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Introduction .

The behaviour of systems having numerous degrees of freedom

and endowed with electric charges presents problems of high
complexity. Although many of the properties of systems of this
kind may be explained within classical physics, a more con-

sistent description was obtained only after the introduction o f
quantum mechanics .

An example studied with particular care is the so-calle d

electron gas . We shall not attempt here a historical survey o f

the viewpoints and mathematical treatments of electron gases .

It may only be recalled that a striking simplification was ob-

tained when SOMMERFELD introduced the idea of a gas of fre e
electrons, subject only to the exclusion principle, but uninfluenced

by the mutual electric forces . In this way, an approximate account

was given of many of the properties characteristic of metalli c
electrons . One of the major results was the smallness of the

thermal energy of the gas at usual temperatures . The model

could be refined so as to allow for periodic static potentials ,
which led to a separation of the electronic states into energ y
bands and to an explanation of essential properties of the dif-

ferent types of solids . At the same time the free electron picture ,
as applied in the Thomas-Fermi model, could account for pro-

perties of atoms in an averaged manner .

It was thus apparent that the Sommerfeld theory in several

respects closely represented the properties of, e .g ., valence
electrons in metals. Still, it seemed difficult to give a direc t

justification of the model on the basis of more rigorous treatments ,

because the interaction appeared to have a dominating influenc e
on the behaviour of the electrons. It was not easy to foresee the

limitations of the theory, and in problems where it was valid in

the first approximation ambiguities arose in the more detailed
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treatments . This was the more unsatisfactory since some pheno-

mena, as superconductivity, apparently defied any explanation

within the simple theory of metals .

An interesting attempt to describe the dynamics of an electro n

gas in a systematic way, with inclusion of the interaction between

the particles, was made by BLOcx (1933, 1934) on the basis o f

the Thomas-Fermi model . Although in the treatment further

simplifications-introduction of hydrodynamic concepts-were

made, it was possible to arrive at a number of simple result s

as regards the modes of excitation of the system. More recently ,

TOMONAGA (1950) presented a thorough discussion of the be-
haviour of a one-dimensional gas, again for fields varying slowl y

in space. Further, BOHM and collaborators (1949-1953) hav e

published extensive studies of many problems in the three-

dimensional case (see especially BOHM and PINES, 1953). The

treatments by BLOCH, TOMONAGA, and BoHM indicate the grea t

modification suffered by the system of originally free particle s

when the interaction is introduced .

This great change in the properties is-as empirically evident-

mainly a change in the electromagnetic properties of the system .

As in the treatment by Borrc, the interest therefore in the firs t

instance centers on the behaviour of the electromagnetic field .

However, we shall here make the further step of writing the

equations of motion of the total system as equations for th e

electromagnetic field only . One would expect this to be possible ,

since the behaviour of the particles is revealed only through th e

field to which they give rise . The motion of a particle is the n

no longer determined by the interaction with numerous othe r

particles, but only by the field . This elimination of the particles

in the description of the properties of a medium is nothing bu t

the idea at the basis of Maxwell's field equations in matter . The

same idea is found in the static descriptions of THOMAS and

FERMI, and of HARTREE . From the present point of view it i s

less adequate to introduce elaborations of these models of th e

kind contained in determinant wave functions, or in the descrip-
tion by correlations, where one tries to include energies of order

e 2 , or higher, by calculating the effect of interaction betwee n

two or more particles . The difficulties in a correlation descriptio n

was evidenced in calculations by IIEISENBEBG (1947), where
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divergencies appeared for long wavelengths. Such kinds of
approach become more consistent if one introduces a screene d
Coulomb interaction between the particles (PINES, 1953 ; LANDS-

BERG, 1949 ; WOHLFARTH, 1950) .

We should now make a more definite statement as to th e

field entering in our description : By the classical field in the

substance we mean always the total field acting on and eventually

due to classical, or external, charges . We wish to derive the

corresponding field equations, which turn out to be of the typ e

of Maxwell's field equations in matter . This attitude might seem

to require a detailed justification because fluctuations coul d
destroy the uniqueness of the description . However, the classica l

field equations define, on the contrary, what one understands

by a large system of interacting particles . Thus, it is im-

portant to realize that all fluctuations occurring are containe d

in the present description, simply because it gives the classica l

equations of motion of the system. A quantization of the equation s

may be performed by applying the methods familiar from fiel d

theory. With such methods it is possible to derive the fluctuation s

in the system, on similar lines as followed by BLoch (1934) in
his treatment of the Thomas-Fermi gas . In the following, we shal l

try to amplify these brief remarks, both as regards which is the

field considered and as to the uniqueness of the field equations .
Accepting the above, an immediate task is to find wha t

simplifications and modifications can result when the dynamica l

properties are contained in field equations for the electromagneti c

field . Nov, even though it can be difficult to derive more exact

field equations on explicit form, one may be able to find easil y

the type of the equations and to give approximate estimates in

various limiting cases. One can then, with. confidence, attempt

an approach to the field equations both from a theoretical an d

an empirical point of view, and consider the general conse-

quences of the structure of the equations . Of course, at the sam e

time as one has an equation for the electromagnetic field, a n

equation for the particle field will be obtained (cf . Appendix) .

The latter equation is of particular interest, for instance, in scat -

tering phenomena . For the present, we are concerned mainl y

with the electromagnetic field, but one has the choice of developing

with higher accuracy the description of either of the two fields .
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It will be useful, then, to discuss general field equations o f
classical type . We limit the treatment to linear field equations ,

and define these by the dielectric operators of the field . Linear
field equations will seem to cover a wide class of phenomena ,
but in some cases the linear approximation is not sufficient .
Terms of higher order appear in, e .g ., the Thomas-Fermi atomi c
model and phenomena as those studied by ALrv>3 N (1950) and
his school .

In the derivations, in the present paper, of classical linea r
field equations for a gas of charged particles several further
approximations are made . We compute at first the dielectric
constants to first order in e 2 , starting from the picture of a
free gas of particles . One gets then a number of well-know n
results regarding the properties of free gases, but finds essentia l
improvements in some cases . When the computations are carrie d
out to higher order, one encounters further corrections to the
familiar descriptions .* The first order equations contain the mai n
features of the linear field equations of the system . In some cases
they can represent the exact solution and yet contain a by n o
means small polarization (cf. § 5, p. 48) . From such first order
treatment one sees perhaps best that the field equation concern s
the total classical field, since the particle motions	 and thus the
polarization-are determined only by this field .

As regards the question of the justification of the approximatio n
method applied in the following, where one starts from a fre e
gas and computes the dielectric constant only to first order in
e 2, it would seem most appropriate to calculate the linear field
equations to a high, or infinite, order and make a compariso n
with the first order treatment . Employing the powerful technique
of quantum field theory, one can indeed get expressions for the
linear electromagnetic and particle field equations . We use a
more modest approach, and discuss the behaviour of one electro n
moving in the field calculated to second order . The electron the n

* By a computation to higher order we understand a procedure of iteratio n
applied only in deriving the field equations ; when these are obtained we do no t
attempt approximations at a later stage.

In a sense the accuracy of the calculation to first order is dependent on e 2
being small . We can in fact form one dimensionless quantity from e 2 and th e
density of the gas, g . In the following we use the quantity x2 = [me'/h 2 (3 n5g) )
The value of x z must determine the properties of the gas . The free particle pictur e
is valid if x 2 is small compared to 1, as in dense gases .
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interacts with itself, and we consider in some detail the effect
of the damping of motion and of the self-energy . As to the partic-
ular example of a one-dimensional gas the present perturbation
method, applicable to all wavelengths of the field, gives in th e
region of long wavelengths precisely the equations deduced by
TOMONAGA (1950) .

We have not yet commented on the crucial question of th e
connection with statistical mechanics . In spite of the circum-
stance that we are concerned, basically, with a conservative
system, the field turns out to be of non-conservative type an d
we encounter dissipation effects of peculiar kind . Thus, ab-
sorption of energy and momentum occurs via processes no t

unlike those resulting from viscosity in a liquid. The absorption
effect appears as a finite imaginary operator in the equation s
for the retarded field . It may be said to derive from an extreme

in entropy increase and trend towards statistical equilibrium,

and must result in a small thermal excitation of the system . Just
the former circumstance implies an unambiguous classical stat e
-and behaviour in time-of the system, where mechanical con -

siderations alone could not suffice . Incidentally, we have there -
fore employed the word `classical' in the simple sense : with
neglect of statistical or quantum mechanical fluctuations . The

statistical fluctuations about the average absorption can be

obtained in a straightforward manner from correspondenc e
arguments .

In the following only some of the above general questions
are treated in detail. First, in § 1, the field equations in matte r
are introduced. The equations holding for a nearly free gas are
computed classically in § 2, and by quantum mechanical treat -

ment of the particles in § 3 . In the static limit these calculation s
are in line with the method introduced by O . KLEIN, whose

point of view was similar to the present one (KLEIN, 1945 ; LIND -

HARD, 1946) . By way of illustration we consider in § 4 the ap-

plication to stopping problems, and self-energy, for charge d

particles passing through matter (cf . also Appendix). The im-

provement of the free electron picture is discussed in § 5 . In a

subsequent paper* will be treated the connection between th e

thermal properties and the field equations, and also the absorp -

* To appear in Dan. Mat . Fys . Medd ., and in the following referred to as II .
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tion and reflection of a transverse wave by a metallic surface (cf .
moreover. LINDI3ARD, 1953) .

Before entering on the more formal treatment we may ad d
a few words as to the general formulation given here, and con-

cerning the results of a discussion of the free electron gas . It

might perhaps seem that the free gas is a quite specialize d
example, but it should be appreciated, first, that its applicability

to atomic systems containing many electrons is quite wide . The

proper methods for a treatment of many-particle systems should
just derive from an understanding of the simple example of a

free gas .

Second, the electron gas is a system in which the forces be-
tween the particles are known . If it is attempted to discuss systems

where the forces are less well understood, as in an assembl y

of nucleons, a detailed description of the simpler case may be

of considerable help. It is of special interest that a system of
interacting particles exhibits several typical properties, fo r

which the character of the forces is usually not decisive .

One may here particularly mention the connection betwee n

the independent-particle model and the collective model of

atomic nuclei . These two cases we meet already for electroni c

systems, which in numerous respects show an extraordinary

likeness to a nucleus . The collective and independent-particl e

features are intimately connected in the present field equations ,

and though the total effect of the particles, as expressed by the
field polarization, can be very large, yet each particle may move

nearly as if it were free (in the more general case, the particle s

have no longer free particle equations, but remain independent) .
A considerable simplification results since the two descriptions d o
not appear as entirely different cases, but may be treated as one .

§ 1 . Field equations in matter .

In this paragraph are described the more general features o f

electromagnetic field equations in matter, as a preliminary to th e
calculations in the following. One of the questions is, simply, th e
introduction of a suitable notation and terminology ; we choose

to formulate the field equations by means of the dielectric con-
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stants of the field . Actual expressions for dielectric constants ar e
to be found in § 2 and § 3 . Further, the discussion here is meant

to illustrate characteristic phenomena, as energy dissipation, that

are contained in the field equations .

It is desirable to use a description similar to that of the Max-
well equations in matter . In these equations, the properties of a
substance are determined by the values of the dielectric constan t

e, the permeability ,u, and the conductivity a . Expanding the

field in harmonic components in time, the quantities e and ,a ma y

be considered as functions of the frequency w ; the conductivity

a can be included in the dielectric constant and determines the n

the imaginary part of e . One distinguishes, on the one hand ,

between the general equations which do not contain the propertie s

of the medium,
->

->-

divD= 47cop, rotE = - cat ,

->

div B = 0 , rot H = ~ ~ + 4 jo ,

and, on the other hand, the more special equations where th e

electromagnetic properties enter directly,

B (r, w) = it (co) H

	

w), D (r, cu) = e (w) • E (r, co), (1 .2)

B (r , w), etc., being field components with time dependenc e
exp (-iw t) . While the equations (1 .1) are quite general, th e

assumption (1 .2) leads directly to linear field equations .

Using a description of the kind (1 .2), one is able to give a

satisfactory account of many properties of matter . Still, for a

number of phenomena not only the time variation of the field ,

as contained in (1 .2), but even its variation in space will have
a decisive influence on the values of e and ,u . Moreover, the

general interpretation of (1 .2) and the transcription of the Maxwel l

equations into equations for the electromagnetic potentials re -
main ambiguous if one assumes that e and ,u are functions onl y

of co . We shall find, however, that when (1 .2) is generalized so

as to take into account the spatial variation of the fields, suc h
ambiguities disappear .

We may now discuss the general form of linear field equations
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in matter, without immediately trying to find the connection wit h
the Maxwell equations (1 .1) and (1 .2) . Let us consider the

microscopic behaviour of an electromagnetic field in an extende d
medium. We may for the present regard the medium as infinite ,
isotropic, and homogeneous, the latter even over minute regions

in space, and with properties independent of time. As will be

discussed below, we shall be concerned with the classical, o r
average, field and at first look apart from fluctuations . In the
case under consideration, it will be convenient to describe th e

fields by their Fourier components in space and time . Indeed ,
due to the invariance towards displacements in the medium, eac h
Fourier component of the field must be proportional to the same

Fourier component of the sources . The factor of proportionality
will be some function depending both on the wave vector an d
frequency of the component in question . Considering, in therst
instance, the transverse (divergence-free) part of the field we ma y

express this circumstance by introducing a function which w e
shall call the transverse dielectric constant . The reasons for thi s
particular formulation and the connection with the Maxwel l

equations in matter will appear presently . We thus get for the
transverse part of the vector potentia l

	

2

	

2
atr1 q tr

	

ttr

	

k

	

c

	

A (k, co) = c j o (k, w) ,

where E tr = qtr (Îc , w) is a function of the wave vector k and

the frequency w . The connection between A (r, t) and A (k, w)

is given by A (r , t) =IA (k, w) • exp (ik r - i w t) , and in the
k, w

same way jotr (k , w) is a Fourier component of the transvers e
current of the sources of the field . The transverse character o f

the field is expressed by k Atr (k , w) = 0, so that Atr (k , w)

A (k , w)	 k (k • A (k , w))/k 2 , and similarly for jp (k , w) . On
account of the explicit appearance of the sources equation (1 .3)
describes a case of forced vibrations of the medium ; the solution
of the homogeneous equation is discussed more closely in II .

}

	

-)-
We note that, since A and jo are real functions in space an d

time, their Fourier components (--:k>-,- w) must be complex con-
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jugate of the components (k, w) , which implies that E° (-k, - w) =
tr* (kE

	

, w) . The dielectric constants in the following will

generally be of the type etr
(k, - w) = s r''* (k, w), as is char-

acteristic for retarded and advanced field equations . We shall
always be concerned with the retarded dielectric constants, i . e .
retarded field equations, except when expressly otherwise stated .

For the electric potential we can choose to write, in a simila r
way, introducing a new function which we call the longitudina l
dielectric constant ,

e~ k 2

	

, w) = 4 z (Îr, w),

	

(1 .4 )

where the notation is as in (1 .3) and e l = el (k, w) depends o n

the two variables k and w . The quantity eo (k, w) on the right
is the Fourier component of the source density of electric charge .
When the description (1 .4) is used, it is assumed that the gaug e
is chosen such that the longitudinal vector potential vanishes .
It may perhaps already here be stressed that, for fields in material
substances, one has directly given a natural system of referenc e
and it is often not convenient to write the field equations in a n
invariant manner .

The fields derived from the above potentials ar e

E = - grad 0-c ô at , B = rot A

	

(1 .5)

and they are the true classical fields acting at a space-tim e
point (r, t) in the medium. We consider the retarded es so tha t
the fields in (1 .5) are the retarded fields . The letters E and B
are chosen for these quantities because they can be interprete d
as the electric field and the magnetic induction of the Maxwel l
equations, as we shall now show. We have accounted for th e
properties of the medium by the two functions etr and e i, instead
of e and ,u in the equations (1 .2) . The connection between the
two formulations is apparent when a function ,u (k, w) is de -
fined by

9

k2

1- ~ (11, w) ) = e2

/gfr (k, w) - e l (k, w)) ,

	

(1 .6)
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for then equation (1 .3) becomes, introducing a dielectric constan t

s, equal to the longitudinal one, e 1 ,

w2 \
tr ~

	

4 Z ~tr
2 e A lf (k, w)

	

- jo (k, w) .
C

	

i

	

C

With this notation one can introduce a magnetic field, H, and

an electric displacement, D, from the equations

H (k, w) =
u

(k

1	
w) B (k, w )

D (k, w) = e (k, w) E (k, w) .

One then obtains the Maxwell equations (1 .1) in space and time

for the quantities B (r, t), H (r, t), E (r, t) and D (r, t) . This

formulation of the field equations, where ,u, H and D are intro-

duced, is often convenient . But in the following we shall usually

describe the behaviour of the medium by using only etr and e i ,

solving the equations (1 .3) and (1 .4) with respect to the potentials .

In this connection it may also be emphasized that ,u, accordin g

to (1 .6), is determined unambiguously only when e t is known .

Thus, if one treats exclusively the transverse field it can be con-
venient to interpret the Maxwell equations (1 .8) in the manner

that the permeability is 1, or H = B, and the dielectric constant

is the transverse dielectric constant .
The permeability and the dielectric constants defined abov e

should be considered as complex functions ; their imaginary parts

are closely connected with the energy absorption by the medium .

We note in particular that the connection between the Fourier

components of the induced transverse and longitudinal current

densities and total electric fields are given by

tr

	

Jtr

	

r
ftr

	

fir

J ind (k, co) = ( j -Jo)li
= 4

~ 1 eli (k, w) -1) E li (k, w), (1 .9)

the equation holding, as indicated, for the transverse and long-

itudinal fields separately . Equation (1 .9) leads us to defin e

transverse and longitudinal conductivities as, respectively,

(1 .8)
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6 {ir (k,o~) = 4n Im (E{lr(k,w)_1),

	

(1 .10)

where Im (x) denotes the imaginary part of x . The real parts

of the equations (1 .10) correspond to the polarizahilities of th e
medium .

ur e now turn to considerations of a more general kind, base d

only on the Maxwell equations (1 .1) ; we do this primarily in
order to give an account of the phenomenon of absorption b y
the medium . The absorption does not express a lack of con-

servation of energy of the total system. Indeed, we shall deriv e

it in § 2 and § 3 from conservative equations of motion . The

absorption means only that a distribution takes place over a larg e
number of degrees of freedom, and the corresponding motio n

cannot be regained as an ordered motion . In a more detailed

description, the absorption by the medium can be described b y

thermodynamical and statistical mechanical parameters, an d

observed as, e . g., a rise in temperature of the system .

The conservation equations for energy and momentum are

derived in the familiar manner from the Maxwell equations (1 .1) .
We shall write them down in full so as to show their content s

and interpretation in descriptions of the present kind . We find

from (1 .1.) the energy equatio n

1 a > > ->- ~

	

c
8z at

(D•E~-H•B)-4
n

div (E X H)

	

~

	

4-~
=

	

4-
1 -> D_

D
aE+

H
aB_ b> oH +

~
8n

	

at

	

at

	

at

	

a t

where the first and second terms on the left are minus the tim e

derivative of the energy density and minus the divergence of the
energy current, respectively . The last term on the right is th e

work done by the field on the sources . The bracketed term on
the right is of a peculiar kind ; it is often assumed to vanish in

homogeneous media. However, applying (1 .4), (1 .7), and (1 .8) ,

we find-by integration over a space-time interval-that it re -
presents the work done by the field on the medium, and it give s
the rate dWf clt at which energy dissipates from the field in an

Ja ,
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irreversible manner . We may express this result in terms of th e
potentials, and find directly from (1 .8), introducing the con-
ductivities from (1 .10) ,

	

4 W =

	

(tr(k, w) A u (k, w) 2 -I- k 2 6 1 (k, w) Ø (k, w) 1 2) 4 t, (1 .1 2
k, w

for the absorption in the time interval 4 t . To be more precise ,
eq. (1 .12) includes the dissipation of energy, if any, through
the boundaries of the medium .

As to the equations for the momentum of the field, we apply
again (1 .1) and get for the component in the direction of th e
x-axis

1

	

a

	

>

	

>
47rcat

(Dx B)x-I-divi rxi

>
1 (±D aE ~>

	

aH
>

-L,

	

D -I-B .

	

- âB\ (1 .13)
8'A `

	

ax ax

	

ax axi

is Maxwell's stress tensor in matter . From equation (1 .13) we
} -

>-find that the momentum density is (1/4 ncc) • (D x B ) , which lead s
to the non-symmetric energy-momentum tensor of MINaowsKn . *
We shall in the discussion of reflection and transmission of ligh t
waves by metallic surfaces, in II, attempt to show the direc t
significance of this property of the energy-momentum tensor . ` It
must be remembered that, if one will ascribe values to quantitie s
as energy and momentum, one shall not primarily look for case s
where they remain unchanged, but consider processes as ab -
sorption where exchanges of these quantities occur . As to the
right-hand side of equation (1 .13), the last term is the Lorent z

* Cf . C . MOLLER, The Theory of Relativity, Oxford 1952, p . 203 . The Min-
kowski tensor has been adopted, too, hi the 1951-edition of Die Relativitätstheorie
by M .v . Lxun .

where

_

f(

	

> }
+ Ao• Ex + -c `Jo X B x ,

=
1

	

1 3 } > -~

rsi

	

,1,z
(Es Di -I- Hs Bi -~J (E

	

~- II )

	

)
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force density on the sources, while the first term corresponds
to the first term on the right of (1 .11), and is the rate at whic h
the momentum density is taken up by the medium. The average

rate at which momentum density is absorbed can be obtaine d

from (1 .12) when multiplying by the factor k/w inside the
brackets .

We are thus able to account for the momentum and energy

exchanged between the sources, the field, and the medium. In
the case where the sources are outside the medium and th e
field is determined by boundary conditions, the energy dissipatio n

can be found from (1 .11) or (1 .12), and the momentum ab -
sorption from the corresponding expressions . It may here be

noted that, if the sources are inside the medium and not appreciably
affected by the above momentum and energy exchange, a detaile d

treatment of the phenomena as a rule will be much simpler tha n

in boundary problems or cases where the reaction of the sources

must be included in the description .
So far the absorption was considered to take place in a

continuous manner. When attempting to subdivide the absorptio n

by the medium into elementary processes we must lake int o

account that the quantum of energy corresponding to a frequency
w is kw . It may be concluded immediately from (1 .12) that the

probability for the absorption of a quantum of frequency w an d

wave vector k is, during a time interval A t ,

p (k, w) = 4 t

	

tra(I, co ) 1

	

(k,
co) 12

	

k 2

\tic

	

+ h w (k, w)

	

(k, co) 1 . (1 .14)

This expression represents a statistical mechanical probability,

and in contrast to the previous equations it depends directly o n

quantum theory, through the explicit appearance of the con-

stant h . From (1 .14) can be derived in particular the fluctuation s

in energy and momentum absorption . We note further that, while

the probability for absorption Ap (k , w) for quanta 1iw is positive
for positive w, it becomes negative for negative w, corresponding

to a transfer of negative energy to the field . It is a matter o f

convention whether one will introduce instead only the numerica l

value of w, and accordingly only positive energies . In § 4 will
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be discussed a few interesting and simple consequences o f
equation (1 .14) .

In the description used here, represented by for instance (1 .8)
together with (1 .1), the quantities s and were considered as

numbers in k, co-space and correspondingly as operators in

ordinary space. This formulation will be sufficient for the present
purposes. But it is seen that r and 1/u in (1 .8) may be more
general operators, and not necessarily linear . The other formula e
in this paragraph can then be similarly interpreted .

The question of measuring the field quantities, like E, D, etc . ,
is a rather subtle one. The dependence of the dielectric con-
stants on wavelength and frequency will evidently play an im -
portant role for such measurements. Actual examples of this
dependence can be found in the following sections . Even though
the description is best illustrated by such examples we shall mak e
here a few remarks on the measuring problem in general . The
familiar rule for measurements of the fields is that, for instance ,
E and D are the fields in crevasses in the medium, cut paralle l
and perpendicular to the field itself . But let us take into accoun t
that at the surface of the medium the fields do not change abruptly
(as they would if the ratio between D and E were constant i n
the medium) and suppose that they vary in some smooth manner

over a distance, d, from the surface. If now we cut crevasses of

the above kind, though with dimensions smaller than or of th e
order of d, the fields arising in these crevasses are no longer E and
D, because the polarization has changed character . In fact, for

sufficiently small crevasses, the measurements must all give E,
because, for high values of k, the dielectric constant tends to 1
so that the polarization disappears . This corresponds to the cir-

cumstance that the field acting on a classical point charge is E.
Exceptions from the mentioned rule for measuring E and D will
occur in many other cases ; the rule is disobeyed if only shor t
time intervals are allowed for the measurement, and there are
cases too where the dielectric constants even for long wave -
lengths depend strongly on the wavelength of the field .
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§ 2. Semi-classical treatment of an electron gas .

We shall first contemplate the behaviour of an electron gas i n
classical mechanics. The properties of the gas will be described
in terms of the dielectric constants of the electromagnetic fiel d
equations introduced in § 1 . In the first part of the present
paragraph, a more formal derivation of the field equations i s
given ; in the second part, a comparison is made with the result s
of other authors . The question of the justification of the cal-
culation will be taken up in § 5 .

The calculations are based on the previously mentioned
picture of the dynamics of a system of electrons : There exist s

a total field in space and time, Ø (r , t), A (r, t), in which the
separate electrons move. This motion gives rise to an induced

charge and current density, Bind and find, which quantities wil l
be functions of the total field . Besides the induced densities there

may be source densities, Po (r, t) and jo (r , t), distributed withi n
the system. The latter densities can, for instance, correspond t o
a charged particle passing through the gas . From MAXWELL' S

equations for empty space, with charge density Pend + Po and
± ±

current density Jind +jo, one then derives the field equations fo r
the total field, of the type (1 .3) and (1 .4). In these equations the

source densities are eo and To . We shall suppose that the elec-
tronic motion differs only slightly from that in the undisturbe d
state of the system. This implies, generally, that the field equa-
tions will become linear .

Quite apart from the question of the applicability of a linea r
treatment, and of classical theory, the particular approximatio n
of the first order picture is that the motion of the individua l

particles in the gas gives rise to and derives from a field determine d
by MAXWELL ' S equations for empty space. But it will be clear
that one should rather assume that the field connected with th e
motion of the individual electron is governed by the final field
equations . Such a treatment on more precise lines is somewha t
more complicated and we shall show that it is not always needed .
As we shall see in § 5, the corresponding changes to be mad e

in our present computation will imply a velocity-dependent self -
Dan. brat . rys . Medd. 28, no .s .
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energy and a damping force on the electron from the field indu-

ced by it, not to be found in MAxwELL 's equations for empty space .

Consider now a gas of free electrons and its behaviour i n
the presence of an electromagnetic field, the motion of the electron s
being governed by classical laws and restricted only by the Pauli
exclusion principle in the initial state ; from LIouvILLE's theore m
it follows, then, that the exclusion principle is obeyed at any

later time. This approximation is conveniently termed semi-

classical, and it is based on similar ideas as the Thomas-Fermi
treatment of static electric fields . We shall find that the semi-
classical treatment in some cases gives other results than th e

familiar classical treatment, where the electrons are assumed t o
be at rest .

The distribution function of the electrons over momentu m

space and ordinary space is f = f (p, i, t), where p is the kinetic
momentum conjugate to . The initial. time-independent distri-
bution function in the absence of external fields is called fo (p, ) .

The behaviour in time of f is given by the Boltzmann equatio n

dff+p . grad,f+v . grad, f=-f	 fo

where one assumes a trend towards the equilibrium state, determine d
by the right-hand side of the equation . This damping of the

motion may be pictured as due to the resistance arising fro m
collisions with the positive background in the gas . As a rule,
we regard 1/r as infinitely small, in which case the damping ter m
serves to give the retarded solutions of the equations of motion ,
i . e . of the field equations .

The difference fl between f and fo is supposed to be small ,
and further fo is assumed to he independent of r . In the equatio n
governing the behaviour of f we neglect second order terms an d
obtain the simple equation of motion for ff = fl (p, r, t )

ô t fi +
e E I

c
( x ,6)) - gradJ, fo

	

• grad, f1 =-TY , (2.1 )

where E and B are the total microscopic field strengths, deri-
vable from the potentials . The term containing B in the Lorent z
force may be omitted, being perpendicular to gradg fo .
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We wish to write equation (2 .1) in terms of its Fourier com-
ponents in space and time . Therefore we make the development

fl (p, , l) =

	

f, (p , k, w) exp (ik • . - i w t) , and similarly for
k, w

the fields . We solve with respect to the Fourier components o f
f i and find

->-

	

1

	

->-

fi (p, k, w) = - ,

	

e E • gradp fo (p) .

	

(2 .2 )
-iv k-j-iw 1/r

The equation may be applied to, e . g ., a Maxwell distribution,
but we shall be concerned mainly with the case of complete

degeneracy, where grad], fo = (p/p) . 6 (p - po), po being the

momentum at the surface of the Fermi distribution . Since fo

was assumed independent of r, the same holds for po . We note
that, for temperatures different from zero, the 6-function in

grad], fo is replaced by a function of finite width, but as lon g

as the temperature remains low compared to the degenerac y
temperature there will be no appreciable change in the cal-

culations below .

The current induced in the system can be expressed now a s

a function of the field . Multiplying f, in (2 .2) by ev, and inte -

grating over velocity space, we have for the transverse part o f
the induced electric current density

J ;na (k w) = 22d3p ~-wv

	

~(p-po)(pAtr(k,w) )

h3
c )))J

	

±

v lr w- i/r

	

P

The integration over p amounts to an integration over angles .
When this is performed we compare with (1 .9) and obtain the

expression for the transverse dielectric constant of a degenerat e
free gas

ir

	

3 wô mv o
e (k, w) = 1 -}-

4 w

2 w+ i/i+ 1-(w+ i/T)2/v,2,k21o v 0k-w -i /a

vôkz

	

v0 k

	

g -v0 k -w -i/z '

Po

where wo is the classical resonance frequency of the electron gas ,
2*
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or w,2) = 4 n e 2 9/!n, 2 being the density of electrons ; vo is the

velocity at the top of the Fermi distribution .

In quite a similar manner the induced charge density may

be calculated from (2 .2) as a function of the electric potential .

The longitudinal dielectric constant in (1 .9) is then found to be

z

	

3wô mvo~

	

w~- i/r

	

vok -w -i/r
e l (k, w) = 1+ 2 2 •

	

1-}-	 log

	

(2 .4 )
vok po

	

2kvo

	

vok -w -i/r

In these equations, and in the following, the logarithms denot e

principal values, so that their imaginary parts are betwee n

- in and + in . It is seen that a change of sign of w in (2 .3)

and (2 .4) will have the same result as a change of sign in th e

damping term i/r . Further, the dielectric constants depend on k
only through the square of this vector .

We have distinguished between the momentum po and mvo.
This discrimination is not necessary in the simple calculations in

this paragraph, and in the following it is not stressed . However,
a discrimination is useful for a relativistic gas, where (2 .4) and

(2.5) can be applied directly . Moreover, it is important when th e

self-energy influences the connection between p and v, as discusse d
in § 5 .

As mentioned, a main difference between the treatment by

BoHM and co-workers, and the present discussion, arises from

a difference in attitude in the description of the field, to which
we ascribe a precise classical meaning . While we obtain a com-
mon description of all waves of the field, Boom treats essentially

only long waves, for which a simple development in powers o f
v,lk2 /w2 can be made . BOHM asserts that the field equations re -
present merely collective motions, and not individual particl e

behaviour .

A simplification of the field equations corresponding to (2 .3)
and (2 .4) is desirable and possible in most problems. We see
that the dielectric constants depend on the dimensionless rati o

between w + i/rl and vok . If we are concerned with a field o f
given frequency the significant wave vectors k will collect around
a certain corresponding vector, and the above dimensionles s

ratio may be said to have an approximate value, determine d
implicitly by the field equations . We can here distinguish between
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two essentially different cases, namely
1

w + i/r I larger or smaller

than vok . If it is assumed that the collision time r is long, thes e

two cases imply that during one period of the field the path

travelled by an electron is, respectively, shorter and longer tha n

the wavelength of the field . In the former case, the electron gets

the impression of a time-dependent field while, in the latter case ,

it reacts nearly as it would in a static field .

Consider first the simpler case of k tending to zero. The

transverse dielectric constant (2 .3) then approaches the classical

one for a homogeneous medium (omitting the factor mvo /po) ,

£ tr =1-

	

, for vok<w +i/rl,

	

(2 .5)
w (w + i/r)

the first correction term being (	 wok 2vo)/(5 w (w +

	

In

this limit, the expression for the longitudinal dielectric constant ,

(2 .4), becomes of similar type ,

3 2 v 2Et

	

1-(w+°/r)1+5(w
+i/r)2+

. . . , for vok<+i/z1, (2.6)

where we have included the first correction term in k 2 . If one

is not concerned with a degenerate gas, one can find this ter m

simply by replacing 3 v ' ) /5 by the average of the velocity squared
in the gas in question . It should be mentioned that the dispersio n

formula (2 .6) has been discussed previously by several author s

(cf., e . g ., BonM and PINES, 1952) .

In the opposite limit of vok large compared with w + i/r one

finds a striking departure from the classical result . As mentioned ,

the electrons behave nearly as if the field were stationary, but

in the dielectric constants finite imaginary terms appear, cor -

responding to energy absorption by the medium . Using (2 .3) and

(2 .4), we obtain in this case (omitting again the factor mvo/p o )

w o2 ( 3 w 2 3 sew /

	

w 2
E ir = 1 -

w

	

ok 2 vô

	

4 k vo ~

	

Ic
vo

/

~3 wJ

	

w2

	

~w
E i ~= 1 E a 2 1 - 2 + i

	

for vo k> w+ i/r

	

(2 .8 )
k »o

	

k vo

	

2 kv o

-i

	

1-

	

, for vok>w+ifrl, (2.7)
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In approximate calculations one can use the formulae (2 .5) ,
(2 .7) and (2.6), (2 .8), instead of the more involved ones, (2 .3) and

(2.4). It is of interest, further, that in a qualitative sense one

may apply, e . g., formula (2 .5) for all values of k and w, if only

in this equation i/-r is replaced by i/r ± i4 kvo/3 7r .

We may mention briefly some results concerning the non-d egene -

rate gas. For a Boltzmann distribution, an approximate descriptio n
can be obtained from the above formulae when replacing vo by

the temperature velocity of the particles . More accurate expres-

sions are found by introducing the distribution function fo =

C •exp (	 mv 2 /2 0) in (2 .2) . It is apparent that, for w large compare d

to k (2 O/m) 1h2 the equations (2.5) and (2.6) are not far wrong ;
in the series development one need only introduce the proper

averages of the particle velocities . In the opposite limit we get ,

e . g., for the longitudinal dielectric constant, corresponding t o

(2 .8) ,

a - 1
mwôr

	

w ~nm1
(20k2 /in)	 -1+

	

2

	

, for

+k2011

where the first term in the brackets gives the Debye -Hücke l
formula for static electric fields, while the second term account s

for the energy absorption .

It is noteworthy that for a Boltzmann gas the imaginary par t
of the dielectric constants is finite, independently of the value s
of k and w . Thus, for transverse fields, one finds directly fro m
(2.2)

4rz
Int (etr) _ _ 6(r =

w

1
a

• exp (-m w 2 /2 ok 2 ) , (2 .10 )

the formula holding for sufficiently large values of r .

Spin contribution to magnetic properties .
So far, we have considered charged particles without intrinsi c

magnetic moments . But already in the semi-classical treatment it i s
possible to include the electron spin in a simple manner . Consider for

this purpose a single Fourier component B ( w) of the magnetic field .
An electron with magnetic moment ß has the interaction energy

->--)-± ßB (k, w) exp (ik • r- i w i),
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corresponding to its moment being either parallel or antiparallel to the
field . If the distribution function is f and f- for parallel and anti -
parallel spin, respectively, we get to the first order the following Boltz -
mann equation s

(-iw+v• k+117-)f(k,w)+ßB(k,w)ik gradefom = 0, (2 .11 )

where, for instance, 0k, w) = f+(k, w) - f (k, w), f being the spin
independent distribution function in (2 .1) . The contributions to the
induced magnetic moment of the gas from the parallel and antiparalle l

distributions are equal . We find readily, for the Fourier component s
of the spin magnetic moment per unit volume ,

-)-

M(k, w) =

	

m ß 2 B (k, w)	 k-grad l, fo

v

	

v•k - i/a- w

A magnetic moment M is equivalent to a current (c/4 n) rot M, and
thus we find, by summation, the spin contribution to the transvers e
dielectric constant of a degenerate ga s

k2Aûc2 ßa
å t tr (k, w)

	

-	
n 2 w 2 tig U D

w+ i/r a, Icvo -w-
2 kvo
	 lo'

- kvo - w- i/r .
(2 .12)

If, more naturally, we describe the effect as a contribution to the perme-
ability ,a we can use the relation 41/0 _	 (w/kc)2 år° . In the limit
of low frequencies we obtain

	

_

	

p z

	

å (cc} =

	

ac2 r~

2

vo { + i 2 kvo
.

	

(2 .13 )

For a free electron gas, the first term in the brackets leads to th e
familiar spin paramagnetism, equal to three times the diamagnetic con -
tribution. Since, generally, the spin contribution to the electromagneti c
properties of the system is small compared to the orbital contribution s
(2 .3), it will be neglected in the following .

When comparing our description in this paragraph wit h

treatments by other authors it should be mentioned, first of all ,

that a hydrodynamical discussion of the motion of a Thomas -

Fermi gas has been attempted by BLOCH (1933, 1934) . The

pressure-proportional to e, 513-arising from the zero-point kinetic

energies was introduced in hydrodynamical equations of motion .

Using only the two parameters pressure and velocity of the liqui d

model for the description of the state of the electron gas, BLocn
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obtained an approximate and smoothed-out picture of the
motion. It is easily shown that, in the linear approximation, th e

model of BLOCH gives, for the dielectric constant of the long-

itudinal motion,

(w + i/r)2 - k2 II2

	

(2.14)

where the constant u 2 is given by u 2 = (5/9)•v and thus com-

parable to the velocity, vo, at the top of the Fermi distribution .

The velocity u may be said to represent the sound velocity in

the gas without interaction (wo = 0). When kvo is small compared

to w we make a series development of (2 .14) and compare with

(2 .6). In this limit, the latter formula leads to u2 = (3/5) .1)(7,,

which is close to the above value found by BLOCH (cf. BOH M

and GRoss, 1949). For values of kvo larger than w, equation

(2 .14) gives a screening of the field quite similar to that in (2 .8) ,

although the value of u 2 should now be changed to (1/3) . v ;

moreover, the important finite imaginary part of the dielectri c
constant (2 .8) is not reproduced in (2.14) . We shall return ,

presently, to some of the simple features described by (2 .14) .

As regards the application of the hydrodynamical model of
BLOCH to the transverse field, we note that the transverse motion s
do not affect the density. The model must therefore give the

same result as the simplest classical picture . Accordingly, one
finds the transverse dielectric constant (2 .5), which formula i s

obtained from (2 .3) when putting the electronic velocity vo equa l

to zero . The hydrodynamical model is not appropriate, apparently ,
when (2 .7) applies, i . e . for kva > co + i/z I . It fails to describe
the orbital diamagnetism and the anomalous skin effect (cf. ,
e . g ., LINDHARD, 1953) .

As mentioned in the introduction, an interesting attempt t o
give a more exact solution of the equations of motion for a

degenerate gas has been made recently by TOMONAGA (1950) .

His treatment, however, was limited to the one-dimensiona l
case . On the assumption that the field contained only waves o f
long wavelength, which in the present formulation means tha t
semi-classical methods apply, TOMONAGA obtained a solution

without recourse to usual perturbation theory . The result was a
linear field equation for the longitudinal field given by th e

e l =1 -
2w0
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dielectric constant (2.14) of BLOCH ' s three-dimensional model ,
only now with u = vo, vo being the velocity at the top of th e

one-dimensional Fermi distribution . Now, it so happens that, i f

we apply the present method to the one-dimensional case wher e

the velocity v and the wave vector can be only parallel and anti -
parallel, we find immediately from (2 .2) the dielectric constant
of TOMONAGA, (2 .14) with u = vo . It may appear surprising tha t

a first order treatment gives the same result as a more precis e

transformation . The reason for the agreement is that in the one -

dimensional case the first order calculation is in fact self-

consistent if only long waves are considered, as will be shown

in § 5 . We note, further, that the Tomonaga treatment is not a n

exact one, because of the omission of the short waves of th e

field. In § 3 we shall deduce an expression, (3.12), for the one -

dimensional dielectric constant, based on quantum mechanica l

equations of motion for the electrons .
Let us regard, for a moment, the simple picture suggeste d

by the Bloch model (2 .14) . For long waves the energy of the

field quanta is

E ° (p2u2 + h2wô) 2

	

vue p2/2 ,u

where p = lik is the momentum, and ,u may be described as
the mass of the quanta . The value of ,u is

_tw
= 2

(

	

e2

	

i

	

vo) '

~`

	

u 2o

	

m 3 .Tr livo) ~ u '

which is usually of the order of the electron mass. If, for instance ,
a charged particle passes through the gas, such field quanta ,

equivalent to particles, will be created . In the first approximation ,

these particles will subsist in the system, but a closer inspectio n

shows that they have a finite life-time (cf . . § 5) . For increasin g

values of p we find, according to the more precise field equatio n

(2.4), that the solution of the field equations is considerably mor e

complicated, and large damping terms appear. In this region
field quanta similar to particles can not be identified . However ,

for nearly stationary cases the field equations, (2 .8), are of the

Yukawa type with screening length 1/x = vo/3 wo (equation
(2.14) gives 1/x = u/wo) . In BLocx's model the screening length



26

	

Nr . 8

is equal to the Compton wavelength, u, of the field quanta ,
and in the more accurate description this is approximately true .

The properties of the field quanta, therefore, are not unlike those

of mesons . Yet, it should be emphasized that the field quant a

in (2 .14) account only for part of the properties of the gas ,

excepting the one-dimensional case . If we consider the thermal

properties of the system (2 .14), we find that the excitation is
vanishing, unless the temperature, 0, is of the order or large r

than 14 wo . This differs from the expected result for a free gas ,

i . e . thermal energy proportional to 0 2 . When one uses instead

(2 .8), together with the particle equations, a 0 2 -dependence is

found, as will be discussed in II .

In a treatment of stopping problems KRONIG and KORRINGA (1943) ,
and KRONIG (1949), have attempted to describe the motion of a metalli c
electron gas as that of a charged liquid, subject to friction from the
background of positive ions and having a certain internal viscosity .
The pressure effects, important in the model of BLOCH, are neglected.
For comparison, we shall quote the longitudinal dielectric constan t
corresponding to the model of KRONIG and KOnnINGA .

Let en, and ee be the densities of mass and charge of the liquid.
The viscosity is n, and the friction with the static background is f.
From the classical hydrodynamical equations of motion one finds then,
in the linear approximation,

e1-1-	 4 n ec	

em. w 2 +iw(;+2a7k z ) '

This differs from the classical e in (2 .5) only by the terni involving th e
viscosity 17 . If this arbitrary parameter is large, as assumed by Ka0NI G
and KORRINGA, one gets a strong dependence of e l on the wave numbe r
of the field . However, for large values of k, where the viscosity term is
dominating, quantum theory takes over ; in § 3 will be given a simpl e
and more appropriate formula for e l at short wave lengths (see, fo r
instance, eq . (3.4) and page 32) . The model contained in (2 .15) is les s
appropriate than that of BLOCH, and the picture involving a viscosity
of the kind niet with in ordinary hydrodynamics can be somewha t
misleading (cf . p . 39) . We note that the transverse dielectric constant
in the model of KRONIG and KORHINGA will be quite similar to (2 .15).

Already here mention may be made of the field equations propose d
by LONDON for superconductors . It can be of interest to compare hi s
equations with those in the present treatment of a free gas . We ar e
then concerned with the equations (I)-(VIII), p . 29 . F . LONDON (1950).
They are seen to result from the following simple dielectric constant s

(2 .15)
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g!r _ a t

	

1 -	 47r

	

i 4 zorz
=

	

llw2+ w

where A is a constant which, according to LONDON, defines a density
of superconducting electrons, es = (rule' A) . Further, cn = Qne2zn/rn is
the conductivity of the remaining normal electrons . It is not easy to
understand why Etr and E l should be put equal, corresponding to ,u = 1 .
For this reason, and because (2 .16) is not specified in detail for long and
short waves of the field, it is difficult to make a direct comparison wit h
the dielectric constants derived above .

It can be illustrative to compare (2 .16) with the conventional pictur e
of an ideal conductor . The field equations for the latter are usuall y
assumed to be those resulting from (2 .5) with 1/e = O . Therefore, fo r
fields varying not too quickly in time, LONDON'S equations are merel y
the retarded equations for the usual model of an ideal conductor . It
appears from (2 .7) and (2 .8) that the mentioned model of an ideal con-
ductor is inadequate as a picture of an electron gas, which makes more
obscure the meaning of equations as (2 .16) (cf. II and LINDHARD, 1953) .

§ 3 . Quantum mechanical treatment of electrons .

We shall now include the quantum mechanical descriptio n
of the electronic motion in the calculation which, otherwise ,

follows quite similar lines as the semi-classical treatment in

§ 2 . The main difference is that previously we distinguished only
between wavelengths 1/k of the field, long or short compared

to ao/w, while now we must further compare 1/k with the wave -

lengths 1/k 0 = h/nwv a of the electrons in the gas . As long as on e

is concerned with long waves of the field there will be only mino r
corrections to the semi-classical formulae, but for field wave s
shorter than 1/k, the field equations are completely changed .

In the calculations we make the same assumption as in § 2
regarding a common field in which the electrons move . This

means essentially that time-dependent Hartree equations ar e

used . As to the initial state we take, as before, simply the freel y

moving electrons of the Sommerfeld model and compute to

first order in e 2 . None the less, our results go beyond first orde r

when we introduce an effective electron mass (cf . `3 5) .
Already here mention may be made of one particular cir-

cumstance concerning the behaviour in time of a system whe n
disturbed by external fields . It is apparent that the wave function s
will not develop independently in time, because each particle

moves in a field determined by the others . But, since the originally

(2 .16)
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orthogonal one-particle wave functions are governed all by th e

same one-particle Hamiltonian, they will automatically remain

orthogonal. This has the particular advantage that the exclusio n

principle need not be taken into account explicitly in the dyna-
mical treatment, just as in the semi-classical case . It follows ,

moreover, that for a wide class of phenomena, e . g. in impacts

by external charges, the seeming reduction in transition possibilitie s

due to the exclusion principle's does not come into play .

As regards the boùndary conditions in the perturbation

treatment, one should at the time t = - oo find the unperturbed

state. This condition is fulfilled . if an infinitesimal negativ e

imaginary term, - ir/2, is introduced in the energies of th e

electron states, because one then can obtain the retarded solution s

of the equations of motion. It can be convenient to assume that

the width I' of the excited states is finite, since the width is con-

nected with the resistance in simple pictures of metals . However ,

this manner of describing resistance is sometimes too crude,-it

is less justified than in the classical equations (2 .1) . The way in
which the metallic resistance appears in the field equations belong s

to the properties of the positive background of charge, with which

we are not immediately concerned . In such more complicate d
cases the use of causal dielectric constants is to be preferre d

(cf . § 5) .

We consider an assembly of electrons having one-particl e
wave functions yn (I , t) = ç (r) • exp (- i wn t + rn t/2 h) , the
system being initially e . g . in the ground state . The perturbing ter m

in the Hamiltonian i s

= eØ(r,t)- 2nze`p A(i,t)-~A(i,t)•p ) ,

	

(3 .1 )

where for the present we disregard spin contributions .

Equations for longitudinal field .
The perturbation gives rise to an induced charge and curren t

density for each of the electrons . The total induced charge density ,
e i t), in the system is the sum of the induced densities for
the individual electrons . We write, as before, the fields and th e

* ExpliciL reductions of such kind have been applied in nucleon problem s
by, e . g ., GOLDBERGER (1948), and BLATT and WEIssxorF (1952) .
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charge densities in Fourier components in space and time .
Choosing the gauge to be such that the longitudinal vector potentia l
vanishes, we find from (1 .9) the connection between the long-

itudinal dielectric constant, s 1 (k, w), and the induced charge
density . We specialize to the case of free electrons with wav e

functions q~n (r) = v-" exp (ikn • r) for the initial states, an d
similarly for the final states . When we choose a Fourier compo -

4
nent k, w of the induced charge density, an electron with mo -

mentum kkn can only jump to a state with momentum h (kn + k) .
The contribution from this electron to the Fourier componen t
of the induced charge density is, assuming a constant imaginar y
energy difference, iy ,

2SC~na . (z , t) _ -
h z

V Ø(k , w) eYp(ik• i- iwt)

--»

	

+ compl . conj .

	

(3 .2)
k2 -~ 2 k . kn -i-

2~
(- w - i

~~

	

tr .

The distribution function of the electrons we denote as f = f(En) ,
En being the unperturbed energies . Summing (3 .2) over the
electrons and using the definition of the retarded dielectric con-

stant, we find for free electron s

2

£
I
(k,w) - 1+

2 m 2 wô ~ f(En)	 1	

N

	

~ h2k2
n

	

~

	

k 2 +2k-kn -
2

(0)~

	

i~
} (3 .3)

k2 -2k kn+
tin

(w+iß) 1 J

where N =

	

f (En ) is the total number of electrons, and w o a s
n

before is the classical resonance frequency of the gas, wå =
4 a e2N/mV .

In (3 .3), we sum freely over all electron states, since contri-
butions from jumps between two occupied states cancel, as follow s
from our previous remarks . In the derivation of (3.3), the tech-
nique of quantum field theory is not advantageous, but can b e
so in higher order computations .
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We apply first the formula (3 .3) to the extremely simple cas e
of the electrons being initially at rest . Accordingly, the moment a
kkn are neglected in (3 .3), which leads t o

2

E Z (k, w) = l+ ~22 _
	 0	

2

41n2
lc 4 -( w +

y

This formula corresponds to the classical result (2 .6) and shows
in a direct manner how the inclusion of quantum effects implie s
a strong dependence on the wavelength of the field .

Take next the case of the Fermi distribution, and assum e
f (En) = 1 for En 4. Eo, while for higher energies f (En ) = 0 .
Put further Eo = mv/2 = h2ko/2 In . In the summation in (3 .3)
we first average over the electrons with the same energy l2kn/2 m,
that is to say, we integrate over the angle between kn and the
fixed vector k . One then obtains characteristic logarithmic ex -
pressions, not unlike those in the semi-classical formulae for s .
Finally, we integrate over the energy En , from 0 to Eo . When
quoting the resulting formula it is convenient to use a few ab-
breviations ; we write z = k/2 ko, w ' = w ± i(y/h), u = w I/kvo ,
and u' = w ' /kvo . The parameter z, which contains the wave -
length of the field and that of an electron in the gas, serves t o
indicate how far one is away from the classical limit, the latte r
corresponding to z = O . Further, the quantity u (or u ') shows
whether an electron during one period of the field travels a
distance longer or shorter than one wavelength of the field ,
these two cases being represented by respectively u < 1 and u > 1 .

The formula for the dielectric constant of the degenerate Ferm i
gas is then

23

E l = 1 -{- 2w f,
k vö

1

	

1

	

'
f _ 2 8z

{1 - (z -u') 2 }1o	 -~z-

	

1

1

	

-+- ' ~- 1
-~8z { l -(z-~u)2}log

z

z+

u

u' - 1 '

(3 :4)

(3 .5 )

(3.6)

where principal values are taken . In the present connection, we
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are concerned with very small values of the damping y . In the
limit of small y we find the following expressions for the real

and imaginary parts of f = fI + i ,
fi(u,`)

	

2 +
8z{ 1 - (z-u)2 }log

g
8z

{1 (z + u) 2 } lo

z- u+ 1

z-u- 1

Z + LZ-}-1

z +u- 1

2u, for z+u<1 ,

f2(u,z) = { 8z{1 (z-u)2 }, for I z-ul<1<z+u,

, for 1z-al> 1 .

The contents of these formulae for the longitudinal dielectri c

constant are perhaps best appreciated by finding the approximate

values in a few limiting cases . It is seen that, for z = 0, the equa-
tions (3 .5), (3.6) lead to the semi-classical formula (2 .4) . A
similar result is obtained for small values of z . Consider here th e

case of z u < 1 . This corresponds in the semi-classical treat -

ment to formula (2.8), where u < 1 and thus the electrons can

move through several wavelengths of the field during one period .
We assume that the damping is small and develop (3 .7) in

powers of the small quantities u ± z . This leads to

~

	

2

	

2

E i (k, c~) = 1+	
3w2

	

+i ~cu>

	

cv 2

	

k	 + . .1
z+

u<1

	

(3 .9)
v~ Ic

	

2 volc vak

	

12 ko

	

II

a formula equivalent to (2 .8), except for the last term in th e

brackets, giving rise to the subtraction of a constant in s i (cf.
also LINDHARD, 1946) .

Another case with correspondence to the treatment in § 2 is

that of u > 1 + z . This inequality implies that ktw is large com-
pared with the energy transfer I1 2 (k 2 + 2 k ko)/2 m to an electron .
Therefore the classical formula on the form (2 .6), where u > 1 ,
must apply, as is also seen from a series development of (3 .6)
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i

	

1
f(u , z) = _	 	 -	 z 2

3 u' 2

	

5 u'4

	

3 u ' '
, I u' I >1-}-z .

	

(3.10)

In the more typical quantum mechanical case where z j u+ 1 ,

the longitudinal dielectric constant tends to 1 for increasing z ,

because the electrons respond only weakly to the short waves

of the field . We shall quote only the result for the region wher e

the imaginary part of el is finite . Thus, we find

3 w2
E l (k, w) = 1-{-

2
k?.v 0

- (z -u)2)-I-z2zu+ . . . I,

	

(3 .11 )
17c (

8 z

in the case of I u- z < 1, u =, z > 1 . The resulting resonanc e

effect is of the same kind as that in (3 .4), for large values of k .

Before finishing this discussion of the longitudinal field w e

shall deduce the dielectric constant for the case of a Fermi ga s

in one dimension . In § 2, it was shown that the semi-classica l

treatment gives just the field equations of TOMONAGA (1950) . The

present quantum mechanical perturbation method must of cours e

give a somewhat different result for short waves of the field .

The desired equations can be derived immediately fro m

equation (3 .3), if there we put equal to zero all vector component s

in the direction of the y- and z-axes . As before, it is suppose d

that f (En) = 1 for En < E° , and otherwise f = O . Here, Eo =

mvô/2 = 11 2 kå/2 m . Summing over Icn = Icxn one finds that

7

	

m2 w2

	

z - u ' -+-1

	

z-}- u ' -{- 1
E l (lï, w) = 1 -I-

	

z 3

	

log

	

,	 + log	 	 (3 .12)
2~r k k°

	

z --u- 1

	

z+ 11 -1 '

which formula for large k ° tends to the semi-classical one, (2 .14) ,

with u = v ° . As usual, principal values are to be taken in the
logarithmic expression in (3 .12). In the other extreme of k °

small compared to the wave vector k of the field, the formul a

(3.12) leads to the general result (3 .4) . It is seen that, while in

the semi-classical treatment the case of one dimension was much
simpler than the three-dimensional case, this is not so in th e

quantum mechanical treatment .
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Equations for transverse field .
For the case of transverse fields we shall apply the sam e

perturbation method as for longitudinal fields, and again it is

assumed that the motion of the electrons is non-relativistic . The

perturbation term in the Hamiltonian is (3 .1), where the spi n
contribution is neglected . The inclusion of spin would only giv e
rise to small changes in the field equations, as is evident from
the result (2 .13) . In analogy to (3 .2) we now find the contri-

bution to the induced transverse current from an electron with wav e

vector kn , in the simple harmonic field A (k, w) exp (ik i- i w t)

+ com.pl . conj ., corresponding to a single Fourier component ,

~

e 2

	

->

	

(2 kn -{ k) • A (k, w)

2 meV
(2kn+k~

->

	

2m
.

	

-I- 2A (k,w)

k2 -j-2k•kn-	 h(w-}-i~)

	

J

exp (ik • i- iw t)+ compl . conj .

We introduce the distribution function of the electrons and, ap-

plying (1 .3), we can express the transverse dielectric constant on

a closed. form. The dielectric constant is a three-dimensiona l
tensor which, because of the symmetry in problem, is on diagona l
form, with diagonal element s

£fr (k, co) = 1

(3 .14)

(3 .13)

2 wå

	

f(En)

	

~~ 2

	

(

	

1

w2

	

N
hn - (kkn)/k2)

	

" 2mn
\k 2 -}- 2 k kn --

+

We pass immediately to the summation for the case of a

degenerate Fermi gas, which will give the quantum mechanica l

equation corresponding to (2 .3). With fixed values of w and the
Dan .2iat .Fys .ilMedd . 28, no .8 .

	

3
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vector k we first average over the angle between k,, and k, and

next integrate over the numerical value of kn , from 0 to ko .

Using a familiar notation we can then write

2
E tr (k, w) = 1 -w å f t" (u, z) ,

w

where Pr = fir + iffy is determined from the equation s

= 8 (z2+3u2 +1) -32z1(1
- (z -u)2)2

	

z - u + 1
1og

zu 1

z + u + 1
+(1-(z + u)2)' log

z + u- 1

3
4 nnu(1-u2 -z2), for u+z<1 ,

få (ii,z)
=

1
32z (1 - (u-z)2)2, for lu-zl<1<u+z ,

10,

	

for Iu-zI>1 .

The equations (3 .16), (3 .17) are valid in the limit of y-} O. The

formula for f, when y is finite, can easily be obtained from (3 .16)

by comparing this equation with (3 .7) and (3 .6) .

Let us find the values of the above functions in the simple

limiting cases introduced earlier . Suppose first that u + z < 1 .

It is seen that here

(3 .15)

fir (u, z)

3 .17)

(3 .1 (

Etr (k, w) =
2

	

k'.3 .-rrw

4 k
	 o`1

k

w

vp 4ko)
}'u+z <1 ,

w
ô

~ 	 k 2

	

3 w 2
w2 4ko

+k2	 t~ o
+

•
(3 . 1

This result is not unlike that in the semi-classical case, (2 .7) ;

only we find a characteristic new term the first one in th e

brackets in (3 .18) . When multiplying by w 2 /k 2 c 2 , this term is seen

to contribute - (k 0 /3 rc) • (e 2/rc2) to the permeability . It repre-

sents the weak Landau diamagnetism of the gas and is her e

equal to one third of the paramagnetic spin contribution (2 .13) .
We note that the Landau term appears only in the field equation s

when u + z «« 1, i .e . for small values of the frequency w .
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For the case u > 1 + z we have again correspondence to th e
classical results, and the value of et' is found from the serie s

development

eir (k , co ) = 1 - w2 + 5u2 + 4u2 + . . . 1 ,u>1+ z . (3 .19)

Suppose that terms higher than the first in the brackets can be neg-
lected. It is apparent, then, that for finite y's there remains a small

difference from the previous semi-classical equation (2 .5), be -

cause the damping is not reproduced in (3 .19) . This differenc e

has its origin in the term (e 2/mc) A t) y 1 2 in the expression

for the quantum mechanical current of a particle, and is due t o
the crude assumptions made regarding the damping in thi s

paragraph. The difference disappears in a more systematic treat -

ment, as outlined in § 5 .

In the quantum mechanical limit the region of interest is
(u-z) 2 < 1 « (u -}- z) 2 , where the imaginary part of e is finite ,

f f'' (k,w) = 1-2{ 1 -i
32z

(1- (u -z) 2) 2 }, I u-z I <1«u-+-z . (3 .20)

The present calculations of the dielectric constants were non -

relativistic . As to a relativistic description we may quote on e
simple example . It is assumed that the electrons are originally

at rest, and the induced charges and currents are computed fro m

the Dirac equation for the electron. From a so-called simpl e
calculation, one then finds that-the longitudinal and transvers e

dielectric constants are equal and given by

(3 .21 )

where w ' = co + i
X

. It is evident that, for small k and w, th e
11

formula leads to (3 .4) . This result, moreover, proves in a direc t
manner the equality of s f' and o f in the case represented by
(3 .4), where we calculated only the longitudinal dielectric con -

3 *

2w 0et (k,
w) = £ tr' (k, w) = 1+ 	 __ _

h 2 k4
(

	

k2 k2 ,

	

k 2 w, 4 ,

- 1 +

	

+4m2

	

2m, ~
~c `L

	

4m2 c4
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stant. An application of (3 .21) can be found, e .g ., in the question

of energy loss by a relativistic particle .

§ 4. Damping of motion of charged particles ,

and self-energy .

The slowing-down of a charged particle moving through th e

system is a simple and interesting problem, in which the abov e
description can be of great convenience. The motion of a charge d

particle is of particular interest in the present connection because

it relates to the self-consistency of the method of approach em-
ployed in this paper, as will be discussed more closely in th e

next paragraph . We shall derive general formulae for, e .g., the

specific energy loss . However, the dielectric constants calculate d

to first order in e 2 , starting from the free particle approximation ,
will not always lead to very accurate results, and accordingly

we do not perform elaborate computations of the stopping .

A treatment of stopping problems based on the dielectri c
properties of a medium was suggested early by FERMI (1924) .

As we shall see, a detailed discussion of the problem in thi s

manner will not be confined to the simple dispersion propertie s
of the medium . Still, if one considers only distant collisions, thes e
properties are sufficient, which circumstance was utilized b y

FERMI (1940) in a treatment of polarization effects in the stop -

ping of relativistic particles . We shall show that our classica l

field equations are applicable even for the short waves of th e
field .

It is not the purpose here to discuss the numerous aspects o f

the problem of energy loss in matter by fast charged particles ;
a general survey based on simple concepts has been given by

N . BOHR (1948) . For the present we are concerned with the cas e

where a perturbation treatment can be used . Let it be assumed ,

further, that the particle is so heavy that its energy loss is com-
paratively small, and it behaves approximately as a classica l
point charge, ze, moving with a constant velocity, v, - we may
for instance consider a proton . This simplification allows a
description by forced classical vibrations, since the source densit y
is given beforehand as a function of space and time .

Before specializing to a free electron gas we give a general
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derivation of the energy loss suffered by the particle . In the case
considered the charge density i s

°o(r, t) = z 1 eå(r-vt) = zl e
V

The energy loss per unit path is zr e times the electric field

strength E at the immediate position r = vt of the particle, which

field is antiparallel to . Limiting at first the treatment to th e

longitudinal field, as is always sufficient if the particle velocit y

is non-relativistic, we obtain for the time-independent field t o

which the particle is subjected

É(vt,t) =ik(Ic,•v),

	

(4.2)

which quantity therefore depends on the imaginary, or odd, par t

of Ø (k, co) . The resulting specific energy loss is obtained fro m

(4 .1), (4.2), and (1 .4) ; we transform the three-dimensional inte -

gration over k to one over its numerical value and one ove r

w = kv cos (k, v), and find *

dE _ zi e2
Im

	

dlc
dw w

dR

	

acv 2

	

k

	

e t (k, w )
o • - k v

where Im (x + id) = rd . It is noteworthy that, since the dielectri c

constant enters in the denominator, the energy loss depends bot h

on the longitudinal conductivity (1 .10) and on the polarizability .

For the sake of completeness, we derive the contribution from

the transverse field too . The transverse electric field is given by
-->ir

	

v)

	

i

	

->-ir

	

kE (k, k

	

= (k . v/0A (k, . v) . By means of (1 .3) the field i s

obtained from the transverse part of the current correspondin g

to equation (4 .1). It is then an easy matter to deduce the stoppin g
+li v

2 2
	 	 0 /k2	

2
zt

2 . Im kdk w d w	 1-	 2	 v	 	 (4 .4 )
tr

	

C

	

o

	

-kv

	

w2 etr (k, w) 1
Since the contribution from the longitudinal field is given alway s

by (4 .3), the total average energy loss is the sum of (4 .3) and

* The energy loss may also be calculated from the energy dissipation term in
the conservation equation for the energy of the field (the bracketed term on the
right-hand side of (1 .11)) . This leads again to (4 .3) .

e~p(ik r-ik• vt) .

	

(4 .1 )
ç

(4.3)

dE

dR
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(4.4). In some cases (4 .4) can be simplified considerably. Thus ,

if Etr has no finite imaginary part and can be considered as

independent of k, the formula reduces to the one deduced b y

FRANK and TAMM (1937) for the Cerenkov radiation (see furthe r

A. Bonn, 1948). As mentioned above, we shall be concerne d

only with the case where the contribution (4 .4) can be neglected .

It is perhaps not out of place to interpose here some furthe r

general remarks, as an introductory to the calculations below .
In the problem of the stopping power of matter it can be illus-

trative to consider two extreme states of motion of the electron s

in the substance . First, one can regard separated electrons, eac h

bound in, say, a harmonic oscillator of frequency w . This pro-

blem was solved at an early date (N . Bonn, 1913), and it is a

characteristic feature that the energy transfers to the electron s

become very small at distances exceeding the adiabatic limit v/w ,

determined by the velocity of the particle and the frequency o f

the oscillator . Second, one may consider the opposite case wher e

the electrons move freely in the system . Then, a different kin d
of reduction must appear in the energy transfer at large distance s

(if there were no reduction the total energy transfer would b e

infinite) . The proper explanation is to be found in the screening

of the field by polarization in the gas, as was shown by KRAMERS
(1947), but not in the resistance damping, the latter having been

suggested by v . WEIZSÄCKER (1933) . Simply for dimensiona l

reasons it is clear that the frequency which for free electron s

replaces that of the harmonic oscillator must be the classica l

resonance frequency of the gas, wo = (4 sce n e/nn) '2, where e, i s

the density of electrons . By combining the above two pictures-

the harmonic oscillator and the free gas-in a suitable way, one
should be able to account for the stopping effects in atomic

systems . We note here that the free electron model-i . e . the

Thomas-Fermi treatment is useful even in the description o f
atoms . As a matter of fact, the present calculations on a fre e
electron gas were utilized in a simple general discussion of atomic

stopping power in a recent paper (LINDHARD and SCHARFF, 1953).

Let us apply the formula (4 .3) to the simplest case : a homo-
geneous gas of electrons at rest . We therefore introduce (3 .4) in

(4 .3) and find by integration
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dE

	

4nzi e 4
(4.5)

dR

	

12102

	

.e
.I '

where
(I21v 2

L

	

+ ((
U 2 2	 F= log{~~

	

122
- (4.6)

l

	

0

In the model used the energy loss therefore vanishes for mv 2 /Iwo .

However, the model is preferably to be applied in the familia r
extreme of large u . From a series development of (4 .6) one her e
gets

2 mv2
L =log rw 0

which is just the result of KRAMERS ' . One may indeed, as indicated
above, derive this formula using a simple qualitative argument
(cf. A. Bonn, 1948 ; LINDHARD and SCHARFF, 1953), but then

an undetermined constant remains inside the logarithm .

If one calculates separately the contribution to the energy los s
from distant collisions, one can from (2 .6) or the Bloch mode l

(2.14) refind the result (4.7), again apart from a constant i n

the logarithm. Mention should be made here of the model o f
KRONIG and KORRINGA (1943), KRONIG (1949), introduced in a
treatment of stopping by a free gas . A special feature of their

liquid picture of the system is the appearance of a viscosity, 17 ,

leading to the dielectric constant (2 .15) . KRONIG and KORRINGA

applied this semi-classical model not only for distant collisions ,
where it does not differ from (2 .6) or (2 .14), but even for clos e

collisions where the viscosity governs the motion. One gets a
formula similar to (4 .7), though with 8 77/3 o instead of h. in the
logarithm. It is hardly desirable in this way to replace quantum
theory by classical viscosity . Still, KRONIG and KORRINGA found

the screening by polarization at large distances prior to KRAMERS .

We now turn to the treatment of a degenerate Fermi gas ,
where (3 .5), (3 .7), and (3 .8) apply . Of course, these more involve d

formulae should be regarded merely as approximate estimate s
of the behaviour of the gas . The reason for their application

here is that we wish to see whether deviations from (4 .7) or

* It is to be noted that we have proved here the formula (4 .7) only for such
dilute gases where the Maxwell distribution applies (cf . § 5) .

(4.7)
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(4.7) will occur . For instance, one might find a change by a
factor inside the logarithm in (4.7), which would be difficult t o

discover in. the treatments of, e .g., KRAMERS (1947) and PINES

(1953) .

Introduce first the equation (3 .5) in (4 .3), so that the energy

loss is expressed by the functions f, and f2 , integrated over th e

variables u and z . The logarithmic term, L, in (4.5) takes the

form
svIv o

L =
Ô

Ü.C~IZ ~~3 dz	O

	

(z2+
x u f1

(
u ,fz))2'+ (x2 (2\ u , z))2 ,

(4 .8 )

where x 2 = e 2 / (nhv 0 ) . The quantity x 2 varies only slowly with

the density of electrons, and is for metallic electrons somewhat les s

than unity. The density of the gas enters only through x2 and

through the upper limit, v/vo, in the integration over u . The func-
tions f, and t2 are given by (3.7) and (3.8), respectively. The

value of Lin (4 .8) depends most directly on f2 , i . e . the imaginary

part of s, while f, is important only for small values of z ,
which implies that the polarization is of significance for distant
collisions .

For the case of velocities u high compared with vo one may
proceed as follows in evaluating L . Divide the integration in two
parts, u < us and u > u s , where al is a constant somewhat larger

than unity. The integration over u < ul will give some constant .

For u > u s there are two contributions, one from the regio n

where f2 is finite, or I u-z < 1, corresponding to close collisions .

The other contribution arises from the resonance at longer di -

stances, where z2 + x 2fi (u, z) = 0. Using the formulae (3 .7) ,
(3 .8), and (3 .10), we find that the two last mentioned contri-

butions are equal to log (v/vou1 ), and adding the result for u < u s
we have

2

	

2

L = log {C()	 w~ }

where the quantity C is expected to depend on the value of x .
Of course, for small densities, and accordingly thermal velocitie s
of the electrons in the gas, the value of C will tend to unity an d
equation (4 .7) results . In the opposite extreme of high densities ,
i . e . f << 1, a simple numerical computation indicates that C

(4 .9)
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again approaches unity . Intermediate densities, x2 - 1, give
values of C not much less than 1 . In most cases one will then

not be far in error in assuming C = 1 .

For low velocities of the particle, by which we understand

values of v small compared to the maximum velocity vo of

the electrons in the gas, there is a considerable difference betwee n

(4 .8) and the simpler picture resulting in (4 .6). We can here in

the limit replace u by 0 in fl , and f2 , in the denominator in (4 .8) ,

and using (4 .5) it is seen tha t

dE 4 z1 e 4m2

dR

	

3 rat '
	 U G 1

/
x) = So
	 z3dz	

G1 (
( z2 iÿ 2 f (0 , z))2

,

showing that for small v the energy loss is proportional to th e

velocity. The case of low velocities was treated on semi-classica l

lines in a paper by FERMI and TELLER (1947) . The formul a

obtained by them results from (4 .10) if in C 1 the function f1 (0, z)

is put equal to f1(0, 0) = 1, and at the same time f (< 1, which

gives C 1 = - log x-+,

	

log (vo Jf e 2) .

One may replace (4.10) by a simpler and yet approximately

correct formula. For this purpose we notice that the functio n

Cl (x) over a wide range of densities increases nearly as el/4 .

It can further be useful to compute numerically some values o f

the expression (4 .8) in the interval 0 < (v/vo) < 1, where generall y

it is not allowed to put u = 0 in fl and f2 . We find that, instead

of (4.10), the following logarithmic term in (4 .5) can be used

(2mv2 a

L = const • 1
Ewa) ,

	

(4.11)

where the constant is of the order 0 .1-0 .05. The formula shoul d
be applicable in the density interval 0.02 x 2 < 1 but, because

of the difference from the result for electrons at rest, (4.11) is

less reliable than (4 .9). According to (4 .7) and (4 .11), th e

function L is both for high and low velocities a function of th e

argument 2 mv2/h co o , at least in the ''first approximation . This

result can be of convenience in the handling of more involve d

problems (LINDHARD and SCHARFF, 1953).

(4 .10)
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We have supposed above that it is allowed to use a pertur-

bation treatment, even for quite low velocities of the particle .

However, when v is sufficiently low-of the order z,e 2/h-there
enters the new feature of capture and loss of electrons, and the

particle will carry electrons which to some extent screen the fiel d

around it . For this and other reasons it is assumed, usually, tha t
a perturbation treatment is applicable only when v > z,e2/h. (cf . ,
e .g ., BrTHE and LIVINGSTON, 1937) . Nevertheless, the present typ e

of perturbation method is not much in error even for lower value s

of v. In connection with this point it is of importance to notice,

first, that in a treatment of the present kind there is actually a

screening of the field and an inclusion of capture and loss i n

so far as such effects can be contained in linear field equations .

Moreover, the crucial entity in the collisions is the relative velocity ,

which for low v is given by the electron velocities in the system ,

and not by the much smaller quantity v. These remarks are o f
course not limited to a free gas of electrons, but apply for atomic

systems in general .

If one regards the stopping problem from a frame of reference

moving with the particle, the formulae (4.10) and (4.11) give

he loss of momentum per unit time of an electron gas streaming ,

with uniform velocity v, past a point charge z le . One may there -

fore make a comparison between the stopping of a slow particle

and calculations of residual resistance, and since in the latte r

case the rate of momentum loss is proportional to the electric

current according to Ohm's law, the proportionality to v in (4 .10)
is not accidental . More quantitatively, if in this formula on e

allows a reduction to the semi-classical approximation, i .e .

fi(0, z) = fi(0, 0), there is complete equivalence to a familiar

formula for the resistance as caused by foreign scattering centre s
in 'a metal.'The approximate empirical justification of the re-

sistance formula, both as regards proportionality to z7 . v and as
to absolute values, will again show that for low v it is not un -

justified to apply a perturbation approach in the stopping problem .

In the considerations in the previous sections, the damping
of the electronic motion by resistance was introduced in a most

* Cf ., for instance, MOTT and JONES : Properties of Metals and Alloys, Oxfor d
University Press 1936, p . 294 . The approximation used there is of a similar kin d
as that of FERMI and TELLER (1947) .
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cursory manner . The above remarks on one aspect of the re-

sistance problem will give an indication as to how the resistanc e

results from the dielectric constant in a linear field equation .

Straggling .
The straggling in energy loss provides an example of th e

direct application of equation (1 .14) . We consider, as before, a

heavy particle moving through the system . It is then possibl e

to find the probability of absorption of quanta h w, by use o f

(1 .14), (1 .4), (4.1), and (4 .2) .
We shall not enter on details of the problem and only compute

the straggling for the case where the particle has penetrated a

distance through the system sufficient to ensure that the distri-

bution around the average is nearly Gaussian . For this case the

standard deviation, Q, in the distribution in energy loss is de-

termined by the equatio n

Q2 = <(dE) 2 ~-<dE) 2 =dwp(w)h 2 w 2 ,

	

(4 .12)

where p (w) d w is the differential probability for energy transfer

w . The formula (4 .12) gives the fluctuation for the limit wher e

Bose-Einstein statistics reduces to Boltzmann statistics, i . e .

when field quanta are only rarely excited . Therefore, equation

(4.3) corresponds to the straggling

ilc v

z" e
' Q2 _ - dR

7-t v
	 2 Im

	

dk
2 dw sz	 (~2	w) .

e, o

	

41 o

(4 .13)

As before, we consider first the case where the electrons in th e

gas are initially at rest . One then introduces (3 .4) in (4 .13) ; we

shall quote the resulting expression only in two limiting cases .

For high velocities is obtained the well-known formula

= 4 7c zi e 4 ~ dR,

	

(4.14)

where relativistic corrections are omitted . Usually, the relativistic

correction is a multiplication by the factor (1 - v 2 /2 c 2)/(1 - v 2 /c 2 ) ,

cf . (3 .21) . It is often simpler, instead of the absolute value of
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the straggling, to give the relative value Q 2 /dE . When (4 .14) holds
we find S2 2 /dE = mv 2 /L . In the extreme of low velocities of the

particle, which, however, according to (4 .6) must obey

mv 2 /h co o > 1, the relative straggling can easily be shown to

approach a minimum valu e

Q2 ~

dE
- 2~

hwo,
(4.15)

determined by ht coo, the lowest possible energy transfer to the gas .
For a degenerate Fermi gas one gets of course the result (4 .14)

for high velocities v . For low velocities we quote the formula

corresponding to (4 .10) . We introduce (3.5) in (4.13) and obtain

22 =4 7E zie'dR LD ,

U/ UO

	

ø
12 wo~ 2

u2du

	

z4dz fz(u , z)	 	 (4.16)

v~

	

( z2 +y 2 fi(ii, z)) 2 +(x2 f2( u , z)) -' '

Next, u is put equal to zero in fl and f2 in the denominator . On

account of (3 .8), LQ then takes the simpler form

3
(v

\ 2
L_2

- 2 (v o/

z4 dz
(4.17)

(z2 +y ` fi (0 , z )) 2
,

0

showing that for low velocities the straggling, Q 2 , . behaves as v 2 .
As in (4.10) the integral in (4 .17) may be approximated by a

simple function . Over a wide region of densities it is found that
L_c2 is nearly proportional to P 1/2, and dividing by (4.11) the
following estimate of the relative straggling is obtained for lo w
velocities

a

	

o

S2 2
r- .
=

^- (5122v2 • hcoX .
dE

(4 .18)

As was to be expected, the individual energy transfers can thus

be interpreted as the velocity v of the particle times an effectiv e
momentum of the electrons .
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Multiple scattering .
A problem similar to straggling in energy loss is the multipl e

scattering of the particle. It is well known that the major con-

tribution to the multiple scattering arises from collisions with th e

atomic nuclei of the substance, because they can have charge s

high compared with the electron charge . Still, let us briefly

resume the results for the multiple scattering contributed by th e

gas of electrons . The mean of the square of the total angle o f
deflection of the particle, y 2 , can be found by summing th e

squares of the individual momentum transfers perpendicular to

the path, and dividing by the momentum squared of the particle .

The general formula for the multiple scattering is the n

~x ikv

	

k2 -
w

?p2

	

z' hdR
Im

	

~k 2 dw

sz(k w)

	

(4.19)

0

	

0

if all angles entering in the formula are small . We apply here

the present expressions for the dielectric constant, where the

effect of the atomic nuclei is omitted . When evaluating (4.19)
for high velocity of the particle, using either (3 .4) or (3 .5), we

find that ?p 2 behaves similarly as the energy loss, but the distan t

collisions, i . e . the resonance collisions, will now be suppressed .

One shows easily that

2
ni dE

lP

	

1VT 2E'
(4 .20)

where E = Mv 2 /2 is the energy of the particle . In the limit of

low velocities the dielectric constant (3 .5) - (3 .8) may be used .

With the same approximation as in (4 .17) it is seen that here

0 2
zp 2 =	

4E2
(4.21 )

Width of states .
The width of the particle states, I', we introduce as h. times

the previously mentioned transition probability per unit time,
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2 zi e 2r -

	

7L U

dk

k
d w

E i (k, cu) ( '
o

	

o

	

)

	 1 l
m (4.22)

and a similar expression results for the transverse field . It is

interesting that the width is a classical property, in the sense that

(4 .22) does not depend directly on h .

For high velocities we get, from (3 .4) and (4 .22) ,

z 2 e 2

	

4 mot
I=

2v
wolog

For low velocities, in a Fermi gas, (3 .5) leads to

~ wo

(4.23)

zi e4 m u
~ - Gr (z) ,h-

	

vo

~

N

	

. (4.24)
z2 + x 2 fi(6 , z)) 2 4s

i
o

z 2 dz

Self-energy .
The self-energy of a charged particle is closely connected

with its energy loss . The self-energy may be found from the

energy density of the field in equation (1 .11) ; in order to obtain

the self-energy due to the medium we must subtract the self -
energy in vacuum . In so far as the recoil of the source can b e

neglected a calculation of the self-energy is straightforward, since

the fields are immediately given . We consider the longitudina l
contribution, which alternatively may be found as one half o f

the potential at the position of the particle . Introducing the
source density (4 .1), as corresponding to a point charge with
velocity v, we perform a calculation similar to that resulting i n

(4 .3) and obtain the following expression for the self-energ y

m~
zŸ e2

	

a =1cu

)

	

d1c

	

~	 1	 -1 1u(v = 2~v k d~ls i (k w)
0 t,-ku

where the mass M of the particle should be large .
The expression (4 .25) is quite similar to that describing th e

energy loss, (4 .3), or the transition probability to other states .

We may, in fact, combine the two in one formula for the comple x
self-energy, U,

(4.25)
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°° s+ l"
	 ~U= u i~ =
2
	 i
~v k

dw~	
iEc ( lc w)1

j ,

	

(4 .26 )
,

0

	

-kv

where I'/k is the previously deduced transition probability .

Further, e (k, w) represents e l (k, w) for w > 0, and el* (k, w)

for w < O . We note that the transverse analogue of (4.26) may

be derived directly from (4 .4) .

For high velocities we get from (4.25) and (3 .4) the simple

result
o ~ e 2

u = -zï

	

k
4hU

wp, (4 .27)

leading to quite small values when v is large . The contribution s

to (4 .27) arise from polarization at distances about equal to th e

adiabatic impact parameter, v/w,, and not from the very smal l

probability of carrying an electron . Similarly, if the particle i s

at rest, or moving slowly, we can for a degenerate gas emplo y

the dielectric constant (3 .5), (3 .6) and obtai n

	 i	 4 "
u =

2 z me ( dz ~ 	 fi( 0 , z )	 	 (4 .28)
72 142

	

o

	

z` --r x f (0 , z )

where fl (u, z) is given by (3 .7) and the integral, accordingly ,

is about equal to ,n/2 x . Thus, we have found an approximat e

expression for the binding of, e . g., a proton in the gas . In the

semi-classical limit one finds for the self-energy, to secon d

power in the velocity of the particle ,

zi me4 11

	

1/

	

~) v2 ~
u

	

hL x

	

1 I
6

	

16 v2u

One may attempt to improve eq . (4 .26) by including the

recoil of the particle . Since in (4 .26) the frequency w is give n

by h w = hk • v = 4 p • (aE/a p), it would seem natural in quantum

theory simply to replace h w by hk • p/m + 1 2 k 2/2 n7 . The proper

formula is, however, slightly more complicated . In the Appendix

is derived the term to be added to the free particle IIamiltonia n

in the wave equation (cf . (A . 12)) .

(4.29)
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§ 5. Discussion of the approximation method .

In the calculations of the dielectric constants in G 2 and § 3,

to first order in e', it was assumed that the electrons may b e
regarded as freely moving particles . This assumption is a centra l

one in the Sommerfeld theory as well as in the Thomas-Fermi

model . We shall discuss in how far the first order field equation,

starting from free particles, is a good approximation to th e

correct field equations . Our treatment of this question is base d

on the pictorial semi-classical ideas . We consider two charac-

teristic quantities ; first, the self-energy as implying a momentum -

energy relation different from that of a free particle, and second ,

the damping of motion of a single particle, giving rise to an

uncertainty in its energy . The smallness of both damping an d

self-energy is a sufficient condition for the use of the first orde r

approximation .

But let us first mention one simple argument showing a
peculiar self-contained feature of the first order treatment . We

notice that the semi-classical first order equations in § 2 depen d

only on the charge density ee, on the ratio e/in, and on the

particle velocities hii = Alm . The distribution of particles of

finite charge can thus be replaced by a continuum distribution

having the same mass and charge density and the same velocit y

distribution, with the result that the first order equations remai n

unchanged. However, since the interaction of a charge with

itself is at least proportional to the charge squared, all self -

energies can be neglected in the continuum description, where

charges may be considered infinitesimal, and the first orde r

equations of § 2 become classically exact . This consideratio n

makes apparent a most important feature of the field equation s

calculated : the first order perturbation treatment can be accurate ,

and at the same time the resulting induced field is by no mean s

a small quantity .

Returning to an actual gas of particles, let us first explai n
what we mean by a self-consistent treatment in the semi-classica l
approximation. In § 2 we deduced the dielectric constants, the
approximation being that the wavelengths of the electrons wer e
very small compared to those of the field. On this assumption
all contributions were found to arise from electrons at the surface
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of the distribution in momentum space, with velocity vo and
momentum po . We made a distinction between mvo and po ,

although they were equal in calculations to first order in e 2 . In

a more accurate classical treatment the only change is that m y
differs from p. We now assume that, for a given electron

density, the electrons occupy all states below the momentum

po = (3 m 2 e) Iu3 •h, with none above. This gives in any case a

well-defined approximation to classical self-consistent equations .
Since the contributions arise only from the surface of the distri-

bution, our description involves merely one new quantity

mvo m8E
a

	

Po

	

Po 8P

E being the energy of the electron .

This description can be applied when excitations involve states i n
the neighbourhood of the Fermi surface . Therefore, it can be used even
in the quantum mechanical calculation in § 3, but only for fields of
long wavelength and low frequency . In fact, if we define an effective
electron mass as m* = po/vo = mice, we merely need - in the formula e
in § 2 and § 3 - replace throughout m by m* ; this should be done i n

and y2, too. It is seen that then we obtain, e . g ., the well-know n
dependence of spin paramagnetism and orbital diamagnetism (pp . 23 an d
34) on effective electron mass. Further, while m* refers to slowly vary -
ing fields, the opposite case of very large wave vectors and frequencie s
is accurately described by the uncorrected dielectric constants in § 3 .

The energy E is the sum of the kinetic energy mv 2 /2 and the

self-energy u, given by (4 .25) . In order to bring out the essential

features we now simplify the description . We can write ap-
proximately, for not too high velocities, u (v) = Ito ± u 2 . v 2 /2 v4 ,
as in eq. (4.29) . It is then found from (5 .1) and (4.29) that a

is determined by

1
-= i±C~y3 ,
CK

where C = (n/3) . 0_ - n2 /16) . The previously introduced quantity
x2 = me 2/mp, is thus a measure of the applicability of the fre e

electron picture and the first order field equations . t The depend -

t In LINDFARD (1946), eq . (25), a somewhat different consideration led t o
y 2 < 1 as the condition for the validity of the first order semi-classical picture .

Dan .Mat .rys .Medd .2S, no S .

	

4

(5 .1 )

(5 .2)
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ence on f in (5.2) is not due to the simplifying assumptions

made as regards the self-energy, but holds accurately in the semi -

classical picture as long as a is close to unity ; a numerical com-

putation shows that C is very nearly 0 .5 . Clearly, a is close t o

unity in dense gases, and for densities corresponding to electron s

in metals a is slightly smaller than 1 . For gases of low densities

the approximations made are apparently not justified .
For a dilute gas in temperature equilibrium, we may similarl y

ask for the limit of applicability of the free electron picture, an d

of the Maxwell velocity distribution . Since, in the description o f

such gases, Planck's constant does not enter, the parameter charac-

terizing the gas is, instead of x 2 , a quantity proportional to

i

i = e
x

	

2 p 3

e '

which just corresponds to the ratio between the binding energy
and the temperature energy . It may here he recalled that the

field equations for a Boltzmann gas were found roughly t o

correspond to those of a degenerate gas, only vo being replace d

by the temperature velocity of the particles . On the same lines a s
above we then find an equation for a similar to (5 .2), but with

xi instead of x 2 . Thus, the simple Maxwell distribution is onl y

valid for xi small compared to unity .

Mention may be made of the curious case of a one-dimensiona l
degenerate gas, where the first order semi-classical dielectric constan t
was found to be e = 1-04/0)2 -4 k 2 ) . The contributions to e aris e
from particles at the surface of the distribution in momentum space ,
and the field surrounding such particles moving with constant velocity
v o has non-zero Fourier components only for w = + vo k. For this self -
field s is infinite, so that the self-energy and its derivative with respec t
to momentum vanishes. Thus, we have proved that the first orde r
treatment is semi-classically exact, in agreement with the result o f
TONIONAGA (1950) .

So far the ratio a and the momenta were considered, fo r
simplicity, as real quantities. However, we found earlier a
damping of motion, by no means negligible compared to the

self-energy. Let us regard the resulting effect in the case of x 2
small, so that the free particle picture is approximately valid .

(5 .3)
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The imaginary part, P12, of the energy is then given semi -
classically by eq . (4.26). If again we use the estimate asymp-

totically valid for low velocities, we get according to (4 .24) pro-
portionality between I' and the velocity of the particle ; the
corresponding complex momentum has an imaginary part equa l
to the constant (r/8) • (rne 2/t) x . Accordingly, a is approximately
given by

2
a= 1 -C•f +i 8 x3 .

In the present limit of a 1 we could of course easily get estimate s
more accurate than (5 .4) . In this connection we note that I' ,
while rising at first linearly with the velocity, will reach a maximu m
for energies somewhat above the top of the Fermi distribution .
For still higher energies I' decreases slowly towards zero .
The value of the imaginary part of (5 .4) is only an ap-
proximate estimate, due to the simplifying assumptions made ;
but the dependence on f has general validity in the semi-clas-
sical approximation .

For a finite imaginary part of a some interesting conse-
quences result in the formulae, as (2 .4), for the dielectric con-
stants, where then vo is to be replaced by apo/m = a h (3 r 2 2) if3 /rn .t
For instance, for long wavelengths, where a phenomenon similar
to mesons is observed (cf . p. 25), the inclusion of the imaginary
part of (5.4) implies a width of the states of the field quanta ,
corresponding to a life-time for the field quanta at res t

2 Im (a)	 	 1	 me

	

(5 .5 )
8 . 32 ji

independent of the gas density for small x's .

It is, perhaps, not without interest to make here a quali-

tative comparison with atomic nuclei . Indeed, in spite of th e
differences between electromagnetic and mesonic couplings, th e

1 The resulting improved dielectric constants are of the causal type, wher e
the imaginary part does not change sign with w . The causal dielectric constants
are particularly convenient in higher order treatments .

By introducing in the transverse dielectric constant the effect of the self-
energy, as expressed by a, we observe that the term i (3 nwl/4 wlcvo)-(mv5 /p o) in
(2 .7) remains unaffected . This result is important in the so-called anomalous ski n
effect, which is governed just by the mentioned term (cf . II) .

(5 .4)

4*
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general features of the results obtained above should also appl y
for a system of nucleons . One will expect the appearance of com-

plex self-energies of the nucleons, of similar type as found above .
The semi-empirical proposal by FESHBACH et al . (1953) may b e
regarded as a simplified description of such kind, although i t
will be evident that both the real and imaginary parts of th e
self-energy must vary with particle excitation .

The considerations in this paragraph and in § 4, aiming a t

improved electromagnetic field equations, at the same time giv e

improved equations for the particle field . The latter equation s

are also of the type of Maxwell's equations in matter, in bein g
of high order, and involving polarization and absorption effects .
The equations for the electromagnetic field are important for th e
dynamics of the system, e . g. in the case of interaction with
external charges . The equations for the particle field are usefu l

for instance when a particle, identical with those in the gas ,
enters the system from the outside . In general, the particl e
equations are of importance when one is able to discern ap-

proximately the motion of one, or a few, individual particles .

Summary.

The paper treats the behaviour of a gas of charged particles ,
preferably a degenerate gas . It is pointed out that the dynami c
properties of this system are contained in equations for th e
electromagnetic field merely, of type of Maxwell's equations i n
matter . By the field is meant, classically, the field induced b y
and acting on external, classical charges . A systematic treatmen t
on this basis implies great simplifications in the theory .

The interpretation of general field equations is discussed, an d
the manner in which they account for absorption processes . The
dielectric constants, defining linear field equations, are compute d
in a number of cases, to first and higher order in e 2 , using both
classical and quantum description of the particle motion . As a
demonstration of the method is treated energy dissipation by a
charged particle moving through the system, and its self-energy .
Further is discussed self-consistent field equations, and th e
improved electronic equations of motion .
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Appendix .

Improved particle field equations .

In § 4 was deduced, classically, the self-energy and damping

of motion of a charged particle moving in a field obeying th e

equation

da - 4neo,

	

(A.1 )

where the operator e is the longitudinal dielectric constant . We

shall now derive the corresponding quantum effect, to first orde r

in e2 . In this way one gets an improved equation for the particl e

field, of similar type as the equation for the electromagnetic

field, (A. 1). In the derivation we employ a technique more

advanced than that used for the deduction of the equation (A . 1 )

in § 3 . Still, the calculation will not be performed in the leas t

cumbersome manner, but is hoped to be the more illustrativ e

as regards the effects involved .
The field equation for the particle is taken to be the non -

relativistic one,
( . a

	

h 2

t 2nt4)'lp
= e ,

and at the same time we introduce eo = e yp y in (A. 1). The

equations (A. 1), (A. 2) are conveniently written on integral form

(A.2)



54 Nr. 8

y (x) _
v

in (x) - e ~ SR (x	 x') Ø (x') v (x') dx',

	

(A. 3)

(x) = Øin (x) -I- e S DR(x - x ' )

	

(x ' ) v (x' ) dx',

	

(A. 4)

where x stands for (x, y, z, O . Moreover, SR (x-x ' ) is the retarded

solution of (A. 2) when the right side of the equation is replace d

by - S (x-x ' ) ; DR (x-x ' ) is the analogous solution of (A . 1 )

with a source - 4 z8 (x-x ') on the right . The incoming fields
yin and W" are solutions of the uncoupled equations .

The coupled equations result in a scattering of the particle ,

which we calculate to second order from a series development

in (A . 3) and (A . 4) . For the outgoing field we fin d

oui (x)

	

in

	

i n
ap (x) + e j S (x- x') Ø (xi) yin (xi ) dx'

2+
(Ç

dx' dx" S (x -xi ) • R
(x'

	

y
{ara (xir) v in (x") vi" (

x
i )

	

(e

	

D

	

-x

	

~ A . 5

- e 2
SS dx' dx" S (x - xr) .SR (x' - x

ar) in (
x

a) in (
x

ri)

v
in (

x
rr )

where S = SA - SR .
Consider the vacuum expectation value of yi'' `n (x 1) (x) ,

which quantity can serve to characterize the scattering . The first

order term in e is seen to vanish for symmetry reasons, and w e
get to second order

<0 yJ, to(x1) v ui (~)jo~~> = <U en (xl)

	

(x)
o >

- e 2 SS dx' dx" S (x- x') 1

'

l"
'y~7 (x' x") < o

y'in(xri)1~in (xi)I
o >

-i- SR (x ' -- x") <0 l Øin (x i) Øin (xa,)
1 V i } < 0 1yJ <,in (

x1) Y'an
(x") Io% .

In this equation we introduce

<01
v*in(x")v`n(x')l

Oi = -thS (x ' - x"),

	

(A. 7)

according to ordinary field quantization ; the function S- is the
negative frequency part of S . As to the electromagnetic field th e
method of quantization of PEIERLS (1952), establishing the
general connection with the Green's functions of the field equations ,
leads to

0 ~ Øin (x, ) Øin (x") i = D+ (x' -x") .

	

(A . 8)

(A. 6
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We wish to eliminate the coupling with the electromagnetic
field and attempt to replace it by a new term in the particle
field equation

8

	

:1217(ih a---1+4 V (x)-1-K(xx')y) (x') dx' = O .

	

(A . 9)

The above scattering is obtained if, according to (A . 6), (A. 7) ,
and (A . 8), K is of the form

K (x) = ie2 t (- DR ( .x) . S- (x) + SR (x) • D+ (x)) .

	

(A. 10)

It can be convenient to write this formula in terms of Dc and S C ,
defined by D C = - 2 iD + LP) . To this purpose we note that
the expression - DR (x) S- (x) + SR (x) D+ (x) is equal to

(- i/2) { DR (x) SW (x) + D W (x) SR (x) } ,

and a simple manipulation leads to

K(x) = 4 e 2 h SC (x) D C (x),

	

(A. .11)

the equation holding only for the positive frequency part of th e

field, which is usually sufficient, since the incoming particle ha s

positive energy . Substituting (A . 10) or (A . 11) for K in (A . 9)

an improved equation for the particle field is obtained . For

a Fourier component of the particle wave proportional to

exp (ilc • r

	

w t) the extra term in the field equation-whic h
could be called a self-energy of the particle-is accordingl y

' 1
U(k, a)) - -

l
IC

ac

3

	

d 3 k' d(U'

	

1

co ' 1 icS-hk

,

2 (k -k')2
Z ln

/

	

1

`aC (Ik-k' I,cu-w' )

where we have subtracted the vacuum term with e = 1 ; further
cc (k, w) = e (k, w I) and å is a vanishing positive quantity .

A . 12)
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In eq. (A . 12) we have of course in first approximation the

connection e) _ Tik 2/2 ni if the particle energy is approximately

that of a freely moving particle .

When the mass in, is large, and for a given particle velocity

v = hk/m, the formula (A. 12) reduces to the semi-classica l

one, (4.26) .
The above derivation of linear particle field equations fro m

general linear electromagnetic field equations owes its feasibi-
lity and simplicity to the use of the quantization rule (A . 8) .

Evidently, one may give, on the same lines, a derivation of th e

electromagnetic field equations from general particle equations ,

and thus obtain mutually consistent equations for the two fields .

In the text, this was performed, quantum mechanically, for free

particles, but also for a more general case when only long wave s

or low frequencies were important .
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Added in proof : The reader is further referred to an interesting manu -
script by T . KINOSHITA and Y . NAMBU (Institute for Advanced Study,
Princeton, N . J .),The Collective Description of Many-Particle Systems .
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