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Introduction.

Let Zann_s be a Dirichlet series in the complex variable
1

= g+il. With such a series are connected several values of
he abscissa o which are characteristic for the series in question.
Firstly, as |a,n™°| = [@,|n™7 it is evident that there exists
n “abscissa of absolute convergence” ¢, (—o < o, < ®) such
hat the series is absolutely convergent for ¢ >¢, but not for
<. ‘
Secondly, as first proved by JeNnsEN, the series also possesses
n “abseissa of convergence” o, i.e. there exists a number o,
uch that the series is convergent for ¢> g, divergent for ¢ <<o,.

tween o, and o, we have the relation 0 < o, —0, = 1. For
y €>0, K> 0 the series is uniformly convergent in 6> o, +e,
< K; hence the series\\represents in its half-plane of conver-
nce ¢> g, an analytic function f(s).
~Thirdly we have the “abscissa of uniform convergence” o,
troduced by the author as the g.1.b. of the abscissae g, for
i which the series is uniformly convergent in the whole half-
ane ¢> g, (and not merely in any limited part of it). Obviously

oy = ay.
Finally it is often convenient to introduce a fourth abscissa,
hich we shall denote by o¢", defined as the g.1.b. of the
cissae o, for which the terms of the series Zann_(6“+i0
ain bounded (i.e.|a,|n” ®< K for all n). Except for the
cial cases where the series is convergent everywhere or no-
ere (where all the abscissae introduced are either — o or
ﬁ“respectively) the abscissa ¢ may also be defined as the—
tainly existing—smallest number ¢ for which a,n % = 0 (n%
very ¢>0. Evidently ¢, > ¢" and o, < ¢*+1.
. . 1*




There is no real difficulty in giving explicit expressionsfg
the four abscissae, introduced above, in terms of the coefficien
a, of the series. As regards o", it follows immediately from
definition of this number that

-Only in the case of the abscissa of uniform convergence do
“have a simple and general solution of the problem; in fact,

“proved by the author, we have for every Dirichlet series
- relation

_log|a,| Oy =
o = lim ———,

n->om 10g I

W,

;the series is uniformly convergent just so far to the left

s the function f(s) represented by the series remains regular
d- bounded.

In the case of the abscissa of absolute convergence the pro-
m of characlerizing the abscissa o, has turned out to be in

and for the three abscissae of convergence one finds by parti
summation, in case the series is divergent for s = 0, the wel
known expressions

—logl|S,| — log4, —— log U, e main a problem of discussing the possible values of ¢, — oy,
O = lim ————, g, = , ¢y = lim : . . A
logn log n logn . of 0, —w, and this latter problem has in turn, as shown
where iby the author, an intimate relation with problems from the
& . eory of power series in infinitely many variables. In this way
— - . -
Za,, U,=1 u- b. LG v } was found that the difference o, —o, (which evidently is
= =1 —ow <I<w |p=1 .

. 1
1) is always < = and, as proved by HiLLe and BOENENELUST,
In the following we shall, however, use only a simple co ! 2 '

sequence of the expression for Tes viz., if for some tx>0"[:
partial sum S, = a;+ - +a, is not o(n") for n-—»> o, th
the abscissa of convergence ¢, is certainly = «.
While the four numbers Gus Ops Ops ¢ are defined dlrect
from the series itself, there are some other abscissae, importi
for the theory of Dirichlet series, which are determined  in
more indirect manner, namely from the behaviour of the analy
function f(s) given by the series in its half-plane of convergen
We shall mention three such numbers, viz.
o = g.Lb. of those o, such that f(s) is regular and bound

in o> cro,
@, = g.1.b. of those ¢, such that f(s) is regular and O(

in ¢> g, for any ¢>0, '
= g.1. b. of those g such that f(s) is regular and. of fin
order in o> gy, i.e. = O([t/®) for some value of K = K(s
Obviously o = w; = 2.
By the “convergence-problem” for Dirichlet series is und
stood the problem of finding relations between the prope
of the series Za n~° as such—especially the values of
different abscissae of convergence—and the properties of'
analytic function f(s) defined by the series.

Yo 1 Co
at this  upper bound 5 can not be diminished.

~The problem of determining, or rather estimating, the abscissa
‘ci_)n'vergence a, itself by means of analytical properties of
¢ function f(s) was first attacked by Lanpau who by his
searches opened the whole field of investigations in question.
ting from the well- known fact that f(s) = O(|t]y foroe >0, te,
hich so to speak limits the extension -of the half- plane of
vergence, he proved the other way round that if the order
magnitude of f(s) is known in a certain half-plane ¢>g
‘may conclude that the half-plane of convergence cannot be
small. LaNpaU’s estimation of ¢, was sharpened and gener-
ed first by ScunNer, who proved among other things that
s always <X @y, and later on by Lanpavu himself. The best resnlt,
ned by these successive improvements, is stated in the
owing theorem?®, the “LANDAU-SCHNEE theorem”

- Theorem. For the Dirichlet series > 'a,n" * let the abscissa
be <0, ie leta, = 0(nY) for every 6> 0, so that the series
rtainly absolutelg convergent for o> 1. Further we assuime

}See e g. E. LanDAU, Handbuch der Lehre von der Verteilung der Prim-
Leipzig und Berlin 1909, p. 853 and 857.




6 Nr.
the existence of two constants y<<1 and k = 0 such that the
function f(s) defined by the series is reqular for o> g and

() =0t for o>q-te.

) 7
s>q and, for ang ¢>0, is O(1[*"®) in ¢>y+¢ and such that

he value of the abscissa of convergence o, is given exactly by
he equation

7+
= M1n{1+k, 77-!-1{}.

Then the series is convergent beyond the line ¢ = 1, namely at

any rate for Lk By means of trivial transformations (s being replaced by
G>Min{77 R q—l—k}.

$+sp) it is easily seen that we may confine ourselves to con-
sider the case 5k > 0, o" = 0, i.e. to prove the

1+ k

In other words, under the above conditions the abscissa of

convergence satisfies the relation ~ Theorem 1a. Let (4, k) be an arbitrary point in the domain
& ) ¢ defermined by 9 <1,k = 0,9+ k = 0. Then there exists a Dirichlet
series f(s) = Dla, n* with ¢ = 0, with f(s) regular in 6> and

0( t[+) in 0‘>7]+8 such that its abscissa of convergence % is

q+k
1+ k

Oc § if  g+k>="0

and

o <qtk if a;—l—l'c <0. jast the pomt? (= 0 and <1), i.e. the point in which the

line connecting the two points (g, k) and (1, —1) culs the axis

When applying the L.-S. theorem to the classical Dirichlet bscissae.

series occurring in the analytical theory of numbers, such as
the zela-series with alternating signs 3" (—1)"""'n"", the results
obtained come out to be rather far from the real truth, ie
the values obtained as an upper bound for ¢, are far too big

This might indicate that the theorem could be improved, i. e

that the number Min {zii, o]—l—k} could be replaced by :

. For a Dirichlet series we introduce in the usual way the
LiNpELOF p-function p = p (o) (& <o< %) defined for each
'(‘g"o'>!?. as the g.1 b. of the values of [ such that

floot ity = 01t

smaller one. From an earlier investigation by the author, carrie
out with a somewhat different purpose, it can, however, be con
cluded that this is not always the case; in fact, from the studj
of a certain artificially constructed Dirichlet series of the “ga
type”, it may be shown that in the special cases 0 < k <
5 = —k, the L.-S. theorem cannot be improved. Recently
have taken the whole question up for a renewed investigatioi
and by generalizing my earlier construction I have proved t
the L.-S. theorem 1is in the very strictest sense, i.e. for ever;
pair of values (g, k) with <1, k > 0, the best possible one
In fact the following theorem holds.

; what amounts to the same thing, that

flo+i) =0(t]) for o=>0, (or o>a,).

he ‘p-function is a continuous convex function in & <o<<w
nd is equal to zero for sufficiently large values of o, at any
ate for ¢>0,. By help of the p-function the L.-S. theorem,
the case gy+%k = 0, ¢* = 0, may easily be shown' to he
ivalent with the following theorem.

Other form of the L.-S. theorem. Lef o« be an arbitrary .
mber in the interval 0 < « <1, and let f(s) = Zann_s be a
Theorem 1. For anyg given pair of values (7, k) with 5 <t richlet series with ¢ = 0 and o, = «. Then the p-function
k = 0, there exists a Dirichlet series >'a, n° with ¢ <0

which the fanction f(s) represenied by the series is regular

Compare K. GranpsoT, Ueber das absolute Konvergenzproblem der Dirich-
chen Reihen, Dissertation, Goéttingen 1922.




9

atlached to f(s) will in the whole interval o> 2 salisfy the con

The paper is divided into two sections. In § 1 we prove our
dition

theorem 2 for the special case @ = 0, and in § 2 we treat the

:”'<Cf) = M, (o) gemaral and somewhat more difficult case 0 <<« <<1.

where M, (o) is the simple convex function characlerizing the broke
line which consists of two half-lines meeting in the point (&, (
namely of the part of the axis of abscissae to the right of ¢
and of the prolongation of the segment from the point (1, —
to the point {(a, 0) beyond this latter point, i.e.

Added remark After having completed this paper, con-
talmng for an arbitrarily given « in the interval 0 < e« <C1,
the construction of a Dirichlet series >'a,n~ * satisfying the
conditions of theorem 2, I became aware that quite a similar
problem had already been treated and solved in an interesting
paper by NepeEr! who used a method of construction which
shows characteristic relationship with that applied by the author.
he results of NEDER, however, do not cover the results of this
paper. In order to explain the connection between the results
have for a moment to consider not only the “ordinary”
Dirichlet series Da, n =t o= Sage eS8 ith which we exclu-
sively deal in the present paper, but also the “general” Dirichlet
Series Dlaye ~4a8 \here 0 <1, <A, < - -+ is an arbitrary increasing
sequence tending to . For a certain class- of such general

0 for 02>«

g—

M () =

for 2 Lo<e.
a—1 = =
Furthermore, using this form of the L.-S. theorem it is readil

seen that our theorem 1a (i.e. the theorem 1) is certainly. tr‘
if the following theorem holds good.

Theorem 2. For any « in the interval 0 < a <1 there exi
a Dirichlet series f(s) = Zan n° with ¢* = 0 and 0o = «, st

that £ = — o and the p-function altached to f(s) is given _ irichlet series we have, as well known, a theorem quite similar
0 " - (and including) the L.-S. theorem mentioned above. In fact,
or o=« he 4 -sequence satisfies, For a posmve finite { and any d>0,
plo) =M () =1 6—a he condltlon
p for ¢=Z . 7 1
‘ T = 0,
The main object of the present paper is to prove this theorem: n+1” “n

I may add, however, that the types of Dirichlet series co
structed below may also be used to illustrate various points-
the theory of Cesaro-summability of the Dirichlet series Dlayn
as developed independently by M. Riesz and the author. I.m
‘return to these summability problems in a later paper; hie

I shall only recall one of the most striking results of this lheo
viz. the relation

ntroduced by the author (and shown to be the widest class
or which. theorems of the type in question hold), then the
8. theorem in the second formulation is still valid when
nly « runs through the interval 0 < << (instead of the
nterval 0 é «<.1) and the dominator 1 —e in the expression
or M, (o) is replaced by I—e. Now, the problem treated and
olved by Neper was just to prove the converse of this last
heorem concerning the general class of Dirichlet series Dae —hns
fying the condition (*), say with [ = 1, namely to each
~ @ <1 to construct a series Z'a ¢*% of the type in guestion
th ¢* =0, g, = @ and its p-function given by w (o) = M, (o). If

gy = £

where ¢g denotes the g.1.b. of those o, for which the series
C-summable of some order in the half-plane o> ¢,. Thus:
like oy (but in contrast to o, and o,) can be fully determin

by means of simple characteristic properties of the function /
represented by the series.

1 L. NEDER, Ueber Umkechrungen der Konvergenzsitze fiir Dirichletsche

ihen, Berichte der Akademie der V\Tlssenschaftcn zu Leipzig, Math -Phys. Klasse,
<LXXIV, 1922.
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this had been done for an arbifrarily given sequence of exponents{ Let p; <p,<ps*-- be a sequence of positive integers which
satisfying (*), for I = 1, NEDER's results would obviously hay ncreases so rapidly that p, . ,>p -+m and that the infinite
contained our theorem 2. But this was not the case; in fac eries

Neper only proved that for any « in 0 < «<C1 there exis
some sequence i, Ay,--- satisfying (*) for I =1 and a corre
ponding Dirichlet series Zane—)'"s with ¢* =0, o, = « an .
w(e) = M, (0); indeed, he just faciliated his construction by choo
ing an “artificial” sequence 4, especially suited for his purpos
namely a sequence which—in contrast to the sequence 1, = log
—is composed by parts of different arithmetical progression
In this connection it may be emphasized that many problem
concerning Dirichlet series essentially depend on the special]
character of the sequence i, of exponents. Thus, to mentio ]
an interesting example, nearly related to the problem in questio . /m . /m s n e
it has been proved by NepER in his paper quoted above th m *(1>(Pm+ 1) +<2>‘(Pm+2) — et (=) (p,+m)
there exists a general Dirichlet series >'a, ¢ *n% with exponen ~ :
satisfying (*) for I = 1, such that ¢, = 0, ¢, = 1 and u (o)

22

onverges for every &> 0.
We consider the Dirichlet series

an ®=p " —(p+ 1" 4+ p; —2(py+ 1) F(py+2) -

he terms of which consist of groups of 2, 3,--- elements such
hat the m™ group is given by

and where, on account of the inequality p,,.,> p,+m, the
gioups do not overlap, Applying the usual terminology for

1 1 G s s
——vo for ¢ £ -, while it is an open problem whether therg .
2 2 differences of 1** and higher order, i.e.

exists a Dirichlet series of the ordinary type Zan n° with the
same properties. [Only under the assumption of ‘lhe so-called

du,=uw —u, . Lo = —2u +i .,
LinpELGF hypothesis—which certainly holds good if the Riemamy _ i P b P P P
hypothesis does—we possess, as emphasized by GranpiOT, su M = <‘m>u +<m> m
: . =, — a_ ,— -+ (=1, .
an example, namely the series {(s) (1—2'7%) = > ) P P 1/7p+t T2/ pt2 7 Tptm

e may write our Dirichlet series, with its terms in groups,

§ 1. The case & = 0. the form -

In this section we shall prove theorem 2 in the special ca
« = 0, i.e. we shall construct a Dirichlet series f(s) = Z’ann
with ¢* = 0, 0, = 0 and 2 = — o such that the w-function i
given by

(s =§an n’ =ilzlm (p,.)-

sn=1

or these di‘fferences we shall have to use, besides the general

ivial estimations
0 for ¢ =0

M(U):{

—a for o £ 0. ] < Vi 4 () [0 | ] < 27 M,

. . . p=¥=ptm
The idea of the construction, namely to build a gap-ser -

containing differences of higher and higher order, has be

; for 1< h<m,
used previously by the author!.

| a™uy| = | 4™ A | < 2" Max | 4", |

! H. Borr, Bidrag til de Dirichlet’ske Baakkers’Theori, Habilitationssk p

Kgbenhavn 1910. p=v=<p+m-h
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the special, well-known, integral-representation for u, = IR
(p = 1, s arbitrary complex)

13

the group of terms A" (p;f) for each m>h. By help of the
“estimations indicated above we get, for 6> —h, m>h

B p+1 a4+l %y _1+1 dh s m —5 P m—-h_ h, —s
S L G 2

: pt1 P o t|s\|s-k 1]+ Js+h—1)-Max y o = 95| s h—1] poo-t.
s(s+l‘)"'(s+h——l)gdx1~--S ", Pm 2 < pmtm=h

vp Tho1

which, in case ¢+ h> 0, immediately gives the inequality

s

h
[ =2, 4" (py') =2 4™(p’) +2 4™(0y) = D+ (),

G < sl Do b nma] oot A T

We shall now show that our series f(s) =Zan n’ =Z’4im (p;
has all the properties stated.

Firstly we have ¢* = 0. On the one hand ¢" is certainly}
>0, as a, does not tend to zero for n—>» (e.g. a, =1 for
n=p, ) 011 the other hand a, = O(n) for each ¢>0; in fa
since 2™ p_“— 0, we have for each n for which a,+0, i.e. fo
n=p.+»(0 < » < m) and m sufficiently large

h
be finite sum f; (s) =D is evidently an integral function bounded
n every half-plane 0’>—0'0, while the series f; (s) = is majorized
m= h+1
n the half-plane o> —h-+¢ by the convergent series

o] - |s+h—1lZ2m

Hence fo (s) is analytic in o> — h+ ¢ (the series being uniformly
convergent in ¢>>— h+4, |s|<K) and = 0([tI") for|t|— o,
uniformly in —h+&<<o<2 and hence also in —h-te<lo<< 0.
Therefore f(s) = f;(s)+/,(s) is regular and = O (|¢*) in 6>—h .
bus & £ —h+¢ for each h, i.e. = —w .

Finally we have to consider the p-function w (o), defined
for all ¢. As o, = 0 we have immediately u(s) = 0 for ¢>0
d hence, as u (o) is a continuous function,

— | ()] == et =

Secondly we have o, = 0. As g, > ¢ = 0 we need onl
show that the series is convergent for ¢>>0. We shall see th
it is even absolutely convergent for ¢>0, and thus not onl
0, = 0 but also o, = 0. In fact for each ¢>>0 the sum of the}
numerical values of the terms in the group #™ (p;s) is equal fo

N m o — - m m e
S ez S (1)t

v

u(@ =0 for o=0.

e shall show that p(¢) = —o¢ for ¢ < 0. We apply the L.-S.
corem in its second form. Since for our series f(s) =>a, n’
¢ have ¢" = 0, 6, = 0 and 2 = — o, the theorem (for & = 0)
ates that p (o) is certainly = M, (O‘) = —g for ¢ < 0; thus,

‘order to prove that p(e) = —o for ¢ < 0, we have only to
w that

and the series > '2™ p¢ is convergent for ¢>> 0.

Thirdly we have 2 = — 0, i.e. the function f(s) define
by the series in the half-plane of convergence >0 is an int
gral function and of finite order in each half-plane ¢>¢y. T
this purpose we consider, for an arbitrary fixed positive integ
h, the half-plane o> —h and in this half-plane estima

p(e) < —a for o= 0.

(o) is convex, and g (0) = 0, it suffices to prove that
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w(—h) <h for h=1,2,3, ---. The Dirichlet series to he constructed is based on the same
iidea as that of §1 but is of a somewhat more complicated
structure. Instead of the differences #™ (p °) we have now to
use . differences 4y (p ) with a “span” ¢ (where ¢ tends to

finity together with p), defined in the usual manner by

This, however, follows immediately from the above relatio
holding for an arbitrary positive integer h,

F() =00t in o>—h-+te

which shows that w (o) < h for ¢>—h and hence also, by

' 2
Ay, = 0, =y, S, = up_2 up+q+ Upi2g
reason of continuity, ¢ (—h) < h, ‘

im m m m
a0, = "p'_<1>up+q+(2>un+2q*~"'+(~1) Upimgr *°°

§ 2. The case 0<ea<1. or these differences we have for 1 < h <in the trivial estimation
In this last section we shall prove theorem 2 in the general

case, i.e. for an arbitrary « in the interval 0 <« <C1. We hay
to prove the existence of a Dirichlet series f(s) =>"a, n™* wit
" =0, 6, = «, 2 =— o and the u-function

h m—h\ & m—h h
dqup——< 1 )//qllp+q+'-'—|—(—1) Jqupﬂm_h)q'

< 2™ M Max| 4y, |,

pEvE=p+tm—h)q
0 for 0>« -

p(a) =

o— o

for ¢ < a. nd for p> 0, S.: o+if and 6+ h>0

p+4q ;:L+q Ty _1+4 dh s
|| = N\ dmy -\ L) | <
o " dx;

o —

As in the case « = 0 we start from a rapidly increasing|
sequence of positive integers py <<p,---. But now—in order tha
Zann—s shall converge only for ¢> «, and not for o> 0—w
must take care that the partial sums S, =a;++--+a, ay
not for all values of n too small compared with n but, rough!
speaking, for some large n’'s are of the order of magnitude n“i}
To this end we introduce, besides the numbers p,, py, =« -, other ]
numbers ¢y, gs, -+ such that ¢, is of the order p;;, and choos
a, = 1 for the values of n between p_ and Pt Q- Specificalls

we choose the positive integers (1 <) p, <<p,---; ¢, gg,° - -su¢
that

T1 h—1

|s“s+1i---}s-}-hﬁllth_“_hv-

n our series >’ a, n - the first group of terms is no longer
(as in § 1) of the simple form pi"—(p,+1)"° = #(pr°) but of
the. form

1'“““1)&5‘1.“ T +(P1+q1“‘1);s_(P1‘|‘CI1)—S‘—(P1+ gt — e

F2q— 0 =d (pr)+d, (p D+ A (DT
prn;1<qm<2plozel’ pm+1>pm+(1n+l)th-1 .

nd analogously for the following groups, i.e. the m™ group
onsists of the (m-+1)gq,, terms (here not indicated in their
itural order) :

and (as in §1) such that

Iy

: —8
: dg (Pt )
converges for every &> 0, p=o "
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Our Dirichlet series is then defined by Sn,nﬁ-q,,rl-—sp,,zq = 0(pY)

1

f(s):zann Z._O' by m(pm+‘u‘>

which contradicts the fact that a, =

1 for pm >< n <, pm+ qﬂl—
and thus

. Spm'*‘qm""l_—spm_l = (]m>p:_fl.
where the different groups, on account of p, ., >p, +(m+1)q,, ,

do not -overlap.

Firstly we have to show that @ =10. As in §1 we se
immediately that ¢" is = 0, as for instance a, = 1forn=p;
On the other hand a, = 0(n°) for every ¢>0, since for eac
n with a, + 0, i.e. n = p, 4+ (0 <‘u<(m+1)q ) we bhav
for sufﬁ(nently large m (on account of 2" p.*—0)

Thirdly, in order to prove that € = — o, it suffices to show
that the analytic function f(s) defined by the series for o> &
for some decreasing sequence of real numbers g, (h=1,2,--)
tending to — o is regular and of finite order in o> o, &. As
these numbers ¢, we choose the equidistant numbers

E] 5

g =a—h{(l—«) (h=1,2,--),
|0, < 2m = am et <, < ot . o |
I e. the numbers ¢, for which the linear function M, (¢) =
o—

Secondly we have o, = «, and also ¢, = «. To prove th o h. We proceed in a way analogous fo that in § 1, i. o,
a—

we first show that >'a, n° is absolutely convergent for ¢>a;
i.e. that ¢, < «, and secondly that o, = «. In order to pro
the convergence of Z’\a ﬂn 9 for a> e, we simply obser

we divide, for a fixed h, the function f(s) into two parts, viz.

; I Iy~ L I
that for each o>« the sum of the numerical values of t (S) = £.(8)+£o(5) _Z Z’ (p, )~ +§—v Z‘j (Pm+ﬂ*) s
(m+1) g, terms in the group m=1 (=0 i =

Wl o n whele the finite sum f; (s) —5_' is obviously an integral functlon
Z‘/qm(pm - ) =1
p=0 ounded in every half—plane o> gy. In the second sum f, (s) —Z
is equal to me=hit
. e estimate each lerm f01 o> 6, -+¢ and find for an arbitrary
q,,— m
n _ s o ne of its components
(m) (pm+M+V qm) G<pmr zm qm< 2,21’11 p;’rzl o 3 . qm
; { 4‘ ¥
pu=0 »=0 )

s

"Z,(Pm_“ﬂ') sf < 2™ Max Ay ¥

pm+‘u =v < Potot (m‘h)qm

and that the series > 2Mp;~° is convergent for ¢> . Ne
in order to show that o, = > o, it suffices (compare a r(.amark
in the introduction) to show that S = a+ --- +a, 1s.
o (n%). But this is certainly the case, as the assumption S, = o(
would imply that

vhere the right-hand side, on account of o+ h>a(14+h)+¢
or ¢> g, + ¢, is again

é 2m—11A1S||3+1|... 'S—i—h*liq Max v «w(1+4+h)—¢

pm+‘ué v < = p T (m— h)q

o __ v 4
Spm—l = 0(pm—1)a = o(pl’xn)’ Spm+qm_1 - O(pm—i_qm_l) o O(p

1 hence é gm—hl Sl cevls+h—1 ] qfrlnp;a(lﬂl)—e'
a
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Thus for ¢> ¢, +¢ we find for the whole m'"

group consisti
of g, components the estimation :

i

< qm.<2m~h ‘él . .‘.' ys_i_h_liq.;lpm_a(l.;_h)_

a1

Z.ﬁf;r:n(pm + {’b)isv

u=90

which, on account of ¢, <2p;, is again

<‘2m+1|51' . .|S+h__1lpgl(l»i-h)—tx(l-%h)As — 2|3]' . -}s—}—h—l'- QmP;

Now, as Z2mp;f is convergent, we conclude, just as in §1,

that f,(s) and hence also f(s) = fy(s)+f,(s), is regular and

0(lt!") in ¢>a,+¢, and thus we have proved that = — .
Finally we shall prove that the u-function, defined for all

" g, 1s given by

0 for ¢ = «

p (o) =" _
M, (o) = 01—-“015 for ¢ < @.
o =

That u(¢) = 0 for ¢ > « follows immediately from o, =
Since, according to the L.-S. theorem in the formulation ol
pag. 7, we have certainly

g

o —

plo) = M, (o) = for ¢ < «

we =néed only show that
w(e) < M, (0) f01" o< a,
and as p (o) is convex, and (&) = 0, it suffices to show tha
ple) < M,(op) =h for h=1, 2,---.
This, however, is an immediate consequence of the relatien
fis) = O(itlh) for >0, te,

which shows that u (¢) = h for ¢> o, and hence also for ¢ =g;



