a matrix

representation. This rigorously proves that (2, 1-3) are valid

also when material 1 is absorbent, with an index of refraction
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r - ix . In this case we have to put

4

x

where (a, b) are determined by (1, 10-11), and we obtai n

47rd b

	

4zd• e
e tx = e

	

e-L

	

_ .

First we consider a special case of the fundamental equation s

(2, 1-3), where System I is only a boundary (all layers in

f

n0

Fig . 5 .
The direction of the light is the opposite of that used in fig . 4.

System I have zero thickness) and System II consists of m	 1
thin layers (fig . 5). In this special case we obtain from (1, 6-7 )

rm+1 , m -m+1 and tin+l , m tin,m +1 -rm + 1, m• rm,m+ 1 -

and when this is introduced into (2, 1) and (2, 3) and when th e
notations r12 = r,n, o and t12 = tin ) are used, we get the fol -
lowing fundamental recurrence formulae : (s or p component)

rm+l,ln+rm,0•e
- ixr1t

ri72 +
, 0 - 1 +1'm +1, mrm 0 •e-ixnz (2 , 7)
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tr1t -1,0 -

~f n

t rn+ 1, m 'tnx, 0• A-

1 +I'm +l , m ' rm 0 'C
- (2, 8)

(2 , 9 )

R o = nrn + 1

(2, 10 )

(2, 11)

(2, 12)

(2, 13)

(2, 14)

(2, 15)

47rdm nm• COS xnxxrn -	 ~	 - '

rm+l,nx, tax+1,rn are determined by (1, 2 3) (when
n 1 = nm xm+1 = 9) and xrn = x are introduced) ,
i . e .

(s)

	

nm+1 'COs xrn+t -nm• COS xm
rm+1, nx

11rn+1 COS xm+l+ nm• COS xnx

(p)

	

nm' COS xm+ 1- nm+ 1 cos ;cm
Im+l,m -

nl7L• COS xnz+l+ nm+l 'COS xm

(s)
tm+l,m = 1 + rm

s )(
;-1, m

(p)

	

( 1x)

	

llnz+ l
tnt+1, m = ( 1 + r

nnx

The reflectivity of the system is determined by :

Rm+1,0 = rm +1,0 'rm+1,0 ;

the energy transmitted through the system is :

no cosxo	Tin +1,0 = tm+ 1 , 0 ' tin +1 , 0 '

and all other optical properties (such as phase change by
reflection, transmission, etc .) of a system of m thin layer s
(absorbent or not) can be calculated when dm and nm are known .

From the fundamental. formulae (2, 7	 15) it is now easy to
show that the following relations are valid :

+- 1'n t
(S)+

0

	

+ .Trn
(S)

p ' C
-lxqx1 t

	

1
(s and 0 components) (2, 16 a)

I(s)

	

~rn
rn +1,0

	

(s')
tm 0•C-
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1 +
r.+1, 0r

~and

tm~ +1, 0

+ rrrt

	

(P)

	

- ixm1

	

0 ' e

	

I2rn +

~ p)

	

- i
xrn

	

I~rn

	

tm 0 C

	

3

(p components) (2, 16 b )

(r~)1

	

rrn+1, o

(S
n ,,, cos xnt

	

(1-r,n) o e
-ixrn `

(2, 17 a)
~4lxR,~

nm +l'cOSxrn +i 1+rm), oC--

I2m+1'COSinx / 1-I•mp)0 • ~ ixm

11m•COSxm+1. \.l-}-I•mp)o•2 ixm)
(2, 17 b)

Further, if the upper layer m (with thickness dm) is transparent
(dielectric layer), we get

( 1	 rm-I-1, 0 'I m- I-1, 0 )

t m +1,0 't7n +1, 0

(1 -I'rn,0• rm,o)
nm • cos xm

t m 0 't m 0

(valid both for s and p components) .
By means of (2, 14-15) this can be expressed by

1-Rm+l,
-

o

	

1 - R rn, o

Tm -i- l, o

	

T,',,, 0

i, e . if to a system of thin layers (absorbent or not) is added on e
1- R

or more transparent layers, T, remains constant . This theorem

has first been proved to be generally valid by F. ABEL .s [7] .
For only one layer we deduce from (2, 6) and (2, 10-13 )

n2, cosx 2
1 20 = toe'

no cos ;co '

and by induction we gel generally for a system of m-1 layers

nm+1 ' cos xm -Fi .

(2, 18 b)

nm • cos x m

tn2 ' °

	

t ° . no • cos xo
Dan . llffa.t. Fys .Øedd . 29, no.13 .

(2, 19)

2
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The transmission through the system is (2, 15)

_

	

no cos xo

	

I2m . cos xrn
Tm 0 = tm 0'7m, 0 '

	

- tO m t 0 m '

	

= To , m (2,20 )
nm • cos

xm

	

no . cos x o

i . e . al a system of thin layers the transmission remains the sam e

if the direction of the light is reversed . (The layers can be absorbent
or not, the material above and below the system of thin layer s

must not be absorbent) . Other general proofs of this theore m

have been given by MAYER [2] and ABELES [7] .

§ 3 . Interference Filters with Two Systems of Reflective
Layers I and II . (Spec. two silver layers) .

An interference filter can very generally be defined as a thi n
dielectric ;layer enclosed between two strong reflective system s

of thin layers I and II (fig . 6) .

We now make the assumption that the reflectivity and the trans -

mission (and phase change by reflection or transmission) of eac h

d

	

no

ni

2 n

of the systems I and II considered separately, only show a smal l

variation with the wavelength within each spectral region of 1
0

or expressed more simply : I or II must not be interference filter s

themselves .
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For this simple type of interference filters many genera l
properties can be derived directly from (2, 1 	 3) .

If in (2, 1-3) the following substitutions are made :

/Roi' e Z åo,

	

= VRio' e i ~l,o

	

i fl,.ar io

	

rrz = VR iz' e

	

and~'oi = y

t o1 =

	

tio

	

e`ß"

	

t12 = V Tiz' e , a

(S is the phase change at reflection and ß the phase change a t

transmission) and if we further introduc e

Q• e `" = 1- toi't io =
' r io

Toi -T 10 . e i (ß°, + ß,a å,, &,)

	

(3 , 1
a)

Roi - R i o

R = VRio' R 12

y = x - S to	 (3 ia ,

we get the following general formulae :

VRol (1 -o'R•é (u- cc)) e i 6 a ,

roz = l~ Roz (~) • e `ôaa(7a) _
(1 Ré-`y )

/--, -ßo,-ß,a )-

t oz =V T 02

	

ei ß°a(6) = lT oi 7'12 • e i(2

(1 R•é i ' )

The intensity of the reflected light R02 (A) and of the trans-

mitted light I (A) (in proportion to the intensity of the incident
light 4s° ) = 1 or 4°) = 1 ; s and p components are treated separately)
are from (3, 2-3) and (2, 4-5) determined to be :

R02 (2)
_

Roi(1- 2 o- R• cos (y- rx) + (aR)z )
(1	 2R cos y -f- Rz )

(direction of light : 0 - 2),
and if we define

and
(3, 1 b )

(3, 1. e )

(3, 2 )

(3, 3)

(3, 4)

nl • co s	 x
T'

	

To ino cos q)

nz co s	 xzand T2 =

	

7'1 2
nl cos

2*
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we get the intensity distribution for the transmitted light

Tl T2I 5(A) =
1-2Rcosy-I-R2

(3,

	

a )

or written in a more convenient manner

(3, 5 b)
I(2)

Tl T2

	

1

(1-R)2(1+(14
RY

sin2

2

)

(I (2) will according to (2, 20) be the same if the direction o f

the light is reversed) .

The wavelengths 2m at which I (A) reach a maximum are

determined b y

y = 360°(m-1)

	

m = 1, 2, 3	

and the wavelengths 2mß_ 1 at which 1(2) becomes a minimum by
2

y=180°(2m-1)

	

ni= 1,2,3	

The Determination of y (A) or of A (y) .

This determination is important in calculating 2m and 1(2)

in the neighbourhood of 2 rn .

360

	

(when y is mea-
t' =

	

1 • cos x - ( 6 10 + å12)
sured in degrees)

Or
360+ y

	

(360 - (610 +b12 ) )

3G0

	

~
2 dn l cosx -

	

360 i
(3, 6 b )

å 01 and 612 are dependent on the wavelength 2 .
We now define

Z (~) = (60_àio(2)	 612( A )) . ~

	

(3, 7
)

360

By introducing Z (2) and 7 , rz (corresponding to y = 360 • (m - 1))

into (3, 6 b) we get the following fundamental equations :
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and
m A ni = 2 dni cos x-{- Z ( Am) (3 , 8 )

360 -f- y
(3, 9)

=

	

+ Z 2360

	

2
(In . m

	

( ) - Z (~m))

If I and II (fig . 6) each consist of only one silver layer, Z (2 )
will only show a small dependence upon 2 (fig . 8 below). If,
however, I and II consist of a combination of one silver laye r
and several quarter wavelength layers of dielectrics with low an d

high index of refraction or of --dielectric layers alone, th e

dependence of 8 10 + 8 12 upon A in the neighbourhood of 2m
must in each case be calculated by means of (2, 7) and next
y (2) by (3, 6 a) . (The results of such calculations of y (2) arc
shown in fig . 49 p . 86 and in fig . 51 p . 90) .

From (3, 5-9) we are now able to calculate I (2) in detail .
However, it will often be sufficient to describe 1(2) by means
of the following quantities :

. The values of A m (from (3; 8) or direct from (3, 6 a)) ;

2. The values of
Tl(~m)' T2 Om)

Imax = I (4,) -
(1 ~ R (Am)) 2

3. The contrast facto r

'max

	

I Om)

	

Ti (2m) • T2 (Ant)

	

i 1--f- R(ti m +1 )	 _ =	 _	 2 '

	

(3,

	

)
F

	

Imin

	

I (~m+z)

	

Ti ( Arn+2) ' T2 (~m+~~

	

R (2,0
11 ~

If R and T with sufficient accuracy are independent of Â
(within the wavelength region 2 172+ < 2 <

	

the contrast
factor is simply expressed by

	

/

Imax = f1~R
R

} 2
F

=	 	
`

	

J ' (R =
v.1110 . 	Rn)

	

(3, 11 b)
Imin

	

1-

(3, 10)
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4. The half intensity / band width W2 defined by

I I /gym+
W2 2 f =

	

1 (I n)

and the tenth intensity band width W10 defined by

W10

	

1
= 10 ' I (~m) •

If we introduce y = 360° (m - 1) + yk (where y k is a smal l
angle corresponding to the k i th intensity band width Wk), we fin d
(from (3, 5 b))

Wk. ) _	 Tl

	

1
2

	

1	 R±

	

(	 )~ ( 1+

	

4
R	 sin`-' (Yk

l
1

	

-R)2

	

\2))

and this is by definition equal t o

k.•
I ( 2,0 = k'(1T1 R) 2 •

So we obtain

	 4R
2

	

(Yk)

	

Yk

	

(1	 R)j/1	 le
(1 R) 2 sin-

	

= k -1 and sin
2

	

(3 12 a)
2I R

or approximately
180 (1 -R) 1/k- 1

Yk =

	

-z

	

I/R

degree .
In the neighbourhood of 2, = 2,n we have approximately

	

360° . (m-l- f .-

	

f dy	 	 ,, ,g(2) = "

	

f•-	 ),where f=-I	 )

	

(3,13a)
`d~, a. = A

n
360 '

Wkand as y = 360 • (w - 1) + yk corresponds Lo A,n - 2 =

	

f .	 k

	

we obtain Yk = -	 	 , and from (3, 12 b) we finally get180

	

fin,

Nr . 1 3

I \ 2m

(3, 12 b)
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~m (1 -R)
Wk =

.f 7r . VR

and in particular we get

_

	

(1-R)

f ~ .VR

Wlo = 3 . W2 .

	

(3, 15)

When I and II (fig . 6) are silver layers we have approximately

360-
/ in

-~

	

=	 	 1) according to p . 21 and in this cas e( )

	

\

	

A
m 	

111

we simply get

f = in

	

(in = 1, 2, 3	 ) .

In case of filters where I and II (fig . 6) consist of several layers
f will be different from an integer .

If the mean reflectivity R = j/R 1o • R 12 is increased W2

(3, 14) will decrease and F = 1m ``x (3, 11) will increase . However ,
min

because of absorption in I and II (fig . 6)Imax (3, 10) will rapidly
decrease. If we assume that the absorption in both I and II i s

A = (A10 = A12), 'max is expressed by :

(1	 R10 -A) (1 -R 12 -A )
max -

	

(1 -1 /R io 'R 12) 2

It is now easy to show that for a definite (constant) value o f
R = VR 1o . Rig (i . e. for a definite value of the contrast factor )

'max will reach its highest value .when R 12 = Rio = (R) (i . e .
when I and II have the same reflectivity ; for a definite (constant )
value of R12 , however, 'max will reach its highest value when

R 1o = R12 . (1 - A) 2) .
From the above considerations it is obvious that one of th e

greatest problems in producing interference filters is that o f
finding a material (consisting of one or more thin layers) wit h
a sufficiently high reflectivity R throughout a spectral region of
reasonable length (as great as possible) .

-k,

(3, 14)

and

(3, 16)
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5 .

In most applications an interference filter is used at norma l
incidence (T = 0) . A small deviation 4qß from parallelism o f
the incident light gives rise to a shift, say 42m , towards viole t

according to (3, 8) . If Z (A m ) -Z (2'° 147`m) is sufficiently small
m

we get

47m = 1 (4 9~) 2 . (
Am-Z	 m)) .

	

(3, 17 )
2 n~

	

m

However, the dependence of Z upon wavelength often make s
this calculation of 42„t more difficult.

At an oblique angle of incidence all the formulae (3, 1-16)
must be written separately for s and p components . (3, 8) espe-
cially will split up int o

m dnl) = 2 dn i cos x + ZS (2 (:?)

	

(3, 18 a)

m&' ) = 2 dnl cosx + Zp (2 ~m )) .

	

(3, 18 b)

Because of the difference in 6, and 6 p (evident from (1, 12-14) )
Z S and Zp will usually be unequal and result in a splitting up
into two transmission peaks at 2 ;n) and 2l), respectively, the one
polarized perpendicular upon and the other parallel to the plan e
of incidence .

At an oblique angle of incidence 92 a small deviation A T in
the angle of incidence will give rise to a shift in wavelength o f
42m determined by means of the derivate of (3, 8) :

(2m

_Z (Al
sin 2 q

9

	

((-)

	 m
-

	

(3 19)
2

2

	

/nno
- sin 2 cp

(Z regarded as constant and angle of incidence (p in material
with index of refraction no) .

It should be noticed that this is a first order deviation in 4 T
as opposed: to (3, 17) at q7 = 0 .

and
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The Properties of the Filter (fig . 6) in Reflection .

If no absorption takes place in I and II we hav e

I (2) + R 02 (I) = 1 (conservation of energy)

(in this special case we have Roe = R 20 according to (2, 20)) .
From (3, 4-5 a) we get

O (1-R1o)(1-R t2) Ro t (1-2ßR-cos(g-a)+(aR) 2 )
I(~)+ R o2 = 1-2Rcosy+R2 +

	

1-2Rcosy+R 2

with R = VRio' R 12 .
This will only be equal to 1 i f

a = 0 and

	

a 1 (= 1)

	

(3, 20)
Ro t

as a• e za at the same time must satisfy (3, 1 a) .
With a thin metal layer (such as Al or Ag) absorption takes

place in I and then a will no longer be zero, but with layer s
which are almost opaque a will only have a small negative valu e
(less than one degree) . In this case we get as a first approximation

a = 1-A

	

(A absorption in I) .

	

(3, 21 )
R o l

The condition for obtaining Rp 2 (2) = 0 at a definite wavelengt h
is (from (3, 4))

1 - 2 a R cos (y - a) + (aR)2 = 0
or

cos (y- a) = 1I(a R)2

This quantity is always > 1, i . e . R02 (A) = 0 only i f

aR = 1

	

(R = 1/R,, . R 12),

	

(3, 22)

and this takes place at

y = a° + 360° (m - 1) .

2aR
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If I is not absorbent
1

	

R i s
o'R = R„ VR 1o . R12 -

	

.

/ to

in this case the condition for zero intensity of R02 (2) is R 12 = R l o

(it is immaterial whether II is absorbent or not) .
If I is absorbent and R 1 o = R12 no value of 2 exist at

which R02 (2) = 0 ; however, it is possible to find a value of R 1 0

at which the equation (3, 22) is satisfied (as a first approximation
we get R

01
= (1 - A) 2 . R12) . In this case R 02 (2) = 0 is

satisfied at wavelengths determined by y = a + 360 . (m -1) in
combination with (3, 9) . The wavelength at which the maximu m
of transmission occurs is determined by y = 360 . (m-l) . Hence
it follows that a small. difference results between 7~,nax in transmis-
sion and 2m,,, in reflection. The same will be the case if R 1 p = R7 2
and I is absorbent .

The FABRY-PEROT Filter ML 2 mM .

The simplest of the types of interference filters treated abov e
is the FABRY-PEROT filter which simply consists of two silver
layers M with a dielectric layer L2m in between . (L277 , means a

2 m- - layer) . The name of this filter originates from the fac t

that the filter is a Fabry-Perot interferometer with a very smal l
spacing between the reflecting surfaces . The first production and
description of filters of this -type are due to GEFFCKEN [8] .

It is important to note that the filter blank need not be more
accurately polished than an ordinary optical surface as th e
different thin layers all follow the irregularities of the blank .
(It is unnecessary to use an interferometer plate as filter blank) .

In order to calculate the properties of this filter the first ste p
is to make numerical calculations of R, T, å, ß, a, a	 etc . ,
for silver layers of different thicknesses t and at different wave -
lengths 2 .

The reflectivity R. and the phase change So at the boundar y
between an opaque silver layer and a dielectric with an index
of refraction no are determined (at normal incidence) by (1, 17-

18) when we put x - ig = v --I- . When no increases R~
no

	

n o
decreases, which means that only dielectrics with a low index
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of refraction can be used for interference filters of the typ e

ML2m M . (L means a --layer with low index of refraction) .

In the numerical calculations (the results of which are give n
in Tables 6-13) it is assumed that n = 1 .3 6, on both sides o f
the silver layer (fig . 7). In practice one side of the silver layer i s
bounded by glass (or cement) with n = 1 .5 ; the influence upo n
Rio and T will, however, be small as compared with the experi-
mental uncertainty in determining v - ix . n o = 1 .36 has bee n
chosen because this corresponds to the index of refraction obtaine d
by slow evaporation of cryolite . The index of refraction of MgF2

too is only slightly higher than 1 .36 .
The different values of v -- i x published [2] vary greatly ,

depending partly upon the conditions by producing the silve r
layers and partly upon the different optical methods by which
v - ix is measured. The most reliable values of x seem to b e
those published by SCHULZ [9], which were determined by measu-
rements of do at the boundary between the air and a nearl y
opaque silver layer . Furthermore from accurate measurements
of R and T at nearly opaque silver layers published by Kuu x
[10] v can be calculated from R = R + T . We get

1 .02 -I- x 2
(1

-Ri

when as a first approximation v 2 = 0 .02 is adopted .
The values of v - ix employed in the following numerical

calculations are given in Table 5 .

v

	

2

	

1 +

0 .2 0

TABLE 5 .

A

	

I v R~

3800 1 .77 0 .8 2

4000 0 .18 1 .95 0 .8 6

4500 0-.14 2 .42 0 .9 2

5000 0 .14 2 .89 0 .9 4

5500 0 .15 3 .36 0 .9 5

6000 0 .15 3 .82 0 .9 6

6560 0 .13 4 .27 0 .9 7

7100 0 .14 4 .68 0 .9 7

7680 0 .15 5 .11 0 .98
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TABLE 6 . ~ = 4000 A v- ix = 0 .18-i 1 .95 .

t T

	

\ 2 (1+R) 2
in Å R T A 1-R`

1-j{ 180-5° Pr' a

	

- ca °

150 .1852 .7179 .0969 .7762 2.12 75°13 7°38 4 .8495 11°9 2
200 .2881 .5956 .1163 .6999 3 .27 73 .44 8 .79 3 .0427 10.4 8
250 .3889 .4809 .1302 .6194 5 .17 72.16 9 .72 2 .2145 8 .9 8

300 .4802 .3801 .1397 .5347 8 .11 71 .23 10 .24 1 .7719 7 .5 3

350 .5585 .2954 .1461 .4477 12 .5 70 .56 10.43 1 .5118 6 .21
400 .6231 .2266 .1503 .3615 18 .6 70 .11 10 .36 1 .3489 5 .0 5

500 .7155 .1297 .1548 .2080 36 .4 69 .61 9 .66 1 .1706 3.2 5

550 .7469 .0972 .1559 .1475 47 .6 69 .49 9 .13 1 .1211 2.5 7

600 .7709 .0725 .1566 .1001 59 .8 69.42 8 .52 1 .0865 2 .0 3
co .8414 .00 .1586 .00 69 .4 8

TABLE 7 . A = 4500 Å

	

T- ix = 0 .1.4- i 2 .42 .

t( T

	

l
2 1 1+ R) 2
(1--R 180- 6inå R T A

(
1 -Rj ß a - a

150 .2560 .6662 .0778 .8017 2 .85 70 .29 14 .39 3 .5903 7 .6 9

200 .3838 .5266 .0896 .7304 5 .04 67 .08 1.7 .40 2 .3613 4.6 6
250 .4997 .4042 .0961 .6527 9 .00 64 .64 19 .57 1 .7997 5 .1 8
300 .5970 .3038 .0992 .5683 15 .7 62 .84 21 .06 1 .5012 4 .1 1
350 .6748 .2250 .1002 .4785 26 .5 61_54 , 22 .00 1 .3271 3 .2 2
400 .7351 .1649 .1000 .3876 42.9 60 .62 22 .53 1 .2191 2 .5 0
500 .8150 .0869 .0981 .2204 96 .2 59 .57 22 .74 1 .1031

	

1 .4 7
co .9060 .00 .0940 .00 58 .55 I

TABLE 8 . A

	

5O00Å v-ix = 0.14-i 2.89 .

t T

	

2I 1+ Rl 2
-

in Å R T A

	

(1-R ) ~1-RJ I 180-d ß a - a

150 .3290 .5955 .0755 .7878 3 .92 64.56 20 .62 2 .8009 6 .2 1
200 .4717 .4456 .0827 .7114 7 .76 60 .35 24 .63 1 .9374 4.8 8
250 .5902 .3247 .0851 .6279 15 .1 57 .29 27.34 1 .5439 3 .8 1
300 .6825 .2328 .0847 .5375 28 .1 55 .12 29 .12 1 .3363 2 .82 5
350 .7516 .1652 .0832 .4422 49 .7 53 .61 30,49 1 .2160 2 .11 9
400 .8022 .1165 .0813 .3470 83 .0 52 .56 31 .17 1 .1422 1 .58 2
500 .8649 .0573 ,0778 .1799 190 .6 51 .35 31 .57 1 .0644 0 .87 3
0o .9282 .00 .0718 .00 50 .32
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TABLE 9. 2

	

5500 Å v- ix = 0.15-i 3 .36 .

t T

	

2 1+R 2

inÅ R T A
~1-R) (1-R ) 180-8 (3 a - a

150 .4009 .5234 .0757 .7633 5 .44 59 .11 26 .22 2 .2978 5 .29 1
200 .5495 .3713 .0792 .6792 11 .8 54 .29 30 .83 1 .6697 3 .93 2
250 .6634 .2582 .0784 .5884 24 .4 50 .95 33 .92 1 .3847 2 .87 2
300 .7462 .1779 .0759 .4913 47 .3 48 .67 35 .89 1 .2349 2 .08 7
350 .8051 .1220 .0729 .3914 85 .8 47 .13 37 .09 1 .1488 1 .51 3
400 .8463 .0834 .0703 .2976 144 .3 46 .10 37 .76 1 .0965 1 .09 7
500 .8951 .0389 .0660 .1377 326 .4 44 .94 38 .10 1 .0422 0 .57 5
co 9399 .00 .0601 .00 44 .0 0

TABLE 10. 2 = 6000Å v-ix = 0 .15-i 3 .82 .

t

(1-1{
)

T

	

2 (1+R) 2
in Å R T

	

A 1-R 180-8 ß a - a

150 .4690 .4609 .0701 .7535 7 .65 54 .47 31 .27 1 .9771

	

4 .22 2
200 .6179 .3119 .0702 .6661 17 .93 49 .28 ~

	

36 .27 1 .5007 2 .98 6
250 .7239 .2087 .0674 .5712 38 .98 45 .82 39 .48 1 .2853 2 .10 0
300 .7965 .1392 .0643 .4681 77 .93 43 .54 41 .48 1 .1726 1 .47 9
350 .8466 .0930 .0604 .3676 144 .9 42 .03 42 .66 1 .1082 1 .04 5
400 .8803 .0622 .0575 .2698

	

246 .7 41 .04 43 .31 1 .0693 0 .74 1
500 .9188 .0278 .0534 .1175

	

558 .4 39 .96 43 .63 1 .0296 0 .37 4
co .9516 .00 .0484 .00 39 .1 2

TABLE 11 . ~ = 6560 Å

	

v - ix = 0 .13 i 4.27 .

t T

	

2 (1+R' 2

in Å R T A
~1-R) 1~1 -R, 180-8 ~3 c - a

150 .5291 .4149 .0560 .7764 10 .5 50 .86 35 .76 1 .7811 2 .97 1

200 .6748 .2709 .0543 .6937 26 .5 45 .40 40 .96 1 .3991 2 .08 4
250 .7728 .1763 .0509 .6022 60 .9 41 .87 44 .39 1 .2265 1 .38 6
300 .8375 .1152 .0473 .5023 127 .9 39 .59 46 .45 1 .1364 0 .95 6
350 .8802 .0756 .0442 .3975 246 .3 38 .10 47 .66 1 .0850 0 .66 8
400 .9084 .0498 .0418 .2956 434.1 37 .14 48 .36 1 .0542 0 .46 6
500 .9398 .0218 .0384 .1305 1038 .3 36 .09 48 .80 1 :0228 0 .23 0
oo .9654 .00 .0346 .00 35 .31
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TABLE 12 . R= 7100 Å

	

v- ix = 0.14 i 4.68 .

t T(
1-ß /

2 (1 +R l
z

inÅ R 2'

	

A
1 --RI 180-b /5' a

150 .5711 .3739 0550 .7600 13 .4 47 .63 39.00 1 .6518 2 .66 9
200 .7104 .2375 0521 6726 34 .9 42 .13 44.34 1 .3324 1 .77 0
250 .8004 .1517 0479 5776 81 .4 38 .65 47.62 1 .1881 1 .18 7
300 .8582 .0977 0441 4747 171 .7 36 .43 49 .60 1 .1128 .80 8
350 .8957 .0634 0409 3695 330 .3 35 .00 50 .77 1 .0701 .55 8
400 .9202 .0414 0384 2691 579 .0 34 .09 51 .41 1 .0445 .38 6
450 .9363 .0271 0366 1810 924 .0 33 .50 51 .70 1 .0286 .26 9
500 .9470 .0173 .0357 .1066 1349 .5 33 .11

	

51 .78 1 .0180 .18 2
co .9685 .00 .0315 .00 32 .38

	

i

'I'aBLE 13 . ti = 7680Å

	

v ix = 0 .15-i 5.11 .

R

	

T A
T

1-'R
1+13) 2

,1-R 180-å Q

150 .6100 .3363 .0537 .7436 17 .0 44.63 42 .01 1 .5489 2 .38 4
200 .7419 .2085 .0496 .6527 45 .5 39 .14 47 .34 1 .2794 1. .54 3
250 .8241 .1310 .0449 .5544 107 .5 35 .75 50 .54 1 .1578 1 .01 7
300 .8756 .0834 .0410 .4498 227 .3 33 .62 52 .44 1 .0944 .68 4
350 .9086 .0537 .0377 .3447 436 .1 32 .26 53 .54

	

1 .0585 .46 8
400 .9299 .0348 .0353 .2464 757 .9 31 .39 54 .14

	

11 .0370 .32 1
450 .9438 .0227 .0335 .1632 1196 .3 30 .82 54 .40

	

1 .0237 .223
500 .9530 .0148 .0322 •0997 1726 .7 30 .46 54 .45

	

1 .0153 .155
co .9713 .00 0 .287 .00 29 .78

	

Ï

Fig . 7 .

Tables 6-13 are calculated by means of (2, 7-9) and (1, 16-
18), which in the special case indicated in fig . 7 become :
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e _c5 = .r oi
1 - e-

2

	

i arot e
(3, 23)

t
ß

	

-	 2ôl)e	
)/ T • e=

(1

- / 01 e- ix

v

nn	 no l
roi

	

(3, 25 )
v1+- -

no

	

n o

47rxt

	

4 7 v t

e ix = é R
é- z

	

.

	

(3, 26)

To calculate R (A) of a FABRY-PEROT filter we must further cal-

culate ce' " = 1 -R e ß ( 2 ,8-
26

) from the calculated values of (R, S )

and (T, ß) .

All these calculations have been carried out directly from

(3, 23-26) by means of RYBNER ' S tables [4] .

In the calculations it is assumed that v - ix at a definite

wavelength A is independent of the thickness t of the silver layer .

The formulae (3, 23-26) depend only upon the variabl e

quantities in the combinations v	 ( .)	 ix	 (À) and v (À)	
-
	 tx(~) t .

no
If the index of refraction no is changed to n ' the tables can

still be used if the 2 scale is changed to A' and the t scale to t ' ;

the transformation is determined b y

v(A')nix(2')= v(A)nix(2) and v(A')
-

ix	 	 -	

	

(A') t' = v(A)	 ix(2) t

i . e . t ' =
n,

	

t, and if approximately v(A)-ix(1) (k1-ik2)•2 ,
a

then 2' = no, • 2 and t ' = t . (This will be a good approximatio n
n

for b because it only slightly depends upon v) .

	

From Tables 6-13 graphs of Z (A, t)
= I l

80

180

	

t) 1
can be made for different thicknesses t of the silver layers (fig . 8) .

(3, 24)

and
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If the filter consists of two silver layers of different thicknesse s
t' and t"

360 -8o (t')-8o(t")

	

] .
Gres =

	

360

	

2 (Z(Ai,
t,)

~-Z(Ar, t"))

These graphs (fig . 8) are important because it is possibl e

when Z (l) is known to determine the optical thickness nd which

r= A

imm

20

!iiIi1
4500

~
4000

Fig . S .

corresponds to a definite 2m (From (3, 8)) . Inversely, if 2,,, ar e
measured spectroscopically and d is measured for one definite

wavelength, Z (2) can be determined directly by experiment .

(This has been done by SCHULZ [9] ; with n = 1 this gives a
determination of x (A)) .

The half intensity band width W2 has not been calculate d

in the tables for each t, A value. For this reason a table of

(1 -R) 5500
W2 (R) =	

7VR• 2

is added (Table 14) corresponding to a filter with A m = 5500 Å

and m = 2 . From this table Wz corresponding to another An,

Z(a J

A

180t

1700

1600

150 0

1400

1300

1200
7500 50005500600065007000

Z(A)

1800 A

1700

1600

150 0

1400

1300



Ni . 13

	

33

can easily be calculated by means of

tiI''2 (R) = W Z (R)'	 An ` -
m•2150

TABLE 14 .

R W,111Å W 2 in A R W 2 in A

0 .75 252 .7 0 .84 152 .8 0 .93 63 . 5

.76 241 .0 .85 142 .4 .94 54 . 2

.77 229 .4 .86 132 .2 .95 44 . 9

.78 218 .0 .87 122 .0 .96 35 . 7

.79 206 .8 .88 112 .0 .97 26 . 7

.80 195 .7 .89 102 .1 .98 17 . 7

.81 184 .8 .90 92 .3 .99 8 . 8

.82 174 .0 .91 82 . 6

.83 163 .3 .92 73 .0

When R, T, y (I .) are calculated it is possible to calculate
line shapes at different wavelengths and thicknesses of the silve r
layers . In all the following graphs it has simply been chosen to
calculate the wavelength scale by means of (3, 9) with the approx .
Z (2,) = Z (2111 ) . If y = 360-(m - 1) + y (y a small angle) ,
we get :

~ 360 m
=	

~ m

360m +y '

and this combined with (3, 5 b )

T 2

	

1

(1 -R)2 ~ 1 ~-(14R)2 sin 2 ~
1

determines the intensity distribution in the neighbourhood of a
peak .

Furthermore R and T of the silver layers are regarded a s
constant in all the following graphs throughout the spectral region
considered in the graphs . If the variation of R, T, etc., upon
wavelength within the line were taken into account, the calcula-
tions would be rather tedious and only result in deviations in

Dan . Mat . Fys. Medd . 29, no.13 .

	

3

(3, 27 a )

(3, 27 b )
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0,40

0,30

0,20

0.90

0.0
6000

	

5500

	

5000Ä Q
Fig . 9 .

2nd order filter. W 2 calculated from (3,14) is 181 Å and Wi, = 3 . W 2 = 543 4
v

	

ix = 0.15 - i 3 .36.

MLg M
Ao

J~ 0,.37

m=
2X

5500Å

360

	

360

n = 1~36

Fig . 10 .
(All measures in A) .

FAuBY-PEnOT filter 2nd order . The peak of the 1st order is at about 1080 Å an d
the peak of the 3rd order at about 3750 A . The line shape (2nd order) is show n

in fig . 9 .

351 .5
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Fig . 11 .

ML= M
Aa

	

Aa

JqX 0,50

~m4x 6560Å

300 300

f1 = 1,36
Fig. 12 .

1st order filter (m = 1) (the peak of the 2nd order is at 3400 Å) .
(Curve A in fig . 11) .

1880

3*
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the "wings" of the line and even here the effect is small as com-

pared with the experimental uncertainty in v - ix . The devia-
tions will be the greatest for a filter of the first order .

In fig. 9 is shown the line shape of a FABRY-PEROT filter of the

2nd order, and fig . 10 shows the relative thicknesses of the thi n

layers . In fig . 11 line shapes have been calculated with differen t
thicknesses t of the silver layers and with peak transmission a t

6560 Å. The rapid decrease in Inga with increasing t is apparent .

Furthermore is it possible to calculate R (A) for a filter of th e
type ML 2 „,M by means of (3, 2) or (3, 4) . (3, 2) becomes

R . ~ 1

	

e-i(y-a) 1 2

1 1 -R . é-tg 1 2

	

;R (R) = 	 (R = R) .

	

(3, 28)

The wavelength scale is calculated by means of (3, 27 a) . Fig .

13 and in fig . 14 show the results of such calculations of th e

intensity distribution R (A) in reflected light (at normal incidence) .
In fig. 13 the same filter is considered as in fig . 11 Curve C

in transmission . (Each silver layer has a thickness of 400 Å ;

RN
1 .oo -J(xl	 ML,M

	

t = 400,d

0.00

	

--"	 r--	 ---,-- -
7500

	

7000

	

6500

	

6000
Fig . 13 .

R (A) and I (A) for a FABnY-PEROT filter with the silver layers of equal thicknes s
(t = 400 A) .
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3 7

7500

	

7000

	

6500

	

6000/

Fig . 14 .

R (A) and I (A) for a FABRY-PEROT filter. The silver layers are of unequal thicknes s
(I" = 400 Å and l ' = 288 A) t' is determined in such a way that QR = 1 ;

(R = VR' . R" ) .

R = 0 .908) . The small negative value of a =	 0 0 .466 (Table 11 )

gives rise to an asymmetric line shape of R (A) . Furthermor e

it should be noted that the minimum value of R (2) turns out

to be as high as 0 .20 and the minimum is found at a wave -

length a little higher than the wavelength at which I (A) has a
maximum in transmission .

In fig. 14 a filter M'L 2 M" is considered with the two silver

layers of unequal thickness . t " = 400 Å and t ' = 288 Å is

determined in such a way (from Table 11) that aR = 1 ;

R = VR' • R" = 0.864 (the reflection takes place from the t ' side

of the filter), R (2) = 0 at y = a = - 1 0 .060 (sec page 25) .

This calculation shows that it is possible to extinguish a spectra l
line by means of a reflection interference filter . Imax = 0 .34

(Imax = 0 .45 of a filter with the two silver layers of equal thicknes s

and with a reflectivity equal to the mean reflectivity of the filte r

in fig . 14 . R =• R" = 0 .86) .

Reflection interference filters with an opaque metal layer at

the bottom (e . g . aluminium) have first been treated in theor y

WO- RCA)
.70t)	

	

t"= 400 Å

0.00 --T---+- =	 r

	

- - -

	

r	 ~ -

M 'L,M" t'= 288 A

0,80 -

0,6 0

0,40 -

0,20 -
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I

	

I
A

100' -

	

-
=9Ö'

50' -

-50' -

=270°
100

6000

	

5500

	

5O00Å

Fig . 15 .
A FABRY-PEROT interference filter used as phase plate . Unbroken lines : A. Th e
filter is on one side bounded by air. B. To the filter is added a thin dielectri c
layer in such a way that the phase difference at the peak is -180° . Broken line :

I (A) for the filter (the same as the filter in fig . 10) .
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and practice by HADLEY and DENNISON [11] . These reflectio n
filters have the great advantage of also being applicable to the
infrared and ultraviolet spectral region, but have the disadvantag e
that rather broad spectral regions are reflected .

By means of (3, 2-3) and RYBNER ' s tables [4] iL is furthermor e
easy to calculate the phase change at reflection and transmission ,
as a function of the wavelength, in the neighbourhood of a peak .
As the phase change at transmission by interference filters is o f
special interest in the phase contrast microscope as shown by
LOCQUIN [12], a calculation has been made in the case of the
filter in fig . 10. The results are given in fig . 15. In the case of
A the phase difference between P, (light passing through th e
phase plate) and P1 (light passing outside the phase plate) i s
(from (3, 3) )

C O. ) - ~ (ß
36 0

+N612)

	

--_ . 'nd - £ (A) + 360 (2 t + d) ;

	

(3,29)

t is the thickness of the silver layers and c (2) is determined
from - eis(R) = 1 - R- e ' u . The phase changes aL transmissio n
through the silver layers are determined from Table 9 . The
approximations fol = ßl2 = P and 13 = ßo - k - A have been
made. If, as in the case of B (fig . 15), a thin dielectric layer (with
index of refraction n and thickness d 1 ) is added to the phase

360
plate, the phase difference - 	 . (n - 1) . d1 has to be added

to (2) in (3, 29) . In fig . 15 curve B, d1 is determined in such a
way that the phase difference is - 180° at A,n = 5500 Å. The
graphs correspond very closely to those previously published b y
DuFouR [13] . By the use of a combination of the type B (fig . 15)
it is possible to change from a negative to a positive contras t
of the image by a variation of wavelength .

Calculation of I(2) S and I(Â) i, at an Oblique Angle of Incidence .

When the angle of incidence (p is increased from q) = 0, a
shift of 2,,, towards violet, and a splitting up in two component s
)(s) and ,11,) ) result . The first problem now is to calculate 21,s,), ~(,R )

when îß;,,T, n (À) and v (2) - i (À) are known . The calculation


