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INTRODUCTIO N

I
n this introduction, we shall give in Part A a statement of th e
problem of the origin of the solar system and of the facts

which have to be explained . In Part B, we shall take a necessaril y
short survey of sundry theories which have been proposed ,
together with reasons why we feel that they cannot be accepte d
as final solutions of this fascinating problem .

A. Statement of the Problem .

The nearest neighbours of our earth in the universe are the
moon, the sun and the other members of the solar system . The
sun and the moon are by far the brightest objects in the sky an d
the other members of the solar system are also among the
brightest . It is not, therefore, surprising that astronomers through -
out the ages have devoted special attention to the solar system .

Moreover, the system shews so many regularities in its dynami c
and physical properties that its formation was certainly not due
to chance . The fact alone that the direction of orbital motion of al l
planets and asteroids is the same is sufficient to establish this .

Before we discuss some of the theories advanced as to th e
origin of the system, we shall point out some of these regularities .

The solar system consists of the sun, nine large planets ,
twenty-eight satellites belonging to six of these planets, more tha n
1500 . asteroids, and the comets and meteors . We shall center ou r

attention on the large planets and only speak occasionally abou t
the other bodies .

The regularities shewn by the solar system may be divide d
into a few groups :

A . The first group is that of the orbital regularities (cf . Table I) .
Apart from. the common direction of orbital motion, the eccen-
tricities of the orbits are small and the orbital planes are practicall y
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coincident . Also, the rotation of the sun is in the same directio n

and its equator is only slightly inclined to the planetary orbits .

B. The second striking feature is that the mean distances o f

the planets from the sun very closely obey the so-called Titius -

Bode law. If the mean distance of the n-th planet from the su n

is denoted by r n and if we count the group of the asteroids as one

of the planets, we have :

rR = a + b 2 n ,

where a = 0 .4 A . U . and b = 0 .3 A. U.

We may remark here that orbital regularities and laws for

distances, comparable to the Titius-Bode law, are also found for

the satellite systems (compare Tables II, III, IV, V).

C. The next group is the fact that the planets can be divide d

into two groups . The inner planets which form the first group

have relatively small masses, high specific densities, low rotationa l

velocities, and few satellites . The outer planets, which form th i

second group, have large masses, low specific densities, a relat-

ively fast rotation, and large satellite systems' .

If a theory is able to withstand the attacks of serious criticism,

it ought to be able to explain the above-mentioned facts . How "i

ever, there are more features of the solar system which have to i

be considered . We may call . the reader's attention to a few of thes e

Between Mars and Jupiter, there is no other planet, but thi '

system of asteroids, estimated by Baade to contain about 3000 0

bodies, of which only less than 2000 have been observed up t o

now. The total mass of the asteroid system is extremely smal l

(about 0 .0003 times the mass of the earth) .

, Saturn possesses a ring system .

The outer satellites of Jupiter and Saturn have retrogad ,

motions .
The inclination of the equatorial plane to the orbital plane i

increasing in the series of the outer planets . Also some orbits o f

satellites are much inclined to the equatorial plane of their

D. Finally, the distribution of the angular momentum in th e
solar system has proved to be a stumbling block for many theories .
As it is., the sun, although possessing more than 99 per cent . of
the mass of the system, possesses only 2 per cent . of its angular
momentum. The puzzle is why the sun has so little angula r
momentum .

We may, perhaps, point out here the difficulties inherent i n
this distribution of the angular momentum .

If the origin of the solar system has to be ascribed to a cata-

strophe of some kind, this accident in itself could have bee n
able to transfer angular momentum to the material which woul d
condense subsequently into the planets .

If, however, one tries to build up a theory starting from the
sun, perhaps surrounded by a gas cloud, it is difficult to under -
stand how this distribution came about. If the sun had been
surrounded from the beginning by a gas cloud, the difficulty is
to understand why the angular momentum per unit mass in this

gas cloud should be so much larger than the angular momentu m

per unit mass in the sun . If, on the other hand, the system starte d
from the sun alone, with the material for the planets being provide d
for. instance by eruptions from the sun, one certainly would ex-

pect the angular momentum per unit mass to be about the sam e

for the solar as for the planetary material .

Fouché, in 1884, was the first to point out the extraordinary
character of the actual distribution of the . angular momentum .

We shall see how this question has played a great role in th e
evaluation of sundry theories .

The origin of the asteroids will not be discussed here . The

generally accepted explanation involves the breaking up of a
larger body . According to recent work of BROWN (1), this process
might also have given rise to the meteorites .

We shall also not enter extensively into a discussion of the
irregularities mentioned above . As far as the satellite systems ar e
concerned, the great resemblance between them and the planetar y
system seems to point to a formation of the satellite system s
analogous to the formation of the planetary system itself, even

though the , distribution of the angular momentum is not quit e

so extreme as in the case of the planetary system (2) .
The ring system of Saturn is probably due to the fact that it s

primaries .
Pluto, as we have already remarked, does not fit in wit h

the other outer planets .

i We leave Pluto out of this discussion . Pluto's orbit has a large eccentricity,

and the planet itself is small and dense .



distance from Saturn is less than the limit of Roche, inside which
no satellite is stable against a tidal action of the mother planet .
To understand this qualitatively, imagine a satellite brought
nearer and nearer to its primary . The tidal forces increase, bu t
the gravitational forces of the satellite itself on its matter remai n

the same . And so at a certain moment, the satellite, if liquid ,
would break in two and so forth until the fragments would be s o

small that surface tension keeps them together. If the density

of the planet were the same as that of the satellite, the critica l
distance at which the breaking up would begin would be 2 .44
times the planet's radius, as shown by Roche in 1850 . Since the

ring system of Saturn lies completely inside this limit, it seems
reasonable to accept the thesis that these rings are the remain s
of a satellite, broken up during its formation .

It has been established that the age of the solar system is o f

the order of 2 to 3 .109 years by different, independent indication s
such as, for instance, the lead content of rocks, where the lea d
is the end product of a radioactive family and thus has a different

atomic weight (206 .0) from that of the familiar lead (207 .1) .

In general it is possible to divide all theories into.4wo groups,
according to the question whether or not the author has assumed

an interaction with other celestial bodies as an important factor

in the development of the solar system . In the first case, we hav e

an open system and, using the term introduced by Belot, we can
call these theories dualistic (sometimes the adjective "cata-

strophic" is used). In the other case, we have to deal with a
closed system and the theories are called monistic or uni-

formitarian .

I . Monistic theories : 1 . DESCARTES' theory . The first theory
proposed in modern times is that of Descartes, advanced in 1644 .
At that time, observational data were scarce and only the sun,

6 planets and 7 satellites (the moon, 4 Jovian and 2 Saturnia n

satellites) had been observed. Also Newton's law of gravitation ,
which was to be published in 1665, was still unknown . It is
thus more surprising that Descartes was able to formulate a

theory which could explain many of the observational data than

that his theory had to be abandoned after Newton's severe criticism .
Descartes started from a large whirl of matter in which 1 4

	

Another determination of the age of the universe can be obtained

	

large bodies were floating as pieces of wood in a river . As can be

from. the redshift of extragalactic nebulae, giving the same result' .

	

The sun is radiating at present at a rate of 4 .10 33 erg per sec,

	

have a tendency to collect around them the smaller ones and i n

	

which corresponds to a loss of mass of 4 .10 12 g sec' . If the sun

	

the same way the sun became surrounded by the 6 planets, whil e

	

had radiated energy at the present rate during the 3 .10 9 years

	

the earth, Jupiter and Saturn got respectively 1, 4, and 2 satellites .

of its probable existence, it should only have lost 0 .0001 of its
mass . We shall assume in the present paper that during the process ,

leading to the solar system as we find it at present,, the physica l

state of the sun was as we observe it at present . It is possible tha t
we neglect vital processes by this assumption .

B . Survey of Theories, about the Origin of the Solar System .

We can only report here very incompletely on the variou s

theories. For further details, and a detailed criticism of the older

theories, we therefore refer the reader to the original papers and

to the many textbooks written on this subject, especially th e

volumes by RUSSELL, DUGAN, and STEWART (3), NÖLKE (4), and

RussELL (5) .

1 Compare the considerations of Bok (39) and Unsöld (40) .

seen in actual whirls carrying pieces of wood, the larger bodies

Since the movement in the inner regions of a whirl is faster tha n
in the outer regions, one could also understand that the rotatio n

of the inner planets was faster than that of the outer ones .

The great historical significance of. this theory is that it was

the first attempt to explain the observational data, starting fro m

some simple hypothesis . As soon as Newton had found his

gravitational law, it was, however, possible to shew that thi s

theory could not be maintained .
Newton himself believed that God had created the solar syste m

in its present state and that He would look after it if its futur e

were endangered by mutual perturbations of the planets . His

influence on his fellow-scientists was so large that the cosmogon-

ical theories of Buffon and Kant remained practically unnoticed.

This only changed when Laplace arrived with his theory .-

Laplace who wrote about Newton : "Je ne puis m'empêcher d'ob-
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server combien Newton s'est écarté sur ce point de la méthode
dont it a fait ailleurs de si heureuses applications . "

2 . KANT 'S theory . In 1755, IMMANUEL KANT In his "Allgemein e

Naturgeschichte and Theorie des Himmels" gave a qualitativ e

cosmogony, which was ultimately worked out more quantitativ e

by Du Ligondès in 1897 .

Kant started his treatise by answering the theological objections L .
to the proposal of a cosmogony by remarking that the laws of

nature are created by God, so that it is not lack of reverence when

we try to find out the effects to which their action leads .
Kant's idea is to start from a nebula in the centre of which €

the sun is placed. Due to gravitational forces the rest of the

matter will rotate around the sun . Under the influence of mutua l
collisions, the nebula will pass into a disc, where all particles ,
are rotating in circles around the sun . The next step is that there

is a tendency of the matter in the disc to condense into some larg e

bodies which become the planets . Since this condensation take s
place. gradually, the first result will again be a rotating nebula :
but now on a smaller scale, fromwhichthe satellite systems ensue .

The larger the planet, the larger its gravitational attraction, and '

the larger the number of satellites .

Kant also shews that the rotation of the planets around thei r
axes will be in the same direction as their rotation around the sun .

To understand this, we have to consider a particle moving i n

the same orbit as and behind the planet . Under the influenc(

of the attraction of the planet, its velocity will incr ease and thin
also the centrifugal force . The result is that it will move outward s

and that if it collides it will give to the planet an angular mo-

mentum of the right direction .

Kant was able to explain the first group of regularities, men-

tioned in part A . He did not attempt to explain the other thre e
He was unaware of the difficulty of the distribution of the angulai

momentum, and even of the fact that angular momentum has t o

be preserved. The fact that the present distribution of the angular
momentum was not explained in this theory was the reason why !

Kant's theory was not accepted as the final answer . In the following !"
chapters we shall see that an extension of this theory seems to be

able to give an explanation of G and perhaps of B .

3 . LAPLACE ' S theory. In many textbooks and popular works .

Kant's theory is mentioned together with the theory of Laplac e

of 1796 . The view often held is that Laplace put Kant's ideas into

scientific terms . As we shall see, this is far from correct. The

theories are widely different . Moreover, Laplace when writing

his popular book "Exposition du Système du Monde" was

unaware of the existence of Kant's theory .

Laplace's idea was to start from a situation where the sun i s
surrounded by a hot gaseous atmosphere . This nebular atmo-

sphere was gradually cooling and thus contracting . As it contracted ,

the rotational velocity necessarily increased by the preservatio n

of angular momentum, and thus also the centrifugal force at th e

equator. Ultimately this force became larger than the gravitationa l
force and a ring of matter was flung into space .

This process was repeated, giving rise to a system of concentri c

rings from which by a process not further explained the planet s

derived. Finally, the remains constituted the sun .

Laplace can easily explain A and perhaps B, but the crucia l
point here is again D . In fact, if all the mass and angular momen-

tum of our solar system was concentrated in even as small a

volume as that of the present sun, the centrifugal force at its

equator would only be about five per cent . of gravity and it

would be far from any danger of breaking up .

This failure to explain D alone suffices to disprove Laplace' s

theory. Another difficulty, which can only he overcome quit e

artificially, is that the Laplacian rings have no tendency to con -
dense into planets (they might form a swarm of asteroids but no t

larger bodies) . The only explanation is to suppose that the actua l

condensation should have begun already before the throwing off

of the rings .

Faye's theory of 1885 was essentially the same as Laplace' s

and is also unable to explain D .

4 . BrßirELANn's theory (6) ; BERLAGE'S theories (7) : In 1912 ,

Birkeland gave a sketch of a theory in which the solar magnetic

moment and the particles emitted by the sun played a role .

His idea was that through the strong magnetic field of the sun th e

charged particles, which are for the most part emitted from th e

equatorial regions, should spiral down towards limiting circles .

The radii of these circles would depend on the ratio of the charge

to the mass of the particles .

P .
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Birkeland is thus able to explain both A and B . The problem
D is not a problem in this case either, since, as shewn by Alfvén ,

due to currents in the surrounding matter evoked by the sun' s
magnetic field transfer of angular momentum from the sun t o
the surrounding matter is possible . The time needed for this
transfer is small (10 5 years) as compared with the age of the solar
system .

Nevertheless, this theory could not be maintained since th e
solar magnetic field is not strong enough to produce the desire d
effect . The orbits of the emitted particles are only slightly curved
and they all leave the regions of the solar system .

Birkeland was the first author to consider electromagneti c
effects . After him, Berlage, inspired by his ideas, tried to account

for many features of the solar system by taking the solar electri c

field into account. Berlage's theories met with the same fate a s

Birkeland's . They remained practically unobserved . For instance ,
Alfvén who in 1942 again investigated the possible influence o f

the solar magnetic field does not mention either of them .

In his first theory Berlage assumed that the sun emits negat-
ively charged solid particles and positively charged ions . Their

emission is a consequence of the fact that radiation pressure o n

them exceeds gravitation . The result is a space charge around

the sun and a positive charge of the sun itself .

The next assumption is that the sun, as in the theory of Kant ,

is surrounded by a gaseous disc . If we now roughly calculate the
equilibrium position of an ion in the disc under the influence o f

the space charge, solar charge and solar gravitational field (Ber -

lage neglects the centrifugal force), it can be shewn that for each

ion there exists an equilibrium distance which increases wit h

decreasing atomic number of the ions .

The result is that in the disc there will be formed concentri c

rings of ions, their radii depending on the ion in question .

These ion rings will act as the initial nuclei for condensation ,

and -afterwards each of these rings will condense ultimately into

one planet, as in Laplace's theory .

Since to each of these ion rings is ascribed a certain isotope o f

one of the elements, Berlage is able to estimate the masses o f

the planets. Also he finds decreasing densities of the planets wit h

increasing distance from the sun, which-assuming that Jupiter

and Saturn possess a heavy nucleus surrounded by a lighte r

atmosphere (Jeffreys)-is in agreement with observation .

The distance of the rings from the sun can be shewn to
correspond to the Titius-B ode law .

We see that Berlage is able to explain here A, B and C : he doe s

not attempt an explanation of D . This, theory will not, however ,

stand criticism. Apart from the fact that it can easily be shewn
that in the way Berlage suggests enough matter can never b e

collected to build up, for instance, Jupiter there is the fact tha t

the basic assumption that the sun should emit negatively charge d
solid particles is shewn to be wrong by observation .

This was the reason why Berlage himself left this theory for a

second attempt where he now used the fact that the sun emit s

positive ions and electrons . Considering the effect of space charge ,
radiation pressure and gravitation on the charged particles, but
still neglecting centrifugal forces due to rotation, Berlage is able t o

calculate the electric field strength in the neighbourhood of the
sun. It then appears that this field is of a periodic character . This

means that there are concentric spheres on the surface of whic h

the field strength is equal to zero .

If we now consider the gaseous disc which is again suppose d
to be surrounding the sun, we see that since the atoms will all b e

ionized for part of their life matter will be concentrated on the

circles where the disc is intersecting the spheres of zero fiel d

strength . In this way Berlage now gets his rings of matter. The
rest of the condensation then takes place in the same un-

explained way as in Laplace's theory . -

This theory explains A and B, but has to leave . C and D

unexplained . Berlage himself sees as a serious deficiency of this

attempt that it is unable to explain the satellite systems . Another

serious objection is that the degree of ionization in the gaseous

disc will be-so low that electrostatic effects are negligible (compar e

Chapter II, Section B) .

In his latest theory, Berlage has completely left all electro-

magnetic considerations and considers in detail the history of a

gaseous system which may be found around the sun . He thus

follows Kant . First of all, he shews that this system will assum e

the form- of a disc . He also gives an expression for the densit y

in the plane of the disc as a function of the distance from the sun .
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After that Berlage looks for a possibility that this disc may
condense spontaneously into rings . Afterwards these rings hav e
to condense into the planets . For that purpose he investigates
whether a slightly different density function might be stable .
This means that for this new density function, the total mass ,

angular momentum, and energy are the same as before, but th e
kinetic energy of the system is larger than initially . Berlage
really finds such a tendency to form rings .

In' this way he can explain A and B . His reasoning is, however ,
very loose as, for instance, his assumptions about the temperatur e
distribution and the laminar motion in the disc . Also his assertio n
that rings will be formed does not rest on a firm foundation . Fin-
ally, there is still the difficulty of the condensation of the ring s
into planets which we met already in the discussion of Laplace's
theory .

5 . ALFVN's theory (8) . The Swedish physicist Alfvén has
given a very interesting theory in a series of three papers, takin g

into account the magnetic forces on ionized matter .

His reasons for advancing this theory are the following . To
begin with, the force exerted by the sun's magnetic moment on
ionized matter can be much larger than the gravitational forc e
on the same matter . For instance, on a proton moving in the
earth's orbit with the earth's velocity, the first force exceeds
the second by a factor 60 .000 . In the second place, ALFVÉV ha s
shewn in an earlier paper (9) that transfer of angular momentu m
from the sun to a surrounding ion cloud is possible . The rotatin g

magnetic moment of the sun evokes currents in the cloud an d

an effect similar. to that braking a metal between a magnet's pole s
takes place. This transfer of angular momentum can take plac e
in an, appreciable amount in as short a period as 10 5 years . In
this way, D does not present any difficulty .

Now, Alfvén's idea about the formation of the outer planets
is the following . Suppose that in its journey through space, th e
sun meets an interstellar gas cloud and becomes surrounde d
by it . If we may neglect the rotation and velocity of the -cloud with
respect to the sun, the atoms in the cloud will start falling toward s

the sun, and their kinetic energy will increase during that fall .
Eventually this kinetic energy will become so large that ioniza-

ion by collisions can take place .

The idea is now that collisions are so frequent that this ioniza-
tion indeed takes place. Once an ion is formed, the movemen t

towards the sun is stopped and the ion has to move along th e

magnetic lines of force until it reaches an equilibrium position .

Alfvén shews that this equilibrium position is situated in th e
equatorial plane of the sun .

Assuming now that the ions are moving uniformly toward s

the sun and are all ionized at the same distance from the sun ,

and considering in detail the subsequent movement of the ion s

towards their equilibrium position in the equatorial plane, h e
gets the mass distribution in the equatorial plane . Alfvén takes the

fact that this mass distribution agrees roughly with the mass distri -

bution in the series of the outer planets as a support of his theory .

In this way Alfvén is able to account for the outer planets . This
mechanism is, however, unable to explain the origin of the inne r

planets because even in the most favourable case the distanc e

from the sun at which ionization occurs will be by far larger than

the mean distance of Mercury from the sun . Also, one should expect

from this mechanism to find lower densities for the inner than

for the outer planets but the densities of the inner planets ar e

higher than those of the outer ones .

Alfvén without any detail suggests the following process . The

sun in its travel through space should have met an interstella r

smoke cloud consisting of solid particles . Through the stron g

radiation of the sun those particles will sublimate as soon as they

have come near enough . The resulting atoms become ionized bu t

at a shorter distance from the sun .

Instead of the Titius-Bode law, Alfvén introduces a diagra m

where the ratios of the masses and of the distances from th e

primary' are connected . His explanation of this diagram, how-

ever, seems to be extremely weak, and it does not seem to be

possible to get the saine result by valid reasoning .

But also his original idea is unable to stand a critical scrutiny .

In the case of a gaseous cloud surrounding the sun from th e

beginning electromagnetic forces will not play any role at al l

because of the absence of ionization in the cloud (cf. chapter II ,

section B) .

As far as Alfvén ' s suggestion about the heating up of an inter -

stellar gas cloud is concerned, the atoms will certainly not save
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up their energy until they reach the immediate vicinity of the sun .
It can easily be shewn that their mean free path is by far to o
small . However, one could imagine that the whole cloud was
heated up while contracting . Apart from the fact that one has
to assume zero angular momentum of the cloud around the sun ,
and the fact that the energy gained seems . to be emitted by radia-
tion before ionization takes place, it seems that the desired object
still is not attained. Ionization will start all over the cloud, an d
since ions cannot approach the sun, only a very small fraction

of the gas cloud, insufficient to form the planets, will be available
for further condensation .

6 . VON WEIZSÄCKER ' s theory . (10) . In a paper, dedicated t o
Sommerfeld on the occasion of his 75th birthday, von Weizsäcker
has advanced a new theory about the origin of the solar system .
The greatest importance of this theory is in the fact that it provides .
us with a definite scheme for further calculationsl .

His theory can be divided into different parts, corresponding
to the different stages in the development of the solar system .

First, he discusses the formation of a gaseous disc around th e

sun, secondly, the formation of a system of vortices in this disc ,

finally, the condensation process, and the satellite systems .
The first part is practically identical with the similar parts i n

Kant's or Berlage's theory. The disc is supposed to contain about
one tenth of the solar mass, and the over all density will be abou t

10 13 atoms per cm 3 .

The second part is the most interesting, but probably also th e
weakest point in this theory. Supposing that the orbits of mas s

elements in the disc may be assumed to be Keplerian, von Weiz-
säcker shews that a system of vortices can be built up from thes e
Keplerian orbits . In fig . 1, we see such a configuration .

Von Weizsäcker is led to such a configuration for two reasons .

The first is that gravitational forces are by far the most importan t
forces in the disc . The second .is that in a system-of vortices, as
shewn in fig. 1, the energy dissipation will be small . In the large

vortices the dissipation will be negligible in a first approxima-
tion. However, along those circles where the rings of vortice s
meet there will be large viscous stresses . These will presumably

It will be seen that the present paper is to a large extent a clarification an d
extension of von Weizsäcker's ideas .

Nr . 3

give rise to secondary eddies on the circles sepal.

vortices. These eddies are called the "roller bea,

They will probably regulate the whole system. Howe

will be dissipated in these "roller bearings" . Conditions

densation will be more favourable in these secondar y

(compare Chapter IV), and so we may expect the planets L

formed at distances from the sun corresponding to the radi i

Figure L The outer arrow indicates the direction of rotation of the whole
disc, while the inner arrow indicates the direction of rotation in the vortices . Th e

sun is in the centre of the whole system .

the circles separating the main vortices . Now, von Weizsäcker

gives reasons to believe that the number of large vortices i n

each ring is constant . This means that the ratio of two consecutiv e

radii will be constant, thus giving us the Titius-Bode law for the

distances of the planets from the sun (neglecting the constant term) .

Another consequence of the condensation into planets in the

"roller bearings" is that we will get a counter-clockwise rotation

of the planets if the whole system is rotating in a counter-clockwis e

direction, in agreement with observation . The rotation in the larg e

vortices; is in the opposite clockwise direction .

During their formation and immediately thereafter the planets

«ill be surrounded by extended atmospheres . In these atmosphere s

the satellite systems will be formed . Von Weizsäcker does not,

however, enter into an extensive discussion of this question .

Due to the dissipation of energy, the disc will disappear
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gradually . Von Weizsäcker estimates its lifetime to lie betwee n

10' and 10 8 years, which is of the same order of magnitude as th e

period necessary to build up bodies of the size of the planets .

Von Weizsäcker has given an explanation of A, B, and C .

He also gives an explanation of D in the following way . The

dissipation of the gaseous system is accompanied by a flow o f

atoms into interstellar space and a simultaneous flow of matte r

to the sun. He now assumes that the light elements leave th e

system, carrying with them the necessary angular momentum ,

while the matter falling onto the sun does not possess any angula r

momentum. In ' this way, he can at the same time explain th e

difference in constitution of the planets and the sun, and th e

distribution of the angular momentum. It is, however,. difficul t

to see why this separation of the cloud according to angular

momentum and atomic weight should take place . Also, this proces s

cannot decelerate the sun sufficiently ; there is a discrepancy o f

a factor 100 .000 .
Also his picture of the vortices seems difficult to maintain :

Keplerian orbits are only a first approximation . Hydrodynamic s

has to be applied, but, as we shall see in Chapter III, it is as yet

unable to give von Weizsäcker's configuration . However, the main

merit of this theory is that it has revived again Kant's theory an d

that it has drawn attention to the importance of hydrodynamica l

considerations . . In the following chapters we shall see that a slightl y

different attack seems to give a reasonable explanation of A, C ,

and perhaps B, while D has as yet to remain unexplained .

II . Dualistic Theories : 1 . BUFFON, CHAMBEBLIN-MOULTO N

JEFFREYS, JEANS . Ten years before Kant published his theory a

dualistic theory had been advanced by Buffon . In those days

fantastic ideas about comets were common and Buffon therefor e

proposed the collision of the sun and a comet as the source o f

our solar system . (Buffon estimated the mass of the comet of

1680 as 28000 times the earth's mass . )

Through the collision matter was torn out of the sun whic h

matter later condensed into planets . The rotation of the sun

might also have been caused by the collision .

Modern tidal and collision theories have the same foundatio n

the only difference being that another star, instead of a comet ,

is the foreign body which produces the material .

Chamberlin and Moulton proposed that as a second star was
passing the sun in a hyperbolic orbit by tidal action and eruptions
material for the planets was provided . The first heavier eruptions
would provide the material for the outer and the secondary
eruptions, that for the terrestrial planets .

After the second star had departed the gaseous matter would
cool and condense . Part of it had fallen back on the sun an d
part of it escaped into open space, but the rest could be used fo r
building up the planets . In the cooling process liquid drop s
(planetesimals) would be formed and even larger solid core s
which were sufficiently large to hold the lighter gases . In the
course of their rotation around the sun those cores swept up
matter and so the planets grew out of this gas .

The orbits of the cores which had originally large eccentricities
are "ironed out" by the resisting medium .

The theory proposed by Jeans and also by Jeffreys in his firs t
paper is about the same . They do not introduce the solar eruptions
since it is known that the radiation pressure responsible for
prominences and similar phenomena is not large enough to caus e
eruptions as large as needed here . Tidal action produced a fila -
ment which breaks up into smaller gaseous fragments . In thos e
fragments condensation takes place into liquid bodies and s o
on to planets .

The small eccentricities are again brought about by the resistin g
medium .

These theories have the advantage that they are able at firs t
ght to explain the distribution of the angular momentum (D)

ithout difficulty. They do not attempt to explain either B or C

,,inle for A they use the resisting medium .
The first difficulty lies in the explanation of the planetar y

klation . The explanation put forward by Chamberlin is no t

onvineing and therefore Jeffreys assumed later that it was not
close encounter, but an actual collision which took place .

Caking into_ account the viscosity of the resulting ribbon tor n
nt of the sun, he could then spew that rotation of the right

0L der of magnitude would ensue .

The next and greater difficulty is as Nölke has shown th e
nfluence. of the resisting medium. It seems to be doubtful whethe r

this medium really can bring about the small eccentricities .
I) . li ;I. Danske Vidensle . Selskab, Tj at .-fys. Medd . XXV, 3 .
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Another difficulty is the formation of the satellite systems .

Although the original idea was that tidal forces caused by th e

sun were responsible for them, Jeans himself shewed that thi s

notion would not work . In Jeffreys ' later theory it is perhap s

more easily explained, since (quoting Russell) "almost anythin g

may have happened in the period of wild turbulence, which

included the formation of the ribbon and its segregation int o

separate bodies . "
Also, if the material comes from the sun, it will be extremel y

hot and the danger exists that it may fly away into open spac e

before beginning to condense, as was pointed out by SPITZER (11) .

Finally, the explanation of D is not as easy as it seems . At first

sight one would think that during the collision sufficient angular v

momentum may have been imparted to the filament. RUSSELL '

(5) has shown, however, that this transfer of angular momentu m

by the second. star is not an easy job and that, if it was possibl e

at all, which he doubts, one would expect large inner and smal ]

outer planets .
Russell also deals with some other hypotheses to save thes e

theories, but ends his monograph by saying that we are as yet

no wiser about the origin of the solar system than we were when

Newton found his law of gravitation, a point of view shared b3

Nölke .
2 . Binary hypotheses ; LYTTLETON (12, 13), HoYLE (14 )

During the last decade, several theories have been propose d

involving the assumption that the sun was originally a membe r

of a binary or multiple system .

The first theory of Lyttleson assumes that the binary companio n

of the sun undergoes a close encounter with a third star, simila r

to the encounter assumed in Jeffreys' theory . The encounter

results in a disruption of the binary system and the productio n

of a gaseous filament which. may produce the planets . Although

Luyten's manifold criticism does not seem to be valid, the form a

Lion of satellite systems and the small eccentricities, together wit h

SPITZER ' S objection (11) seem to be too large stumbling blocks

In his second theory, Lyttleton starts from a triple star . Th '

separation of the two companions of the sun will decrease a ;

part of the evolution of a binary system . The two stars will

finally combine into one mass . This mass will, however, break

1 9

up because of rotational instability . After this fission the two part s
will leave the system producing a situation similar to that met
in Lyttleton's first theory . The same objections apply, therefore ,
to this theory .

The last development in this direction is given by Hoyle .
According to Hoyle, a supernova outburst of the second component
will account for the breaking up of the binary system and for th e
material from which the planets are formed . It seems, however ,
that this theory meets the same difficulties .

In his last paper, Hoyle considers the condensation proces s
in detail and arrives at estimates of the original rotational periods
of the planets . His reasoning develops along lines parallel to thos e
which will be discussed in Chapter IV . It seems, however, that h e
arrives at wrong conclusions because he neglects the exhaustio n
of the gaseous system and all hydrodynamical effects . His proof
of the direct rotation of the planets is essentially the same a s
that given by Kant or Alfvén .

III . Final Remarks : We have not included all theories i n
our survey. Manyof them as, for instance, those by Arrheniu s
and See are merely variations on themes discussed `here . Other
Iheôries like the "Welteislehre" by Hörbiger-Fauth, which ha s
been dealt with conclusively by NöLKE (4), or the recent
theory by HALDANE (15) who seems to drive the consequences
of the expanding universe rather far need not to be take n
seriously .

However, there exists one recent theory which seems to be,
at present anyhow, only an outline of a theory but which mus t
he mentioned briefly . It is WHIPPLE ' S attempt (16) to produce a
planetary system from a large smoke cloud. He starts from a
smoke and' gas cloud with a radius of about 30000 A. U. con-
taining about one solar mass . The contraction of this cloud should
produce both the sun and the planetary system .

The original cloud is assumed to possess negligible angula r
momentum so as to account for the low angular momentum o f
the sun . The planets are assumed to be formed in a stream in the
cloud so that those initial condensations which have to develo p
into the planets have already from the beginning the necessar y
angular momentum . The solution of D is thus put into the theory
from the beginning . The planets (or better the condensations

2 *



which will later form the planets) will now spiral towards th e

sun because their accretion of matter of zero angular momentum .

Whipple gives a rather half-hearted explanation of A, bul

does not attempt to explain B or C. Furthermore, his discussio n

of the planetary rotations seems to be difficult to follow and

lacks quantitative evaluation . Altogether, there seems to be ver )

little reason as yet to accept this theory as a final solution .

	

t

Recapitulating, we can say that there seems at present to be no
theory which can explain satisfactorily the various properties o f

our solar system . Especially the differences between the outer

and the inner planets and the present distribution of the angula r

momentum seem to have presented unsurmountable difficultie s

Dr . L. Spitzer has kindly drawn my attention to the recent papers by

A. Gasser (tielv . Phys. Acta, 18, 226, 1945), J . ' Sourek (Memoirs and Observation

Gzechoslov . Astron . Soc ., Nr . 7, 1946), A . G . Banerji, Proc . Nat . Inst . Sc. India ,
173, 1942) and G . Armellini (Rendic . Reale Accad. d'Italia, serie 7, vol . 4, no. 11).

It has not, however, been possible to include these in the review in this intro-
duction .

Chapter I .

Summary .

In view of the fact that as yet no acceptable solution for the
origin of the solar system appears to exist, it seems justifiabl e
to investigate again a few aspects of this old question . There are
several reasons why this should be done. First of all, it seem s

[hat as yet no sufficient attention has been paid to the physica l
properties of a gaseous system from which the planets shoul d
condense . Secondly, up to now nobody seems to have drawn an y
conclusions from the remark of JEFFREYS (17) that the initial
steps in the condensation process will be the same as in th e
case of a supersaturated vapour . HoYLE (14) has discussed ,, thi s
problem rather extensively, but his discussion lacks quantitativ e

reasoning and he neglects a few important aspects of the proble m
and therefore arrives at the wrong conclusions . Finally, in an
as yet unpublished paper which was dedicated to Prof . Niels Bohr

on the occasion of his sixtieth birtday l , VON WEIZSÄCIiER (18)

has. set forth new ideas about cosmogonies which might be use d
for a discussion of the origin of the solar system . Our discussion

will, however, run along lines slightly different from those of von

'eizsäcker's own theory_ (10) about the origin of the solar
system, because of the difficulties encountered there .

Before discussing the new ideas which we wish to present
in the present paper and the reasons why we are discussing jus t
those points which we shall look into, we shall briefly discuss
this second paper by von Weizsäcker .

Von Weizsäcker starts from a situation in which the univers e

I wish to express my sincere thanks to Prof . Bohr for giving me an oppor-
tunity to see this manuscript. This paper has in the meantime been published .



is filled with gas . The composition of this gas is supposed to b e

roughly the same as that of the sun or of the interstellar gas, i .e . ,

mainly hydrogen. Also there is a velocity distribution which may

be described apart from its fluctuations as the expansion of the

universe. The origin of these velocities and of the distributio n

of the elements in the gas are not discussed and are supposed

to belong to earlier periods . Now, von Weizsäcker investigates

the development of this gaseous system . Because of its larg e

dimensions, turbulence will be present . The consequence is that

there will be regions of higher density . Matter entering suc h

denser regions will lose the energy gained in the gravitational

field because of viscous interaction and will be captured . In this

way we shall get conglomerations of matter . These conglomera-

tions are the first stage of galaxies . .

In such a proto-galaxy, the same process will start afres h

on a smaller scale, and the condensations will now be the proto-

stars . The next step should be the formation of planets in the

gaseous system doomed to become a star, and the last ste p

might be the formation of the satellite systems .

The formation of the star from the gaseous rotating syste m

will be accompanied by the dissipation of the system . The rotatio n

is due to the whirling movement of the matter, and we may expect ;

the linear velocities at the outskirts of the system to be of the orde

of magnitude of the turbulent velocities . Due to the concentration

of matter in the centre, the outer parts will try to move with veloci-

ties given by Kepler ' s third law. This means that different par t

of the system will move with different velocities and viscoû-

stresses will result . These forces try to accelerate the outer pa r

and decelerate the inner parts of the system in an attempt to bring

about a uniform rotation like that of a rigid body . Also thes f

viscous forces entail a loss of energy . So we have a situatio n

where there is at the same time a dissipation of energy an d

transfer of angular momentum from the inside to the outside o f

the system. Von Weizsäcker assumes that these two processes ar g

possible because mass with higher than average angular moroen -

turn disappears into interstellar space while at the same tim

the rest of the mass with low angular momentum will becom e

concentrated in the centre of the system thus providing us wit h

the necessary energy . In this way we get a slowly rotating central

mass (the star) surrounded by a faster rotating surroundin g
gaseous cloud . This implies that although in the initial stage s
the rotational velocities in the centre were much higher than at

the outskirts the second stage presents us with a slowly rotating
star and a faster rotating gaseous cloud . As soon as the densit y
in the cloud is below a certain limit the rotational velocities i n
the cloud will be determined by the central mass and follow
the third Keplerian law .

The equilibrium shape of such a rotating gaseous cloud wil l
be a lens shape or disc . In this disc there will still be turbulence .
However, it is still the question whether the cohfiguration o f
vortices will really be as regular as the one given by von Weiz-

säcker .

Accompanying the disappearance of the solar gaseous envelope ,
condensation will take place in it . There will be many centres of
condensation and during the lifetime of the disc these condensa-
tions will grow to become as large as the present planets . Together

with their formation the planets will become surrounded by
extended atmospheres . The evolution of these atmospheres will
probably be analogous to the evolution of the solar envelope .
In this way we have a mechanism for the formation of th e
satellite systems .

Now, the question discussed in the present paper is in how fa r

this qualitative scheme may account for the various propertie s
of the solar system . Before starting to discuss the various aspect s
of the problem quantitatively we shall give a brief survey of th e
contents of the following chapters .

In Chapter II we shall first of all discuss the shape of the sola r

gaseous envelope . We shall try to take into account the dissipa-
lionof the disc by assuming this disc shape to vary slowly . After
that we shall discuss /the various physical properties of this disc .

The most important property is the temperature in the disc sinc e
the temperature is important in determining the shape of the disc .
First, it is shewn that ionization in the disc is negligible . As was
first shewn by EDDINGTON (19), ionization by stellar (or solar )
radiation will result in a much higher temperature of the gaseou s
system because the electrons will leave the atom with kineti c
energies corresponding to the surface temperature of the star .
T'hese high velocity electrons will, by interactions with the gas
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atoms, set up a high temperature. Then, we have to calculate
the optical depth of the disc in order to determine whether muc h
radiation energy is captured in the disc . This, however, appears

not to be the case. After that, we can determine the temperature

in the disc . This temperature ranges from 75°K in the neigh-

bourhood of Neptune, to 700°K in the vicinity of Mercury .

Next, it is shewn that the radiation density will be approxi-

mately a diluted Planck radiation, that radiation pressure can b e
neglected, and that there will be no appreciable separation o f

elements, due to either gravitational separation, thermal difffusion ,

or other sources . Finally, we compute the densities of variou s
molecules in the disc .

In this way, we have a more or less definite physical pictur e

of the disc .

In Chapter III we shall discuss the hydrodynamical aspects
of a gaseous disc in general .

We shall try to estimate the lifetime of the disc, and the

transfer of angular momentum, not necessarily due to a flow o f

matter, from the central body to the disc during the lifetime o f

the disc . We shall also discuss the question whether it is possible t o

explain the Titius-Bode law .
In Chapter IV the condensation process is discussed . This

discussion will resemble very closely the discussion of HoYL E .(14)
or VON WEIZSÄCKER (10) but some new features will be revealed .

We shall discuss the three stages in the condensation process .

These are the formation of condensation nuclei, the growth of

these nuclei, and finally the stage of rapid gravitational capture .

In Chapter V we shall apply the results of Chapters II to IV

to the solar envelope . We shall see that we are now able to explai n

the differences between the outer and the inner planets as far a s

mass and density are concerned .
In Chapter VI we shall discuss the satellite systems and the

rotations of the planets . It will be seen that we can divide th e
satellites into two groups which we shall call the "regular" an d

the "irregular" satellites . It is proposed that the "regular" satellites

are formed out of the planetary envelopes . The "irregular '

satellites, however, are supposedly captured by the \ planets .

If we now compare the results of the present paper with th e

requirements of a successful theory discussed in the introduction

we see that we have been able to explain some hitherto unexplaine d
points of the group C, and, possibly, shed some light on th e

difficulties connected with the explanation of B and D .
We have been able to account for the fact that the planets

fall into two definite groups (C) by looking carefully into th e

condensation process .
Although the Titius-Bode law (B) has still to remain unex-

plained there seem to be indications that a thorough investigation

of the hydrodynamical problems connected with the evolution o f
gaseous systems, such as we have studied here, might give a
clue to this property of the solar system .

A regular system of vortices would at the saine time give us an

easy explanation of the circular orbits . The direct rotation of all

the planets in one plane follows immediately from the fact that
the condensation takes place in a rotating disc .

The present distribution of the angular momentum (D) stil l
cannot be explained but some indications are given as to th e
direction in which the solution might possibly be found.

We have not discussed at all the way in which the sun shoul d

have been formed from an original nebula . This formation may

have an important bearing on the explanation of the present
distribution of the angular momentum but falls outside the scope
of the present paper .

Altogether, the present paper gives a program for futur e
investigations of many points rather than a complete solution .



Chapter II .

Physical Properties of the Solar Envelope .

We shall consider here a gaseous system in the centre o f
which the sun is situated . The radiation of the sun is assumed
to be the radiation of a black body of 6000°K . The dimensions
of the sun are supposed to be the same as at present (r 0 =

7 .10 10 cm). The constitution of the envelope will be assume d
to be about the same as the constitution of the sun, i . e ., mainly

hydrogen and helium, corresponding to a mean molecular weight
of about 3 .

A. Shape of the envelope . In this section we shall follow
VON WEIZSÄCKER (10) with a few alterations . We shall start fro m
the equations of motion :
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For this temperature we shall use :

T = a • r- z,

	

(2 .4 )

which follows if the temperature is determined by an equilibriu m

between the absorbed solar- radiation, and emitted black body

radiation by the gas . In the next sections of this chapter we shal l

derive this formula for the temperature .

Combining equations (2 .3) and (2.4), we have

p = ber-i .

	

(2 .5 )

Normalizing b so that T = 6000° for i• = 7 .10 1° cm (solar

radius), we get : b

	

4 .10 16 cmK sec-2 . 1

Introducing :

blog~ =o' ,
P o

where e° is an arbitrary constant, and writing equation (2 .1 )

out in the two directions parallel and perpendicular to the rota-

tional axis, we have

yMO {	 b ,l r2 z,

	

(2 .7 )
r 3

	

2 r' l1

(2 .6)

a u _ (~2y MO+
b .l

1,7 s
as

	

r 3

	

21.7
(2 .8)

(2 .9)

where U is the gravitational potential energy, e the density of th e
gas, p its pressure, and co its angular velocity . Finally, s is the
vectorial distance from the rotational axis (z-axis) .

We take for U :

where y is the gravitational constant, M0 the solar mass (we neglec t
the gravitational action of the gaseous envelope), and r the distanc e
from the centre of the sun .

For the pressure we use the ideal gas law :

p = P R T,

	

(2 .3)

where R is the gas constant per gr ., and T the absolute temperature .

Equation (2 .7) can be solved, and gives us

a = 2y ;m0 + logy+r(s) ,
T r,

	

2

where z is independent of z, and has to be solved from the fol -

lowing equation, obtained by substituting equation (2.9) into

equation (2 .8) :

ds
1 Von Weizsäcker's normalization giving 300° K . for r = 10 13 cm (mean

distance of Venus from the sun) is derived from the observational data about
Venus' temperature. The surface temperature of Venus is, however, lower tha n

like equilibrium temperature required here by a factor 1 .4 because of the fac t

that the sun can only heat up that part of the surface which faces the sun .

dT

	

r
1
'-= w2 s . (2 .10)
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Since r is independent of z we have for the case of equilibrium :

co'

	

{( s _1 _

	

yMo(S) i
/ \) re - ~2 	 g

where u is still a function of s .
Now, the pressure gradient is everywhere in the system small

compared with the gravitational force (even for r = 10 15, the
term with b in equation (2 .8) is only about 1/200 of the gravita-
tional term) . It seems therefore to be permissible to neglect in
equation (2 .1) the term ap/aas, and determine w from the equation :

as ''' w2s '

or

w 2 : yM0
r

which corresponds to Kepler's third law .

We might try to take into account the dissipation of the disc ,
which will result in a steep density gradient, and therefore a
steep pressure gradient. (Von Weizsäcker here introduces an
artificial boundary .) One way of introducing this is by puttin g

1, 2 = 1 - a ' s ,

	

(2 .13) 1

where a may increase with time. As long as a-1 is large as com-
pared with the dimensions of the solar system, equation (2 .12)

will approximately be valid in the equatorial plane of the sun .
Using equations (2 .6), (2 .9), (2 .10), (2.11), and (2 .13), we

get for the density in the envelope :

(

	

1 - 1

	

--
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1r)~

. e

	

vT

	

1,/=,- )

r0

=2

b

y
°=10 10 cm'

We see from equation (2 .14) that the density fall& off rapidly

in directions perpendicular to the equatorial plane . If we take

1 Any ßu2, decreasing with increasing s, -will give a slowly decreasing density
in the equatorial plane. Equation (2 .13) is one of the simplest ways of introducin g
such a decreasing ,u 2 .

for the height of the disc the distance over which the density i s

decreased by a factor 2, we get for this height h :

= 2 /log 2 • (û)4 30 .
r

The density in the equatorial plane decreases because of the

term with xa i in the exponential . Since x 2 is very large compared

with the dimensions of the solar system, it is possible to fin d

values of a such that xa vs is large as compared with one, and still

a- 1 large as compared with the dimensions of the solar system .

In this way, we should have an appreciable decrease in density

in the equatorial plane, thus getting for the shape of our envelop e

a lens shape.
The density in the equatorial plane can be written in the form :

(s 1

Q - ~
m

(s~ e
sm

where Q m is the maximum density in the disc, and s m the distance

from the sun where that maximum density is attained . We find

sm from :
sm = (xa)-2 .

	

(2 .18)

The advantage of the density function given by equatio n

(2 .14) over the one given by von Weizsäcker lies in the fact that

it is now no longer necessary to introduce an artificial boundar y

as, was done by- von Weizsäcker .

In using equation (2.17), we shall often assume :

2 .10 1 ' atoms per cm 3 ; sm = 1,6 .10 12 cm,

	

(2 .19)

corresponding to a total mass of the system of about one tent h

of the solar mass . The value of sm is taken so that we can expect

a maximum planetary mass in the approximate neighbourhood

of Jupiter (cf. Chapter V, Section B) .

B. Degree of ionization . There are two possible causes fo r

ionization, viz ., the solar radiation or the collisions between th e

atoms. In order to get an idea about the degree of ionization du e

1 Strictly speaking h/r depends on r but only as r'I+ . The value given in equatio n

(2 .16) is an average value for the disc .

28

(2 .11 )

au

3 ' (2 .12)

o =

where is given by

x (2 .15)

(2 .16) 1

(2 .17)
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to the solar radiation, we may suppose for a moment that we have
to deal with a spherical gaseous envelope with a density of about
10 1E hydrogen atoms per cm 3 . This certainly will give us an upper
limit since there is a possibility of the loss of energy by oblique
emission from the disc which possibility is not present in the
case of a sphere .

Using STRÖMGREN's equation (20) :

"log S O =- 0.44 - 4 .51 0-I- 2 "log T

	

(2.20)

radius of the sphere containing the H II region (i . e . ,
the region where the hydrogen is ionized), in parsec s

(1 pc = 3 .10 18 cm) ;
radius of the central star, in solar radii ;
temperature of the central star ;
5040 °

T '

N : number of hydrogen atoms per
Using 7' = 6000°, N = 10 1E cm 3 , we get from equation (2 .20) :

S 0 = 3 .10' cm,

which is even far less than the solar radius . This means, of course,
that we may safely assume all the hydrogen in the disc to be neu -
tral . Since the ionization potentials of oxygen and nitrogen ar e
larger than that of hydrogen they will also be neutral .

The next element is carbon . We then have the equation :

1°1 og So = - 6 .17 - 3 "log a-
3

0x + "log T -1 -

-I- 2 "log R-
3

"log N,

where a is the absorption coefficient at the absorption edge, an d
z the ionizational potential . Using ac = aH (H/zc) 3 = 10- 17 cm'

(cf. (21)), x = 11,22 ev, we get :

So = 10 8 cm .

We shall finally investigate Mg, Na, K. Their abundance an d

ionization potentials decrease in this order . Using again equation

(2 .21), we get the following table, where for the absorptio n
coefficients of Na and K we use the values given by RUDKJÖBIN G

(21) and LAWRENCE and EDLEFSEN (22), and for Mg :

(

	

.a nzg = aNra xNal xrylg) 3

Table 2 . I .

Mg Na

	

K

Abundance relative to hydrogen 	 3 .10-s 3 .10-6 10-s

Absolute abundance	 :	 3 .10 11 3 .1010 10 Y 0

Ionization potential in electrovolts . . 7 .61 5,12 4,3 2

a in cm'	 5 .10-20 1,6 .10 -19 3 .10-2 0

So in cm	 7 .101 ° 3 .10 12 7 .1012

We see that the only element which might be ionized would .

be potassium . We have not, however, taken into account that the -

effect of recombination processes leading to excited states, fol -

lowed practically always by cascading to the ground state, wil l

decrease the degree of ionization as pointed out by STRÖMGRE N

120) . Furthermore, the fact that the radiation emitted after th e

recombination can leave the disc obliquely also diminishes the

degree of ionization .

One might be afraid that the radiation density in the ultra -

violet might be higher than corresponding to a black body radia-

lion of 6000 ° . Recent V-2 rocket experiments (23) show, how -

ever, that the radiation density in the ultraviolet follows a black

body radiation of 3800 ° more closely than one of 6000 ° . 1 This

factor also shows that we have overestimated the degree of ioniza -

tUsing equation (2.21) with T = 3800°, we get for K for

instance :

which is far less than the mean distance of Mercury from the sun ..

Altogether, it seems safe to conclude that the ionization du e

to the solar radiation is certainly absent in the region of the majo r

planets and almost certain also in the region of the inner planets .

The next step is to investigate the degree of ionization due to

collisions between the atoms, i . e ., the ionization equilibrium of

This may no longer be true in the far ultraviolet .

So :where

R :

T :

0 :

c111 3 .

(2 .21)

So = 10 12 cin ,
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the different elements at temperatures ranging from 700 0 K to

75° K. We use the normal Saha equation :

_ q (2~cn2kT)z -XI 'nA+ n e1

	

J
e

hnA

where q is a weight factor, ni the electron mass, A" + the ion, and

A the neutral atom .
Even for potassium (low density, low ionization potential) .

at 700° K (highest temperature), only one atom in 10 10 is ionized .

Hence, we can safely conclude that this source of ionization can

also be neglected.
Since the solar radiation is unable to ionize even potassium,

we may safely assume that the highly diluted radiation fro m

other stars is also unable to produce any appreciable amoun i

of ionization except, perhaps, in a very thin boundary layer .

C . Optical depth ; temperature of the disc . If the intensit y

of the radiation passing through matter is decreased by a

factor e-T, r is called the optical depth of this matter . It is difficult

to estimate accurately the optical depth of the disc since we ough t

to take into account the fact that the scattered radiation can

leave the disc obliquely so that the radiation has not to pass al l

the mass before leaving the system .

We may, perhaps, obtain an estimate by smoothing out al l

matter in the disc over a sphere around the sun with the same

linear dimensions as the disc . We obtain an upper and lowe r

limit for this optical depth by considering two cases, viz . either

a density varying according to equation (2 .17), or a constant

density .
The selective absorption starts at 4 .3 eV (ionization potential

of K) and the maximum intensity of the solar radiation occurs for

2 .6 eV. Therefore, we may treat the scattering as Rayleigh scat-

tering on H atoms .

The total optical depth r is given by :

	

J

å e(r) dr,

	

(2 .23 )

where å is the cross section for Rayleigh scattering (d = 10-27 cm 2

and e (r) is the number of hydrogen atoms per cm3 .
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The lower limit is obtained by putting e (r) as constant . This
density will be about 3 .10 10 cm-3 for a total mass in the disc o f
;bout 0 .1 M0. Then we get :

T

	

åle

	

0.03 ,

where 1 is the total path (1 ti 10 15 cm) .

For the upper limit we use equation (2 .17) for the density,
with em ' 10 14 , corresponding to a smoothing out of the total mass
over the sphere . We then get :

T ti 2 .

The actual r, giving us an estimate of the total scattering o f
light in the disc, will probably be somewhat smaller than unity ,
which means that the disc is rather transparent and that we may
assume that the energy which a gas volume receives from the
sun will be proportional to the inverse square of the distanc e
rom the sun .

We can then calculate the temperature in the way already
ndicated in Section A . The sun is considered to be the Only sourc e
,f'energy. Equilibrium reigns if every gas volume in the dis c
knits as much energy as it absorbs . If temperature equilibriu m

should exist, the total energy emitted by a gas volume would b e
proportional to T4 (Stefan-Boltzmann's law), which should still

he valid for a H and He atmosphere because of the principl e
of detailed balancing. Since the energy received from the su n
will be proportional to r- 2 , we have :

T = a•rz .

	

(2 .4)

Normalizing T to 6000° for r = 7 .10i° cm (solar radius), we
get the following table for the temperatures of the cloud at the
present position of the planets :

Table 2 . II .

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptun e

650°K 480°K 400°K 330°K 170°K

	

130°K 90°K 75° K

These temperatures may be lower limits in the neighbourhoo d
of the inner planets (ionization of potassium giving rise to hig h

D. Kg! . Danske Vidensk. Selskab, Mat-Pys . Medd . XXV, 3.
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energy electrons), while the temperatures in the regions of th e
outer planets may be regarded as upper limits since there wil l

be a decrease in the intensity of solar radiation due to the Rayleig h

scattering . This might perhaps give rise to a factor two, Table 2 . I I

giving too high values' .
D. Radiative conditions : separation of elements . If we could

completely neglect absorption in the disc, the radiation would

be a diluted black body radiation, in as far as we may trea t

the solar radiation as a black body radiation . This mean s

the energy density corresponding to a certain frequency (o r

energy) is given by the well-known Planck formula multiplie d

by a factor g, the so-called dilution factor :

8nhv3
(ekI _-~(v) = g•- C3

	

1

is given by

where ro is the solar radius and r the distance from the sun .

However, there will be an appreciable ,absorption in the ultra -

violet region (h v > 4 .32 eV). For those wavelengths the dilutio n

factor may well be as small as 10-12 10-16 . In the rest of , th e

spectrum, the dilution factor will probably be given by equatio n

(2 .24), perhaps with an additional factor of the order 1/ 2 corre-

sponding to the loss of scattered light (see Section C) .

Since the disc is chiefly made up of hydrogen, and sinc e

BAADE and PAULI (24) have shown that for hydrogen, at the surfac e

of the sun, the radiation pressure is negligible as.lcompared witl:

the gravitational force, we may safely neglect the radiation pres -

sure, the more so since the radiation pressure will presumably

decrease more rapidly (due to the absorption) than the gravita-

tional force . If there were no absorption both would decrease a s

the inverse square of the distance from the sun .

In the next chapter we shall see that all particles are part of

1 Dr. L. Spitzer has kindly pointed out to me that the opacity of . the dis c
might be larger than calculated in the beginning of this section, due to the absorp-
tion and scattering by small solid particles .

the turbulent motion in the disc 'so that it is difficult to imagine
a process separating the different elements . The gravitational
separation discussed by EDDINGTON (25), e . g., will not take

place since the centrifugal potential will balance the gravitationa l
potential (cf ., e . g ., equation (2 .12)) . Other effects such as therma l
diffusion, are very small and, as remarked before, will probably
be annihilated by turbulence . Even if this should not be the case ,
it can be shown that this should only slightly affect the ratio of
the heavier elements to hydrogen, and since anyhow hydrogen is

the main element and the ratios in question uncertain, it seem s
that we may neglect all separation effects .

E. Molecular densities . As the last feature in the disc, w e
want to give a list of approximate densities of various compounds
in the disc . Of course these densities vary from point to point ,
due to the different pressure and temperature, but in order to get
a picture, we may take a density of the hydrogen of 10" at cm-3

and a temperature of a few hundred degrees Kelvin .

We are far removed from an equilibrium situation, since th e
temperature of the radiation is different from the temperatur e
in the disc and the radiation is diluted . It seems therefore danger-
ous to use the (quasi) equilibrium formulae of either SWINGS and

ROSENFELD (26) or ROSSELAND (27) . We have instead to look
into the different possible processes, as was done for the inter -

stellar space by KRAMERS and the present author (28) 1.

As an example we may discuss the case of CH and use th e
same considerations as in BAN 371 . The numerical constant s

are, however, d ifferent . We now have : Tg ' 400°, Trad 6000° ,

f as given in Section D. (We shall use the same notation as i n
HAN 371 and refer to that paper for this notation) .

The first processes which are of interest are the radiatio n

raptures (processes a and n) . The number of these processes i s

iven by

i We quote this paper in the following as BAN 371 .

gfactorThe dilution

3*



U(r) and U'(r) are the potential energy curves of the mole -

cule in the two electronic states between which the radiative

transition can take place (U(r) is an excited state and U'(r) th (

ground state) . The transition probability at a certain distance

r is given by A(r) and f is the probability that the upper state is

realized when- the two atoms meet .
In the case in which we are interested, the temperatures are

so low that we can replace F(x) by

2 -z=
F(x) = 1 -- x• e

and since U ' (r)/kT «« U (r)/kT < 0, we can write with fair accuracy

instead of equation (2 .26) :

We see that for low temperatures Qrad is inversely proportional

to the square root of the temperature since the integral is indep-

endent of T.

In the case of CH, we get from equation (2 .29) by numerical

integration for T = 400 0 :

For CN, numerical integration gives ) us :

Oro

	

10-17 cm 3 sec1 .

	

(2 .31 )

We have assumed that three body collisions can be neglecte d

as a means for the formation of molecules . For a density of 10 1 `

hydrogen atoms per cm 3, we get for the Q corresponding to tha i

process :

For the rate of formation of those molecules which cannot

Nr . 3

be formed thropgh a radiation capture accompanied by an
electronic transition, we can use equation (2 .32) .

Larger molecules will be assumed to be formed by radiatio n
capture, and we shall use for the capture cross sections (cf .
BAN 371) :

. For the processes involved in the CH equilibrium, we get th e
following table (we refer to BAN 371 for the meaning of th e
various processes) :

Ny = negligibl e

N~ = 2.10-13 Pei PCH +

N.,y ., = 10-16
pH °CH+

We have taken here T = 100°K . )
Since eel rs, Pc+ ' 0, we see that the only processes of any

importance are 'iq and 0 (i . e ., radiation captures leading to CH,
resp . CH 2), for the determination of 2cH. The concentration o f
CH+ will be negligible .

By equalizing N,; and N,y. we finally get :

ecH 2 .1014 cm- 3 .

For a few other compounds we get the following densities ,
using the above values for the formation cross sections . We want
to stress that all values in Table 2 . IV are very uncertain and ma y

well be higher or lower by a few powers of ten .

Table 2 . IV .

Ha :-1015 cm-3 GH : 2 .1014 cm-3 CH 4 : 2 .1013 cm- 3

	

G 4H 10 : 2 .10 1 0
13 2 0 :1012

	

CN : 1011

	

NH 3 : 1013

	

0 2

	

: 101 °

HCN : 1010

	

CO 2 : 10'

	

C 2 , 1010

	

SiC

	

. 10 8
BaO :10 5

	

SO 2 :2 .104

	

CO : 1010

	

NO . 107 0

- 37 .

Q 3 at 10-l6e sec' ; Q 10-at

	

10- 1
9
+n cm 3 sec1 . (2 .33)

Table 2 .111 .

~a = 4 .10 -17 p c+ pH ; Niq = 2 .10-12 oei °CH+ :

Nd = negligible

	

; NE = negligibl e

N,2 = 2 .10-17 PC pI-I ; NV.= 10-16 PH p CH ;
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Chapter III .

Hydrodynamical Properties of a Gaseous Disc .

In this chapter, we shall be interested in the evolution of a
gaseous disc in the centre of which a large mass is concentrate d

We saw in Chapter II, Section A, that the angular velocities n ,

the disc follow Kepler's third law closely . We shall assume tha t

we may use equation (2.12) for the velocities in the disc .

We shall treat the problem as a two dimensional problem ,
i . e ., we shall neglect all effects in directions perpendicular to th e

plane of the disc . For the height of the disc we shall assume :

a loss of mechanical energy, a flow of matter from the disc, partl y
to the sun in the centre and partly to interstellar space, and
finally a transfer of angular momentum in outward direction .
In this chapter we shall try to estimate the rate at which th e
various processes take place .

A. Dissipation of energy. We can use here the formula
given for instance by LAMB (29) for the dissipation of mechanica l
energy due to viscous forces . We have the equation :

åE-
J~

s 2 ( dwydx d. dz ,
j

	

ds .

where 91 is the viscosity coefficient and where we have assumed
that the velocity is everywhere in the plane of the disc an d
perpendicular to the radius vector . The angular velocity will stil l
depend on the distance from the sun in the way given by equa-
tion (2 .12) .

If we now consider a ring of height h, radius s, and thickness
els, we see that the total loss of energy per sec in that ring is given
hy :

h=ar,

	

ati 1/15

	

(3 .1 åE = 2arhs o a dd) ds, (3 .3)

in accordance with equation (2 .16) .

The density in the disc may be given by equation (2 .17) . Y'Y k

shall here use e measured in g cm3 .
In the disc we have a velocity gradient and an energy gradient

and the total loss of energy in the disc is given by :

d
s

9zcan7YM0 log- ,
The energy content per unit mass is given by :

=
S
åE = (3 .4)

giving the energy of matter, moving in a Keplerian orbit roun d

mass M 0 at a distance r . The kinetic energy
(2

' kT) may b

neglected with respect to e, given by equation (3 .2) .
In Chapter I we saw that due to the velocity gradient in fl u

disc viscous stresses will be set up which together with tit,

escape of matter at the boundaries in the course of time ma '

bring about a profound transformation of the disc . This tran s

formation of the disc is accompanied by three phenomena, viz :

where ro is the solar radius, so the radius of the disc, and where w e
have supposed a to be constant throughout the disc .

In the case of laminar motion, ap is the normal viscosity
coefficient, but in the case where the motion is turbulent, we can
still use the above equations . The quantity a is then, however,
defined by the equation :

1 p v
3

where ) is the mean free path or the so-called "mixing length" .
B. Lifetime of the disc . We see that we have a steady los s

of mechanical energy in the disc . The energy for this dissipation

yMo
S = 2r

(3 .2

(3 .5)



process is provided by matter falling towards the centre and s o

gaining gravitational energy .

We can estimate the total amount of energy available by
assuming that a fraction ß of each volume element in the dis c

falls onto the central body and that the rest of the mass disappear s

into space. In section D we shall see that ß is given by :

	

ß = ro/s .

	

(3 .6)

For the total energy available, we now get, using equations (3 .2 )

and (3 .6) :

Eo =-e 7 ° 2nshds+oß(s) YM0 2nshdsl
0

Ss0e	20 2 n skids =

	

M ,
ra

	

60 m

where M is the total mass in the disc and sm the distance at which

the maximum density in the disc occurs .

The lifetime of the disc, z, will now be determined by dividi n

E by dE/dt of equation (3 .4), and in this way we get :

è v t s,n

	

so
z^1 = 90na

M
-log- .

0

The derivation of equation (3 .6) is very tentative . Thus

might easily be larger, giving rise to an estimate of z larger than
that given by equation (3 .7) by, say, a factor 10 or 100 .

C. Transfer of angular momentum. Due to the velocity

gradient there will be a transport of momentum through an :,

area perpendicular to the radius vector . This transport of mo-
mentum will be accompanied by a transport of angular momen-

tum and energy . Those three quantities are given by :

The total transport of angular momentum per sec through a

cylinder of height li and radius s will be given by :

We are especially interested in the angular momentum trans-

ferred from the central body during the lifetime of the disc .
If in equation (3 .9) we put s equal to ro, we get the transfer of
angular momentum per sec in a situation where the velocities ar e

perpendicular to the radius vector and given by equation (2 .12) .
As soon as the central body is slowed down, the velocity patter n
in the neighbourhood of the central body will become change d
and it is difficult to predict exactly what will happen .

In order to get an idea of the magnitude of the transfer, w e
might compare dØ/dt for s = ro with 0o/z, where 8 ° is the angular
momentum of the central body in the case where its angular
velocity corresponds to Kepler's third law :

d B0

d t 0 .0003 M

0o ^ M0

	 more
where we have used so/ro - 10 4 , and 0o = w0115°r0 = 5 Mo UroY Mo

Although the above-mentioned phenomenon of transfer of

angular momentum will slow down the solar rotation, it is clea r

at first sight from (3 .10) that this can hardly account for the

present slow rotation (present 0 --, 0 .005 0 0) .
The present slow rotation of the sun has perhaps to be ex-

plained by an investigation of the earlier steps in the process

leading to the formation of the sun . This investigation, however ,

falls outside the scope of the present paper .

D. Estimation of the increase of the solar mass durin g
the dissipation process . Before discussing the possibility of

a regular system of vortices, we wish to look into the question o f

the dissipation of the disc . We shall try to estimate the quantit y

Hs), i . e ., the fraction of the mass which will fall onto the sun .

In order to calculate this rigorously one should have to solve

11 ~ e hydrodynamical equations, preferably with the terms involvin g

the viscosity. Also, one should have to consider a velocity compo-

nent different from zero in the direction of the radius vector .

These calculations should give us at the same time the transfe r

of angular momentum and, perhaps, the formation of a regular

,'stem of vortices .

(3 .10)
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However, we can try to get a first estimate of the magnitud e
of ß in the following way .

If we consider a cylindrical ring with height h, between the
radii s and s + ds, this ring will lose per sec angular momentum
at the rate :

SB =
ds (2 ar hs3

ds

) ds = 9 ~ra7i VY Mos ds .

The total angular momentum of the ring is given by :

8 = 2iths 3 go.) ds = 2Trap VyMos5 ds

If a kind of over all equilibrium in the disc should reign, this
loss of angular momentum would correspond to a loss of mas s
given by :

ô m V B

127

	

'

where in is the mass of the ring, and given by :

m = 2nhsods .

The energy loss per sec is given by equation (3 .3) :

8 El = 2 ar hs3 ()2 ds = 2~car~
Y M°

ds,

	

(3 . 3

and if a fraction ß of the original mass of the ring falls ont o
the sun, this loss of energy is compensated by the gain of energ y
by this matter, again assuming a quasi equilibrium situatio n
throughout the disc :

8 E2 = dm YMo =
S9 Y

	

ßßm

	

(3 .11 )r 0

	

9

	

r0

Putting à Ei = S E2 we can determine ß, and in this way w e
get :

13(0 = rols .

The total mass which will fall onto the sun is now given by :

_ S2 ac hs eß (s) ds =r0M.

	

(3 .12)
Jro

	

5 sn,

The reasoning in this section is only tentative . It would be
desirable to complement it by a direct estimate of the amount o f
matter which escapes from the boundaries of the disc .

E. Possibility of regular systems of vortices . We saw tha t
VON WEIZSäcKER (10) introduced a regular system of vortices
in his theory and that he was able in that way to explain th e
Titius-Bode law . In this section we should like to look ver y
briefly into this question .

Of course one cannot use von Weizsäcker's treatment since
the mean free path in the disc is far too small to allow for un -
perturbed Keplerian orbits . However, one might hope to be able
to deduce from the hydrodynamical equations a similar set o f
rings of vortices .

The first important point is that, as we already saw in th e
previous chapter, gravitational forces are by far the most im -
portant . They are not only more important than the pressur e
gradient, but also than the viscous forces . (Reynold's number

v l
-, where 1 is a length of the order of the dimensions of th e

system), which measures the ratio of the inertial forces to th e
viscous forces is very large in our disc) . This might give rise t o
systems like the one pictured by von Weizsäcker (cf. p. 15) .

The system which we consider is different from the commo n

hydrodynamical systems because of the absence of a wall . But

the fact that the mean free path increases with decreasing density
may have the same effect as a wall . And also it might be that
(luring the development of the gaseous system which will become
a galaxy the other turbulence elements may have acted some -
what restrainingly on the whirl which would develop into th e
sun and the solar system. We are thus tempted to compare thi s
with normal hydrodynamical systems although we are aware
of the danger attached to this procedure . There are, however ,
sonie signs that this might not be as far from the actual truth a s
one might fear .(3 .6)!
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The idea is to assume for a moment that due to the prepon-

derance of the gravitational force regular systems of vortice s
might be set up . Now, we can assume that the distance between

two circles separating the various rings of vortices will be give n
by the mean size of the turbulence elements . In this way we might
arrive at an estimate of the size of the turbulent elements in th e
solar envelope and in the planetary atmospheres from th e
differences of the observed mean distances of the successiv e
planets (satellites) from the central body since these planet s
and satellites will probably have been formed on the circles
separating the main vortices, as we shall see in the next chapter .
In Table 3. I we have collected the data for the sun, Jupiter ,
Saturn, and Uranus, using only the data of the "=regular" satelli-
tes (see Chapter VI) . In the second row we have taken the observed
planets and satellites only and in deriving the values for th e
last row we have assumed that due to some unknown reason
there are gaps, corresponding in the series of the planets, e . g . ,
to the asteroids . Finally, we assumed that the size of the turbulenc e

elements is proportional to the distance from the primary :

1=a . r,

	

(3 .13)

and the values given in Table 3 . I . are the mean values of a .
If rn is the mean distance of the n-th body from the centre ,
1 = rn - rn_1, and 2r = rn + rn_l .

Table 3 . I .

Sun Jupiter Saturn Uranus

Mean value of a for "regular" satellites 0 .56 0 .56 0 .42 0 .3 6

Mean value of a with assumed gaps . 0 .50 0 .45 0.33 0 .2 8

The number of gaps is inserted between

brackets	 (1) (1) ( 2 ) (1)

We may compare this with VON KARMÅN 'S formula (30) for

the mean size of a turbulence element. This was first done b )

TUOMINEN (31), who shewed that the Titius-Bode law for th e

planets follows within a factor 2 from the size of vortices given
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by equation (3.14). He did not, however, compare the planets
with the satellites . We shall follow his argumentation here with

a few alterations .

Von Kårmån had remarked that for the cases which he
investigates the mean size of the turbulence elements is given by :

dv/ds
dtv/ds 2

with a constant ko (s, 0 .4) . If the velocity is given by equatio n

(2.12), we get for the size of the turbulence elements :

1-0.27r .

	

(3 .15 )

If we now look at Table 3 . I ., we see one striking point, viz . ,

that a is decreasing with decreasing mass of the primary, i . e . ,

with decreasing influence of the gravitational force and that a

approaches the value of equation (3 .15). This might prove to be

an important point in a discussion of the hydrodynamical proper -

ties of the disc and the planetary . envelopes .

We want to point out a few more points connected with thes e

%gnlar systems of vortices .
The first is that the energy dissipation in such a regular syste m

might be less than in the case of an irregular turbulent situation .

In this way, we should get a longer lifetime than that corresponding

to an energy loss, calculated under the assumption that we may

use equations (3 .4) and (3.5) with a ) equal to the dimensions

the vortices . This might amount to as much as a few powers

Len. There are also other indications that the lifetime of th e
d isc might well have been much longer as we shall see i n

( .I~ spter V. This might then also be an indication that regula r

;,stems of vortices have once been established . In order to

ing about a regular series for the distances of the planet s

satellites it is not necessary that the system remained the sam e

icing the whole lifetime of the disc . As was already shewn by

im Weizsäcker it is only necessary that these regular system s

l fisted for about 10 years, which is of the order of magnitud e

,t the period of rotation of the outer parts of the disc . In that

[period the condensation products become so large that the y

1 = ko (3 .14)
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can no longer be displaced appreciably by turbulence in

the disc .
The second point is that we can easily calculate the velocitie s

on the outskirts of the large vortices which will form the system s

of vortices . These velocities will be the turbulent velocities, and

we may take for those the mean fluctuations of the velocities in
a gas kinetic system with a velocity gradient as was done als o

by PRANDTL (32) in a similar case .

If v is the mean velocity given by equation (2 .12), we hav e
for the turbulence velocity u :
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only on an average be proportional to the distance from the sun ,
i, e., that equation (3 .13) will only approximately be fulfilled .
We should therefore expect rather than be disappointed by th e
fact that the Titius-Bode law or similar laws for the satellit e

systems do not hold rigorously from planet to planet or fro m
atellite to satellite .

46

u = A
dv

ds
(3 .16)

where 2. should be the mixing length which is equal to the mea n

size of the vortices and given by equation (3 .14) .

We see that u decreases with increasing distance from th e
central body which means that if the large vortices are rotatin g

themselves in a counter-clockwise direction the motion in thes e

vortices will be clockwise .

Between the rings of large vortices there will be large viscou s

stresses along the circles separating the main vortices . We may
therefore here expect secondary eddies like the "roller bearing "

eddies of von Weizsäcker . Those "roller bearings" will again

show direct (counter-clockwise) rotation . Since the planets wil l

probably be formed in those "roller bearings", as we shall se e

in the next chapter, we are here presented with an explanation

of their direct rotation . It is a tempting thought to assume tha t

the size of the "roller bearings" will be determined by the fac t

that the velocities at the outside will be ,equal to the turbulen L

velocities given by equation (3 .16) . This would mean that w e

should be able to determine in that way the size of the planetary

atmospheres since the velocities in these atmospheres are dete r

mined by Kepler's third law (cf . Chapter II, Section A). We

may remark here that the considerations of this paragraph also ,

remain valid if there should not be a regular system of larg e

vortices .
Finally, we may remark that the size of the large vortices will
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Chapter IV .

The Condensation Process .

Condensation processes in astrophysics - can be divided int o
two different phases . The first phase is the formation of nucle i

on which the further condensation can easily take place_ Th e
second phase is this subsequent growth of the nuclei . These
nuclei will grow in the beginning because impinging atoms or

particles will stick to them, but later this growth will be muc h

more rapid because of the possibility of gravitational capture ,
A. Formation of nuclei for condensation. We shall use

here a model given in an earlier paper (33), in the following
quoted as BAN 361 .

If we want to investigate the possibilities of condensation, i t

seems to be a fair approximation to treat the condensed particle s
as heteropolar crystals . We are interested in the condensatio n

in a gas with density e and kinetic energy corresponding to a

temperature T1, while the radiation density is assumed to be a

diluted black body radiation with temperature T 2 and dilution

factor g .

The first question to be investigated is the temperature of the

condensed particles . We can find this temperature from the energy

balance .
In as much as there are only slight deviations from harmonic

binding between the atoms in the crystal, the particles will emi t

and absorb radiation practically as one large harmonic oscillator ,

and only the fundamental frequency contributes . If w is the

frequency of the oscillator and kT«hw, we have for the emitte d

and absorbed energy of the particle

2..EE 2

	

8 ~2 h co' e2

	

h rrl

Eabs - M e(w ) , E en: -

	

Mc3

	

e kT,

	

(4 .1 ,1

where M and e are the mass and charge of the oscillator, an d
(w) the radiation density . If the particle, which is assumed to be

small compared with the wavelength of light considered, consists

uf i atoms, we have : e = i • e (e is an effective charge), M = i • m

(m : mass of one atom), T = Ti (temperature of a particle con-
sisting of i atoms), and w = w a (fundamental frequency) .

On the other hand, we have energy conveyed to and from the '

particles by colliding atoms which do not stick to the surface .
As was pointed out in BAN 361, these are mainly hydrogen atoms .

The energies in question are given by :

E. = ci oC vi i kTi, Eot1

	

c2 a vi kTi ,

	

(4 .2)

where c l and c2 are numerical constants of the order 1, o• th e
surface of one atom, v the mean velocity of the colliding atoms ,

and e their density .

We have now the following equilibrium condition :

Eon + Eabs -
Eoa + Eem

	

(4 .3 )

ho) 0 1

	

hrRl ~

AATli 3 +Bgi(e kTz- 1 )

	

= COT i t s + Die kT i .

	

(4 .4 )

For given values of e, Ti, T2, and g, we can determine from
quation (4 .4) the temperatures of the particles, T i .

Inserting numerical values, we have (cf . BAN 361) :

	

A - C

	

4 .10-26 erg degree- 1 c.m 3 ;

B

	

D

	

2 .10-13 erg ;
h

o° -- 1400 0 .

	

(4 .5 )

In all cases, the term with A is large as compared with that
with B, but according to whether the term with C is small o r

large as compared with that with D, we have the following tw o

•ases :

(a) C « D, which will be realized in interstellar space, wher e
we have low gas densities and low radiation density .

(ß) C )» D, which will be realized. in all other cases in astro-

physics such as condensation in nova shells, condensation in

the corona, or condensation in a gaseous disc such as we consider

in the present paper .
1). Kgl . Danske Vidensk.

	

Selskab Ma t.-fys. Medd . XXV,3 .
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In case a, equation (4 .3) reduces to

Kon = Eem ,

or
a	

Ti

	

log (b

In case ß, equation (4 .3) reduces t o

E.

	

off '

or

The formation of nuclei can now be calculated in the w a

first indicated by BECKER and DOERING (34) .

The main feature of the condensation is that in order to ge l

an appreciable precipitation it is necessary that the vapou r

pressure of large particles is less than the pressure in the g

because in that case there will be more atoms condensing o

than evaporating from the particles .

In case ß, which is also the normal case in chemistry (where v

have Tl = T2, g = 1), the vapour pressure gf the particles wil ,

decrease with increasing size due to the influence of surface fr (

energy. Finally it reaches the value of the saturated pressure f t

infinite size at the temperature present . Thus, if this saturate ;

vapour pressure is smaller than the pressure of the gas, we c a

expect condensation . This is the well-known phenomeno n

precipitation (or condensation) in a supdrsaturated vapour .

In case a, the decrease of vapour pressure with increasile

size is due to the decreasing temperature (cf. equation (4 .6);

There and two possibilities, viz . that the temperature is alreail i

low enough for particles consisting of only a few ! atoms in whirl

case the rate of precipitation depends only on the rate of form a

tion of molecules of, say, 10 atoms because smaller partic h

cannot be considered to behave like crystals . If we denote t F

rate of precipitation by j, we have :

j

	

Ken ,

1 This case has been extensively discussed in BAN 361 . We only give the ni

results here, and refer the reader to BAN 361 for details .

where n lies between 2 and 10 and depends on the number o f
atoms for which the capture in the "crystal" is difficult ; K is a
numerical constant .

This possibility is realized for extremely low densities . In that
case, the energy conveyed to the particles will be very small so
that their temperature will be low enough to allow for an easy
condensation .

For higher densities which are still so low that we are in case a,

the temperature of the small particles will be higher than corre-

sponding to a vapour pressure equal to the gas pressure . How-
ever, the temperatures of larger particles will be low enough .
However, since the temperature of the particles increases with
increasing density (cf. equations (4 .4) and (4 .6)), the critical
size, i . e ., the size for which the temperature corresponds exactl y
tosa vapour pressure equal to the gas pressure, will increase wit h
increasing density . The rate of precipitation will correspondingly
Itécreas e :

j

	

K ea e b

	

(4 .9 )

The so-called characteristic density, i . e ., the density at whic h
the transition between,the two above-mentioned possibilities occur s
and which also marks a maximum in j, is much lower than
the density marking the transition from a to ß .

In case ß there will only be appreciable condensation if ther e
is a state of supersaturation, i . e ., if the gas pressure is higher tha n
the saturated vapour pressure .

The vapour pressure of a crystal is given by :

pu - m~ (kT) x/k T

h3

	

e

where m and x are the mass and sublimation heat (in ergs) o f
an' atom of the crystal . If the density of the gas ise atoms per
can', its pi essure is given by the ideal gas law

pg =ekT.

The necessary condition for condensation is now

p g > p U or e
x1kT > (n2kT l ; 1

t hell

(4.10)

(4.11 )

(4.12)

4*
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1000° ~ 10000 °

3 .2 3

(75 )

2.8 4

(65)

2 .4 4

(56 )

2 .04

(47)

35

. (810 )

3 1

(720)

27

(630 )

2 3

(540)

Table 4. II .

Com-
a

	

poun dy
Com-

pound
~

	

I
Com-

pound

Nr . ,

For a given temperature and density we have a critical sublim-

ation heat z determined by equation (4 .12) with the equal sige

Compounds with a larger sublimation heat will condense, thos»

with a smaller sublimation heat will not condense .

From equation (4 .12) with the equal sign we can calculat e

for different values of T and e, and we get the following tabte

We have given z in eV and (between brackets) in Cal/mole .

Table 4. I .

Values of the critical sublimation heat .

50° 100°

	

200°

	

400 °

1010	 0 .14 0 .29 0 .60 1 .2 5

(3 .3) (6 .8) (14) (29 )

1012	 0 .12 0 .25 0 .53 1 .09

(2 .8) (5 .8) (12) (25 )

1014	 0.10 0 .21 0 .45 0 .9 3

(2 .4) (4 .9) (10) (21 )

1016	 : . tl

	

0 .08 0 .17 0.37 0 .7 7

I

	

(1
.9) (4 .0) ( 8 ) (18)

We see from Table 4 . I, and equation (4 .12) that z depend

only slightly on o, but is mainly determined by T .

In the next table we have for comparison collected th e

sublimation heats (in Cal/mole) for a number of inorganic an '

organic substances, and also their splecific densities, a .

`
GO	 1 .9

	

0 .9 HNO 3

	

8?

	

2? 1VIg

	

34 1 . "

CH 4	 2 .3

	

0 .5 SO 2

	

8 .5

	

2 Ba

	

41 3 . 5

NO	 3 .8

	

1 .6 HCN

	

8 .5 1? Ca 43 1 . 5

N 20	 5 .8

	

1 .6 H 2 O

	

11 .3 0 .9 BaO 90 5. -

G2H,;	 6?

	

0 .9? N 2 0 4

	

12.6 2 .0 Fe 97 7 :9

CO 2	 6 .3

	

1 .6 NO 2

	

13 1 .5 G 125 3 .5

C 4 H 1 0	 7?

	

0 . 9 SO 3

	

12-16 2 .4 Si large 2 . :.

NH,	 7 .5

	

0 .8 K

	

21 .8 0 .9 SiO 2 large 2 .

(CN) 2	 7 .8

	

1 .4? ~ Na

	

26 1 .0 SiC larg e

Nr.3

	

5 3

Comparing Tables 4 . I and 4 . II, and remembering that th e
temperature in the corona or nova shells is at least a few thousan d
degrees, we may safely conclude that in those cases there will b e
uo condensation. This does not, however, exclude the possibility
of the presence of molecules (cf. (35)). We also see that it i s
necessary to have a temperature which is at most 1000° in order
to have an appreciable condensation . This is another difficulty
ucountered by theories like the one proposed by HoYLE (14) .

B. Second and final stages of the condensation . After the
first stage, the formation of nuclei for condensation, there ar e
two more stages . The second stage is the normal condensatio n
where the particles grove because impinging molecules stick t o
them . The final stage is that of the gravitational capture .

We may draw attention here to the fact that as soon as there
is a state of supersaturation the nuclei will be formed in sufficien t
number (34), so that it is not necessary to consider that stage o f
the condensation process in any more detail .

The second stage closely resembles the process proposed b y
Li3DBl.an (36) for the formation of interstellar smoke particles .
For the sake of simplicity we shall assume that the particles are
spherical with radius r and specific density N.

If the density of the matter impinging on the particle an d

sticking to it is denoted by 2z, and their mean relative velocit y
by u 1 , we have for the increase of mass per sec :

din
= 4nr•2

4
1 (4.13)

5iuce

4
rn = 7(03 r3 , (4.14 )

have

r (- ro)
_ Y1 Uz

t (4.15)
Co 4

Phis is correct as long as gravitational effects can be neglected .
If, however, we have reached the last stage, we get a much faste r
grQwthi .

We can introduce a distance R (by Chandrasekhar called the

Foran extensive discussion of this stage of the condensation, we may refe r
li~'a paper by EAI IN and MCCREA (37) .
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ivr . 3

	

5 5

"gravitational radius") such that the gravitational energy of

	

As we . mentioned in the previous chapter, condensation i s

matter at that distance from the centre of the particle is equal

	

more likely to take place in the "roller bearings" than in the larg e

to its kinetic . energy :

	

vortices, as was first shewn by von Weizsäcker, whose reasoning

R

	

2v 2

where v2 is the mean velocity of the matter in the system and m

again the mass of the growing particle .
The cross section for gravitational capture is now ar .å 2 R`' .

where å is of the order of magnitude 0 .1 . For the growth of th e

particle we have now

drt = 4
2-05 R2

~
e2 ,

or, using equation (4 .16) :

dr _ p r.4

	

= 16 gT 2 C2 Y 2e3	

dt

	

~J

	 	 e 2

9 V V2

with the solution :

where s is an integration constant to be determined by r = re,

for t = O . The quantity rcrit is the radius of a particle for whic h

the gravitational cross section ar å2 R 2 equals the geometric Cro s

section 5r r 2 :

	 3U
z

2 _	
r crit

	

8 aLybPo

we follow here in the form presented by CHANDRASEKHAR (10) .

This preference for the "roller bearings" is due to the fact that
the mean free path for larger particles is greater than the size
of the "roller bearings" . The mean free path is in this case defined
is the distance travelled through by the particle before its loss
if momentum is of the same order of - magnitude as its original
iomentum. This means that these particles will no longer b e
arried along by the "roller bearings" even though the larg e

vortices are able to carry them along. Therefore the number of
collisions between such particles and gas atoms or smaller con-

densation products will be enhanced in the "roller bearings" .
The mean free path of a particle can be estimated in the foll-

ewing way. If e l is the gas density, in the mass of the particl e
(for m we have equation (4 .14)), r its radius and u5 its velocity
relative to the medium, we have for the loss of momentum in a n
interval dt :

Ardus = - 2r r2 e t us' dt .

	

(4 .23 )

Using the definition of the mean free path, 2p given above ,
`ve get for A p

rn su-s

	

4 e o2p

	

at r2 Pl us us

	

3v,
r

1

which gives us with Po = 3 g cm-3, Pi = 10-5 g cm-3 :

Ap = 4.10 9 r.

	

(4 .25)

2ym (4 .16)

(4 .17 )

(4 .18 )

1
r 3 =

3 (8- ~ t) '

(4 .2 (1 '

(4 .24)

If there should be no exhaustion of the gas, the lumps wou k

become infinitely large in a finite time, given by :

s

	

4
toc = toit + ß = 3

toit

4	 eo

	

_ U 2 (6 eo) 2
he=t crit

	

.rcrit

	

v i e ]) aLyS '~l Ui

As long as Ap is smaller than the size of a vortex, this vorte x

o,ull carry the particle along. We see that hence there will be a

range of particle sizes such that the large vortices can carry them
(4.2'. along, but such that the "roller bearings" can no longer carr y

Item along. Therefore, the probability of finding a condensation
product is largest at the "roller bearing" circles in the regula r
system of vortices-if such a system has ever existed . It has not
been proved that only one planet is formed on each circle . We

mav, perhaps, be allowed, as far as that is concerned, to express

an- optimism similar to VON WEIZSÄCKER ' S (10) .

where toft is the time necessary to reach dimensions of the orde!

rerit, and given by (cf . equation (4 .15)) :

4 .22
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The time necessary to reach such dimensions that even th c

largest vortex is unable to move the particle essentially is four

by combining equations (4 .15) and (4 .25) .

As soon as the last stage, i . e . the stage of the gravitational

capture, is attained, the bodies will collect an atmosphere aroun d

them. We can estimate the dimensions of these atmospheres i n

two different ways . Either in the way indicated at the end of tb

previous chapter, viz . that the velocities on the outskirts of tb

atmosphere should be equal to the turbulent velocities, or bl '
using for the radius of the atmosphere the " gravitational radius '

In formula we have, using equation (3 .16) for the turbulent veil ,

cities and putting a = 1 f 2 in equation (3 .15) ,

R 1 = 16 sv.

	

= 7 .10 8 1~~s

	

(4 .26 )

2 yM

	

M

	

8

or

R2 =
U2

= 2 s m. = 10 ms ,
2

where M and m are the planet's mass in grams and in the earth

mass as unit, ands its distance from the sun in astronomi c

units . For u2 we have used again equation (2 .12) . We see that bot

equations, apart from a factor 8, give the same result . In tb

following chapters we shall use equation (4 .26) .

Chapter V .

The Planetary System .

In this and the next chapter we shall try to apply the result s
of the foregoing chapters to the solar system and the satellit e

systems of the major planets .
A. Densities of the planets. In Chapter II we saw that th e

temperature in the disc decreased with increasing distance fro m

the sun . If we assume that the planets were formed at essentiall y

those distances from the sun at which they are observed now ,
each planet corresponds to a certain temperature, as shewn i n

'fable 2 . II . According to the previous chapter, however, a give n

temperature corresponds to a certain critical sublimation heat

given by equation (4 .12) . So we can assign to each planet a
sublimation heat telling us which compounds will have take n

part in the initial condensation process leading to dimensions of

rcrit (see previous chapter) . In Table 5 . I we have given thes e

sublimation heats . We have taken an average density of 10 1 2

At . cm8 . 1 0f curse, we should for every compound calculate it s

density in the disc (cf . Chapter II, Section E) and investigat e

whether its sublimation heat is higher or lower than the critica l

sublimation heat for that density and the given temperature . S o

we should find for each temperature which compounds woul d

Table 5 . I .

Mer -
Venus

	

Earth

1

	

Mars Jupiter Saturn Uranus
Nep -

I

	

cury

Î

tun e

T :	 650 0 480° 400°

	

330° 170°

	

130° 90° 75 °

y in Cal/ mole 42 30 25

	

20 10

	

8 5 4

This corresponds to about 0 .1 per cent . of the gas condensing, and an averag e

!tensity of 10 14 at cm-' in the disc .

(4 .271
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condense at the given temperature . Fortunately, however, the
critical sublimation heat does not depend very strongly on th e
density, as we saw in Chapter IV, so that we can calculate . the
sublimation heats for an average density and we need not worr y
about the variation of density for various substances .

If we compare this table with the sublimation heats given in
Table 4. II, we see that while in the outer regions compound s
like HCN, H 2O, NH 3 can condense, in the regions of the inner
planets only metals and other inorganic compounds can condense .
This has two consequences . The inorganic compounds are les s
frequent and are heavier . Therefore, the first stage of the con-
densation will end in heavy bodies in the inner regions and
lighter bodies in the regions of the outer planets . Since the dimen-
sions of the inner planets are hardly larger than rerit, we can
expect higher densities for the inner planets than for the outer
planets . The initial condensatio.n stage brings this difference
about, and the gravitational capture, practically only 'acting i n

the case of the outer planets, accentuates this difference . The
dimensions of the inner planets are only just larger than rent .
which is given by Equation (4 .20), and gives us :

= /
	 3 v2

lcrit ~ I/ 8 vYåp O

with ö 0 .1, Qo 3 g cm 3 , v2 ti 10 6 cm sec-' (corresponding t o
Jupiter's distance from the sun) . We see from this equation that,
indeed, gravitational capture can only have played a mino r
part in the growth of the inner planets .

It seems even possible to account for the smaller difference s

in densities of the various planets, as was also shewn by BRow N
(1) . We shall not, however, enter into this question here .

B. Masses of the planets . The second consequence of th e
condensation picture is that there will be more condensatio n
nuclei per cm3 in the regions of the outer planets than in the
inner regions because there are more compounds which ca n
condense . This means that a greater fraction of the gas wil l
take part in the condensation in the outer regions . This again i s
accentuated by the fact that gravitational capture has played a
part in the building up of the outer planets . If we postpone for

59

a moment the discussion of the problem why this gravitationa l

capture has not been active in the case of the inner planets, w e

can try to estimate the masses of the planets under the assumption

that a larger fraction of the matter took part in the building up

of the major planets than in the case of the inner planets .

For the mass of the n-th planet we may write :

Mr, = 4 n,o (rn ) Anhn ,

	

(5.2)

where 4n : fraction of the gas taking part in the condensatio n

process ;

mean distance of the planet from the sun ;

(r) : gas density in the disc, given by equation (2.17) ;

A n : area in the disc, involved in the building up of th e

planet ; we may take A n = c•r (c will be of the orde r

of magnitude one) ;

hn

	

height of the disc at a distance rn ; hn is given by

equation (3 .1) .

Equation (5 .2) can now be written in the following form :

n = A A nQ (rn)

	

= B 4 n rn (re/Sm)i,

	

(5 .3)

where A and B are constants. We now, for the sake of simplicity ,

take 4 to be constant throughout the regions of the inner planets ,

and also constant throughout the regions of the outer planets .

For the ratio of ;4 in the two regions we shall take 100, which

lakes into account the fact that gravitational capture has played

a part in the formation of the outer planets, and the fact tha t

lighter elements are more abundant than the heavier elements .

We then get Table 5 . II .

We see that the general agreement is quite good, especiall y

iu view of the fact that we have simplified the problem ver y

much. We could probably get an even better agreement by a

variation of s n, and the ratio of the A n's in the two parts of the

planetary system, but it does not seem worth while to do that .

The only point is that the condensation picture presents us with.

a mass distribution in the solar system which agrees as well

with the observational data as we can expect from necessarily

rough considerations .

(5 .1),',ti 109 cm,

Nr.3

rn

	

.
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Table 5 . II .

rearth

	

Mearth

	

Mearth

Mercury . . 1 1 .9 0 .4
I

0 .11 0 .05
Venus . . . . 1 1 .4 0 .7 0 .5 0 . 8
Earth . . . . 1 1 1 1 1
Mars	 1 0 .6 1 .5 2 .1 0 . 1
Jupiter . . . 100 0 .045 5 640 31 8
Saturn

	

. . 100 0 .005 10 450 95
Uranus . . . 100 1,4 .10-4 19 100 1 5
Neptune . . 100 6 .10- 6 30 16 1 7
(Pluto . . . . 100 6.10-, 40 4 0 .9)

The only serious disagreement seems to be a too small mas s
of Mars and the absence of a planet in the neighbourhood of th e
asteroids. We shall return to this point at the end of this
paper .

There are, however, a few points which we still have to examin e
before we can accept the above considerations as giving us really
an estimate of the planetary masses . These are the following :

(a) How great has the density to be in the disc in order t o
provide us with sufficient mass for the planets?

(b) What is the lifetime of the disc, and how does it compar e
with tcrit ?

(c) Why has the gravitational capture not played a role i
the building-up process of the inner planets ?

(a) If we assume that a fraction 10 -4 has taken part in the
building-up process of the inner planets and a fraction 10- 2 iv
the building-up process of the outer planets, we have the following
conditions, if there has been enough mass available to build u p
the inner, respectively the outer planets :

S Mars

10-4
n

Q
2 ~r s • lids >10"g. ,

r o
and

10-2

	

2 n s•hds<2 .10 30 g .
Jup

Nr.3
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Using equations (2 .17) and (3 .1), we get for the maximum

density pm the condition :

em > 7 .10 15 at cin3 and pm > 3.10" at cm" .

This tallies very well with our assumption of em = 2 .10 1 6

a t . cm- 3 , corresponding to a total mass of the gaseous disc of about

one tenth of the solar mass at the stage where equation (2 .17 )

is valid .
(b) From equations (3 .7) and (4.22), we can calculate th e

lifetime of the disc and tcrit -

If we should assume a laminar motion in the disc, equatio n

(3.7) would give us :
r = 3.10 14 years ,

which is obviously by far too large .

Even if we take into account the uncertainties involved in

the derivation of equation (3.7), it will stay too large . We should

in that case expect still to see the remnants of the disc at the

present time .

However, if we assume turbulence, equation (3.7) present s

us with a lifetime given by :

10 11

r

	

- va
yrs

	

10 2 yrs ,

1

where we used = 3 e v R, e 10-9 g cm3 , v 10 6 cm sec- 1 ,

10 12 cm .
On the other hand, terit as given by equation (4 .22) gives us :

1

	

- 3

	

tcrit =

U2
(6p°1

	

10	
yrs ti 108 yrs,

	

(5 .5)

	

vrpi 7tY å

	

ei A

with d ti 10-2, e 10-9 g cm- 3 .
Before looking into this question more carefully, and takin g

into account the change of tcrit with distance from the sun, we se e

immediately that tcrit is much larger than r . This means that the

lifetime of the disc should be too short to allow for even th e

uuilding-up of the inner planets . We may remark here that thes e

onsiderations are not restricted to the gaseous disc which w e

ire considering, but may also play an important part in th e

Iiscussion of whatsoever other theory one wants to propose .

Å n P

()earthA ear th

rn
Mcalc M obs

(5 .4)
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If, however, some kind of regular system of vortices ha s
existed, the dissipation of energy might well have been far less ,
perhaps even so much less that r in that case should have bee n
of the same order of magnitude as t en t . In that case, it will not be
unreasonable to assume a density distribution like the one given
by equation (2.17) for the estimate of the planetary masses . The
last part of the growth of the planets which is at the same time
the part of the rapid growth happened just at a time when the
dissipation of the envelope began to be felt . That dissipation ,
which. will be strongest on the outskirts of the system is taken int o
account by the decreasing density given by equation (2 .17) .

(c) If we compare the ratio ofr and terit for the different
planets, we get.

tcrit

	

tyl.
_.~ ,. c• 4 .

Now, v is proportional to s, ), to s (cf. Equation (3 .14)) so
that the numerator increases by a factor of the order 5 from th e
inner to the outer planets . The denominator, however, increases
by a factor of the order 100 . This means that it is possible that

tent can be of the same order of magnitude as r in the regions of th e

inner planets while being appreciably smaller in the regions of the
outer planets . This entails that it is very possible that the size o f
the inner planets was restricted to rent because of the dissipatio n
of the disc before they could grow larger . But the outer planet s
grew faster and were able to grow beyond . the critical dimension s
until also there the supply of matter ran out .

We are quite aware of the fact that the above consideration s

are very incomplete but in view of the many uncertain factor s
entering, it seems hardly worth while to start a more detaile d
investigation. It is, for instance, easy to see from equation (4 .17),

taking into account the decrease of e with time (e .tie-tk), that
if tent > r, the condensation products will not reach even th e
critical dimensions . However, if r > terit , the growth of the bodie s
can go on until all matter is used up . A change in the ratio tenth

of only a few per cent. changes the picture completely in th e
region where that ratio is about 1 . It also seems to be very dificul'

to take the exhaustion of the gas due to the condensation proces s
itself adequately into account .

Chapter VI .

The Satellite Systems .

In this chapter we shall discuss the properties of the satellite
systems and the rotational periods of the planets .

We want to stress the point that we cannot expect here a to o

close agreement with observational data . On the one hand, the

observational data are not too accurate, and on the other, th e

situation in the planetary atmospheres will have been even mor e

complicated than in the solar envelope . For instance, the fact

that the dimensions of the atmospheres are of the same order of

magnitude as the height of the disc will cause our two dimensiona l

considerations to be certainly only rough approximations .

A. "Regular" and "irregular" satellites . If we look into th e

tata about the satellites of the solar system (see Tables II	 V) ,

we see that we can divide them into two groups . The first

group is made up of the first five Jovian satellites, the firs t

eight Saturnian satellites, the four Uranian satellites, and Triton ,

Neptune's satellite . This group has orbits which are all approx-

ornately in the equatorial plane of the primary and whose eccen-

tricitiés are small . We shall call these satellites the "regular' '

atellites .
The second group, that of the "irregular" satellites, consist s

of the moon, the two Martian satellites, the six outer Jovian

satellites, and the outermost Saturnian satellite . Apart from th e

Martian satellites, the "irregular" satellites have orbital planes ,

highly inclined to the equatorial plane of the primary, and great

orbital eccentricities l .
We shall show here that there is also another difference

between the two groups, viz ., that the "regular" satellites may

have been formed inside the planetary atmospheres . The "ir -

1 We follow von Weizsäcker's classification (10) . The origin of the moon is a
problem lying outside the scope of the present paper. The Martian satellites are
perhaps wrongly classified . See, however, the discussion on p . 68

(5 .6)



regular" satellites, however, are probably condensation product s
captured at a later stage by the planets .

In order to prove the probability of this point, we have col-

lected the next table . In the first row we have the mean distance s
of the outermost "regular" satellite . In the second row we hav e

inserted the radius of the planetary atmosphere as given by equa-

tion (4 .26) . In the third row we have inserted the mean distance s
of the first "irregular" satellite . Finally, in the last row, we have
given the ratio between the radius of the atmosphere and th e

radius of the planet itself .

Table 6 .1 .

Mer-
venus

	

Earth
i

	

ury
mars

Srcgul in cm . 2 .10 11 4 .10" 6 .101 0

R l incm .

	

10 7 4.10 e

	

7 .10Ø

	

j

	

10 8

	

12 .10" 7 .10" 2 .10"

S irr in cm . . . 4 .101Ô Î

	

9 .10'

	

12.10" 13 .10"

Ri/Rplan - . •

	

0 .06 0 .6

	

1 .1

	

0 .3

	

170 120 80

We see that, indeed, the values of the second row are every -

where between those of the first and third row in agreement wit h

our assumption of the origin of the "regular" and " irregular
satellites .

We note here finally that for the mean distances of the " regular "

satellites from their primaries exponential laws like the Titius

Bode law seem to exist :

l' n = CDE R .

The value of E decreases from 1 .78 for Jupiter to 1 .44 for Ura-

nus . The value for the solar system is 1 .86 if we exclude Plum

as an "irregular" planet . We have commented on these exponen-
tial laws in Chapter III and shall not discuss them here .

B. Densities and masses of the satellites . Since all sate l

lites are smaller than the critical dimensions, gravitationa l

capture has not played a role in their building-up process . Sinc e

(apart from the moon) all satellites are formed in the regionsu l

the outer planets, we should expect densities of the satellite s

lower than those of the inner planets, but higher than those of'

Nr. 3

	

6 5

he outer planets, since the outer planets have been able to pic k

lip light gases during the stage of gravitational capture. This
agrees within the observational uncertainties with the observe d

fata .

We shall not estimate here the masses of the satellites in th e
,ame . way as we have done in the case of the planets . We can ,

however, use equation (5 .2) the other way round, and try to find
he density function in the original planetary atmosphere fro m
lie observed masses -of the satellites . We take the fraction of th e
i atter taking part in the condensation, d, to be constant in each
atmosphere .

The result is that we find a density function resembling very

closely the density distribution in the solar envelope, i . e ., a

function with a maximum at a distance from the primary equa l

to about 10 planetary radii . However, it is impossible to arriv e
at any more definite conclusions .

We may draw the reader's attention to one more point con-

nected with the condensation process of the satellites, viz . ' that

-we have to assume that the building-up process of the satellite s

started before the planets with their atmospheres were left i n

the regions of the solar system like islands in an empty space .

The lifetime of the planetary atmospheres as given by equatio n
(3.7) is at least 100 times smaller than the lifetime of the sola r

envelope, but the dimensions of the satellites are of the sam e

carder of magnitude as the critical dimensions so that we see tha t

they could not have been formed during the time when th e
atmospheres were left to themselves .

this means that we have to imagine the following picture o f

ii complete solar system, accepting for a moment the idea o f

regular systems of vortices . In the initial stages of the process ,

when the central mass had just become of the order of magnitude

of the present solar mass, the concentration of matter in ou r

galaxy in the neighbourhood of the solar envelope was stil l

large enough to regulate to some extent the motion in the sola r

envelope . The result was a regular system of vortices, and between

them "roller bearings" . Originally these "roller bearings" wer e

probably much smaller than the large vortices . However, after

the planets had grown considerably they could keep larger ga s

masses around them . In that way the planetary atmosphere s
U Kgl . Danske Vidensle. Selskab, Mat•fys. Medd. XXV,3 .
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Nr . 3

started. In the first stages of their development, there was still a dis c

of matter present which in its turn regulated the motion in th e

planetary atmospheres, resulting in a regular system of vortices '

in these atmospheres . In the "secondary roller bearings" the' .

satellites started to grow.
Finally the whole disc started . to disappear, and we were lef t

with the system as we observe it at present . Of course, as soo n

as the dimensions of the atmospheres had become so small tha t
there was no longer any turbulence, the planets were able to retain

the atmospheres . These atmospheres are the ones we can observ e

now. Their lifetime is much longer than the probable age of th e

solar system .

C . Rotational periods of the planets . We have seen tha t

there are so many features which are the same for the planetary

system and the systems of the "regular" satellites that it seemed

unavoidable not to arrive at the conclusion that their origin wa s

analogous . These features were the nearly circular orbits lying

Before considering the outer planets, we shall devote a felt •

sentences to the inner planets . There are two reasons why we

should expect low rotational velocities for the inner planet ;

First, they have had practically no atmospheres around them

during their growth (see Table 6 . I) . This means that the inter -

action with the gas in the disc could not have followed a regular

pattern. Secondly, the tidal action of the sun has been muc h

larger for the inner planets than for the outer planets, as ws

shewn by STRATTON (38) . This easily accounts for the fact tha t

Mercury's rotational period is equal to its period around the sun . '

Altogether it seems that the low rotational velocities of th e

inner planets constitute no serious difficulty . It is not, perhaps '

irrelevant that the earth with the highest rotational velocity h a

also had the largest atmosphere .

Nr . 3
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In the case of the outer planets tidal action seems to hav e
been negligible . We want to investigate how the atmospheres of
the outer planets could have influenced their rotation . At the
beginning, the large vortices will have supplied angular momentu m
to the planetary atmospheres . The result was probably that the
angular velocities in these atmospheres corresponded to Kepler' s
third law (cf. Chapter II, Section A) . In particular, the rotational
velocities of the planets will have been given by that law .

However, as soon as the disc started to dissipate, the sam e
process started for the planetary atmospheres, and the planet s

vere decelerated because of the transfer of angular momentu m
accompanying the dissipation .

In the next table, we have inserted the rotational periods

corresponding to Kepler's third law, the observed rotationa l
periods, and the percentage change in angular momentum fro m
the first to the second :

We see that though the rotations of the planets are stil l
fairly fast, they prôbably must have been slowed down consider -
ably .

practically in the equatorial plane of the primary, the distributio n

of mass in the system, viz . the largest bodies in the middle of th e

system, and exponential laws for the mean distances from the

primary. Also the ratio of the total mass of the planetary system,

respectively satellite systems to the sun, respectively mother pla n

ets, is about constant, i . e . about one thousandth . The question

we are interested in now is why the outer planets have still i

fairly rapid rotation while the sun is rotating so slowly .

Table 6 . II .

TKepl To s de/ e

Iipiter	 3 hrs 10 hrs 0 .70

treturn	 4 hrs 10 hrs 0 .6 0

grånus	 3 hrs 11 hrs 0.7 3

eptune	 '2 hrs 12 hrs 0 .83
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Final remarks .

In the last two chapters we saw that we cohld explain th e

differences between the outer and the inner planets as far a s

mass, density, and rotational velocities are concerned by lookin g
carefully into the condensation process . This then presents u s

with an explanation of group C .

There are also indications given in Chapters III and V that

the motion in the disc has once shewn regularities which might
easily account for both the orbital regularities (A) and the ea
ponential laws like the Titius-Bode law (B) .

We have not entered into a discussion of the many irregul-

arities which can be observed in the solar system . Some of the m

have been 'commented upon by VON WEIZSÄCKER (10) . For in
stance, the fact that the eccentricity of Mercury ' s orbit is so larg e

may well have been due to the regularity of the vortex syste m

being disturbed in the immediate neighbourhood of the sun.

We want to remark here that there is one point which seem s
to deserve a,thorough investigation . It is the fact that Mars is s u

much smaller than the earth, that Mars has only two very smal l

satellites, and that instead of another planet between Mars an d

Jupiter we find the asteroids which together possess only a vei l

small mass . This is an especially interesting point since there is . als

other evidence that in that neighbourhood some catastrophe ha s

occurred. Recent investigations by BROWN (1) indicate that th e
meteorites might be the remnants of a planet of the size of Mars

which was broken up by some unspecified process .

A question which might be asked is how much chance i

there to find a planetary system surrounding a certain star . It

seems that planetary systems will be much more frequent tha n

corresponding to e . g . Jeans' tidal theory . However, there are
still a few requirements which have to be met . One of them is

that the temperature of the central star has to be below a certai n

value. Otherwise condensation will be out of the question . Thi s

can, for instance, be seen from equation (5 .6) . If the temperature
in the disc is much higher than in the disc considered in thi s
paper, the fraction of the gas taking part in the condensation will

be much smaller and tent will be larger than the lifetime of th e
disc, thus leaving us without condensation products . A higher
temperature of the central star results not only in higher temper-

atures in the disc because of greater energy output, but also in a

higher temperature because of a higher degree of ionization .
Although the actual figures given by Jeans in the following

( ;notation will not be the right ones if the theory given in this

paper should be correct, we still think that this quotation will
give us an adequate ending for this . paper :

"The contrast between the slowness of cosmogonie event s

and the rapidity with which events on our earth move leads t o

some interesting reflections . Let us suppose that civilisation on

earth is 10000 years old . If each planetary system in the univers e
contains 10 planets, and life and civilisation appear in due cours e

on each, the civilisations appear at an average rate of one pe r

500 million years . It follows that we should probably have to

visit 50000 galaxies before finding a civilisation as young as ou r

own. And as we have only studied cosmogony for some 200 years ,
we should have to search through about 25 million galaxies, if

they exist, before encountering cosmogonists as primitive a s
ourselves . We may well be the most ignorant cosmogonists in

[he whole of space . "
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ists and astronomers whose advice and criticism have helped m e

e n much during riny investigations of this subject . In particular ,

T want to express my thanks to Profs . N . Bohr, J . M . Burgers ,
It . . A . Kramers, J. H. Oort, F. J . M . Stratton, and B . Strömgren ,

and to Dr. A. Pais for their many helpful suggestions . I also

want to express my thanks to the Rask-ørsted-Foundation for

a grant which made my stay in Copenhagen possible .

København, Universitetets Institut for teoretisk Fysik .
Purdue University, Department q Physics.



dist : from Jup . i n
m . . :	

ä,i dist . in planetary

lüiatian of orbit t o
equat. plane . . .

atricity	
(moon = 1) . .
ty in g cm-3 . . . .

Earth's mass : 5 .975-1027 g .
Moon's mass : 7 .35 . 1025 g .

Sun's mass : 1 .992-10'3 g .

Sun's mean radius : 6 .965 .10 10 cm.
Sun's rotational period (at the equator) : 24 .65 days.

Mean dist . fro m
sun in 10x2 cm .
Sidereal period
Eccentricity . .
Inclination of
orbital plane to
ecliptic	
Mass in earth' s
mass as unit . .
Density in g
cm-3	
Rad . in 108 cm .
Number o f
satellites	
Inclination o f
equator to or -
bital plane
Axial rotational
period	

planets

	

planets

1 All data are taken from RUSSELL, DUGAN, STEWART (3) .
2 I am indebted to Prof . Lundmark for giving me his new data about Neptun ,

rotational period before publication .

IMimas Ence -
ladus

Tethys Dione Rhea Titan Hy -
perion l apetus

Phoe -
b e

from Sat . in
'u]'	 1 .9 2 .4 2 .9 3.8 5.3 12 15 36 130
n'dist . from Sat . in

radii	 3 .11 3 .99 4 .94 6 .33 8.84 20 .5 24.8 59 .7 21 7
-~iiation

	

of

	

orbit

	

t o
equat . plane	 1°31' 1' 1°5' 0' 21' 18' 17'-56' 14° 149 °

i :ntricity	 0.0201 0 .0044 0.0000 0 .0022 0 .0010 0 .0289 0 .1043 i 0 .0283 0 .16 6
, trigon = 1)	 0.0005 0 .001 0.009 0 .014 0 .03 1 .9 <0.0006 0 .01 9

ity in g cm3	 0 .8? 1 .3? 1 .0? 1 .5? 1 .0? 3 .6? 1 .3? 1 .2?

Table III .

Saturn 's satellites .



Table IV .

Uranus ' satellites .

Umbriel Titania

1 . 9

7 . 4

0 °
0 .007

2 . 7

10

0°
0 .008

1 7

4 . 4

0 '
0 .02 3

Table V.

Other satellites .

Moon Phobos Deimos

3 . 8
6 0

,., 20 °
0 .05 5
1
3 .34

extremely small
. .

0 . 9
2 . 8

1 °
0.021

2 . 4
6 . 9

2 °
0 .00 3

Mean distance from Uranus in 1010 cm

Mean distance from Uranus in pla-

netary radii	

Inclination of orbit to Uranus' equa-

torial plane	

Eccentricity	

Mean distance from primary in 10 10 c m

Mean distance from primary in planet-

ary radii	

Inclination of orbit to primary' s

equatorial plane	

Eccentricity	

Mass (moon = 1)	

Density in g cm-'	
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