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Introduction .

I
n the formulation of quantum electrodynamics as introduced
by FERMI, the state of a system has to obey a supplementary

condition and the Maxwell equations are not valid as operato r
equations, but only as derived supplementary conditions . Severa l
authors have pointed out the inconsistencies') 2), 3) which arise
from the fact that the Hilbert space introduced to characteriz e
the state of the system does not contain elements satisfying th e
supplementary condition . On the other hand, a considerable
number of contributions have been made in recent years to
elucidate the way in which the longitudinal field variables appea r
in the FERMI theory and its connection to the Coulomb inter -
action)-'), and progress has been made in many respects in
the understanding of the problem. A rather radical change i n
the interpretation of the scheme by means of the indefinite
metric of Dirac has also been proposed') .

We want to approach the problem of the formulation o f
quantum electrodynamics in this paper from a different point o f
view. By means of a new quantization method, NOVOBkTZKY 9 )

has given a canonical formulation of quantum electrodynamic s
with a separated treatment of the Coulomb interaction, avoiding
completely the appearance of the supplementary condition . In
a second paper 10), he proposed, in order to include from th e

beginning the Coulomb interaction but to avoid the supplemen-
tary condition, to introduce only two kinds of transverse and on e
kind of longitudinal photon variables, instead of the four kinds
of photons of the Fermi theory . The proposed covariant de-
composition of the potentials which applies well in the meson
case seems to lead, however, to difficulties in the electromagnetic
case, owing to the singularities in the operators introduced . There -
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fore, in taking over the idea of NOYOBATZKY of introducing only
three kinds of photons in order to describe the electromagneti c
interactions, we follow a quite different line and the form of th e

resulting theory will in this way also be different .
Whereas the decomposition of a potential vector into trans -

verse and longitudinal parts is always connected with a specia l
choice of the time axis, the difference in the physical meaning

and the role played by the transverse and longitudinal photon s

leads to the conclusion that the distinction between the states o f

free transverse and longitudinal photons has to be a relativisti c

one. Starting from the interaction representation, one can char-

acterize the states of transverse photons in a relativistic way b y

means of the 6-vector solutions of the vacuum Maxwell equation s
which correspond in any reference system to transverse wave s
only. In order to characterize longitudinal photon states we in-

troduce then another, scalar field . The interaction with the

electrons can then be described by defining potentials given b y
these fields and related to a given time-like direction (or to a

given space-like surface) . These potentials satisfy commutatio n

relations depending on the given time-like vector .

By means of a canonical transformation, very similar to tha t
used in the Fermi theory, one can eliminate the variables of th e
scalar field and obtain the wave equation of the usual reduce d

theory with a Hamiltonian which is the sum of the transverse

interaction energy and of the Coulomb energy. Transforming the
equations from the interaction representation to the Heisenber g

representation, we obtain potentials whose equations depend ex-
plicitly on the special choice of the gauge and which do no t
satisfy the Lorentz condition . The field strengths formed by
means of these potentials do not depend, however, on the scala r

photon variables and on the special gauge, and satisfy the in -

homogeneous Maxwell equations . Finally, we show that in cal-
culating the S-matrix, the commutation relations of the potential s
can be replaced by the simpler ones of the Fermi theory, sinc e

the additional terms in the commutation relations do not giv e
any contribution .

As shown by Prof: C . MØLLER, one can build up the theory

also by starting directly from the Heisenberg picture, and in-

troducing suitable energy-momentum expressions and the cor-
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responding commutation rules . Some aspects of the theory be-
come clearer in the Heisenberg picture and, in writing down th e

formal solution of the equations, one can also get a clearer in -
sight into the transmission of the Coulomb interaction by mean s

of the longitudinal waves . The detailed discussion of question s
related to the Heisenberg representation will form the subjec t

of a forthcoming paper .

Interaction representation .

(a) Transverse photon stales .

A transverse photon state can be described by means of a

6-vector F ` :,; satisfying the vacuum Maxwell equation s

a F`i 'v= 0 .fc f c

ax F;~„ + aw F;,'i", + am, FvSG = O .

The equations (2) express that F1' can be derived from a 4-vector

a sv

F ti= a Av ' - av A ~̀~ ' .

Since two of the equations (1.), (2) are ai Fl4' + a2 F2}' + a3 F34' = 0 ,
a i F2u ' + 3,, F31 ' + a3 FŸZ,' = 0, Fß̀ÿ represents a transverse field in

any reference system . To every light vector ky, Icy = 0, cor-

respond two independent solutions of the equation system (1) ,

(2), characterizing the two kinds of polarization of a plane wave .
In writing equations (1), (2) in the form of a particle wav e

equation, one can also give a simple inierpretion to the quantitie s

related to the particle aspect of radiation theory") .
The quantization of the vacuum equations (1), (2) can be

performed in known ways") . For the hermitian operators F ` v
giving the field strength in the interaction representation we ob -

tain the commutation relation s

[F%~ÿ (x) , Fåx (x')] =

'i{av7, 00 0,, + S~x a v a,l - å,,, au a~ ö~~ a v 0.x} D (x	 x) . }(
3)

(1 )

(2)

(2 a)
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We use units with c = 1, h = 1 ; the sign of the invariant functio n

D (x-x ' ) is that used by SCHWINGER 5) . These commutation re-

lations can also be obtained, following a method of NOVOBÄTZKY 9 ) ,

by deriving FJv from two quantities Q a , Qb characterizing line-

arly polarized waves and related to canonical commutation re-

lations . One can also introduce two scalar (invariant) function s

Q1, Q2 related to circularly polarized waves . Some more detail s

about the free fields will also be given in the forthcoming pape r

mentioned above .
In describing the states of free electrons by means of th e

Dirac equation, we want to introduce the interaction of th e

electrons with the electromagnetic. field first in the interaction re-

presentation . As pointed out especially by COESTER and JAucH 3 ) ,

the covariant aspect of the calculations in electrodynamics i s

fully preserved in relating the state of the system to a hyperplan e

a, defined by a time-like direction nf, n/,, _ - 1, instead o f

introducing more general space-like surfaces . We shall accept

this point of view throughout, a meaning in the following alway s

a plane perpendicular to it/, . In denoting by r a time paramete r

measured in the direction ii , the state Ø of the system of elec-

trons and photons satisfies in the interaction representation a

wave equation of the form

i

	

=H1 Ø .

	

(4)

The part of HI corresponding to the interaction energy of th e

electrons with the transverse field Fµ̀„ can be written in the form

- d o'' 1 (x') .4`l'(x') ..

	

~

j,,,(x ' ) is the current operator of the Dirac electrons in the in-

teraction representation, and the potential A'1 ,1' (x ' ) will be defined

now by means of the field F .
Using the notation of COESTER and JAUcx 3 ), we write a = nvav ,

and write 0-1 for the inverse operator which, in the case when

a Fourier expansion is possible, means a multiplication of eac h

Fourier component by (i nvkv)-1 . With this notation, we defin e

a transverse potential (id ' related to the time-like direction n~, b y

(5)



Nr . 13

	

7

AT

	

1 (1 )
= a F~v ny .

Av nv = O .

ay A; = o .

One has
(6)

(6 a)

(6b)

(6a) is the consequence of the antisymmetry of F1v, (6b) follows

from equation (1). The relation (2a) is fulfilled by (6), owing

to equation (2) . This shows also that a different choice of th e
time-like direction ny means only a different choice of the gaug e

of the potential A `tv . From (l), (2a), (6b) we have also

q
Avt, = O .

	

(6 c )

AT satisfies, according to (6) and (3), the commutation re-

lations

[A'4'(x), A t̀i ' (x ' )] = idy; D (x -x ' )

= Scty - am av a 2 -
nFc av a - 11v am a-1 .

These are the saine commutation relations as those of the trans -

verse potential related to the time-like direction nu of the Ferm i
theory, as given for instance by SCHWINGER 5 ) .

Writing the potential (6) in (5), and taking for the Hamil-

tonian of the wave equation (4) H 1 = Hi p + HC , where He is the

expression for the Coulomb interaction energy in covariant form ,
the content of the theory is exactly the same as that of the usua l

treatments where the Coulomb energy is added separately to th e
interaction energy of charged particles and light waves . The

formulation presented here has, however, the advantage that th e

states of the light quanta are described in a relativistic way by

means of the 6-vector functions FyuV .

(b) Scalar photon states .

Recent calculations in quantum electrodynamics have shown
that one can treat many problems more easily by dealing wit h

the Coulomb energy on the same footing as the interaction with

the light waves . Also for physical reasons one has to avoid th e

with
d ei)

(7)

. (7a)
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instantaneous aspect of the Coulomb interaction, in ascribing it
to interactions transmitted by a field . In the scheme, as sketche d
here until now, there is, however, no place left for interactions
by means of a longitudinal field . The field Fm'l ; obeying equations

(1) and (2) is completely transverse .
We introduce, therefore, a new field in order to describ e

longitudinal interactions and choose it in such a way that it ca n

give account of the Coulomb interaction. In the quantized theory ,

this interaction will correspond to the virtual emission and ab -
sorption of quanta. This field and these quanta will, however ,
not represent measurable quantities, but will be related only to
the gauge of the potentials . This will correspond to the fact that
also in the classical theory the retarded transmission of Coulom b
interactions is related only to potential waves . Since the homo-
geneous Maxwell equations for the field strengths have onl y

transverse solutions, the Coulomb force in the correspondin g

inhomogeneous equations has also an instantaneous appearance .
We introduce a 4-vector field BIL , satisfying in the vacuu m

equations analogous to (1) and (2)

ay BI, = O .

av Bas - azB„ = O .

From (9) one can write
B~ = Om, Q

	

(9a)

and in this way derive B11, from a single scalar function Q (x) .
B1 being a 4-gradient, its space component is in every referenc e
system a longitudinal vector. The canonical formalism of the
equations (8), (9) can easily be worked out . It corresponds to
the theory of a scalar meson with zero rest mass 12 )

We want to characterize the states of scalar photons by mean s
of the functions Bp or Q . In quantizing the theory we choos e
commutation relations

[Q (x), Q (x')] =	 iD (x-x') .

	

(10)

We shall come back to the question of the minus sign in (10) .
It corresponds to negative energy quanta as in the case of th e

(8 )

(9 )
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scalar photons of the Fermi theory. As remarked, we do not
attribute any observable physical meaning to these quanta .

We want to introduce the interaction of the electrons with
these scalar photons by adding in the wave equation (4) of th e
interaction representation to the transverse interaction energy (5 )
another term of the form

= -
S

du/4, (x')A`t2,'(x') .

	

(11 )
a

We define the potential Atl' with respect to the time-like directio n
nµ as

(12)

From (10), we have for 42' the commutation relation s

['I!' (x), Av ) (x' )j = id/i„D (x x')

	

(13)

d ` ti =

	

at,a,a-2 .

	

(13a)

From (12) we have evidently

F~̀v

	

a v A; ,2 ' = 0 .

	

(12a)

From (8) and (12)

	

-ny At,2' =Q

	

(12h)

	

a14' = O .

	

(12c)

From (8), (9a), and (12)

q 4 = O .

	

(12d)

In introducing the potential

Ay =

	

+ 4,

	

(14)

we have from (fib), (6c), (12c), (12d)

Ella=0, a/A A/A =0,

	

(14a)

and from (7) and (13)

a-i Bt4 = aft a- i Q .
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[Ay (x), Av (x' ' )~ = idyvD (x - x') ( 15)

duv = dy",' + cl/ÅT = (5µv - 2 åu av ô-2-- ny Or ô-1- nvdyô-t (15 a)

With (5), (11), and (14), we can write for the Hamiltonian o f

the wave equation (4)

	

Hi = Hiu H~2~ _ - Ç du' [4, (x ') A (x ') .

	

(16)

As we shall see, the wave equation (4), (16) together with th e
commutation relations (15) describes correctly the interaction

between electrons and the electromagnetic field .

Considerable effort has been made in recent publications t o

define the vacuum state in the Fermi electrodynamics . In the
present theory, the vacuum state can be simply taken as th e

state in which there are no electrons, no positrons, no transvers e

and no scalar photons present. As a consequence of this de -
finition, the annihilation operators of single particle states giv e

zero if applied to the vacuum state Ø o . With respect to the photon

variables this can be written in the form

	

FYiv H (x) Øo = 0, Q- (x) io = 0,

	

(17 )

where the + sign denotes the positive and negative frequency

parts of the corresponding operators . These equations are natur -

ally independent of the time-like direction n/Å . Owing to the

fictional character of the scalar quanta which are related only

to the gauge of the potentials, much significance should not b e
attributed, however, to the second of the conditions (17) .

Though we have written the equations and commutation re-

lations in covariant notations, this does not imply in itself th e

relativistic invariance of the scheme . The commutation relations
(7), (13), (15) depend explicitly on a time-like vector n/Å, and

the Hamiltonian (16) is defined with respect to a reference
system in which ny is the time axis . Nevertheless, the scheme
is not only covariant in its notations, but relativistic also in it s
content . As to the form-invariance of the commutation relations ,

this can be seen from the following remarks* . The commutatio n

* The elucidation of this point is the result of discussions with Prof. C . Mon-
LEE . Other aspects of the question will be dealt with in the referred forthcomin g
paper .



relations (7) follow from (3) and (6) . Conversely, (3) follows

from (7) and (2 a) . In the same way, the commutation relation s

(13) follow from (10), (12), and (10) follows from (13), (12b) .

(3) and (10) do not depend on ny, and are independent of the

4",A- u
reference system. The relation between the potentials

i
'.L

defined by (6) for two different time-like vectors ny, i can b e

obtained in writing in (2 a) the potential Å ' and substituting thi s

expression in (6) . The equations (12b) and (12) define in the

same way a relation between Ay ' and A . Starting from thes e

relations one can easily see that if (7) and (13) are valid for

the potentials A ' , A ' defined with respect to n,, the same re-

lations are valid with 7i instead of n t, for the potentials A-' , Aµ ' ;

for (7) and (13) involve the relations (3) and (10) which

are independent of np, and these involve again (7) and (13)

with Tip instead of n~ . The commutation relations which have -

the same form in every reference system follow in this wa y

from each other, and the wave equation (4), (16) has also th e

same form in every system .

The elimination of the scalar photon variables .

Coulomb interaction.

The simplest way of showing that the effect of the introduced

scalar field and of the interaction term (11) is simply the trans-

mission of the Coulomb interaction, and that in this way the

physical results of the present formulation are the same as thos e

of other formulations of quantum electrodynamics, is to obtai n

by a canonical transformation the elimination of the scalar

photon variables and the direct appearance of the Coulom b

energy .
Let us transform the wave equation (4), (16) by means o f

the canonical transformation

into the form
(-c) = eil x (i) (18 )

where

.
å~x(t) = G x(~) (19)
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G= tE Hl etE_ié `~ e 'E =Hi +E i[Hl ,E]±2[E x].(20)

The second equality in (20) is valid if [H1 , E] and [i', E] com-

mute with E. This is the case for

E = l dams j~ (x) 0-1 Q (x) = - t danmf (x) a-1 nv AT(x) (21 )
la

	

a

for which the Gauss theorem gives with (12) and (11)

X ôi E = - S
da' Jv (x') a v a-1 Q(x') = - Hi2'

	

(22)
Cr

We have further, using the commutation relation (10) ,

[~ E ] = - [H[21 E] = - [H1, E] _

_ -
S da d a' 12 1,Jµ (x) Jv (x' ) [av ö 1 Q (x'), a-1 Q (x)] =

a a

= - ida'n,„.,,Jic(x)Jv(x') av a-2 D(x -x' ) .
a a

The four terms of (20) give with (22), (23)

G = H 1 - Hl2 ' + da ÿ da ' n ,ccJf t (x)Jv (x')
a a

{ -av a v a-l ~ a 1 D (x-x ') = H 11 +Hc

where

Hc = -~ çdaS da'nJ(x)J(x')ava D
a

((.
_ 9 dal da'nFcJ,u(x) 11vJv(x') ô- 1D (x -x')

Ja ° a

is the covariant expression of the Coulomb energy . The secon d
form of (25) is obtained by using the fact that on the hyperplane
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a one has (a„ +n,a) a- 2 D

	

= O. In the special system,

with nit as Lime axis, ô-1 D(x-x')

	

. Hc" is the interactio n
4 Tc r

	

r

energy (5) with the transverse radiation field, and the Hamil-

tonian of the wave equation (19) does not contain any longe r

the scalar field variables . We can see from (23) that, in orde r

to get the right sign in the Coulomb energy, we had to choos e

in the commutation relation (10) for Q (x) the sign corresponding
to the time-component photons of the Fermi electrodynamics .

On the elimination of the longitudinal variables i n
the Fermi theory .

At this stage, it seems instructive to compare the canonica l

transformations proposed by different authors in order to elimi-
nate the longitudinal field variables in the Fermi electrodynamics .

In this case, the interaction Hamiltonian of the wave equation

i~7, 0 = H I T)

Hr = - da' (x') Am (x')

	

(26a)

contains the potential components with the commutation relations

[A/4 (x), A„ (x ')] = iå F w D (x-x') .

	

(27)

The stat e

with

has to satisfy the supplementary condition

Q (x, r) c (r) = 0

(28)
,S2 (x, r) = a~ A t, ( .x) + `d a ' nl, .(x

,
) D (x - .x ' ) .

Ia (z )

The potential components Ais (x) obey the equations q Au (x) = 0 .
By means of the operator d1 of (7 a) we can define a trans -

verse potential

(26)
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(x) = d~v Av (x) =

= ay v - ay ava 2-ny aval-nvay a- I) l̀v (x)

for which
nym--)= 0, ayny = O .

	

(30)

(29) can be written in the alternative form s

(x) _ {d,ccv ± nj nv (ay 0-1+ n/Å ) ( 3v 0-1+ nv)) A v (x)

	

(29 a)

(x) - {å,uv-at,a In,-(at,0-1+ ny ) a,a- 1}Av(x)

	

(29b)

(x) = tb t,v - 21 ay, 0- 1 (0v0-1+2 nv)-- 21 (a t ,a 1+2ny,)ava-1}Av(x) . (29 c

(29 a) corresponds to the decomposition of SCHWINGER 5) . The
second term is a vector in the ny direction, the third term is i n
the special system the longitudinal potential given by a space -
gradient. In this form of d ì one can see clearly that, for q Ay = 0 ,
dFv is the projection operator of the transverse 4-vectors be -
longing to the time-like direction n1.L . It is defined as the dif-
ference of the unit operator and of the projection operators o f
the ny direction and of the perpendicular longitudinal direction .
(29) satisfies the commutation relations (7) .

(29b) is the transverse potential in the form defined and
used by COESTER and JAUCH 3) . The second term is a 4-gradient ,
the third term depends only on avAv . (29c) corresponds to th e
decomposition used by KOBA, TATI and TOMONAGA 4 ) and by Hu s) .

One can arrive in the Fermi theory by means of differen t
canonical transformations (18) to the direct appearance of th e
Coulomb interaction energy in the transformed equation (19) .
Such transformations are defined by

= da

	

(x) a-1
(a v a 1 + n v ) Av (x) (31 a)

~ = da nlj j,u (x)
a-1

nv A v(x) (31 b )

-Ç d an~,j~ (x) d i/~ava-_~_nv) A v(x) . (31c)
6

	

\
.
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(31 a) corresponds to the transformation used by SCHWINGEB ,

(31 b) is the transformation of COESTER and JAUCH, (31 c) cor-
responds to the transformation used by Kona, TATI and ToMo -
NAGA and by Hu.

i' results in all three cases by the application of Gauss '
theorem, and the commutators* in (20) by the commutation re -
lations (27) .

We obtain in this way in the three cases for the four term s
of (20)

G = Ht+
~

d6 ,jp ( .x) a~a-1(ava-`+ jtv) A,(x) +
Q

	

{(aa'±

	

(32a)
+

	

a~da~'n~J(x)j(~x'))-~aall .D (xx')

G = Ht + dajt, (x) am a- t n„A„(x) -;-

a

+
~

da da' npj~ (x)jv (x ' ) t+
2

a va- il a-'D (x - x')
.,a

	

a

	

J

G = H t +d6jt,,, (x)ô~ô- 1(2a„ô t +nvJ :,v(x) +
'a

+ da da' nµj (x)j (x~) ~(
~
ad-

+ nr) +
0~ a-t D (x - x ' ) .

'a a

We have in all three case s

i [apAp(x),E] =	
S
d oJ n1 ,j, (x') D (x .x ' )

e- -ix/2 (x Z)

1J=

af~ Ay (x)

and the supplementary condition (28) is transformed by (18 )

into

ai,Ay(x) x (a) = O .

	

(34)

* The calculation of these involves only the commutability of the curren t
components j v (x') with the time-like component n~ jI,(x) on the surface a . Con-

trary to the statement in ref . (3) and (8e ), the current operators jv (x') and jOx)
of Dirac electrons themselv es in general do not commute on a space-like surfac e
(in the point of coincidence) .

(32b )

(32e)
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From the point of view of states z (-r) satisfying (34), th e
transformations (31 a, b, e) are identical and lead to the sam e
states

	

(-c) = eiZ x (r) . The first two terms of (32 a, b, c) re -

duce for these states to the expression of the interaction energy
with the transverse potential . From the point of view of th e
Fermi field, however, with the commutation relations (27) ,
which reduces only for states satisfying the supplementary con-
dition to the Maxwell field of electrodynamics, the canonica l
transformations defined by (18) and (31 a, b, c) are different .
All of them lead to the appearance of the last terms in (32 a, b, c )
which are equal to the covariant expression (25) of the Coulom b
energy . As pointed out especially by COESTER and JAUCH in the
case of the transformation (31 b), the appearance of this Coulomb
term is quite independent of the supplementary condition . The
supplementary condition is only used to reduce the first tw o
terms of (32 a, b, c) to the expression of the transverse in-
teraction energy .

The origin of the Coulomb term is, however, very differen t
in the three cases . In the case (32 a) of SCHWINGER, since we
have (av a-1 H- nv) ô

-1 D (x-x ' ) = 0 on e, the transformatio n
of the interaction energy H1 does not contribute to the Coulomb

term, and the whole expression comes from the term -ie iEar e ` 1
in (20) which corresponds in the Schrödinger representation ,
where E is time-independent, to the transformation of the Ha-
miltonian of the fields without interaction. In case (32 b) of
COESTER and JAUCH, the transformation of H1 gives twice the
Coulomb energy which is compensated by a negative Coulom b

term coming from -ie iE

	

In the case (32c) of KOBA ,

TATI and TOMONAGA and of Hu, the appearance of the Coulom b
term is due completely to the transformation of the interactio n
energy H1 .

The transformation (18), (21) is closest to the transformatio n
(31b) of COESTER and JAUCH . In our formulation we have
identically ay Am (x) = 0 and correspondingly changed corn -
mutation relations . The second, term in the decomposition (29b )
corresponds to the longitudinal potential 4. But, while (29b )
gives the decomposition of the saine operator A~ (x) for dif-
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ferent n~ - s, the definition (G) and (12) of Aw'(x) , (1! '(x) in-

troduces for each ny a different 4-vector potential Ay (x) which

is determined by the 6-vector rµÿ (x) and the invariant Q (x) .

The canonical transformation (18), (21) adds to A ' (x) the

Coulomb potential and, as seen from (24), the transformation

of H1 leads, therefore, to twice the Coulomb energy . This has

to be compensated by a negative Coulomb term coming fro m

the energy operator of the free scalar photons . One has, therefore ,

to choose the minus sign in the commutation relation (10) ,

associating in this way the transmission of the Coulomb in-

teraction with the virtual appearance of scalar negative energy

quanta .

Transition from the interaction representation to

the Heisenberg representation .

In the present formulation, the introduction of the quantitie s

in the interaction representation has some advantage owing to

the relativistic distinction between light waves and scalar photons .

In the Heisenberg representation, the field equations relating th e

interacting electromagnetic field with the currents of the electron s

have to reduce to the well-known Maxwell equations . Since we

have no supplementary condition in the theory, the Maxwel l

equations have to be valid between the operators themselves .

This is to be shown now .
The operators of the interaction representation can be trans -

formed into those of the Heisenberg representation by means o f

a unitary transformation U, depending on the plane a or on r .

To the operators A1 , Jr of the interaction representation cor -

respond operators A1 , w of the Heisenberg representation ac -

cording to the relatio n

A„ = U-IA, U, iv - U~l .iv U . (35)

We write bold-face type letters for the quantities in the Heisen-

berg representation .
All the quantities from now on are taken on the plane a, an d

for the time derivation in the perpendicular direction ny we can

Dan . .Mat.Fys .Medd.2t, no. 13 .

	

2



18
	

Nr . 1 3

write a = ny . The time dependence of the operators o f

the interaction representation (in the direction) is give n

by the Hamiltonian Ho of the system without interaction ,

OA, = i {Ho, Ay], and with the Hamiltonian H = Ho + Hi
we have in the Heisenberg representation

a Av(x) = i [H, A v(x)] = U 1{aAv (x) + i [H1, Av(x )]1 U =

= U~raA„(x) U ddj~(x')d~v D(x-x) .

In the last form the expression (1.6) of the interaction energy

and the commutation relations (15) have been used .

Since the derivatives in the plane a transform in the sam e

way as the operators (35), we have with (36) als o

ax A,,(x) = IÎl åx A v ( .x) U+ nx dß-'jm (x ') di,v D (x x ') .

	

(37 )

For the second time derivative (in the n i, direction) we have

in the Heisenberg representation *

a 2A v = i

	

i [H, Av ] ] = U-i {a2Av+ i [H1 , aAv ] +

-I- i [Ho, i [H, , Av] ~ + i [Hi , z [Hi, A v~ ] f U .

	

J
(38 a)

Using the expression (16) for H i , the commutation relation s

(15), and

i [Ho= aj,u ;

	

IÎ 1 {ajm -i- i [H1, j,u]} U = aj,

	

(38b )

we obtain from (38 a)

a2Av(x ) = U-1 (- a2Av(x)) U+d6'jf,(x')adi,„D (x x') +

+~d6'di,vD(xx')a'jµ(x') .

* The reasoning of formula (2, 11) of Sci-HWINGna's first paper s ) which takes
into consideration only the first two terms of the right-hand side of (38 a), though
correct in the special case of the Fermi electrodynamics, leads in general, as for
instance in our case, to wrong results .
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This gives with q A, = 0 and with (n + a 2 ) <~v (x) =
U-1

(C7 + 02) Av (x) U,

Av(x ) = d6'Jy(x') ady , D(x- x') +Sd6 ' dy,D(x-x' ) aåEti(x') .

	

(39 )

On the plane a' perpendicular to n12 , we can write, using th e

relations D (x- x ' ) 0, (at + n1 a) D (x - x' ) 0, (ay +
+n1a)a-2D(x-x') = 0, (a,2+n1a)(ar+nr a)a- 2 D(x-x') = 0 ,
which follow at once in the special system, and (7 a), (13 a), (15 a) ,

d12 D(x-x ' ) _ {n12 (a v +nr a)a

	

n„(a~ n~a)a-iJD(x--x') =
(40 a )

= d`~2,',D(x-x' )

dµ̀„D(x x' ) = 0

	

(40b)

	

adµr D(x -x') = {b1,y a 2(al,,+ny0)(ar+rz„a)a-11 D(x -x')

	

(40c)

if (xµ - :x~)nt„, = 0 .

Using (40 a), n,2, = -1, nr (ar + nr a) = 0 , we have from

(37), with ai,Aa, (x) = 0 ,

	

av A , = - dd.j(x')(alti+nya)a-~D(x --x') .

	

(41 )

In the Heisenberg representation Ar does not satisfy the Lorentz

condition, but a.,,Av has according to (41) a value which de -

pends on the currents and on the direction nr with respect to

which the gauge of the potential was chosen . In the special

system, with n„

	

(0, 0, 0, i), (41) has the form

x'jr,(x)ak4atr

	

d3x 4 ,,trakJk(x)

	

4 akJh . (41a)

The inverse 4 -1 of the Laplacian A is defined by the last equality .

With a similar notation, we can write (41) after partial integra-

tion, in the form
2*
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av A „ = - d6 ' ( a F, +nµa')jm(x')å-1D(x -x') = I (41 b)
= (q + 02)-1 (a tt + n u a)ji, ,

or with aujp.L = 0,

ai,A,, = a (E+ 0 2 )-r
nuju .

	

(41 e )

In calculating the two terms at the right-hand side of (39) ,

we obtain with (40c) and (41), aD(x-x ') =

	

(x-x ' ) on a,

da ' ju (x ' ) aduz,D (x-x' ) _
.

= .%v(x)- 2 (a,y+nvô) Ç do~'j~~(x')(a m -{-n m 0)0-1D(x-x') =

	

(42a)

= -j,,(x) + 2 (av+ nva) (ax A,(x))

with (40 a), (41), (41 b), (41c)

S da ' du„D(x-x') a 'ju (x ') =

= (av +n,a) ~d6'a'nuju(x') . a--1D(x -x')+
(42b)

-I- n v d a 'a'ju(x) (å u + nu a)a- 1 D(x- x)

_ --(av+ n v d) (axAr (x)) -n v a (ax Ax (x)) .

From (39), (42 a, b)

q A,- av (ax A ti) = -j v

	

(43)

which gives for the field strengths defined b`-

Fuv = au A,- a v Am

	

(43 a )

the Maxwell equations

au l' ,uY = j v , (43 b)
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The potentials are related to a gauge depending on nu, but
the field strengths satisfy the Maxwell equations (43b) which ar e
independent of nu .

From equation (37), with Aÿ' , d ` v instead of Ay, dew, on e

has, according to (40 b) ,

ô v Av' = 0,

	

a v Av' = A v .

	

(44)

(39) gives, if written with A v̀ ' , d1 , or Ay' , (1ti, equations of the
form (43) with the covariant expression of the transverse or

longitudinal current with respect to the vector n, ., on the right-

hand side . The equation for AV ) can be written with (44), (41c )
in the form

Av' = q nv ( + a2)-i n,4x

	

(45)

which shows that AV) differs from the Coulomb potential V„
related to n„

Vy = n y ( q + a2) lnx~ia

	

(45a)
a„ = a„A`„' = avAv

only by a solution of the homogeneous equation q AŸ = O .
The corresponding inhomogeneous equations for the quantitie s

Q and R depend also on nµ .
As to the field Fuv, in writing

F v= 1 +F,,

	

F„=3,Av'

= a

	

-3y A2

we have with (40 h) and the equations corresponding to (37 )

(46)

F~v = u-' ruv u .

	

(46 a)

According to (1.2a) FF,w = 0, but with (46), (37) we have ,

in stating first that with (40 a), (41), (41 e),
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dQ- ' j,(x ' )clj.g D(x - - .x' ) _ (av+ do'nxJx(x') a iD(.x-,x') +

+ n v d6 'eÎx(x')(ax~- nx a ) a ~D(x -x') = - (av+2n„å)(+a`~)-- lnxlx >

FFïv -nu~dG'jy(x')4D (x --x--n„S do- 'Jx (x ' ) 42MD(x x ' )=
(46 b )

= (a FL nv- aou)(q +a2 )- tnYi,. = a~~c v -av vFa

(46b) is the covariant expression for the Coulomb force, an d

we can see explicitly that the field I+'pi, does not depend on th e

scalar field variables which are related only to the gauge of th e

potential .

On the calculation of the S-matrix .

In the reduced form in which the wave equation is

i a, x (~) = Gx (T. ) ;

	

G = Htl' + Hc

	

(19a)

with the expressions (5) and (25) of the transverse interactio n
energy Hils and the Coulomb energy Hc, the present formulation
of the theory is identical with that obtained by eliminating th e

longitudinal variables of the Fermi electrodynamics . In cal-

culating the S-matrix in the reduced theory, we obtain the sam e
result in both cases .

In the Fermi electrodynamics, however, the calculation o f

the S-matrix is much simpler in the unseparated form, and th e

common treatment of analogous terms is the chief advantage i n
comparison with the reduced theory. We want to show now that

the simple rules of calculation of the unspareated Fermi theor y

follow also directly from the unseparated treatment of the present
formulation . In the calculation of the S-matrix the commutatio n

rules (15) of the present formulation can be replaced by the
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simpler rules (27) of the Fermi electrodynamics, the additional
terms in (15) giving no contribution .

Writing the solution x (r) of equation (19 a) correspondin g
to an initial solution x (ro) in the form

x (r ) = Ur, To x (ro) ,

the unitary transformation Ur , r o can be expanded according t o
perturbation theory in the form

Ur ro = 1 + Uiyro + . . . + Uzk zo + . . .

	

(47 a )

Ut
,
ro

contains in the integrand k factors G (TO . In writing
G (Ti ) = H (l)(ri) + Hc(ri), we obtain a number of terms which
can be classified according to the number of factors H0 (x 1 ) .
The terms with a single factor Hc(r i ) give a sum

('ri !

	

r

	

rk- !
dr Hc(r ) \ dri+1 Hi'-'(z'i+1) . . . ~ drk Hl" (rk ) .

° r o

	

~r o

	

r o

Similarly, we obtain terms with more than one factor He (r i ) ,
and also a term with only transverse energy factors .

Following Hu s), but simplifying somewhat the argumen t
which does not depend on the special reintroduction of th e
longitudinal field variables, we want first to show how in the cas e
of ro -- -oo , r + oo of the S-matrix, the sum of (48) an d
of the corresponding part of the term

r

	

r i

	

r,
(

	

i)k+l ~ dr i Hlil (rl) dr2 H1' ) (r 2 ) . . . 1 dr
k+ lHii' (Tk + 1 )

	

(49)
Lr0

	

~r0

	

Er 0

of Ui,
,
i„ can be brought into a form in which the identity with

the analogous terms obtained by the simpler rules of the unse-
parated treatment of the Fermi electrodynamics becomes mani-

k

	

r

	

r . .
drl Hlll(rl ) . . . ~ dr i_r Hl'-! (ri1 )

!'r o

(47 )

(48)
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fest . Analogous considerations hold for the case of the term s
containing more than one Coulomb energy factor . The same

argument will then lead at once to the mentioned simplificatio n
of the calculation rules in the unseparated treatment of th e
present formulation with the commutation relations (15) .

Since (ay a-1 + ny) 01 D (x - x ' ) = 0 on the plane QT , w e
can write the Coulomb energy (25) with 5) D (x' - x " ) =

D+ (x'-x") + D- (x'- x" ) in the form

C

	

' 1
Hc(r) = 1

ddJ,u(x' ) a 1, a_1 +

	

a' - 1

pr
t

	

6T

{D+ (x' - x" ) + D- (x' x")} .

In introducing this form of HC (a) into (48), we want to transform
the expression, by successive application of Gauss' theorem, i n
pushing the second surface integral in (50) with D+ (x '-x " ) at
the right, with D- (x'-x " ) at the left of the terms .

To obtain the necessary formulas, let us write for an arbitrar y
function G (x, T.)

Ç

x

g(x, = diG(x,i) .
° To

With the notation g (x, i) = g (x/r) for x on

('
T

ôg(x/-c) = r g(.xiz) = diaG(x,i)+G(x, z)

	

(52a)

t To

=

- a v g (xli) _ (ar -I- n„a) g (xh)+ n 2,a g (x/z) _

- Ĥ di (a„+ nv a)G(x,i)+din„aG(x,i)+n„G(x,z) _
CT U

	

t T o

x

= - ~dia„G(x , i)+n1,G(x, i) .
• To

	

J

Since from (51), g (x, zo) = 0, we have from the Gauss theorem
and from (52 b)

(50)

(51 )

we have

(52 b)
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(x"

	

('~

	

((.
da- "Jv (x

,r ) nvg

	

, r ' ) = -
1

dr" du"Mx") aDg (x " /r") =
Ga,rr,

	

.Z O

	

1.6Z i

z'

	

T''

	

T '

	

l
(i

= -

1

dr" da"Jv(x rr)~drVVG(x",r)+
1

dr"
l

d6"Jv(x
rr)nvG(xrr '

T
r r

t o

We apply now this formula to different expressions G (x, r) .
With

where the dots

	

. mean some other factors depending o n

z (
' and with the notationdr" do " = 1 d 4 x" , we obtain from

~ ZO

	

aZ '

	

Z D

(53), (51)

(('' L
,-1D+(x' -x") dri+1 Hl i

vaz'

	

t--c o

Gz„

	

tai r

G x„, r
i-F1) _

,~a~La-1+nm) a,-
1D+(x'-x") H111(r1+1)

. . . (54a)

ri+1 ,

•

	

1
da

"jl (xrr
)n„(

2

a u a-1 +n tL

(53 )

.T "

= d 4 x"Jv (x") d-r1+ HirL
(r1+1) . . .. av

(
OIL

a +-1 n~

• Zo

	

T o

\
3 'D (x-x")

~

	

„•

	

1

	

1
, dr

1+1 .Hi~ ' (r1+1) d a Jv (x") ii„

(2

aµ ô + nm ) ô'-
1 D+

(x - x")

	

.
zo

	

G a t

The change of sign of the first term conies from av D+ (x '-x ") --

0'v D + (x'-x") . In the case of an even number of differentia l
operator factors acting on the same variable we can omit th e

primes .

With

,) = d ,
ai[•(x

r) ka tt a-1 -Fil m )G(xrr,r

	

a'- D (x-x) (55a)
G az

(53), (51) gives

i +L

(54)
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s-t-,
d r' ~ dd-'Jv(x„)

nv1
d6- 'Jm (x' )

o'z- '

	

k,.

~

2 a
,- a- + n\

D (x'-x") =

(55)

Z i_ 1

= -d g x„
Jv(x' )

l

d 4 x'Jm(x')av(~a 1u 0- I+nFi a-tD(x, x") . . . +

-ro

	

.
Z O

	

I

77ti

+ d6- ' Jv
(x„ ) nv 1 dg x ' ju (x' ) (2 ôu ô-t

	

L ) a'
-t

D (x'--x") : .

'' 62i-1

	

C Z O

With

G (x ° ri 1) = H11 i (r -1) . . . (aa_t+ n
) a,-t D (x

	

(56a)

we obtain from (53), (51)

__ 2
dzi Ht1,(zi

1) d a"jv(x„)nv . . (~ aa-t + i~ a,- t D (x'-x") . .

-t+nml a-tD(x '-

Çi-Z

	

1

~ d 6Jv(x")nvdzi-trdili(zi 1) . (
2 a,''a

- t+nm)a, tD(x-x") . .

''62 .

	

io
2

The relation (54) can be used repeatedly in order to pus h
the surface integral with D+ (x'-x") in (48) with (50) to the

right . Every application of (54) gives a new term and, finally ,

we may use the relation

Ĥ deJv (x") nv(~ a~,a- t -I-
nul

a'-tD+ (x'-x") =
p, 6

	

I

(
~T k

= \ dgx"Jv(x")a,y(2ô~ô-t+nm)a- 1D+(x'-x ")-~- > (57 )

~ Z 0

~

	

t

	

t

	

t
+ dG"Jv(x„)

nv (~ a ,u a + n) ô'- D(x'-x") .
~ 6

,-a

ZO

	

t, 6Z
i- 1

Z
(~ i_ 20c/Mx"

	

/1
= -1 d 4

	

)` dz~_ 1Ht (zi_1) . . .av 2
\

~zo

	

c
)
Ta

. .+> (56)

J
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We obtain in this way for the corresponding part of (48 )

Çr

dil(T 1) . . . Çd 4 x/i
eT j t

~ d4
xj"(x ) . .

' To~ z o

	

°z o

k

(58)

'clc- t

	

I 1~ dik H~l (,~k) av
9

a
P
a-1 +

Ir t,, ) a- L D+ (x ' x")

and from the last term, according to (57) ,

	

7
iZ

	

•~i- ](( dz t Htl) (TL ) . . . 1 d4x'jm(x') . . .

	

f„ZO

	

•' z o

(58a)

! 1~di k Hil ~( zk)~dß"jv (x 9 aPa-i.+a, r D+ (x -x„) .

In a similar way, for the part of Hr in (48), (50), containing

D- (x '-x "), we can apply first the relation (55) and then re-

peatedly (56) in order to push the corresponding surface integra l

to the left. Changing afterwards the notation according to x '

	

x",

u v, i j, and using	 D- (x"-x') = D+ (x '- x "), we

obtain for this second part of (48 )

zj

	

~ ii
- t~ ~ Çr

drt Hii) (xi) . . . ~ di x ' ji,(x„) . . . d4 ~jµ (x') _
j < i

	

'' -Co

	

• i .,

	

•.2 0

Zk- 1
dzkH~t)(ik),av(~a~a- t+n~~)a i D (x '- .x") =

zo

~

	

(•zi

	

t

	

(
.zj

	

~ .

d 4 x ' j (x') . .

	

d4 x" jv(x
„

.~	 	 )

	

t

i=r j >i

	

• i o

	

70

a f , (-l a a- 1 +I2v a- L D+ (x' x")

and from the terms containing a surface integral at the left

k

i=1

l~

( (59)
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Ç Z t
i-t

(

	

ida"Jv(x
") nvH11' (T1)

	

d4 x'jm
(x')

i

lim

	

d a 'Jv(x„
)

nv h a a-1 + nti )

	

(x'- x") = 0, (60)
~ = oc

e~d

	

` ~

the terms (58a), (59a) do not contribute to the S-matrix, eve n

if we do not suppose an adiabatic switching on and switching

out of the interactions . The contribution of (48) to the S-ma-

trix is, in this way, the limit of the sum of (58) and (59) fo r

To--- x, 'r ->+X ,

We marked only by dots the transverse energy factors .

(49) yields an analogous term wit h

d`„D+(x-x") _ ( 61w- auava-2 a unvô-l- a v na-1 ) D+ (x-x")

in the integrand. This cancels with (61) to the simpler ter m

containing the factor å D+ (x '-x ") which corresponds to the
commutation relations (27) of the Fermi electrodynamics an d

can be obtained directly from the unseparated treatment of thi s

electrodynamics . This gives the result of Hu.

We return now to the question of the unseparated t r eat -
ment of the theory with the commutation relations (15) . Since

(aqua--t + n,,) 0'-1 D (x '- x ") = 0 on the plane aT, we have

t k - 1
dT1H1

(Tx)T o

\

2 Since we have for any finite x ' ,

~a-
t
+n~u 1a , -- 1 v

(x '_ x„)

i.

t aT

	

~ TO

	

~ 2 0

Nr . 1 3

o9a)

k
et i -1

	

.tj
( _ z)k`>

	

~ ' . . .

t 'To

x ' J (x~) . . . \ d4 x" Jv (x„)

	

.
i/ 1- iiil

	

tto

	

G1-Ca

(61 )

(a,, ava2 + a ,un,,a-1 + av n~ a 1) D + (x'- x")

To~-oo, T-~+x .
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/C~6 'Jy (x ' ) LÎ6" J v (x" ) 11y (a1, a-1 +
e-

(D+ (x'_ xrr) T
D-(x'xrr)1 = V .

,- t

Writing, instead of (50), this expression at the place of Tic (z ' )
in (48), the resulting expression also vanishes . Using the relations

(54), (55), (56), (57) with (ay a-1 + ny) instead of (2a1 ,, a- 1 + ny)

we obtain analogous expressions to (58), (58 a), (59), (59 a) an d
also to (60) . With a result analogous to (61) we obtain in this way

Ĥ
Ti- t

. .

	

d4 x' .%Fc (x')
. . .

	

d4 x" .]v
(xrr) . .

"'co~o

	

T o

(2 a1,a v 0-- 2
+a~,nv a- 1 + a v ny a- t )D+ (x'--x") = 0

for r0-* - oo r -- + Cc .

(63) shows that terms of the type (61), (63) of the S-matrix,
calculated in the unseparated treatment with the commutation
relations (15), and containing the factor

dyvD+(x'-x") = (ôIuti 2au a va-2-al, nv
a-l-avnF.L a

1)D+(x'-x")

can be replaced by the simpler terms containing the facto r
luv D+ (x'- x") . The contribution of the other terms vanishes .
(It is understood, that the ordered products of the unseparate d
treatment correspond, as in the Fermi electrodynamics, to th e
arrangement where the negative frequency parts of the potentials
stand to the left of the positive frequency parts, both for AY ' and
40 ) . The result is the same as if we had used the commutatio n
rules (27) of the Fermi electrodynamics .

The combination of the results (61) and (63) shows furthe r
that the contribution (61) of (48) to the S-matrix can also b e
replaced by the simpler expression
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(d4x' .11(•x') . . .

GT 0

Ç Td" xi " jv(x„) . . . a t,ava-2 D + (x'-

(64) contains the factor (4r0v D+ (x'-x") = - a~ av a-2 D+ (x '-x" )

which corresponds to an interaction of the electrons through the

field A t,(2 . (64) can be obtained also directly in writing th e

first form (25) of the Coulomb energy in (48), making the de -

composition D (x '-x " ) ° D+ (x '-x ") + D (x '-x " ) and using

the argument corresponding to (54)-(61) with - Z 00-1 in -
t

	

)
stead of (-2 aI ,a

-1
+

	

.

Using the same arguments, but starting from the second form
of He in (25), the resulting contribution to the S-matrix obtain s
the form

~ -i

	

(+Zi
-t

	

((~~1- ~

d' x' j,cc(x')
. . .

1
d} x"jv (x

„ )

i=t

	

j> i

	

~ ITO

	

~ -co

(65)

2 (at,nv a- 1 +a vnµ a-1)D+ (x' x")

~z --+ - x ,

This can be obtained also by subtracting half of the vanishin g
expression (63) from (61) . (61), (64), (65) give alternative form s
of the contribution to the S-matrix, corresponding to the Coulom b
interaction .
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Summary .

A formulation of quantum electrodynamics, without a supple-
mentary condition, is given . Starting from the interaction re-

presentation, light waves are characterized by the 6-vector fiel d

satisfying the homogeneous Maxwell equations . In order to

describe longitudinal interactions, an additional scalar field i s

introduced. Interactions with the electrons are defined by mean s

of potentials given by these fields and related to a special time -

like vector ny (or to a corresponding space-like surface) . The

scalar field variables can be eliminated by means of a canonica l

transformation which leads to a wave equation containing th e

transverse interaction energy and the Coulomb energy . In th e

Heisenberg representation, the potentials whose gauge is relate d

to the special time-like vector ny do not satisfy the Lorentz con-

dition . The field strength operators obey, however, the Maxwell

equations . In calculating the S-matrix, the commutation rules o f

the potentials which depend on ny can be replaced by the simp-

ler rules of the Fermi electrodynamics .
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