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1 The solution y (x, 1) of the differential equation
' g+ (2 —P@)y =0

.initial values :

’ yO.H =0, y0O,n=1

1, in case P(x) is small enough for large «, and in case
u = 0 where u is real, satisfy

A(w)

u

sin(ux — @ (w)| =0

Jim [y G 0
fere A (u) and @ (u) are continuous function of u, 0 <<u <o,
e function @ (u) is the asymptotic phase.

The problem of determining the potential P(x) from @ (u)
ises in physics. Recently C. E. FrROBERG, [1], hds given various
proximate procedures for calculating P(x) from @ (u) based
the variation of constants formula or on one or more itera-
¢ ;; 1) -
< (Px))y = 0 where ! is an integer. The equation (1.0) is
ase [ = 0. FROBERG observes that his method need not of
rse be convergent. Indeed the question arises as to whether
u) determines P (x) uniquely at all. We shall show that with
table hypotheses this 1s indeed the case. We shall also see
®.(u) determines 4 (1) in (1.2) uniquely and conversely. The
ory we shall develop for (1.0) can be carried over to more
eral cases. (See note on p. 27 for the case 1>0.)

s.oof this formula. He treats the equation y'' —

heorem I. If P(x) is pieceivise continuous (or more generally
(x). is Lebesque measurable), if
: 1*




1.3) P(x) =20 In case P(x) satisfies

and - 1

(1.4) Sa:|P(ac)lda:<oo, SOIP(a:)|dx<oo
0 .

then (1.2) is valid where A (u) and @ (u) are continuous function
of u. There is no other potential function Q (x) satisfying the sam
hypothesis as P(x) with an identical phase function @ (u). Mor
over @ (u) determines A (u) uniquely and conversely.

which is a stricter requirement at x = 0 than (1.4) or (1.6) it
s possible to consider initial values of the form

y(0,1) =sine, y' (0,1) = cos a.

u this case we could dispense with some of the lemmas we
’ u_ire for Theorems I and IT and use known results [2, 5.8
nd Chapter VI] in their place. The methods used here will

arry over to coxer (1.8) with the assumption (1.7). However,
n-practise the condition

The condition (1.3) can be modified. However, without (1.3
it is possible for (1.0) to have discrete characteristic values
A, = iv,, k=1,2, -+, where the v, are real. Associated wit
each 4, = iv; lhere is exactly one characteristic function y (x,1
which for large a is O (e ). If we assume

1
| > P dx <
(1.5) Sl.'x:2|P(x)|dx<oo le () | doe <

s much more useful than (1.7) and we shall carry out our proofs

in place of (1.3) then we shall find that there are at most
or this case.

finite number of characteristic values, 1, = iv,, and with v, =
We shall see that under the hypothesis of Theorem I1I,-

1

We shall see in the course of our proof that the spectral

O () — @ (L0) < . epresentation of a function f(a:.) involyes the integral

oo

Ty @wdlyEwroas

.then there are no discrete characteristic values. (In fact w
shall find that we always have either @ () = @ (+0)+ mn ¢

@ (o) = O (+ 0)+<m +%)7r where m is the number of chara

teristic values in v >0, i. e. with 22 < 0). We now have thi}
following resalt.

1

w

us we see that the weight function in this integral u%A% ()
ermines A (z), and therefore from theorems I and II also
O(u). Thus the weight function u*A*(u) can arise from one

: 1
Theorem II. If P(x) is real and measureable and if z) only.

I_n the course of our proof we shall also get the following

(1.6) Sm]P(x)ldac—i—S x| P(x)|dr <o ationship valid for any function f(x) in L2(0, =),

then (1.2) is valid. If there are no discrete characteristic value Tu_‘da
i. e, if @(0)—@(+0)< m, then there is no potential func i (u)

Q (x) different from P(x) satisfying (1.6) and with the sam
phase function ® (u). Moreover @ (u) determines A(u) unig
and conversely.

S"Z} (x, u) fx) da ||
[4]

9 (lrepa =

‘We shall see that there is a funclion of A = u+io, F(L),
alytic for » >0 and -continuous for v > 0 such that for real




2 = u we have F(u) = A(u) ¢ ®™. We shall see that the be
vior of F(4) as A—0 is of concern to us and for this reas
we need requirement (1.3) in Theorem 1 and

or'v < 0 there exists a function y,(x, 1) similarly related to
for large x or |1].

We shall prove these lemmas in § 5. It is clear that for
‘u, yy (x, u) and g, (x, u) by (2.3) are independent solutions
1.0) for large -x. Since they are independent for large x,
ey are independent for all z, 0 < x << % . From (2.0) we have

szlP(x)ldm< o0
D1
in Theorem II.
. . |y (x, )| < Kxel!=,
. Here we shall show that @ () determines 4 (z) and ¢ =
versely under the hypothesis of Theorem 1. Actually we sh
‘use only (1.4) except to show that F(0) 3= 0 where we n

(1.3). Thus most of § 2 will be available to us to prove Th
rem II as well.

‘e also have, as can be verified by substitution into (1.0), the
ariation of constants” formula

9y i) =4 (ind e POy D a.
. 0

-G

We shall require the following results. We shall use K

denote positive constants which depend on P(x) only. We rec
A = u-tiv.

ere the right side exists because of (2.4). We see from (2.5),
¥ use of (2.4), that for A = u = 0 we have as x> »

51 ux

Lemma 2.0. If P(x) satisfies (1.4) then there is a soluf y (e, u) = ¥T—<1+SCOS usP(E)y (. u)dk

y(x, 4) of (1.0) satisfying (1.1) which for any x is an en

fanction of A and which for all 1 satisfies 4 CBEE Ssinu_sp(‘g) y (&, w) dE+o(1).
1]
. |vj=z 3
(2.0) ly D= o oS a<e, | as @ o
14+ |2z = A |
As [A]—>w y(z, n) = sin (ux — @ (w)) + o(1)
in A |o|x
{2.1) y(x, ) = Sml i (em) ere if

uniformly in x, 0 < x <. Moreover y(x, 4) is an even fu

F(u) = 1+5 e P (&) y (5, u) dE-
tion of 1. ‘

A hen by (2.6)
Lemma 2.1. If P(x) satisfies (1.4) then for v == 0 there

solution of (1.0), yy (x, 1) which for each x is an analytic funci
of L for v >0 and continuous for v = 0 and satisfies

A(u) =|F(u|, ®@) = arg F(u).

¢e y(x, u) is an even function of u, A (u) is an even function.
m (1.4) and (2.4) we see that

(2.2) gy (2, | S Ke ™, 0 <x<o
F@) = 1+5 P () y (s, 1) di
and
il Ke™"= . analytic function of 4 for v > 0 and is continuous for
23) i Do) = B TP @ as.

"The properties of F(1) are given in the following lemma.
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Lemma 2.2. If P(x) is real and satisfies (1.4) then F(k) ';12) g = o(1)
defined in (2.7) is analytic in the half-plane v > 0 and contl ]
nuous for v > 0. In v > 0 it can vanish only for values of 1
for which u = 0. If b, = iv,, v, >0, is a root of F(4) =0 ﬂze
y(x, v,) is a characteristic solutzon of (1.0) satzsfymg, fo1 $01

C, # 0,

(2.8) . y(x, iv,) = C y (x, iuk)—>0 as x— oo,

as |4] >e

lformly for 0 < argl = m. Applying Cauchy’s theorem over
semi-circle of radius R with center at 1 = 0 and diameter on
¢ real axis and letting R— 0 we find by use of (2.12) that

_ 1 q(cr)
g(l) th—inoo271’Z a— 1

-R
For large |4 | we have

(2.9) F@Q)y=140(1)
uniformly for 0 < argd = m.

here o is real and 4 = u-+tiv, v>0. In the same way if
4 =u—iv, >0 then

8l

R
0 =1lim 1 g(a) d

SRa>w 271 Yo— A
-R

The proof of lemma 2.2 is given in § 5.

! : : s : ilx : :
For » >0 we have the following relationship for ¢ _y @, aking the conjugate of the latter formula and adding to (2.13)
as x> . From (2.5) we have

e find

ile 2) — imsinlx
[ ey st o 1 Plmgca,
] 1 p® . (LE R>ow —l
l 1 {Sma =9 @ a0 Py D) e as, -x
0 r since Im g (o) = @ (o)
Letting  —« and using (2.4) we get ’ ' R
o log F (1) = lim -+ ;D(d});_d
. Ro> o 7T —
. iz . /
(2.10) :nan:o ey (x, 4) = 5 _r

s we see that @ (u) delermines F(4) and in partidular then,

We shall now introduce the hypothesis P(x) = 0 and sho ) determines

that in this case F(iv) & 0 for v > 0. We have

A(u) = hm []“(quzv)l
(2.11) F(iv) = 1+Se—v§p(§)y(:§, iv) d&.
0 observe that @ (u) is an odd function of u. By subtracting

‘conjugate of (2.14) from (2.13) and using the fact that A (u)
ven we get for v >0

Since y = @+P)y, y@,iv,) =0 and y (0, ) =1 wes
that y’ > 0 and thus ¥y’ =1 and y > 0. In (2.11) this yiel
F(@v) = 1.

Since F(1) =+ 0 forp>> 0 and since F(A)=1-+o0(1) as|l|—>
uniformly for 0 < argd < =, wee see that g (1) =logF Q)
analytic for v > 0 and continuous for v > 0 and moreover we ¢
choose ¢ (1) so that

21\ log4 (o)
wi \ ¢ —4?
0

log F(A) =

(z) determines F (1) and in parlicular then determines
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o (u) :ulirilolmlogF(u—i-iv). near zero and for large x. Let max(|f(x)|+|f (@) ) =

hese requirements on f(x) are somewhat more severe than is
ually necessary for our argument.) We now consider the fol-
ing pseudo-Green’s function integrals of f(x),

3. We now assume that there is another differential equation
with P (x) replaced by Q () where Q (x) satisfies the same hy
thesis as P(x) in Theorem I and where the asymptotlc phas
again @ (u). The equation is

o )
Hy @, 1) = 59 @ D {2 &, D 1) ds
(3.0) 2 (= Q @)z = 0. ‘ Py DA D

Since the asymptotic phase of z(x, u) is @ (u), its asympt Hy(x,2) = F(l) zy (x, 1) SU(E A) f(5) ds.
amplitude is 4 (u)/u. Thus ‘

’ arly for each z, H].,j =1, 2, is analytic in 2 in the upper half-
ne v >0 and conlinuous for » = 0. Thus if ¢ is the semi-
cleof radius R, 2 = Re'®, 0 < 6 <, then foranyz, 0 <a <=
uchy's theorem y1elds

@ zew="Dsine— 0@ +o0
as x> where z(0,u) = 0 and z' (0, u) = 1. There are ’

two solutions of (3.0), z (x, 1) and z, (x, 4) satisfying the sa
conditions as y; and y, in Lemma 2.1.

«R
SHj(x, 2 dl—l—SHj(ac, w) du = 0.
c —R

Returning to y(x, u) where u 3 0 we have since y; and
are independent solutiens.

y, ) = C (wy (z, w)+Cy (u) gy (x, u).
Letting «— » we have

t >0 and let

i=faenrea-({ 4] Jacoroan

A G (aw— @ ) = € ()™ 4 Cy () &0 (1. Using (23) we get since {1 )] a5 < (F1@ e,

xz

From this we see that indeed the term o(1) is zero and"‘

+d ' +d ' |
. __yx . —(x+ v
A 1P —Sle‘”f@)c@ < Ke S‘lf.(.s)ldﬁf—%———@ +1).

A(u)e’(bcu) [A]x {21 x
G = 2iu G = 2 iu
Thus rating by parts we have
' A (ll) i (u i (n) : jf; el /’(x) Mde " Me—&+dv
(32) y(x, v = y; (x, w) e —yp(xu)e - F&ds + %) < —

14 |41

In exactly the same way we see that (3.1) implies ‘

idx
1@

(3.3) z(x,u = A2(IL;) [zl (x, w) e TPW 7, (x, u) eié(“)l.- h

< BMET (o) (1 +1). |
|2] x

Let f(x) be a real differentiable function which vanishé‘
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f(oc) g, 1) e | nge z,(x, u) is a solution of (3.0), z;(x,u) = C,z, (=, u) +
70 ' 2; (x, u). Letting x-—>» we see that z; (x, u) = z, (x, u),
aking the conjugate of (3.7) and (3.9) we have therefore

_Sl‘"’;ﬁ)“ dagzl (5, 2 F®) dE+

[ c .
1Y/ 1y
< — —1.
< KM(6+R6)(1 +x)
If d = R " we have uniformly in « for any closed interval of 3

10) f(a) = —7%. Jim ”“’F(:(” )u)dugza(f u) f (§) d§,
R

Y

interior to the open interval (0, ), : o +R 3
11) f(x) = —= lim ”Z%(x W Sy(g,u) £(5) dE.
N Ay R e — TRy ) () b
MmN TRy 521 & D (9 ds = — g wi (). Since by (3.3)

c

N Az.(u) zi(x,u  zy(x, u)
Using this in (3.5) with j = 1 we have z(z, u) = 2iu (_IF(H) - 2F(u) )
.R (KSR :
w e have by adding (3.7) and (3.10
61 @ =2 i \ S (2w £ as. y adding (37 and (310
R~>oo F(ll) x . 9 R ( ) 0
v -R ‘ f(x) = lim = u____zzz(c )u SZ (&, w (3 ds.
We also have the following result. R R " '

Lemma 3.0. For any x>0,

R f(a:)
S S (5, D) F(&) d = INACE)

R

F@) = lim 2 \2Z&w (o6 w7 as.
. qQ

R>wm \ AZ(u)

where uniformly for any closed interval of x interior to the openi} o
interval (0, %) rchanging the role of y and z we get instead of (3.12)

R
2 \ u?z(x, u)

tim \|J, (x, 2)|1d%| = 0. : N ’
Jim S| s (x, D ||dA | ;: Rh_)mdo; W) du Sxy@,u)f@)dE.

> o Je

The proof of this lemma is given in §5.

Using Lemma 3.0 we have

) : R
. ' ; 1 uldu «
x 4 = Ii - p P
(3.8) lim Slz}%’)—i)dlSy@,l)f@)dE = —%m'f(x). ‘  ) f@) = lim =\ 5y 2@ w0 Soy(g’u) F&) dg.
R > o o & . -R

ince the convergence above is uniform except near x = 0 and

Using (3.8) in (3.5) with j = 2 we have - where f(x) vanishes we have

R

(3.9 [ =%Rlim SIE}?—%{)H) du Sxy(‘§, ) f(¥) d§.
L > 00 R . 0

R>ow 7

. Rg @ o0
) (@ de— tim L Azf”)Sz(x W 1@ {y (e, u) 1) ds.
Y0
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The derivation of (38.15) is certainly valid if z is replaced by

valid but the argument in § 2 which follows it can of course
Thus

donger be used. Now we shall show that either F(0) & 0 or

R e that near 4 = 0-and for v > 0
1\ u’du L '

a0 o0 » 2 V 3
(3.16) SOfZ (x)dx = Rhil}n \ 7w (Soy (x, u) f(x) dx) 0 F@) = ai+o(|2]) where a + 0.
-R : .

¢ce F*(A) - 1 for large |1 | and is analytic for v >0 and since
zeros of F(A) all lie on the line u = 0 we see that either
0y & 0 or (4.0) implies that there are at most a finite nunber
zeros of F(4) in the upper half-plane.

Vith F(0) = 0 we also have

and the corresponding result with y replaced by z. Combin:j
we get

71—1 Sﬁu—)du (S:y (x, v) f(x) de— S}‘(x, u) f(x) d:t:)2 = 0. 

FQ) = Q?Mfy(z, x)p(m)'dx—gz (x, 0) P(x) de.
L] 0

.

FQ) = Sw(ei“— 1)y (x, 0) P(x) dx

0.

(3.17) SQ:] (z, u) f(x) de = Sz (a2, u) f(x) dx.
b 0

For any fixed u let us suppose z (x, u) ¥ y(x, u) at x = x; >
Let us suppose then that y(a;, w)—z(xy, w) >0 for some
Since y (x, u) and z(x, u) are differentiable they are continu

, +'Sei“[y(ac,l)~y(x, O] P (x) de = I, +1,.
and we must have for small 6 >0, where x;—d >0, L 0

gy, u)—z(x,u)>0, |z—x |4,

Lo . * ilx. A
Choose f(x) >0 for |xa—ax;|< d and f(x)=0 for |x—a;| 2> 4 - So(e Dy (@, 0) P(x) do

Then clearly for the value of u in question

I, represents the second integral in (4.2). We have from

Sofy(x, u)—z(x, w]f(x)de >0 when F(0) = 0
0

which contradicts (3.17). The same argument applies of co
if z—y >0 and we see then that y(x, u) = z(x, ). Therel
from the differential equations for y and z we get

(3.18) y(x, W [P(x)—Q(x)] = 0.

V@0 =1+{POyE 0w = (PEyE 0
: 0 x
since by Lemma 2.2, |y (zx, 0] < Ke,

100
|y (x, 0] < K (5| P(®)]ds.
s ¢ vx N
(In case P(x) or Q(x) are discontinuous (3.18) holds almgsj ‘ :
everywhere.) Since y(x, u) vanishes only for isolated values ‘ o oo o?
x and since xP and xQ are integrable we have P(x) =0 Y (:c., 0)]de < K Sldx Sfip@) |ds = K Sl§2|P(§) |dE< .
almost everywhere which proves Theorem I.

-this we see that
4. Here we no longer assume P (x) = 0 but rathe v

420 |y (x, 0)|< K.

SaczlP(a:) | da << o and proceed to prove Theorem II. Lem J

1

(4.3)
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oo

I, —1a Sxy(x, 0) P(x) dx
)

y'—P(x)y =

have y; (ac) = y(m 0) and an independent solution y, (x)
sen so that yy, —y.,y5 = 1. Since by (4.4), y; () —x—>0
=0 we see that a solution of (4.12) independent of y, is

"

< (e 1 —itely e, 0 P@) de

Jo

h »

=[P szly(x, 0) P(x)|dx+3]2| Slxly(x, 0) P (x)| du ;
) dE
y(nc) ya(a:) m

wherein the last integral above we use |e**—1| < 2 for v 2 x

and 2 < 2|2|x for = 1/[4]. Using (4.5) we see that as l“‘" this is bounded as x-—> 0. Thus y, is bounded as x— 0 .

» , ‘have obviously also
(4.6) 1, — il g.'r:y(a:, 0) P (x) dx = o ([1]).
() : .
‘ x) = — _
Now we shall show y;( )= (x1)+(ac ™) s (:nl)—l-Sw(lx 4-)P(f) Y. (5 d§.
4.7 Sxy (z, 0) P (x) dx = 0. max v @) m and if x, is chosen as below (4.9) then
0 SzZa| X :
We have from (4.4) '

rly for}large‘ Xy _
(4.8) y (e, 0)*x+S(:r—~t)P(E)y(¢ 0) di. -mé|y4(a;1)|+|;l];(x;)|—I—m-E];P(E)[dg.

ox

If (4.7) is false and if F(0) = 0 then (4.8) becomes

3 ,
= o Zm = |y4 (xl)l+|y4 (x1)|
(4.9) y(a:,O):—acSP(ié)y(§,0)d«E+S§P(§)y(§,0)d§--

Let a, > 1 be large enough so we see that |y, (2)| < K« for large x. Now if

S§|P(;§)ld§<i. y'—P@)y = f(@)

2]

Let max |y(x, 0)| = m. Then by (4.9) c1Ys (x) T oYy (90)— Sx[ya () g5 (8) — yu (2) y5 (5] f(?) d§.
o= Y U

0 from
méQS;clP@y@,mld <

Ly

1\9|>—‘

g (x, )—P@y(x, A) = =A%y (x, 1)
Thus m == 0 which is impossible and we see then that {
liolds. Thus from (4.6) we have as 4 —0

. : D= 5 (5 N ‘ ‘
(4.10) I = e +o(]2|) where « &+ 0. 3 ) bs () + 4 So[y3 (é:)'yi ©=pE yg.(::')] v D de'
We show next that I, = o(]4[) as A— 0. We have

(4.11) I, = g:éi“ ly (&, 4)— g (x, 0)] P(x) de. -E-Soe".*_”” P(x) dx S:[y3 (@) ys (&) —y () y; () y (&, A dk. |

nske Vidensk. Selskab, Mat.-fys. Medd. XXV, 9. 2
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|| < K|AJ? §x|P<x>|dx g|y<s,z>1e—“d§.
() 1]

Using Lemma 2.0 we have
| L] < KJAP Sx\P(oc)ldx —I——~—d§.
0

Thus
/Ill @
|1|<K|;.|2§x|p(x)|dxs ds

o0 i
—I—Kl).‘zxle(x)ldx S§d§+ %
JAl 0 o

il

i w °° _
< K|2p S 3|P(x)|dx+K%x\P(x)|dx+K|Z| 8172“3(””
|41

0 1IAI

fial” fiat
< K| S:c2|P(x)|da:+K]}.[ Slx2|P(:r:)|d:c

0 f1a1s

+2K|MSx2lP(x)\dx.
"
Since waz[P(x)]d:c< « we have then as [1] >0
N ,
I, = o(|2]).

Thus we have demonstrated (4.0).

Exactly as in §2 we find that if F(0) # 0 then the for

—-R
1))

log F(1) = lim Gi"; d
R .

is valid as are the other formulae. In this case we have,s
F(@)—1, as |1]|-—>, that the total number of zeros of

19

v>0 is given by (@ () — @ (—x))/27 =(D (o) — D (0))/n.
ince @ (+0) = ®(0) here we see that if @(=)—O(+0)<n
total number of zeros must be zero and in fact that @ (e0) =
. Since @ (=) can be taken as zero we see that @ (0) = 0
thus if F(0) + 0, F(0) > 0. If F(0) = 0, then we can work
ith a contour containing a small semi-circle, y, with center
=0 and radius ¢. On y, 1 = ge'®, 0 < 6 < n. Thus as
(2 13) g (A) = log F(4) is given by

. 1 /=
g(l) _I%I—I)noo —2?1(8 R+SQ
ince g(4) = log Ji—“T(@—Hog). near 2 =
FL)

7 271 \o—A
Y

)g(cr) +1 g(a)d

0 we find on letting

0 that since — o 3 () we have

l.
"¢
T SR WA
g =lim o=\ —d
-R

rom which all the other formulas relating F, A and @ follow.
re we find that @ (+0)—®(—0) = —x and that the total
miber of zeros m of F(1) in v >0 is given by

m= L (@)~ @ (+0) + B (—0)— D (—w)) .

e @ ()~ 0 (+0)= D (-0 — 0 () wehavem—L (@ () —
--1+0))~%. Since ® (=) — @ (+-0) < = we see that m — 0. In
here we must have @ (») : O (+ 0)+%n. Since we take

)=0 we have @(+0) :—%n. Also @ (—0)= %n and as

e -other case @ (w) is an odd function. The results of § 3
‘over without change thus establishing Theorem Il

Here we prove a number of lemmas In all these lemmas
hall require only that
2*
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(5.0) Sm:v |P(x)|dr<oo. ‘ roceeding we have
o

n-1
(Un =Yy | < 4" etz B (B (x))"

n — — e
In the proofs of Lemmas 2.0 and 2.1 the formulas are writien§ : (-t

in any finite range of x and finite region of 1, y, (x Y

- : Iverges umformly to a hmlt y (x, 2) which is therefore ana-
Proof of Lemma 2.0. Consider the sequence y, (x, 1) whe »

yo(x,A) = 0 and

(56.1) y,(x, 1) =

sinie 1 S’Sinx (=8 P(8) y_, (&, 4) dE.

PRI N

55) y(x, 1) = Si“l“Jr% SZinl(&:—i&)P({s) y (&, 2) dE.
' 0

We have if A = u-+iv, for v =0

)

sinlx v 1—e?ih® 0,)=0, @O, 1D=1.
- sin A Mz, 2) = 1‘|!J(CU DA +[a]x)e?=,
lv|z x
(5.3) lys—yol = = 4xe

m (5.2) we have easily by considering separately |ix| < 1 and
and this is true for all 2. Using this in (5.1) we get :

[sinze| _ 8wl
|y2—yi|< s1nl(ac E)\IP(E)‘LlEe]vl&d«é ‘ Y —1+|l|x
A = . ng this in (5.5) we have
Much as we found (5.3) we have 8 wel?l® +‘8 (:L‘-E) em(m—g) Pl M(E ));S;ei',_fdg
sin 4 (x— &) p =1-+|i]|x 1+|“( 1+4]%
(5.4) ——Z——I < 4xP1E=D 0 < E <. 0
¥
rhus - | M, D) <848 {FP@IMGE D s
lgs—wul < 22w (2] P() |ds. b
0 .
If we set - ~well known inequality this implies
L
B(x =st P(s d'§<Sx|P(x)!dx » -
) . | )| o vM(:c,l)éSEXp (88511)(5)]‘15)-
then ‘ ()

_ 2 il ® . .
ly—y1| £ 42 2e!”'* B (). 5. (5.0) we have M(x, 1) < K. With (5.6) this gives
Again from (5.1) we have alvle

Iy(?c,l)lém'

4 oz : (B (x)
. < 43 pplvl® g 9B ds = 43 Jolz VB ARH
Ly —yo| = 4P e .f\P(@‘ (&) dt e 21 - :5) this gives
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sinAx Kelvl® . | &]
‘y( 57")“_ 1 = Ill \1+|1I§|P(§)ld§
il
v]x
sKﬂl (SE!P(z)lder Sslp(s)ldz>
l 1™ e

Thus as |A]—

g (@ )= Sln}'x+o( II;T).

That y(x, A) is an even v function of 4 is clear from the fa
that each y, (x, 1) is even. The completes the proof of the lemm

Proof of Lemma 2.1. Let Wo(x,4) = 0 and let

ilx 1%
(5.8) W,(x,1) =e 2

From (5.3) for v = 0

sin A (x _é)

7 < 4E—a) e,

Clearly | W, —W,| < ¢ ** and

T

| Wa s D — Wy G )] < 4 {6 6| P(8) | e d

<4e" S"%lP@)Idg.

If
B(x) = S§1P<§)d§
then
[Wy— W, | < 4¢ " B(x).
Again

| Wy — W, | 42" S%IP@&B@) dg

2 o (B (T))z 2 —ux (B (0))2
=4 21 =5 21

etc. Thus W, (x, 1) converges uniforrhly forv=0and0=w

to a limit we denote by y, (x,1). Clearly

— st E—Y PO W,y D8
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: lyl(x’)")l éKe——vx
id from (5.8)

==}

) y1<x,x)=ei“—1Ssmux—zs)P(z)yl 1) d,

n
m this we have

iz K—v:c
0) Ly (e, ) —et?"| <

SIP(E)IdE
8 proves the lemma.
Proof of Lemma 2.2, Thal

FU)—1+S

analytic for »>>0 and continuous for v = 0 follows from

mma 2.0 and (5.0). That F(A) =1-+0(1) umformly inv>0
S |l]—>°o follows from use of

y(x, 1) P(x) dx

=]

_IF(D_1|§K 1+lll§iP(E)ld§

< K

r|l|1f’ i
SEIP(EHdH“',, SElP(‘c’)ldE
L

r.real 2= u = 0 we have as in (3.2)
(u)

i'uf’(u)_y2 ({L‘, Ll) e

y(z,u) =

[yl (x,u)e id"‘J .
) =0 then A(u) =0 and y (x,u) =0 whlch is 1mposs1ble.
usF(u)#O for u 3 0.

et F(2) vanish for some A, = u;~+ivy, v; >0. For large «
s
. d¥
x, k) = —212 x, A <
y3( 1) v lyl( 1) y? (g’ ll)

selution of (1.0). Since y; (x, 4;) ~ e'*1® we have

—ilix

ya (x,h) ~ e
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as x— . Moreover from (5.9) we also get us for large |1] and » > 0 using (2.2) and (2.9)

(5.11) gy (x, 2) ~ ik et z;(x, 1) f(x)cosix

L+ LFQ)

K-—d‘u x—
=50 Slf(z)ds|+KM‘5

Since y, and y, are obviously independent

ere we recall M = max (f@)|+|f @)}]). Or by (5.10) and

y (e, h) = cys (@, ) +eaga (@, Ay, the above inequality for large |1 |

If F() = 0 we see from (2.10) that we must have ¢, = 0.
Thus

1 1 F()—1
| . |t gy @) < 5@ R
(5.12) y(x, ) =cyy (x,4) ~ c eM - 2 .
and from (5.11) < KMze 7 | EMO | \f() (F)—1)|  Me™
, - ST rm 7]
(5.13) y (x, A1) ~ ic iy €M™, kM
. - . | o +lree
Using a familiar argument we have that the conjugate of y (x, 4; [4]

i (x, 4,) is a solution of (1.0) with i, replaced by 7, = ul—w

Tho r I; we have inverting the order of integration

y(x, )y (@, 20 —7g(x, Ay (x, 4y) PR CR)) (x, 1)
+ @2 Sly(x,ll) Pdx = 0. :
(1]

=Fay gy(s ADP()D(x,s, 1) ds

(%

Letting ®— 9 and using (5.12) and (5.13) we have D = sz(E) sinA (§—s) d§.

(A2 —22) Sly(x: 2) [Pde = 0. i tegrating by parts we find
o

; £ S cos i (5~ s) f (&) dt.
Thus uw;, = 0 and A, = iv, if F(A,) = 0. This completes t _

proof of the lemma. hus for large |2 |

We prove finally |D| < 4 M=) (x+1)

A
Lemma 3.0. We have by (5.5) 4]
MK (x4 1)
7 Az (x, l)Sy(E 1) f(E) ds 221(55_}_’28&1115]0(5 | L] < 7] 1+[ll | P(s)|ds.
.10 F () F@) )
. . . _ .
A Sof(E)dg Ssml E—9)P@y(, Dds =1, have easily since [2] = £ on ¢ } |
Clearly on integrating by parts . SIIngH <MK(Ex+Dn S 1__+ | P (s)|ds.
Z1(aC ) (25_1_30 25 d‘] c » 0
YR { F@) 054 (eosief @ a|. e
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(5.17) 'S]IZ||dz|»0

uniformly in & over any finite interval of x. From (5.15) w

also have easily for © >0 that as |1| = R—» Added March 911949'

" The method used in proving Theorem I carries over to the
juation ‘ .
\ 1 Id+1

y +(u2_‘%2_)_p(x)) y =

here [ is a positive integer and P (x) satisfies (1.4). Indeed if
: wa\i

@) = (-*2 ) J,, . (x) where gy, ,(x) is the Bessel function
d % . 5

(5.18) Il—fv(i)

providing we take § = R, uniformly in x over any close
interval in x interior to the open interval (0, ). But (5.17
and (5.18) complete the proof of Lemma 3.0.

In the introduction we remarked thal Plancherel’s theore
(1.9) holds for f(x)eL?(0,%). In (3.16) we proved it for.
restricted class. It is easy to exploit (3.16) to show that for an

f(a) eL2(0, )
g (w) = A()Sf(x)y(x u) dx

must exist and that

%@Wwﬁ%ﬁ@

en (1) has a solution y(x, 1) ‘which satisfies

lim y(z, w)

=1.
w40 J (@)

We recall that except for a constant J;(x) acts like 71 as
-—(.) Moreover for any u >0,

(x/u) ( 2sm<ux—%ln——m(u))—>0

In case (1.0) has discrete characteristic values it is still the w>w. It is indeed the case that @ (u) determines P (x) uni-

that @ (u) determines F(1). Indeed it can be shown that th
zeros of F(2) which as we have sesn occur at characterist
values i, = iv, are all simple. If the characterislic values

known then clearly '
A

1+~ ; 'considerably wider possibilities in application than the special
L vy '
G =F® T
- A o . .
k=131 i To indicate the modifications necessary for the case I >0 we
. .

roduce

hl(x)=( ) H(l) (x) = ei(a:-—%ln—én) 1_M+...J

is free of zeros for v >0 and thus log G(4) is analytlc M
. I+% 2ir

over |G(u)| = |F(u)| and

u. :
m 1 +i—l)k e H{1+>1 (x) is a Hankel function. Clearly A, (ux) is a solu-
arg G (u) = argF(u)+E§_arg TTTa nof (1) with P =0 as is hy(—ux). We also have
i, )

1
Thus G{(A) can be found and therefore also F(1). hxy = [h (x) (1) By (— )]
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and

k(@) = o[y @)+ (1) By ()]

from which it follows that

5 (@) + ik () = Ry (x).
1f :
g (x, &, 4) = j,(A%) kb, (AE) — j; (A5) ky (Ax)

G

57 [, () hy (—AE) — h, (— Ax) b, (A )],

then the “variation of constants”

formula (2.5) becomes

Qx) 1"
(5) y(x, 1) =ﬁ— Sg(a: E, )Py, 1) dE.
It is easy to show that, with A = u+1iv, and v > 0
. |Az|t?
l < K uz—_____, x S O,
IJ[( 93)' =~ ne (1+]lx|)l+1 =

for some constant K, and also for x > § >0

o F|aED [reltt?
L&) < Rt .
9@, & D] = Ke el (1 +[az )

Using these we get from (5) the analogue of Lemma (2.0) inclut
ing (3). Here we also find for v = 0 as a generalization of

FQ)=1—i S?’Lly(g, z)P(g)h,(z_z) dg
0

where 4 (u) =
have

i D) = b Ge) +1 (g G 8 D Py, (D 5.

These indications suffice to show the changes in going fr

the case of Theorem I (I = 0) to the general case.

Added in proof: An analogue of Theorem II for 1> 0 :
holds. Interesting examples of cases where the phase does:

| F(u)| and @ (u) = arg F (u). Instead of (579)' y
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determine the _potential (owing to the presence of discrete cha-
racteristic values, i.e. bound states) have been given by V. Bare-
MANN (Phys. Rev. 75 (1949) p. 301).

- (This paper was written while the author was a JorN SiMoN
GuecENHEIM Mémorial Fellow on leave from the Massachusetis
nstitute of Technology.)

]
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