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In order to prove the first inequality it is sufficient to prov c

that if for an arbitrary n we pu t

Hn = [min fp < a]
p < n

we have y (H 71 A) < a ct, (Hn, A) for any A e ' . For Hl C H.
and H = C5 Hn . Hence ,tti (HA) = lim ,u, (Hn A) and y (HA) _

n

	

n
lim P (Hn A) .

n To prove the inequality y (HnA) < a p,,(HnA) we put

DET KGL. DANSKE VIDENSKABERNES SELSKA B
MATEMATISK-FYSISKE MEDDELELSER, BIND XXV, NB . 6

ON THE CONVERGENCE

PROBLEM FOR DIRICHLE T

SERIE S
Hnp

([fp < a, fp +l > a,•••, fn> a] forp< n

'[fn < a] for p = n .
BY

A e p for any p this implies HARALD BOH R

Then Hnp e p and Hnp [fp < a] . Moreover Hn = 2 Hnp . Sind
p < n

~ (Hn A )

	

y (Hnp A) = yp (Hnp A)

p~.ll

	

p~ n

< 2 a,wp (HnpA) = ~ au, (Hnp A) = a,w (HItA) .
p<n

	

p< n

The inequality P (KA) > aµ (KA) is proved analogously .
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Introduction .

Let . an
n_5

be a Dirichlet series in the complex variabl e

= «+ it . With such a series are connected several values o f

he abscissa a which are characteristic for the series in question .

Firstly, as an n s = an n 6, it is evident that there exist s

u "abscissa of absolute convergence" GA (-oo < o-A oc) such
hat the series is absolutely convergent for o> oA but not for
` 6A ,

Secondly, as first proved by JENSEN, the series also possesses

u "abscissa of convergence" oc, i . e . there exists a number ac
uch that the series is convergent for a> dc , divergent for a< dc .

letween oA and ac we have the relation 0 < o"A - o-c 1 . For

my e> 0, K> 0 the series is uniformly convergent in a> ac -{- r ,

<K; hence the series represents in its half-plane of conver-

cnce a> ac an analytic function f (s) .
Thirdly we have the "abscissa of uniform convergence" au ,

n l roduced by the author as the g .1 . b . of the abscissae oo for

Bich the series is uniformly convergent in the whole half-
ale a> c(and not merely in any limited part of it) . Obviously

Finally it is often convenient to introduce a fourth abscissa ,

VILich we shall denote by o* , defined as the g . 1 . b . of the

JI scissae oo for which the terms of the series G'an n t °° +``~

main bounded (i .e . 1 n l

	

< K for all n) . Except for the

etal cases where the series is convergent everywhere or no-

ehere (where all the abscissae introduced are either - cc o r

Ç respectively) the abscissa o* may also be defined as the-
rL inly existing-smallest number o for which an n-6 = O (nd)

n every > 0 . Evidently ac > a* and aA < a * + 1 .
1 s
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There is no real difficulty in giving explicit expressions te

the four abscissae, introduced above, in terms of the coefficien t

an of the series . As regards a*, it follows immediately from l b

definition of this number that

loglam
a* = lim

log n

and for the three abscissae of convergence one finds by parti n

summation, in case the series is divergent for s = 0, the wel l

known expressions

	 log I Sr, l

	

log A n

	

log Un
as = lim

lo

	

aA = lim lo

	

a U = lim
log ng n

	

g n

	

g

where

In the following we shall, however, use only a simple co l

sequence of the expression for au, viz ., if for some a > 0 t h

partial sum Sn = al + • • • + an is not o (ne) for n -o- oo , th e

the abscissa of convergence aC is certainly > a .

While the four numbers aA , ac , au, a* are defined diren l

from the series itself, there are some other abscissae, import n

for the theory of Dirichlet series, which are determined in

more indirect manner, namely from the behaviour of the analv i

function f (s) given by the series in its half-plane of convergen c

We shall mention three such numbers, viz .
w = g. I . b . of those ao such that f (s) is regular and bound e

in a>ao ,
wl = g . 1 . b. of those ao such that f(s) is regular and 0 (I f 'I

in a> ao for any E> 0 ,

S? = g . 1 . b . of those ao such that f(s) is regular and of fini f

order in a> as , i . e . = 0 (I t IK) for some value of K = K ( .

Obviously co > co l > Q .

By the "convergence-problem" for Dirichlet series is unit

stood the problem of finding relations between the properlie

Only in the case of the abscissa of uniform convergence d o
have a simple and general solution of the problem ; in fact ,

proved by the author, we have for every Dirichlet serie s

relation

the series is uniformly convergent just so far to the left
the function f (s) represented by the series remains regula r
bounded.

In the case of the abscissa of absolute convergence the pro -
in of characterizing the abscissa aA has turned out to be i n

main a problem of discussing the possible values of aA -au ,

of aA -w, and this latter problem has in turn, as show n

the author, an intimate relation with problems from th e

ory of power series in infinitely many variables. In this way

was found that the difference aA- a 1 (which evidently i s

1) is always
< 2

and, as proved by HILLE and BOHNENBLUST,

at this upper bound
2
can not be diminished .

The problem of determining, or rather estimating, the abscissa

convergence au itself by means of analytical properties o f

e function f(s) was first attacked by LANDAU who by his

searches opened the whole field of investigations in question .

arting from. the well-known fact that f(s) = 0(10 for a> aU + s ,
hich so to speak limits the extension of the half-plane of

nvergence, he proved the other way round that if the orde r

magnitude of f(s) is known in a certain half-plane a >

ie may conclude that the half-plane of convergence cannot be

o small . LANDAU 'S estimation of oC was sharpened and gener-

ned first by SCHNEE, who proved among other things that

is always < w1 , and later on by LANDAU himself . The best result ,

)twined by these successive improvements, is stated in th e

llowing theorem 1, the "LANDAU-SCHNEE theorem" :

L.-S . Theorem . For the Dirichlet series an n-S let the abscissa
be < 0, i . e. let an = O (ni) for every > 0, so that the series

certainly absolutely convergent for a> 1 . Further we assum e

See e. g. E . LANDAU, Handbuch der Lehre von der Verteilung der Prim-
a, Leipzig und Berlin 1909, p .853 and 857 .

n3 m

=a,, l ,

v1

Un = I . u . IS .
~ <<

n
- iiV a r, v

v= 1

of the series an n-s as such-especially the values of t h

different abscissae of convergence-and the properties of tl'

analytic function fTs) defined by the series .
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the existence of two constants rt <1 and k > 0 such that th e
function f(s) defined by the series is regular for a> N and

f(s) = 0(1 t i k+E)

	

for

	

a>,i + e

Then the series is convergent beyond the line a = 1, namely a t

any rate for

u> Min { 1?	 	 1-I-kl .

In other words, under the above conditions the abscissa t o
convergence satisfies the relatio n

aC <

1
	 +~~ if rt -I-- k >"0

and
aa <~+ k

	

if N-{-- k0 .

When applying the L.-S . theorem to the classical Dirichl .
series occurring in the analytical theory of numbers, such a

the zeta-series with alternating signs (- 1) n-1 R-s , the result

obtained come out to be rather Car from the real truth, is

the values obtained as an upper bound for 6C are far too bi .

This might indicate that the theorem could be improved, i . c

that the number Min
'i

+ k1 + k
,+k could be replaced by

smaller one. From an earlier investigation by the author, carried

out with a somewhat different purpose, it can, however, be con-

cluded that this is not always the case ; in fact, from the stud '
of a certain artificially constructed Dirichlet series of the "ga l

type" , it may be shown that in the special cases 0 < k < 1 ,

= -k, the L .-S. theorem cannot be improved . Recently, 1

have taken the whole question up for a renewed investigatio n

and by generalizing my earlier construction I have proved tha t

the L.-S . theorem is in the very strictest sense, i . e . for ever

pair of values ('n, k) with N < 1, k > 0, the best possible one ï

In fact the following theorem holds .

Theorem 1 . For any given pair of values (a, k) with ' < 1

k > 0, there exists a Dirichlet series Tan n-S with a* < 0 /or

which the function f(s) represented by the series is regular ie

>N and, for any e > 0, is O (I t Ike £) in a> N + e and such tha t

e value of the abscissa of convergence aC is given exactly by

dd = Min

1
l+k ,

By means of trivial transformations (s being replaced b y

+ so) it is easily seen that we may confine ourselves to con -

der the case N +k > 0, o*

	

0, i . e . to prove the

Theorem 1 a . Let (2, k) be an arbitrary point in the domai n

etermined by N < 1, k> 0, ij + k > 0 . Then there exists a Dirichle t

eves f(s) _ ~ an li S with a* = 0, with f(s) regular in a> N and

) (I t lk+E) in a> ij +e, such that its abscissa of convergence ac is

est the point 1+k (> 0 and < 1), i . e . the point in which the

rie connecting the two points ( , k) and (1, -1) cuts the axis

f abscissae .

For a Dirichlet series we introduce in the usual way th e

ANDELÔF se-function e = , (a) (2 <a< oo) defined for each

0 >S:4 as the g .1 . b . of the values of 1 such tha t

f(a'p+it) = 0(1t1 1 )

r, what amounts to the same thing, tha t

f(a+ it) = 0 (I t I I )

	

for

	

a > as

	

(or a> GO .

lie be-function is a continuous convex function in 12 < a< o

Lid is equal to zero for sufficiently large values of a, at any

rate for a> G.A . By help of the p,-function the L .-S. theorem ,

the case N +k > 0 a = 0, may easily be shown' to he

aiivalent with the following theorem .

Other form of the L.-S. theorem. Let a be an arbitrar y

o rimber in the interval 0 < a< 1, and let As) = 'an 77 S be a
Dirichlet series with a* = 0 and as = a . Then the ,w-function

Compare K . GRANDJOT, Ueber das absolute Konvergenzproblem der Dirich-
i_'.schen Reihen, Dissertation, Göttingen 1922 .
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attached to Rs) will in the whole interval o> . satisfy the co n
dition

,w (d) ~ M a (a)

where M a (a) is the simple convex function characterizing the broke:
line which consists of two half-lines meeting in the point (a, (n
namely of the part of the axis of abscissae to the right of a
and of the prolongation of the segment from the point (1, - 1
to the point (a, 0) beyond this latter point, i . e.

for 5? <a<a ,

Furthermore, using this form of the L .-S. theorem it is readi l
seen that our theorem la (i . e . the theorem 1) is certainly tl
if the following theorem holds good .

Theorem 2. For any a in the interval 0 < a <1 there exist
a Dirichlet series Rs) = an

n-s
with a* = 0 and au = a, suc l

that S? = - oo and the ,u,-function attached to Rs) is given b.

o

l° (a) = 11Ïa (a) - a- a

a- 1

The main object of the present paper is to prove this theorem 2
I may add, however, that the types of Dirichlet series con

structed below may also be used to illustrate various points i i
the theory of CESARO-summability of the Dirichlet series .Ian
as developed independently by M . RIEsz and the author . I n

return to these summability problems in a later paper ; heri

I shall only recall one of the most striking results of this theo i
viz . the relation

as =

where as denotes the g .1 . b. of those ao for which the serie s
C-summable of some order in the half-plane a> ao . Thus c

like au (but in contrast to ac and aA ) can be fully determined
by means of simple characteristic properties of the function It s
represented by the series .

6

	

9

The paper is divided into two sections . In § 1 we prove our

theorem 2 for the special case a = 0, and in § 2 we treat the

eneral and somewhat more difficult case 0<a< 1 .

Added remark . After having completed this paper, con -

Hining, for . an arbitrarily given a in the interval 0 a < 1 ,

he construction of a Dirichlet series »n n
s

satisfying the

onditions of theorem 2, I became aware that quite a simila r

problem had already been treated and solved in an interestin g

paper by NEDER I who used a method of construction which

shows characteristic relationship with that applied by the author .

he results of NEDER, however, do not cover the results of thi s

paper. In order to explain the connection between the result s

I have for a moment to consider not only the "ordinary "

Dirichlet series Vann-s
= 2'ane-slosn, with. which we exclu-

sively deal in the present paper, but also the "general" Dirichlet

cries Pan e-zns where 0 <<< • is an arbitrary increasing

,c-quence tending to o . For a certain class of such general

1 àirichlet series we have, as well known, a theorem quite simila r

lo (and including) the L .-S . theorem mentioned above. In fact,

if the ?,n-sequence satisfies, ror a positive finite 1 and any d>0 ,

the condition

= Q (e'n(I-Fr%))

introduced by the author (and shown to be the widest clas s

for which theorems of the type in question hold), then th e

L-S. theorem in the second formulation is still valid whe n

only a runs through the interval 0 < a < 1 (instead of the

interval 0 < a < 1) and the dominator 1 -a in the expressio n

for Ma (a) is replaced by 1- a . Now, the problem treated an d

solved by NEDER was just to prove the converse of this las t

;theorem concerning the general class of Dirichlet series fane zn s

satisfying the condition (*), say with 1 = 1, namely to each

Il a <1 to construct a series »n e ' of the type in questio n

with a* 0, au = a and its ,w-function given by ,e (a) = Ma (a) . I f

1 L. NEDEn, Ueber Umkehrungen der Konvergenzsätze für Dirichletsch e
Heihen, Berichte der Akademie der Wissenschaften zu Leipzig, Math .-Phys . Klasse,
Bd .1 .XXIV, 1922 .

0

	

for a> cc

Ma(U) = a- a

a-1

for. a > a

for a a
1

-n-f-i

	

n
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this had been done for an arbitrarily given sequence of exponent s

satisfying (*), for 1 = 1, NEDER ' S results would obviously have

contained our theorem 2 . But this was not the case ; in fact ,

NEDER only proved that for any a in 0 < a <1 there exist s

some sequence 7 1 ,

	

• satisfying (*) for 1

	

1 and a corres -

ponding Dirichlet series Y e " an

	

S with a* = 0, ac = a an d

,u (a) = MIX (a) ; indeed, he just faciliated his construction by choo s -

ing an "artificial" sequence especially suited for his purpose ,

namely a sequence which-in contrast to the sequence Zn
= log n

-is composed by parts of different arithmetical progressions .
In this connection it may be emphasized that many problem

concerning Dirichlet series essentially depend on the specia l

character of the sequence Z n of exponents . Thus, to mention

an interesting example, nearly related to the problem in question ,

it has been proved by NEDER in his paper quoted above tha t

there exists a general Dirichlet series Tan with exponenh

satisfying (*) for 1 = 1, such that ac = 0, aA = 1 and u, (a)

2--y for a < 2 , while it is an open problem whether ther e

exists a Dirichlet series of the ordinary type an Il S with th ,

same properties . [Only under the assumption of the so-calle d

LINDELÖF hypothesis-which certainly holds good if the RIEMAN )

hypothesis does-we possess, as emphasized by GRÀNDaoT, such

an example, namely the series c (s) (1 - 2
1-5 ) _ (-1)n+1 ri- ' I

§ 1 . The case a-0.

In this section we shall prove theorem 2 in the special ca, .

a = 0, i. e . we shall construct a Dirichlet series f(s) =

	

(In n

with a* =0, as =0 and .0=-oo such that the p-function i s

The idea of the construction, namely to build a gap-seri e

containing differences of higher and higher order, has be e

used previously by the author' .

' H. Bonn, Bidrag til de Dirichlet'ske Rækkers Theori, Habilitationsskr.
København 1910.

Let p, <p2 <p3 • • • be a sequence of positive integers whic h
creases so rapidly that pm+i > Pm + m and that the infinite
ries

~ 2mP
a

m= 1

nverges for every e> 0 .

We consider the Dirichlet series

anrt
s

= pl s - (Pl + 1)-S + p2' - 2 (P2 + 1)-S + (P2 + 2)-S-{- . : .

e terms of which consist of groups of 2, 3,- .• elements such

at the mth group is given b y

ms- (T) (Pm+ 1 )_S +( )(pm+2)_.S- . . .+(-1)m(Pm+m)-S

nd where, on account of the inequality pm+i > pm + m , th e

coups do not overlap. Applying the usual terminology fo r

ifferences of 1St and higher order, i . e .

a u p = up - up+1 i <7 2 u p = up - 2 up+i + II p +2 '

,e may write our Dirichlet series, with its terms in groups ,

n the form

f (s) -±an n
_

n= 1

or these differences we shall have to use, besides the genera l

rivial estimation s

vmup
Ç

up + l ) l up+i +

	

+ up+m

	

2 m . Max 1 II,,
\

	

p+m

n A ,- for 1 < h <In ,

mllp
I - Idin-h ah up I< 2m-h . Max I dh 141 ,

p < v < p +m-h

given by
0 for a > 0

-a for a < 0 .

(pis)
m=1



12

	

Nr . G 1 3

the special, well-known, integral-representation for u p =
(p > 1, s arbitrary complex)

p+1 x,+1

	

xh_1 +1
h r/

	

1~h (p s) = (- I)h
S

dx 1 dx2 . . .
Ç

	

dxh
(xh s) dxh =

p

	

Jx~

	

xh _ 1

	

h

p+1

	

x h_1 + 1

s (s + l') . (s -~ h-1) Çdxi

	

~

	

xhs-hdxh
p

	

x h - 1

which, in case a+h>0, immediately gives the inequality

ah( s)I < Isl . Is+l l . . . js+h-11 .p6-h .

We shall now show that our series f (s) =Zan n-s =Z,,m (p m
has all the properties stated .

Firstly we have a* = 0 . On the one hand 0* is certain},:

> 0, as a n does not tend to zero for n-± co (e . g . an = 1 for
n = pm) . On the other hand an = 0 (nf) for each e> 0 ; in fac t

since 2 m pm e -- 0, we have for each n for which a n $ 0, i . e . fo r

n = pm + v(0

	

v < in) and m sufficiently larg e

I an = (- 1)"
(m) < 2m ( 2mp

mE ) Ism < Pm < ne .

Secondly we have ac = 0 . As ac a* = 0 we need onl y

show that the series is convergent for a> 0 . We shall see th .]

it is even absolutely convergent for a> 0, and thus not onl c

ac = 0 but also aA = 0 . In fact for each a> 0 the sum of iii

numerical values of the terms in the group am (pms ) is equal l

(pm -i- v)

-r Ç
pmG	) (m)

= 2m pmG
.V

V = 0

and the series

	

2mpznG is convergent for a> 0 .

Thirdly we have 12 = - cc , i . e . the function f (s) define d

by the series in the half-plane of convergence a> 0 is an inte -

gral function and of finite order in each half-plane a> ao. T o

this purpose we consider, for an arbitrary fixed positive intege r

h, the half-plane a> - h and in this half-plane estimate

he group of terms zi (pms )
for each m > h . By help of the

stimations indicated above we get, for a>-h, m > h

m-hlslis+ll-Is+h-ll -Max v a-h = 2 m-h lsl

	

ls f I2-11pmc-h .

Pmpm+ m- h

f (s)

	

dm (pms) -Z dm(pms )

	

dm (P_ s ) = (s) +f2 (s) ,
m=1

	

m=1

	

m=h+ 1

Iz
he finite sum ft (s) _2' is evidently an integral function bounde d

m= 1
n every half-plane a> a0 , while the series f2 (s) ._ is majorized

m=h+ 1
n the half-plane a> - h + s by the convergent serie s

ø
2-h lsl . : . I s + h-1 1~ 2mpm E •

m=h+ 1

Hence fs (s) is analytic in a>-h + s (the series being uniformly

convergent in a>-h+e, Ist<K) and = O(I tl h) fortj--- ,

uniformly in - h + e < a < 2 and hence also in h + s <a< oo .

I herefore As) f1 (s) +f2 (s) is regular and = 0 (l t I h) in a> -h +s .

Thus 9 < - h + s for each h, i .e . P. = -cc .

Finally we have to consider the Fa-function ,a(a), define d

for all a . As aA = 0 w.e have immediately p (a) = 0 for a> 0

and hence, as ,a(a) is a continuous function ,

p,(a)=0 for a>O .

shall show that p (a) _ -a for a 0. We apply the L .-S .

1 h .urem in its second form . Since for our series As) =Zan n- s

have a* = 0, a C = 0 and Q = - oo , the theorem (for a = 0)

si t ies that ,a,(a) is certainly > M0 (a) _ -a for a < 0 ; thus ,

order to prove that ,w (a) = -a for a < 0, we have only t o

,Iiow that
,a(a)<-a for a0 .

1s p,(a) is convex, and ,u (0) = 0, it suffices to prove tha t

m

I em (p zns ) I< 2m-h • Max I dh (v s) I
Pm ~ v ~ Pm+m=h
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p (-h) < h for h = 1, 2, 3, • • .

This, however, follows immediately from the above relation ,

holding for an arbitrary positive integer h ,

f(s) = 0(it1h ) in a>-h+ e

which shows that p,(o-) < h for a> -h and hence also ,
reason of continuity, µ (- h) < h .

The Dirichlet series to be constructed is based on the sam e

dea as that of § 1 but is of a somewhat more complicate d

structure . Instead of the differences 4m (p
S)

we have now to

use . differences !Iq (p-S ) with a "span" q (where q tends to

nfinity together with p), defined in the usual manner b y

2
rig u p = up - LLp

+q' Jq up = up - 2 np+q +
LLp+2g'

. . .

+ (-
1)m

uA+ m g '

§2 . The case 0<a<1 .

In this last section we shall prove theorem 2 in the genera l
case, i . e . for an arbitrary a in the interval 0 .< a < 1 . We havg

to prove the existence of a Dirichlet series f(s) =~an n_s wü l
ax = 0, ac = a, S? = - co and the µ-function

0 for a >_ a

ft (°) a-a
for a < a .

a-1

As in the case a = 0 we start from a rapidly increasin g
sequence of positive integers p 1 <p 2 . . . . But now-in order tha t
~' an n S shall converge only for a> a, and not for a> 0-we
must take care that the partial sums Sn = a1 + • • + an ar e
not for all values of n too small compared with n but, roughl ,

speaking, for some large n's are of the order of magnitude rr

To this end we introduce, besides the numbers p i , p 2 , , oth, r

numbers q1, q2 , • such that gm is of the order pm, and choco
an = 1 for the values of n between pm and pm + qm . Specificall : .
we choose the positive integers (1 <) p 1 <p2 - ; q 1 , q2 ,- • • sur I ;

that

Pm <qm <2 pm,
pm+1 >Pm + ( Ln + 1 ) q m - .1

and (as in § 1) such that

2mpm
e

m= 1

converges for every e> O .

For these differences we have for 1 < h < in the trivial estimation

m-h

!/h LL I
= laqh

LIP
(M-h)

	

-lih LL ++(-1)m-h u
q

	

q A

	

q A +q

	

q p+ (m-h) q

< 2m-h. Max Jqh 11,1 ,
P < Y ~ A +(m-h) q

and for p> 0, s = a+ it and a+h> 0

p+q x, +g

	

xh_1+g h
r

_

s dx 1 ~dx2 . . .

	

d

h lxh

s) dxh

p

	

x,

	

x h _ 1 dxh

IsIIs+1I . . . Is+ h - l 1 ghp c-h

In our series an ri-s. the first group of terms is no longer

(as in § 1) of the simple form pi-(p1 +1)-s = J(pis) but of

the form

F(p1{ l)_s+ . + (p1 +q1-1)-S_(Pt~ g1)
-s-

(P1+ g1+ 1 ) s- .

+2 (I1 -1)-s = Jq,(ptS)+l~q,(P1+ 1)-s+
. . . + ag1 (p1+ qt -1)-S

u;û analogously for the following groups, i . e. the mth grou p

rnnsists of the (m + 1) qm terms (here not indicated in thei r

li chiral order)
q n,-1

,iqm (Pm+ F.)
-5

µ=o

<
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Our Dirichlet series is then defined by

f(s) _ .1' an Ii

	

m=1 (cc= o

where the different groups, on account of pm+l >pm -i-(+1)gm-

do not overlap.

Firstly we have to show that v = 0 . As in . § 1 we se r,

immediately that a' is > 0, as for instance an = 1 for n = pa , .

On the other hand an = 0(n') for every s> 0, since for eac l

n with an 0, i . e . n = pm -I- fe (0 < µ < ( In + 1) q m)

for sufficiently large in (on account of 2 m pm e - * 0)

Ianl <
2m 2mpfpm <p< nE •

Secondly we have a c = a, and also aA a . To prove th i

we first show that ~ an n
s is absolutely convergent for a> r e

i . e . that aA < a, and secondly that ac > a . In order to prol e

the convergence of 2
I an nG for a> a, we simply obser

that for each a> a the sum of the numerical values of tl ~

(m + 1) qm terms in the grou p

qm-1r
G Li (p + ~)

s

- .

is equal to

qm 1 m

iu= o

and that the series L2m pm̀G is convergent for a> a . . Nl . . .' .

in order to show that ac > a, it suffices (compare a rent i

in the introduction) to show that Sn = a1 + • • + an is i

o (n") . But this is certainly the case, as the assumption Sn = o (

would imply that

_ ( _ a

	

" S

	

= o(p +gm-1)" = o(N .
Spm 1 - o`pm

1) - o(pm)' pm+qrn- 1

	

m

and hence

rtic p,n+gnl_1'_ .Sent 1 = o (pm )

which contradicts the fact that a n = 1. for pm <. n < pm + qm- 1
and thus t r

Sp m +qnti 1 Spni 1 = q m > p n i

Thirdly, in order to prove that S~ _ - x , it suffices to sho w
Lhat the analytic function Rs) defined by the series for a> a
for some decreasing sequence of real numbers ah (h - 1, 2, . • • )
tending to -x is regular and of finite order in a> ah + s . "As
[bese numbers oh we choose the equidistant numbers

ah = a - h ( 1. -a)

	

(h = 1, 2 , . . .) ,

i . e . the numbers ah for which the linear function Mt, (a) =-
0-a

= h. We proceed in a way analogous to that in § 1, i . e .iT- 1

we divide, for a fixed h, the function f (s) into two parts, viz .

	

h qrn

	

1

	

ø q rn-1
( s) = fl(s)+A( s )

	

(pm+10 +Z Z<,( m+p)- 5

m=1 y-o

	

R1-h+1 f.C=o

m=h+ 1
we estimate each term for a> °h+ s and find for an arbitrar y
one of its qm components

< 2
mh • Max 1hv s

p nt +,r,c v p nr +,o+(m-h)qm

where the right-hand side, on account of a+ h> a (1 + h) + e
for a> ah + s, is again

<2m-h slls+li . .
.Is+h-tlgm .Maxv

"(1+h)-

p,n+L1 v prn+(b+(m'-h)q nx

2ms+h-1 h -tal+h)-
sgm pm

D . Kgl. Danske Vidensle . Selskab, Mat .-l'ys. Medd. XXV, ß.

m qm

~ ~/g (pm + FL)-S

we hav e

y= o

rn ~

	

c{- c

v
(pm-i- tt +vgm)-

r <pm 2m gm <2 . 2
m

Pm

h
where the finite sum /1 (s) _2 is obviously an integral functio n

m 1
bounded i

	

half-plan ein every

	

a> ao . In the second sum f2 (s) _
,

2
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Thus for a> dh + e we find for the whole m u ' group consistin g

of qm components the estimation

)ET KGL. DANSKE VIDENSKABERNES SELSKA B
tATEMATISK-FYSISKE MEDDELELSER, BIND XXV, Nri . 7

< q . (2 m-h-

	

m s + h

	

q
h
m pm

-a (1+h)-s

which, on account of qm < 2 pm, is again

G2m+1I s

	

.ls

	

at
ll+h)-all+h)-e

	

m -~ . .~-h--l ~p n

	

= 2IsI . . .Is-f-h-1l' 2 pm `

Now, as 2m p E is convergent, we conclude, just as in § 1 ,

that f2, (s) and hence also f(s) = fi (s) + f2 (s), is regular an d

00'1 1 ') in a> oh + E, and thus we have proved that SQ _ - o

Finally we shall prove that the p-function, defined for al !

a, is given by

That µ (d) = 0 for a > a follows immediately from o =

Since, according to the L .-S. theorem in the formulation oY

pag . 7, we have _'certainly

p, (a) ?
Ma (a)

	

a -1
for cr < a

we need only show that

µ(a)<Ma (v) for oa ,

and as p(a) is convex, and p (a) = 0, it suffices to show th. ' '

p (ah) Ç Ma (ah) = h for h = 1 ,

This, however, is an immediate consequence of the relatio n

f(s) = O(Itt h) for a>ûh +e ,

which shows that µ (d) < h for a> ah and hence also for o
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0 for o> a

Ala

	

7
(o) =

	

a
for a < a .

a-1


