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Introduction .

I
n the theory of nucleons and mesons we deal with a situatio n

in which the coupling between the two fields is not small .

It is, therefore, of importance for the treatment of such problems
to develop methods more powerful than perturbation theory .

The divergence difficulties inherent in current field theory neces-

sitate a formulation of the non-perturbation approaches which

allow for an incorporation of the idea of renormalization of mas s

and charge . In practice, this implies as a necessary conditio n

that the formalism must be covariant .

The method proposed by SALPETER and BETHE [1], [10] for

the treatment of the two-body problem is an example of such

an approach . A general theory of a similar kind has been initiate d

by SCHWINGER [2] . In this theory, one starts from the consideratio n

of certain combinations of vacuum expectation values of time

ordered products of field operators, the so-called Green's functions .

In general such quantities obey inhomogeneous equations of

motion. It can be seen that the study of the oscillating solution s
of the corresponding homogeneous equations provides information

about the energy and momentum values of stationary states o f

the system. According to Schwinger, these homogeneous equation s
apply to scattering problems as well . By his method, equation s
of the Bethe-Salpeter type can be established without referenc e

to the limit of no interaction . However, it seems rather difficult

by means of this kind of approach to obtain a clear under -

standing of the nature of the wave functions which obey the

homogeneous equation .

Partly to overcome this problem, HEISENBERG [5] and
FREESE [4] have proposed to start directly from a definition o f

the wave function for the problem. In the general formalis m
1*
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developed by Freese it is shown how, for each state of the system ,
one can construct an infinite set of wave functions from fre e

field Green's functions and matrix elements of time ordered
products of field operators . The construction is such that the
discontinuities in the matrix elements are compensated by

corresponding discontinuities in the free field Green's functions .
Consequently, Freese's wave functions obey homogeneous equa-

tions of motion. The infinite set of wave functions constitutes a

generalization of the Fock representation in the configuration
space for free fields to the case of interacting fields . For some
problems one can substitute the infinite set of wave function s
by essentially one function, only . The equation obtained for thi s
function is of a similar structure as the equation of the Bethe -
Salpeter type following from Schwinger's theory, but is in genera l
not identical with Schwinger's equation. One reason for thi s
may be found in the fact that free field concepts enter in Freese' s
representation .

In the present paper, an attempt is made at modifying th e
ideas of Heisenberg and Freese so as to unify their theory with
that of Schwinger, and thus to combine the advantages of bot h
formalisms. To this purpose, we employ the technique o f
variation of external sources developed by PEIERLS and
SCHWINGER [6] . In Section 1, a survey of this method is given
in a form which is convenient for our purpose . In Section 2,.
we relate to any state of the system a functional of the sources .
The variational derivatives of this functional with respect to th e
sources define an infinite set of amplitudes . These are shown
in Section 3 to generalize the Fock representation to non-linear
fields . No reference to free field concepts is made in the de -
finition of the state vector amplitudes . Several simple properties
of the Fock representation are maintained in the non-linear
case .

The problem of the construction of the scalar product of two
states given in this configuration space representation has no t
been solved. Until further progress is made one must, therefore ,
use the term representation with some reservation . The equations
of motion, in the configuration space representation, are derive d
in Section 4 . Finally, in Section 5, a preliminary discussion i s
given of the one-nucleon problem and of the two-nucleon problem .



Nr.12

	

5

The corresponding equations of motion become identical wit h
those following from Schwinger's theory .

Much of the discussion given by Freese can directly be take n

over to the present formalism and is not repeated here . In parti-

cular for the discussion of scattering problems, the reader may
be referred to Freese's paper .

All considerations below are of a highly formal character in

so far as we have completely neglected the divergence difficulties .

However, the renormalization theory, for instance in the for m

given by KXLLIiN [8], can easily be incorporated in the present

formalism .

The author wishes to express his gratitude to Professo r
C. Møller for much encouragement and many stimulating dis-

cussions during the performance of the present work . He has

also profited greatly from numerous discussions with the member s

of the CERN Study group and the guests of the Institute for

Theoretical Physics, University of Copenhagen . In particular, i t

is a pleasure to thank drs . R. Haag and N. Hugenholtz for their

kind interest and helpful comments on the subject of the present

paper . Finally, financial support from "Statens almindelige
videnskabsfond" is gratefully acknowledged .

1 . The field equations including coupling to

external sources .

With the aim to illustrate the general method we con -
sider the example of a spin one-half field (nucleons) coupled to

a scalar neutral meson field . With a suitable symmetrization o f

the interaction terms, the equations of motion ar e

(O + M) yo (x) + (A/2)

/{

U o (x) , yo (x) = 0

(O +M)y~o(x)+_(2/2){uo(x),yo(x)1 = 0,

	

(1 .1)

(- q + ni ti) uo (x) + (2/2 ) [?Vo (x), yo (x)] = 0 .

Here, 2 is the coupling parameter, and 0 and 0 denot e

= y,~a/a .x,~, ~_ - ya/ax,j ,
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where is the transposed of the matrix ym . The index ,u runs

from one to four and xµ = ( .x1 , x 2 , x 3 , x4), x4 = it . As usual ,

'o is defined in terms of yQ, the Hermitian conjugate of zvo, as

yo = 1vo y4 . The units chosen are such that I = c = 1 .

As mentioned in the introduction, we employ the method o f

variation of external sources developed by PEIERLS and SCHwIN-

GER [6] . Therefore, we introduce external sources for all thre e

kinds of fields and thus modify the equations (1 .1) to

(O + M) zP (x) + ( ;,I 2) { u (x), w (x) } + (x) = 0 ,

(O +M)(x)+( 2I2){u(x),(x) } +(x) = 0,

	

(1 .2)

(- q + m2 ) u (x) + 012) [~v (x), v (x)] + I (x) = O .

By omitting in these equations the subscript attached to the fiel d

operators in (1 .1) we distinguish the source-dependent fiel d

variables from the usual ones describing the closed system . In

the following, we assume that the sources vanish for both 11 1

and t tending to infinity. With this restriction the equation s

(1 .2) can be supplemented by a boundary condition whic h

requires that the source-dependent field operators becom e

identical with the usual source-free fields in the infinite past .

Considering such solutions only we can regard the field variable s

as functionals of the sources . As no other solutions of the equation s

(1 .2) will be considered in the following, it is superfluous t o

discriminate by any label this retarded solution from othe r

possible ones .

We take I(x), the external source of the meson field, as a

c-number . Of course, one could also treat the external spino r

sources as c-numbers . However, this is not what we shall do .

In order that the external sources he useful, one should take th e

spinor sources as the analogue of c-numbers for the fermion

case, i . e . as quantities such that

{9, (x), (x ')} = {cp (x), 9' (x ')} = {q~ (x), (x')) = 0 ,

and

(x), vo (xi)} = {4~ (x), vo (x ')} = 0

{q (x), f)o (x ')) _ {(' (x), wo (xi )} = 0,

(1 .3)

(1 .4)
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while (p and q-9 commute with I (and of course with any other
c-number) . For the further specification of the manifold of pair s

of spinor sources it is advantageous to write (p and 1 in the form

(x)=Oof(x) ,

~P (x) = Oa g (x) ,

where Oo is a constant operator which commutes with f and g
and anticommutes with. y~o and ~Vo . Hence, due to (1 .4) and

(1 .3), f and g commute with ?Po and 7Vo and satisfy

{f (x), f (x')} = {f (x), g (x')} = {9' (x), g (x ')} = 0 .

As is well known, essentially only one such quantity O o exists ,
viz . the parity of the difference 4N between the number o f

nucleons and the number of anti-nucleons . In terms of the fiel d

operators, ZIN i s

4N= )
1 f~ô(x , t), ?Vo(x , f)I d3

	

(1 .7 )
G

We choose O o as

Oo = (- 1)41 = parity of AN,

	

(1 .8)

thereby normalizing Oo so that O, = 1 and Oo j 0 > = I 0 > ,
where I 0 > is the vacuum state of the source-free system .

Corresponding to any pair f, g, we define the domain of pairs
of sources obtained by allowed variations as the totality of

pairs of the form f + å f, g + åg, where 6f and åg are infinitesimal

and anti-commute with f and g, i . e .

Of (x), f(x')}= {6 g(x), f(x ' )} =0 ,

{Sf(x),g( .x')}= {8g(x) , g(.x')}=0 .

It should be noted that (1 .9) is not a consequence of (1 .6) . For
any pair f, g we now require the manifold of allowed variation s
to be so large that we, from a relation of the type

(1 .6)

(1 .9 )

~[Sf(x)I~(x)+ å g(x)L(x)] d4x = 0 ,

	

(1 .10)
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holding for all pairs of allowed variations, can conclude tha t
K (x) and L (x) vanish identically . In (1 .10), K and L are con-
sidered as quantities of the same nature as f and g .

This last mentioned property of the spinor sources, together
with (1 .6), is all we need for the formal calculations below. The
consistency of all requirements is demonstrated in Appendix I
by the construction of an example of a possible domain of pair s
f, g . As shown there, one can imagine the quantities f, g, or as
we shall say, the f-number pairs, to be infinite matrices . It should ,
however, be emphasized that the f-number pairs will be treated
as a kind of numbers and not as operators . In other words ,
all matrix elements are matrix elements in the space of th e
source-free operators only, and are, for the rest, quantities o f
the same nature as the f-number pairs . Thus, corresponding
to (1 .5) and the fact that the parity of the vacuum state of the
source-free system is unity, we write

<0 I 4' (x) I -Tr i - f(x) < 0 I O o I T> = f(x) < 0 ITi .

	

(1 .11 )

In this relation T> can be any state .
By means of the field equations one can easily see that th e

spinor sources anticommute with the source-dependent spino r
fields and commute with u . This statement is based on the
essential property of the source-dependent fields that y and ?--p are
odd functionals of quantities which anticommute with the spinor

sources, while u is an even functional of such quantities . Thus

~ T (x),(xi )) = (x),(xi)) =0 ,

(x), 's-- (xi )} =

	

(x), 1P (x')}
=0 -

Similarly, it can be verified that allowed variations 4 and 693

anticommute with v and ) and commute with u . By allowed
variations we here understand variations of the form 6(p = O o â f
and 6-93= O 0åg, where 6f and bg satisfy (1 .9) .

Conversely, we could also have started from (1 .12) instead
of (1 .4), as (1 .4) follows from (1 .12), the field equations (1 .2)
and the retarded boundary condition .

(1 .12)
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One further remark may be useful here . It can easily b e
verified from (1 .2) and the boundary condition that the canonica l
commutation relation s

lya (5c, t ),

	

t)f = (Y4)aß ~ (x - x )

[u (x, t), u (x ' , t)] = i å

	

- x')

hold in the source-dependent case also .

We can now formulate the following main theorem as regard s
the dependence of the fields on the sources . For any infinitesimal
variation ål of the meson field source, and for any pair of allowe d
variations åp and (5,79 of the spinor sources, the corresponding
variations of the fields are given b y

L

rSy~ (x) = i [åW (x ' ) d 4 x' , y (x)1 ,
.

å17 (x) = i [~ L

	

bW (x') d4 x', (x) ] ,

	

(1 .14)
ø

st

	

~ LI (x) = 2 [ 6W (x ') d 4 x ' , II (x) ] ,

	

~

where the infinitesimal operator åW is

(1 .13)

1

a W (x) = årp (x) (x) + (x) åm (x) + LL (x) ar (x) . (1 .15)

The statement (1 .14) is included in the general variation

principle for quantized systems formulated by SCHwINGEn [6] . It

is, however, quite easy to prove (1 .14) directly from the field

equations . Evidently, (1 .14) is in accordance with the boundary
condition. Therefore, we only need to show that the variation s
(1 .14) satisfy the varied field equations . For instance, from the

first equation (1 .14), we get

(O + M) åy~ (x) = i [ Ç få W (x') d4x, (O + M) y (x) ]
._ ~

+ [5 dsx'~W (x~, t), Y4 y (x)],
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which by the field equations, the properties of the sources, and

the canonical commutators becomes

+ M) åyß (x) + (2/2) {u (x), åyß (x)}

+ (2/2) {6 a (x), y (x)) + å4 (x) = O .

This is precisely the equation one would have obtained by
varying the first equation (1 .2). In a similar manner one obtain s
the other varied field equations, and this verifies (1 .14) .

In concluding this section we shall reexpress the contents of
the variational equations (1 .14), using the notion of variationa l
derivatives . Consider a functional, [99, , I] say, of the sources .
Assume, that one can write the variation of this functional i n
the form

å[cp,T),I]= (åf(x)A(x)+åg(x)B(x)+åI(x)C(x))d4x=0 ,

holding for any infinitesimal allowed variations of the sources .
Then, the quantities A, B, and C are uniquely determined . This
follows from the conclusion drawn from (1 .10). We can thus
define A, B, and C as the variational derivatives of the functiona l

corresponding to variations of f, q, and I, respectively. It i s
convenient to introduce the notatio n

A (x)

	

[w, Ø, I]/åf (x) ,

B (x) =,bØ [m, 7, I]/åg (x) ,

C (x) = 60 [49, 7, I]/åI (x) .

It should be emphasized that, for instance, 6f (x) and A (x) do
not commute in general . The variational derivatives introduce d
here are thus left-hand derivatives . In a similar way, one coul d
introduce right-hand variational derivatives .

As above, let I 0 > be the vacuum state of the source-fre e
system and let I P> be any other source-independent state .
From (1 .14) we get

S
.

8<0Iy (x)1 P> =i
1 -e(x' -x)

2

X <O1[7(x ')s(p(x ')+âm(x')•y(x') +sI(x')-u(x'),y(x)] IT >d4x' .



As usual, e (x' - x) is the step function (t' t)/I t ' t . From
this equation we infer, using the properties of allowed variations

and relations like

< O I åeP(x) =a f(x)< 0 1 0
o =

6 f(x)< 0 I>

	

(1 .16)

tha t

.6< O llh(x)I P)

	

1 -a(x' -x)

åg(x')
__

	

2

	

<O I {~(x ) ,~v(x)}I~> ,

S(oIv(x)I T ) _ 1-E(x'
x)(5(x')

	

2

	

<01{~(x)lt~(x)}I~~>, (1 .17)-

	

/'

•a<Oly(x)IT>

	

1 -s(x'-x)<ô1[u(x)
y (x)]I Pi .

~

	

åI(x')

	

2

In a similar manner, one may obtain expressions for the vari-

ational derivatives of matrix elements of the other field variables .
The minus sign on the left-hand side of the second equatio n

originates from the reordering 'y ô cp =	 åT necessary to obtai n

the left-hand variational derivative with respect to f.

2 . Generating functionals for ordered products

of field operators .

The ordered products considered in this section can all b e

constructed from one operator T which, as we shall see, is th e

generator of the time ordered product as defined by Wick [9] .

i) The time ordered product .

We introduce an operator T by the variational equatio n

åT=-iTSåW(x)dx

	

(2 .1 )

and the boundary condition T = 1 in the limit of vanishing
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sources`. The infinitesimal operator ô W, defined by (1 .15), i s

closely connected to the total variation of the operato r

	

W (x) = (x)(x)+(x)y(x)+I(x)u(x) .

	

(2 .2)

It follows from the properties of the sources tha t

fåW(x'), T(x)] = [ôW(x'), m(x)] = [åW(x'), I(x)] = 0, (2 .3)

whence, by (1 .14) ,

	

å totaiW(x) = åW(x) + i [åW(x'), W(x)] dx' .

	

(2 .4 )

We shall verify in detail that the solution of the variational

equation (2.1) is given by

T P exp {_iSw(x) dal

(2.5)

w

(-

	

`dx' . . . ÇzxP{w(x') . W (xin) )}

where P orders the 117-factors in the reverse sense of D soN 's [3 ]

chronologically ordering operator . Thus, if x(u) antedates x (''') ,

then W (x(y)) appears to the right of W (.x( I'')) in the P-ordered

product. To prove (2 .5) we first consider the variation of a n

ordinary product of W-factors . By (2 .4) we get

s { W (x') W (x") . . . W (x(n) )J

i (Ç ' w (x) dx) W (x') W (x") . . . W (x~n) )

+iW(x')å W(x)dx)W(x") . . .W(x`n) )

+ . . .

+ i W (x') W (x") . . . 1-yr (x") (V(x) dx) +
x(xi)

* For a more general discussion it might be of advantage to consider anothe r
solution of the variational equation (2 .1) corresponding to the boundary con-
dition T= S for (p- = I= 0, where S is the S-matrix for the closed system .
All considerations in the following remain valid for this choice of solution .

c.,

71=0

(2 .6)
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+ å W (x') W (x") . . . W (x")

	

} (2 .6 )

+ . . .

+ W (x') W (x") . . . ~ W (x")

- iW(x')W(x") . . .W (x(R)) •W(x) dx ,

where we have collected the contributions from the commutator s
between å W and W in an obvious manner . The complete sym-

metry of the P-ordered product allows us to write the variatio n

of the general term in series (2 .5) in the somewhat simplerform

s Px' . .

	

P {W (x') W (x") . . . W (x") }
- co

	

e o0

= i

	

. . . S dx(n) Çdx P W (x) W (x') . . . W (x")}

(2.7)

- i ~ dx' . . . dx~n ~ P{W (x') . . . W (x~n~)} .Ç'6 W (x) dx
._~

+ n
~ d

.x ' . . .
)
dx" P{6 W (x') ,-W (x") . . W (x")} .

. -~

	

.

If we introduce this expression into the variation of T obtained

from (2 .5), we see that the contributions from the first and th e
third term on the right-hand side of (2 .7) cancel, and that the

sum of the remaining terms equals the right-hand side of (2 .1) .

This verifies (2 .5) as this expression obviously is in accordance

with the boundary condition .
All allowed variations commute with W . Thus, by (2 .5) ,

also T commutes with these variations and we can write (2 .1 )

in the form

8 T=- i 1 dx{ST Ty- d q9 TV -f- BITu} .

	

(2 .8 )

Consequently, for any source-independent state 1 P. >, we have

by (1 .16)
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å < O IT IT> =<01 Tu (x) IT >i	
åI(x)

i

.6(0

åg (x)Tf >

	

<0 I T y (x) IT>

-iå(OITIT

)

- = <OIT(x)IT'>.
S f(x)

From (2 .8) and the variational equations (1 .14) we get for the

variation of, for instance, the right-hand side of the second

equation (2 .9)

S<OITzp (x)I T> =

- i [ i <x' ) <0 Tu (x ') y (x) T> + Sx(5I(x ') <01 Tv (x) u(x') I Yid
x

-i [ åg (x ')< 0 1 T~v(x ')lv(x)I T>- S bg (x')< 0 1 Ty)(x)y(x')I Tf>
J. x

+ i [Çi x' < o b()1 TV(x')Tp (x)I T> 	 S åf(x')< O I T(x)(x')IT>] ,

	

x

	

=.
whe nce

s<0 1 Tv(x) I T> = <01 T T(u (x') y (x))IT>dI(x ' )

S< 01Ty(x)T - < 0 I T T (y~ (x' ) y' (x)) I T>

	

i	
åg (x' )

	

< O I
Ty (x)	 I
	

T> = < 01T T (~v~ (x ') v (x)) I T> ,

	

- i	

d f (x' )

where T (• • •) designates Wick's time-ordered product . The
expressions (2 .9) and (2 .10) are special cases of the general

formula

	 å	 8

	

8	 	 a	i	
ål (x')

	

aI(x( "> ) Sg (y ' )

	

bg (y(t) )

	

x(_i	 a

	

.

	

~ - (m) <0IT1Tf > =
c5 f(z') )

	

å f(z ) ,

<0I T T(u(x') . . . u (x('̀ ) ) ?v(y') . . . y(y(i))ip(z') . . .(m))) P >,

(2.9)

(2 .10)

2 .11)
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which reveals T as the generator of the T-product . To prove
(2.11) denote, for fixed values of the space time points, x' - •

y' •dm z ' • z(m) , the chronologically ordered sequence of th e

same points by x 1 , x2 ,- • •xn, n = k + 1+ rn . Further, let x

denote any of the field variables y, p, and u . With this notation ,

we have

S < O I T x(
rr
x t)

. . .x(xn) ~~`> =

- i<01 T \S W( .x) dxx(xi) . .x(xrt) 1 T> ,
Jxi

x i

- i <O T x (xi ) ~ d W (x) dx . . .x
(xn) I T> >

~xa

- i . . .
- t<0T(xi) . .(xn) SW (x)dxlŸf> ,

in virtue of (2 .1) and the variational equations (1 .14) . If we

displace all source variations to the extreme left we get

ö <01 Tx(x i) . .x(xn) T> =

- i Çåg (x) (1) <O I T P {v (x) x (xi)
.x (xn)} Ÿf > dx ,

+ i ç 6f (x) (±) <0 I T P {y (x) x (xi) . . . x
(xn)} T> dx,

(2 .12)

- i1SI(x.)

	

<O TP {u(.x) x(xl)• •x(xn )}Ÿf>dx ,
J ø

where P is Dyson's chronologically ordering operator . The (-I- )

factor in the two first terms on the right-hand side of (2 .12) i s
the parity of the number of permutations between the nucleo n

operators and the variations of the spinor field sources . Evidently ,

the number of these permutations equals the number of per-

mutations of spinor fields required to bring the field variables p
and p, respectively, from the place indicated in (2 .12) to the

position required by the P-operator. Thus, (1) is the change

of sign characterizing Wick's T-product as compared with

Dyson's P-product and, hence,
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i8<OITT(u(x') . . .~(z(m)))T> =

6 9' (x) <0 I T T (y (x) u (x') . . . ~ ( z(m))) I T> dx ,
~- ~

	 S 006 f (x) <0 I T T (y (x) u (x') . .
. (z(°)) I T> dx,

	

(2 .13)

+ å I (x) <O T T (u (x) u (x')

	

y (z(°`) ))

	

d.x .~_~

	

. . .

	

I Y'>

	

j

The minus sign is due to the occurrence of åqß to the right of y
in the expression for 6W . The proof of (2.11) is now easily
completed by an induction argument .

ii) Matrix elements of normal products .

The formula (2 .11) demonstrates the convenience of Schwin-

ger's formalism for the introduction of ordered products of field
operators, but adds nothing new. The normal product*, however ,

is not defined for non-linear fields and it is, therefore, more
interesting that we by this formalism can give a general definitio n
of the normal product . The detailed discussion of the normal

product as introduced here, and in particular the proof tha t

this product is a generalization of that introduced by WICK for
free fields, will be given in the following section .

The generator for the N-product is the operator N which is
connected with the T-operator by

N= <O I T I O>-1 T.

	

(2 .14)

(2.15)

1 6	 	

åf(z(Zn))
<OINI T >

	 s	 s

y(J)
.
i~9(~m)(-i~f(z) -

. - i

as the matrix element between the states <01 and 1 W> of the
N-ordered product of the field variables corresponding to th e

* By With [9] denoted as the S-product . To avoid the use of the letter S fo r
too many purposes we shall, henceforward, use the term N-product .

We shall regard

Ÿ' (x' . . . x(Ic)
I rd' . . . d(i) z' . . .

z(m) ) = i
ô
	 j~~ )

	

i
S I(x("I )

	 s	
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space-time points indicated' . The relation (2 .14) implies

<0INIW>=<OI TIO>-t <0I TI iT>

	

(2.16)

and

< 0 1 T I 0 >< 0 1 N I Y> = <0I T IT> .

	

(2 .17)

From these two expressions two relations originate between th e
matrix elements of N-products and the matrix elements of T-pro-

ducts . To express these relations in a compact form we introduc e
some conventions about notation .

Let

	

x< Ic denote some of the space-time points

x' x", . . . x(k) By

. . x(k) ;

	

ex) (2 .18)

we denote the sequence of space-time points obtained by omittin g
the space-time points ', ", (x) from the sequence x ' , x", . • x(k) .

Thus, for example, x ' , x", x"' , x"" ; x", x"' = x' , x"" . In the same

way, we introduce symbols such as y ' , y" ,

	

g(I) ;

	

n", • •e )

and z ' z" ,

	

z (' ) ;

	

C(µ) .

We also introduce a notation for matrix elements of T-pro-
ducts similar to that we use for matrix elements of N-products .

For instance, we write the right-hand side of (2 .11) as

Tw (x' . . . x (k) I y' . . . y (z ) I z' . . . z(-) ) .

	

(2 .19)

If I P.> is the vacuum state, we denote the vacuum expectatio n

value of the T-product by

To (x' . . . x.(k) 1 y' . . . y (I) I z' . . . z(m)) .

	

(2.20)

For completeness, we note that, in the special case k = 1 = in = 0 ,
we write

<Ol T I T> = Tly (1 I) ,

<0 INI T> = T(II) .

It is evident how to generalize this definition and the formula (2 .11) t o
matrix elements of the N- and T-products, respectively, between any two (source -
independent) states of the system .

Dan .illat .r+ys .Medd . 28, no . 12 .

	

2

(2 .21)
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Also, with the notation (2.20), we have

<0 I T I0 > = To (l I) .

	

(2 .22)

As mentioned in Section 1, matrix elements of field operators
are in general not c-numbers . This introduces some mino r
complications in the following considerations, but is the pric e
we have to pay in order that all three kinds of sources appear

in a symmetric manner in the variational equations (1 .14) .
Still, any To-function with an even total number of spino r

space-time points is effectively a c-number in the theory . Any
f-number commutes with such "even" To-functions . The general
relation for, for instance, 8 f i s

å f T0 (x ' . . . g ' . . . g (i) z ' . . . z('n))
(2 .23)

= (-1)1+m T o (x . . l g . . . g ( Z) I z . . . z (m) )S f

and is easily proved by the use of (1 .16) and the anti-commu-
tativity of å99 with all spinor fields. A similar relation holds fo r
åg, f, and g . Hence, even To-functions commute with an y
functional of f and g and, in particular, with any other To-
function . Thus,

[ To(x' . . .Ig' . . .g(1J I z' . . .z(m)), To(xi . . . I g i . . .g
)L. I zi . •z,u)]= 0

if 2 + tt is even. The variational derivative of this equation with
respect to g (g) gives, for the case of I + m being odd,

[ To (x' . . . I gg ' .

	

. z(m)
) To (xl . . . I g, .

	

ga zi . . .z ,u ) ]

- { To(x' . . . I g' .

	

g(z)I z'- . . z(m)) , To (x l . . gui . .

	

z, - . zo) = 0 .

The appearance of an anti-commutator is a consequence of th e
anti-commutativity of åg with odd To-functions . The first term
vanishes and we infer that two To-functions, both having a n
odd total number of spinor space-time points, anti-commute . In
particular, To (I I) commutes with all matrix elements and
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{ To(I cJI), To (ly' I)} = o ,

{ To(I~I) , To(IIz)} =0 ,

{To (IIz), To(IIz')}= 0 .

We are now prepared to prove the first of the relations men-

tioned above . From (2 .17) follows

T4, (x' . . . x(k) y , . . . y(1)
! z' . . z( m) \

-' 1 y' 1 V' 1

x!G~
x7, .t

	

~' . . . se( x )

	

. .,) (2r)

	

~' . . .y(y )

X (+) To (~'
. . . e(x) I 77 , . . . ,~ ca ) I - . . . c(tO )

r (x , . . . x(k)	 (x) I u, . . .

	

r1 , . . . e) z , . . . z( m) ;

	

. . . (F1) )

where the summation is taken over x = 0, 1, • •k, A = 0, 1, • • •I ,

and ,u = 0, 1, • • in while the 's run independently over all th e

space-time points x ' • •x(r`) , etc . The factorials take into accoun t

that we sum over all permutations of the sets

	

a)' • and

• • . Apart from the factor (+) in front of the general term,
(2 .25) is easily recognized as the usual formula for the iterate d

derivative of a product, viz. the product on the left-hand sid e

of (2 .17) . Thus, (2 .25) is correct if we interpret the sign factor

(±) correctly . From (2 .23) it follows, however, that the facto r

(+) is the parity of the permutation of spinor space-time points

involved in the substitution

y, y" . . . y(') l z ' z" . . . z( ,n))

(~' . . . ~cx)I,
7'

. . .
y

(a) I ~' . . . co')

x' . . . x(k)
; $' . . . (x) I

y' . .
y

(t) ;

	

.

	

z(,n) ; ~' . . . c( Y
) )

To illustrate (2 .25) we note a few examples which also late r
will serve for reference :

(2.25 )

(2.26)

2*
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Tw(x'x„I I) = To(I I) W(x ' x"I l) .+ To (x'I ) Yf(x"I
I)

(2.27)
+ To (x"I ) Y`(x'I I) +To (x'x"I I)

T(I
I )

Ty,(xIyl) = To(I I) -W(xlyl)+To(xl ) T(IyI)
(2 .28)

+ T I ! T xl I + To(x lyl) `I'(I I )

Ty,(xl Iz) = To ( I) 'If @I z) + To (x l I) T(I Iz)
(2 .29)

+ To(I Iz) l(xl I) + To (x I z) v`(I I) ,

and, finally, to illustrate the (±) factor ,

Tv, (I y'y"I) = To (I I) (IVY/1D + To (I q 'I) '(Iy" I )

- T o ( y"I)'(lg'I)+To(Ig ' g"I) z1(II) .

The formula (2 .25) may be looked upon as a recursion formul a

which implicitly expresses the IT-functions in terms of matrix

elements of T-products . The resulting formula may, however,

be obtained directly from (2 .16) if we introduce the function s

.

	

C (x' . . . x (k) I y' . . . y(i) z' . . . z (m)) = i	 å

	

å

	

8
	 I	

(x' )

	

(x(k) )

iåg(y')
. . . tåg(y(i')(

Jåf(z)~
. . .(-6f(~(~zz)))G(11)

,

(2.30)

2 .31 )

where

C (I i) = <0 I T10> 1 . (2.32)

By an argument similar to that by which (2 .25) was obtained ,

we get from (2 .16)

(x' . . . x(k) y' . . . y(i) I
z'

. z (m ))

1

	

'

yc1 ~ a1 ~
ï Y i	

(+) G (~' . . . (x) ri' . . . ,7 (2
.)

	

. . . ~(~) )

xÂy

,r(k) . e' . . . e(x) I y' . . . y(i), n' . . . n (1,) z' . . . z(m) ,
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An important property of the W-functions follows from (2 .14) .
In the special case where 1 W> is the vacuum state of the source -
free system, we have <0 N 10> = 1, independent of the sources .
Hence, all W-functions vanish, except the one corresponding t o
k = I = ni = 0 . Thus, in this case, (2 .33) reduces to

ra .u

(+) C (~- . . . ~(x) In , . . . ,1(a) c, . . . -(p) )

r o (x' . . . x (k) ; $'

	

. ~(x) I u
'

.

	

y ( 1)	 y,(),) I
zr . . .

z(m) .

	

. .

_ 6 Ok 6 Ol 6 Om,

(2 .34)

and this is a recursion formula expressing the C-functions i n

terms of vacuum expectation values of T-products' .
In the following, the formulas (2 .25), (2 .33), and (2 .34) will

serve as a basis for the discussion of the properties of the matri x
elements of N-products . It will be shown that these expression s
generalize the algebraic relations between T- and N-products fo r
free fields to the case of non-linear fields .

3 . Properties of matrix elements of N-products .

In the Fock representation [7] in configuration space for fre e
fields, one characterizes a state of the system by an infinite set o f
many-particle wave functions . As long as one considers free fields ,
this representation may in a trivial way be extended to a multiple
time representation . If we use the notion of a normal product ,
we can write the many-time wave functions, or as we prefer t o
say here, the state vector amplitudes, in the form

ÿr (x . . . x(k) I w . . . y(l) z' . . . z('n) )

= <0IN(u (x') . . .u(x (1`)) w (u') . . .w(y(l))IT(z') . . .'“z(m)))I T> .}
(3 .1 )

The results of Wick's discussion of the properties of T- and
N-products of free field operators are expressed in the Appendi x

The formula (2 .34) could also have been obtained directly from the identit y
C (I I) To0I) = 1 .
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II with the aid of a notation which is convenient for our purpose .
In Section 2, we derive relations connecting matrix element s

of the normal product of field operators for non-linear field s
with matrix elements of T-products . If we compare the formula
(2.25) with Wick's formula (Ap . IT. 11), we sec that the N-product
for non-linear fields, as defined by (2 .15), is a generalization
of the _N-product for free fields, as the formula (2 .25) in the

-95 limit 99 = = I = A = 0 reduces to the corresponding formula fo r
free fields given in the Appendix II .

The equation (2 .15) may, therefore, be taken as the genera l
definition, valid also for non-linear fields, of the state vecto r
amplitudes which represent any given state i Ÿ'>. After a discus-
sion, in this section, of some of the simplest properties of th e
state vector amplitudes, we shall in the following section deriv e
the equations of motion in this new representation . It will then
be seen that the state vector amplitudes are closely connecte d
to the "wave functions" which enter in the homogeneous equa-
tions of motion following from Schwinger's theory .

The following simple properties of the state vector amplitude s
are independent of the magnitude of the coupling constant .

i) The ground state of the source-free system has the represen-

tation V' ( ) = 1, while all other amplitudes vanish . As already
remarked at the end of the last section, this follows in a trivia l
way from the definitions (2 .15) and (2.14) . The fact that the
simplest state of the system has the simplest possible represen-

tation is in accordance with the expectation that the present
formalism provides us with a convenient description of th e
lowest lying levels of the system .

ii) It is easily verified from (2 .25), by means of well-known
properties of T-products, that the state vector amplitudes ar e
symmetric functions in all meson coordinates and anti-symmetri c
in as well all nucleon coordinates as all anti-nucleon coordinates .
So far we have not introduced iF-functions such that we ca n
speak about symmetry properties when interchanges of, fo r
instance, nucleons and anti-nucleons are involved . It is, how-
ever, evident how one could generalize (2 .15) to cover such
cases also . One would then obtain state vector amplitudes which,
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in the general case, possess all the well-known symmetry pro-
perties of the free field wave function (3 .1). The most direct way
to see this is to observe that we formally can use the relation s

d

	

= 0
l ~ àg (g')'

	

dq(q')Î

	

,

	 d

	

}

	

1 idq (y')' I df(z')i

	

0 '

	 di	 df(z')' i
bf(dz„

) l

	

0 ,_

and commutativity of i d/6 I with all variational derivative operators
when the objects of operation are matrix elements of T- an d

N-products . To this remark we shall come back in the next

section . To illustrate (3.2) we evaluate

3 3=<0ITT(w(z)w(g')

	

y(um))I v' >

	

(

= (-1)l T,,F(Ig' . . . ga ilz) .

Here we have used (2 .13) and the symmetry properties of T-pro-

ducts .

iii) The state vector amplitudes are continuous functions o f

the coordinates . This is not quite trivial, because matrix element s

of T-products are, in general, discontinuous functions . The
discontinuous character of the Tom-functions is made apparen t

by the 6-terms in the equations of motion for these functions
(Ap . III . 3, 4 and 5) . It can, however, be seen that the applicatio n

of the differential operators occurring in the field equations to
v-functions does not give rise to such 6-functions . This can, for

instance, be proved by induction using (2.25) . In the following

section, we find that the T-functions satisfy homogeneous equation s
of motion, and this constitutes another verification of the con-

tinuity of these functions' .

i The first derivative of the kw-functions with respect to a meson coordinat e
is also continuous . This difference between spinor field variables and meson fiel d
variables reflects the difference in the equations of motion for the two kinds o f
fields, the nucleon equations being of the first order, while the meson equatio n
is of the second order .

(3 .2 )

z	
d

(d f (z))
<0 T T (y (u')

. .
(

g(O
)) I yt>
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iv) If the state J P> represented by the infinite set of stat e
vector amplitudes is a stationary state, corresponding to th e
eigenvalues PI, for the total energy momentum vector of th e
closed system, then, in the source-free limit, the W -function s
oscillate according to

W(x' . . .Iy' .Iz' . . .)

	

expiP~XI, .

	

(3 .4)

Here, the X1 's are any "center of gravity" coordinate . For in -
stance, one can take X,,.„ as the average value of the coordinate s

, • • This follows immediately from (2 .33) and
the fact that Tv-functions possess this property. The property
(3 .4) is of course the basis for the application of the presen t
formalism to bound state problems .

v) The configuration space representation . The state
vector amplitudes corresponding to a state I iW> provide us wit h
a generalization of the Fock representation for free fields . As
we have seen above, several of the simple properties of the Fock
representation are maintained in the general case. One might ,
therefore, consider the set of state vector amplitudes as a re -
presentation of the state ITj . We shall take such a point of
view in the following, and speak of this representation as the
configuration space representation . Alternatively, we can als o
consider the functional T (I I) which generates the state vecto r
amplitudes as representing the state in question . In this way w e
speak of the functional representation . For the sake of con-
venience, we denote these two representations by the CSR and
the FR, respectively .

To make full use of the CSR one should know, at least i n
principle, how to construct the scalar product of two states re -
presented by their state vector amplitudes . This problem could
not be solved and we have not even been able to prove tha t
the CSR is a complete representation. Until further progress i s

Cf. FREESE [4] . As mentioned by FREESE, the most general definition o f
XI, is

Xt,

	

a' x' + . .
+ ß'yß+ . . . + y' a x

	

,

where the a, ß, and y's are subject to the conditio n

a' +

	

- + IT + . . . + y' + . . . - 1 .
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made, application of the present formalism must therefore b e

based on an assumption of the completeness of the representation .

A comparison of the CSR with other better known repre-

sentations might offer a possibility of discussing the completeness
problem. The fact that <0 is the vacuum state of the source-fre e
system has been used in the discussion of the oscillating behaviou r

of the amplitudes representing stationary states . It is easily seen

that all other considerations remain valid for any choice of < 0
if only this state coincides with the free-field vacuum in the limi t

of no coupling. An example of another possible choice of thi s

state is provided by the vacuum state <0, a for the free fields

u (x, a), zy (x, a) which coincide with the source independen t

fields on a space-like surface a . Moreover, it can be seen that

one can choose different states in the definition of the functiona l
tF (O !) . Thus, instead of (2 .15), we could have define d

Yå . (II) _

<

(0, a	 TIT>

0,a'' l Tj0,6> ,

where 10, a"> and 10, a '> may be different .

The choice

n(II) _ <
<O,alr VI>

0,alTIO,a>

leads to a representation in which the state vector amplitude s

for all space-time points on a coincide with the Tamm-Dancof f

representation .

As is well known, one can consider the state 10> as the limi t
of 10, a> in the sense of a certain limiting process, usually re-

ferred to as the adiabatic switching-on of the coupling at t = - oo .
In the sense of the same limiting process, one can regard the CS R
representation as the limit of the representation based on (3 .5)

for a -} - oo . The coincidence of the representation (3 .5) with

the Tamm-Dancoff representation on a tells us that (3 .5) is a
complete representation . There might, therefore, be a possibilit y
of discussing the completeness of the CSR by a comparison with

the Tamm-Dancoff representation . The complexity of the limiting
process involved, however, does not make this a very promising
prospect.

(3 .5)



26

	

Nr. 1 2

Another representation could be based on the functiona l

1~6(II) =
	 <olTlYf>

	

(3 .6)
<o, G I T I

The corresponding state vectors can be seen to coincide on a
with the representation given by DYSON [12] .

4. The equations of motion .

In the preceding section, we have introduced two new repre-

sentations, the functional representation and the configuration spac e
representation . The simplest way to obtain the equations of motio n

in these two representations is first to derive the equations of
motion in the FR . As we shall see, the equations of motion i n
the CSR can be obtained from those in the FR by a simple procedure .

i) The equations of motion in the FR . To determine th e
dependence of the functional l' on the sources we must try to
set up variational equations making use of the field equations .
The '-functions depending on one space-time point only ar e
given by the expressions

(x I I) = To (I 1)-1T , (x I I) - To (I I)" To (x I I) To (I I) 1Ttrr (I I) ,
ë (IyI) = T o (II)-1Tw(I g l)- To(II) 1To(I g 1) To (II)-'TT, ( II),

	

(4 .1 )

`(1 z ) = To( ) 1 Ty, (II z)- To(II)-1To(II z ) ToCD 1Tv,(II) .

These equations are special cases of the formula (2 .33), but can
also easily be verified directly from the definition (2 .15) . As
shown in the Appendix II, the Tv-functions depending on on e
space-time point satisfy

(-L1 +m2) TIr (x l1) 2Tyr( x l x)+ I (x) Tv(I1) =o ,

(O,+ 31) Ty, (I g I)+ 2Ty, (yjyl)+f(u) TT (II)= o ,

	

(4 .2 )

+ M ) Tw(II z)+ 2Tw(z lI z)+ g (z) Tv, (I1)=0 .

These equations are of course also satisfied in the special cas e
of 1'> being the vacuum state, i . e . for To-functions . Combining
(4.1) and (4.2) we get
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(- qx +m2) V-f (x ll)-~ To(II)
1T

;rJ(I x l x)

+À To(II) 1To(I x l x)

	

(II) =0 ,

(O , + m) Y (IuI) + 2 To(I I)-1 Tw(uIuI )

-2 To(II)-1To 0 l 0 ) T (II) =0 ,

(~z+ M ) ~̀ ( Il z)+ .1To Cr i Tq, (z z)

-/l To(11)-'_To(z ll z )

	

(l =0 ,

where the sources do no longer explicitly appear . To expres s

(4 .3) as linear equations in Tr and the variational derivatives

of q', we eliminate the 7'w-functions by use of expressions o f

the type (2 .28), (2 .29) . The resulting equations contain as factors

certain combinations of T-functions for which we introduce th e

notation

77(x II)= To(II) 1To(x II) ,

n (l Jl) = To(I I)-1 To (I u l) ,

Ti (Il z) = To(Il)-1T
o(ll z)

By the aid of these al-functions we can write the resulting linea r

differential variational equations for Tlf in the form

(- q x + m2) Tl'(x ll)- 2 n (I x l)(Il x)

+ 2. y7(Il x) V'(I x l)- ATT' (I x l x) = o ,
+m)

	

(lul) + ~ a7 (ui I) T (IuI)

+(lul) T (uII)+ 2T (uIuI) = 0 ,

(oz+ 11'1 ) Tl' (II z)+ 2 a7(z II) T (Il z )

+ ~a7 (Hz) TF(zlI ) + .1 TIf (z1lz) =0 .

Thus, for any state I T>, the corresponding functional TI' satisfies
(4 .5). The problem which restrictions (if any) must be imposed
on the solutions of (4 .5) to guarantee that the functional obtained

represents a state of the system has not been sol v ed in general .
Hereto we shall return later .

(4 .4 )

1
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ii) The n-functions. By a similar method we obtain equation s

of motion for the n-functions . Combining (4.2) and (4.4) we get

(- qx+m 2)77(x11)-
2 T

o(I I)- 1To(I x I x)+ I (x) = 0 ,

(o,+111)n(I g I)+~ To(I I)-1To(g I g 1)+f(g) = 0,

	

(4 .6)

(Oz+ M)(I Iz)+ 2 Ta(I I)-1To(z 1I z)+ g (z) = 0 .

It is convenient to introduce a functional by

n (I I) = log <0 T I0> .

	

(4 .7 )

The n-functions (4.4) are contained as special cases in the fol-

lowing general definition of n-functions :

(x' .1y' . . .Iz' . . . )

.

	

å

	

.	 a

	

i

	

(I I )
_ i Si(x')

. . .t
åg(g')

	

Sf(z')!

	

n

Thus, for instance, n-functions depending on two space-tim e

points are given by

n(I g l z) = To(ll)
-1

To(lyl z)-n(IuI)n(ll z) ,

n(x l g l) = To( 1) 1To(x l g l)

	

n(x l I)n( JI),

	

(4 .9 )

n(x ll z)= To(Il)-1To(x ll z ) - n(x )n(l I,z ) -

With the aid of these formulas we can eliminate the To-function s

in (4.6) and obtain

( qx + m2)n(x ll)- 2n(I x l)n(Il x) 2 n(I x l x)+ I (x) = 0 ,

(Øu+M)(I g l)+an(g 11)n(lul)+ a n(g i g l)+f(g) =0, (4.1 0

(0z+ M)n(Ilz)+ An(z I1)n(Il z)+ 2 n(z ll z)+ g (z) = 0 .

These equations are variational differential equations satisfie d

by the n-functional in the FR .

Contrary to the Y'-functional which depends on the particula r

state considered, the n-functional is uniquely determined in th e

theory. We must, therefore, supplement the n-equations by
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boundary conditions characterizing the particular solution o f
(4.10) which enters in the equations of motion for the ¶-functional .

For the discussion of this problem we need an interpretation

of the operator T. Let T (t) be the transformation which con-

nects the source-free fields and the source-dependent field s
according to

u(x)= T(1)- 1uo (x)T(t) ,

y'(x) = T(t)-1y'o(x)T(t) •

As may be seen from (1 .14), T (t) satisfies the variational equatio n

t8 T(t)=	 i T(t) S W (x ')dx ' ,

	

(4.12)

and the boundary condition T (t) = 1 in the limit of vanishin g

sources. Hence, we see that the operator T, as defined by (2 .1) ,

can be interpreted as the transformation which connects th e

source-independent fields with the complete source-dependen t

fields in the infinite future, i . e .

lim (T 1. uo (x) T - u (x)) = 0 ,
tom.

and similar relations for the two other fields . We shall use thes e

relations in the form

lim(uo(x)T-Tu(x))=0 ,
t-)-00

lim (yea (x) T- T v (x)) = 0 ,
t-> .

lim (t o (x) T - T Tp (x)) = O .
t 4 00

Assume now, as we already tacitly have done in the previou s

considerations, that the source-independent system by a suitabl e

renormalization has been cast into a form such that a state o f

lowest energy, the vacuum state, exists and that the energy an d

momentum of this state is zero. It follows that any stationary

state of the system corresponds to an energy momentum vecto r

lying inside the half cone in momentum space characterized by

< 0 and 13 0 > O . Evidently, time-like momenta correspondin g

to negative energy are excluded by the assumption made . How-

(4.13)
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ever, also space-like momenta are excluded since, by a suitabl e

Lorentz transformation, any space-like momentum vector might
be brought into a form with po < 0, i . e . with negative energy.

Corresponding to the invariant decomposition of momentu m

space into the three subspaces : the positive frequency part (o r

the (±)-part) characterized by p i, pm, < 0, po > 0, the negative fre-

quency part (or the (-)-part) characterized by pi, p11 < 0,po < 0 ,
and the (0)-part with p i, p 11 > 0, we can split any field variable

into three parts, the (--)- the (-)- and the (0)-part . For instance,
if we define u (p) by

u (x) = (2 n)-2 u (p) e 'px dp,

	

(4 .14)

we have

u(+) (x) = (2 70-2 u (P) e` px dp ,
p. < o, po> o

n(-) (x) = (2 7)-2 u (P) e`px dP ,
p 2 < 0,1)0 < 0

u(o) (x)
=(2

7)-2 u (P) e1px dP •
p > 0

From our assumption it follows that

uo (x) 0 > = uô ) (x) ! 0 j .

	

(4 .16)

Hence also, as lim (u (x) -uo (x)) = 0 ,

lim (u (x) - u (o-) (x)) 0> = 0,

	

(4 .17)

i . e . u (x) 10> contains only negative frequencies in the infinit e
past . The corresponding statement about the asymptotic behaviou r
of the field variables when multiplied by <01 T from the lef t
follows from (4 .13) . By the same kinds of arguments as thos e
leading to (4 .17) we ge t

lim (0 T (u (x) - uô+ ) (x)) = 0 .

	

(4 .18)
t-i

(4.15)

Thus, <01T u (x) contains only positive frequencies in the in-
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finite future . The same result applies to the two other kinds of
field variables .

Consider any To-function

To (x' . . x(v) . . . x(k)

say. In the limit where one of the space-time points, for instanc e
x(v) , tends to - cc, we have, considering all other space-tim e

points as fixed ,

< 0 j T T (u(x') . . . u (x('") u
(x(v

+i)) . u (x(h)) . .)

	

(4 .19)

xu(x(v))10)] =0 .

Hence, we infer from (4 .17) that in the limit x (oy) -- - cc the

To function contains only negative frequencies in a Fourie r

decomposition with respect to x(v) . The same property holds fo r

any other space-time point occurring in a T 0-function. In the

opposite limit, we get by a similar argument that To contains onl y
positive frequencies corresponding to any space-time point

approaching the infinite future . Using a terminology which is

suggestive in connection with the discussion, given by STUECKEL-

BERG, FEYNMAN and FIERz [11], of the properties of the causa l
Green's functions, we say that To-functions obey causal boundary

conditions . The possibility of expressing the n-functions in term s

of To -functions (as, for instance, expressed . by (4 .8) and (4 .7))

implies that also n-functions satisfy causal boundary conditions .
The equations for the a7-functions (4.10) are of the secon d

order in the variational derivatives . We must therefore supple-

ment the boundary conditions with the value of the functiona l

77 and its first variational derivative in the limit of vanishing
sources. In this limit, however, T = 1 . Hence, n (x j I) _
(0 uo (x) 0 > = 0 , in virtue of (4 .16) . Similarly, in the same limit,

C yI) = 77 (I jz) = O . Finally, by the definition (4 .7) we have
chosen 77G,0 =0 .

Similar considerations apply to the state vector .amplitudes
in the infinite future . This is obvious from (2 .33) or alternatively

from the definition (2 .15) . Hence, 1F-functions obey causal

lim [To(x' . . .x(v) . . .x(k)fq' . . . z ' . . )
x (v)±-y
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boundary conditions in the infinite future . In the infinite past ,

however, the behaviour of the l'-functions depend on the par-

ticular state considered . One more information about the T'func-

lions follows from the considerations in Section 3, iv) . If we

consider the P-functions for all time variables equal, then, i n

the source-free limit, only positive frequencies are allowed wit h

respect to this common time .
It is not known whether more conditions must be impose d

on the state vector amplitudes to guarantee that a solution o f

the equations of motion (4 .5) actually represents a state of th e

system. The solution of this problem is of course connecte d

with the likewise unsolved problem of the completeness of the CSR .

iii) The equations of motion in the CSR. Having thus
obtained the equations of motion in the FR it becomes a simple

matter to derive the equations of motion in the CSR . As mentioned

in the Appendix III, in connection with the derivation of th e

equations of motion of the time ordered products, the differentia l

operators occurring in the field equations commute with all

variational operators . We can, therefore, obtain an infinite se t

of linear differential equations for the ip-functions by variationa l

derivation of the equations (4 .5). For instance, by applying the

variational operator i ååI (x ') to the first equation (4.5), we get

(- q x +m2) iF (xx'II)- A i1(Ixl) VI (x'Ix)

+~~7 (I x) T (x'Ixl) 	 277 (x 'I x l) ~(I x)

	

(4.20)

+ 227 (x 'II x) T (Ixl) - a, T(x ' xlx) = 0 .

Similarly, from the second equation (4 .5), we infer

(~ J +117) -T (x'IuI) + ;In (~I I) t~(x 'I Y. I )

+ ~ ?7 (IyI) ~(x' y I I) + A n(~Jx' I I) w (lul )

+2n (x 'IuI) T (uII)+ 2T(x'yIuI) - o .

Proceeding, and taking variational derivatives, one can construct

equations involving zI'-functions with an arbitrary number o f

meson space-time coordinates . Equations involving one more
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nucleon space time point and one more anti-nucleon space tim e
point are obtained by applying the operators iå/ôg (y') and
- iå/å f (z '), respectively . Only, when varying the spinor sources ,
one should remember the anti-commutativity (3 .2) of the nucleo n
variational operators. Thus ,

b

à g(y'
)(n(ylI) T (lyl))-n(yly'I) P (Iy1)-n(yll) w( g y'I) ,

i6g(y')('7(Iy)w(y I)) =-n Oyu' I) 7' (ylU-n(lyl) w(yly') ,

YJ(ylyl) = -T(ylyy'I) .

Observing this, we get by applying iå/àg (y') to the second
equation (4 .5)

+m)

	

(lyy'I)+(yl) T(Iyy'I) + a, 'P (y

- 2 n(yly'I) P (Iyl)+ A n(Iyy' )

	

(YI D

+ 2 77(I0 w (yIy'I) =0 .

( qx+ ntz)n(xx I I)--An(x'I xI)n(I x)-2n(I x I)n(x' II x)

By a similar procedure one obtains equations connecting th e
various n-functions. For later reference we note a few exam-
ples :

-a 7 (x'Izl

	

+ i a (x x') =0,
4.23)

(a,+ M)n(l y z) + 2 n(yll)n(Iyl z) 2 n(yll z) (

+ 2 n(ylylz)+ iå (y	 z) - o,

yI)
(4.24)

(~z+ lit)n(ly z) +~ n(z ll)n(lyl z)+ 2 n(zlyl)n(Iz)

+ ~n(z lylz)+ iS (y- z) = 0,

	

, (4 .25)

and, finally, an equation involving three space time point s
Dan .Dfa.t .Fys .Medd, 28, no .12 .

	

3
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(0,,+ lu)n(x l y 1 z ) + a ~l(yll)(x lyl z)+(xylylz)

-1- /In (xylI) 77 (lylz)-~~?(x yll z)( ly )

-~~a(yll z)n (x Iyl) = 0 .
The last equation can, for instance, be obtained by operatin g

with i å/6I (x) on the equation (4 .24) .

In the CSR it would seem most natural to represent the stat e
under consideration by the state vector amplitudes taken in th e

limit of vanishing sources . There is, however, as emphasized

by ScrlwINGER [2], some advantage of postponing the limiting
process I (x) - 0 to a later stage in the considerations . If we,

instead of considering meson theory, had taken electrodynamics

as an example of illustrating the general scheme developed here ,

we would have had an obvious reason for doing this, as i n

electrodynamics the external source of the electromagnetic fiel d

has a direct interpretation in terms of a classical distribution o f

current and charge interacting with the system . Such a justification

can hardly be found in our case . Still, we shall find it mathe-
matically convenient in the following considerations to keep the

meson field source in the theory .

We, thus, consider the limit of vanishing spinor sources . In
this case, simplifications arise due to the fact that the differenc e
4 N between the total number of nucleons and the total number

of anti-nucleons is then a constant of the motion . This implie s

a selection rule for To-functions . Only those To-functions are

different from zero which contain the same number of nucleo n

and anti-nucleon space time points . If no T operator appeared

in the definition

this selection rule would follow in the usual way from 4 NI 0> =0 .
However, it is easily seen from (2 .5), remembering that in the
limit considered we have W = I u, that 4N commutes with T
and, thus, the selection rule is not influenced by the presenc e
of the T-operator .

With this result, we can write (4 .5) in the simpler form

(4 .26)
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(-Eh +m2) '(x lI)-~ Yf (I x l .x ) =r0 ,

(oz,+ m) ~(Iu I ) + a~ 011)

	

(Iu I ) + a Y'(JI y I) = 0, (4 .27)

(O,z+NI)~`(Ilz)+(zll)P-(Ilz)-{-Ä-Vr (zllz)-o ,

the limit (p = = 0 being understood in these equations. It may
be of some interest in the following to compare these equation s

with the equations obtained from (4 .23), (4.24), and (4 .25) ,

taking the same limit, viz .

( qx -I- m2)(xx' l--R~(x'lxx)-+-id(x -x')=0 ,

,+ M)71(I y z) +(y I ) (ly z) + 2 77 (y Iy Iz)-}-i8(yz) =0, (4.28 )

+ nr)n (IY Iz)+ 2 n (z ll)n (IY I z ) + 2n (z lul z)+i a (y z ) = 0 .

These two sets of equations are of very much the same structure .

The main difference is that the equations for the state vector am-
plitudes are homogeneous equations, while those for the n-func-

tions are inhomogeneous ones . We shall discuss the relations

between these two sets of equations more closely in the next

section . Here, we only mention that the second equation (4 .27)

and the second equation (4.28) may be written as

(4.29)

(o ll +m+ Ä7i (yI)+
i
). m

(
u))(IJIz)-iö(u-z) ,

respectively. Thus, we see that, in a certain sense, ¶ (I u I) obey
the homogeneous equation of motion corresponding to th e
equation for ri (lglz) .

5 . The equations for the one-and two-nucleon problems .

As mentioned in the Introduction, the present formalis m
combines the theory of Schwinger with that of Heisenberg and
Freese . To illustrate this we shall briefly discuss the forma l

properties of the one- and two-nucleon equations from the point

of view of the CSR. For the sake of completeness, and in order
3 *

i
+ 1V1 +(yII)+ O.,

öÎ(u)) ~( lyl) =0,
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to introduce some convenient notations, we first summarize th e

derivation of the one-nucleon equation given by SCHWINGER [2] .

i) The one-nucleon equation .

In the limit of vanishing spinor sources the simplest i7-function s

satisfy, according to (4 .10) and (4.28), the equations of motion

(-+m2)n (xi - 2 77(I x l x)+ I (x) =0 ,

(- q -}-rn 2 ) a7 (xx ' I I) - ,177 (x ' ~ xlx) + i û(x- x ') =0, (5.1 )

+ m + 2n(g II))n(IyIz)+ 2 n(y I y I z)+ is (y - z)= o .

To simplify the notation, and also to distinguish the i7-function s

in this limit from the general ones, we introduc e

U (x)= ~1(x I ) ,

d é (x , x' ) = i n (xx' II) ,

S“x , x')=	 in ('I xi x') ,

and, consequently, write the equations (5 .1) in the form

(- !, m2)U(x) - i 2 S~ (x, x) -~-I(x) =0 ,

(- -I-rn2) 4c (x ,x')+ i2 åI(x,)S~(x,x)=S(x -x') ,

(O +M+7> U (x))

	

+ i ~sl(x) =- b(x-

As discussed in Section 4 .ii, the n-functions satisfy causa l
boundary conditions . Hence, in the limit I = 2 = 0, we have

dé(x , x') = d, (x -x' ) ,

S~ (x, x ' ) = Sc (x - x') ,

where A and S, are the well-known causal solutions o f

(- q +m2)d,(x	 x') =S(.x -x') ,

(O-{- M) S,(x - x') = - S (x - x

(5 .2 )

(5 .4)

(5 . 3 .
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The equations (5 .3) are, for our case of nucleons interacting with
scalar neutral mesons, the analogue of the equations for th e

Green 's functions in electrodynamics studied in Schwinger' s

paper . Following his method we substitute the variational de-
rivative operators in (5 .3) by polarization operators II and L',''
defined by

i .1
bl~x) Sc(x,

x)= I1 e (x, 1) 4 (1,x')
i SI~x) Sc (x, x') = g' (x , 1) Sc (1, x ' ) :

Here, and in the following, numbers occurring twice denote
variables of integration. Thus, for instance,

~c (x , 1 ) Sc ( l , x') =Ee (x,s~')Sé(r,x')dT .

By (5 .6) the equations (5 .3) take the form

(- q +m2) U(x)- i ~Sc (x, x) =-I (x) ,

(- q -I-m2)(x,x')+II~ (x,1)4c(l. ,x') å (x	 x ' ),

	

(5 .8)

(O+lvl+2u(x))S(x,x')+g`(x,1)S;(1,x') = -a(x-x') -

Operating on the last of these equations with i 2å/åI (x") we

get, after integration and taking into account the causal boundary

conditions ,

8

	

ci

	

(x , ,,,) =

	

(x , l ) (1 , 2, 3)

	

(2 , x") S (3 , x,,,) . (5 .9)~bl(x„)S

	

x

	

S

	

Ø

	

4

The kernel Ø depending on three space time points is given by

(x ,
,

x„ x„
")

,, ,
- i/2S (x' - x")~(x„-x,,,)-i~,(x', x

6U (x")
.

In the derivation of (5 .9) use has been made of the fact that

I does not appear explicitly in the last equation (5 .8), whenc e

(5.6)

(5.7 )

(5.10)
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S

	

U C

(x"
.ß r. //1 )

åI(x)E
(x,x"')

	

åU(2)

	

d`(2,x') .

	

(5 .11 )

On comparison of (5 .6) and (5 .9) we infer integro variationa l

equations characterizing the polarization operators, viz .

III (x, .x')=S~(x, 1)

	

(1, x', 3)S'(3,x),
(5 .12)

(x,x')=S~(x,1)(1,2,x')(2,x) . 1

For later reference we mention that, from the equation conjugat e

to the last equation (5 .1), viz .

( Oz+ m +~.rl(z ll))n(lyl z)+ Ä 71(z l y z) +f å (y -z)=0, (5 .13)

we get by arguments similar to those leading to (5 .8) an equation

of the form

('+M+2U(x'))S~(x,x')+Se'(x,1)L'c(1,x')= 	 å(x-x') . (5 .14 )

The polarization operator in this equation is given b y

(.x,x')=(.x,2,3)Ll'e(2,x')S;(3,x') .

	

(5.15)

According to Schwinger, the one-nucleon equation is ob-

tained as the homogeneous equation of motion corresponding t o

the inhomogeneous equation (5 .8) for the Green's function S .

Thus, denoting the one-nucleon "wave function" by x, the

equation reads

(O+M+AU(x))(x)+E (x, 1)z(1)=0 . (5 .16)

As shown in the previous section, the equation of motion fo r

the state vector amplitude depending on one nucleon coordinate i s

+M+ 2 U (y)) P (lyl)+ i 2 å
1(y)

Vr (yl) = 0 . (5 .17)

The similarity between this equation and the inhomogeneous

equation for the Green's function Sc' makes it natural to investi -

gate under which conditions solutions of (5 .16) also satisfy (5 .17) .

For this to be true we must have
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i~ôl(x)x(x)=I (x , 1)x( 1 )•

	

(5 .18)

By derivation of (5 .16) with respect to I (x ') we get, after inte -
gration, an expression for the variational derivative of x, viz .

î2,å1(x)=x(°)(x' ;x)+S~ (x , 1 ) 0 ( 1 , 2 , 3) A (2,x')x(3) . (5 .19)

The function x( °' is a so far undetermined solution o f

+ NI A U (x)) x(° (x ' ; x) +

	

(x, 1 ) x (°' (x ' ; 1) = O . (5.20)

Comparing (5 .18) with (5 .19) we see that xis a solution of (5 .17) ,
provided that x (° vanishes .

We thus have the result that any solution of the coupled
equations

+ ILr + ~ U (y)) Y'(1) (1 y I) + z 'û' (y, 1) To> (I 1 I) = 0, l
(5 .21 )

~(1> (x I Y I)=2 -1S~(y, 1)Ø(1,2,3)4(2,x) T( 1 ) (1 3 1) 1
also satisfies (5 .17) . The reverse statement is of course not true .
We have, therefore, attached a subscript to the state vecto r
amplitudes in these equations to indicate that a solution in th e
form (5 .21) is possible for a restricted class of states only, th e
one-nucleon states .

From (5.17) we get by variational derivation an infinit e
system of coupled equations for the state vector amplitudes . The
first of the equations derived from (5 .17) reads

(o,++ U (y))

	

IYl)- iac(x ,y) (IYI)
} (5 .22)

+ 2Vf (xg lyI)= O .
Let us now follow, in the present version of the CSR, the sug -
gestion by Freese and try to eliminate all amplitudes depending
on one or more meson coordinates from the infinite set of equa-
tions. The states for which this elimination process is possible
might, alternatively, be called the one-nucleon states . To get an
idea how the resulting equation will look we convert the infinit e
system of equations into a finite one by the approximatio n
assumption that iF (x y l J I) can be neglected in (5 .22) . We ca n
then solve (5 .22) by the aid of the Green's function satisfying
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(0y + M + 2 U (y)) S(eu) (y , y')

	

å (y - y '),

	

(5 .23)

and causal boundary conditions . The approximate solution o f
(5.22) is then

(x yl)=
99(o)

(x;y)- i a V'T' (y, 1) 4; ( 1 , x)

	

( I 1 I) , (5.24)

where lp(o) is a solution of

(o, + M + a. U (y)) 0o) (x ; y) = o .

	

(5.25)

To obtain an equation of the form (5 .16) we choose To) = 0 .
With this choice we get, instead of (5 .17) ,

+M+2U(y)) Tr( y 1)- i22SU) (y, 1 ) i ( 1 , u) (1 1 1) =0 . (5.26)

In the next approximation one would keep all amplitudes with
less than two meson space time points . Proceeding in this way
one can, in principle, construct an exact equation of the for m
(5 .16), provided that the procedure converges . The polarizatio n
operator say, obtained in this way is characterized by th e
requirement that the resulting equatio n

+ M + AU (y)) w (IyI)+(y, 1) w (1 1 I)= 0

is consistent with (5 .17), i . e . that

(Y,

	

'F (I 1 I) = ia, å
I(y )

T' (IyU .

By arguments similar to those above it can easily by verifie d
that 'E is, in fact, identical with 2- . Thus the resulting one -
nucleon equation is identical with Schwinger's equation .

The advantage of the equations (5 .21) as compared with th e
infinite system of equations obtained from (5 .17) becomes
obvious when we pass to the physically interesting limit o f
vanishing external sources . For I = 0, the second equation (5 .21 )
and the equations obtained therefrom by variational derivation
become explicit expressions for the state vector amplitudes wit h
one and more meson space time coordinates . Therefore, for
I = 0, any solution of the one-nucleon equation provides us
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with a corresponding solution of the equations of motion in th e
configuration space representation .

ii) The two-nucleon equation .

According to Schwinger, the two-nucleon Green's function i s
defined by

G (~ y ' ; z z')=	
å	 å	 To(I yy ' I )

6f (z') 8f (z )

	

To (I I )

Using the formulas in Section 4, it is easily verified that

(5.27)

G (q, g ' ; z, z' )

- ~(Igg'Izz')-~a(Iqlz)~(ly'Iz7+~~(lylz')~(ly' z) ,

the limit go = i-p = 0 being understood in this formula. An equation
of motion for 17 (I y y' i zz ' ) can be obtained from (4 .10) by taking
appropriate variational derivatives . From the equation obtaine d
in this way, and by (5 .3), we get

+M+~U(q))G(q, y' ;z,z')+i~BI(y)
G (y, y' ; z, z')

(5 .29)

=- 8 (q- z)S~(y',z')+~(q-z')Sé(g',z) -

Using (5 .3) we see tha t

0u-F M + AU (y)+/l
~1(y)

0y+ I~1+ .tU(q')+iA
ôl(y

b	

),
G(y,y' ;z,z')

b

= b (y-z) 8 (q ' -z')S (y-z') ô (y' - z) .

Following Schwinger, we introduce an interaction operator W b y

F(y)F(y') G(y,q' ;z,z')-W(y,y' ; 1,2) G(1,2 ;z,z')
(5 .31)

=å (q - z)å (q' -z') -S(g-z')S(g' z) .

The symbol F is an abbreviation of the integral differential
operator entering in the equation for the one-nucleon Green' s
function, i . e .

F (y)(y)=(Ø,+11'I+U(g))~(y)+(y,l)~(1) . (5.32)

(5.30)
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As G satisfies causal boundary conditions we can integrate (5 .31 )

by means of S~ . Combining the resulting equation, viz .

F(y)G(y,y' ;z,z')+S;,(y', 2) W(y, 2 ;3,4)G(3, 4 ;z,z' )

=r5 (y -z) S~(y',z')+b(y - z')S; (y ' , z) ,

with (5 .29) we infer a condition on the interaction operator :

i

	

S
2

åI (y) G (y , y' ; z, z') = Z (y, 1) G (1 , y' ; z, z')

	

(5 .34)

+S~(y',2)W(y,2 ;3,4)G(3,4 ;z,z') .

	

J
Integrating (5 .33) once more, we find tha t

G ( y ,y' ;z,z')-S',(y,l)S~(y',2)W(1,2 ; 3, 4) G (3, 4 ; z, z')
(5.35 ;

=S~( y ,z)S~(y',z') --S~(y,z')(y',z) •

From this equation one gets an expression for the variationa l

derivative of G with respect to I (y) which, together with (5 .34) ,

gives Schwinger's characterization of the interaction operator, viz .

W (y, y ' ; 1, 2) G (1, 2 ; z, z ' )

= Ø (y' , 1, 2) 4', (1, y) G (y , 2 ; z, z')

	

(5 .36)

+S~(y,1)i-I(y)
[W

(1, y' ; 3, 4) G (3, 4 ; z, z')] .

For W we shall use another equation which does not depen d

explicitly on the variational derivative of the two-nucleon Green' s

function. From (5.35) one gets, using (5 .9) ,

	 å	
i åI(x) G (g, y ; z, z ' )

=2G(y,y' ;1,2)1'
i 8I(x)

W(1,2 ;3,4) G(3,4 ;z,z')

+G(y,y' ; 1,2) Ø(1, 3, 4)A'(3, .x)S~(4,5)F(5) F(2) G(5,2 ;z,z') .

The combination of this expression with (5 .34) gives the alternat-

ive characterization of W, viz .

(5 .33)

5 .37
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(y , z) å (y'	 z' ) -~ ( Ji , z') å (y' 	 z)) + S; (y', 2) W (y, 2 ; z, z ' )

= 2~1G (y,y' ;1,2) I 6
I(y ) LV (1 , 2 ; z , z' )

-1- F (z ')G(y,y' ;1 , z') 0 (1 , 2 , z ) 4', (2 , y )

--F(z)G(y,y' ;z, 1) 0 (1, 2, z') A; (2, y) .

Here, F denotes the operator entering in the equation of motio n
for the one-nucleon Green's function in the form given b y
(5 .14), i . c .

F (z) 4- (z) =(~Z+1V1-I- 2 U (z)) 4- (z) +C (1)

	

(1,z) .

	

(5 .39)

The equations of motion for the state vector amplitude
depending on two nucleon space time points obtained from the
equation (4.22) by passing to the limit of vanishing spinor
sources read

(O g + M + U (y)) P- (I yy' I) + 2 -T (yyy' I) = 0 ,

oz . +m+ R U (y ')) Y'

	

(5 .40)
( ~

	

(lyy l ) + ~ T (y lyy
,
l) =0 ,

whence also

' au++
U(y)+iAm1(y),

(au,
+M+

.1
U(y')+i2å-1(y'))T(I yy ' I) = 0 . (5.41 )

This equation is a homogeneous equation of motion correspondin g
to (5.30) in the same sense as the equation (5 .17) for the one-
nucleon amplitude is the homogeneous equation correspondin g
to the equation for the one-nucleon Green's function (5 .3) .

According to Schwinger, the two-nucleon equation is th e
homogeneous equation corresponding to the equation (5 .31), i . e .

F (y) F (y') x (y, y')-W (y,y' ; 1 , 2)x( 1 , 2 ) =0 . (5.42 )

It seems to be difficult to establish any general connection be-

tween the solutions of this equation and the solutions of (5 .41) .
1f, however, we take instead of (5 .42) the two integrated equations

(5 .38)

2
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F (y) x(y ' y') + S~(y' , 2)W(y, 2 ; 3 , 4)x(3 , 4) =0 ,
(5.43)

F(y')x(y,y')+S~(y, 1) W(1, y' ; 3,4)x(3,4) = 0 ,

where the inhomogeneous terms have been dropped, then on e

can rather easily find the connection between the solutions o f

these equations and the solutions of (5 .40) . Evidently, the con-

dition for compatibility of (5 .43) and (5.40) is that

(y,1)x(l,y')+S(y',2)W(y,2 ; 3 , 4)x(3 , 4)

	

l

=1.2åI(y)x(y,y'), } (5 .44)

(y',2)(y,2)+S 'e (y,1)W(1,y' ; 3 , 4)x(3 , 4)

= i

	

x (y , y') .

By integration of (5 .43) we get

x(y,y')-(y,1)S', (y',2)W(1,2 ;3,4)x(3,4)=9p(y,y'), (5 .45)

where (p is any solution o f

F (y) (y , y' ) = F (Y') T (y , y' ) = 0,

	

(5.46)

i . e . 9' has one-particle properties with respect to both coordinates .

From this equation we infer by arguments similar to those used

in the derivation of the one-particle equation tha t

	 b	
I2 SI(x)(y,y') = T(°) (x ; y , y' )

+S~(y',1)Ø(1,2,3)(2,x)(y,3 )
+ S'e (y, 1) 0 ( 1, 2 , 3) 4', ( 2 , x) q2(3, y ' ) ,

Using this we find from (5 .45) an expression for the variational

derivative of x with respect to I (x), viz .

i bl(x)x (y,y')= 2 .1G(y,y' ;1,2) [zbl( .x) W(1,2 ;3,4)]x(3,4)

-(F (4) G (y , y' ; 1, 4)) 0 (1, 2, 3)

	

(2 , x) x (3 , 4) + R (O) ,

where

F (y) 00' (x ; y , y' ) = F (y') 00) (x ; y, y ' ) = 0 . (5.48)

5 .49)
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where R (0) is a contribution which vanishes for qß (0) equal to zero .

On comparison with (5 .44) and using (5 .38) we find that x satis-
fies (5 .40), provided that gß(0) vanishes .

Hence, corresponding to (5.21), we have the result for the
two-nucleon system : Any solution of the coupled equations

[1(2)(Iyy ' I) - s~(y, 1 ) sic (Y',2)W(1, 2 ;3,4)T(2)(I34I)g'(Y, J ' )

.1BI(x)
T

(2)y y'I)=i2G(J,y' ;1, 2) zåI(x)W(1,2 ;3,4)] PI(2)(I3 4 I) (5.50)

- (F (4) G (y, y' ; 1 , 4))

	

(1, 2, 3)

	

(2, x) T(2) ( 34 I) ,

where 99 (g, y') satisfies (5 .46), is a solution of (5.40) . In partic-
ular, passing to the limit I = 0, the second equation (5 .50) and
its variational derivatives become explicit expressions for th e

state vector amplitudes depending on one and more meson

coordinates besides the two nucleon space time coordinates . It

is thus possible in a unique way to relate to any solution of th e

Bethe-Salpeter equation a solution of the equations of motion

in the configuration space representation .

Summary.

A reformulation of quantum field theory is given, in whic h

any state of the system considered is represented by a functional

depending on external sources . The variational derivatives o f

this functional provide us with a generalization of the Fock re -

presentation in configuration space to the case of non-linea r

fields . The representing amplitudes can be expressed entirely in

terms of matrix elements of time ordered products of field

operators and possess several simple properties which are
independent of the magnitude of the coupling constant . It i s

shown that these amplitudes satisfy homogeneous equations o f

motion which can be derived in a simple manner . The equations

of the Bethe-Salpeter type following herefrom become identica l

with those following from Schwinger's theory of Green's functions .

Our representation has many properties in common with tha t

given by Freese .



46

	

Nr . 1 2

Appendix I .
The sources of the spinor fields .

In Section 1 we have assumed that the domain of the external

sources can be chosen so large that variational derivatives wit h
respect to allowed variations of f and g can be defined in a uniqu e
way. This property together with the anti-commutativity (1 .6) is

all we need for the development of the configuration space
representation. It is, maybe, not quite trivial that the require-
ments to the sources are consistent . We shall, therefore, con-
struct an example of a possible domain of allowed f-number
pairs .

Let a 7, and b1 ,, n = 1, 2,

	

be two sets of infinite matrice s
which satisfy the commutation rule s

{ an , al, } = ånm

l

	

t
an, a

J
m f = ain, am } _ 0 ,

L
I

	

b,,, bm } - ånm

l bn, bm } = l bn, bm } = 0

while all the a's anti-commute with all the b's . As is well known ,
there exists a matrix which anti-commutes with all the a's and
with all the b's and with their adjoints . This matrix Q, say, i s
the parity of the matrix E (alt an + b!, bn) . We choose Q hermitian
and unitary, i . e .

Qt
= Q, SZ2 = 1 .

	

(Ap . I . 2)

For the construction of the f-number pairs we further nee d
two complete orthonormal sets of functions in four-dimensiona l
space, fn (x) and gn (x), such that any function, $ (x) say, can
be expanded in either of the form s

(x) E fn(x)
or

(x) =

	

(x) •

Let c l and c2 be complex numbers . Then,

(Ap. I . 1)
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f(x) =c1 Eanfn(x)
(Ap. I . 3)

g (x) = c 2 ' bn gn (x) ,

is a possible allowed f-number pair . In fact, due to (Ap. I . 1 )

{f (x), f (x')) _ (f (x), g (x')} _ {g (x), g (x')} = 0 . (Ap. I . 4)

A domain of f-number pairs can be obtained from the particular
pair (Ap . I . 3) by unitary transformations in the a, b-space. In

particular we are interested in infinitesimal unitary transform-
ations such that the corresponding variations of the f-numbe r
pair form a pair of allowed variations in the sense of Section 1 ,
i . e . such that

{åf(x), f (x')} = {åf(x), g (x')} = 0,

	

(Ap. I . 5 )
{åg(x), f(x')}={åg(x),g(x')}=0 .

Such variations can be obtained by means of the matri x

A = ~ (an ,SZ an 	 a i ,Q an + bR S~ ßn - ß i d2 b n),

	

(Ap . I . 6)

where the an's and the ßn 's are infinitesimal complex numbers .
By the properties of Q, A is anti-hermitian, whence 1 + A i s
unitary. By this transformation the an 's and the b n 's vary ac -
cording to

San - [A, an ] = Dan ,

åbn
=--[A,bn] = ,Q ßn•

(Ap. I . 7 )

The corresponding variation of the f-number pairs is

b f(x) =anfn(x) ,

åg (x) = c2 ,Q ~ßn9'n(x)•
} (Ap . I . 8)

Obviously we have here an example of a pair of allowed variation s
for any set of infinitesimal a n 's and fin 's . Thus, all variation s
of the form

6f (x) = Q åE (x) ,
(Ap. I . 9)

ô g (x) = S2 s~ (x) ,

	

J
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where åe and 617 are infinitesimal functions are included among

the allowed variations . Therefore, if an expression of the form

(1 .10) holds for an arbitrary pair of allowed variations, we hav e

in particular

,Q (6$ (x) K (x) + åri (x) L (x)) 8x = 0,

	

(Ap . I . 10)

with arbitrary å and S 17 . As Q is non-singular we conclud e

that K (x) as well as L (x) vanish identically .

Appendix lI .

Reformulation of a theorem due to Wicx .

Let u (x) be the field operator of a free scalar neutral meson

field. We shall use Dyson's notatio n

N (u (x ') u (x")

	

u (x (n)))

	

(Ap. II . 1 )

to designate the product of the u's ordered such that all absorptio n

operators stand to the right of all emission operators . This pro-
duct we call the normal product of the u's indicated . As shown

by Wica [9], any time ordered product can be decomposed into

a sum of normal constituents according to
n

T (u (x, ) u (x") . . . u (x(R) )) =

	

N(v)

	

(Ap. II . 2)
v= o

For v odd Nw) vanishes. For v even, N(v) is a sum of terms, one
term for each possible pairing of v factors u. Let for v even ,
e', e",

	

•, $ (v) be some of the space time points x', x" ,

	

•, x(n) .
For a definite pairing (e', e"),

	

""), • • • ( (v-i) e')) the con -

tribution to N(v) is

< 0I T(u(e')u("))I0><0I T(u(e')u(e"")) I 0) . . .

x <0 T (u (e(v-1 )) u (e (v))) 10>

	

(Ap. II . 3)

x N (u (x') u (x") . . . u (x")
; e ' , e", . . e(v) )

Here, N (• . .) denotes the normal product of the unpaired u's .

For instance,

N (u (x')
u (x") u (x"') u (x"") ; x" x"") N (u (x') u (x"'))
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To obtain N(v) from terms of the form (Ap . II . 3) one must add
all contributions from possible pairings of the space time point s

e", • • • e (v) and, further, sum over all subsets of v field operator s

u. Hence, we can write N (v) in the form

No') =

	

c w $,
	

e)
)

N (u (xi) u (x") . . . u (xfn)) ;

	

e", . . . e v) ),

(Ap . II . 4)

where the C's are certain c-number functions not depending o n

n . The summation runs over all subsets ', e" , • • e(v) . In partic-

ular, we note that, for n even ,

N (n)

	

C (x ' , x" ,

	

x(n) ) .

	

(Ap. II . 5 )

Combining (Ap . II . 4) and (Ap. II, 2) we have

T (u (x') . . . u (xf n)))
n

	

}

	

6)
(v) C

(e . . .Div)) 1YT ( u (x ') . . . u (x()) ; s~', . . . iv)) (Ap
.II .

J

We include formally odd v's in the summation and choose

vanishing corresponding C 's .

The vacuum expectation value of any N-product is zero .

Thus, from (Ap. II . 6) for n even, we get explicit expression s

for the C 's, viz .

C (x', x" . x") = To (x', x" . . . x") .

	

(Ap . II . 7)

As in (2 .20), To (x ' , • • •) stands for the vacuum expectation valu e

of the T-product. Wick's theorem now takes the form

V\~
To(e',

	

(v)

	

II .8)
G

	

. . .

	

)N(u(x) . . u(x(n)) ; ' . . .

	

)v=o . . .~C(v)

It should be noted that (Ap . II . 7) also holds for v odd as the
vacuum expectation value of the product of an odd number o f
free field operators vanishes .

In case also other types of fields are considered, the definitio n
of the N-product is slightly modified . Each term in the N-product

	

Dan,Mat .Fys .Medd .28, no .12 .

	

4

T (u (x') .u (x ( n))) _
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should now be multiplied by a factor (±) which has the value

+ 1 if the permutation of spinor operators involved in the ordering

process is even, and - 1 if this permutation is odd .

Consider the case of a free meson field u and a free spino r

field described by the field operators and yp . Similar to (Ap .

II. 8) one can write Wick's theorem for this case in the form

T (u (x' ) ' - u (x(k) )

	

(g')
. . . ~ (y (1) ) IT, (z') . . . ?7, (z(m))) _

Z .1'

	

Y

	

(±) T. (~' . . .
$(

x) n ' - .
n(À)

	

. .

	

'(1-t) )

x N (u (x') . . u (x('`)) ;

	

. . .

	

I y (y')
. . .

y (g(l)
) ;

n' . . .
n

(A)

(z')
. . . ~

(z(rlt) ) å C' . . .
C (F') )

where (1) is the parity of the permutatio n

J

	

(~- . . .

	

(u), . . .

	

. . .

	

(t.t) )

	

(x , . . . x( 1i),' . . .(x)

	

. . . g ( t ) ; 71
'

. . .n(A) I z' . . .z(rn
),

	

. . . -01) )

(x . . . x(k)
y'

. . . y(r) 1z ' . . . z (nt) ) .

We introduce the notatio n

~ (x' . . .1 y' . I z - . . . ) =< O1 N(u(x-) . . .y) (y') . . . Tp (Z') . . .) !PI> . (Ap.II .1 0

If, further, we use the notation of Section 2 (p. 17), we get
from (Ap . II . 9)

Tw (x' . . . x(k)
9'

. . . y(l) z' . . . z(m))
=

1

	

1

	

1

	

-

	

(y)

	

(A)

	

(t)
x! e. . . 5e(x) A . ~•. . .,) (A) ,cL~ c .e,uO

(±)
To(s . . . ~ Ir1 . . .n

	

. . .

	

)
xANc

	

, . .

X iIf (x' . . . x( k ) ; ~~ . . . ~(x> ~ y' . . . y( 0 ; n' . . . n(A)
z'- - . z('') ; ~' . . .

The factorials take into account that we now perform the sum -

mation such that the a's, f's, and run independently over th e

x's, y's, and z's, respectively .

As is well known, the functions are the representing ampli -
tudes for the state fJ> in the Fock representation in the con -

figuration space. We can thus regard (Ap . II. 11) as a re -

(Ap . II . 11
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cursion formula expressing the Fock amplitudes in terms o f

matrix elements of time ordered products .

Appendix III .

The equations of motion for the TT-functions .

The equations of motion for the T,-functions depending o n
one space time point only are easily obtained from the field

equations (1 .2) . One finds l

(-Ox+ m2) TT(x l I)- AT ,(I xl x)+I(x) TT ( I) = 0, I+ M) T (I g I) -I- A T (g lyl)+f(y) T (I I)= 0 , (Ap .1I1 .1 )

+ M) TT(I1 z)+ .IT,IT(z II z)+ g(z) TT(~1) =0 . 1
From the variational equations (1 .14) and the canonical com-

mutators it follows that

(o y + M) S (y) = 8 [(oy + M) (y)] ,

and similar relations for the other field variables . Hence, the

differential operators appearing in the field equations commut e
with all variational derivative operators. We can thus obtain

equations of motion for TT-functions depending on more than one

space time point simply by taking variational derivatives of th e

equations (Ap . III . 1) . For instance, applying - i 6/6 f (z) to the
second of these equations, we get

(l u + M ) - TT(I gl z) + ;tTT(g l g l z)
(Ap . III . 2 )

+f (y ) T~(I1 z)+ i d(y -z) TT (II)= 0 • 1
One should note that, for instance ,

8-i
å--f(z) TT, ( I g ~ ) _ - T~( I g I z) •

' The T-product of ?p (x) and 1 (x') for x = x ' is chosen a s

T (v (x ) y, (x )) = hp (x ), (x ) )
IIence the minus sign in the first equation (Ap . III . 1) .

4*
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The following equations hol d

(Ou,+M)T~(x' .Ig' . . . Iz' . )

± 2TT (x' . . .
y'I9'

. . . I z ' . . . )

+ f (g') T~ (x' . . . I g" . . z'

	

. )

+ 1 Z(L) å (y'__ ;) T,(x' . . . I W" . . Iz ' . .

	

_

(~ z + M) Tt~ (x ' . . . y ' . . y(1) I ,' . . . )

.+a TtT1(x.' . . . z' 1y ' . . . y(1) z ' . .)

+ g (z ')(_1)1T~(x' . . .Ig' . . .y(1)Iz " . . . )

+ i ~ (+) å(17-z') TT(x' . . . 1y' .

	

g( 1) ; )7 I z" . . . ) = O .

The (+) factors have the same meaning as, f . inst ., in (2 .25) .

One can verify these formulas by induction on the numbe r

of space time points . To illustrate : if we apply i å/å g (y) on

(Ap. II1.5), we get

-f- M) Ty, (x' . . .
I yy' .

	

g (1) z '

	

. )

+ 2 -TT, (x' . . . z' I Jg' . . . g(1) I ,' . . )

- g(z')(_ 1 )1 TF (x' . . . lug' . . . y (1) z ' . )

+ 1 å (g - z') (- 1)1 TT, (x'
. . g ' . . . g (1) z" . . )

+ 1

	

( +) ö (~1- ti') Ty,(x' . . .
I gg' . . . g(1) ; '17 z" . . .) = 0 .

ayt~

As the number of nucleon space time points has now increase d

by one, the third term has the required sign factor. The factor
( 1) 1 appearing in the fourth term is in accordance with th e

(- Ox' + In 2 ) Tw

	

. . I u
' . . . g (1) z' . . .

)

H 1) 1 2 Tqf (x„ . . . x'y' . . .
y(1) I

,r ' z ' . )

-{- I x ' ) T~J (x„ . . g ' . . g(1) I z ' . . )

å(x'-e) Ty, (x" . . . ;

	

g ' . . g (1)
I
z ' . . .) = O .

Nr. 1 2

(Ap. III . 5 )

(Ap . III . 6
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convention as regards the value of the parity factor (1) . Hence ,

the two last terms in (Ap . III . 6) combine to give a term of the

form of the last term in (Ap . III . 5) and we see that (Ap . 1II . 6)

is again of the form (Ap . III . 5) .

The above equations have been derived by FREESE [4] fo r

the source-free case by means of other methods .
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