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Summary.

relativistic field theory with non-localized interaction is in-
A vestigated. The field equations are deduced by the variational
principle from a Lagrange function containing an interaction
term involving a form function. The essential departure from
conventional field theory is the lack of causalily, or, in other
words, the lack of propagation character of the field equations.
It is shown, however, that under certain conditions which must
be satisfied by the form function this property remains limited
to small domains. Similarly there are no contfinuity equations,
but conservation laws hold in the large. The quantization is per-
formed according to an extension of the scheme developed by
Yane and Ferpman making use of the concept of incoming and
outgoing fields. It is shown Llhat this procedure is always con-
sistent with the field equations. Assuming that the field equations
can be solved by means of power scries expansions it is possible
to give rules generalizing Feynman’s rules giving all the terms of
the expansion of an outgoing operator in terms of the incoming
operators. Every term is associated with a doubled graph. An
investigation is made of the convergence of the integrals oblained in
this way. It is shown that many terms converge automatically as
soon as the Fourier transform of the form function is supposed
to fall off rapidly at large momenta. Some divergences remain
in the higher order terms. They can, however, be removed by
assuming that the Fourier transform of the form function has
only time-like components. It is finally shown that the gauge in-
variance requires the addition of a new interaction term in the
Lagrange function, corresponding to a sort of exchange current.



1. Introduction.

It has been shown by Prieres and MacManus? that it is
possible to introduce a smearing function in a field theory in a
Lorentz-invariant way. Yurawa®, on the other hand, has pro-
posed a theory involving non-local fields, which, as will be shown
later, is equivalent to an ordinary field theory with an interaction
containing a form function, if one takes a variation principle as
a starting 1)oint(3). These theories cannot be put into a Hamil-
tonian form and, consequently, have met with some difficulty
in quantizalion. Recently, however, a new treatment of conven-
tional field theory was developed by Yane and Ferpmax® and
by KirLin®, which can immediately be applied to field theories
involving smearing functions®”. It has therefore become pos-
sible to build a complete Lorentz-invariant quantized field theory
with a non-localized interaction, and it may be worth while to
investigate the consistency of such a scheme, and the convergence
of the results it yields.

If we take, for simplicity, the example of a nucleon field inter-
acting with a neutral scalar meson field, the scalar non-localized
interaction term reads'”

L; = gS dx'dx"dx’'F (', =", ") " (&) u (") p ("), (L,1)

where the form function F must be Lorentz invariant and such
that contributions to L; come only from the volume elements for
which the three points x’, z'', " ave very near each other. By
points near each other is meanl points whose coordinates dilfler
by amounts of the order of a characteristic length A. The inter-
action (1,1) is Hermitian if the form function satisfies the condi-

(*) In this formula x stands for x%, 2, 2%, @ = {, and dx for dxldxdzdxt.

We shall use units such that h = ¢ = 1. We shall write ab for the scalar product
Zal', where ¢, = o for { = 1, 2, 3, and @, = —a®. The metric tensor g, is

defined by g, = Oifp v, g4y = 1, it =1,23 andg, = —1.
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tion F(x', 2", 2"y = F* (', 2", 2’""). The introduction of a form
function in L; corresponds to a kind of interaction which has no
propagation character, and it is important that such effects should
remain limited fo small domains. Because of its Lorentz invariance
F will remain finite for arbitrarily large distances of the points
', x”, '’ as long as they remain near the light cones of one
another. Under certain conditions, however, compensaiions can
occur in the neighborhood of the light cones in such a way thatl
the corresponding volume elements de not contribute appreciably
to the integral (1,1)®. A quantitative study of this effect will
be made in section 2, and the conditions which F must satisfy
will be established.

It may be of some interest to show that Yukawa’s non-local
field theory leads to an interaction of the form (1,1) with a
particular form function F. We may take, for instance, a non-
local field U interacting with a conventional field ». The field ¥
is a function of two points 2’ and ' in space-time®, and the
field equations can be deduced from a variation principle in-
volving the interaction term

L= g\dwdyt @)@ | Ul p ™. (12

L2

The field U can be represented by the Fourier integral

('
4 rry

where X = (1/2) (' 4+ 2'"”") and r = o' —a'"’. If we associate
with the field U the local field

Uy = \diea (k) "o () 8 (12— 22),

u(x’) = § dk a (k) e,

we can write (1,2) in the form of (1,1) with
F(, 2wy = @ay§ de e O s (k)6 (02— 9.

Detailed investigation of this form function, however, shows that
it does not yield convergent self-energies®,

The non-localized interaction is also connected with the field
theories involving higher order equations considered by several
authors and systematically investigated by Pars and UnHLEN-
seck®. The general type of these equations is
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f(u(x) = o(x), (1,3)

where ¢(x) is the source of the field. If fis an analytical function
it can be factorized and each factor corresponds to a possible
mass of the particles described by the field u. Theories with more
than one mass, however, should be rejected because they intro-
duce negative energies. The only acceptable equations (1,3) are
then of the form

dOO —mHu(x) = o(x). (1,4)

The differential operator ¢ ™ has an inverse and we can write

(1,4) in the equivalent form
n

(O —m»u(x) = ¢ Pox) = )dﬂc'G(:t—x')Q(a:'), (1,5)
where

G(x) = (2 n)*45 dic &1 gk, (1,6)

This is the equation which would be obtained with the inter-
action (1,1) and a form function F = G(x'" — x’) é (" — x'"").
The possibility of iransforming an equation such as (1,3) into
an equation of the form (1,5) shows that one has to eliminate
certain types of form functions corresponding to the introduction
of particles with dillerent masses and negative energy. If the
Fourier transform of G has poles, & can be written

G(x) = (2 n)~4gd1c g1 Tl +md,  (17)
* 1
and the equation (1,5) is equivalent to the multi-mass equation
TU 0+ o) (@ —m®ul) = g(De).
1

The function (1,7), however, behaves for large x like |x2 |‘3/° as
does every propagation function (the flux of the square of the
function through a given solid angle is independent of the dis-
tance). The occurrence of additional masses will then be avoided
if it is specified that the form functions should fall off for large
x faster than propagation functions.

The field equations are deduced from the lagrange function
by the variation principle. Because of the introduclion of a form
function in the interaction the field equations are not ordinary
differential equations, and the values of the field functions at
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t 4 dt are not simply defined in terms of the values at ¢. Con-
sequently, the conservation equations do not hold in their differen-
tial form. It will be shown, however, that conservation laws hold
in the large, in the sense that energy, momentum, angular momen-
tum and electric charge at a time ¢, before any collision has taken
Place, are equal to the corresponding quantities after collision.

The quantization can be performed by postulating that the

D

Fig. 1.

asymptotic values of the fields for { = — o and { = + « (called
the incoming and the outgoing fields) satisfy Lhe usual commuta-
tion relations of the free fields. It must then be shown that these
commutation relations are-consistent -with the field equations.
This can be done by using the fact that the constants of collision:
energy, momenium, etc. ... define the infinitesimal canonical
transformations corresponding to the infinitesimal translations
etc. ... The S-matrix is then defined as the matrix which trans-
forms the incoming fields into the outgoing fields.

Any ()ll,tgoillg operator can in principle be computed from the
field equations as a power series of the incoming operators. The
calculations are simplified by a set of rules similar to FEYNMAN'S
rules for electrodynamics®. These rules are used for an in-
vestigation of the convergence of the self-energies to all orders.
The way in which convergence results from the introduction of
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a form function in the interaction can easily be seen on the second
order self-energy. The graph corresponding to the conventional
field theory is represented on Fig. 1a. To the lines going from
x; to xy correspond functions of x; — x; which are singular on
the light cone, and a divergence arises from the fact that the self-
energy integral involves a product of two functions becoming
singular al the same points. The small circles on Fig. 1b cor-
respond to the introduction of form functions F (x, ", '),
and it is seen that the divergence will disappear if F is a smooth
function of «' — «'.and x” - x"”’. A rigorous treatment requires
the use of the energy-momentum space. However, it can already
be seen that the convergence of the self-energies of both types of
particles requires that F be a smooth function of all three variables.

There is then a little difficulty when the interactions with the
electromagnetic fleld are taken into account since the interaction
term (1,1) is net gauge invariani. It will be shown, however,
that a supplementary interaction term can be added fo (1,1) in
such a way that the sum is gauge invariant. This term describes
the current due to the jumping of the charge between the points

1 ‘e

x"" and x_;, x,

’
s and x, .

2. The form functions.

In this section we shall investigate under which conditions
the non-localizability of the interaction is limited to dimensions
of the order of a given length 4. We consider first a simple case:

A. Functions of two points®, In the conventional theory
with a localized interaction the function F is a product of two
four-dimensional Dirac functions: F (z', ”, 2”") = 6 (' — a"")
6 (x"—a""). As a first generalization we shall assume that
F contains only one four-dimensional Dirac function: F =
d(e’'x’ + o2 + &' 2’ G, where the scalar constants o, «’', &'
satisfy the relation «"+ «'" + «'”” = 0. The factor G can be ex-
pressed as a function of two points only, 2" and =, for instance,
if &' &£ 0. The invariance under translations and Lorentz
transformations requires that G should be a function of s =
(m' . x/')z(*).

(*) For s < 0 the function G can also take two different values for the same

value of s depending on whether x; — z;" is positive or negative. We shall come
back to this Iater.

it
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We shall now investigate under which conditions the form
factor becomes very small as soon as x’ and a' are not very
near one another. More precisely, considering the integral

I = Sd:c'G(s) ('), 2,1)

where f(x') is an arbitrary smooth function, it should depend
only on the values of f(x') for &’ very near x'’. A first condition
to be fulfilled is that G(s) should fall off very rapidly as ‘sl be-
comes much larger than A?. This condition, however, is not suf-
ficient as G(s) remains finite for =’ near the light cone of x”.
Thus, the contribution to / coming from the volume elements which
“are far from x”/, but near the light cone of =/, requires a special
investigation. - ‘
It is convenient to iniroduce the point x4 of the light cone of
x’ which is near x’ and has the same three first coordinates. We
call a the three-dimensional length of ' — " or xy —a”. We
have x} —a'"* = ea, where ¢is + 1 or— 1 depending on whether
x} — x”’* is positive or negative. The distance of 2’ to the light
cone is conveniently defined by & = e(x; —a'*). The relation
between s and & is

= 2af—E&*. (2,2)

It shows that for large @ a small variation of £ corresponds to a
, it
follows that for large a we can expand the function fin powers
of £ around the light cone and extend the integration with respect
to 't or & from — w0 lo 4+ .

As we are interested in orders of magnitude only we shall
omit all numerical coefficients. The Taylor expansion of f around
the light cone reads

large variation of s. As G 1s very small for large values of l s

FG) = [ Goai—ed) = STELY,

where f(f = (08/8 ' f(x") taken at the point x’ = x,. Finally,
we replace the variable of integration ' by s. We have

dx't = ds/2 (a— &) = (ds/a) _Zn (Ela)™,
0

and from (2,2) we deduce
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= a—(at —s)" = (sla) > (sla®)"
0

Using all the preceding expansions the contribution to I of the
neighborhood of the light cone of x' can be written

S da' G (s) f(z') =~ S dx’'ds > VG (s) fRa™ T x>

. 0

. o o (2,3

S dx’ds > (sfa)* T (sfa®) G(s) [ o T = S dx’ D My o o fafa®
0 0

‘

where the M, are the “‘moments” of the function G defined by

M, = gdss”G (s).
The formula (2,3) shows how the contributions to [ coming from
the neighborhood of the light cone of " decrease with increasing
distance a. Namely, if

My=M, =My =+ =M,_; =0, Myx0, (24

the contributions decrease as (1/a)P ™1, As the volume element dx’
is proprotional to a®da, it is seen that the integral I extended to
the whole space-time is convergent for any bounded function f
with bounded derivatives if p 2> 3. The integral {dx'G(s) is
convergent for p = 2.

It should be noted that integrals such as I are usually not
absolutely convergent. The convergence is due to cancellations
arising within the volume elements which are near the light cone
of &'’ . In calculating such integrals, one must always use a method
allowing these cancellations to take place. For instance, one can
start by restricting the domain of integration to a finite part of
space-time enclosed within a closed surface X, and then let 2 go
to infinity. It is easily seen that the cancellations which make the
integral I convergent will take place if the angle under which X
cuts the light cone tends nowhere to zero. The possibility of
defining in a Lorentz invariant way an integral which is not
absolutely convergent clearly comes from the fact that the can-
cellations making the integral convergent take place within layers
along thc light cone which become infinitely narrow at infinity.

If for s =< 0 the form function takes different values depending
on the sign of x*% it is convenient to write G as a sum of an even
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function G, which is invariant under the subslitution x— —uwx,
and of an odd function G_ which changes sign under the same sub-
stitution. It follows from the relativistic invariance that G_ must
vanish for s> 0. It is easily seen that the functions G, and G_
must salisfy the conditions (2,4) independently.

For many calculations it is more appropriate to represent &
by a Fourier integral

G(z) = s ™™ g (k) (2,5)

where g(k) is a function of the argument ¢ = %%, and can be
represented by a sum of an even function g, and an odd func-
tion g_. The Fourier transformation (2,5) gives then G, in terms
of ¢, and G_ in terms of g_. We shall now investigate which
conditions must be satisfied by g, and g_ in order that the cor-
responding G should be an acceptable form [unction. This re-
quires a closer investigation of the correspondence between G
and ¢ given by (2,5).

The integration in (2,5) with respect to the angular orientation
of k yields

3 T A — il
G(z) = - \ldlSdk Sinlae=%*g (k)
. 4x 9 t® ‘+m4 ~— ilcht N
e %gdlgdk Cos lae— g (k)

Vo

2m O prrEpte, )
—_ = _ - (1l a— kiz*) A
where ¢ = Ix , and |l| = lkl Introducing now the decomposi-

tion of G and ¢ into even and odd parts we get

27 0 v .
G =", S \ dl ditelte—+=) g (g),
271: a .+am
G_(s) = _'7?%5 S dldktelte—ENe (k%) g (q),

where s = x% ¢ = k%, and e(k?) = k‘*/lk*!. 1t should be noted
that the precise definition of G_(s) is

G (x) =G (s)if x>0, G (x) = —G_(s5) il x* <0,
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A similar definition holds for 9-.(q). Replacing the variables of
integration [ and k* by

g =B and « = L=F F ot
b N (z_x4 2

4
O o = cii]:f if @ = xt,

we get after some simple manipulations

_

G (9 :—%Sﬂd“dq

e(a) e(l/")(aSJ-Q/a)g+(q),

[24

7w 0 +°:i d i 1S-qfe
G_<3):_gi S CAq (i]2) (es+qf )g_(q).

a & .
As 19 = 24—, we can also write
1] 8 6.‘9

G+ (q) _ _l-ﬂ_ggd ‘dqa(a)e(u‘))(us q,c\')g ((])

(2,6)
deedg e 0O g (),

¢t
8

G (s) = —mS

The formulas (2,6) may be interpreted in the followi g manner.
G is obtained from g by three successive transformations:

a) the Fourier transformation

e (f) = que(i/rz)ﬁqg OF

k) the transformation
v le) = (@), (L), or p_(2) = ¢_(1/a),

©) the Fourier transformation
G(s) = ﬂ'ns de ey (o),

(*) In this formula ¢_ (g) = 0for¢> 0. It follows then from Cauchy’s theorem
applied to the integration with respect to ¢ that G (s) = 0 for s> 0. .
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We shall use this decomposition to find the properties of g suf-
ficient that G defined by (2,6) shall be an acceptable form func-
tion.

The conditions which must be satisfled by G are:

1) to be continuous;
2) to go to zcro as |s|— «, for instance as (1/s)*;

+ (2.7)

3) Sdss”G(s) =0, forn=20,1,..., p—1.
As regards the condition 2), one might require that G(s) should
tend to zero much faster than we assume here, exponentially for
instance. It seems, however, natural to require only that G be-
haves for large s in such a way that its integral over the whole
space-time is convergent. The condition 2) with & > 3 is then
sufficient. The convergence of the moments ].n\rol.ved in the con-
dition 3) requires in fact k > p + 1, The condition assamed
here seems natural in view of the fact that the contribution to the
integral (2,1) coming from the neighborhood of the light cone
never decreases faster than an inverse power of the distance.

Sufficient conditions for ¢(«) corresponding to (2,7) are that
w must have L continuous derivatives such that

D {dafp (@<

2
2 {dely® @<, for n=1,2, 4y (O
3) p(0) = 0, forn=0,1,..., p—1.

The derivatives of u (with respect to «) are given in terms of the
derivatives of ¢ (with respect to ) by the formula

=1

(11) (a) ~ 251114-11 (m) (ﬁ) (2,9)

m=1
where § = 1/u, and where the numerical coefficients have been

(*) The expansion (2,3) requires the existence of moments of all orders i.e.
an exponential decrease of G for large s. The whole argument, however, can bhe
carried through by means of limited asymptotic expansions only. The condition
we have assumed is then sufficient.

(**) Here we make use of a well-known theorem on the aysmptotic value of
FFourier integrals; see for instance, S. BocHNER, Fouriersche Integrale, Chelsea
Publishing Co., New York, p. 11.
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omitted. The presence in the relation between ¢, and ¢, of the
factor e(e) which has a discontinuous variation at .« = 0 does
not modify the equation (2,9) since the function ¢ and all its
derivatives involved here vanish at « = 0 (this follows from 3
for the p — 1 first derivatives and for the derivatives of the order
p,p-+1,..., &k from the behavior of zp(’“) at infinity as indicated
below). '

It is seen from (2,9) that we must assume that ¢ has k con-
tinuous derivatives. From the condition 1) it follows that ¢ must
be such that

S%’flw(ﬁ)Kw

This condition is satisfied if we assume that ¢ is bounded for
8 = -+ o, is regular at § = 0, and that ¢(0) = ¢"(0) = 0.
Finally, it is easily seen that the conditions 2) are satisfied if we
assume that ¢™ () (m = 1,2,..., k) behaves at infinity as
(1/8™**. The conditions 3) are then automatically satisfied. From
the relations ¢(0) = ¢'(0) = 0 it follows thai

{dag (o = {daag () = 0. (2.10)

—uo

On the other hand,
ot o
g™ (B) = \ dqeliPag™g (q);
and this function behaves at infinity as (1/8)™ % if ¢™g(q) has
m - k continuous derivatives absolutely integrable from — % to
+ o« (BocHNER loc. cit.). As im takes the values 1,2, ..., k we
are led to the following conditions:

g(q) is continuous and has 2 & continuous derivatives;
() (n=0,1,...,2k) goes to zero as ¢g— + @ (2,11)
faster than (1/¢)*T!.

The condtitions (2,10 and 11) are sufficient to insure that
G(s) satisfies (2,7). The function g (g) vanishes for ¢ > 0. It
follows then from the continuity of the 2k first derivatives that

g™ (©0) =0, for n =0, 1,... 2k (2,12)
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The conditions (2, 10 and 11) allow us to choose functions
g(q) which vanish outside a certain interval. In such a case, g(q)
and its 2 k first derivatives must vanish at the ends of the interval.

The function _(s) can be expressed in terms of the usual
tunction D of field theory. Performing in (2,5) first the integra-
tion at ¢ constant, and then the integration over ¢, we get indeed

6. = @ari{dgg @D ), (2,18)

where D(s, q) is the function corresponding to the mass J/— gq.
If we assume that g, (g) is different from zero only if ¢ < 0
(which implies that ¢%(0) = 0, for n = 0,1, ..., 2 k), we can,
similarly, express G, (s) in terms of PV,

6. = @2 \dag, @DV G, 0. (2,14)

The expressions (2,13 and 14) are identical with those used in
the theory of regularization®®. The relalions (2,10) also belong
to the latter theory. They express the condition that the singulari-
ties of the functions D and D® at s — 0 should not appear in
G(s). The conditions (2,11), however, are in contradiction with
the limiting process used in the idealistic renormalization, or with
the introduction of a discrete set of masses. Consequently, the
behavior for large s of a form function is essentially different from
that of a regularized function.

It may be noted, finally, that the transformations considered
in this section are special cases of the Fourier-Bessel transforma-
tion®®. The transformation of the odd functions, for instance,
can be written

Wt o
rG_(r)y = 2 inZX%del (wr)xg_(2),
v
where r = }/—s, and % = V—q.

B. Functions of three points. As it was shown in section 1, the
form function should actually be a smooth function of all three
variables. It will then be a function of the invariants”

§ = (xll o .’L'I”)z, = (.’,C”’ . xl)z, u = (x/ . .’Y)”)Z.

(*} These invariants are nol entirely independent. No lriangle z/, z”/, 2"

>

exists if s, ¢ and u are negative and if s + 2 4 0> — 2st — 2fu — 2us < 0.
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First of all, the form function should fall off rapidly as s, £, or
u becomes large (strictly speaking, one could also require that F
falls off as any of two only of the quantities s, #, u becomes large).
There are, however, large triangles x’, ', 2’ for which s, # and
u are small. The contribution to an integral such as

1= \do' do” @ F [ (', 2", 2") (2,15)

coming from such triangles can be investigated by the same method
as for the functions of two variables. Let «, b and ¢ be the lengths
of the space parts of ' — 2", "' — 2" and &’ — 2", respectively,
and suppose that a 2= b 2z ¢. For a large triangle a and b at least
will be large compared with 4. Let xy and x; be the poinis of the
light cone of "’ which are near a’ and x’, and have the same

space coordinates., We have

4 rerg

X — 2 =cea, xf—x"""=c¢b, - £= 1.

Introducing the distances of 2" and a’” to the light cone of @’ by’

E=e(at—a'), = e(ai—a), (2,16)
we have
s = 2af— &2, t = 2by— 7t (2,17)

Again, we can carry out the integration in I with respect to a’'*
and x'’* using Taylor expansions around the light cone of x'"'.
It is then convenient to replace the variables x'% and a'* by s
and f with the help of (2,16) and (2,17). An additional complica-
tion comes from the fact that u is now a function of s and ¢ since
all three quantities are functions of 2'¢ and 2'* (or & and 7). It
is readily found that '

S

c‘z—(a—‘b)2 +(a—1b) (5—%) tla—b) (%’*f) s

N .
\

i

which shows that when the triangle becomes large the quantity
q = ¢*-—(a— b)* must remain finile. It is one of the parameters
which define the way in which the triangle is increasing. As other
parameter we can take a/b = px, and we have then

u=1—mwy{d—s/u)+qg+...,
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where the omitted terms are quadratic in & and 5. We can then ex-
pand F'in Taylor seriesin £ and v around u = (1-—u) (—s/u) +q.
One finally finds for the contribution of the large triangles the
expansion

w ol N2

ki
: . . w, g
o ' 1% N2 mtjtk R ,(,‘,,,’ L ¢
I= !\ch dx"" dx R R N LA A (2,18)
. KK Joank rank ’ et . s
where [ = (8/0x" )" (8/0x"H)" f(a', 2", ') taken at x” = x,,
x"’ = x;, and M:I (. q) is the derivative of the order j with

réspect to ¢ of the moment

Moo @) =\ ds Q5% 8 F s, £, (1— ) (¢ s/40) + @),
It is seen from (2,18) that if F satisfies the conditions
Iun, wlit, gy =0, for n+n"< p--1,

for all relevant values of w and g, the conlribution of the large
triangles decreases as (1/a)? 2. Thus, we have extended the re-
sult obtained for the form functions of two variables.

‘We shall not go any further into the analysis of the general
case since it is much more complicated than for the funclions of
two points. Moreover, form functions of three points can be built
by means of form functions of two points, and this procedure may
be sufficient for practical purposes. For instance, we may take

F (CC,, CY,'”, x/ll) _ G;E;(m/ o x//)(;(m// o .17, ’ ,

or, more symmetrically,
F, o, ") = de Gé (2 — ) H(x —2) G —a). (2,19

The use of such a form function corresponds to replacing the
field functions by “smeared fields’’, as defined by PererLs and
MacManust,

The Fourier transform of the function (2,19) is particularly
simple. It is the product of the Fourier transforms of the three
functions ¢*, H and G occurring in F* and of the four-dimensional
Dirac function 6(&" + k" + £7")..

The results of this section show that the conditions under which

a form function behaves like a smeared é-function have nothing
Dan.Mat.Fys.Medd. 27, no.8. 2
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to do with the condition that its Fourier transform should resemble
that of a d-function. This is due to the non-positive definite char-
acter of the distance in space-time. It follows that the behavior
for A— 0 of the Fourier transform of a form function gives very
little information about the behavior of the funclion itself. In
particular, a form funclion defined by a Fourier transform g (k)
such that %in% g(k) = 1 may very well give rise for A small to
>

undesirable interactions transmitted with the velocity of light over
large distances, or having no propagation character.

3. Conservation equations.

Taking the usual expressions for the Lagrange functions of
the free particles, and the expression (1,1) for the interaction
term, we obtain from the variation principle the field equations

6 “ rr 12 rrr
(V“ aa+M>w(a:)+95dx”dx"’F(sc,x”x’ Ju@)p(x") =0,
&

— Qz,g%c) yH 4+ My ™ (x) + gg de'da’ F(x', ', )yt (Yu(a’) = 0, (3,1)
x L

(_ M - 1172)11(:(,') —l—ggdm'dx"'F(oc’, x, 117”’)'/’+ (.’13’)1/)(33’”) = 0.

In order to prove the existence of conservation equations it is
convenient to introduce the integral L, obtained by restricting
the domain of integration in L to a finite part 2 of space-time.
In the interaction term L; it is sufficient to restrict to £ the inte-
gration of only one variable =’ for instance. We thus consider

Lo = deH(oc), where H(x) = Hy(x)+ H,(x),

in which H, is the free particle term and
Hi (-'L) = gS dx'dx""’ F(ZL", x, x///)w-i— (’E,) u (x)w<$1u) )

We call Eg, the field equations deduced from Ly, by the variational
principle. The equations (3,1) will then be called E,. The dif-
ference between the equations Eg, and E., is that in the two first
equations the integration with respect to x’ is extended to Q in-
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stead of the whole space-time. The difference is very small if x
is inside £ at a distance large compared with 2 of the boundary
2 of Q. This follows from the property of the form function
F(x', 2", ") that it gives contributions to the integral L, only
if the points x’, ', x’"' are at distances of the order of 1 from
one another. .

In what follows we shall consider only collision problems.
This means that we assume that very far in the past and very
far in the future the particles do not interact. The equations Eq,
and E, are then very nearly identical everywhere if £ is so large
that no collision takes place outside £ or near its boundary.

It should be noted that it is not quite correct to neglect the
interaction term outside 2. Even if the particles do not interact,
the existence of the interaction creates self-energies which modify
the rest masses of the particles. This can be taken into account
by adding to H; a renormalization term H; = — [AMyTy +
(4 m?[2)u?], where 4 M and Am? should be chosen in such a way
that the interaction Hy = H; + H; does not give rise Lo any self-
energy. With this modification the quantities M and m occurring
in (3,1) are the real observed masses of the particles, and it is
Justified to neglect Hj if the particles described by the ficld are
very far from each other.

Finally we see that considering a solulion v, u of the equa-
tions E., it is possible to find a domain £ such that the equa-
tions En have a solution approximating v, u inside 2 and on X
as closely as required. It follows that if a conservation equation
on the boundary X of £ holds for any solution of £, the same
conservation equation will hold for the solutions of E, on X if
£ is large enough.

Let us assume now that ¢ and u are solutions of the equations
Egp and consider an arbitrary variation of  and u; we have

\'dO‘L 1/)+-ytu6y) — (qu"'y/"y) —}—ﬂ du -+ 611_% . (3,2)
Jx F axu 3:6“ ’

DO =

where doy, is the surface element on X pointing toward the outside.
If the variations of the fields correspond to a displacement of the
fields defined by dx#, the variation L can be compuled directly
by making use of the invariance of the Lagrange function under

PE]
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displacements. The difference between the integral of the dis-
placed fields and the non-displaced fields is readily found

8L = 7§ dogdxtt H(x). (3,3)
vy

From (3,2) and (3,3) we obtain the general conservation equalion

. 1 o . du , du) |,
doy | = [vTyHdy — SpTytyp -+ = du -+ du )+6.MH = 0.
52 o [2 (1/) yHdy w oty axﬂ u udx‘u/ x ] (3,4)

If the displacement is an infinitesimal translation

gy
Oy = ¢ Sy = — gy, ete. -
H f2] PR fi
da,/u
the equation (3,4) becomes
\du—yT’” =0, (3.5)

v
where

dy  dypT )+ du du _gmH (3,6)

1 ,
v — + oy TF
1 2((1/) I Bacﬂ (r)sc‘u/y v dx, dx

f23
can be identified as the energy-momentum tensor of the system.
The same method applied to the infinitesimal Lorentz transfor-
mations leads to the conservation equation of angular momentum.
The Lagrange function is also invariant under gauge transfor-
malions

v

p—elty, pt—eleypt g = constant.

The corresponding infinitesimal transformation
dp = iday, dpT = —idayp, du =0

gives 0Ly = 0. Irom (3,2) we obtain then the conservation
cquation

\daur = 0, (3,7)
3

[y
P

where
JP = leypTyry (3,8)
is the four-vector current-charge.

It should be noted that in the conservation equatlions (3,5)
and (3,7) the surface 2 is not arbitrary; it is the boundary surface
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of the volume 2 ocewrring in L. It follows that the usual con-
tinuity equations
o, 39)
ox” g’
do not hold if the interaction is non-localized.

It may be of interest to show this more directly. The calcula-
tion is simpler for the conscrvation equation of cleetric charge.
Let us multiply as usual the first of the equations (3,1) on the
left-hand side by y* (x), the second on the right-hand side by
w(x) and subtract. This gives

a ( 7 I ’ 24 f e
55 (BT = g [ o' da” P, @, ayp* (@) ue >w<x>[
(3,10)

—5 dx''dx" Fx, 27, 2"y’ (x)u(xyp(x"") . {

The right-hand side of (3,10) vanishes of course if F is different

1re

from zero only if ' = 2'', as in the case of a localized interact-
ion. Il does not vanish, however, in general, but if we infegrate
equation (3,10) over a domain £ the contribution of the right-

hand side reads

g { \ dx’ \ da "
e (3,11)
—~\ dx'"’ S dos’dx”} F(a', 2", 2"yt (eD)ulxyw(x'""),
where Q' is the part of space-time lying outside £. If the inter-
aclion term Hy vanishes outside £, then (3,11) vanishes and we
obtain the conscrvation equation (3,7).
It will be useful to consider domains & limited by two space-
like surfaces oyy and o) very far in the past and in the future,
respectively. Defining then the quantities

G — \dov ™, Q= \do—yj”, (3,12)

o o
where doy is the surface element on o such that dog > 0; the
equétions (3,5) and (3,7) show that G* and Q have the same value
if ¢ = o4, or if ¢ = o). These (uantities are thus constants of
collision’®; they represent the total energy-momentum and
electric charge of the sysfemn.
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4. Quantization.

If all the calculations of the preceding section are carried out
in such a way that the order of the factors is always preserved,
the results will still hold if the field functions are non-commuting
operators. In order to complete the formulation of the theory, we
must still define the commutation relations of the field functions.
It is not easy to find directly commutation relations which are
consistent with the field equations (3,1). In the conventional
theory one postulates the commutation relations of the field func-
tions at all points of a space-like surface, and one shows that
these relations still hold on any other space-like surface. This is
possible because the field equations have one and only one solu-
tion for any arbitrary initial conditions given on a space-like sur-
face. It is not easy to see what the corresponding problem is for
the field equations (3,1). On the one hand, the knowledge of the
field functions on a space-like surface is not sufficient to define
the field functions even in the neighborhood of the initial surface.
On the other hand, it is not clear that the field functions can be
given arbitrary values on a space-like surface. This makes the
extension of the canonical method of quantization difficult.

The situation, however, simplifies if one considers a space-
like surface very far in the past or very far in the future. Because
of the assumption that the interactions are negligible in the distant
past and future, the commutation relations on such a surface
must in the limit be identical with the conventional commutation
relations of free fields. This suggests that the quantization method
to be used in the present case will be to postulate the commutation
relations for the asymptotic values of the field functions for
xt— 4 oo,

The most convenient mathematical method to find the solu-
tions of a differential system with given boundary values is to
transform the system into a system of integral equations by means
of the Green’s functions corresponding to the boundary values con-
sidered. The boundary values that we have here are the values
for x*— —w . The corresponding Green’s functions are the re-
tarded ones defined by
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(yl“a—i—y, —i—ﬂ/[) S, (x) = a(x),
(0 +m)Dy(2) = — o), D
and S, (x) = D, (x) = 0 if at < 0.

As it will be important in what follows that the interaction term
vanishes before and after the collision, it is necessary to use the
renormalized interaction

Ly = L;— g dx (A MyTy -+ 4;1}: 112) ;

and in order to simplify the writing we shall iniroduce the nota-
tion of variational derivatives. The field equations (3,1) read then

p a \) L,
(y gt @ s =0,
FRn
“%xf) P My () | ay)f@ -0, (4,2)
OL;
(— 0 Tm)u(x)_'_éu(nc) 0,

where, for instance,

dL;
() = g\dr"dc"’F(r 2,2 yule Yy (e — AMy (x), ele

Using now the vetarded Green’s functions we can iransform the
system (4,2) into the equivalent system of integral equations

in ’ ’ 6LI
P = @+ s, ) sp7 ()
’lp+ (CC) — w+'il'l(x) _!,_ \‘ dﬂ:”, LIi S—j— (CU . xlil) (4’3)
| (S’([) (mlll) ES
. ' 5L,
u(xey = a"(x)+ S-d:c”])+(x — ") Su e

where the fields ™ and v™ satisfy the free field equations. The
retarded Green’s functions are different from zero only inside the
past part of the light cone, and as we assume throughout that the
interactions are negligible far in the past, we see that the second
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term in equations (4,3) becomes very small as x*— — w . It fol-
lows that the fields %™ and u™ represent asymptotically v and u
as x*—-—w . They describe the incoming particles.

The integral equations (4,3) can formally be solved by itera-
tion to all orders of approximation for arbitrary incoming fields.
It is natural to postulate that the incoming fields satisfy the con-
ventional commutation relations of free fields

W (), 9 (@] = (vt (), pTT ()] = 0,
i[l/’ign (1), "/’+ i;l (xz)J = SQU (0 — 25),

T

[1/)1“‘(%), T (.’,Cg)J = {w"’i“ (x1), ™ (xz)] = 0,
([a™ (), W™ (20)] = D (2 — ),

where [A, B] = AB — B4, [A, B], = AB + BA. The commuta-
tion relations (4,4) are clearly consistent with the field equations
(4,3). The commutation relations of the fields % and u can in
principle be deduced from the relations (4,4) with the help of
the field equations (4,3).

The above considerations can be repeated with the boundary
conditions for a*— - oc . We infroduce the advanced Green's
functions S_ and D which satisfy the same equations as the re-
tarded Green’s functions but vanish for x* > 0. They lead to the
integral equations

out ' ’ ’ 5LI
p(x) = v (x) + .\ da'S_(x—x )@T(;-),

, ‘ O L ' )
ph(e) = pT " (x) + S da'" 617,!)(7{”—) St (e —a"), ((4,5)
3L

u(x) = u™ (2) -+ \ dx’" D _(x — x'") cfu*(:r,l—”)

are free fields, which are asymptotically
identical with v and u as «*— + %, and represent the outgoing
particles. The outgoing fields should, of course, satisfy also the
free field commutation relations. In fact the commutation rela-
tions of the outgoing fields can in principle be deduced from the
commutation relations of the incoming fields with the help of
the equations (4,3) and (4,5). We have to show that the relations
obtained in this way are similar to the velations (4,4).

where ™" and ™
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This can easily be done with the help of the constants of col-
lision defined in the preceding section. These constanis can be
computed with the incoming or outgoing fields. For instance, the
total electric charge before collision is given by

Q(in) = z'e\ doyyp ™ My,
, )
where o is any arbitrary space-like surface. The same applies to
the energy-momentum and the angular momentum before and
after collision, and the conservation equations read now

G* (in) = G*(out),  Q(in) = Q(out),--- (4,6)

It is a well known property that the commutator of any incoming
field function with an incoming constant of collision is related
to the corresponding infinitesimal transformation by the equa-

fons
. LO0A
[fl, {7“ (il’lv)} = — lgxﬁ 1 ,
L,7
. L0A (57
[A, Q(lll)] = —15;,"‘

for any incoming field quantity A. In the second equation (4,7)
e is the parameier occurring when use is made of an arbitrary
gauge (7
u™ independent of «). A similar equation connects the angular
momentum of the system and the infinitesimal Lorentz transfor-
mations. It is easily seen that if two quantities A and B satisfy
the relations (4,7), A + B and AB satisfy the same velations. It
follows that any quantity which can be built by algebraic opera-
tions from quantities salisfying the relations (4,7) also satisfies
these relations. In particular the outgoing fields satisfy the rela-
tions (4,7), and taking into account the conservation equations
(4,6) we get

is proportional to ¢fs¢ , 7™ is proportional to ¢~ ¢ and
it ¥ Prog

04

From these relations it can be deduced that the commutation re-
lations of the outgoing fields are similar to the relations (4,4).
The detailed proof is given in the appendix.

ete. - - - wh_ere A = 77U%—out’ Uout, or wnul;- (4:,8)
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In the present theory we have been using the Heisenberg
representation. The situation of the particles before a collision is
described by certain operators, the incoming field functions, and
by a certain state vector ¥ in Hilbert space. After the collision
the operators are changed into the outgoing field functions, but
the state vector remains the same. In the interaction representa-
tion the initial situation is described by operators which can be
identified with the present incoming field functions and by a
state vector ¥ (in) which can be identified with ¥. The situation
after the collision is described by the same operators, but by a dif-
ferent state vector ¥ (out). The unitary matrix.S which transforms
¥ (in) into ¥ (out) according to ¥ (out) = S ¥ (in) is the collision
matrix, and the squares of the absolute values of its elements give
the transition probabilities. The situation after the collision could
as well be described by the state vector S~ ¥ (out) = ¥ (in) and
the operators S~ o™ S, ST u!®S, - - -. In a theory with a localized
interaction the formalisms using the Heisenberg representation or
the interaction representation are of course equivalent, so we
must have

’l/)out : S—-l wins’ uout _ S*—1 uinS . (4,9)

If the interaction is non-localized we do not know the interaction
representation. However, as the outgoing fields satisfy the same
commutalion relations as the incoming fields, we know that there
exists a unitary matrix S satisfying the relations (4,9). It is then
natural to define this matrix as the collision matrix.

The equations (4,3), (4,4), (4,5) and (4,9) give a complete
self-consistent formulation of the theory. These equations can, in
principle, be solved by successive approximations. In fact, we
need practical rules giving a way of compuling any matrix element
of S. Such rules will be given in the following sections.

5. Solution of the field equations.

We shall first consider the case where the interaction is a con-
ventional local interaction

L, = \.da:HI(a:),

where
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Hy(x) = gy (@)u(@)p(x) — AMy" () p(x) — (dm?/2)ud(x).

We assume that the solution of the field equations (4,3) can be
expanded into powers of the constants g, 4 M and 4m?, and we set

v = 3@, @ = 3 0@, (61

where »™ (x) and u™ (x) ave of the order n with respect to the
constants g, 4M and Am?® The zero order approximation is of
course given by the incoming fields. The first order approxima-
tion is easily computed, and the value of 1/)(1); for instance, is

. 5Li1n
A (e :i\dx'S‘ x—x) T o 5,2
where L™ is equal to L; with the field functions replaced by the
corresponding incoming field functions.
It is well known that the function S occurring in the commu-
tation relations is connected to the Green's functions by

S(x) = 8_(x)—S, (x).

As S, (x) vanishes if 2*<C0, and S_(x) vanishes if x*>0, it"
follows that

S, (x) = — S(x) if x* >0, [ 5.3
— 0 if @t < 0. |
Similarly
S (x) =0 if xt >0, ' 6.0

— S(x) if x* < 0.

Similar relations hold for the D functions.
The relations (5,3) show that the expression (5,2) can also
be written
§0 @) = § ot [ @), 9t @] g
. xh > xt ’ | N 51,U+ (’CI)
or still

7,0(1) (’t) — S dx’ Ewin (CI:), Hin (1,)] ) (5,5)

x>z
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Similar fornulas hold for y* " (2} and u'¥ (x). The generalization
of these formulas to higher orders is obvious. Let 4(x) be any
field function; the term of order n in its expansion is given by

A () = gy - oy, [ 1047 (), HyD, H o HLL (5,6)

V> x> o> xy
where H, has been written for H{"(x,), and x; > x; for 114 = ac;' .
Formula (5,6) is well known in field theory, and is usually de-
duced from the Schrédinger equation. It can also be obtained
from the field equations (4,3) by induction (see appendix I1I).
The next step is the calculation of the outgoing fields. We
again assume expansions in power series

wout (’L) . ZOO (77 i)n wou‘t(n) (:t) , uoul: (’t’) — Zw“ (_ ’-)n uou't (n) (IL) (5’7)

By subtraction of the equations (4,3) from the equations (4,5)
we get for the outgoing fields the expressions

oLy
- v, efe.- -
Syt (x')
The zero order approximation js thus given by the incoming
- fields, and the first order approximation is readily found to be

P () = o™ (2) ;5 dx’ S(x — )

weul(:{) (a;) — S dx’ [win (l), HiIn (.I,'})J , (5,8)

and similar formulas for p* ™™ and '™ These formulas can
be generalized by induction, and it can be shown that the term
of order n of any outgoing field quantity A°™ is given by

AU ) = \dxldxg- cday [ AR (), HL), Hyl, - H, 1.(5,9)
Ve S>>,
We shall now extend the preceding expressions to the case of
a non-localized interaction. It will be convenient to write the inter-
action term in the form

Ly = \dx'doc"dx”'HI(:c', x", x'"y,
where
HI(-’I.'I, L'L'”, ;rf//) _ gF(aJ/, xlf’ I;//)y)+ (x.') ll(;t?”)zp(ac“')

. 2,10
—o(x’ —a")é(x" — 2" {A My (2 p(x"") — (Am?/2)u2 (")} } (310
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The first order terms can be compnated as in the preceding case,
and arc given by

(‘1,)(1) (,’I‘) = Sdm'dac"dx”' ['I‘Uiu (.’L‘), HI([L'), ‘13”, :E//I)] ,

v > al

1/)"'(1)(30) == gdx'd:r;”dm'” [1/)"‘1“(:@, Hy(x!', 2", 2], (5,11)

DN

a () = Sda:’d:c"da:’” (™ (x), Hi(x', 2", 2"")].

x> x”

It should be noted in these formulas that the domain of integra-
tion of only one of the threce variables occurring in Hy is restricted
by an inequality. This variable is dilferent depending on the field
function which is being computed; it is the variable of the field
function which does not commute with the field function which
is being computed. This is because the inequalities appear when
a Green’s function is replaced by a commutator (or anticommu-
tator) of two field functions. This complication makes it impossible
to extend directly the formulas (5,6) and (5,9).

It will be convenient in what follows to make use of some
conventions and notations. We shall always call x' (sometimes
provided with an index) the argument of a function wh, 2 the
argument of a function u, x'’ the argument of a function o.
We shall write y, for v ()", wu, for v™(x)), wi for ™™ (ap),
and H, for H{"(x), x5, «;"). Finally, &, will stand for the three
points x,, xy, , ', and d§&, for dux; dx; dx)’.

We shall now try to extend the formulas (5,6) and (5,9) to
the case of a non-localized interaction. These formulas are ob-
tained from the field equations by a certain number of algebraic
operations: additions, multiplications, integrations. The same op-
eration can be performed as well with a non-localized interaction,
and the result should be very similar. The only difference, in fact,
lies in the inequalities.

This leads us to consider also in the case of non-localized
interaction expressions such as

E, = [ -[[wo, Hil, H,), - Hp.

If we develop E, by computing first the commutator of y, with
H, . then the commutator of the result with H,, and so on, the
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result is a sum of terms 7', éach of which is a product of form
functions, of field functions, and of n “‘elementary” commutators
or anticommutators such as [y, 9], , or [#;, u;]. These commu-

tators (or anticommutalors) associate some of the variables

x), x), -+« x)" by groups of two. For instance, the two elementary

commutators mentioned as examples associate x; with x}”’, and
with af’, respectively.

Let us call I(T) the set of inequalities cxpressing that in all
the groups of two variables associated by the elementary com-
mutators or anticommutators of the term 7T, the variable with the
lower index should correspond to a time later than the variable
with higher index. There are n inequalities for each term 7.
They define a domain D(T) which is different for every term.
The same decomposition can be performed in the case of a lo-
calized interaction, with the only difference that the form funciions
disappear and that x| = x} = x}'" = ;.

It can easily be seen by analyzing the way in which the suc-
cessive approximations are obtained from the field equations in
the case of a localized interaction, that the terms of the order n
appear at first as sums of products of field functions and of n
Green’s functions. The next step consists in Teplacing the Green’s
functions by the corresponding commutators or anticommutators.
The domains of integration must then be restricted by certain in-
equalities. The terms obtained in this way are precisely the terms
T obtaincd by decomposition of £, and the inequalities associated
with each term are clearly the inequalities I(7T). By a further
transformation it is possible to replace the inequalities I(1") by
the inequalities I:xy > x; > -+ - > x,. Since the domain of inte-
gration is then the same for all the terms, it becomes possible to
put the sum of all the terms T into the compact form E,, and one
gets the final formula (5,6). In the case of a non-localized inter-
action all the operations can be performed in the same way, ex-
cept the last transformation. Thus, we must try to extend to the
case of a non-localized interaction the expressions of the success-
ive approximations as sums of T terms.

A few definitions will be useful.

We shall call P(T) the set of all the permutations of the in-

“dexes 1, 2, ... n such that in every inequality of I(T) the variable
indicated as corresponding to the later time keeps an index lower
than the index of the other variable.

rr
Xy
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N(T) will be the number of the permutations of P(1") (unity
included).

Finally we shall call terms equivalent to T the terms deduced
from T by a permutation of the indexes belonging to P(T).

‘These definitions apply as well to localized and non-localized
interactions.

As an example, let us consider the following term of E; (the
form functions have not been writlen down):

I'= g*(—Am¥/2) [y, 1/)f],F v, w;]+ [, u,) [u,, u,] u, Qp;ry)4w2,

which is one of the terms coming from the terms in ¢ of H,, H,
and H,, and from the term in (— 4 m?/2) of H,. The inequalities
I(T) are

. '/’I " 1224 ’ rt ’r 1’ it
I(T) : a) > a), x>, x >a), x, >x .

The permutations P(T) are besides unity the permutations (2,3)
and (3,4) which transform the inequalities I(7") into

11t

< R 7 ’ .z .
(2,3) rx) >y, x>, x >a

rt 15 re
S
20 Wy T,

S

(3.4) r x) >,

1

r tr e 1t
>CLZ, ml>x4, x >:c3.

The following properties are easily shown:

a) Equivalent terms integrated over their associated domains
give identical results.

b) If T belongs to the development of E,, all the terms equi-
valent to T also belong to the development of E,.

¢) In the case of a localized interaction (x' = x” = a’’’), the
domain D(T) is the sum of the domain D defined by I : 2y > x; >

© > a2, and of the domains deduced from D by the permuta-
tions of P(T).

As an example of property c), the domain

D(T) ey > x;, x> 25, X125, X > Xy

is the sum of the domains

D:xg> x> 20 > 23 > 2y, (2,)D 2y > x> x5 > 13 >
(3,4)]) M x0> Xy = .’L'2> .’1’:4> XTs.

It will now be possible to make a precise comparison of the
expression (5,6) with the devclopment of E,. According to b)
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the terms in the development of E, can bhe collected into families
of N(T') equivalent terms. From a) and ¢) it follows that the sum of
N(T) equivalent terms integrated over the domain D is equal to
any one of the terms of the family integrated over ils associated
domain. As we know from (5,6) that ™ (z,) is the sum of all
T terms integrated over the domain D, we see that

W™ (o) = > (1 /N(J‘))\dmzxz coeda, T, (5.12)
T JD(T)

where the summation is extended to all the terms I" of the devel-
opment of I,. One could also omit the factor 1/N(T) and instead
say that only one term in each family of equivalent terms should
be taken into account, and it is easily seen that this is exactly
the expression obtained by a straightforward calculation from the
field equations.

The extension to the case of a non-localized interaction is now
obvious, and we shall write symbolically

9 () = \dErdds - dg, [ [y (), B, Hal L, (5,18)
i

where St is a “‘time ordered integration’ and should be computed

in the following way:

a) The integrand must be developed into a sum of T terms.
b) Each term should be integrated over the domain D(T).
¢) Each integral should be multiplied by 1/N(T).

The formulas (5,11) are clearly particular cases of (5,13).
The general formula can be obtained directly from the field equa-
tions by induction (see appendix III). The outgoing ficlds are
given by formulas differing from (5,13) only by the fact that all
inequalities involving xj, «f’, or " should be omitted. In order
that the indexes should remain specifically connected with time
ordering, it is convenient then to suppress the index 0 and to
write

o @y = \d&dE, - A [ (™), B Bl HolL (5,14)
vt
The domains of integrations are now independenl of the poinls
at which the field functions are being computed. This gives the
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possibility of a useful generalization of the equations (5,14). Let
A™ be a polynomial of the incident field functions or, more gener-
ally, a power series. The field functions can be taken at different
points, and A will depend on a certain number of points in space-
time. The value of the same polynomial (or series) of the out-
going field functions taken at the same points is given by

Aout = f (_ i)nAouL(n)’ (5’15)
where n=0

Aout(n) Sdéld& e dE - [Ai“, H,\j,H,, --H,]. (5,16)
t

The proof is given in appendix III. As an example, let us take
for A™ the expressions [T ™(x"), ¥™(x")],, [T (x), ()],
elc. - -+ As these quantities are c-numbers, all terms in the ex-
pansions (5,15) vanish, except the first term. Thus, 4" = 4™,
and this proves again that the commutation relations of {he out-
going fields are the same as those of the incoming fields.

A few remarks should be added to the results of this section.

1. Loreniz invariance. The domains D(T) are not Lorentz in-
variant. If the vector joining x; and «; is space-like, the time
ordering of the two points has no invariant meaning. This time
ordering matiers for a term 7T only if T has as a factor a commu-
tator (or anticommutator) of two field functions at the points x;
and ;. As this commutator (or anticommutator) vanishes if
x; — x; is space-like, it is seen that the integrated formula is
Lorentz invariant. ‘

2. The Schrédinger equation. Let us consider in the case of a
localized interaction the field functions taken at arbitrary points
on a space-like surface o. In the equations (5,6) the inequality
e > w; can without changing the value of the integral be replaced
by the condition that x; should be in the past region of space-time
with respect to o. Thus, the domain of integration in (5,6) can
be chosen in such a way that it is the same for all the field func-
tions on all points of o. It follows that if A™ is a polynomial of
the incoming fields taken at various points of o, the same poly-
nomial of the fields 9™, u and y taken at the same points is given
by an expansion similar to (5,15), where the term of the order n
is given by

Dan.Mat. Fys. Medd. 27, no.8.
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A® — 'deldmz oy [ [[A™ HL H), - H).

> > > >,

If A is a commutator (or anticommutator) of two fieid functions,
it is seen that 4 = A™, Thus, the commutation relations of the
field functions on a space-like surface o are identical with those
of the incoming field functions. Hence, a unitary matrix S {(—», 0)
exists such that

A(zg) = ST (—=, ) 4™ (2))S(— =, 0), (5,17)

where 4 is ¥, u or v and x, any point on ¢. The Schrédinger
equation is (in the Tomonaga—Schwinger form™) the differ-
ential equation giving the variations of S(— <« , o) corresponding
to infinitesimal variations of the surface o.

In the case of a‘non—localized interaction, it is not possible
to use the same domains of integration for computing all the field
functions on. a space-like surface. The equations (5,11), for in-
stance, show that for the first order terms already, the domain of
integration unavoidably depends on which field function is being
computed. Then the commutation relations of the field functions
on a space-like surface are not the same as those of the incoming
fields, and there is no matrix satisfying the equations (5,17). This
explains why there cannot be any Schrédinger equation if the
interaction is non-localized, and shows that one has to use a
formalism giving directly the malrix S = S(— o, + ©).

6. Outgoing operators.

Before starting any actual calculation, it is necessary to anti-
symmeirize the Lagrange function in 9 and ™ so as to introduce
the correct interpretation of the negative energy states as anti-
particles. Thus, the expression (5,10) for the interaction term
should be replaced by

HI(x11 :1:”, x//l) J—

I F (s ", &) (v (@)Y p(e”) — p(aYu@ )yt (x')
O — a8 — &) (AM]2) (5 () p ) —p )y (@)
— (4 m?/2) lzz(m")}.

(6,1)
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This clearly does not modify the general conclusions of the pre-
ceding sections. In parlicular the rules given for the calculation
of the oulgoing fields still apply.

The Fourier expansion of any free field is a superposition of
plane waves eiK””, where K is always a time-like vector. Hence,
it is possible to split in a Lorentz invariant way any field function
in two parts for which K* is positive or negative, respectively.
Thus, we can write for the incoming fields (in what follows the
incoming fields will be called v and u without the subscript in)

p(x) = ¢ (@) + 97 (@),
pH (@) = ¢ (@) + " O (w), (6,2)
u(x) = o () + ) ().

In the decomposition (6,2), '™ and v+ are annihilation and
creation operators of nucleons, respectively; (™) and ¥ are
annihilation and ecreation operators of antlnudeons ut and o
are annihilation and creation operators of mesons™”. These
operators are related to one another by the equations

(7/)(+))+ — WH—)’ (y)(~))+ — ,,/)+(+), s — ) (6,3)
The operators introduced in (6,2) commule or anticommute ex-
cept creation and annihilation operators of the same particles.
For these pairs of operators the commutation relations are

[ <+)(T} pi )(xz)} — S( D (g — ),
[ 7 (), WU(T)(T J = 5( )(xl—:rg)
il (+)(x) u ()] = D(f) (0, — ),
1 (@), i (@)] = D7 (e — aw),

where S and S(“), D) and D) are the positive and negative
frequency parts, respectively, of S and D.

An important nolion in field theoretical calculations is that
of “‘ordered product” of operators™®. It is defined as follows:

(6,4)

a) The ordered product: abc- - - : of the creation or annihila-
tion operators a, b, ¢- - - is equal to the product abe- - - re-ordered
in such a way that all annihilation operators are at the right-hand

3*
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side of the creation operators, multiplied by (—)®, where p is the
number of permutations of nucleon operators involved in the re-
ordering procedure.

b) The definition is extended to produects of field functions
by decomposing the various factors into sums of creation and
annihilation operators, and by postulating the distributivity of the
ordered product with respect to addition.

The importance of the ordered products comes from the fact
that when an ordered product acts on a state vector a particle
cannot be created by one of the factors and reabsorbed by another
factor. Thus, all virtual particles have been eliminated, and it is
easy to select the relevant terms for a particular problem. In this
connection it is important to be able to transform any product of
operators into a sum of ordered products. This is most conven-
iently done by introducing the notion of “‘contractions.”

For two field functions a and b the contraction a'b* is defined
as the difference between the regular and the ordered products
by(*)

ab = :ab: + a'b'. (6,5)

The only non-vanishing contractions are given by the following
relations which are easily deduced from (6,4)

Yo' (X g () = (— S5 (@1 — ),
Vi @y (@) = (DS (@ — ), (6,6)
u () (x2) = (— )D (@ — x,).
A coniraction within an ordered product is defined by
:a---bc'd---ef'g'--: = (—)Pcf ta---bd---eg---:, (8,7)

where p is the number of permutations of nucleon operators
necessary in order to bring the factors ¢ and f beside one another.

The transformation of a product of field functions into a sum
of ordered producis is now given by the following identity!®:

abed - -+ = tabed -+ Dliabied -, (6,8)

where the summation is extended 1o all possible contractions of
the factors a, b, ¢, + - -

(*) This definition is that of Hourter and Knp(1®,
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It should be noted finally that the order of the factors in an
ordered product can be changed arbitrarily, with only a change
of sign if an odd permutation of the nucleon operators has been
performed.

The results of the preceding section together with the identity
(6,8) make it possible to express any function of the outgoing
operators as a sum of ordered products of incoming operators.
Each term may be associated with a doubled Feynman graph.
The rules will now be given for a single outgoing operator. These
rules generalize some of the results obtained by Dyson!?.

Graph. A graph consists of directed lines (nucleon lilies), of
undirected lines (meson lines), and of vertices of the following
types:

’

a) g-vertices consisting of three points x’, '/, ' on a small
circle with an undirected line arriving at x”, and two directed
lines arriving at =" and ', directed away from x’ and toward =”"*;

b) Am?*vertices and 4 M-vertices consisting of a single point
with two undirected lines or two directed lines of different direc-
tions, respectively;

c) one incoming vertex consisting of p points with a line ar-
riving at each of them;

d) one outgoing vertex consisting of one point with one line.

The line arriving at the outgoing vertex is an undirected line, a
line directed toward the vertex or a line directed away from the
vertex, depending on whether the field function which is being
computed is u°"%, ™ or T O,
- Doubled graph. Some of the lines of the graph must be con-
sidered as doubled lines. The doubled lines should be drawn in
such a way that it is possible to go from any vertex (the incoming
vertex excepled) to the outgoing vertex by a uniquely. delined
path consisting of doubled lines only. This can be pictured by
saying that all vertices except the incoming vertex are lying on
the branches of a “{ree” having its root at the outgoing vertex
and lorks at some of the g-vertices. It follows that all graphs are .
connected, and it is easily seen that the number of doubled lines
is equal to the number of vertices, incoming and outgoing ver-
tices excluded. The lines arriving at the incoming or outgoing
vertices will be called incoming or oulgoing lines.
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Orieniation of the graph. The doubled lines and the incoming
lines are oriented toward the ouigoing vertex. Every g-vertex
should be oriented in the following sense. At every g-vertex arrive
one double line oriented away from the vertex and two other
lines Iy, I,. To orient the vertex means to draw an arrow from one
of the lines I, [, toward the other, in an arbitrary way. Consider
finally an undoubled line joining two vertices a and b. It is pos-
sible to go from « and b to the outgoing vertex by following
doubled lines only. The two paths meet at a vertex £. The line
ab is then oriented according to the orientation of &.

Examples of such graphs will be given in the next section
(see Fig. 2).

To each graph corresponds a term in the development of the
oulgoing operator. It is an integral of a product of terms associated
with each line and each vertex of the graph. It is convenient to
use the energy-momentum vaviables. A four-vector % is then as-
sociated with every line of the graph, and the various factors will
be listed now.

We shall write only the factors corresponding to the undirected
lines from which the factors corresponding to the directed lines
can be deduced by replacing m by M and by multiplying by
(ikty M) or (— ikt "y, — M) depending on whether the orienta-
tion and the direction are parallel or antiparallel.

a) For the doubled lines (except the outgoing line) the factor is
D, (k) = (—1)/(k* 4+ m?), or S, or Si, (6,9)

where the integration with respect to 4* should be taken in the
complex plane along a contour passing above the two singularities.
b) For the undoubled lines the factor is

D) = (— a) (1 + e(I))d(k? + m?), ete. - - -, (6,10)
where ¢(&) is -1 or — 1 depending on whether £* is positive or
negative.

¢) For the outgoing line the factor is
D) = (— 2in)e(k)o(k®* + m?), ete. - - -. (6,11)
d) Finally, to the incoming lines is associated an ordered
product of factors u(k)d(k®+ m?), v (k)d(kt -+ MY, or
w{(k) 6(k* 4+ M?), where
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u(k)s(k* + m?) = S de ™ () e, etc. - - -

To each undirected line, to each directed line with direction and
orientation parallel or antiparallel corresponds a factor u, v or
p™", respectively.

The factors corresponding to Am?, AM-, and g-vertices are
in the case where all lines are oriented toward the vertex

(— Am?/2)6(ky + k), — AMS(ky + ks), and ]
(9/2)@(](", \0/!’ klii)a(kl ‘;‘_ kl/ + kli!) —_ v

(6,12)
(9/2) (2 76)~GS dEF(x’, x, x'") e ET+), J

where k', k", k'"" arc the vectors associated with the lines arriving
at x’, ", «’”. For every line oriented away from the vertex, Ik
should be replaced by — k in (6,12).

Finally, summation should be made over the spinor indexes,
the term should be multiplied by 1/N(T) and a certain power of 7,
and integrated over all variables. The oulgoing operator is ob-
tained by taking into account all possible graphs and all possible
orientations of the vertices.

As for the justification of the preceding rules we only mention
that the doubled lines correspond to the elementary commuta-
tors, and the undoubled lines to the contractions. The orientation
of a vertex corresponds to the effect of the choice of a term v uvy
or wuy™ in the interaction term (6,1) on the order of the operators
occurring in the T-term.

The extension to products of outgoing operators is obvious.
The only change is that there will be an outgoing line correspond-
ing to every factor of the product. These lines are oriented with
respect to one another in the following way: the orientation goes
from the line @ to the line & when the factor corresponding to a
in the product is at the left of the factor corresponding to b.

7. Self-energies.

It has been assumed throughout that A M and 4 m? are chosen
in such a way that the interaction term is negligible when the
particles described by the field are far apart. We shall now com-
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pute the values of AM and Am? for which this assumption
holds.

An equivalent, bul more precise formulation of the same as-
sumption is to state that the interaction ferm should be rigorously
negligible if the system contains zero or one particle. In the
interaction representation this fact is described by the equation

sh=D. (7.1)

where | ) is the vacuum state or a state in which only one particle
is present. The corresponding properties of the incoming and
outgoing fields follow from

A% = 8T A4S, (7,2)

where A4 is any field function. In order to avoid complicated nota-
tions we shall use a simplified model in which states are charac-
terized only by the number of particles. Moreover, we shall as-
sume the existence of only one kind of particles. The basic vec-
tors may then be represented by |0), | 1), - - | n)y, -+, where |11)
is the state in which n particles are present. In this representation
the conditions (7,1) read

@|S|0) = dyn, (|S|1) = b4y, (7,32)

where d,,, is 0 if m = n and 1 if m = n. From the unilarity con-
dition of S it follows that

(0] S|n) = don. (1|S|n) = 6. (7,8b)
The relation (7,2) can be written
@A) = D] S| m) (| A™|n) (=|S]). (7.4
m,n )
For j = 0, the equation (7,4) specializes into

(i] A 0) = _mZ(i|s*|m) (m|4™[0), (7,5)

where the conditions (7,3) have been taken into account. If A
is a pure annihilation operator A*}, then 4" l 0) = 0, and from
(7,5) it follows that

Aot oy — 9, (7,8)
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which is the equation of conservation of vacuum. If 4 is a crea-
tion operator 477, its only non-vanishing matrix element is
(1| A™|0), and from (7,3) and (7,5) it follows that

A0y = A0y, (7.7)

Putting now j = 1 into (7,4) we get

(|4 1) = (| 87| m) (m|A™]1), (7.8)
m

and a simple relation is obtained only if A is an annihilation

operator. It follows then from (7,3) and (7,8) that

A(+)0utl 1) — A(+)i11| 1) (7,9)

No simple relation is obtained for j > 1. The relation (7,9) is in
fact a consequence of (7,6) and (7,7), and of the commulation
relations

[A(—}-) iu, A(w) in] _ [A(+) ou‘t, A(*) out} - 1. (7’ 1 0)

On multiplying (7,10) on the right-hand side by [0) and on taking
(7,6) into account we get

A(%—)out A(_) out l 0) — A(‘T)in A(—) in l O) ) (7’11)

The equation (7,9) follows from (7,11) if one takes into account
(7,7) and the fact that A(_)inlO) is a multiple of ll) Thus, the
basic relations are (7,6) and (7,7). It is in fact a matter of simple
algebra to show that, conversely, these relations have the rela-
tions (7,3) as consequences (apart from an irrelevant phase
factor). :

For the actual system, equations similar to (7,6) and (7,7)
should hold with A = o™, u or . We shall see that the equations
(7,8) are identically satisfied, whereas the equations (7,7) define
the sclf-energies A M and Am?2

Let A be any of the field functions. The Fourier component
A" (L) is, according to the results of the preceding section, given
by a sum of terms

AMYEY = ZSd]cl oo dkj Ky (ky,y - - ky) rag(ky) - (Ky) e, (7,12)
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where K, is a c-number function, and where the k; satisfy

k= >k, (k) 4+ mi=0. (7,13)
Only the creation parts of the operators a will give confributions
to A°|0). Thus we may in (7,12) vestrict the domain of integra-
tion to the vectors k such that

ki< 0. (7,14)

If A = A" is an annihilation operator all its Fourier components
are such that k*> 0. It follows then from (7,13 and 7,14) that
AP 0) vanishes identically.

We consider now the case where 4 = A is a creation
operator. Then K, vanishes except for % such that

B4 ur=0, k<0,

where w is the mass of the particles described by the field A,
From k = >'k; it follows that

|| < 2[R
EH2 = DT (kD + 2 D mymy,

i<k

, and

where it has been taken into account that all &} are negative and
have m; as minimum absolute values. From these two inequalities
it is easily deduced that

ez Dlmy. (7,15)

Finally, we shall also need the remark that if 4 = u, there
will be among the operators a as many y as p™; if A = o (or »™)
there will be as many v as ™ plus one odd % (or v™).

It follows that if A = v (or »™), one of the m; in (7,15) must
be equal to M = u, and we get a contradiction if we assume the
existence of more than one m;. Thus, contributions to 3¢ °“t| 0)
come only from the terms in which there is only one operator
ay = p.

If A = u and if we assume that an a is equal to u, the same
argument applies and there cannot be any other factor a. The
possibility of all @ being nucleon operators is ruled out by (7,15)
if m < 2M%,

(*) If m > 2M, spontaneous decay of a meson into a pair of nucleons be-
comes p0551b1e, and one cannot expect the equation (7,1) to hold for a state in which
there is one meson.
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Thus, in all cases, the only terms in (7,12) giving contribu-
tions to A O‘ItIO) are those which contain only one a¢ = A. For
these terms K,, is a Lorentz invariant function of one argument
k only, satisfying the equations

(k* + mH)K =0, or (i]c’uyu + MYK = 0, etc. ---
Hence K, is proportional to '
DV 2 (1 — (k)52 + m?), or ST(k), etc. -« -,

and if we write K, (k) = KD (k), ete. - - - we obtain, correspond-
ing to the equation (7,7), the scalar equations

DK, = 0. (7,18)

As the equations corresponding to ¢ and ¢ are not distinet, we
have two equations defining AM and Am?

‘We shall now investigale the convergence of the integrals oc-
cwrring in the K,. Each K, corresponds to a self-energy graph
(graph with one incoming line and one outgoing line) and is given
by the rules of paragraph 6.

First of all some of the integrations should be carried out in
order to eliminate all the § functions introduced at the vertices
except one S(A™ — k°") which expresses the conservation of
energy and momentum between the incoming and the outgoing
lines. These lines can be considered as associated with a fixed
vector ky = k™ = k% There is some arbitrariness in the choice
of the variables which should be conserved. We shall show that
one can always take as independent variables of integration the
vectors p; associated with the undoubled lines. We have to show

a) that no relation such as Zipi = 0 can exist,
b) that every vector k associated with a doubled line can be
expressed as k = > '+ p;, or k = ko+ > =+ p;.

It is easily seen that every relation Z:l:kij:pj = 0 can be
represented on the graph by a closed curve C leaving the incoming
and the outgoing vertices oulside and cutting the lines associated
with the k; and the p; involyed in the relation.

The assertion a) follows then from the fact that no line € can
cut undoubled lines only (the vertices inside could nol be con-
nected with the outgoing vertex by means of doubled lines).
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The assertion b) follows from the fact that it is always possible
to draw a line € which cuts a given doubled line and no other
doubled line except, maybe, the incoming line (this is a conse-
quence of the tree-like structure of the doubled lines).

Divergences in the self-energy terms arise from two causes:
divergences coming from the large values of the variables of
integration and divergences due to the coincidence of several
poles of the integrand. The latter type of divergence appears in the
terms coming from graphs containing one or more self-energy
graphs as sub-graphs. It can be seen that these divergences cancel
in the sum (7,16).

The real self-energy divergences come from the large values
of the variables p;. At every g-vertex, the form function intro-
duces a convergence factor @ (6,12). We can assume that @ which
is a function of &%, k""* and k’"’* falls off very rapidly as any of
these arguments becomes large. Consequently, we can consider that
the domain of integration of the variables p; is practically limited
to the values for which all vectors k associated with the various
lines of the graph have bounded four-dimensional lengths k2.

The following property will be useful: if a time-like veelor
k has a bounded scalar product with a fixed time-like vector k’,
its four components are bounded. This is easily seen in a frame of
reference where k" reduces to a time component. More precisely,
it can be shown that

|B| < a(]®’

L

) (&)

(7,17)

if |kk'| < A.

In every graph the undoubled lines will form a certain num-
ber of connected arcs. If there are two such arcs connected with
the incoming and the outgoing lines, we shall call them L™ and
L°™; the other arcs will be called L,.

We shall first consider a term which has no other undoubled
lines than L™ and L°". Let py, ps, - - - be the vectors associated
with the lines forming L™, starting from the incoming line, and
Pys Pys -+ - be the corresponding quantities associated with L,
The functions @ limit then the domain of integration to values
of the variables p; and p; such that the scalar products

kﬂpls p1p2! p2p3; e kop’l’ p'lp;: p;p;’ e
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are bounded. As kq is a fixed time-like vector and the p satisfy
equations such as p* 4 m? = 0, it follows from the inequality
(7,17) that the corfesponding domain of integration is bounded.
Thus, the corresponding terms are convergent, such as, for in-
stance, the second-order self-energies.

We consider now the case where there are other undoubled

. incoming outgoing
ko Ko

~———— directed doubled line
undoubled line with orientation
g-vertex with orientation

Tig. 2.

lines besides LB and L. First of all, we know that the vectors
associated with L™ and L°" have bounded components. The same
holds for those vectors associated with the doubled lines which
are linear combinations of the vectors of L™ and L°"* only. More-
over, if one vector of a line L is kept fixed, all other vectors of
the same line have bounded components. Some other scalar pro-
ducts will be kept bounded by the effect of the functions @. How-
ever, for certain graphs these conditions are not sufficient, due
to the fact that the vectors associated with the doubled lines are
not always time-like vectors. Fig. 2 shows an example of such a
case. It is seen that the vertices 1 and 2 give the condition: that the
scalar product of p, with k¢ — p; should be bounded. The wvector
k¢ — pi has bounded components, but as it may be a space-like
vector, the components of p, are not bounded, and the correspond-
ing divergence remains.

A tentative way out of this difficulty is tc assume that the
function @ should be different from zero only if the three vectors
', k', k' are time-like vectors. Moreover, we can assume that @
vanishes if |1¢"2 s Ik”2 or Ic"’2| are less than a fixed number which
may be chosen arbitrarily small. The inequality (7,17) can then
be applied to all vectors, and it is clear that all integrals become
convergent. The assumption made here does not contradict any
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condition previously formulated for the form functions which
limits the non-localizability to small domains. It is, however, a
very large departure from conventional field theory, especially
since it makes many virtual transitions impossible, and its phys-
ical consequences should be investigated more completely.

So far, we have been concerned only with the self-energies.
However, the matrix elements of any operator lead to integrals
very similar to the self-energy integrals, and the investigation of
convergence we have made is of quite general validity.

8. Final remarks.
a) Electromagnetic interactions.

When the interactions with the electromagnetic field are in-
troduced, new terms have to be added to the Lagrange function
so as to make it gauge invariant. The situation in the present
theory differs from that in the conventional theory by the fact
that the interaction term is nol gauge invariant in itself.

A gauge transformation is defined by

_ a4 _ , . . \
Ap@) = Ap @ +55, ) = playeted, 3t (w) = pt(x)e 1e4, (8,1

where A (x) is any function such that [J A (x) = 0. It follows that
PP ) = 9t @) els (A= 46D, (8,2)

which shows the lack of gauge invariance if the form function
allows x’ to be different from a'””. On using (8,1), however, one

can write
ey ’ 6‘/1 L el i
A(x"y— Az = Bt dx® = \ (Ay — Ay)dal, (8.3)
C C

where € is an arbitrary path going from «' to x'”’. Substitution
of (8,3) into (8,2) yields

g —ie{@gatt o —ielaydat
A CO TR L TO R W P L N T

This equalion expresses a gauge invariance property which holds
for any path € although the invariant expression depends on the
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choice of the path. Considerations of invariance and of simplicity
suggest taking as path € the siraight line joining ' and x’”’. The
final expression for the corresponding Hermitian gauge invariant
interaction term reads then

(g/g) & dx/dx”dilfl” F(:L'/, CC”, xl//)w—,— (x/) H(.’E”): e € SH”LL & J 1/)(13”’), (8,5)
v +

. e, - .
where the integral \" is taken along a straicht line.
2 & 5

The problem of finding a gauge invariant interaction term
which in the limit 4, = 0 reduces to (1,1) has no unique solu-
tion. A very general expression is oblained on replacing in (8,5)
the exponential function by an integral in the functional space
of all paths going from 2" to x'” which may be written

is S;’:\‘udx“. (8.6)

Sng(C) .
In this expression dC is the volume element in the functional space.
The weighting function ¢(C) must be normalized according to

Jacece) =1,

and such that (8,6) is invariant under all displacements.

The infroduction of exponential factors into the interaction
term can be pictured as describing the effect of the electric charge
jumping between the points ' and «". The path € can be con-
sidered as the path followed by the electric charge between the
two points and ¢(C) as a sort of probability distribution of all
possible paths. The funetion ¢(C), however, need not be positive
everywhere. ,

The interpretation of the extra interaction term as describing
the motion of the charge between x’ and '’/ that is over distances
of the order of A, shows that its eflects will, presumably, be
small. It was, however, important to show that no contradiction
with the requirement of gauge invariance arises from the intro-
duction of form functions. It is remarkable that the electromagnetic
properties of charged particles are modified by the interaction
with a neutral field when the interaction is of a non-localized

type.
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b) Transition probabilities.

The transition probability between a state a and a state b
can, in principle, be computed as the average value in state a of
the projection operator on state b, or conversely. The projection
operators can be computed by the methods developed above, and
the convergence proof holds. Practically, however, it is simpler
to guess the lowest order terms of the S-matrix from the equations
(4,9) (7,8). In connection with the difficulty of solving the latter
equations, it can be asked whether another method of quantiza-
tion would not give the S-malrix more directly. In fact, the
Lagrangian formulation of quantum mechanics developed by
Freynman®™® can be applied to the present problem. The result
is quite simple: the only modification to the Feynman rules is
the introduction of form functions at every vertex of the graphs.
This solution, however, cannot be accepted since the correspond-
ing matrix is not unitary. A calculation, for instance, of the second
order unitarity condition yields after some manipulations an ir-
reducible sum of terms involving factors such as

F(a, 2, a8, (2] —a)S_(x] — ] YF(x,, =, a}"),

which clearly vanish in the limit of a local interaction, due to
the properties of the retarded and advanced Green’s functions, but
do not vanish in the more general case.

In conclusion, I should like to express my gratitude to Professor
C. MerreEr for his advice and encouragement, and to Professor
N. Bour for the hospitality of the Institute of Theoretical Physics
during my stay. { am indebted to Dr. R. Grauser for many help-
ful comments on the manuscript. The foregoing work was sup-
ported by the Direction des Mines et de la Sidérurgie in Paris.




Appendix .
Definition of some singular functions.

The singular functions used in field theory arve conveniently
defined by the Fourier integral

D(x) = —2a)! \ dke™ (k2 - m?).

Since the integrand is singular for k2 + m? = 0, il is convenient
to perform the integration with respect to £* in the complex plane

along a contour avoiding the singularities. The integrand has two

poles at ikt = sz +m? and I* = — ]/Eif— m? The conlours
C, and C_ (Fig. 3) yield the retarded and advanced Green’s func-
tions D, and D_. The contour € = C_ — € yields the function

D oceurring in the commutation relations. The decomposition
€= CH 4 corresponds to the decomposition of D into the
positive and negative frequency parts D(F) and DO, Finally, the
contour C™) yields the function DD,

It we call 4(x) the functions similar to the D functions where
the mass m is replaced by M, the functions S are given by

S(x) = (* ”‘u"afcﬁ + M) A(x).

Dan.Mat. Fys. Medd. 27, no. 8. 4
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Appendix II.
Commutation relations of the outgoing fields.

The outgoing fields are solutions of the free field equations.
Assuming that the fields are enclosed in a large cube of volume V,
we can expand them in Fourier series as

P (@) = VTR D eyl () e byl () e

for . . (I1,1)
™ (x) = VOl D2k T (0™ 4 vpe ), ’

E
where K is the space part of the vector K (K* = + VK + M*?),
k is the space part of & (k* = + [/k2 4+ m?), and ', (K) (r = 1,2)
are the positive and negative energy solutions, respectively, of the
equations (- iKuy" + M)y (K) = 0, orthonormalized accord-
ing to

Wi (K)y' (K) = 8%, 9l (K)yl (K) = &

Substituting these developments into the expressions of the con-
stants of collision we get

G¥ — Z K* (aZfa'K~ b by) + (1/2) Z]c'“ (U:Uk —+ UkU;:),
r * (11,2)

Q = &> agag+ bgbx, ’
K, r

and a similar expression for the angular momentum. Substitulion
of the developments (I1,1) and (I1,2) into the relations (4,8) gives

[dh, HE'] = die,  [ad, HE™) = —ayl,
(6%, Hx'l = b, [V, Hg'l = — bk, (IL.3)
p H = v [oh, H] = —uj,

where Hi" = agdy, Hg" = bxbg and Hy = (1/2) (vpvg -+ vgvg):
every other commutator of a quantity «, b or v with an H vanishes.

The incoming fields can be developed in the same way as the
outgoing fields. The coefficients in the Fourier series will be
operators «”, b™ and v™ which not only satisfy commutation
relations similar to (I1,3), but also the following ones which re-
sult from (4,4)
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lag ", ag®™'l =1, [DR7 bR =1, [olf, v = 1; (1L4)

all other commutators (or anticommutators if two operators a or
b are involved) vanish.

The field equations give expressions of the outgoing operators
as power series of the coupling constants. Each term of these
series is a polynomial of the incoming operators. Thus the out-
going operators are continuous functions of the coupling constants,
and have the incoming operators as limit if the coupling vanishes.

The problem now is to show that, as a consequence of (I1,3),
the outgoing operators satisfy commutation relations identical
with (11,4).

Wiener®® has given the general form of the operators
satisfying the relations

v, Hl = v, [v*, H] = —v* H = (1/2) (¢v*v + vo®). (11,5)

His method can be applied with very little change (although the
result is very different) to the case of operators satisfying the
relations

la, H = a, la*, H = —a% H = a*q. (11,6)

One finds in this case an infinite number of irreducible represen-
tations with 0, 1, 2, 3, - -+ or % dimensions. Only in the case of
a two-dimensional representation do the operators satisfy the re-
lations

[a,al, =0, [a% a*], =0, [a,a*}, =1. (IL7)

However, as there is only a discrete set of possibilities, and as
the outgoing operators go continuously over to the incoming
operators as the coupling goes to zero, it follows that the outgoing
operators satisfy the relations (II,7). The same applies to any
operator a or b.

Next, we take two operators a; and a,. They satisfy besides
the relations (II,7) the relations

* -

H] = [a

la,. H,] = [a], H,] Hl =Tlay,, H]=0. (IL8)

20 togd

It is easily seen that these relations have as consequences the
relations

611(12 - ca2al B

(11,9)

4%

= R # * B % L E o w
Cl.l(lz == C azal, alaz = C 612611, a (‘l2 = Lazal,
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where ¢ is any number such that 'c]2 = 1. The relations (I1,9)
are not symmetrical in a; and a,. In order to make it more ob-
vious we can write, for instance,

(lp = Cyollady, Uoly = Co3ll1lUg.

We have then ¢, = cIZ. The operators a; and a, appear in fact
as Fourier coefficients of two plane waves with propagation vec-
tors K, and K, and spin orientations r; and r,, and ¢ must then
be an invariant function of these quantities. As all invariant
functions of two propagation vectors and two spin orientations
are symmetrical we must have ¢;, = ¢y;. It follows that ¢ = 41
or —1, and by continuity we see that ¢ = — 1. The same applies
to any couple of operators a or b. Thus, we have shown that the
fields T " and y°"* satisfy the same commutation relations as the
incoming fields.

The case of the operators v can be treated by very similar
considerations. A slight complication comes from the fael shown
by Wiener that the representations of the operators satisfying
the relations (I,5) depend on a continuous parameter which
fixes in particular the zero-point energy. So the continuity argu-
ment does not apply here. If is, however, easily seen that the
zero—point energy must be the same for the outgoing fields as for
the incoming fields as a consequence of the conservation equation

G (out) = G*(in).

The proof is then easily completed.

Appendix III.

On the solution of the field equations.

1. Localized interaction.

We assume that the formulas (5,6) hold up to the order n — 1.
The terms of order n can then be computed from the field equa-
tions (4,3). For ¢, for instance, one finds '

P (o) = i\ dws S, (wo—a) {gd () — AMpE—V (@)}, (1)
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where

n—1

Ay = > a? ()P (ay).
p=0

Explicitly A (a;) reads

n—i
; . I ’ roo. ’ £ R "
Axy) = 2 dx dx, dx,dx] da; (2
P=0 le >a; >, > - >
A T

Lo la™ (), HiL oo Hpl oo 9™ (o), HYL - Hy gl

| . ’ i’
If we call x,, @, -+ a, the points x|, - xp, ], -2, 4

chronologically reordered, we can write for A(x,)
A(xy) = dez cday ST Tul (), By ] Hy
> )

Ty >2p > - . )
[ e, 5y, ] Hy ]

where the summation Z is extended to all permutations j;, j.,
ot Jp—1 of 2,3, - n osuch that ji<<j,< - <j, and j, ;<
Jpro<Cr < jp_q. His now casily seen that

3

A(xy) = \d:zrgdx3 coedag [ (A ()™ (), Hyl,e oo H,yl. (11,2
VI > x>,
After substitution in (HIL1) of (IIL2) and of the expression of
PP e get
(¢D) : \ \ 6L]Iu
P (2g) = z\dxldrcg o docpy Sy (co—ua1) |- - Syt () H,

Y sa s>

)

n

- Sda:ldxg cday [ YT (o), o], Hal, - HL]

Ty > X >,

where use has been made of the relation

sL

,;(;1> m = [’(/)in (.1“,0), HIJ if Xy > Ty,

i8+ <'l'0h
= 0 if @y < xy.

A similar treatment applies to the other field functions. Thus,
(5,6) holds to all orders.

As for the outgoing fields, the term of order n of %, for in-
stance, is given by
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Pt @ () = 1'\ dey S (a2 — 1) {gd (a,) — AMp 1 (xl)}

and on using (11L,2) and the relation

in

(S(x—ay) 6vp+—(lxl)

= [win (73) El Hl] L
we get

wmﬂ,(n) (T> = deldxo T dxn [ T Wm (56): Hl} s T Hn] .

Ty > @y > >,

2. Non-localized interaction.

The preceding proof can be extended immediately to the case
of a non-localized interaction. The only delicate point is the trans-
formation of the expression called A(x;). Presently, we have to
show the identity

n—1

> (s ag o @, e mar e ae,

p=0

Lo W™, HYL - H ] = (L3,
- Sds1 e dE [ [ DY ), HULL HlL - Hyl
t

In the left-hand side the variables & on the one hand, and the var-
iables &' on the other hand, are ordered in time independently.
We have to develop both sides of (II1,3) and to compare the re-
sults. The integrand in the right-hand side can first be expanded as

Z[ . [u"“ (=), Hi;} , -de [ - [wi” (x)"), H]-d L Hij_l] ,  (IL4

where the summation is extended to all permutations of 1, 2,
3, + - nsuch that ji </ jo <+ <jp, and j;" < j/ << - < jil 4.
Then, the term in @™ and the term in %™ have to be developed.
Thus a term 7' of (I11,4) is the product of a term T, coming from
the first factor, and a term T, coming from the second factor.
The term 7, will also appear in the development of the first factor
in the left-hand side of (111,3), and Ty will appear in the develop-
ment of the sccond factor. The associated domains are clearly
the same in both sides. Finally, the rule that each term 7T should
be multiplied by 1/N(T) is conveniently replaced here by the
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rule that only one term in each family of equivalent terms should
be taken into account. It follows that each term appears the same
number of times in both sides of (IIL,3), and this completes the
proof.

The formulas for the outgoing fields and the products of out-

going fields are merely generalizations of (I11,3).

(1)
(2)
(3
4
(5)
(6)
(D)
(8)

()
(10)
(11)
(12)
(13)
(149
(15)
(16)

17)
(18)
(19)
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