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1. The solution y (x, )) of the differential equation

.0)

	

g" +0. 2 -P(x)) y = 0

ith initial values

y (0, ) = 0, y' (0, I) = 1 ,

ill, in case P (x) is small enough for large x, and in cas e

u � 0 where u is real, satisfy

.2)
x

m [u(x, u) -
A

emu)
sin (ux - (u)1 = 0

here A (u) and Ø (u) are continuous function of u, 0 < u < oo .

he function 0(u) is the asymptotic phase .

The problem of determining the potential P(x) from Ø (u)

rises in physics . Recently C. F . FRÖBERG, [1], has given variou s

pproximate procedures for calculating P(x) from 0(u) based

n the variation of constants formula or on one or more itera -

rms of this formula . He treats the equation y" -1(1+	
1)

x

	 y +

(Px)) y = 0 where 1 is an integer. The equation (1 .0) i s

he case 1 = 0 . FRÖEERG observes that his method need not o f

nurse be convergent . Indeed the question arises as to whether

(u) determines P(x) uniquely at all . We shall show that wit h
lilable hypotheses this is indeed the case . We shall also se e

hat iV (u) determines A (u) in (1 .2) uniquely and conversely . Th e

henry we shall develop for (1 .0) can be carried over to mor e

general cases . (See note on p. 27 for the case 1> O . )

I heorem I . If P(x) is piecewise continuous (or more generally
if 1'(x) is Lebesgue measurable), if



P (x) > 0

s:x I P (x)I dx< ,

4

(1 .3)

and

(1 .4)
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In case P(x) satisfies

z

S O

IP(x)Idx <.7 )

then (1 .2) is valid where A (u) and Ø (u) are continuous functio n
of u . There is no other potential function Q (x) satisfying the sa m

hypothesis as P(x) with an identical phase function (D (u) . Mor e

over 0(0 determines A (u) uniquely and conversely .

The condition (1 .3) can be modified . However, without (1 : 3
it is possible for (1 .0) to have discrete characteristic value s

= wk, k = 1, 2, • • • , where the Vk are real . Associated wit h
each 2. k ivk there is exactly one characteristic function y (x, 2 k .
which for large x is O (eVkx ) . If we assum e

(1 .5)

	

S
x2 I P (x)I dx<oo

in place of (1 .3) then we shall find that there are at most

finite number of characteristic values, 2, k = ivk , and with v k

We shall see that under the hypothesis of Theorem II, i

Ø (oo) - Ø (+0) < Tr ,

then there are no discrete characteristic values . (In fact w t

shall find that we always have either Ø (Go) = (D (+ 0) + m Tr o f

1
(D (Go) _ (D (+ 0) + / ` m + 2) Tr where rn is the number of chara c

teristic values in v > 0, i . e . with 7 2 < 0) . We now have th e
following result .

Theorem II . If P(x) is real and measureable and if

00

(1 .6)

	

S0n1

	

dx + S x2 I P (x) I
dx <

then (1 .2) is valid. If there are no discrete characteristic values ,
i . e ., if (D (co) - (D (+ 0) < 7r, then there is no potential function

Q (x) different from P(x) satisfying (1 .6) and with the same
phase function Ø (u). Moreover (D (u) determines A (u) uniquely
and conversely .

!hick is a stricter requirement at x = 0 than (1 .4) or (1 .6) i t
possible to consider initial values of the for m

.8)

	

y (0, 2) = sin a, y ' (0, 2) = cos a

it this case we could dispense with some of the lemmas w e
quire for Theorems I and II and use known results [2, § 5 . 3

i+d Chapter VI] in their place . The methods used here will
ury over to cover (1 .8) with the assumption (1 .7) . However,

u practise the condition

i

S
xIP(x)Idx<ao

0

much more useful than (1 .7) and we shall carry out our proofs
or this case .

We shall see in the course of our proof that the spectra l
presentation of a function f(x) involves the integral

~
TG

A2
(u) y(x , u) du

So

	

u) f (~) (R .

ms we see that the weight function in this integral u 2/A2 (u)

termines A (u), and therefore from theorems I and II als o
i) . Thus the weight function u2 /A2 (u) can arise from one

" (x) only .

In the course of our proof we shall also get the followin g
,lationship valid for any function f(x) in L 2 (0, Go) ,

We shall see that there is a function of À. = u+ iv, F (),) ,
nalytic for v > 0 and continuous for v > 0 such that for rea l

1,9)

	

SIf(x) 2 dx =
~

A2	
()

du

_ .
S x , y( u) f(x) dx

o

0o
LL2 2
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2. = u we have F (u) = A (u) We shall see that the bel l
vior of F(2.) as i -~ 0 is of concern to us and for this reasu
we need requirement (1 .3) in Theorem I and

S x 2 I P(x) dx <
i

in Theorem II .

2. Here we shall show that (u) determines A (u) and co l
versely under the hypothesis of Theorem I . Actually we sh a

use only (1 .4) except to show that F(0) � 0 where we ne e
(1 .3). Thus most of § 2 will be available to us to prove The y
rem II as well .

We shall require the following results . We shall use K I
denote positive constants which depend on P(x) only. We rem
a = u+iv .

Lemma 2 .0 . If P (x) satisfies (1 .4) then there is a soluti o
y(x, 1) of (1 .0) satisfying (1 .1) which for any x is an enlii
function of 2, and which for all 2. satisfies

Kxel
vis

~yCx , z) �. 1+1 ;,Ix, 0< x<oö .

lu~ x

y(x,
z) = sine, x + o e~	

I J

uniformly in x, 0 < x < . Moreover y (x, 2,) is an even tun
tion of 2 .

Lemma 2 .1 . If P(x) satisfies (1 .4) then for v > 0 there is

solution of (1 .0), y i (x, i) which for each xis an analytic funrr r
of 2, for v > 0 and continuous for v > 0 and satisfies

~ yi(x, Z) I

	

Ke
-ux 0 < x

and

(2.3)

	

y i (x, ;) -et lx
I<

KI-ux co

S

7

v < 0 there exists a function y2 (x, 2 .) similarly related to
six for large x or XI .

We shall prove these lemmas in § 5 . It is clear that fo r
u, y i (x, u) and y 2 (x, u) by (2 .3) are independent solution s

(1 .0) for large •x . Since they are independent for large x ,
ey are independent for all x, 0 < x< . From (2 .0) we have

y(x, ),)

	

Kxelolx .

re also have, as can be verified by substitution into (1 .0), the
ariation of constants" formul a

sina,x 1
y(x, i) =

	

+ z S xs(5)P()yC ,2.) d
0

ere the right side exists because of (2 .4) . We see from (2 .5) ,
use of (2.4), that for 2, = u ~ 0 we have as x-* o0

	

sinux

	

.

y(x , u) = u (1-+-
S

cos utP(F) yu) d~l
•l o

	

II

+cosux
S sin u~P(t)y(~, u)d~ +o(1) .

	

u-

	

o

Jr as x-±

( ) =

here i f

lien by (2 .6)

A (u) = F (u)I, Ø(u) = argF(u) .

ince y (x, u) is an even function of u, A (u) is an even function .
'rom (1 .4) and (2.4) we see tha t

F (u) = 1 +

y x,u
A (u)

sin (ux- Ø (u)) + o(1)
u

,~ .

S
e~U S p (o y

	

u )
a

F(i) = 1+ S cceil PC y($, 1) dE
0

is an analytic function of i for v > 0 and is continuous for
O . The properties of F (i) are given in the following lemma .

~

(2.0)

12,1-->-

.(2 .1)

(2.2)
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Lemma 2 .2 . If P(x) is real and satisfies (1 .4) then F(ti

defined in (2 .7) is analytic in the half-plane v > 0 and confi

for v > O . In v > 0 it can vanish only for values o f

= O . If 2,k iv k , v k > 0, is a root of F(2) = 0 the n

a characteristic solution of (1 .0) satisfying, for soul

iv k)-}0 as x->- .

For large l 2 i we hav e

(2 .9)

	

F(2) = 1+o(1 )

uniformly for 0 < arg ? < is .

The proof of lemma 2.2 is given in § 5 .

For v > 0 we have the following relationship for ei" y (x ,

as x -r . From (2 .5) we have

'r.9

	

9

2 .12)

	

g(2) = o(1) as 12 1

niformly for 0 < arg 2 < iv . Applying Cauchy's theorem over
semi-circle of radius R with center at 2 = 0 and diameter o n

ie real axis and letting R-- oo we find by use of (2 .12) that

R

l .13)

	

g (2) = lim	 1

	

9 (~) dd
Rico 2 .7SZ

	

Cr-- ),

R

'here a is real and 2 = u + iv, v> O . In the same way i f
u- iv, v > 0 then

	 Ç1q(1	 d)
0 xa~ 2~ii d-~,

do .

-R

aking the conjugate of the latter formula and adding to (2 .13)
'e find

nuous
for which u

y (x, ivk) is

G k

	

0 ,

(2 .8)

	

y (x , ivk) = G k yl (x ,

etdxy(x 2) =
eil.x si

"
x

2

Sssin (x- ) ei a. (x - O P (~) y ,
2,

	

Q

sI R
1 Im g (d) d

a- 2
g (2) = lim

	

a .

R±cc a

	

o-
- R

Letting x-- QC and using (2 .4) we get

(2 .10) eizxy(x, x)

	

F (2)

2i2
lim

XŸCO

R

log F(2,) , - lim

	

(P(°} d ~
R -> co 7L

- R

We shall now introduce the hypothesis P(x) > 0 and shoe

that in this case F(iv) + 0 for u > O . We have

(2.11)

	

F(iv)= 1+Se-° POy( ,iv)d'g .
do

Since y" = (O. + P) y, y (0, iv1 ) = 0 and y' (0, iv 1 ) = 1 we se' ,

that y" > 0 and thus ? 1 and y > O . In (2.11) this yields

F (iv) > 1 .
Since F (?,) $ 0 for v > 0 and since F (2) = 1 + o (1) as 12, ~ -

uniformly for 0 < arg 2 < a, wee see that g(2) = log F(2) 1,

analytic for v > 0 and continuous for v > 0 and moreover we ca

choose g (2) so that

'hus we see that Ø (u) determines F(A,) and in particular then ,
(u.) determines

A(u) = lim ~ F(u + iv) 1 .
o - . + o

ve observe that (u) is an odd function of u . By subtracting
to conjugate of (2 .14) from (2.13) and using the fact that A (u )

ven we get for v> 0

log F(2) = i '	 d o .

o

thus A (u) determines F (2) and in particular then determines



1 1

Ø(u) = lim ImlogF(u+iv) .
o->+ o

3 . We now assume that there is another differential equali o

with P (x) replaced by Q (x) where Q (x) satisfies the same hyp

thesis as P (x) in Theorem I and where the asymptotic phase

again Ø (a) . The equation is

z" +
(2, 2

-Q(x))z = 0 .

Since the asymptotic phase of z (x, u) is 11(u), its asympto l

amplitude is A(u)lu . Thus

(3.1)

	

z (x, u) = A (u) sin (ux - Ø (u)) + o (1 )
u

as x-> co where z (0, u) = 0 and z ' (0, u) = 1 . There are a k

two solutions of (3 .0), z1 (x, 2) and z2 (x, 2) satisfying the sa n

conditions as rdl and g2 in Lemma 2 .1 .

Returning to y (x, u) where u * 0 we have since ul and

are independent solutions .

y(x , u) = C 1(u) y, (x, u)+C2(u) y2 (x, u) .

Letting x -± oo we hav e

A (u)
sin (us - (u)) = C 1 (ù) et„r + C2 (u)

e
tax

+
u

ear zero and for large x . Let max(' f (x) 1+1 f' (x) I) = M.
I n ese requirements on f(x) are somewhat more severe than i s
hally necessary for our argument .) We now consider the fol -
,ving pseudo-Green's function integrals of f(x) ,

H1 (x, = F	 ~~~ y (x, 2) ~~i 0, 2) TO) d~

, X)
	 	 2

F(a) z1 (x , 2,) S y 0, i) f (~) d$ .
o

urly for each x, Hi , j = 1, 2, is analytic in 7. in the upper half-

lue v > 0 and continuous for u > 0 . Thus if c is the semi-
ele of radius R,) = Rete , 0 9 < 7r; , then for any x, 0 < x < ,
ichy's theorem yields

ff x
Hl (x, •t) d~-~\_Rr(x, u) du = 0 .

. x+tÎ

	

x

	

\\
Ji = x1(~,~)f(~)d~ =(~x

	

-I-Sx1~lzi(~, 2 )f(~)d~ •

~

	

`
Using (2 .3) we get since ÇIP.(0 I dt < Çl P (~) I d .Vx ,

.x

e + ei '1 x
! (x)

(3.0)

A (u) B
i Ø(u )

C 1 (u)

	

. A (u) ei 4' (u)
C 2 (u) _

	

2 iu2 iu

Killé(x+ dy v
If(~)Id~+	 Izi	 -(1+x} .

tegrating by parts we have

+d' ,4 x

Sze' f(o~+e i	 i7 (x) C ox Me-(x + ()) u
<	

Ix !
	 +	 I

;,I
	 .

Thus

(3 .2) g (x , u) = A2
rû)

[Y1 (x, u) e i Ø( u) - Y2 (x , u) et Ø( u )

In exactly the same way we see that (3 .1) implies

(3.3) z (x , u)

	

2iu
I z1 (x ' u) e

i (u) _ z
2 (x

u) ei ( u )1

Let f(x) be a real differentiable function which vanishes f

<KMe- vx r
d-I- e") (1-+- ~)
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	 (	y	 x, j). da
J

zi

	

;) f(~) d .+f(x) y(F)	
izx

da

c

	

c .

KM(d+R d ) (1 +~) .

If d = R-'I% we have uniformly in x for any closed interval o

interior to the open interval (0, cc) ,

Rm x5 y(x ,
~ x)

d).
Jx1(~, A.) TO) d~ = - 2 7ti f(x) .

C

Using this in (3 .5) with j = 1 we have

rz l(3 .7)

	

f (x) =

	

Rlrm u	Fu~ u) d u

	

, u) f (F) d ~

~J-R

We also have the following result .

Lemma 3 .0 . For any x>0 ,

az 1 (
F
	 x, À.)

~o

	

f(~)d~ = -f2~)+ .r2(x, j)

where uniformly for any closed interval of x interior to the ope]

interval (0, cc)

lim
Joc

The proof of this lemma is given in § 5 .

Using Lemma 3 .0 we have

lim
5z(x)

da,

	

f(') d
= - 7'

i f(x) .
Rao

c

Using (3 .8) in (3 .5) with j = 2 we hav e

(3 .9)

	

f(x) =	 2 lim
7nÎ R- oo

r .9

	

1 3

inee zi (x, u) is a solution of (3 .0), zl (x, u) = G 1 z 1 (x, u) +
,z2 (x, u) . Letting x->- oo we see that zi (x, u) = z2, (x, u) .
aking the conjugate of (3 .7) and (3 .9) we have therefor e

.10) f (x)

	

2 11M
Çu s

Fû)u) du ~z 2

	

u) f (s`) d " ,
76Z R

	

Ç

- R

- R
nee by (3 .3)

	

z (x, u)

	

A2(u) z1	 (x, u z2 (x , u)
\

	

2 iu ( F(u)

	

F(u) )

e have by adding (3 .7) and (3.10)

R

;12), f(x) = xm 7c
5u2U(xu)du

Çz(u)f()d .

) the same way (3 .9) and (3.11) give

R

i :13)

	

f (x) = lim
2 u Q z (x, u)

du

	

u) f ( .0

	

R ->. ~

	

A (u)

	

Sxy
a

R

f(x) = lim 2
\usz(x,u)

du
R co 7C

	

A2 (u)

	

~ y, u) f(~) d~ -

-R

ombining the above with (3.13) we have

3 .14)
f(x)

= lim

	

SRu'du

R-- 7c A (u) z (x, u
)

-R

Since the convergence above is uniform except near x = 0 an d
where f (x) vanishes we have

Rao
3 .15)

	

(x) dx = R ~ 7
,1 5;) Sz(x, u) f (x) dx y (5, u) f( ) d

. -R

(3 .8)

uzi (x, u)

F (u)
u S yO, u)f(O d .

01-R

f (X)

	

- 7c i

.R

lim

	

uz2 (x, u)

R .* oo

	

F (u) S
xY u) f(OdF -
0

du

-R

S
-u(,u)f(Od'g .
o

ç = oo



The derivation of (3 .15) is certainly valid if z is replaced bn

Thus

r

	

R

(3.16) 1of a (x) dx = lim
Tc A2 (u)

o
(x ' u) f(x) dxl

2

-R

and the corresponding result with y replaced by z . Combinn

we get

2

	

11

	

.00

n Å (u) du
(C

o
(x , u) f (x) dx

Jo
(x , u) f (x) dx

J
2 = 0.

Thus

(3.17)

	

S:u(x, u) f (x) dx = z (x, u) f (x) dx .
0

For any fixed u let us suppose z (x, u) $ y (x, u) at x = x1

Let us suppose then that y (xi , u)-z(xi , u) > 0 for som e

Since y (x, u) and z (x, u) are differentiable they are continuo

and we must have for small d >0, where x1 - d > 0 ,

y(x, u)-z(x, u) >0, Ix-x1 I < d .

Choose f(x)>0 for I x- xi I < d and f(x)=0 for Ix -

Then clearly for the value of u in questio n

C[y(x, u) -z (x, u)] f(x)dx> 0
J o

which contradicts (3 .17) . The same argument applies of cour

if z- y > 0 and we see then that y (x, u) = z (x, u) . Theret o

from the differential equations for y and z we get

y (x, u) [P (x) - Q (x)] = O .

(In case P (x) or Q (x) are discontinuous (3.18) holds alt; ;

everywhere.) Since y (x, u) vanishes only for isolated value s

x and since xP and xQ are integrable we have P (x) . - (1 (

almost everywhere which proves Theorem I .

4. Here we no longer assume P (x) > 0 but rather th

x2 I P (x) I dx < 00 and proceed to prove Theorem II . Lemnu

valid but the argument in § 2 which follows it can of cours e
longer he used . Now we shall show that either F(0) $ 0 or

e that near A. = 0 and for v > 0

0)

	

F (2,) = a A. +o (I I) where a

	

0 .

ice FW -* 1 for large 121 and is analytic for v >0 and since
zeros of F(i) all lie on the line u = 0 we see that either

0) * 0 or (4.0) implies that there are at most a finite number
zeros of F(~.) in the upper half-plane .
With F(0) = 0 we also have

F(7.) _ ~ei ~`x yx)P(x)dx-y (x, 0)P(x)dx .
.o

	

0

F•(2) = S(e iÀx -1)y(x, 0)P(x)dx
0

+1efÀx [y(x , 2 ) - y(x, 0)] P (x) dx = Il -}-I2 .
0

x - 1) y(x, 0) P(x) dx

l Iti represents the second integral in (4.2) . We have from
0) when F(0) = 0

x
(x, =1 +S P ( gQ,0)dß_Py( ,0)dß •

o

	

x

since by Lemma 2 .2, I y (x, 0) I < Kx ,

Iy' (x, 0)I <K

	

I P OI d

03?r ' (x. ,0)Idx<KSdxÇFIP()Id =K
. s`2 I P ( )I d <00 .1

	

x

	

1
ont this we see that

I y (x, 0)I < K.

~

(3 .18)

~
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S 0x u (x,o)P(T)dx

.

S
l erl.x- l -i~,xlly(x, 0)P(x)l dx

, o

wherein the last integral above we use I e `Âx -11 < 2 for v

and 2 < 212,1 x for x > 1 / 1 2 , I . Using (4 .5) we see that as l 21

(4.6)

	

I1 -i~ Sxy(x, 0) P (x)dx = o (l 2, I) ., o

~ a0

We have from (4 .4 )

(4.8)

	

y (x, 0) = x + (x - ~) P (~) y

	

0) d~ .

If (4 .7) is false and if F (O) = 0 then (4 .8) becomes

(4 .9) y(x,0) =- x SP(t)y,0)d`+SIPy0)d .
x

	

x

Let x1 >1 be large enough so
~

IP(O I (1s< i- .
x ,

Let max I y(x, 0) 1 = m . Then by (4 .9)
X x,

m <2 sI P ()g , 0)1

	

<< - m .
x ,

Thus m = 0 which is impossible and we see then that l i

holds . Thus from (4.6) we have as 2,--> 0

	

(4.10)

	

Il = a), +o (I 2,1) where a

	

0 .

We show next that I2 = o (l 2 I) as -- 0 . We have

	

(4.11)

	

I2 = ~ez''`x[y(x,~)-y(x,0)]P(x)dx .
0

Y'-P(x) y = 0

have y 3 (x) = y (x, 0) and an independent solution y4 (x)
,sen so that y3 y4 - y4 y3 = 1 . Since by (4 .4), yg (x) x 0
x-)-0 we see that a solution of (4 .12) independent of ya is

y (x) - y3 (x)
	 d

(0
x

(l this is bounded as x-)- O . Thus y4 is bounded as x-).-

have obviously also

S(x -

x
y4(x) = y 4 (xl) +(x- x )y(xl) + P (0 y4(0 d .

x,

4 711 < I y4 (x1) I + I y4 (x1) I

c l we see that I y4 (x) I < Kx for large x . Now if

y" - P (x) y = f (x)

have

Y(rs = y 3 (x) + '12 S:[uS(x)u) - y 4 (x) y(0] y

	

) d

1 e~ t x
P (x) dx C [y, (x) y4 (~) - y4 (x) ys (0] y

	

~) d~
D

	

o .
] . Danske Videask. Selskab . Mat.-fys . Medd . XXV, 9 .

x2 y (x , 0) P (x) I dx + 3 I 2. lS x l y (x , 0) P (x) l du, `
o

	

/IZ I

~

2
<l a

Now we shall sho w

(4.7) y x, 0)P(x) dx

	

0 .

\r ;



Lemma 2'.0 we have

~I2~ ~
KI~I2

.
xI P(x)I dx SIy(~,~)I ~

0

~

	

x

1 121 < KP,I
2 xIP(x)Idx 1+I

1
I

Jo
0

Ij21_<KP,
1 2

7121

	

x

5o I P (x) I dx So
d ~

1 8

O r

Using

Thus

1 9

z?> 0 is given by (Ø (O°) - Cp (- oo )) /2 rc = (Ø (oo) - W ( 0))/a .
rote W (+ 0) - 0(0) here we see that if cp (oc) - W (+ 0) < 7r
(e total number of zeros must be zero and in fact that W (co) _
(0) . Since 0 (oc) can be taken as zero we see that 0(0) = 0
d thus if F (0) $; 0, F (0) > 0 . If F (0) = 0, then we can wor k
ith a contour containing a small semi-circle, y, with center

2= 0 and radius Q . On y, î = vete, 0 < 9 < 7r . Thus as
(2 .13) g (2) = logF(i) is given by

f
l g (~)2da+

ai O_R+SP l a- i
g(2) = lim

R ico Tri
g	 2 dd .

y

(•~

	

1/IZl

	

xd , \

+K I2, I 2 xI P(x)I dx

	

I z I/IZl

	

/I zl ~

ģ
/1,1.1

	

~

< KI2I2x
3 IP(x)Idx+K\xIP(x)Idx-{-KI2I ~ x2 I P (x)I d~

o

		

J /I,ll

	

~l /IZ l

/I~I '!.

	

.1/I,l f

< K I 2a~' x2lP(x)I dx--KI7.I ~x2lP(x)I dx
ç0

	

1 /I z l'r.

+2KI2I Sx2 I P(x)Idx .

1 / I d l

Since Çc 2 IPx)ldæ<c we have then as I2 I-> 0
0

I 2 = 0(IiI) .

Thus we have demonstrated (4 .0) .

Exactly as in § 2 we find that if F(0) * 0 then the forinu .

-R

log F(2) =tim - 1
Ø (0

d o
n a- 2

R

is valid as are the other formulae . In this case we have, sin e

F (2)--± 1, as 111-> oo that the total number of zeros of F(%.

inte g(2) = log~~) logi near i = 0 we find on letting

0 that since
F(i)

	

0 we have

R

O.) lim 	 1
~

g(O dcs
R->-cr

om which all the other formulas relating F, A and W follow .
ere we find that 0(+0)-0(-0) = - rr and that the tota l
umber of zeros in of F(2,) in v > 0 is given by

= 21~(0(co)-(+0)-I-Ø(-0)-(-oo))-
2

m

	

.

InceW(oo)-Ø(+0)=Ø(-0)-Ø(-oo)wehave In= 1 (0(oo) -

1-0))- 1 2 . Since Ø (co)--(D (+0) < a we see that m = 0 . In

here we must have W (Go) = W (+ 0) ± rr . Since we tak e

- r=0 we have Ø(+0) =-
a

. Also Ø(-0)= i-jr and as

the other case 0(u) is an odd function . The results of § 3
arrv over without change thus establishing Theorem II .

Here we prove a number of lemmas. In all these lemmas
shall require only that

2 *

1

R ->- o0

2TCi

	

cr -,I
-R



20

	

Nr .

(5 .0)

	

SX P(x) 1dx< .
0

In the proofs of Lemmas 2 .0 and 2.1 the formulas are writt c

for the case 7 * 0 . In case 7 = 0 the changes involved are obvio u

Proof of Lemma 2 .0 . Consider the sequence yn (x, i) wh É

y o (x,7) = 0 and

Ç0si n (5.1) yn (x, i) _
sin7 x

+

	

(x-

	

yn_1, d .

We have if i = u+ iv, for v > 0

(5.2)

	

I yt(x , i ) -yo(x , i ) l

Thus

(5.3)

and this is true for all 7 . Using this in (5 .1) we get

sini(x- D

7
o

Much as we found (5.3) we have

B(x) = S

SIy2-yl <4 2 xe IvIx B(x) .

Again from (5.1) we have

Y3-Y2 Î

	

43 xe l ° l x

-

	

CI P(E B(

	

= 4 3 xe l ° l xS
o

then

2 1

oceeding we have

yn - yn-1 1 < 4n xe'v (B {x))n-

(n - 1) !

tius in any finite range of x and finite region of i, yn (x, i)
mverges uniformly to a limit y (x, i) which is therefore ana-
ie in 7 and by (5.1) satisfies

Çsin iy(x, =

	

x

Â.

	

1

	

(xPy(~,7

)om(5 .5) we see easily that y , (x, i) is a solution of (1 .0) and
lisfies

y (0, i) = 0,

	

(0, 7) = 1 .

M (x, i ) = xl y(x,i)1(1+I2Ix>é

	

.

om (5.2) we have easily by considering separately I ix I < 1 and
r>I,

<
1+1a

lx.

inr; . this in (5.5) we have

1)lox < 8xe,U~x
i 8

(x-~)et~t(x-~)

'Po
M(',7)~e~u!~

dIa.[x

	

=1+12,1x

	

o l } I i l(x-~)

	

1-+1+121 ',

	

M (x,i)

	

8 +8 Sl P ()l M (, i) d .0

M (x, i) < 8 exp (8 Jo I Pa) I ca. ) .

(5 .0) we have M (x, i) < K . With (5.6) this gives

ly(x,i)I

	

Kxe l ° i x
ç 1-Iilx •

sin ix

i
= xe vx 1-e2i),x

i x

l yt -yol =
sin ix

i
< 4xe!Ui x

I P(~)14~e!O~~dç. .

<4xeIDRx-f>, 0 <~< x .

lye - ytl <_ 4 2 xe I ° !x c IP()Id .

sin 7 (x-

i

O xe lUlx
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~ x

y(x,~)
sinAxl < Kel ° lx ~	 I~ I

1 +IAI
IP(OI "

I

	

I

	

~
vo

KelO~x
(' i ~lÅl '! P

	

1

<	 	 d~+Ç'
~I>

	

d .g IP(g) I
IA 1

	

o-

	

IAI, ,

	

-
l

ll
AI -4-00

y (x,
j)

	

sinex

	

(ells
I

=	 +o	

That y (x, A) is an even function of A is clear from the f a

that each yn (x, A) is even . The completes the proof of the lemp +

Proof of Lemma 2 .1 . Let Wo(x, A) = 0 and le t

(5.8) WR (x, i) = etx_1 S:in(x- P Wn_ 1 (F, A) d
x

Iyi (x , A ) I <Ké-°x

0 .9)yl (x, A) = ei .lx-
-27 Ssin(x_)P()yi( . A)dg .

x

rum this we have
°x

o0

i .lo)

	

I yl(x , A)-et
i

	

Ke

~ IA~
SIP(~)id~ .

Proof of Lemma 2 .2 . That

FO.) = 1+ Se lz y(x,A)P(x)dx
0

analytic for v>0 and continuous for v > 0 follows from
( Duna 2 .0 and (5 .0) . That F(i) = 1 + o (1) uniformly in v > 0

IA I -±x follows from use of

Thus as

From (5 .3) for v > 0

sin A (x -) < 4 -x)

	

Lc, > x .

IF(A)-11-< K 1 42,I 1P(g)I dg

o

Clearly I WI - Wo I < e- ' and

CC'
< K

si ,1 1Å1 % .
I K=/, I

o

	

/I u

I W2 (x , A) - Wl (x , y) I< 4 1 (g -x)

	

p (O I é°~ d
x

< 4é°x SI P
(~)I

da •
x

real A = u + 0 we have as in (3 .2)

A(u

2 iu) [yl (x , u) e
i'(u)-y2

(x , u) e t 4'"~ .rd(x, .u )

21

	

=

	

2 !

etc . Thus Wn (x, A) converges uniformly for v > 0 and 0� x

to a limit we denote by yl (x, A) . Clearly

F(u) = 0 then A (u) = 0 and y (x, u) = 0 which is impossible .
ius F(u) * 0 for u + 0 .

Let F (A) vanish for some A l = u l + iv 1 , vl >0 . For large x

y 3 (x , A 1) = - 2 iA l yl (x, A1)

	

d4'

yi U ; A1 )

solution of (1 .0) . Since yi (x, A1 ) ~ eiz ' x we have

,,(x, Al) ^' 2 iA 1 x

I W 2 - Wx I < 4 é ° x B(x) .

J
I W3- W21 42e

ux SlI p (OIB(O d

= 42 e
°x (B(x)) 2 < 4 2 e °x (B(0)) 2

I f

then

Again



24

	

N ,

as x - - oo . Moreover from (5.9) we also ge t

(5.11)

	

9i (x,

	

i2,1

	

x

Since yi and ya are obviously independen t

y (x , 21) = c l yl (x , 21) + c2 ya (x , 2 1) .

If F (~ 1 ) = 0 we see from (2.10) that we must have c2

Thus

(5.12)

and from (5 .11)

(5.13)

Using a familiar argument we have that the conjugate of y (x,

g (x, 21) is a solution of (1 .0) with 2 1 replaced by 7 1 = u1 -ia

Thus

y (x , 2l)J ' (x,g (x,11)y'(x,al)

+(-g2i) SIy(x,~t){ 2 dx = 0 .
0

Letting x-- oo and using (5 .12) and (5 .13) we have

_
(~i~i) ST y

0

Thus u1 = 0 and 2 1 = iv 1 if F(2 1) = 0 . This completes t h

proof of the lemma .

We prove finally

Lemma 3 .0 . We have by (5 .5)

=

	

Z1
(x, À,) x

	

21
(x, ,l)

F(

	

~) Sy

	

f(~) d ~ =	 F,(~)
Sxs i
in-

flt !

+
21T~~ )
	 S xf (~) d ~ S osin ~ Q - s) P (s) y ( s , 2) ds

Clearly on integrating by part s

z l (x ,

	

cos Ix 1 x

	

1
Il

= F())
~ - f(x)-~ ~-~ Scos~~f'(~)d~1 .

	

o

	

1

25

hus for large 121 and v

	

0 using (2.2) and (2.9)

rfo x-d'<Ki~ l
3If , (OdI+

IIMô

mere we recall M = max (1 f(x) 1+1 f' (x) I ) . Or by (5.10) and
he above inequality for large 12 I

D=
Si

sin 2(-s) d .

ntégrating by parts we find

D-
-cos 7 (x-s)

	

f(s)

	

x

2
	 f(x) -I-	

2 I 2 S
cos ( - s) f'

i s

x

1121

	

MK	 1)

121

	

1+ 1

	

s	

2 1s
IP(s)1ds .

o

1• 1 I = R on c

,x

I2 I Id~,1 < MK(x -+- 1)Tr 1
+Rs

IP(s)I ds .

s

0

I1 + 2 2 F
1	

(2) f(x)

<
KMxé + KMa + f(x)(F (Ä) -1 )

=

	

jal

	

121

	

22F(2)

+ I	 SIP(~)d
-

.

or 12 we have inverting the order of integratio n

5 .16)

	

I2 = z1

F

( )2)~y(s,2)P(s)D(x,s,2)ds

f (x) (F(2)-1)

2 2 F(2)

Mé-2vx

+

+

	

1 ,1 1

I I 1 + 211 f(x) <

y (x , ~ 1) = c i yl (x , ~ 1) ^ c1
et2i x

y' (x,

	

ici ~, 1

, a l) 12 dx = 0 .

(5.14)

Il+zl(x, f'(x)cos 2x
F(2)

ID I < 4Me°(x`s) (x + 1 )

121
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Added March 9, 1949.

cW

(5 .17)

	

Si 1 II d I-* O

uniformly in x over any finite interval of x . From (5 .15) w

also have easily for x > 0 that as 121 = R- -

providing we take d = R 11', uniformly in x over any clos e
interval in x interior to the open interval (0, co) . But (5 .1 7

and (5.18) complete the proof of Lemma 3 .0 .

In the introduction we remarked that Plancherel's theore r

(1 .9) holds for f(x)EL' (0, co) . In (3 .16) we proved it for
restricted class . It is easy to exploit (3 .16) to show that for a n

f(x)EL'(0, co )

g (u) =1.
L

m. A	

(
u) So (x) 9 (x, u) dx

-)-oo

mu st exist and that

Ĥ g(u))2 du = S '0(f(x))" dx .
0

	

0

In case (1 .0) has discrete characteristic values it is still the ca s

that Ø(u) determines F(2) . Indeed it can be shown that Ii i

zeros of F(2.) which as we have seen occur at characterisii

values 2k = iv k are . all simple. If the characteristic values a

known then clearly

1 +

wk

u

k
arg G (u) = arg F (u) -} 2', arg -1 +

k=1

	

1

	

u

IUk

Thus G(a.) can he found and therefore also F(2) .

m

The method used in proving Theorem I carries over to th e
quation

1)

	

'-I-(u2-(1
1)

P
x)

	

0

There 1 is a positive integer and P(x) satisfies (1 .4) . Indeed i f
ruli

+j1 (x) _ (2 I J1 + (x) where J1
1
(x) is the Bessel function

hen (1) has a solution y (x, u) which satisfies

lim
y (x, u)

= 1 .
x-*+ o J 1 (x)

We recall that except for a constant j1(x) acts like x1 + 1 as

4-0 .) Moreover for any u > 0 ,

y(xu)-
u1}ul

sin(ux-2 1n-a)(u))-*

x--->- 00 . It is Indeed the case that (D (u) determines P (x) uni-
u,dy if

I)

ind as already stated if (1 .4) is satisfied) . (The condition (4)

is considerably wider possibilities in application than the specia l

.{se 1 = 0 . )

To indicate the modifications necessary for the case 1 > 0 w e

utroduc e

hl
(x)

= ()Hix)

	

(

	

1(1+1)z

+

	

=

	

1 - 2ix

	

. . .

.v here 1-1 1( + 4 (x) is a Hankel function. Clearly h 1 (ux) is a solu -

Lon of (1) with P = 0 as is h1 (- ux) . We also hav e

J 1 (x) = 2 ~h 1 (x) - (- 1)1 h 1 (- x)

Ï.

f(x)
(5 .18) 71- 2a,

d.il->-0, .

1 ±-
1U k

w k

is free of zeros for v > 0 and thus log GM is analyti c

over I G (u) = I F (u) I and

1(1+1) -I-- P (x) > 0
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and

k1 (x)

	

2 i
[hi (x) -F- (-)1 h1 (- x) ]

from which it follows tha t

J 1 (x) + (x) = h i (x) .
If

	

g(x , , ),) = .11 (~ _0 k1 0 ,0 -jj(),(x)

_ (-1)1

2 i
	 [h1

x) h1(-

	

- h1 (- Ix) h 1 (2, ~)] ,

then the "variation of constants" formula (2 .5) becomes

g (x > Z ) _ Jz~+ ) -~ g(x, ~, ~)P(~)>~(~, a)d~ •

It is easy to show that, with ). = u+ iv, and v > 0

	 I~xI 1 + 1

IJ1(~x) < Ké'x

	

1+1 , x < 0 ,(1 - {- I .i x l )

for some constant K, and also for x > > 0

g(x , ,~) I

	

Ke
u(x-)( 1 + 	 I)1	 :2,xI

1+1

I ~ 1 1

	

(1 + 1 x I)1+ 1

Using these we get from (5) the analogue of Lemma (2 .0) incloc!

ing (3) . Here we also find for v > 0 as a' generalization of (2 . 7

F(2.) = 1-i Sa l y(

	

P( )h 1 (,ß )
0

where A (u) = I F(u) I and Ø (u) = arg F (u) . Instead of (5.9) w
have

91(x , 2) = h 1 (2,x)+
1

Sg(x ,

	

,Z)P(~)9i,~)d~ •
x

These indications suffice to show the changes in going fron

the case of Theorem I (1 =. 0) to the general case .

Added in proof : An analogue of Theorem II for I>0 als _

holds. Interesting examples of cases where the phase does nés'

determine the potential (owing to the presence of discrete cha-
cteristic values, i . e . bound states) have been given by V . BARG "

%IANN (Phys . Rev. 75 (1949) p. 301) .

(This paper was written while the author was a JOHN SIMO N
.UGGENHEIM Mémorial Fellow on leave from the Massachusett s

Institute of Technology .)
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