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Introduction .

I
n recent years, important progress in the field of quantum
electrodynamics has been obtained by introducing the ide a

of charge and mass renormalization M . According to this method ,
the usual field equations in quantum electrodynamics, which ar e
obtained from the classical equations by a correspondence ar-

gument and which contain the well known divergencies, ar e

transformed by a canonical transformation into a set of equations

in which only the observable renormalized mass and charge o f

the particles occur . Since the whole procedure is relativistically

invariant one can expect the transformed equations to give a

correct description of electromagnetic phenomena, and this ex-

pectation has been decisively confirmed by the remarkable ac -

curacy with which this theory allows to calculate the Lamb shift

as well as by the predictions of new effects like the anomalous

magnetic moment on the basis of the theory .

The application of the renormalization method to the case of

nucleons in interaction with mesons seems, however, in som e
cases to meet with serious difficulties (2 . Further, it should be

kept in mind that the method itself, in spite of its practical success ,

is not entirely satisfactory from a theoretical point of view, sinc e

the transformation leading to the renormalized equations is no t

a mathematically well defined unitary transformation, as i s

obvious from the fact that its purpose is to remove infinities .
It would therefore be more attractive, at least in the case o f
nucleons in interaction with meson fields, to replace the usua l

field equations by slightly modified equations which, from the
beginning, are free of divergencies .

Since the early times of quantum electrodynamics, it has

been clear that an essential part of the divergencies inherent i n
1*



4

	

Nr . 7

the usual field theories are due to the use of the point particl e

picture of the elementary particles . Instead of taking the wave

functions of the interacting fields at the same space-time poin t

in the interaction Lagrangian, it has, therefore, repeatedly bee n

suggested to introduce a form factor describing a kind of non-

localized interaction of the fields(4' 5, 6,
8) . It does not seem

possible, however, inside the frame of usual quantum mechanics ,

to introduce such a form factor in a relativistically invarian t

way, and for many years all such attempts were regarded a s

impossible .

In the meantime, the S-matrix theory was developed by

HEISENBERG (3) . His starting point was the idea that the frame -

work of ordinary quantum mechanics might be too narrow t o

comprise a consistent field theory and that the difficulties coul d

be removed only by giving up to some extent the more detailed

description of the elementary processes, which is claimed to b e

possible in the usual quantum mechanics . The directly observ-

able quantities like the cross-sections for the various elementar y

processes are fully described by the S-matrix and one might tak e

the extreme point of view that a field theory should be considere d

complete if it only allows of a unique determination fo the S -

matrix .
In the present paper, it is shown that the introduction of a

form factor in the interaction between particles of spin one hal f

(nucleons) and pseudoscalar mesons leads to a consistent S-matri x

theory with correspondence to the usual field theory . Section l
contains the general formalism including the field equations a s

well as the expressions for the total energy and momentum o f

the system. These quantities are in general not constants of th e
motion but, since they are conserved over infinite time intervals ,

they may be regarded as constants of collision in the sense o f

the S-matrix theory . In this section is also given a . brief discussio n

of the general properties of the form factor following from th e
requirements of relativity, reality, and correspondence . A detailed

discussion of the consequences of these requirements is post-

poned to Section 4 .

In the following section, the S-matrix is derived to the secon d

order in the coupling constants by means of the extension o f

the method of YANG and FELDMAN
(10) given by BLOCH (7) . In
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Section 3, the expressions for the self-energies of mesons and
nucleons are derived from the one-particle part of the S-matrix .

The necessary mathematical tools are found in the Appendixes .
The values of the self-energies will, of course, depend on th e

choice of the form factor and, in Section 4, it is shown that the
form factor can be chosen in accordance with the general con-

ditions stated above in such a way that the self-energies ar e

finite and small .
The correspondence requirement implies that the presen t

formalism must be identical with the conventional field theor y

when the fields are slowly varying . The definition of a slowly

varying field involves the introduction of a constant 2 of th e
dimension of a length which also enters into the expression fo r

the form factor in such a way that we get all the results of th e

usual theory for processes which take place in regions of an

extension large compared with 2 . This means that, for instance ,

the second order cross-sections for nucleon-nucleon or nucleon -

meson scattering are the same as in the usual meson theory a s

long as the transferred momentum is smaller than hR in th e

centre of . mass system . For high energy processes, however, th e

form factor causes deviations from the usual theory and, in

principle, the results of high energy scattering experiments coul d

be used for an empirical determination of the form factor . At

the moment, we have no theory which would allow of a close r

determination of the form factor and we do not even know i f

the constant A, is a universal constant(3 a) • A theory of the present
type should perhaps rather be regarded as an approximation t o

a more general theory applicable to processes in which onl y

particles of the kind considered play an essential role . Hence,

the introduction of a form factor may be looked upon as a crud e

way of taking into account the influence of the external world

on the system and it must be expected that the form of the for m

factor will depend on the particular system considered. Thus,

a theory of the form factor itself will require the development
of a unified theory of all elementary particles . It is an open

question whether this general theory can be developed inside

the frame of ordinary quantum mechanics .

In Section 5, some of the most striking differences betwee n

the present formalism and ordinary quantum mechanics are
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discussed, in particular as regards their physical interpretation

and the transformation theory . In the present theory, a wider

class of transformations the quasi-canonical transformations-
take over the role of the canonical transformations which retai n

their importance only in the limit of slowly varying fields . It i s

shown that the theory can be made gauge invariant in the sens e

that a gauge transformation is equivalent to a quasi-canonica l
transformation, which means that a gauge transformation has no

effect on the physical predictions derived from the theory .

Finally, in Section 6, it is shown that the introduction of th e

form factor also makes the vacuum polarization finite to th e

approximation considered . In the present paper, we have dis -

cussed the consequences of the theory for scattering processes

only. In a subsequent paper, we hope to deal with the properties
of composed systems of elementary particles on the basis of thi s
theory. Since the introduction of the form factor effectively mean s

a cut-off, it may he expected that we can avoid the difficultie s
which, in the usual theory of nuclear forces, arise from th e
strong singularities of the potentials .



1 . General formalism .

In this. paragraph, we shall consider the general case of spin

one-half particles (nucleons) in interaction with an arbitrar y

meson field of integer spin. Let v (x) be the field variable of th e

nucleon field, and let the meson field be described by one o r

several real field variables u a (x). We assume that the field

equations can be derived from a variational principl e

~ ß{LN(x)+LM(x)}dx+Liflt (x ' x" x")dx'dx" dx„ l _
0,

(1 )

where dx is the volume element in Minkowski space, dx =

dx 1 dx 2 dx 3 dxo, .xo = -i x4 . LN and LM refer to the free nucleo n

and meson fields, respectively, and Lilt describes the non-

localized interaction between the fields . Thus, using units h = 1 ,

c=1,

1
LN

	

- {2(~vv 2 aP y'-a~~v•vµ~v) +

	

J

2{a~u a 1, u + m2u2}

Lint

	

(x ' )

	

(x,
x„ x,rr)

ZLa (x") ?pc„
(x.,, )

C'C a

where Øa,s (x ' , x", x"') in general is a combination of the Dira c

matrices depending on three different space-time points . In the

following, we shall take as a product of a one-particle matrix

operator and a scalar form factor F depending on the coordinate s
of the three space-time points, i . e .

Øa, ~„ = Il.a, c„ • F(x' x„ x,,,)

	

(4 )

(2 )

(3)
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For simplicity, we writ e

Lint =

	

V (x') (x , x „ x,,, ) u (x") zV (x ,,, ) ,

using vector and tensor notations for the spinor index C and the a .

Obviously, we have Oa = uØ. The matrix A is the usual one-

particle operator occurring in the expression for the interactio n

Langrangian of the corresponding local theory which thus is a
special case of the present formalism wit h

F = d (x ' - .x ") 8 (x ' - .x"' ) .

	

(6)

In the case of neutral pseudoscalar mesons, for instance, we hav e

11.F = (Ys-ig2Y5Yyay)F(x' x„ x,,, ) ,

where g 1 and g 2 are the coupling constants of the pseudo-scala r

and the pseudo-vector interactions, respectively . In the case o f

scalar mesons, we have simply A = g• 1 . When we deal with

charged and neutral mesons in symmetrical interaction with th e
nucleons, these expressions should be multiplied by the isotopi c

spin operator ra, a = 1,2,3.

As shown by C . BLOCH (7) , YuüawA 's theory of non-local field s

suggests the following expression for the form facto r

F = (2
7c)-8 r

G (L, 1)
exp

i rL (x, 2x,,,

x") + 1(x , _x,,,)~ dLdl, (8 )

where the Fourier transform G (L,1) is a function only of the
quantity 17 2 defined by

Nr . 7

(5)

(7)

(9 )772 = 12_ (Ll) 2L2-

Here, Ll = Ly1y denotes the scalar product of the four-vectors
Ly and ly . For time-like L, the Fourier transform G is in this
theory given by

sin .117

	

(10)

where A is a constant of the dimension of a length .
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As it will be seen later, the choice of the particular form facto r
(8), (10) does not lead to a convergent theory . We shall therefor e
try to develop the theory, as far as possible using a largely arbi-

trary form factor restricted only by general physical arguments .
In the first place, F must be an invariant by arbitrary dis -

placements of the origin of the system of space-time coordinates .

This condition is conveniently expressed in terms of the Fourie r
transform F(1 1 , 1 2 , 1 3 ) of the function F(x', x" , x"') . One sees a t
once that this condition requires F (11 , 1 2 , 1 3) to contain a factor
8 (l' + 1 2+ 1 3 ) . Accordingly, putting F(11 , 1 2 , 1 3) = G(1 1,1 3 ) å ( 11 + 1 2+ 1 3 ) ,

we get

F (x , x„ :t"') = (2 ar)-$ G (1 1 1 3 )

. expi { l lx ' +1 3x,,,_ (1 1 -{-1 3 )x"}dl ldl 3 .

Next, Lint dx 'dx"dx"' must be Hermitian, which require s

F (x, x„ x,,,) = F* (x"„ x" x ' ) .

	

(12 )

In the Fourier representation, this is expressed by

G(1 1 ,13) = G*(-13,-11) .

	

(13)

Obviously, as F has to be an invariant with respect to Lorentz

transformations, G must have the same property . Sometimes it i s
convenient to introduce new variables of integratio n

1 1 -12
L= 11 + 13,

	

1

	

2

	

(14)

into the expression (11), which give s

F(x , x„ x,,,) = (2 7c)-8

	

G(11, 13)J
+ x,,, (15 )

(16)

L I

`

	

dLdl .ex(
x'pi

	

9

	

-x")+1(x'-x"'
1 ~

In this form, F appears as a function of the variable s

x'+2 x iir

r = x'_ x",

While the dependence of F on the variable r describes a typ e

of internal coupling of the nucleon field to itself, which has no

classical analogue, the dependence on R is just what one woul d
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expect from analogy with a classical theory of extended interactio n
between the two types of particles . It will appear, however, that
the dependence on r is actually most essential for the convergenc e
of the theory.

Finally, it must be required that the theory of non-localized
interaction is equivalent to the usual field theory for sufficiently
slowly varying fields . This means that the form factor mus t
have the same effect as the 6-functions of the local theory in any
expressions containing slowly varying fields, only .

In Section 4, we shall give a precise definition of what w e
understand by slowly varying fields as well as a detailed dis-

cussion of the restrictions imposed on the form factor from th e
correspondence requirement mentioned above . The definition
of slowly varying fields involves the introduction of a new con-

stant A into the theory, which conveniently may be taken of th e
dimension of a length and which one would expect to be of th e
order of magnitude of, or smaller than, the range of nuclear
forces. It will appear that the function F can be chosen to depen d
on 2. in such a way that the limiting cases of 2 0 and of slowly
varying fields become identical . Hence, we have

lim F(x', x",x"' ) = å (x' -x" )(5 (x' x'")

	

(17 )
2-- o

(0" -.In2) u (x") =

	

1 (x')
Ø (x ' , x" ' x") y (x") dx 'dx"

On account of the non-local character of the interaction, the four -
current

I (x) Y~ (x)

	

(20)

does not satisfy the continuity equation . In fact, by the usua l
procedure, one obtains from the first equation (19)

and, for instance ,

u (x
y

(x,,,) F(x' x„ x") dx"dx"' = u (x') y (x' ) (18 )

for slowly varying u and p .

The equations of motion obtained from the variational
principle (1) are

(Y(t art + M) ?P (x ') = - Ø (x ' , x", x") u (x")
y (x") dx

"dx"'
(19)
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,

	

,(~~, (Z y'YpyJ)
_ -- Z ~, (.x)(x,x ,x,,,)u(x„)y,(x,r)dx' dx

,, ,

IS

	

l

	

(21 )
--S TI)

(x , ) (x ' , x" , x) u (x „) ,p (x) dx 'dx "
1

.

Integrating this equation over the whole four-dimensional space ,
the right hand side vanishes identically. Hence, we get

Ç t
(x) (x) d (3) x =

	

y t (x) y (x) d(3)x

	

(22)
t=-x °

	

t = + 00

The quantity AN =
1

yet zV d(3) x is equal to the difference betwee n

the total number of nucleons and antinucleons, and equation (22 )
demonstrates that this number is strictly conserved over infinitely
large time intervals . This is in general not the case for finite tim e
intervals, where a conservation theorem holds in the limit of
slowly varying fields, only . In fact, in this limit we may apply
(18) on the right hand side of (21) and the two terms cancel .

The situation is somewhat similar in the case of energy an d
momentum conservation . The invariance of the Lagrangian
with respect to displacements of the origin of the system of space -
time coordinates leads again only to the identification of constants
of collision. So far treating the field variables as c-numbers w e
obtain by the usual procedure

t~o) ax - a

	

x'

	

x , x" x"' u (x") x" '

+ Ti) (x') (x , x„ x"')
u (x") y (xr„)

	

(23)

+ 7 (x') (x', x„ x„r) a (x " ) a~ 7 (x,,,) } dx 'dx "dx " '

where 4 is the usual energy-momentum tensor of the free fields* )

	

tP,

	

[(IV)), 0/,y -ôµß . y) - åµv ( iVY),a ;i. - 0 ;.Vo

	

)I
(24)

- SF.vM sp+åvu'aft u -- å 1,, (0 2 u .a 7 a±in2u2) .

This result can also be verified directly from the equations (19) ,
from which it follows that

*) For quantized fields, the term avua,u should of course be replaced by the
Hermitian expression å ( av ua t,u j- a/, ( av u), which involves a corresponding change
in the second term on the right hand side of (25) .
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av t v (x) = a~ (x) • Ø (x,
x" x,,,) u

(x") v
(sur) dx,, dx,, ,

+

	

(x') (xr x x"') ay u (x) y
(xr„)

dx' dx r "

	

(25)

+ SIT) (x') Ø (x ' x" x) u (x" ) a bc (x) dx' dx".

Integrating this equation over the whole domain of four-dimen-
sional space, one obtains again (23) . The invariance of the inter -
action Lagrangian density (3) now allows (23) to be written in
the form of an integral of a four-dimensional divergence of a
certain tensor tm, . From the invariance of, for instance ,

æ(2) = - S zp (x') 0 (x', x, x') u (x) y (x"') dx' dx" ' (26)

and from the fact that the form factor is form-invariant, it fol -
lows that

- {a',, (x') . Ø (x, ,xx'") u (x) y (x r")

+ . (x' )

	

(x ' , x,
x,,,) au u (x)

y (x,,,)

l

	

(27)

+Tp(x') Ø(x, x xu')ZI(x)auZp(xur ) l dx ' dx '"

and, hence, (23) can be written in the form

	

I

av1d (x) dx = 0,

	

(28)

where

t(yT, (x ) t~°v (x) +

	

X ( 2) (x) , (29)

Thus, the following Hermitian quantities are constants of col-
lision

Gy = i ty(24) (x) do) = G,T) - i ôp ~l 5 X (2) (x) dej) x (30)

and may be interpreted as the total momentum and energ y
of the field. If we had chosen, instead of (26), one of the tw o
other possible interaction Lagrangian densities ,

~ (1) = - t 1 (x ) Ø (x, x
", x r ") u (x") ,y) (xr„) dx" dx"'

,,e(3 ) _ - (x ' ) 0 (x ', x", x) u (x") y (x) dx' dx
"

d

	

(31)
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we would, instead of (28), have obtaine d

	

S atdx = 0,

	

a„t vdx = 0,

	

(32)

respectively, wher e

	

tiny = t (I°,? + o X(l ),

	

try = tµy + å 1,y æ0) .

	

(33)

However, the requirement that the energy-momentum tensor must
be Hermitian reduces the number of possible choices of this tenso r

to one of the tw o

tµv = 2 (t
m(lv + t,~v) = t~v + ~µv _!„i-,(x(l) + x(3 )

)t~v = t~v + S ; cv
,„02)

•

It may be remarked that any of these becomes identical wit h
the usual expression of the energy-momentum tensor in the limit s

of A -* 0 or of slowly varying fields .

From the preceding discussion it is clear that the presen t

formalism is entirely different from the Hamiltonian scheme o f
ordinary quantum mechanics . This is obvious from the fact tha t
the non-local quantities corresponding to the total energy an d

momentum of the system are in general not constants of motion .

However, the fact that these quantities are conserved over th e
infinite time interval - oo < t < + Gc suggests that Gp,, may be re-

garded as constants of collision in the sense of the S-matrix theor y

and that a consistent treatment of this formalism can be foun d

inside the frame of HEISENBERG ' S S-matrix theory . The present
theory thus offers an example of a case in which the S-matrix

may be calculated without any reference to an underlying Hamil-
tonian scheme .

2. Derivation of the S-matrix .

For the derivation of the S-matrix we shall use the method

developed by YANG and FELDMAN and by KÄLLAN 00) . As shown

in the Appendix A, the field equations (1 .11) are equivalent to
the integral equations
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tV (x) = y (x, a) +

	

(x, x') (x , x„ x') u (x") y ) l (x,,,) dx' dx" dx
„

'S

	

Ø

u (x) = u (x, a)	 Ç i-p (x) (x
r , x", x')

	

(x, x )y (x"') dx' dx" dx" 'Ø

	

4

	

,

where y (x, a) and u (x, a) are the free fields coinciding with ? (x)
and u(x) on a space-like surface a. Sryz and 4m are Green' s

functions defined by (A. 3) and (A . 32) and corresponding to th e

mass values M and m, respectively. Taking a in the infinite past,

the functions Sÿ1 and 4m become identical with the corresponding

retarded Green's functions and the equations (1), in this limit, ar e

y (x)

	

,din
(x) + Sÿi (x

-x') (x, x" x,,,)
u

(x")
y

(x,,,) dx ' dx
"

dx
' "

u (x) = uln (x) - (x') (x ' , x " x ') AZ' (x-x")
y (x'") dx ' dx' dx"'

These equations may be considered as definitions of the in-field s
yin and u'" . As a consequence of (A .7) ,

yin (x) = lim v (x, a)
63 -.

u"' (x) = lim u (x, a)

and the in-fields satisfy the free field equations .

Similarly, we may define the out-fields b y

y1nt (x) = lim y (x, a)
a-)-+oo

uO1t (x) = lim u (x, a)
6-> + .

or, alternatively, by the equations

4v
(x) = v 0IIt (x) + 1, Sv (x - x,) Ø (x, x", x,,,)

u (x//) (x,,,) dx ' dx„ dx r„l

u (x) = uout (x)

	

-77 (x')Ø(x' xi% x,,,)4m°(x-- .x") (x,,,)dx'dx"dx,,,
1(5 )

Hence, in a certain sense, the in- and out-fields may be regarde d
as the free fields which coincide with the actual fields at t = - co

and t = + , respectively, thus representing the ingoing and out-

( 1 )

(2)
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going fields . By solving the equations (2) we obtain the actual
fields in terms of the in-fields . Further, subtracting (5) from (2) ,

we get an expression for the out-fields in terms of the in-fields

and the actual fields and, eventually, in terms of the in-fields.

Using (A.20), the equations obtained from (5) and (2) are

y
out. (0) = v

in (0)- SM (o -1) ( 1 , 2 , 3 ) r-i (2) y (3) d (123)

uout(0)
= uin (0)+ To (1) Ø ( 1 , 2 , 3 ) 4 m(0- 2 ) y (3) d(123) ,

where we use the symbols 0, 1, 2, 3, . . . for x, x ', x", x"', .

and d(123) = dx ' dx" dx"' .

Following YANG and FLLDMAN (10) and BLOCx (7) , the quan-
tization of the field variables can now be performed by intro-

duction of commutation relations for the in-field variables . It

is then clear from the preceding discussion that also the coin -

mutation relations for the actual fields and the out-fields ar e

determined. Since the in-fields satisfy the homogeneous wav e

equations, we may consistently assume the usual free field com-
mutation relations to hold for these fields, viz .

ly (x),

	

(x')} = Sm (x- x ' )

r uin(
x), idlll (x ')] = 24n1 (x -x ' ) .

It has been shown by BLOCx (7) that then also the out-fields

satisfy the commutation relations (7) . Consequently, the in- an d
out-fields must be connected by a unitary transformatio n

vout = s-1 vin S

Ûut = s-1 uin S

StS = SSt = 1 .

On account of the interpretation of the gout uout
and

,in,

u î11 as the variables describing the outgoing and ingoing fields ;

respectively, the unitary matrix S is the Heisenberg S-matrix
of the system( 9 .

(6)

(8)
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It is convenient to introduce a Hermitian matrix )7 b y

S =

and the problem is now to determine from (8) and (9) and

the field equations. To solve the field equations we have to take
recourse to an iteration method in which the in-fields are chose n

as the zero order approximation, and we shall take into accoun t

the interaction to the second order in the coupling constant s
contained in the function O . To the first order, we find from (6)

v
out (0)

=

	

(0) SM (0 -1)(1,2,3) u'n (2)
,win (3)d(123)

uut (0) = nit' (0)+~yin(1) (1 , 2, 3)4m(0-2)v'n(3) d(123) .

However, on account of the conservation of energy and momen-

tum, no real first order processes can occur . Consequently, the
first order term i.n ri and, therefore, also the first order cor -

rections to the out-fields, must be zero . This can also easily b e

verified directly by evaluation of the integrals on the right hand
side of (10) in momentum space . Therefore, sinc e

Sret =

	

1
S NIiVl

	

- SM

A t =

	

Am

	

nz ~ m

the actual fields calculated to the first order from (2) may be
written

zV (0) = yin
(0) +~SM (0-1) Ø (1,2,3) uin

(2 ) y in (3) d(123)

(12)

u (0) = uin (0) en (1)Ø(1 , 2, 3)4r<(0-2)y'n(3)d(]23) .

Using (12) in (6) we finally get the expressions for the out-fields
in terms of the in-fields to the second order in the coupling
constants

(9)
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w out. (O) _ vin (0)

	

Sm (0 1) (1 , 2 , 3) u'n (
2
) SM (3 4)

X Ø (4, 5, 6) u 'n (5)
yin (6) d (1 . . . .6 )

} SSMO_ 1) (1, 2,3)

x Wn
(4) Ø (4, 5, 6) 4m (2 - 5) yin (6)} yin (3) d (1 . . . 6)

lout (0) = uin (0) -{-
.

pin (I)
( 1 , 2 , 3 ) dm (0

	

2)

X SM (3- 4) 0 (4, 5, 6) uin (5) yin (6) d (1 . . .6 )

I ~ iPIn (4) Ø (4 , 5, 6) uln (5)

X Sm (6-1) Ø (1, 2, 3) 4m (0- 2) y'n (3) d(1 . . . 6) .

Since the first order term inn vanishes, the connection between
the in-fields and out-fields expressed by (8) and (9) can, to the
second approximation, be written

out vin +
[~a

vin J

dint = uin + [ n uin]
J

Comparing (13) and (14), and using the free field commutatio n
relations (7) for the in-fields, it is easily verified that the n-matri x
in this approximation is given by

77 = - ` 7i -p'n (1)
Ø (1, 2, 3) u'n (2) SM (3 - 4)

xØ (4, 5, 6) un' (5) y'n (6) d (1 . . . .6)

'On(1)Ø(1,2,3
)

X {p in (4) Ø (4, 5, 6) 4 (2 -5) y in (6)} yin (3) d (1 . . . . 6) .

In this approximation ,

Dan . Mat. Fys. Medd . 27, no .7 .

(13)

(16)
.2
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According to the S-matrix theory (3) ' (9) , the matrix S - 1 is a
product of two factors, the first of which is a 8-function taking
care of the conservation of energy and momentum while the
square of the second directly gives the cross-sections for the
possible real processes .

3 . Calculation of the matrix elements of n .

Since the ?y-matrix given by (2 .15) contains in-fields only we
shall, in this section, omit the subscript "in" attached to the fiel d
variables, and Tp, y and u then denote free field wave functions
satisfying the commutation relations (2 .7) . These functions ma y
in a relativistically invariant way be decomposed into positive

and negative frequency parts which then, in the usual way, ar e
interpreted as annihilation and creation operators, respectively .
The non-vanishing commutators (anticommutators) betwee n
these variables are the followin g

C7~~) (x)
'Tp'(

~,-) (x')} = --

	

(x - x ' )

{yr) ( .x), t-TV) (x')}

	

(x -- x')

~u(a+) (x), u(c;, ) (x)] = 16.'d(+)(xx') ,

where, for simplicity, we use the notations S and A instead of
SM and Am . For the definitions of the various Green's function s
introduced here see Appendix A . A-functions referring to th e
nucleon mass will be explicitly written 4 M. The vacuum state
vector 10> is now defined b y

y(+) !o> = o <o

	

y(---) = o
,(+) o> = o

u (+) o> = o

<0 1V-) = o

i

	

<o

	

u(-) = o .

In the Appendix B, the matrix elements of the various combina-
tions of wave functions occurring in 17 have been calculated .
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From (B.5) it follows that the vacuum expectation value of
the nucleon source density occurring in the interaction betwee n
nucleons and pseudoscalar mesons is zero . For instance ,

<a 1 ( 1 ) ysv (3) 1 6 > = i Tr y 5 S(-> (3 -1) = p ,

where we have used Tr y 5 = Tr y5y ,, = O . This is a particularly
simple feature of the pseudoscalar theory . In the scalar meso n
theory, for instance, the necessary vanishing of the vacuu m
expectation value of the source density creating the meson fiel d
would be obtained only by a suitable symmetrization procedur e
analogous to HEISENBERG ' S rule in quantum electrodynamics .

We shall now confine ourselves to the case of pseudoscalar
neutral mesons in pseudoscalar interaction with the nucleons
and our task will be first to derive the various matrix elements
of n .

a) The self-energy of the meson . As is well known, the ai-matri x

contains non-vanishing matrix elements corresponding to tran-
sitions between two states in which only one meson and n o
nucleons are present . Denoting the momenta of the mesons i n
the initial and final states by p' and p ", respectively, one find s
that the matrix element in question is of the for m

å (p'---p
„ )

-,
OJ

~

where åm 2 is an invariant constant and w is defined b y

w = 1/,15,-2 +m2 .

A term of this form would also arise from an additional term i n
the interaction Lagrangian density

åL',ß' = åm2u2•

	

(6 )

Thus, åm 2 must be interpreted as the contribution to the squar e
of the meson mass due to the interaction with the nucleons . In
the local theory this contribution turns out to be infinite . How-
ever, as it will be shown below, it is possible to choose the for m
factor in accordance with the general requirements outlined i n

2*

(3)

(5)
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Section 2 in such a way that the correction to the meson mas s
comes out finite and small compared with the actual meson mass .

To calculate årn2 we consider the one particle part of the
matrix element of 77 between the two states mentioned abov e
with the corresponding state vectors 1F '> and I p"> . In the one
particle par t

<P"I'ri(1)I

	

> = < 11 "I(22

	

< o l12 1 0 >)11'>

	

(7 )

the contribution from the vacuum fluctuations, being of n o

physical significance, has been subtracted . In the case con-

sidered, the form factor can, according to (1 .7), with g 2 = 0 be
written

= igY5 F( 1 , 2, 3 )

	

( 8 )

and the 17-matrix given by (2.15) becomes

	

= g i +

	

(9 )

where

'17 1 = g 2 F(1, 2, 3) F(4, 5, 6) d (1 . . . 6 )

XTp (1)y 5 S(3-4)y 5 v (6) u(2)u(5)

(10)

T)11 =

	

9
g2 SF(1,2,3)F(4,5,6)d(1 . . .6)

	

X '?T, (1) Y5 [ (4 ) 5 (6 ) ] ( 3 ) Z (2 - 5 )

	

.

	

~

Since r7 11 does not contribute to (7), we ge t

<P" I Ni)I> = g2F(1,2,3)F(4,5,6)d(1 . . .6)

	

} (11 )
X < 0 1 -f) ( 1 ) Y5s (3- 4) Y5 1V (6) 1 0 > < P" I [ u (2) u (5)] (i) 1P ' > .

- Z (Y5 S (3 - 4) Y5) .: i s6 (- iSaz (6	 1))
S1S 6

= i Tr(y,,aF3) ;- NI)(yvår M
) 4N1(3 - 4 ) 4 (21-,i ) (6 -1)

= 4 i (aF3 ) aµ )-M 2 )4,vr(3 -4)4M ) (6-1) .

The nucleon vacuum expectation value can be evaluated, using
(B .5) ,

<O l ip (l) y5 S (3 - 4) y5v (6) 1 0 >



Nr . 7

	

2 1

The one particle part of the meson matrix element is directl y
found in (B .26)

1	 	 1	
<P"I f 11 (2)u(5)](1)IP'> = 2(27)-3vw"w'

	

(13)
x{Q i (p 5 -p'2)+ e i (p'2-p"5)} .

Inserting (12) and (13) into (11), and using the Fourier expansion s
of dm, AM) (A. 26), (A . 28), and F (1 .15), we find that the first o f
the two parts of the matrix element (11) arising from the firs t
of the two terms in (13) i s

2 g2 (2 7)-2s	
Vw„

	

d(1 . . . 6) d(111 3 1 416 ) dK'dK~

x G (I1 , 1 3 ) G(1 4, 16)
	 K+ M2

KZ-12 6 (K2 + M2) 1 2(K)

xexpi {11 1+1 3 3 	 (I 1 + 1 3)2+ 1 4 4-{-1 6 6-(14 + 1 3 ) 5}

xexp i {K'(3-4) + K(6-1) -} - p'5-p" 2} .

Performing the integration over all the variables except K we
obtain

2 g2 (2 7)(-2) s	 (p ~ --P) ( dK•
G (K, -K-p') 1 2

w

(p' -I-- K)
sf

+ lb22
8(K 2 f 1VII2)

1- a (K)x
(p' -}- K) -I-M

	

2

The other part of (11), arising from the second term in (13) ,
is obtained from (15) by the transformation

p' -p"

p" --, -p' -

Changing the variable of integration K into - K, one finds im-
mediately, by means of the symmetry property (1 .13) of G, that
this part is identical with (15) except for a change of sign in
e (K). Hence, we get
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C P„
I n
(t)i = -~ b-(P ' -p")

w '
	 åm 2

'

where the correction to the square of the meson mass i s

Sm2 =
2 g 2

(2 ac)-2 dK G (K, -K-p') 12 .

x
(p' +K) K-f-M2

å (K2 +M2
)(P ' + K) 2 I m 2

In the local limit G = 1 and we obtain the well known result

that 0m 2 is quadratically divergent . We also see that a G (Ix 1 3)

depending on Ix + 1 3 only, cannot bring about convergence ,

since in this case the form factor occurring in (18) is independent
of the variable of integration. Finally, it is easily seen that th e
choice (1 .10) of the form factor following from BLocn's version

of YUKAWA ' S theory only reduces the degree of divergence to a

logarithmic one .

b) The self-energy of the nucleon . In the same way, we now
consider the matrix elements of the one particle part of m cor -
responding to a transition from a state I a'P ' > with one nucleon

present with wave vector P' and spin a ' to a state l a" P" > and

we obtain a result of the for m

<a" P" I r1c 1 >l a ' P ' > =-2 gr8(P" P' )• {I p,BAy+I81V1} . (19)

Here, jp,, and I are defined in terms of the spinor plane wav e
amplitudes (p .47) by

~
=,Ipc(a",a' ; P ' ) = i u (a"P')Y~D(a'P')

I = I (a" a-' ; P') = D (a"P') u (a'P' )

Further, 8M and åA,, are a scalar and a four -vector, respectively ,
given by

åA µ = S A 1 u+ dA 1T p- c

åM = ä1V11 + 0MS1 ,

(17 )

where
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SA I~ = (-2n13g2~dkG(P' kP') 1 2

	

1(P' -
k ),-

	

2

	

1+ 	 a (k)

	

X
(P ' - k) 2 ~-1V72S(k+1 m2)

	

2

SMr = (2~)3g2G(P'
k P')

M

	

1 -{- E

	

X(P'k)2--M2 ( k+

	

2 + m2
(k)

SAD-I, = (2
a

)
, g2~dKG(K, P') 1 2

Ky ~

	

(K-P')2+n22S
(K2 -{- .l7z)	

2

8(K )

SMn =

	

dK G (K, -P') 1 2

M	 e (K)

	

X(K- P')2-1-n~2b(K2 +
M2)	

2
	 .

A term of the type (19) would appear in the S-matrix from a n
additional term in the interaction part of the Lagrangian of the

form
SLint = i'WI, A i + P6 1.

	

(23)

Such a term corresponds to an additional term in the energ y
of the free particle field

SH =

	

+SA o -ßSM~zyd {3~x .

	

(24)

Hence, åM should be considered as the contribution to the nu-
cleon mass due to the interaction with the meson field, whil e

SÅ and SA u represent a constant self-potential .

4. General properties of the form factor. Convergence of th e
theory to the second order.

In this section, we shall investigate the general properties o f

the form factor following from the correspondence requiremen t
briefly mentioned in Section 1, and we shall show that it is pos-

(2,2)
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sible to choose the form factor in accordance with the result of

this investigation in such a way that no divergencies occur in the

theory to the second order approximation in the coupling con-

stants . It will be our first task to give a precise formulation o f

what we understand by a slowly varying field . It is clear that a

field variable which could be considered slowly varying at one

time or, more generally, in the neighbourhood of a space-lik e

surface a will not retain this property throughout the whol e

space-time. Accordingly, the definition of the slowly varying

field must be given with reference to a certain surface a. The

field variables will now be called slowly varying on a if, in a
suitably chosen Lorentz system, the free field functions p (x, a )

and u (x, a) which coincide with y(x) and u (x) on a may be re-

garded as built up of plane waves involving only momenta smal l
1

compared with - . In this way, the notion of slowly varying field s

is given a relativistically invariant meaning, but it may be re -

marked that the expression slowly varying then is somewha t
misleading, since it is obvious that slowly varying fields are not

composed of waves corresponding to small momenta, only, i n

every Lorentz system .

The correspondence with the local theory now requires tha t
the evolution of the thus defined slowly varying fields in the neigh -

bourhood of the surface a is the same as in the usual theory .

The value of (x) for x on an infinitesimally displaced surface
a ' is given by (2 .1), and sinc e

S~ (x, x ') (1 )

is zero if x ' is outside the domain in four-space between th e

neighbouring surfaces a and a', the integral on the right han d
side of (2 .1) is small of the first order in the distance between

a and a' . Neglecting terms of the second order in this distance ,

the usual iteration procedure for solving (2 .1) gives for x i n

the neighbourhood of a

(x) = (x, 6)+ .SL

	

x') (x, , x
ii

x
iii

) u(x" , o' ) 'tp (x r,r
a) dx'dxudxiu

u(x) = u (x,6)_~Tp (x ' ' a,)Ø(xi' x rr ' x ,ii)4
1651 (~,x

ii)~(x" i ' 6)dx 'dx"dx"'
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Comparing the first of these equations with the corresponding
local equation we see that the form factor must satisfy the con-

dition

F, (x r x", x")
u (x", a) y (x", a) dx ' dx " = u (x' , a) y (s', a) ( (3 )

for arbitrary, slowly varying y and u. Introducing the Fourier
expansions of the function F (1 .15) in (3), we obtain

G (P+ p,	 P) u (P, a) lp (P , a) e i ( P+ P) x'dpdP =

= u(p,o')V
(P,a)ei(P+1)x'dpdP

	

(4 )

where u (p, a), p (P, a) are the Fourier transforms of a (x, a) ,
y (x, a), respectively.

Hence, G must satisfy the conditio n

G (P ± p, - P) = 1

	

(5)

whenever P and p are four-momenta entering in the Fourie r
expansions of the slowly varying y and u . From the Hermitian
conjugate equation of (4) we get similarly, using (1 .13) ,

G* (1 1, 1 3) = G (- 1 3 ,	 P)
and

u„ (P) = u (-P) ,
the further condition

G(P,p-P) = 1 . (6)

Finally, the second equation (2) leads to the condition

(7 )G (P', -P") = 1

which must hold for any two four-momenta Pn and PI occurrin g
in the Fourier expansions of the slowly varying nucleon wave
function .

If the form factor G is assumed to be real we have the
symmetry relation

G(l i; 13 ) = G(-13,
- ll) (8)
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and, since G must be an invariant, it can be a function of th e

three invariants

	

H

1312

	

(11__13
11

2

	

_)

	

(11+13)2,

	

[ 13) \ 2 J J

only. We shall show, however, that it is possible to obtain con -
vergence with a G depending only on one variable . The cal-

culation of the correction of the meson mass (3 .18) shows that

this variable cannot be (11 + 1 3) 2 . Similarly, the last variable i n

(9) is excluded since it is constant and in fact zero for the mo-

menta entering in the last term of the expression for the self-

energy of the nucleons (3 .22) . Accordingly, the only possibility

left is to choose G as a function of [( 11 - 1 3)/2] 2 or a combination
of the quantities (9) containing [(h-13)/2]2 . It was found con-

venient to choose the combination

(9)

H--)

13 2
172

	

L(

	

( Il-1~/J 2
l1~

+	
13 )

	

2

( 11 + 13) 2

(10)

which is identical with H entering in (1 .10) .
For the 1 1 and 13 values in condition (7), we hav e

2
17 2 (1 1 , 1 3 ) =	 2- .

	

(11 )

If Po" and P~ have the same sign, i . e . if P" iland P' are wave vector s
corresponding to the same type of particles, P" + P' is time-like .

->-
In the rest system of the two particles, where P" = -P' = 4P,

172 i s

On the other hand, if P" and P` are wave vectors of an anti-
nucleon and a nucleon, -P" + P' is time-like and in the res t

~

	

±
system of the two particles, where now P" = P' = AP, 172 i s

11 2 = (zip) (13)

The condition (7) now requires that G = 1 for values of 1P

corresponding to (4P) 2 small compared with 1/22. This suggest s

172 =[ (41'1 2 +M 2 ] .

	

(12)
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the following choice of a simple form factor depending on on e

variable, only,

_ M2_ 2<ll 2 _<-M2

G(11 2 ) = 1 for

	

/

	

1

	

(14)

0<17 2 <
2.

2

and zero outside these intervals . For the i' and 1 3 occurring i n
the conditions (5) and (6), we have

p 2
H2 = -M2 +- ~ 2

In the rest system of the nucleon, (15) become s

772 = ;~2(Å) 2 .

Hence, the choice (14) of the form factor is also in accordanc e

with the conditions (5) and (6). However, on account of th e

factor M/nz in (16), we see that with the choice (14) the rang e
of momenta for which we have correspondence to the usual
theory is more restricted for the mesons than for the nucleons .

Using the explicit expression (14) for the form factor the self-

energies of the meson and the nucleon derived in Section 3 ma y
now be evaluated . The meson self-energy (3 .18) contains a
G-factor

G(K, K-p ') I 2 .

	

(17 )

In the frame of reference where the meson is at rest, we hav e

->
17 2 = K2 .

	

(18)

Accordingly, the form factor restricts the domain of integration t o

0 < K2 < (-) 2

In the meson rest system, we obtain from (3 .18), performin g

the intergrations over K p and over all directions of K,

(16)
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i

bm 2 - - 4

	

g(1) •~j/Ic2 -~M 2 •k 2 dk
(19)

~ 4~

	

m 2
k2

	

M2o

	

4

1
Whence, to the first order in

1V1?

a = m2. is the ratio between 2 and the meson Compton wavelengt h

1 and may be expected to be of the order of magnitude of unity .

For the nucleon self-energy (3 .22) we obtain in the rest
system of the particle, in the same approximation as before ,

g2

	

4 _3~MI

	

1

	

m
M =----6n 4n M)

a

-~
8Ai = 0

	

(21 )

	 (A I)o

	

åMI
M M

8 MII

	

2
g2 ! 1n2)3IX

3

	

M

	

3 ~ 4 ~c M

6 AH = 0

	

(22)

8(AII)o
-

BMI I
M M

Introducing for m the mass of the 7r-meson, and puttin g

g2/4 or 1ô , we obtain

å m 3-- 10-" a- 3
M

8m ," i 0-4 a- 3
m

which, for a of the order of magnitude of unity, means that th e
mass corrections are small fractions of the actual masses .

8m

	

6m2

	

2

1g2/m

	

3

m 2m2

	

3n 4a M
= - - - a

	

(20 )

m

and
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It is instructive by direct calculation to verify that th e

form factor (14), which was chosen in accordance with th e
correspondence requirement formulated in the beginning of thi s

section, actually does not affect the cross-sections for nucleon -
nucleon scattering and for the scattering of mesons by nucleons

for sufficiently weak collisions . ' We shall not here give any de -

tailed derivation of the corresponding matrix elements of the

17-matrix. The calculation is quite straightforward, and th e

results will be quoted without proof. In the local limit, the matrix

element of 77 for a transition from an initial state with one meso n

of momentum p' and one nucleon of momentum P(+)' present
to a final state where the particles have momenta p " and

P(+)" ,

respectively, consists of two contributions corresponding to th e

two graphs

p(+)'

A

	

B

Let the contribution from the first graph be <P(+)"p ' IAI P(+)'p'
and that from the second <P(+ p" BP(+)'p'> .Then, the corre-
sponding matrix element in the theory of non-localized interactio n

can be written in the for m

<p(+)"p„ I 4 p(+)'p r G(p(+) "P(+)" p) G(p(+), + p„

	

P(+)' )

+ < p(-I-) „p„ B BO- ) ,p t ~ G (p(+)" , p(+)" _ _ p„) G (p(+) - + p' , -P(+)' )

Also the matrix element determining the nucleon-nucleon scat -

tering cross-section can in the local limit be written as a sum o f
two terms A and B. If P' and P"' denote the momenta of the
incident nucleons, and P" and P1 ° those of the scattered nucleons ,
the corresponding matrix elements in the theory of non-localize d
interaction are

(26)
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< P„
P1° I A I P, P

„ ~ G (P„ -
P')

G (P~~ _ P,,, )

+ <
P„Piv I

B P
„P,,, j G(Pi°, -P) G

(P„ _-P,,,)
-

(27)

The two terms are the contributions from the following tw o

graphs, respectively.

	

P'°

	

P"

P,,,

	

P ,

By comparing the G-factors in (26) and (27) with those in (5) ,

(6), and (7) it becomes clear from the discussion on p. 26 and 2 7
that the scattering matrix elements (26) and (27) are identica l

with those of the corresponding local theory for all processes i n
1

which the momenta involved are small compared with - in th e

frame of reference where the center of gravity of the system i s

at rest .

5. Physical interpretation of the theory .

Transformation theory .

In the general formalism developed in Section 1, the variables

i(x), y (x) and u (x) play a role similar to that of the field vari-

ables in the usual theories, in as far as the connection betwee n

these variables in different space-time points is given by certai n

integro differential equations . However, the physical interpre-
tation of the field variables is in general much more complicate d
than in the usual theory . In fact, a direct interpretation is give n

only for the in- and out-fields which are the quantities havin g
a simple physical meaning . In the general case, the y and u
variables may rather be regarded as a kind of auxiliary quantities
giving the connection between the directly observable in- an d
out-fields and thus allowing of a determination of the S-matrix .

P"

P,
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The usual interpretation of the field variables is possible onl y
in the limit of slowly varying fields where the conventiona l
theory is valid .

The present formalism offers an example of a theory which

allows the S-matrix to be calculated for any system of interactin g
nucleons and mesons . The only arbitrariness still present in th e
theory is that involved in the choice of the invariant functio n
G(11 , 1 3). This function could in principle be determined b y
comparison of the results of high energy scattering experiment s

with the cross-sections following from the theory .

In order to obtain a convergent theory, it seems necessary
to give up some of the general concepts of quantum mechanic s
and, to avoid paradoxes, it is important to realize the fundamenta l
difference between a theory of the kind considered here and the
usual quantum mechanical description . This difference wa s

strikingly illustrated already in the first section, where it wa s
pointed out that the quantities which in the local limit correspon d
to energy, momentum, and charge of the system cannot b e

considered constants of the motion . This should, however, not

be considered a defect of the theory, since it is sufficient to requir e
that these quantities in general are constants of collision .

On account of the non-Hamiltonian form of the presen t
formalism it is clear that also the notion of canonical transfor-

mations loses its importance in this theory . There are other, mor e
general transformations, however, which play a similar role as
the canonical transformations do in ordinary quantum mechanics .

In the local theory, a canonical transformation of the field vari-
ables q) (x) can always be written in the form

~(x) = Tq)(x) T ,

	

(1 )

where T is a unitary operator which may be regarded as a n
arbitrary functional of the field variables (x, t) on a space-like
surface t = constant. This transformation has the property that

the commutation relations for the transformed variables q) are
the same as those for the old variables on the surface t = constant .
Further, the field equations in terms of the new variables hav e
again the form of canonical equations of motion with the sam e
Hamiltonian H, although of course H is a different function o f
the transformed variables than it is of the old variables .
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In an S-matrix formalism where the S-matrix is defined a s

the unitary matrix connecting two sets of free field variables
(p in and rout, by the equation

~ont (x) = St Tin (x) S,

	

( 2)

one is led to consider canonical transformations of the in- an d
out-variables given by

(x) = Ti" t Tin (x) T in

[~J
oOnt (x) _ Tollt trlt (x) Tout ,

where Ti' and Tout are certain functionals of spin (x) and Toit (x) ,

respectively, on the arbitrary surface t = constant . From (3)
we get

902out = St qo9 inS (4)

where

	

°
S = T`n t ST

out (5)

is a unitary matrix . If the transformation (3) is such that

Tout = St TinS
(6)

which means that Put is the saine functional of out-variables as
Tin is of the in-variables, we have

S = Tt [49in]
.S . T

[eft] S tS
= Tt

[T
in

]' T

	

.s = S

and the S-matrix is invariant. A transformation of this kind may
be called a "collision transformation" and, in a pure S-matri x
theory, such transformations play a similar role as the canonica l
transformations in the usual theory .

In a formalism like the present, which pretends to link up

the pure S-matrix description with the usual quantum mechan-
ical description, a certain class of transformations of the variable s
cp are of special importance. To any collision transformation
corresponds a very wide class of transformation s

4' = 40, [T. (æ)]

	

(8)
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which have the property that (i(x) asymptotically for f - +
coincides with cpn and (P out respectively. However, on accoun t
of the correspondence requirement, we are only interested i n
those transformations which in the limit of slowly varying field s
reduce to canonical transformations. Transformations of this
kind will be called quasi-canonical .

We shall now consider a special type of quasi-canonica l
transformations, viz . the gauge transformatio n

(p (x) = ei x (x) v (x)

ii (x) = LI (x)

which transforms the field equations (1 .19) into

(

	

0

{ YFt ( Ô lu- tayx) + mf

	

(x, x ii ' x"r)
LI(x/')

(
x"

r)
dx

irdxir i

o

	

0

(D -IZi") u

	

(x' ) (x ' , x, xirr) (xin) dx'dx"

where we have put .

0
F(x x", x,,, ) = ei/(x')

F(x x", x,,,)éix(x'„) Ø

	

AF .

	

(11 )

Since the transformed in- and out-fields are equal to the origina l
in- and out-fields times e iy , it is clear that the S-matrix connectin g
the in- and out-fields remains unchanged. by this transformation .
As is well known, the phase transformation of the free fiel d
variables is a canonical transformation of the type (3) with

Tin = T [yIn] = exp {

It
S yin

	

t)
yin (x ~ t) z (x, t ) d(3)x }

l
l

	

111

	

(12)

Lout = T r~out l

In the case of slowly varying fields, both and 0 are effectively
equal to 6-functions, and we have complete gauge invariance
in the usual sense . On the other hand, if the fields cannot b e
considered slowly varying, the form factor F must transform
along with a phase transformation of the 'V's in accordanc e
with (11) .

Dan .Mat .Fys .Medd . 27, no .7 .

	

3

I (9)

(10)
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If the nucleons are protons subject to an external electro-

magnetic field, a gauge invariant theory can again only be ob-
tained if the form factor is considered as dependent on the four -
potentials of the external field . As remarked by C . BLoca, a

formally gauge invariant theory can be obtained in the case o f

an external electromagnetic field if the form factor is taken a s

OA (x' x" x "') = exp (- i

	

A, dx1) • (x r x" x,,,)

	

(13
)

where is the form factor for A . = 0, and the path of inte -
gration is taken as the straight line connecting the points x ' and
x"' in Minkowski space . The field equations can then be taken a s

{Ym (3	 IeAm) + M)

	

OA (x, sir s")
u (x") v (x"'

) dx"d

( q - m 2 ) u = IP (x) Ø A (x', x, x
"

) ?p (x
"r

) dx dx
" '

It is easily seen that the so defined form factor by the gaug e
transformation

= Ay + ayA

	

(15)

of the potentials transforms as

FA (x n x",
x ,ii) = eiell(x )

FA (xi' x",

	

C le/t(x")

	

(16)

which means that the transformation (16) is equivalent to a
quasi-canonical transformation of the type (9) .

Instead of this completely gauge invariant scheme with th e
complicated form factor (14) an alternative procedure woul d
be to fix the gauge of the potentials by choosing these as the re-
tarded potentials from external current and charge distributions .
Since the retarded potentials in the limit of vanishing current
and charge distribution tend to zero, it would be consistent t o
choose the same form factor as in the case of no external fields .
For a different choice of gauge, the form factor should then b e
transformed in accordance with (11) .

(14 ,
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6. The polarization of the vacuum by an externa l

meson field .

As is well known, the coupling of the meson field to the

nucleon field in its vacuum state gives rise to a polarization ef-
fect which, in the language of perturbation theory, can be at-

tributed to the virtual creation and annihilation of nucleon pairs .
In this section, we shall confine ourselves to the approximatio n
where the meson field can be treated as a classical field . Although

the physical interpretation of an external meson field is not al

all obvious, an investigation of this kind throws some light on
the types of polarization effects which arc caused by quantize d
meson fields .

To illustrate this effect, we shall calculate the vacuum ex-

pectation value of the source density

I(x)

	

ig

	

( 1 ) y 5F ( l , x, 3 ) .tV(3) d (13)

	

( 1 )

to the second order in the coupling constant . To simplify the

problem, we only treat the case of a meson field which is weak, i n

the sense that no real scattering and pair creation processes tak e
place to the first order in the coupling constant g . Consequently ,

the first order correction to the out-fields obtained from th e

field equations (2 .6) vanishes. Transforming the expression (2 .10)

for this correction to momentum space, it can be seen that the
Fourier components u (p) of a weak meson field vanish when -

ever pair creation is compatible with the conservation laws o f

energy and momentum, i . e . whenever

p = p - P,

	

(2 )

where P and P are nucleon wave vectors, P 2 = P 2 = -M 2
Hence, the only non-vanishing Fourier components of u ar e

those corresponding to wave vectors which could be considere d
as four-momenta of a particle with rest mass smaller than 2M .
In the same way as in Section 2, the vanishing of the first orde r

correction to the out-fields allows one to simplify the expression
of the first order correction y,~1) to the y's to

11)(1) (0) = ig 1 S (0 -1) y 5F (1, 2, 3) u (2) yin (3) d (123) (3)
J

	

3*



(5)

or, alternatively ,

can conveniently be written in the form

<I>0 = Ø (p) u (P) e'dP (7)

36 Nr . 7

given by (2 .12) . We can now calculate the vacuum expectatio n

value of the source density (1) . To the second order in the coupling

constant g, we ge t

< I io = igF(1x3)<V'n ( 1 ) y ,v'n (3 )io d (13)

+ ig F(1 .x3)<e (1) y,v i " (3) > 0 d (13)

	

(4)

+ igÇF(1x3)<Vil' (1)y5v(1)(3)>0d(13) .

The first of the terms on the right hand side vanishes . The two
other ones can be evaluated using standard methods given in th e

Appendix B and we obtain after a short calculation

< I io = -482 (270-3 dpdL G(L+p,L) 1 2

x	
APL
	 +P2å(L2+M2)u(P)e`PX .

	

j

r (5)

Here, G is the Fourier transform of the form factor and u (p) i s

defined by

	

<I>o = Ø(-iaN,)u(x)•

	

(8)

From (5) we obtain the expression for Ø ,

Ø = - 4 g2 (2 70-3 S dL	 G(L +P'	 1L2 +
(PL

p2
•6(L 2 +VI 2)

	

(9)
J

	

L )
2 p

According to our assumption about the external field, p is a

time-like vector and we can introduce the variable of integra-

tion A defined as the magnitude of L in the frame of refer-

ence where the "meson is at rest", i . e . where p = lp , + i k`	 p 2 ) .

Using (4 .18), and performing three of the integrations, we obtai n

.00

= -4 g2 (2 n)_2 aA G r ip) 12	 A2vA 2

+ lI J.

	

• l
(10)A2+ 112+ ~p 2

u (x) = u (P) e ips dp •

	

( 6 )
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Making use of the covariant expansion

-1
A2 + M2 +4p2 ) = (A2 + M2- m2 )

1 (_p2_m2) 2

A2

	

1 -

1
2

+ .

+312-
4

n22 J
1

(_p2 m2)

4 1J 2 -F-111 2 - 1 m
4

we finally obtain the operator Ø introduced by (8) as a power
series in the operator ( q -m 2)/31 2,

= 81x22 + E (q

	

n .22) + c(1) q ".11 2 ~~ ` q-m 2 ) -}- . : .

It is convenient to express the induced source density <I> in
terms of the external source density I (0 creating the external
meson field due to

( q - m 2) u = 1(e},

and by (8) and (12) the expression for <I>o i s

< I> o = åm 2u+1(e) ~-c( 1 ) ~ --m2l ( e) + . . . .

	

(14)
111 2

The various constants introduced are easily obtained from (10 )
and (11). We get

i~
IG (A 2 )1 2 '11. 2 I/~ 2

+~128m 2 = 4 g2 (2 ~)
-'

	

dll

0 11. 2 + 1112 -4m 2

-2 ~T
G(~2)12 •

A2VA2+M2
dll

	

~ (A2+M2_m2) 2

	 \

V

,,11

	

,dt1

	

g2 (2 Z)-2 ~G(11 2)i2'M211 2 1i 1 2	 I 1112
-~	 	 1	

1
s

	

j

	 dll .
(A 2 +M2- n2 2

f

	

o

	

4

Clearly, åm 2 represents the contribution to the square of the
meson mass due to the interaction of the meson field with th e

X 1+

(12)

(13)

2?LE _ - (15)
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nucleons . In fact, Om 2 in (15) is identical to (4 .19) . The induce d

density eI is also unobservable in principle and gives rise t o

a change of the coupling constant by an amount eg . Thus, the

first observable term in the series is the third one. It will be

seen from (15) that the numerical values of the expansion coef-
ficients are highly sensible to the choice of the form factor . In

the local limit, the two first of these diverge, 6m 2 quadratically

and s logarithmically, while with the choice (4 .18) of the form

factor we obtain the finite and small correction s

8m

	

_ 2

	

g 2 in a_ 3

m

	

37c4 7r)l 1 (16)

E

	

3 z (~~c)

()
3_3

1
where we have neglected higher powers in 1/21M.

Here, a is the product of 2 with the meson mass in . Also the

value obtained for the constant c(1) is considerably reduced by

the introduction of the form factor . In fact, in the local limit ,

we obtain

M

(1 ) 	 	 1 	 g 2
c~ocal -- 12m 4 n

while, using the form factor (4 .18), c(l) becomes

c(1)

	

1

1

(g2\

1 1n)3a
3

12 n 4 '~z M

The ratio of the two value s

c(l)

	

/ Iri 3
=

l
a 3

may be expected to be small . Thus, in the present theory, ciôéa t
does not represent the true vacuum polarization, contrary t o
what would be expected from a renormalization point of view .

This is in accordance with the point of view that the difficulties
in quantum field theory should be overcome by a modificatio n

of the theories in the high energy region .

C Îocal

	

\M

(17 )

(18)

(19)
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It is seen from (15) that the main contribution to 411
comes from the region À. 2M. Hence, in meson theory, the
vacuum polarization should be considered as a high energ y
phenomenon, contrary to what is the case in electrodynamic s
where the main contribution to the induced current comes fro m
distances of the order of the Compton wavelength of the electron .
This distance must be expected to be large compared with th e
constant ~.' which must be expected to occur in a convergen t
electron theory .

Added in proof. Professor W . PAULI has kindly pointed out to
us that it is possible to construct a tensor t /tiv and a four vector
Ja having the properties that a) for 2--> 0 t,uv and j, become
identical with the usual expressions for the energy-momentu m
tensor and the four current of the field, respectively, and b) tha t

tpv and j satisfy the strict continuity equations a v t tiv = 0 an d
ô , jm = O . As shown by Professor PAULI, this opens the interestin g

possibility to introduce a Hamiltonian formalism and, hence, t o
perform a canonical quantization of the theory . We are greatly
indebted to Professor PAULI for many illuminating discussion s
and comments on the subject of this papir .
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Appendix A.

In this appendix'), we shall, for the purpose of reference ,
give the definition of the various Green's functions introduce d
in the text and their Fourier expansions . The singular function 4
can be defined as Green's function solving the initial value proble m

of the homogeneous wave equation . Let us consider that solutio n
0(x, a) of the equation

(O -x2) Ø (x, a) = 0

which, together with its normal derivative, is given on a space-
like surface a . Writing the solution in the form of a surface
integral

(x, a) = {4 (x - x')

	

(x', a) -- (x', a) 4 (x - x')} d a/2 ,

	

(2)

4 (x) obviously must satisfy

(q 	 x 2) 4 (x) = 0

4 (x) = 0, x I ,xp, > 0

5aIS LI (x) da l, = 1

for any a including the origin .

To solve the same boundary value problem of the inhomo-
gencous equation

( q -x2)
(x)

	

I (x)

	

(4)

we introduce one more Green's function 4 6 (x, x ') satisfying

* This appendix and the following contain no new results . For details and
proofs the reader is referred to (D and (W).

(1)
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( q

	

Zr-x2)(x, x') - -S - x ' )

4 a (x/a, x, ' ) = 0

a t, 4 ° (x/a, x') = 0 ,

where we have used the notation x/a to indicate a point x lying

on the surface a. nl, is the unit normal to a in the point x/a. The
solution of the mentioned boundary value problem is the n

(x) _ (x, a) - 4
v (x, x ') I (x ') dx ', (6)

where the free field (x, a), coinciding with (x) on a, is given

by (2) . Taking in (5) for fixed x ' , a in the infinite past, we obtain
the retarded Green's function

Oret (x - x ') = lim 4a (x, x' )
d~-oo

satisfying

([~ - x 2)4ret (x	 x') _ - S(x -x ')

lim 4 ret (x -x') = 0
xo->-.

lim ao4ret (x- x ' ) = O .
xo-,, - x

Formally, Oret solves the initial value problem, where the
asymptotic form of 0(x) and its derivative in the time direction
are given at the infinite past . In the same way, we can defin e

(7 )

satisfying

4adv (x - .x ') = lim Aa (x, x ' )
o-> -j-

(9)

(Cx2) adv (xx ') _ d (

Iim4adv (xx') = 0

lim ao4adv (x	 x ' ) = o .
xo-->- --cc d

Starting from the thus defined Green's functions 4, 4ret and
4adv, we can define various other singular functions satisfyin g
either the homogeneous equation

- x')

	

(10)
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( q -0)(x) = 0

	

(11 )

or the inhomogeneous equatio n

(q -ae)a' (x) =	 å(x) .

	

(12)

It is clear that the positive and negative frequency parts of A

4 (-4-) = positive frequency part of 4

	

(13)

4 ( ~ = negative frequency part of 4

	

(14)

satisfy (11) . The same holds for the functio n

4(i) _ i (4(+) A(-) .

On the other hand, 4 defined by

4 = j (Aadv + Aret)

is a solution of (12) .

If we introduce the characteristic function s

e (x) = sign x o

-1 for x on the future side of a
e (a, x)

+ 1 for x on the past side of a

the following relations can be shown to hold among the variou s
functions introduced .

4 4(-i-) + 4C-)
( 13 )

4

	

=	 2 e (x) .4 (x) (19)

A adv	 Aret (20)

A adv 4T4 =
e (x)

	

1 4 (21 )2 2

Aret -24 _ _ E (x~ +1 4 (22 )

4 0 (x,x') , = 	 ~{e(x- x') .-e(ß,x')} 4(x-x') . (23)

(16)
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From the well known Fourier expansions of A and 4 and
the relations given above, one can easily deduce the expansion s
for the other functions. We have

4

	

= - i (27 )-3Js (k) ô(k2-{-x2)eikxdk.

	

(24)

40- >

	

i (2 7)-3 1
	 -I-r(k) å (k2 +

x2) e ll`xdk

	

(25)
2

i (2 n)-3 1	 28	 (k) å (k2 + x2 ) e i7r'x dk

	

(26)

(2 a) s b (k2
+

x2)
eikxdk

	

(27)

(2 vc)-4 	 2 edk (28)1k2 +

(2 a)
4

S I-1c ,

	

+ i7r8 (k) S (k2 + x 2 )
1

e tkxdk (29)
-~ x

(2 z)-4 `	 1	 i7e (k) å (k2 + x 2 ) } e `~dk . (30)
.7 k2-f-x2

	

JJJ

Here, k2 + /2 should be understood as Cauchy's principal value ,

so that, for instance ,

Aret = (2 70-4 Sx d(3)~
SCret

dk0
k2 + x2 ef~'

	

(31)

where Cret is taken along the ka-axes below the poles at ko =
vk2 + x2 . In this form it can easily be verified that J r'

has the required asymptotic form .

Let us denote any of the Green's functions introduced abov e
by A =' . The corresponding Green's functions belonging to the Dira c
equation are then defined as

S ? = (yµå,ß-x) .' .

	

(32)

For completeness, we give the expansions for the S-function s

AO

4 (1 )

A re t

A adv

S = (27)-3 'S (33)
yµk.µ + ix) £(k) S(k2 + y,a) e ikx dk
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(2 n)
3

S (y„km + ix)	
(k) å (k2 + x2) e tkydk.

	

(34)

i-E(k)+ i x)	 2	 å (k2 + x2) e u<x dk- (2 7r)- (35)

•ret

ï (2 ,7L)-3 (ym k,, + ix) b (k2 + x 2) e lkx dk

	

(36)

i (2 7r )--4 ( y,uktt + 	 i x e ikx dk
k2 + x 2

	

(37)

i (2 ac)-4 (y/ tk, , + ix) {.k2-+
x2 +

i7ca (k) S (k 2 + x2 )~
e ikx

dlf

	

(38)

adv _ Ç	 	 1 	
i(2Z)- 4 (y

ft k
f t +

	

k 2 -rx -' i7LE (k) S (k 2 -{- x 2 )r e ikxdk .

	

(39)



Appendix B.

In this appendix, we shall derive the various matrix element s
needed in the calculation of the S-matrix . All field variable s
considered here are in-field variables and will be written withou t
the subscript "in" . For simplicity, we also use the notation o f
` 3 3, i . e . instead of x', x" , . . . , we write 1, 2, . . . . The spinor
variables can, in a relativistically invariant way, be decompose d
into a positive and a negative frequency part

y,(+) + y,(-) ~ - ~(+) +

From the well known commutation relations for zp and ip one
immediately finds that the only non-vanishing anticommutators ar e

{Ip(,+)(3)gß ) ( 1 )} =- iSåß)(3 -1)

{y,(,--) (3), Vß) (1)} = - iS a(-fl) (3 -1) .

The operation of any positive frequency operator on a state o f
the nucleon field lowers the energy of the system and the operatio n
of the v-function lowers the value of the quantity 4 N*) while
the negative frequency operators and ip increase the energy and
4N, respectively . Accordingly, gip(-) creates nucleons, y,(-) creates
antinucleons, while ip(+) and y," annihilate antinucleons and nu-
cleons, respectively . The vacuum state vector I 0 >, defined as
the state in which no particles are present, then satisfie s

	

y,(+)o> = 0,

	

(+)Io> = 0,

	

( 3)

and the Hermitian conjugate equation s

o

	

= o

	

< o y,(-)

	

o .

	

(4)

*) 4 N = 5i vd(3)x .

(1)



Nr . 7 47

(2), (3), and (4) allow us to calculate the vacuum expectatio n

value of any product of and y functions occurring in the

S-matrix. For instance ,

<OI1a (l)lVß(3) 0> =iS(fl-a)(3-1) .

	

( 5 )

Using (1), the vacuum definitions (3) and (4), and the relatio n

(2), the proof is straightforwar d

< 0 V,( I )vß( 3 )1 0 > = <O V,+)(1)0/3-) (3) O >

= <OI n+) ( 1 ), v ) ( 3 )}I O >

iS (,6-) (3 - 1) ,

if we assume that the vacuum state vector is normalized . In a

similar way, we can show that

< O l wa (1)wß (4) vy (6) vå (3 )1 0 >

	

(6)
= Sÿ0 (6 - 1)Såß ) (3 - 4) - Sßß ) (6 - 4) Så ) (3 1) .

To define states in which nucleons are present, it will be con-
venient to work in the momentum representation . We introduce

the following notations : v (+) (a, P) exp (iP (+)x), and v (--) (a, P)

exp (iP(-)x) are the one particle eigenstates of energy and mo-

mentum satisfying the Dirac equation and corresponding L o

positive and negative states of energy, respectively . If the am-

plitudes v" and v(-) are normalized, the expansion coefficient s

a defined by

	

(+) (x) = (2 n)- 23

	

d(3) , v(+) (a P) e'
P(+) x am (a P)

6

	

T(-) (x) = (2 gr)
-I

	

d(3) P . v(-) (a, P) iP (+ ) x h(-) (a, P)

w(-) (x) - (2 x) Y S
d(3)P . v(-)

(6 P)
etP(-)

x a(-) (a, P)

	

~V(+) (x) = (2 r) -å

	

d(3) .D( ) ( Q

	

é-iP( ) x

	

( 6

a

satisfy the following commutation relations (only the non -

vanishing anticommutators are written)
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T.r~

	

-~ r() (a", p )' a(-)(arJ p
)} = Sa"a'g(P" _

P')

{a( ) (a", P") a (+) (a'
P)} = Sa" å ' (p' r - p')a

In (7), P( ' ) is short for (P, i P2 + M2) and P(--) for (P,- i /P2 ± M2)
while a is the spin quantum number . It is easily seen from (7)
that

a(+) - a(-) t > u(-) = a( +) t
. (9)

The one particle states are now defined in the following wa y

(10)

By this definition the states with one particle present are auto-
matically normalized . For instance ,

< a p(+) I a 'P (+) ' > = < 0 I a(+) (a P) a(-) (a'
P')

0

= < o { a(+) (a P) IX(-( (a' p ')} o

= åaa'å(P	 P') <010 >

If an annihilation operator a(+) is applied to aP(+) J we
obtain

a(+) (a ' ' ) 1aP(+)> = åaa' à (13 -P')I0> .

	

(11 )

In the same way, states with two particles present are defined a s

a ,r p(+)" a' p(+)' i = a(-) (a", p„) a(-)
(a',

p') I 0 J

	

(12)

By this definition the states are automatically normalized an d
antisymmetric in the two particles, i . e .

I a„p( + ) r, a' p(+)'

	

a' p(+)' a,rp(+),r \

	

(13)

in accordance with the exclusion principle .
If an annihilation operator is applied to the state (12) one

obtains

aP(+) i= cc (-) (a, p) 0 i, 0713(1

	

< 0 I a (+) (a P)

I

	

l

	

~)ap(-) > = a(-)
(a ,

	

I O i > < aP( )
=< 0

a(+) (a,

	

.
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a(+) (p„r ' o.") I o,/,p(+)" 6/p(+) ' > _l

	

(14)
p„, - p") I a/ p(+)'

	

(P,,,

	

p,) 16,,, p(+) " >

a relation which can be verified most easily in the standard wa y
by pushing the annihilation operator through to the right, using
(8), (3), and (10) .

We can now derive the matrix elements of the one particle
part of the operator V, (1) y0 (6) obtained by subtraction of th e

vacuum expectation value times the unit operator, i . e .

[17 cc(1)vß(6)](1) = y a (1)vfl (6)-<o T , (1)y~fl (6)1o . (15)

For instance, if the initial and final states both are nucleon states, w e
obtain

< ~„p(+) " I [ , rc
(1) ;0ß (6) ](1) I

o'P(+)' > =

	

l
(2 g)-3 v(,,-) (ar,, p„) v(p+ ) (a , p') exp a (P(+)' 6 P(+)" 1) f (16)

To prove this, we first remark that

<
a
„

P (+)" I
14, ( 1 ) y fl (6) I 6 'p(+) ' >

=

_ < 6" p(+)" Va+) (1) y~-)(6 ) v.'p(+) '

.+<a"P(+)"',)(1)'ß)(6) I a'p(+) > ,

which is a consequence of the fact that terms containing tw o
creation or two annihilation operators vanish when the number
of particles is the same in the two states considered . The first
of the terms on the right hand side is easily identified as th e
matrix element of the operator subtracted in (15), and the secon d
becomes identical with the right hand side of (16) if one intro-

duces the expansion (7) of Tp(-) and yp(+) and uses (11) .
Similarly, we find

<a,„p(+)"I~
( 1)Tß(4)v? (6)ys(3)](1)Ia'P(+)'> _

-i(2~)-3{v(W )(a" p„)v(()(a' p')expi(P(+)'6-P(+)"4)-S(V(3--1 )

T (7) (6
„

, P") (+) (a', P') exp i(P ( + )' 3 -P(-i-) "a

	

va

	

1) S -13 ) (6-4) (17)

-~~ (6", P")v(,5+) (6' p')exp i (P(+)'3 -- P(+) „4) . Sa) (6--1) 1

-v(,-)(6",P") v(y+)(6',P')expi(P(+)'6- P(+)"1) .SSß) (
3-4)/ I
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N r . 7

Finally, using the same type of arguments, we obtain the

matrix elements of the two particle part of the product of four
y -functions . In the derivation, due regard must be paid to th e
minus signs introduced by the annihilation processes as illustrate d
by (14). The result i s

<
pr, ar,

a
,ivp(+) iv I ['Ta ( 1 ) ,Tt,ß (4) vy (6) vå (3)] ( , ) 16 ' P(+) r 6rrr

P(+) "' > =

_ (2 TL)-6 {
Uu

) / a iv , piv) ~ß ) ( Q.iv, pivl U~
) (a r pr) U(å+) /d.rrr pH')

x exp i {P(+)' 6 + p(+)rr r 3 -P (+)" 1 -P( +)iv 4)

TV) (a rr ' prr) ~~) (all plv) Ur) (a r p r ) US+) (a rrr ' Prrr )

xexpi{P (+)' 6+ P(+)"3-P(+)"4-P(+)iv1
)

1Jå ) (arr , prr ) vR ) (aiv, p iv) US+) (a ' , pr) v(y+) (a rrr ' purr)

x exp i (P(-I-)' 3 +I P(+)r,r 6-P(+)rv 1-P(+)i'4}

U(-) a rr , prr U(-) ail Div U(+) ar Dr 0(7) arrr prr r

x exp i {P(+)r 3 + p(+)rrr 6	 p(-F)" 4 - P(+)iv 1)1 .

The corresponding results for the free meson field are th e
following . The meson wave functions can be decomposed into
a positive and a negative frequency part u(+) and u(-) , where u(-)
is the creation operator and u(+) the annihilation operator of the
field . The meson vacuum is defined by

"10> = 0, < o u(-) = 0

	

(19)

and the non-vanishing commutators ar e

[u( + ) (2) u(-) (5)] = i4(+) (2 - 5)

[u(-)(2) u (+) (5)] = i4(-) (2 - 5)

in accordance with 4"(x) = -4(-) (-x) . From (19) and (20)
we get immediately the following vacuum expectation value use d
in the text

(1 8

< 01u(2)u(5)I0i = i4(+)(2-5) .

	

(21)
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Introducing the quantit y

co ( p->-)
= Vp2

+
m2, p (t5' , iw)

	

(22)

uO and u(+) can be expande d

u(+) = (2 a)-4Ç	 l	 b (P) e `px d(3 )PI/2 w

u(-) = (2 r)- - l	 • bt(p)e
lpz d( 3 ) P

V2 w

and the b's are seen to satisfy the commutation relation s

	

[b (P'), b t ( 3 )1 = b (P' --p) .

	

(24 )

A state with one meson present of momentum p is defined a s

	

~P> = bt (P)1 0 >

	

(25)

and it follows that the one particle part of u (2) u (5) has th e
matrix elements

CI)" [u
(2) u (5) ](1) P ' > =

_ -

	

4

(27r)- 3 1 w (P") w (p')
1

x [ei 5-P"2}+e1( 2 P' 5)] .

Indleveret til selskabet den 17 . april 1952 .
Færdig fra trykkeriet den 20. november . 1952.






