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Summary .

A
relativistic field theory with non-localized interaction is in-

vestigated . The field equations are deduced by the variationa l

principle from a Lagrange function containing an interactio n
term involving a form function . The essential departure from
conventional field theory is the lack of causality, or, in other

words, the lack of propagation character of the field equations .

It is shown, however, that under certain conditions which mus t

be satisfied by the form function this property remains limite d
to small domains . Similarly there are no continuity equations ,
but conservation laws hold in the large . The quantization is per -

formed according to an. extension of the scheme developed by

YANG and FELDMAN making use of the concept of incoming and
outgoing fields . It is shown that this procedure is always con-

sistent with the field equations . Assuming that the field equations

can be solved by means of power series expansions it is possibl e
to give rules generalizing Feynman's rules giving all the terms o f

the expansion of an outgoing operator in terms of the incomin g

operators. Every term is associated with a doubled graph . An

investigation is made of the convergence of the integrals obtained in
this way. It is shown that many terms converge automatically a s

soon as the Fourier transform of the form function is suppose d
to fall off rapidly at large momenta . Some divergences remain

in the higher order terms . They can, however, be removed b y
assuming that the Fourier transform of the form function has
only time-like components . It is finally shown that the gauge in -
variance requires the addition of a new interaction term in th e

Lagrange function, corresponding to a sort of exchange current .
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I . Introduction .

It has been shown by PEIERLS and MAcMANUS(l) that it i s

possible to introduce a smearing function in a field theory in a

Lorentz-invariant way . YUKAWa(2), on the other hand, has pro -

posed a theory involving non-local fields, which, as will be shown

later, is equivalent to an ordinary field theory with an interactio n

containing a form function, if one takes a variation principle as

a starting point (3) . These theories cannot be put into a Hamil-

tonian form and, consequently, have met with sonic difficulty

in quantization . Recently, however, a new treatment of conven-

tional field theory was developed by YANG and FELDMAN (4) and

by KÄLLÉN(') , which can immediately be applied to field theories

involving smearing functions(6 ' `) . It has therefore become pos-

sible to build a complete Lorentz-invariant quantized field theory

with a non-localized interaction, and it may be worth while to

investigate the consistency of such a scheme, and the convergenc e

of the results it yields .

If we take, for simplicity, the example of a nucleon field inter -

acting with a neutral scalar meson field, the scalar non-localize d

interaction term reads(*
)

Li = g dx' dx"dx"'F(x ,
x"

x") ip± (x ') ii (x")
v (x")

	

(1,1 )

where the form function F must be Lorentz invariant and suc h

that contributions to L i conic only from the volume elements for

which the three points x ' , x", x' are very near each other . By

points near each other is meant points whose coordinates diffe r

by amounts of the order of a characteristic length A . The inter -

action (1,1) is Hermitian if the form function satisfies the condi -

(*) In this formula x stands for r1 x 2 x3 x4 = 1, and dx for dx 1 dx'dx3dx4 .
We shall use units such that ti = c = 1 . We shall write ab for the scalar produc t
La b'', where a, = a' for i = 1, 2, 3, and a 4 = - a 4 . The metric tensor g tv i s

defined by 41 v = 0 if it

	

v, gait = 1, if it = 1, 2, 3, and g 44 = - 1 .
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tion F (x"' x" , x ' ) = F' (x ' , x", x') . The introduction of a for m
function in L i corresponds to a kind of interaction which has n o

propagation character, and it is important that such effects shoul d
remain limited to small domains . Because of its Lorentz invarianc e
F will remain finite for arbitrarily large distances of the point s
x ' , x" , x' as long as they remain near the light cones of on e

another . Under certain conditions, however, compensations ca n
occur in the neighborhood of the light cones in such a way tha t
the corresponding volume elements do not contribute appreciabl y

to the integral (1,1) (1} . A quantitative study of this effect wil l

he made in section 2, and the conditions which F must satisfy

will be established .

It may be of some interest to show that YUKawa's non-loca l

field theory leads to an interaction of the form (1,1) with a

particular form function F . We may take, for instance, a non-

local field U interacting with a conventional field ?p . The field U
is a function of two points x' and x' in space-time () , and the

field equations can be deduced from a variation principle in-

volving the interaction ter m

L i = gÇdx'dx",y+(x')(x' UI x' ) (x")

	

(1,2 )

The field U can be represented by the Fourier integra l

(x' U x,,, ) = dk a (k) etkx å (kr) å (r2 - 22 )

where X _ (1/2) (x ' + x"') and r = x ' - x' . If we associat e

with the field U the local field

u (x" ) = Ç dk a (k) elks "

we can write (1,2) in the form of (1,1) with

F (x' x„ x,,,) =
(2 70-4 Ĥ dk e ik (x-x„) 8 (kr) å (r2- /~ 2 ) .

Detailed investigation of this form function, however, shows that
it does not yield convergent self-energies ($ ) .

The non-localized interaction is also connected with the field

theories involving higher order equations considered by several

authors and systematically investigated by Pais and UHLEN-

BECK (9) . The general type of these equations is
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Ï(D)u(x) Q. (x ) ,

where e(x) is the source of the field . If fis an analytical functio n

it can be factorized and each factor corresponds to a possibl e

mass of the particles described by the field u . Theories with mor e

than one mass, however, should be rejected because they intro -

duce negative energies . The only acceptable equations (1,3) ar e

then of the form
et(0)( q 	 In2)u(x) = (x) .

	

( 1 , 4 )

The differential operator e t(u) has an inverse and we can writ e

(1,4) in the equivalent for m

(q 	 In')u(x) = e 1 (x) = dx'G(x-x')e(x'),

	

( 1 , 5 )

where

G(x) = (2 ,7)-4 ` dk e-t(-k') etkx

	

( 1 , 6 )

This is the equation which would be obtained with the inter -
action (1,1) and a form function F = G(x" x ' ) å (x ' - x"' ) .

The possibility of transforming an equation such as (1,3) int o

an equation of the form (1,5) shows that one has to eliminat e

certain types of form functions corresponding to the introductio n
of particles with different masses and negative energy . If the

Fourier transform of G has poles, G can be writte n

G(x) = (2 70-4 1 dke ikx g(-Ice)/ /[ (k' + ins),

	

( 1 , 7 )

and the equation (1,5) is equivalent to the multi-mass equatio n

(.1 G (- q + ini) ( q -ant) u (x) = g ( q
)P (x)

The function (1,7), however, behaves for large x like I x z I-'1' as

does every propagation function (the flux of the square of the

function through a given solid angle is independent of the dis -
tance) . The occurrence of additional masses will then be avoide d

if it is specified that the form functions should fall off for large

x faster than propagation functions .
The field equations are deduced from the Lagrange functio n

by the variation principle . Because of the introduction of a form
function in the interaction the field equations are not ordinar y

differential equations, and the values of the field functions a t

(1,3)
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t + dt are not simply defined in terms of the values at t . Con-
sequently, the conservation equations do not hold in their differen -
tial form. It will be shown, however, that conservation laws hol d
in the large, in the sense that energy, momentum, angular momen -
tum and electric charge at a time t, before any collision has take n
place, are equal to the corresponding quantities after collision .

The quantization can he performed by postulating that th e

b
Fig. 1 .

asymptotic values of the fields for t = w and 1 = + cc (calle d
the incoming and the outgoing fields) satisfy the usual commuta-

tion relations of the free fields . It must then be shown that these
commutation relations are consistent with the field equations .
This can he done by using the fact that the constants of collision :
energy, momentum, etc . . . . define the infinitesimal canonical
transformations corresponding to the infinitesimal translations
etc . . . . The S-matrix is then defined as the matrix which trans -
forms the incoming fields into the outgoing fields .

Any outgoing operator can in principle be computed from th e
field equations as a power series of the incoming operators . The
calculations are simplified by a set of rules similar to FEYNMAN ' S
rules for electrodynamics 10 These rules are used for an in-

vestigation of the convergence of the self-energies to all orders .
The way in which convergence results from the introduction of
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a form function in the interaction can easily be seen on the secon d

order self-energy . The graph corresponding to the conventional
field theory is represented on Fig. 1a. To the lines going from

xz to x2 correspond functions of xi - x2 which are singular o n

the light cone, and a divergence arises from the fact that the self -
energy integral involves a product of two functions becomin g

singular at the saine points . The small circles on Fig . 1 b cor -

respond to the introduction of form functions F (x', x", x"') ,
and it is seen that the divergence will disappear if F is a smooth
function of x' x" and x" x' . A rigorous treatment require s
the use of the energy-momentum space . However, it can already
be seen that the convergence of the self-energies of both types o f
particles requires that F be a smooth function of all three variables .

There is then a little difficulty when the interactions with the

electromagnetic field are taken into account since the interactio n
term (1,1) is not gauge invariant . It will be shown, however ,
that a supplementary interaction term can be added to (1,1) i n

such a way that the sum is gauge invariant . This term describe s
the current due to the jumping of the charge between the point s
x"' and x' r'2 " and x2' .

2. The form functions .

In this section we shall investigate under which conditions
the non-localizability of the interaction is limited to dimension s
of the order of a given length A . We consider first a simple case :

A. Functions of two points(1) . In the conventional theory

with a localized interaction the function F is a product of two
four-dimensional Dirac functions : F (x ' , x" , x"') = ô (x'- x")
8 (x" -e l ) . As a first generalization we shall assume that
F contains only one four-dimensional Dirac function : F =
8 (a 'x' + a "x" + a "'x"') G, where the scalar constants a ' , a", a"'
satisfy the relation a ' + a" + a"' = O . The factor G can be ex-
pressed as a function of two points only, x ' and x", for instance ,
if a"' t. O . The invariance under translations and Lorent z
transformations requires that G should he a function of s --
(x'

	

x")2(* )

(*) For s < 0 the function G can also take two different values for the sam e
value of s depending on whether x', x2 is positive or negative . We shall come
back to this later .
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We shall now investigate under which conditions the for m
factor becomes very small as soon as x ' and x" are not very
near one another . More precisely, considering the integra l

I = Sdx'G(s)f(x'),

	

(2,1 )

where f(x ' ) is an arbitrary smooth function, it should depend
only on the values of f(x') for x' very near x" . A first conditio n
to be fulfilled is that G(s) should fall off very rapidly as I s l be -
comes much larger than A 2 . This condition, however, is not suf-
ficient as G(s) remains finite for x ' near the light cone of x" .
Thus, the contribution to learning from the volume elements whic h
are far from x " , but near the light cone of x ", requires a special
investigation .

It is convenient to introduce the point xo of the light cone o f
x" which is near x ' and has the same three first coordinates . We
call a the three-dimensional length of x ' - x" or xo -x". We
have x4	 x"4 = ea, where e is + 1 or - 1 depending on whethe r
x4 - x"4 is positive or negative . The distance of x' to the light
cone is conveniently defined by = s (xQ x' 4 ) . The relatio n
between s and is

s = 2 a e - 5 2 .

	

(2,2)

It shows that for large a a small variation of corresponds to a
large variation of s . As G is very small for large values of i s , it
follows that for large a we can expand i:he function f in powers
of around the light cone and extend the integration with respect
to x' 4 or from - cc to -r cc .

As we are interested in orders of magnitude only we shal l
omit all numerical coefficients . The Taylor expansion of f around
the light cone read s

f (x' ) = f (xo, xQ - se)

where fok - (f9/ö x ' `') k f(x') taken at the point x ' = xo . Finally ,
we replace the variable of integration x '4 by s . We have

dx '4 = ds/2 (a

	

) = (ds/a) S (e/a)nm ,

and from (2,2) we deduce

~kf
n
k

°
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= a - (a2 - s) 'I -

	

(s/a) > (s/a 2 ) " .
o

Using all the preceding expansions the contribution to I of th e
neighborhood of the light cone of x" can be written

S dx'G s

	

x ')

	

dx'ds

	

k+m G s k ba "~ + 1O f (-

	

O fo

where the T,M are the "moments" of the function G defined by

illn = Çdss"G (s) .
s

The formula (2,3) shows how the contributions to I coming from
the neighborhood of the light cone of x " decrease with increasing
distance a . Namely, i f

Ylo = M, = 1112 = . . = Ip_1 = 0, 1>'Ip 4 0,

	

(2,4)

the contributions decrease as (1la)1 +1 . As the volume element dx '

is proprotional to a 2 da, it is seen that the integral I extended t o
the whole space-time is convergent for any hounded function f

with bounded derivatives if p h 3 . The integral dx 'G(s) i s
convergent for p

	

2 .
It should be noted that integrals such as I are usually no t

absolutely convergent . The convergence is due to cancellation s
arising within the volume elements which are near the light con e
of x" . In calculating such integrals, one must always use a metho d
allowing these cancellations to take place . For instance, one can
start by restricting the domain of integration to a finite part o f
space-time enclosed within a closed surface ', and then let ' g o
to infinity. It is easily seen that the cancellations which make th e
integral I convergent will lake place if the angle under which L '
cuts the light cone tends nowhere to zero . The possibility o f
defining in a Lorentz invariant way an integral which is no t
absolutely convergent clearly comes from the fact that the can-
cellations making the integral convergent take place within layer s
along the light cone which become infinitely narrow at infinity .

If for s

	

0 the form function takes different values dependin g
on the sign of x 4 , it is convenient to write G as a sum of an even

fok/am

	

(2,3 )

~ dx 'ds ~ (s/a)k+(s/a2)~xG(s) +1 -2 S dx'~Ill"z+klplc~a2rn+k+1 ~

	

.



Nr . 8

	

1 1

function G+ which is invariant under the substitution x-->--x ,
and of an odd function G which changes sign under the same sub-
stitution . It follows from the relativistic invariance that G_ mus t
vanish for s> O . It is easily seen that the functions G + and G

must satisfy the conditions (2,4) independently .
For many calculations it is more appropriate to represent G

by a Fourier integral

G(x) = dk e ikxg (k)

where g (k) is a function of the argument q = k2 , and can be
represented by a sum of an even function g+ and an odd func-
tion g_ . The Fourier transformation (2,5) gives then G+ in terms
of g_i_ , and G_ in terms of g_ . We shall now investigate whic h
conditions must be satisfied by g+ and g_ in order that the cor -
responding G should be an acceptable form function . This re -
quires a closer investigation of the correspondence between G
and g given by (2,5) .

The integration in (2,5) with respect to the angular orientatio n
of k yields

G (x) = 4.7' 1 dl dk4 Sin l a e- ik °x'g (k)
a - _A

Ĥ i7
Ç

d 4 Cos l a e 1k x g (k)_oc .

2za

	

S+d7ç
4ç

	

e i(I a-k'a°)g (k) ,
a aa ,

where a = x l, and 111 = j k I . Introducing now the decomposi-
tion of G and g into even and odd parts we get

2n a
"G+ (s)

	

a as . .)
dl dk 4 et(ia-k'x') g+(q) ,

G- (s)

	

2
as S dldk4ei(ia - l.') s (k4 ) g_(q) ,

where s = x 2 , q = k2 , and s(k4) = k 4 /j k4 l . It should be note d
that the precise definition of G_(s) i s

G_ (x) = G_(s) if x4 > 0, G_ (x) = - G_(s) if x4 < O .

(2 , 5 )
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A similar definition holds for g_(q) . Replacing the variables of
integration 1 and k4 by

q

	

~2- (k4)2, -and a =

	

if a $ x 4 ,
a-x4

4

ora =- + 	 ifa= x 4 ,
a+ xl

get after some simple manipulation s

	

G+ (s)
= .- ô

	

da dq

	

a a a

	

a e (a) e (i/2) (n s+q/a )
~ .l
-JJ

	 Ççda d
(A

O =

	

zc å

	

(i l') (< t a )G sa e

	

g-(q)

As
~ - a = 2

a
we can also writ e

a aa

	

as '

G+ (s) = - iatç ~ dadgE(a)e( : ;2)(as-g l r) qT (q)

-ø

+w

	

(2 ,6 )
G_ (s) = - à7u Çda dq e( i /2) (u s -Fq/u) g (q)

(* )

The formulas (2,6) may be interpreted in the following manner .
G is obtained from g by three successive transformations :

a) the Fourier transformation

Ø (~) = dge ( `l2) ßq9 (q) ,

b) the transformatio n

4V+(a) = r(a),Çoq (1 /a), or v-(a ) = 49-(1/a) ,

e) the Fourier transformation

G (s) = - i .g da e ( ` /2)as v (a) .

() In this formula g_(q) = 0 for q > O . It follows then from Cauchy's theoremapplied to the integration with respect to a that G(s) = 0 for s > O .

we
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We shall use this decomposition to find the properties of g suf-
ficient that G defined by (2,5) shall be an acceptable form func-

tion .

The conditions which must be satisfied by G are :

1) to be continuous ;

2) to go to zero as I s -> co , for instance as (1/s)k ;

	

. (2,7)

3) dssn G(s) = 0, for n = 0, 1, . . ., p - 1 .

As regards the condition 2), one might require that G(s) shoul d
tend to zero much faster than eve assume here, exponentially fo r

instance. It seems, however, natural to require only that G be -

haves for large s in such a way that its integral over the whol e

space-time is convergent. The condition 2) with k > 3 is the n

sufficient . The convergence of the moments involved in the con-

dition 3) requires in fact k > p + 1 (*) . The condition assumed

here seems natural in view of the fact that the contribution to th e

integral (2,1) coming from the neighborhood of the light con e
never decreases faster than an inverse power of the distance .

Sufficient conditions for y(a) corresponding to (2,7) are tha t

y must have k continuous derivatives such that

) `da y (a)

i+ ~
2) da ~ y (" ) (a) ~ < oo , for n = 1, 2, . . , Ic(" ) ;

.-,,

3) y(n) (0) = 0,

	

for n = 0, 1, . . ., p

	

1 .

The derivatives of +y (with respect to a) are given in terms of th e
derivatives of cp (with respect to ß) by the formula

m= n
v(11) ( cc )

	

ß771+net)
(ß),

	

( 2 ,9 )
m= 1

where /3 = 1/a, and where the numerical coefficients have bee n

(*) The expansion (2,3) requires the existence of moments of all orders i . e .
an exponential decrease of G for large s . The whole argument, however, can be
carried through by means of limited asymptotic expansions only . The condition
we have assumed is then sufficient .

(**) Here we make use of a well-known theorem on the aysmptotic value of
Fourier integrals ; see for instance, S . Bocz-INER, Fouriersche Integrale, Chelsea
Publishing Co ., New York, p . 11 .

(2 ,8)
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omitted . The presence in the relation between 99+ and v' + of the
factor e(a) which has a discontinuous variation at cc = 0 does
not modify the equation (2,9) since the function zp and all it s
derivatives involved here vanish at = 0 (this follows from 3
for the p - 1 first derivatives and for the derivatives of the orde r

p, p + 1, . . . , k from the behavior of T (m) at infinity as indicate d

below) .
It is seen from (2,9) that we must assume that (p has k con-

tinuous derivatives . From the condition 1) it follows that <p mus t

be such that
-i- .n

ß2 IT(ß)l <ao ,

This condition is satisfied if we assume that rp is bounded for

^ _ op , is regular at ß = 0, and that (0) = 99 ' (0) = O .

Finally, it is easily seen that the conditions 2) are satisfied if w e
assume that fp (m) (ß) (m = 1, 2, . . ., k) behaves at infinity a s
(1/ß)'+k The conditions 3) are then automatically satisfied . From

the relations go (0) = 99 ' (0) = 0 it follows that

S dgg (q) = dggg (q) = O .

	

(2,10)

s

On the other hand,

em) (ß) r
+ ø

( dqe(l/2)ßgq,n9' (q)
;

) b

and this function behaves at infinity as (1/ß)m+k if gmg(q) has
nz + k continuous derivatives absolutely integrable from - to
+ o (Bocci a loc . Cit .) . As m takes the values 1, 2, . . ., k we
are led to the following conditions :

g(q) is continuous and has 2 k continuous derivatives ;
e) (q) (n = 0, 1, . . ., 2k) goes to zero as q-k +

	

(2,11 )

faster than (1/q)k+ 1

The condtitions (2,10 and 11) are sufficient to insure tha t
G(s) satisfies (2,7) . The function g_(q) vanishes for q > O . I t
follows then from the continuity of the 2k first derivatives tha t

gn) (0) = 0, for n = 0, 1, . . ., 2k .

	

(2,12)
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The conditions (2, 10 and 11) allow us to choose function s
g(q) which vanish outside a certain interval . In such a case, g(q)
and its 2k first derivatives must vanish at the ends of the interval .

The function G_(s) can be expressed in terms of the usua l
function D of field theory. Performing in (2,5) first the integra -
tion at q constant, and then the integration over q, we get indee d

G (s ) = (2 -.7r)3 i Ç dqg-(q) D (s, q),

	

(2,13 )

where D(s, q) is the function corresponding to the mass V- q .
If we assume that g_,_ (q) is different from zero only if q < 0
(which implies that 0(0) = 0, for n = 0, 1, . . ., 2 k), we can ,
similarly, express G± (s) in terms of D(1)(11) :

G + (s) = (2n)3
Sdgg+(g)D(1)(s, q) .

	

(2 , 14)

The expressions (2,13 and 14) are identical with those used in
the theory of regularization (12) . The relations (2,10) also belong
to the latter theory. They express the condition that the singulari-
ties of the functions D and D(1) at s = 0 should not appear i n
G(s) . The conditions (2,11), however, are in contradiction wit h
the limiting process used in the idealistic renormalization, or wit h
the introduction of a discrete set of masses . Consequently, the
behavior for large s of a form function is essentially different fro m
that of a regularized function .

It may be noted, finally, that the transformations considere d
in this section are special cases of the Fourier-Bessel transforma -
tion(13) . The transformation of the odd functions, for instance ,
can be written

rG (r) = 2 iA.2
o

dxJ1 (xr) xg_(x) ,

where r

	

s, and x = v q .

B . Functions of three points . As it was shown in section 1, th e
form function should actually be a smooth function of all thre e
variables . It will then be a function of the invariants (* )

s = (x" - x")2

	

t _ (x,,, x') 2 ,

	

u = (x ' - x") 2

(*) These invariants are not entirely independent . No triangle x', x", x"'
exists if s, t and u are negative and if s 2 + t2 + u`

	

2 st - 2 tu - 2 us e O .
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First of all, the form function should fall off rapidly as s, t, o r
u becomes large (strictly speaking, one could also require that F
falls off as any of two only of the quantities s, t, u becomes large) .
There are, however, large triangles x ' , x", x"' for which s, t and
u are small . The contribution to an integral such as

I = dx' dx" dx"' F f (x', x" x rrr )
(2 , 15 )

coming from such triangles can be investigated by the same metho d
as for the functions of two variables . Let a, b and c be the lengths
of the space parts of x - x,,,, x,,, -- x and x - x" , respectively ,
and suppose that a b > c . For a large triangle a and b at least
will be large compared with R . Let xo and xi be the points of th e
light cone of x"' which are near x ' and x", and have the sam e
space coordinates . We have

xi

	

x"'4 = ea,

	

xå - .r , , 4 = E b ,

	

E = -F- l .

Introducing the distances of x' and x" to the light cone of x"' by

= e (4-x"4),

	

7i = r (xå-x '4),

	

(2,16)
we have

s = 2aß- 2 ,

	

t = 2b9l- 1 2 .

	

(2,17)

Again, we can carry out the integration in I with respect to x ' 4
and a?"4 using Taylor expansions around the light cone of x"' .
It is then convenient to replace the variables x '4 and x' 4 by s
and t with the help of (2,16) and (2,17) . An additional complica-
tion comes from the fact that u is now a function of s and t sinc e
all three quantities are functions of x '4 and x"4 (or $ and 1i) . I t
is readily found that

u = c2-(a-b)2+(a-b)~~ 1) + (a-b)(a T,

	

-

which shows that when the triangle becomes large the quantity
q = c 2 (a - b) 2 must remain finite . It is one of the parameters
which define the way in which the triangle is increasing . As other
parameter we can take a/b = e, and we have the n

u = (1

	

,u) (t - sl,u)
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where the omitted terms are quadratic in and 17 . We can then ex-
pand F in Taylor series in and ï around u = (1-y) (t	 s/p) + q .
One finally finds for the contribution of the large triangles th e
expansion

1

m(1+12/2 kk '

•

	

177 +7I lÿnt 1'+

	

(ta > q ) f0
1 = dx' dx„ dx ,,l ~

	

-- - -a2m 7+k 1 b2m + 1 ' + k ' +
0

k'

	

lti

	

Iwhere fo = (a/ax q) (dlax g) f(x', x", x") taken at x' = xo ,
x" = xi , and M', (,u, q) is the derivative of the order j with

71, 1 1

respect to q of the moment

, q )

	

dsdts'1F(s,1,(1-,a)(tsly) ± q)

It is seen from (2,18) that if F satisfies the conditions

tij>z, 71 ' (,a , q ) = 0, for n =, n ' < p -- 1 ,

for all relevant values of , c and q, the contribution of the larg e
triangles decreases as (1/a) 1' 2 . Thus, we have extended the re -
sult obtained for the form functions of two variables .

We shall not go any further into the analysis of the genera l

case since it is much more complicated than for the functions o f

two points . Moreover, form functions of three points can be buil t
by means of form functions of two points, and this procedure ma y
be sufficient for practical purposes . For instance, we may take

,,,

	

,

or, more symmetrically ,

F(x' , x", x"')

	

dx G(x' x)H(x"-x)G(x"'-x)

	

(2,19)

The use of such a form function corresponds to replacing th e
field functions by "smeared fields", as defined by PEIERLS and
MACMANUS (1) .

The Fourier transform of the function (2,19) is particularly

simple. It is the product of the Fourier transforms of the thre e
functions G., H and G occurring in F and of the four-dimensiona l

Dirac function å(k' + k" + k"') .
The results of this section show that the conditions under whic h

a forne function behaves like a smeared 8-function have nothing
Dan.Mat .Fys .Medd . 27, no S .

	

2

,

	

(2,18)
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to do with the condition that its Fourier transform should resembl e
that of a 6-function. This is due to the non-positive definite char-

acter of the distance in space-time. It follows that the behavio r
for 2-* 0 of the Fourier transform of a form function gives ver y

little information about the behavior of the function itself. In
particular, a form function defined by a Fourier transform g(k)
such that lim g(k) = 1 may very well give rise for 2 small to

2,->- o

undesirable interactions transmitted with the velocity of light ove r

large distances, or having no propagation character .

3 . Conservation equations .

Taking the usual expressions for the Lagrange functions o f
the free particles, and the expression (1,1) for the interactio n

term, we obtain from the variation principle the field equation s

(yl''	 -}-M)i(x)+g dx" dx"' F(x x"x„)u(x")v(x") = 0
å.x F

åe (x)

	

M )+ x F g dx'dx" T x' x" x)v' x ' u x '

	

0,

	

(3,1 )

(- q H nzZ ) u (x) + g . dx. dx ,,, F(x , , x,

	

y (
x') w (x")

	

I~x

	

- 0 .

In order to prove the existence of conservation equations it i s
convenient to introduce the integral L2 obtained by restricting
the domain of integration in L to a finite part ,Q of space-time .
In the interaction term Li it is sufficient to restrict to Q the inte -
gration of only one variable x " for instance. We thus consider

LQ

	

dxH(.x), where H(x) = Ho(.x) + Hi (x) ,

in which Ho is the free particle term an d

Hi (x) = g dx 'dx"' F(x' , x, x")
(x' ) u (x) v

(x" )

We call ED the field equations deduced from LQ by the variational
principle . The equations (3,1) will then be called E . The dif-
ference between the equations ED and E. is that in the two firs t
equations the integration with respect to x" is extended to Q in-
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stead of the whole space-time . The difference is very small if x
is inside Q at a distance large compared with R of the boundary
E of Q . This follows from the property of the form functio n
F(x ' , x" , x"') that it gives contributions to the integral L i only
if the points x ' , x" , x"' are at distances of the order of A from
one another .

In what follows we shall consider only collision problems .
This means that we assume that very far in the past and ver y
far in the future the particles do not interact. The equations E D.
and EE are then very nearly identical everywhere, if Q is so larg e
that no collision takes place outside Q or near its boundary .

It should be noted that it is not quite correct to neglect th e
interaction term outside Q . Even if the particles do not interact ,
the existence of the interaction creates self-energies which modif y
the rest masses of the particles . This can be taken into account
by adding to Hi a renormalization term H i = - [4M'y p +
(A m 2 /2) u2 ] , where A M and 4 en 2 should be chosen in such a way
that the interaction HI = Hi + Hi does not give rise to any self -
energy. With this modification the quantities M and in occurring
in (3,1) are the real observed masses of the particles, and it i s
justified to neglect HI if the particles described by the field ar e
very far from each other .

Finally we see that considering a solution yi, u of the equa-
tions Ems , it is possible to find a domain Q such that the equa-
tions E2 have a solution approximating y), u inside Q and on E
as closely as required . It follows that if a conservation equatio n
on the boundary E of Q holds for any solution of E D , the sam e
conservation equation will hold for the solutions of Eø on E if
S2 is large enough .

Let us assume now that yp and u are solutions of the equation s
En and consider an arbitrary variation of yp and u ; we have

bLn =

	

da y - yPdy - Sy,+ yi"y~ + d m1 8u + åu~uil (3 , 2)

where d~u is the surface element on E pointing toward the outside .
If the variations of the fields correspond to a displacement of th e
fields defined by åxt', the variation åLQ can be computed directly
by making use of the invariance of the Lagrange function unde r

7*
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displacements . The difference between the integral of the dis -
placed fields and the non-displaced fields is readily foun d

d J (t x,CZ H(x) .

	

(3,3 )

From (3,2) and (3,3) we obtain the general conservation equatio n

~~ Qct
L
2 (y+yi.16y - Ôy, + y, u,

- å xFt
å u

	

å u
axe)

-L- å xtit H] = 0 . (3 ,4)

If the displacement is an infinitesimal translatio n

8xt, = e~z,

	

yz

	

etc	
8

x,ct

the equation (3,4) become s

dGVrv = 0,

	

(3,5 )

where
t7

	

å i t

	

7', w - 1 Or ?I) y_ _
~ y'+

	

+
r7 u	 _g 'H (3 ,6)

2 1

	

ô x1.t

	

a x tt

	

a x,, xv

	

J

can be identified as the energy-momentum tensor of the system .
The same method applied to the infinitesimal Lorentz transfor-
mations leads to the conservation equation of angular momentum .
The Lagrange function is also invariant under gauge transfor-
mations

zp- elt 'zp, y~+ ->- e 2p + , a = constant .

The corresponding infinitesimal transformatio n

8zp=iônzp, (i ± =bu= 0

gives ÖL 2 = O . From (3,2) we obtain then the conservation
equation

) d6vJ v = 0,

	

( 3 , 7 )

where
jv = i ezp Ty v zp

	

(3,8)

is the four-vector current-charge .
It should be noted that in the conservation equations (3,5 )

and (3,7) the surface L' is not arbitrary ; it is the boundary surfac e

cSLn -
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of the volume Q occurring in L Q . It follows that the usual con-
tinuity equations

7'/`' -
0

	

a1 = 0
ax"

	

Ci xv

do not hold if the interaction is non-localized .
It may be of interest to show this more directly. The calcula-

tion is simpler for the conservation equation of electric charge .

Let us multiply as usual the first of the equations (3,1) on th e

left-hand side by v+ (x), the second on the right-hand side b y

p(x) and subtract . This give s

a
d .x.

.15 (1p+Yv,lp) - g

	

dx 'dx"F(x ' , x", x)

	

( .x' ) zZ (x") (z)

dx"dx" 'F(x x"

	

'tp- (x) u x„
)
v(x„ ') l

The right-hand side of (3,10) vanishes of' course if F is different
from zero only if x ' = x"' , as in the case of a localized interact -
ion. It does not vanish, however, in general, but if we integrat e

equation (3,10) over a domain Q the contribution of the right -
hand side read s

J dx' ~ dx"dx" '

dx:

	

dx dx
„

F(x', x", x") y+(x') uu (x")p(x"') ,
-• 2'

where Q' is the part of space-time lying outside Q . If the inter -

action term HI vanishes outside Q, then (3,11) vanishes and w e

obtain the conservation equation (3,7) .
It will be useful to consider domains Q limited by two space -

like surfaces am and G(2) very far in the past and in the future ,
respectively. Defining then the quantitie s

dGV T/"w

	

Q = dG„ j v ,

	

(3,12 )
v

where do), is the surface element on G such that do4 > 0 ; the
equations (3,5) and (3,7) show that Gu and Q have the same valu e
if G = Go? or if G = G(2) . These quantities are thus constants o f
collision(14) ; they represent the total energy-momentum and
electric charge of the system .

(3 , 0 )

3,10)

(3 , 11 )
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4 . Quantization .

If all the calculations of the preceding section are carried out
in such a way that the order of the factors is always preserved ,
the results will still hold if the field functions are non-commutin g
operators. In order to complete the formulation of the theory, we
must still define the commutation relations of the field functions .
It is not easy to find directly commutation relations which ar e
consistent with the field equations (3,1) . In the conventional
theory one postulates the commutation relations of the field func-

tions at all points of a space-like surface, and one shows tha t
these relations still hold on any other space-like surface . This i s
possible because the field equations have one and only one solu-

tion for any arbitrary initial conditions given on a space-like sur-
face . It is not easy to see what the corresponding problem is for
the field equations (3,1) . On the one hand, the knowledge of the
field functions on a space-like surface is not sufficient to defin e
the field functions even in the neighborhood of the initial surface .
On the other hand, it is not clear that the field functions can b e
given arbitrary values on a space-like surface . This makes th e
extension of the canonical method of quantization difficult .

The situation, however, simplifies if one considers a space -
like surface very far in the past or very far in the future . Becaus e
of the assumption that the interactions are negligible in the distan t
past and future, the commutation relations on such a surfac e
must in the limit be identical with the conventional commutation
relations of free fields . This suggests that the quantization metho d
to he used in the present case will be to postulate the commutatio n
relations for the asymptotic values of the field functions fo r
x4 -* ± oo .

The most convenient mathematical method to find the solu-

tions of a differential system with given boundary values is t o
transform the system into a system of integral equations by mean s
of the Green's functions corresponding to the boundary values con -
sidered. The boundary values that we have here arc the values
for x 4 -) - sc . The corresponding Green's functions are the re-
tarded ones defined by
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( u aa u +M) S+ (x) = ô(x) ,

(- q ;- m 2)D+ (x) = - 6(x) ,

and S+ (x) = D+ (x) = o if xl G O .

As it will be important in what follows that the interaction term
vanishes before and after the collision, it is necessary to use th e
renormalized interaction

LI = Li -- ~ dx (4My+ yl -}-
9
~ u2) ;

and in order to simplify the writing we shall introduce the nota-

tion of variational derivatives . The field equations (3,1) read the n

	

a

	

åL 1

(2#Ô + 11) V(x)+ 6y+ (x) = o ,

	

a y+ (x)

	

61, 1

ôx P
	 y + My (x)+by,( = o,

	

(4,2)

61, 1
(- q ±n12)u(x)±= o ,åu(r)

where, for instance ,

6

	

x

	

g
dx"dx"'

(x, x" , x"') a (x" ),y (xrrr) - 4 My (x), etc . .

Using now the retarded Green's functions we can transform th e
system (4,2) into the equivalent system of integral equations

61. 1
y (x) = yin(x) + ~ dx' S+ (x x')

6y
+	 (x )

y+ (x) = y
+in(x) + (ixrrr

åv
	 SLI

(x" , ) s1 (x x"')

ôL
u (x)

=

	

(x)
1 -dx"D+(.x x'r)

CS u (x")

where the fields y in and ui1 satisfy the free field equations . The
retarded Green's functions are different from zero only inside th e
past part of the light cone, and as we assume throughout that th e
interactions are negligible far in the past, we see that the second

SLI
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term in equations (4,3) becomes very small as x 5 - oe . It fol -
lows that the fields fem and um represent asymptotically p and u
as x4 - x , They describe the incoming particles .

The integral equations (4,3) can formally be solved by itera-
tion to all orders of approximation for arbitrary incoming fields .
It is natural to postulate that the incoming fields satisfy the con-
ventional commutation relations of free fields

[y in (xi), v
in (x ..)~ + =

	

(x i ) yJ+in (x2)J+

	

0 ,

i

	

(xi) , y+ Q (x 2 )] + = S2o, (xi -- x2) ,

(xl),
usn

(x2)j =

	

tz (x2)] = O ,

i [u'n (xi), i» (x2 )] = D (xl - x2) ,

where [A, B] = AB - BA, [A, B] + = AB + BA . The commuta-
tion relations (4,4) are clearly consistent with the field equation s
(4,3) . The commutation relations of the fields y and u can i n
principle be deduced from the relations (4,4) with the help o f
the field equations (4,3) .

The above considerations can be repeated with the boundar y
conditions for x 4 - + oc . We introduce the advanced Green' s
functions S_ and D which satisfy the same equations as the re-
tarded Green's functions but vanish for x 4 > O . They lead to th e
integral equations

61.
y (x) = .b oo i (x) -I- dx ' S_ (x -- ') ~Sy +	 (L-.

+

	

+out

	

"'

	

I

t~

	

åLI
u(x) = u o (x)+\dx D._ (x - x) - u( 1,, ,

where y" ' and 1 out are free fields, which are asymptoticall y
identical with y and u as x4> + c , and represent the outgoin g
particles . The outgoing fields should, of course, satisfy also th e
free field commutation relations . In fact the commutation rela-
tions of the outgoing fields can in principle be deduced from th e
commutation relations of the incoming fields with the help o f
the equations (4,3) and (4,5) . We have to show that the relation s
obtained in this way are similar to the relations (4,4) .
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This can easily be done with the help of the constants of col-

lision defined in the preceding section. These constants can b e

computed with the incoming or outgoing fields . For instance, th e

total electric charge before collision is given b y

Q(in) ° ZE
.

~GV ~1 -m
~p ~in

where a is any arbitrary space-like surface . The saine applies t o

the energy-momentum and the angular momentum before an d

after collision, and the conservation equations read now

GI` (in) = G~ ` (out),

	

Q (in) = Q (ou t

It is a well known property that the commutator of any incomin g

field function with an incoming constant of collision is relate d

to the corresponding infinitesimal transformation by the equa-

tions

]=i,
von)]

=

	

t
ô xFa

[A, Q (in)] =

	

åA . .

for any incoming field quantity A . In the second equation (4,7 )

a is the parameter occurring when use is made of an arbitrar y

gauge (v
m is proportional to eisa , vTin is proportional to e- je'' and

P. independent of a) . A similar equation connects the angular

momentum of the system and the infinitesimal Lorentz transfor-

mations . It is easily seen that if two quantities A and B satisf y

the relations (4,7), A ± B and AB satisfy the same relations . It

follows that any quantity which can be built by algebraic opera-

tions from quantities satisfying the relations (4,7) also satisfie s

these relations . In particular the outgoing fields satisfy the rela-

tions (4,7), and taking into account the conservation equation s

(4,6) we ge t

[A,

	

(out)] _

	

i	
åA

	

etc . . . . where A

	

v+OAC uoat, or vour
(4,8)

From these relations it can be deduced that the commutation re-

lations of the outgoing fields are similar to the relations (4,4) .

The detailed proof is given in the appendix .

~G

(4,6)

(4 , 7 )
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In the present theory we have been using the Heisenber g

representation . The situation of the particles before a collision i s
described by certain operators, the incoming field functions, an d

by a certain state vector 1P in Hilbert space . After the collision

the operators are changed into the outgoing field functions, but

the state vector remains the same. In the interaction representa-

tion the initial situation is described by operators which can h e

identified with the present incoming field functions and by a

state vector T(in) which can be identified with W. The situatio n

after the collision is described by the same operators, but by a dif-

ferent state vector Yf (out) . The unitary matrix S which transforms

T(in) into P(out) according to ¶(out) = SP(in) is the collisio n

matrix, and the squares of the absolute values of its elements giv e

the transition probabilities . The situation after the collision could

as well be described by the state vector S-1 W(out) 'F(in) an d

the operators S -1 zp" S, S-1 u in S, • • • . In a theory with a localize d

interaction the formalisms using the Heisenberg representation o r

the interaction representation are of course equivalent, so w e

must have

y
ut = S-1 vins

	

out = 5-1 u ins
If the interaction is non-localized we do not know the interactio n

representation . However, as the outgoing fields satisfy the sam e
commutation relations as the incoming fields, we know that ther e

exists a unitary matrix S satisfying the relations (4,9) . It is then

natural to define this matrix as the collision matrix .

The equations (4,3), (4,4), (4,5) and (4,9) give a complet e
self-consistent formulation of the theory . These equations can, in

principle, be solved by successive approximations . In fact, we

need practical rules giving a way of computing any matrix elemen t
of S . Such rules will be given in the following sections .

5. Solution of the field equations .

We shall first consider the case where the interaction is a con-

ventional local interactio n

L, = dxHj(x),

(4 ,9)

where
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H1(x) = gy+ (x) u (x) y (x) 4 Mye+ (x) y ( - (4 2
/2) Zz2 (x)

We assume that the solution of the field equations (4,3) can b e
expanded into powers of the constants g, AM and 4 rn 2 , and we se t

?p (x) =

	

i)'z, (n)(x),

	

0(x) _ > (- 1)nu(n)(x), (5,1)
0

where y° 0 (x) and u(72) (x) are of the order n with respect to th e
constants g, AM and 4 m 2 . The zero order approximation is o f

course given by the incoming fields . The first order approxima-

tion is easily computed, and the value of y (1) , for instance, i s

8Ll"
y7(1) (x) =

	

dx'S (x - x')åy~+ (x )

where Lt is equal to L 1 with the field functions replaced by th e
corresponding incoming field functions .

It is well known that the function S occurring in the commu-

tation relations is connected to the Green's functions b y

S (x) = S (x) - S+ (x) .

As S+ (x) vanishes if x 4 < 0, and S_ (x) vanishes if x 4 > 0 ,
follows that

S± (x) = - S(x) if x 4

=0

	

if x 4 <0 .

S_ (x) = 0

	

if x4 > 0 ,

- S (x) if x 4 < 0 .

Similar relations hold for the D functions .

The relations (5,3) show that the expression (5,2) can als o
be written

(1)
(x) = dx in

	

+h, 	 ~L 1
~

	

[~ (x), y'

	

(x )J+ 6v+ (x) .

>x"

or still

y (1)
(x) _ ~ dx ' [y

ixi (x) Hru (x ' )] .~
x'>x•'

(5 ,2)

Similarly

(5 ,5)
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Similar formulas hold for (1) (x) and u(1) (x) . The generalizatio n

of these formulas to higher orders is obvious . Let A(x) be any
field function ; the term of order n in its expansion is given by

4(0 (xo) = dx1dx2 . . . dx, t [ . . . [ [Asu (x
o) , Hi,] , H2],--- II

n] , (5 , 6 )

where Hr, has been written for Hi (xn), and xi > xi for xj > x .
Formula (5,6) is well known in field, theory, and is usually de-
duced from the Schrödinger equation . It can also be obtained
from the field equations (4,3) by induction (see appendix III) .

The next step is the calculation of the outgoing fields. We
again assume expansions in power serie s

,eut (x) _

	

( i)nbout(n)(x)
ti

cI(x) =

	

(T)ntout(n)(x)-
( 5 , 7)

U

	

p

By subtraction of the equations (4,3) from the equations (4,5 )
we get for the outgoing fields the expressions

å L
(x)

	

dx' S(x - x ' ) _ (

	

, etc . • .

The zero order approximation is thus given by the incomin g
fields, and the first order approximation is readily found to b e

vcut(1) (x)

	

dx' [ ,u (x), HT (x' )] ,

	

(5,8)

and similar formulas for 7p'+out(1) and u'(1) . These formulas can
be generalized by induction, and it can he shown that the ter m
of order n of any outgoing field quantity pout is given by

4out(n)(x) = dx 1 dx2 .

	

dxn [[

	

. [ A in (x), H1] , H2 ] , . . . Tin ] .(5 ,9 )
X,>1, > . .

.> Xe

We shall now extend the preceding expressions to the case of
a non-localized iinteraction . It will be convenient to write the inter -
action term in the for m

Li = { dx 'dx"dx"'HI (x ' , .X;"
x ,rr )

,

YIfout (:r )

x" x,,,) = gF(x', x", xnr ) ip= (x,)u(x") T (xni)

- b (x ' - x ") 8 (x " - x'") .( Q 11li/)+ (`r' ) (xr") - (4 nI 2 /2) u 2 (x"

where.

H I (x ' ,
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The first order terms can be computed as in the preceding case ,

and are given b y

y+(1) (x) _ Ç dx 'dx"dx'" [y+in (x), H1 (x', x", x")]

	

(5,11 )

u(1) (x) = dx'dx"dx" '
Lain (x),

H1(x, x„ x ,,, ) ]
x>x"

It should be noted in these formulas that the domain of integra-

tion of only one of the three variables occurring in H i is restricte d

by an inequality . This variable is different depending on the fiel d

function which is being computed ; it is the variable of the fiel d

function which does not commute with the field function which

is being computed. This is because the inequalities appear when

a Green 's function is replaced by a commutator (or anticommu-

tator) of two field functions . This complication makes it impossibl e

to extend directly the formulas (5,6) and (5,9) .

It will be convenient in what follows to make use of som e

conventions and notations . We shall always call x' (sometimes

provided with an index) the argument of a function y± , x" the

argument of a function u, x,"' the argument of a function zy .

We shall write yn

	

nfor y"' (x"'), tin

	

tt

	

nfor u in (x")y + for y+"1 (x 'n) ,

and Ht,_ for Hr (x7,, x;; , xt', ' ) . Finally,

	

will stand for the thre e

points x'

	

x "rz' and d for dx'n dxn n"dx ,, ,
n, n

	

n

	

'

We shall now try to extend the formulas (5,6) and (5,9) t o

the ease of a non-localized interaction . These formulas are ob-

tained from the field equations by a certain number of algebrai c

operations : additions, multiplications, integrations . The same op-

eration can be performed as well with a non-localized interaction ,

and the result should be very similar. The only difference, in fact,

lies in the inequalities .

This leads us to consider also in the case of non-localize d

interaction expressions such a s

E11 = [ . . .
[[wo, H1], H2], . . .Hn ]

If we develop E71 by computing first the commutator of yo with

H1 , then the commutator of the result with H2 , and so on, th e

y(l) (x) _ dx'dx "dx
,"

[yin (x)
HI(x,

x",
x tt, ) ~

	

~
~x>x'

	

/
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result is a sum of terms T, each of which is a product of form
functions, of field functions, and of n "elementary" commutator s

or anticommutators such as [vil- , yj ] + , or [u i , u1] . These commu-

tators (or anticommutators) associate some of the variable s

xi , x, " by groups of two. For instance, the two elementar y

commutators mentioned as examples associate x4 with x;" , an d

x'i ' with xi" , respectively .

Let us call I(T) the set of inequalities expressing that in al l

the groups of two variables associated by the elementary com-

mutators or anticommutators of the term T, the variable with th e
lower index should correspond to a time later than the variabl e
with higher index. There are n inequalities for each term T.
They define a domain D(T) which is different for every term .

The same decomposition can be performed in the case of a lo-
calized interaction, with the only difference that the form function s

disappear and that xi = xi = xi = xi .
It can easily be seen by analyzing the way in which the suc-

cessive approximations are obtained from the field equations i n

the case of a localized interaction, that the terms of the order n

appear at first as sums of products of field functions and of n

Green 's functions . The next step consists in replacing the Green' s
functions by the corresponding commutators or anticommutators .

The domains of integration must then be restricted by certain in -
equalities . The terms obtained in this way are precisely the term s
T obtained by decomposition of En, and the inequalities associate d

with each term are clearly the inequalities I(T) . By a further

transformation it is possible to replace the inequalities I(T) by
the inequalities I : x 0 > x l > > xn . Since the domain of inte -

gration is then the same for all the terms, it becomes possible t o

put the sum of all the terms T into the compact form En , and on e
gets the final formula (5,6) . In the case of a non-localized inter -
action all the operations can be performed in the same way, ex-
cept the last transformation . Thus, we must try to extend to the
case of a non-localized interaction the expressions of the success -
ive approximations as sums of T terms .

A few definitions will be useful .
We shall call P(T) the set of all the permutations of the in-

dexes 1, 2, . . . n such that in every inequality of I(T) the variabl e
indicated as corresponding to the later time keeps an index lowe r

than the index of the other variable .
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N(T) will be the number of the permutations of P(T) (unity
included) .

Finally we shall call terms equivalent to T the terms deduce d
from T by a permutation of the indexes belonging to P(T) .

These definitions apply as well to localized and non-localize d
interactions _

As an example, let us consider the following term of E 4 (the
form functions have not been written down) :

T = g 3(- Am'/2) 7Ÿo, V1 J-H [V I , V2 ]+ [I1 1 , "31 11 9 , "41 123 4IP 4 2 ,

which is one of the terms coining from the terms in g of H1 , H2
and H 4 , and from the term in (- d m 2 /2) of H 3 . The inequalitie s
I(T) are

	

I (T) : , xo,, > I ,

	

,x 1,, > , ,

	

> x 3

	

x2

	

„

	

„
> x 4„

	

x1

	

xl

	

, x 2

The permutations P(T) are besides unity the permutations (2,3 )
and (3,4) which transform the inequalities I(T) into

(3,4) :
xä ' > x1, xi" > x2 ,

The following properties are easily shown :

a) Equivalent terms integrated over their associated domain s
give identical results .

b) If T belongs to the development of E,1 , all the terms equi-
valent to T also belong to the development of En .

c) In the case of a localized interaction (x' = x" = x"'), the
domain D(T) is the sum of the domain D defined by I : xo > x 1 >

> xn , and of the domains deduced from D by the permuta-
tions of P(T) .

As an example of property c), the domain

D(T) : xo > x1, x1 > x2 i x1 > x3, x2 > x 4

is the sum of the domain s

D : xo > x1 > x2 > x3 > x4,

	

(2,3)D : xp > x1 > x 3 > x 2 > x4 i
(3,4)D : xo > x 1 > x2 > x 4 > x 3 .

It will now be possible to make a precise comparison of th e
expression (5,6) with the development of En . According to b)

(2,,

	

,

	

,

	

„

	

„

	

„, 3) : x o > xl , x,, > x 3 , xl >

	

x 3 i 4 ,

x3> x3, x 2 > x3 .
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the terms in the development of E,, can be collected into families
of N(T) equivalent terms . From a) and e) it follows that the sum o f
N(T) equivalent terms integrated over the domain D is equal t o
any one of the terms of the family integrated over its associated
domain. As we know from (5,6) that y(n) (xo) is the sum of all
T terms integrated over the domain D, we see that

= S (t/N(T))
.D(T)

dx 1 dx 2 • • dx72 T,

	

(5,12)

opment of En . One could also omit the factor 1 /N(T) and instead
say that only one term in each family of equivalent terms should
be taken into account, and it is easily seen that this is exactl y
the expression obtained by a straightforward calculation from th e
field equations .

The extension to the case of a non-localized interaction is no w
obvious, and we shall write symbolicall y

,v,tn) (xo) _
.d

s~~d 2 . . . d

	

H . . . [[Iy
hh1 (x'o,F )

H1],H2] . .H79], (5 , 13 )
t

where Î t is a "time ordered integration" and should be compute d
in the following way :

a) The integrand must be developed into a sum of T terms .
b) Each term should be integrated over the domain D(T) .
c) Each integral should be multiplied by 1/N(T) .

The formulas (5,11) are clearly particular cases of (5,13) .
The general formula can be obtained directly from the field equa-
tions by induction (see appendix III) . The outgoing fields arc
given by formulas differing from (5,13) only by the fact that al l
inequalities involving x'o , xo ' , or x'o ' should be omitted . In order
that the indexes should remain specifically connected with tim e
ordering, it is convenient then to suppress the index 0 and t o
write

,ty out(n) (x,,,)
= dstds~2

	

] . . . [ kohl (x") HI] , H 2 ] , . . Ha] . ( 5 , 14)
• t

The domains of integrations are now independent of the point s
at which the field functions are being computed . This gives the

y ~n)
(xo )

7

' where the summation is extended to all the terms T of the devel -
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possibility of a useful generalization of the equations (5,14) . Let
Ain be a polynomial of the incident field functions or, more gener -
ally, a power series . The field functions can be taken at differen t
points, and A will depend on a certain number of points in space -
time. The value of the same polynomial (or series) of the out -
going field functions taken at the same points is given by

where
A°ut(n)

	

d e1d e2 . . . den [ . . .

	

Ha.1, H2] ,
. . .

Hn] .

	

(5 , 16 )
t

The proof is given in appendix III . As an example, let us take
for Ain the expressions [yl+in(xi) yin(x,,,)jl, [y+in (x'), uin (x " ) ]
etc. • • • As these quantities are c-numbers, all terms in the ex -
pansions (5,15) vanish, except the first term . Thus, A° "i = Ai n

and this proves again that the commutation relations of the out -
going fields are the same as those of the incoming fields .

A few remarks should be added to the results of this section .
1. Lorentz invariance . The domains D(T) are not Lorentz in -

variant. If the vector joining x i and xi is space-like, the tim e
ordering of the two points has no invariant meaning . This time
ordering matters for a term T only if T has as a factor a commu-
tator (or anticommutator) of two field functions at the points x i
and xi . As this commutator (or anticommutator) vanishes i f
x i - xi is space-like, it is seen that the integrated formula is
Lorentz invariant.

2. The Schrödinger equation . Let us consider in the case of a
localized interaction the field functions taken at arbitrary points
on a space-like surface a . In the equations (5,6) the inequality
xo > xi can without changing the value of the integral be replace d
by the condition that xi should be in the past region of space-tim e
with respect to a . Thus, the domain of integration in (5,6) cari

be chosen in such a way that it is the same for all the field func-
tions on all points of a . It follows that if Am is a polynomial o f
the incoming fields taken at various points of a, the saine poly-
nomial of the fields y u and ii taken at the same points is given
by an expansion similar to (5,15), where the term of the order n
is given b y

Dan . Mat . Fys. Medd . 27, no .S .

	

;,

AOnt

n=

i)n Aout(n) (5,15)
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A" = dxiclx2 . . . dxrz [ . _ [ [Ain,

Hi] , H 2 ] , . . .
Ha] .

a>xi>x,> . . . >

If A is a commutator (or anticommutator) of two field functions ,
it is seen that A = A111 Thus, the commutation relations of th e
field functions on a space-like surface a are identical with thos e
of the incoming field functions . Hence, a unitary matrix S (- oo , a)
exists such tha t

A(xo) =

	

(-co a) Ai" (x0)S(- o , a),

	

(5,17 )

where A is y+, u or p and .xp any point on a . The Schrödinger
equation is (in the TomonagaSchwinger form(15)) the differ-
ential equation giving the variations of S(- x , a) corresponding
to infinitesimal variations of the surface a .

In the case of a non-localized interaction, it is not possibl e
to use the same domains of integration for computing all the field
functions on a space-like surface . The equations (5,11), for in -
stance, show that for the first order terms already, the domain o f
integration unavoidably depends on which field function is being
computed. Then the commutation relations of the field function s
on a space-like surface are not the same as those of the incoming
fields, and there is no matrix satisfying the equations (5,17) . This
explains why there cannot be any Schrödinger equation if th e
interaction is non-localized, and shows that one has to use a
formalism giving directly the matrix S = S(- , ± co ) .

6. Outgoing operators .

Before starting any actual calculation, it is necessary to anti -
symmetrize the Lagrange function in y and y + so as to introduce
the correct interpretation of the negative energy states as anti -
particles . Thus, the expression (5,10) for the interaction term
should be replaced by

,/

	

Hi (x , x" x"') =

(g /2 ) F (x ' , x
r x",)

(y'+ (x ' ) u (x") y (x") y (x") u (x" ) y+ (x') )
- â(x ' -x")å(x" - x,,,) {(A M/2) (y'+(x')y

(x,,,)_y'(x,") y+ (x'))
6 , 1 )

- (4 m2/2) u2 (x")) .
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This clearly does not modify the general conclusions of the pre -
ceding sections . In particular the rules given for the calculatio n
of the outgoing fields still apply .

The Fourier expansion of any free field is a superposition o f
plane waves e' , where K is always a time-like vector . Hence,
it is possible to split in a Lorentz invariant way any field functio n
in two parts for which K4 is positive or negative, respectively .
Thus, we can write for the incoming fields (in what follows th e
incoming fields will be called p and u without the subscript in )

y(x ) = y,(+) (x) .± y(-) (x) ,
y,+ (x) = y,+(+) (x) ± y+(-)(x),

	

(6 , 2 )

u (x) = u (+) (x) + u(-) (x) .

In the decomposition (6,2), (+) and v+(-) are annihilation an d
creation operators of nucleons, respectively ; lp+(+) and v(-) are
annihilation and creation operators of antinucleons ; u (+) and u(-)
are annihilation and creation operators of mesons" . These
operators are related to one another by the equations

(,O+) )+ - v+(-) , (v„(-) )+

	

a(+) ::: _ u(-) .

	

(6,3 )

The operators introduced in (6,2) commute or anticommute ex-
cept creation and annihilation operators of the same particles .
For these pairs of operators the commutation relations ar e

i [y,((e+) (x1), ypo+(-)
(x2) ]

+ =
S(+, ) (xi - x2 )

J r yp (~) (xi), ?per (+) (x2)] _ = S~Q ) (x 2 - x2 ) ,t

	

(6,4)
i [u(+) (x i), u(-)(x2)] = D(+) (x i

	

x2 )

i [u(-) (xr), u( ~) (x2)] = Dt-) (xi -- x2 ) ,

where S (-` ) and S(--) , D(+) and D(-) are the positive and negativ e
frequency parts, respectively, of S and D .

An important notion in field theoretical calculations is tha t
of "ordered product" of operators(16) . It is defined as follows :

a) The ordered product : abc : of the creation or annihila-
tion operators a, b, c . - • is equal to the product abc- • re-ordered
in such a way that all annihilation operators are at the right-han d

3*
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side of the creation operators, multiplied by (-)p , where p is the
number of permutations of nucleon operators involved in the re -
ordering procedure .

b) The definition is extended to products of field functions
by decomposing the various factors into sums of creation an d
annihilation operators, and by postulating the distributivity of th e
ordered product with respect to addition .

The importance of the ordered products cornes from the fact
that when an ordered product acts on a state vector a particl e
cannot be created by one of the factors and reabsorbed by anothe r
factor . Thus, all virtual particles have been eliminated, and it is
easy to select the relevant terms for a particular problem. In this
connection it is important to be able to transform any product o f
operators into a sum of ordered products . This is most conven-
iently done by introducing the notion of "contractions ."

For two field functions a and b the contraction a'b' is defined
as the difference between the regular and the ordered product s
by (*)

ab = :ab : + a'b' .

	

(6,5)

The only non-vanishing contractions are given by the followin g
relations which are easily deduced from (6,4 )

Ve
(XI) V -1(; (x2) _ (- i)S(ß ) (x1 -x2) ,

ye (x2)ya (xi) = (-i)S(Q)(xi-x2),

	

(6 , 6 )

a ' (xl) u (x2) _ (- OD" ( Z7 - x 2 ) .

A contraction within an ordered product is defined by

:a . . . bc• d . . e f g . . . = (-)n c- f• :a . . . bd . . . eg "

	

, (6 , 7 )

where p is the number of permutations of nucleon operator s
necessary in order to bring the factors c and f beside one another .

The transformation of a product of field functions into a su m
of ordered products is now given by the following identity (16) :

abed •

	

_ : abed • - : -}- :a'bed • • • : ,

	

(6,8)

where the summation is extended to all possible contractions o f
the factors a, b, c, • •

(*) This definition is that of HOURIET and KIND( 16' .
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It should be noted finally that the order of the factors in a n
ordered product can be changed arbitrarily, with only a chang e
of sign if an odd permutation of the nucleon operators has been
performed .

The results of the preceding section together with the identity
(6,8) make it possible to express any function of the outgoing
operators as a sum of ordered products of incoming operators .
Each term may be associated with a doubled Feynman graph .
The rules will now be given for a single outgoing operator . Thes e
rules generalize some of the results obtained by Dyson(') .

Graph. A graph consists of directed lines (nucleon lines), o f
undirected lines (meson lines), and of vertices of the followin g
types :

a) g-vertices consisting of three points x ' , x" , x"' on a smal l
circle with an undirected line arriving at x ", and two directed
lines arriving at x ' and x"' , directed away from x ' and toward x"' ;

b) 4 m 2-vertices and 4M-vertices consisting of a single point
with two undirected lines or two directed lines of different direc-
tions, respectively ;

c) one incoming vertex consisting of p points with a line ar -
riving at each of them ;

d) one outgoing vertex consisting of one point with one line .
The line arriving at the outgoing vertex is an undirected line, a
line directed toward the vertex or a line directed away from th e
vertex, depending on whether the field function which is bein g
computed is Zz out gout or , + ou t

Doubled graph . Some of the lines of the graph must be con -
sidered as doubled lines . The doubled lines should be drawn i n
such a way that it is possible to go from any vertex (the incomin g
vertex excepted) to the outgoing vertex by a uniquely define d
path consisting of doubled lines only. This can be pictured b y
saying that all vertices except the incoming vertex are lying o n
the branches of a "tree" having its root at the outgoing vertex
and forks at some of the g-vertices . It follows that all graphs are
connected, and it is easily seen that the number of doubled line s
is equal to the number of vertices, incoming and outgoing ver -
tices excluded. The lines arriving at the incoming or outgoing
vertices will be called incoming or outgoing lines .
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Orientation of the graph . The doubled lines and the incoming

lines are oriented toward the outgoing vertex . Every g-verte x

should be oriented in the following sense . At every g-vertex arrive
one double line oriented away from the vertex and two other

lines l 1 , 12 . To orient the vertex means to draw an arrow from on e

of the lines 1 1 , 1 2 toward the other, in an arbitrary way . Consider

finally an undoubled line joining two vertices a and b . It is pos-

sible to go from a and b to the outgoing vertex by followin g

doubled lines only. The two paths meet at a vertex . The line

ab is then oriented according to the orientation of .
Examples of such graphs will be given in the next sectio n

(see Fig . 2) .
To each graph corresponds a term in the development of th e

outgoing operator . It is an integral of a product of terms associated
with each line and each vertex of the graph . It is convenient t o

use the energy-momentum variables . A four-vector k is then as-

sociated with every line of the graph, and the various factors wil l
be listed now .

We shall write only the factors corresponding to the undirecte d

lines from which. the factors corresponding to the directed line s

can be deduced by replacing in by M and by multiplying by(iey, -M) or (- ik uy, -M) depending on whether the orienta -

tion and the direction are parallel or antiparallel .

a) For the doubled lines (except the outgoing line) the factor i s

D+(k)

	

(- 1)Î(k2 + m 2 ), or S+ , or S+,

	

(6,9 )

where the integration with respect to k 4 should be taken in the
complex plane along a contour passing above the two singularities .

b) For the undoubled lines the factor i s

D(+)(k) _ (- 7t) ( 1 + e(k))å(k 2 + m 2 ), etc . . . .

	

(6,10)

where e (k) is + 1 or - 1 depending on whether k 4 is positive or

negative .

c) For the outgoing line the factor i s

D(k) = (- 2iz)e(k)b(k2 + in 2 ), etc	 (6,11 )

d) Finally, to the incoming lines is associated an ordered
product of factors u (k) å (k 2 + n1 2), 'p+ (k) ô (k 2 - M2), or

{k) å(k2 + M2), where
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u (k) å (k 2 + m 2 ) = dx Lisa
(x) c tex etc . . . .

To each undirected line, to each directed line with direction an d
orientation parallel or antiparallel corresponds a factor u, yi o r
It) +, respectively _

The factors corresponding to 4 m 2 -, 4M-, and g-vertices ar e
in the case where all lines are oriented toward the verte x

(g / 2 ) (2 z0-6 d $F(x x" x ,/, ) e i(k•'e+)
,

where k ' , k", k"' are the vectors associated with the lines arrivin g
at x ', x ", x" . For every line oriented away from the vertex, k
should be replaced by - k in (6,12) .

Finally, summation should be made over the spinor indexes ,
the term should be multiplied by 1/N(T) and a certain power of i ,
and integrated over all variables. The outgoing operator is ob-

tained by taking into account all possible graphs and all possibl e
orientations of the vertices .

As for the justification of the preceding rules we only mentio n
that the doubled lines correspond to the elementary commuta-
tors, and the undoubled lines to the contractions . The orientatio n
of a vertex corresponds to the effect of the choice of a term y, +
or y uy+ in the interaction term (6,1) on the order of the operator s
occurring in the T-term .

The extension to products of outgoing operators is obvious .
The only change is that there will be an outgoing line correspond-
ing to every factor of the product . These lines are oriented with
respect to one another in the following way : the orientation goes
from the line a to the line b when the factor corresponding to a
in the product is at the left of the factor corresponding to b .

7 . Self-energies .

It has been assumed throughout that AM and 4 m 2 are chosen
in such a way that the interaction term is negligible when th e
particles described by the field are far apart . We shall now coin -

( 41n 2/2)å(k 1 + k 2), - 4 Må(kr + k2), and

(g/2) (k ' , k", k,,,) å(k' + k" + k,,,) = (6,12)

1
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pute the values of AM and 4m 2 for which this assumptio n
holds .

An equivalent, but more precise formulation of the same as-
sumption is to state that the interaction term should be rigorousl y
negligible if the system contains zero or one particle . In the
interaction representation this fact is described by the equation

S l) = l), (7,1 )

where l ) is the vacuum state or a state in which only one particle
is present. The corresponding properties of the incoming an d
outgoing fields follow from

Aout = S* AinS

where A is any field function . In order to avoid complicated nota-
tions we shall use a simplified model in which states are charac-
terized only by the number of particles . Moreover, we shall as-
sume the existence of only one kind of particles . The basic vec-
tors may then be represented by 10), 11), . . . n), • • • , where n)

is the state in which n particles are present. In this representation
the conditions (7,1) read

(n S10) = åon , (ns i l) = å1n,

	

(7 , 3a)

where å12n is 0 if ni $ n and 1 if m = n . From the unitarily con-
dition of S it follows that

( O I S I n) = åon, ( i l s l n) = å1n•

	

(7 ,3b)

The relation (7,2) can be writte n
(i l Aout

lj) =

	

(i S x nz) (m A in 1 n) ( 12 1 s 1 .1)

	

(7,4)
m, n

For j = 0, the equation (7,4) specializes int o

(
i g out 1 0 ) = s (i s I no

(m l Ain l 0),

	

(7,5)

where the conditions (7,3) have been taken into account. If A
is a pure annihilation operator A (+), then A (+)1t1 10) = 0, and from
(7,5) it follows that

(7,2 )

A(+)out
1 0) = 0,

	

(7,6)
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which is the equation of conservation of vacuum . If A is a crea-

tion operator A(-), its only non-vanishing matrix element i s

(1
I

A(-)in 10), and from (7,3) and (7,5) it follows that

A(-) ont 10) = A(-) in 10)

	

(7,7 )

Putting now j = 1 into (7,4) we get

(i ,lout 11) __(c S'' I In) (222 I
Ain

I 1),

	

(7,8 )
m

and a simple relation is obtained only if A is an annihilatio n

operator . It follows then from (7,3) and (7,8) tha t

A(+) out 1 1) = A(+)in l l)

	

(7,9 )

No simple relation is obtained for j > 1 . The relation (7,9) is in

fact a consequence of (7,6) and (7, 7), and of the commutatio n

relations

[ A(+)in AO--) in] = [ A(+)out A(-)ollt i = 1 .

	

(7,10)

On multiplying (7,10) on the right-hand side by 10) and on takin g

(7,6) into account we get

AO)ot 4(-)oatl0) =AO)inA(-)inlo)-

	

(7 , 11)

The equation (7,9) follows from (7,11) if one takes into accoun t

(7,7) and the fact that A(-)in 10) is a multiple of 11) . Thus, the

basic relations are (7,6) and (7,7) . It is in fact a matter of simpl e

algebra to show that, conversely, these relations have the rela-

tions (7,3) as consequences (apart from an irrelevant phase

factor) .
For the actual system, equations similar to (7,6) and (7,7 )

should hold with A = v+ , u or ip . We shall see that the equations
(7,6) are identically satisfied, whereas the equations (7,7) defin e

the self-energies AM and 4 m 2 .

Let A be any of the field functions . The Fourier component
Aout (k) is, according to the results of the preceding section, given

by a sum of terms

Aout (k)

	

, l dkl . . . dk iKn (ki , . . . ki) : ai (ki)
. . . a i (ki) : , (7,12)

7z J
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where KR is a c-number function, and where the ki satisfy

ki , (Ic i ) 2 + D4. = o . (7,13)k =

Only the creation parts of the operators a will give contributions
to Aout 10) . Thus we may in (7,12) restrict the domain of integra-
tion to the vectors k such that

k4 < O .

	

(7,14)

If A = A(+) is an annihilation operator all its Fourier component s
are such that k 4 > O . It follows then from (7,13 and 7,14) tha t
A" '1 0) vanishes identically.

We consider now the case where A = A(-) is a creation
operator . Then Kn vanishes except for k such that

k.2 +,u 2 = 0, k 4 <0 ,

where a is the mass of the particles described by the field A .
From k =Yki it follows that

I kl Yki, and

(k4)2 : (4) 2 + 2 2 mink ,
i< k

where it has been taken into account that all ki are negative and
have m i as minimum absolute values . From these two inequalitie s
it is easily deduced that

,a mi . (7,15)

Finally, we shall also need the remark that if A = u, ther e
will be among the operators a as many y as ip + ; if A = y (or y+)
there will be as many y, as y,+ plus one odd s (or ip + ) .

It follows that if A = ip (or y +), one of the m i in (7,15) must
be equal to M = /c, and we get a contradiction if we assume th e
existence of more than one m i . Thus, contributions to yO °ut i 0)

come only from the terms in which there is only one operator

al = V .
If A = u and if we assume that an a is equal to u, the sam e

argument applies and there cannot be any other factor a . The
possibility of all a being nucleon operators is ruled out by (7,15 )
if m < 2 M(*) .

(*) df m > 2M, spontaneous decay of a meson into a pair of nucleons be -
comes possible, and one cannot expect the equation (7,1) to hold for a state in whic h
there is one meson .
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Thus, in all cases, the only terms in (7,12) giving contribu-

tions to A" O"1 I0) are those which contain only one a = A . For

these terms Kr1 is a Lorentz invariant function of one argument

k only, satisfying the equations

(k2 + m 2)K = 0, or (ikayti + M)K = 0, etc	

Hence Kn is proportional to

D (-) (k) - (1 - a(k))å(k 2 + m2), or S(-) (k), etc . • •

and if we write Kn (k) = Kn D i-) (k) , etc. • • we obtain, correspond -

ing to the equation (7,7), the scalar equation s

Kn = O .

	

(7,16 )

As the equations corresponding toy and y T are not distinct, w e

have two equations defining 4M and 4 m 2.

We shall now investigate the convergence of the integrals oc-
curring in the Kn . Each Kn corresponds to a self-energy graph

(graph with one incoming line and one outgoing line) and is given

by the rules of paragraph 6 .

First of all some of the integrations should be carried out in

order to eliminate all the å functions introduced at the vertices

except one 8 (kin - en ) which expresses the conservation o f

energy and momentum between the incoming and the outgoin g

lines. These lines can be considered as associated with a fixe d

vector ko = kin = kO1~ There is some arbitrariness in the choic e

of the variables which should be conserved . We shall show that

one can always take as independent variables of integration the

vectors p, associated with the undoubled lines . We have to sho w

a) that no relation such as Y + pi = 0 can exist,

b) that every vector k associated with a doubled line can be

expressed as k =

	

+ pi , or k ko + X _LL pi .

It is easily seen that every relation ± ki ± pt = 0 can b e

represented on the graph by a closed curve C leaving the incomin g

and the outgoing vertices outside and cutting the lines associate d

with the ki and the p i involved in the relation .

The assertion a) follows then from the fact that no line C can

cut undoubled lines only (the vertices inside could not be con-

nected with the outgoing vertex by means of doubled lines) .
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The assertion b) follows from the fact that it is always possibl e
to draw a line G which cuts a given doubled line and no other
doubled line except, maybe, the incoming line (this is a conse-
quence of the tree-like structure of the doubled lines) .

Divergences in the self-energy terms arise from two causes :
divergences coming from the large values of the variables o f
integration and divergences due to the coincidence of severa l
poles of the integrand . The latter type of divergence appears in th e
terms coming from graphs containing one or more self-energ y
graphs as sub-graphs . It can be seen that these divergences cance l
in the sum (7,16) .

The real self-energy divergences come from the large values
of the variables pi . At every g-vertex, the form function intro-
duces a convergence factor (6,12) . We can assume that 0 which
is a function of k' 2, k"2 and k"'2 falls off very rapidly as any of
these arguments becomes large . Consequently, we can consider that
the domain of integration of the variables p i is practically limite d
to the values for which all vectors k associated with the variou s
lines of the graph have bounded four-dimensional lengths k 2 .

The following property will be useful : if a time-like vector
k has a bounded scalar product with a fixed time-like vector k ' ,
its four components are bounded . This is easily seen in a frame o f
reference where k' reduces to a time component . More precisely ,
it can be shown that

I k I < A(Ik ' I+I k'4 I)/I(k' )2I

	

(7,17)
iflkk'I<A .

In every graph the undoubled lines will form a certain num -
ber of connected arcs . If there are two such arcs connected wit h
the incoming and the outgoing lines, we shall call them Lin and
L°"t ; the other arcs will be called L11 .

We shall first consider a term which has no other undouble d
lines than Ln and L° llc . Let pr, p2i • . be the vectors associated
with the lines forming L'n , starting from the incoming line, and
Al, p 2 , . . be the corresponding quantities associated with L°uL
The functions

	

limit then the domain of integration to value s
of the variables p i and pi such that the scalar products

kop i, PIP2, papa, . . . k opi , pip. , pzp1 , . .
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are bounded . As ko is a fixed time-like vector and the p satisfy
equations such as p 2 + nit = 0, it follows from the inequality

(7,17) that the corresponding domain of integration is bounded .

Thus, the corresponding terms are convergent, such as, for in -

stance, the second-order self-energies .
We consider now the case where there are other undouble d

--~- directed doubled lin e
-

	

undoubled line with orientatio n
g - vertex with orientatio n

Fig . 2 .

lines besides Lin and L o "t . First of all, we know that the vector s
associated with L in and Lout have bounded components . The same

holds for those vectors associated with the doubled lines which
are linear combinations of the vectors of Lin and Lout only. More -

over, if one vector of a line Ln is kept fixed, all other vectors of

the same line have bounded components . Some other scalar pro -
ducts will be kept bounded by the effect of the functions Ø . How -
ever, for certain graphs these conditions are not sufficient, clu e
to the fact that the vectors associated with the doubled lines ar e

not always time-like vectors . Fig . 2 shows an example of such a

case . It is seen that the vertices i and 2 give the condition that th e
scalar product of P2 with ko - pi should be bounded . The vector

ko - p, has bounded components, but as it may be a space-lik e
vector, the components of p 2 are not bounded, and the correspond -

ing divergence remains .

A tentative way out of this difficulty is to assume that th e
function should be different from zero only if the three vectors

k', k", k" are time-like vectors . Moreover, eve can assume that

vanishes if 1 k' 2 1, 1 k"2 or 1 k"' 2 I are less than a fixed number which
may be chosen arbitrarily small . The inequality (7,17) can the n

be applied to all vectors, and it is clear that all integrals becom e

convergent . The assumption made here does not contradict any
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condition previously formulated for the form functions which
limits the non-localizability to small domains . It is, however, a
very large departure from conventional field theory, especially
since it makes many virtual transitions impossible, and its phys-

ical consequences should be investigated more completely .

So far, we have been concerned only with the self-energies .
However, the matrix elements of any operator lead to integrals
very similar to the self-energy integrals, and the investigation o f

convergence we have made is of quite general validity .

8 . Final remarks .

a) Electromagnetic interactions .

When the interactions with the electromagnetic field are in-

troduced, new terms have to be added to the Lagrange functio n
so as to make it gauge invariant . The situation in the present
theory differs from that in the conventional theory by the fac t
that the interaction term is not gauge invariant in itself.

A gauge transformation is defined by

Tip (x) = A!~ (x) + x,tt ,

	

(x) = y(x)e ,i s1L

	

(x) = y
+ (x)

é i e!1 0,1:

where 11(x) is any function such that q A (x) = O . It follows that

+(x')
(x ,,, ) = 2v+(x')w(x'")ei(A(x"')-mx'»,

	

( 8 , 2)

which shows the lack of gauge invariance if the form functio n
allows x' to be different from x"' . On using (8,1), however, one
can write

A (x"'

	

Il

	

«

	

0) 11. (x') = åx~ dx' = (Åu - A~~) dx'u

	

(8,3 )

c

	

c

where C is an arbitrary path going from x ' to x' . Substitution
of (8,3) into (8,2) yields

-ie A dx~ L

	

is A dx,tt
Tp+ (a!) e

	

So

	

(x"') = v+ (x ') e

	

Jo

	

v (x")

	

(8,4)

This equation expresses a gauge invariance property which hold s
for any path C although the invariant expression depends on the
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choice of the path . Considerations of invariance and of simplicity
suggest taking as path C the straight line joining x' and x"' . The
final expression for the corresponding Hermitian gauge invarian t
interaction term reads then

) dxidx"dxru F(x t , x" , x ie
r)

	

( )Cu(r

	

x ,,
) e- . .LE

	

,a d xA

	

1a

2" '
where the integral , is taken along a straight line .

The problem of finding a gauge invariant interaction term
which in the limit At, = 0 reduces to (1,1) has no unique solu-
tion. A very general expression is obtained on replacing in (8,5 )
the exponential function by an integral in the functional spac e
of all paths going from x' to x"' which may be written

S dC o (C) e
~s

S
ct~~ctroFa

	

(8,6)

In this expression dC is the volume element in the functional space .
The weighting function e(C) must be normalized according t o

dC(C)

	

1 ,

and such that (8,6) is invariant under all displacements .
The introduction of exponential factors into the interaction

term can be pictured as describing the effect of the electric charge
jumping between the points x ' and x"' . The path C can be con-
sidered as the path followed by the electric charge between th e
two points and e(C) as a sort of probability distribution of all
possible paths . The function e(C), however, need not be positive
everywhere .

The interpretation of the extra interaction term as describing
the motion of the charge between x' and x"' , that is over distance s
of the order of a,, shows that its effects will, presumably, b e
small . It was, however, important to show that no contradictio n
with the requirement of gauge invariance arises from the intro-
duction of form functions . It is remarkable that the electromagneti c
properties of charged particles are modified by the interactio n
with a neutral field when the interaction is of a non-localize d

type .
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b) Transition probabilities .

The transition probability between a state a and a state b

can, in principle, be computed as the average value in state a o f

the projection operator on state b, or conversely . The projection

operators can be computed by the methods developed above, an d

the convergence proof holds . Practically, however, it is simpler

to guess the lowest order terms of the S-matrix from the equation s

(4,9) (7,8) . In connection with the difficulty of solving the latte r

equations, it can be asked whether another method of quantiza-

tion would not give the S-matrix more directly . In fact, the
Lagrangian formulation of quantum mechanics developed by

FEYNMAN (18) can be applied to the present problem. The result

is quite simple : the only modification to the Feynman rules is
the introduction of form functions at every vertex of the graphs .

This solution, however, cannot be accepted since the correspond-

ing matrix is not unitary . A calculation, for instance, of the second

order unitarity condition yields after some manipulations an ir-
reducible sum of terms involving factors such as

F(x1 , x l , x 1 )S_ (x l - T2 )S-(xl - x2 )1r (x2 , x ? , x'2") ,

which clearly vanish in the limit of a local interaction, due t o
the properties of the retarded and advanced Green's functions, bu t
do not vanish in the more general case .

In conclusion, I should like to express my gratitude to Professo r
C . MØLLER for his advice and encouragement, and to Professo r
N . Boar for the hospitality of the Institute of Theoretical Physics

during my stay. I am indebted to Dr . R . GLAUBER for many help -

ful comments on the manuscript . The foregoing work was sup -
ported by the Direction des Mines et de la Sidérurgie in Paris .



Appendix I .

Definition of some singular functions .

The singular functions used in field theory are convenientl y
defined by the Fourier integral

D(x) _ - (2 :z)-' dke tt' (k2 + m 2 ) .

Since the integrand is singular for k2 + m2 = 0, it is convenient
to perform the integration with respect to L 4 in the complex plane

4

Fig . 3 .

along a contour avoiding the singularities . The integrand has two
poles at k 4 = J/k2 + rn2 , and k 4 _ - J/k2 ± m2 . The contours
C + and C_ (Fig . 3) yield the retarded and advanced Green's func-
tions D + and D_ . The contour C = C_ C+ yields the functio n
D occurring in the commutation relations . The decomposition
C = C~ +~ + C" corresponds to the decomposition of D into th e
positive and negative frequency parts D" and D". Finally, the
contour C(' yields the function D(1) .

If we call A (x) the functions similar to the D functions wher e
the mass m is replaced by H, the functions S are given by

a
S(x) - 1åx'"+~r)~ â (x) .

Dan .]4at.Pys . Medd. 27, no. H.
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Appendix II .

Commutation relations of the outgoing fields .

The outgoing fields are solutions of the free field equations .
Assuming that the fields are enclosed in a large cube of volume V,

we can expand them in Fourier series a s

y~
ut (x) = V-'I "f ait ~F + (K)

e ilix bx zpr (K) e txx

x,r

	

(II,1 )

	

llut (x)

	

Y (2 k4)-'I'
(Uk

eikx
+ Uk e-ilex)

,
k

where K is the space part of the vector K (K4 = + VK2 + M2) ,

k is the space part of kl'` (k4 = + Vk2 + m2), and y l (K) (r = 1,2 )
are the positive and negative energy solutions, respectively, of the
equations (± +M) vt (K) = 0, orthonormalized accord -

ing to
*' K 1 S (K)

	

b' ,

	

*r
K S K -- E rs .

Substituting these developments into the expressions of the con-

stants of collision we get

_

	

K'u' (a rcair- b ir b rc) + (1/2) Y k.~ ( Uk v k + Uk Vk) ,
K,r

	

k
(11,2)

Q = e,I,
~

aK
*ra

K
r

+ bK
rb*

K
r

,
K, r

and a similar expression for the angular momentum . Substitution
of the developments (I1,1) and (II,2) into the relations (4,8) gives

[aK

r
, H

K -r r]
=

r
aK,

	

[a K

*r

	

-~- r

	

* r
, HK ] = aK >

[bK, Hj- '] = bK ,

	

[bK, HKr]
= bK,

	

(II, 3)

[ U k, Hk] = Uk ,

	

[VI, Hk ] = - Uk ,

	

J

where H-I-r = aK *rarK , H-K

	

Kr = b ' b K*' and Hk = (1/2) (Uk*Uk + Uk kU * ) 'K
every other commutator of a quantity a, b or v with an H vanishes .

The incoming fields can be developed in the same way as th e
outgoing fields . The coefficients in the Fourier series will b e
operators a"` , b'" and Ulu which not only satisfy commutation
relations similar to (II,3), but also the following ones which re -
sult from (4,4)
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in, r a2"']+

	

Kn, r ] = 1,

	

[vn
vkn] = 1 ; (11,4)

all other commutators (or anticominutators if two operators a or
b are involved) vanish .

The field equations give expressions of the outgoing operator s
as power series of the coupling constants . Each term of these
series is a polynomial of the incoming operators . Thus the out-
going operators are continuous functions of the coupling constants ,
and have the incoming operators as limit if the coupling vanishes .

The problem now is to show that, as a consequence of (1I,3) ,
the outgoing operators satisfy commutation relations identical
with (1I,4) .

WIGNEß (19) has given the general form of the operator s
satisfying the relation s

[v, H] = v,

	

[v*, H] =

	

v , H = (1/2) (v v + vv`) .

	

(11,5 )

His method can be applied with very little change (although the
result is very different) to the case of operators satisfying the
relations

[a, H] = a , [a', H] _

	

H = a = a,

	

(II,6 )

One finds in this case an infinite number of irreducible represen-

tations with 0, 1, 2, 3, • • • or Qe dimensions . Only in the case o f

a two-dimensional representation do the operators satisfy the re-
lations

[a, a] + = 0,

	

[a'', a"] -i- = 0,

	

[a, w] + = 1 .

	

(II,7 )

However, as there is only a discrete set of possibilities, and a s
the outgoing operators go continuously over to the incomin g
operators as the coupling goes to zero, it follows that the outgoing
operators satisfy the relations (I1,7) . The same applies to any
operator a or b .

Next, we take two operators a, and a 2 . They satisfy besides
the relations (1I,7) the relations

[ a l , H2 ] = [a i , H 2 ] _ [ a 2 , Hl] = [a 2 , H1 ] = O .

	

(11,8 )

It is easily seen that these relations have as consequences th e
relations

a i a 2 = calai , a .ia 2 = c a2a 1 , aia 2 = c a2 ai,
x:a i a_ = ca 2 a 1 , (11,9)



52

	

Nr. 8

where c is any number such that I c 1 2 = 1 . The relations (II,9 )
are not symmetrical in a l and a 2 . In order to make it more ob-
vious we can write, for instance ,

ala2 = CY2a2a1,

	

a2a1 = C 21a 1 a 2 •

We have then c 21 = c1 Z . The operators a l and a 2 appear in fact
as Fourier coefficients of two plane waves with propagation vec-
tors K1 and K2 and spin orientations r1 and r2 , and c must then
be an invariant function of these quantities . As all invarian t
functions of two propagation vectors and two spin orientation s
are symmetrical we must have c12 = e21 . It follows that c = + 1
or 1, and by continuity we see that c = -1 . The same applies
to any couple of operators a or b. Thus, we have shown that the
fields )

+ "'t and ,bout satisfy the same commutation relations as th e
incoming fields .

The case of the operators e can be treated by very simila r
considerations . A slight complication comes from the fact show n
by WIGNER that the representations of the operators satisfyin g
the relations (II,5) depend on a continuous parameter whic h
fixes in particular the zero-point energy . So the continuity argu-
ment does not apply here . It is, however, easily seen that th e
zero-point energy must be the same for the outgoing fields as fo r
the incoming fields as a consequence of the conservation equatio n

G4 (out) = G 4 (in) .

The proof is then easily completed .

Appendix III .
On the solution of the field equations .

1 . Localized interaction .

We assume that the formulas (5,6) hold up to the order n 1 .
The terms of order n can then be computed from the field equa-
tions (4,3) . For y, . for instance, one find s

y(1E) (xo) = i~doe'Sa (xo- x1){9A (x1)-zl310'1)(x,)), (11I,1)



where
n-1

A(x i) _

	

u(r')
n= o

Explicitly A (x i) reads

1)v(n-p-1)(x1) •

tt-1

A(x i) Y~ dxldx2

	

dxndxi dx2

	

dxn_p-1
P-0 r xi >x;, > x;,> . . . >xp

x

	

. . >x,ti-v-i
~ . . .

[ Idn (x1) , H1], . . H7,] [ . . . [y
«1 (xi ) ,

If we call x2 , x3 , • • • x, 1 the points xi,

	

xp , xi ,
chronologically reordered, we can write for A(x 1 )

A (x i) _ dx 2 . . . dxn

	

[ . . . [ uin (x 1 ) , Hi ], . . .
1

:C Z >

	

> . . . >

[ . . . [v 1R (xi), 11JP+T] ,
. . Hl

ta-7

where the summation > is extended to all permutations j 1 , j2 ,

Jr,-1 of 2, 3, • • n such that j 1 < j2 < . < j p and j,,+ ,1
Jp + 2 <

	

< .i,,-i . It is now easily seen that

A (x1 ) = dx 2 dx 3 . . . dxn [ .
ux~>xQ> . . . >x i

After substitution in (11I,1) of (111,2) and of the expression o f
y("-1) we get

åLÏ
p" x)=i dxdx

	

dxS x x
xi>X,> . . .>x _ . . . råy+ (xo'

	

. .

dxldx 2 . . . dxn [ . . . [vn" (xo), Hl] , H2], . . Hp ]
x,>x2> . . .>xn

where use has been made of the relatio n

åLnl

	

f--xi) å2Ÿ 1 (x1)

	

[yin (a. o), Hl ]

=0

	

if xo<xl .

A similar treatment applies to the other field functions . Thus,
(5,6) holds to all orders .

As for the outgoing fields, the term of order n of p, for in-
stance, is given by

(x1) y'n (x1) , H2] , . . . Hn] •

if xo > x 1 ,
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oat (n) (x) = i dx l S (x x i) {gA (xi) - 4 ,Il y(n-l) (S i)}

and on using (I1I,2) and the relatio n

ô Li n
iS(x - x 1 )	 + T	 (xo

we get

yiit(n) (x) = dxYdxo

	

. dxn [ . . [yin (x), HI] ,

	

. Hn~ •

2 . Non-localized interaction .

The preceding proof can be extended immediately to the cas e
of a non-localized interaction . The only delicate point is the trans -
formation of the expression called A (x i ) . Presently, we have t o
show the identity

n-1
dV,, + [ . [uin

	

H+ ] ,

	

H;,] d 4'_t'd~
. . .

	

. .

	

(x ),

	

. . .

	

. ds
u=o .t

	

t in
. .

	

~~-P-i

[ . . . [ gp in (x/ + ) H',']

	

Hn n t] =

	

(I11,3

m (x) Hi[ ,

=
S de1

. .

	

[ . . . [uin (xo)z/'in
t

"), H I ] H2], .

	

Hn] •

In the left-hand side the variables ' on the one hand, and the var-
iables E" on the other hand, are ordered in time independently .
We have to develop both sides of (III,3) and to compare the re-
sults . The integrand in the right-hand side can first be expanded a s

[i n. . . [u~(xö),

	

, .

	

[ -
~ [y (x',o,, ),

	

. . .

	

(11I,4.

where the summation is extended to all permutations of 1, 2 ,
3,•••nsuch that ji<j;<•• <4,and :4' < j2 < . <j, j_ 1 .
Then, the term in um and the term in din have to be developed .
Thus a term T of (11I,4) is the product of a term T,, coming fro m
the first factor, and a term Tv, coming from the second factor .
The term Tu will also appear in the development of the first factor
in the left-hand side of (I11,3), and Tv will appear in the develop-
ment of the second factor . The associated domains are clearly
the sanie ill both sides. Finally, the rule that each tern T should
be multiplied by 1[N(T) is conveniently replaced here by the
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rule that only one term in each family of equivalent terns should
be taken into account . It follows that each term appears the sam e

number of times in both sides of (111,3), and this completes th e

proof.

The formulas for the outgoing fields and the products of out-
going fields are merely generalizations of (111,3) .
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