A PROOF
 OF THE SIMPLER PONTRJAGIN DUALITY THEOREMS BY HELP OF THE CONNECTION BETWEEN TWO INFINITE-DIMENSIONAL SPACES

BY
ERLING FøLNER

K \varnothing BENHAVN
I KOMMISSION HOS EJNAR MUNKSGAARD
1950

Printed in Denmarix
Bianco Lunos Bogtrykkeri

1. Two infinite-dimensional spaces, H^{∞} and \Re_{∞}.

In a paper by \boldsymbol{H}. Вонr and the author [1]-and more detailed in [2]-a connection between two infinite-dimensional spaces was established. We shall state explicitly those of the results which will be used in the sequel.

The space \Re^{∞} consists of all points $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots\right)$ with a countable number of coordinates which are arbitrary real numbers. The convergence notion in \Re^{∞} is defined by convergence in each of the coordinates, i. e. $\left(x_{1}^{n}, x_{2}^{n}, \cdots\right) \rightarrow\left(x_{1}, x_{2}, \cdots\right)$ if $x_{1}^{n} \rightarrow x_{1}, x_{2}^{n} \rightarrow x_{2}, \cdots$. This convergence notion arises from a topology defined by help of neighborhoods $U_{N, \varepsilon}$ of ($0,0, \cdots$) where $U_{N, \varepsilon}(N$ positive integer, $\varepsilon>0)$ consists of all $\boldsymbol{x}=$ $=\left(x_{1}, x_{2}, \cdots\right)$ with $\left|x_{i}\right|<\varepsilon$ for $i=1,2, \cdots, N$.

The space \Re_{∞} consists of all points $\boldsymbol{a}=\left(a_{1}, a_{2}, \cdots\right)$ with a countable number of real coordinates, but so that they are all zero from a certain step (depending on the point), i. e. $a_{n}=0$ for $n \geqq N=N(\boldsymbol{\mu})$. By the topology chesen in \Re_{∞}-we need not state it here-the module of integral points in \Re_{∞}, i. e. the points with mere integral coordinates, is discrete.

For an arbitrary elosed module M in \Re^{∞} we define its dual module M^{\prime} in \Re_{∞} as the set of points \boldsymbol{a} in \Re_{∞} for which

$$
\boldsymbol{a} \cdot \boldsymbol{x}=a_{1} x_{1}+a_{2} x_{2}+\cdots \equiv 0(\bmod 1) \text { for every } \boldsymbol{x} \varepsilon M .
$$

It is a closed module in \Re_{∞} (in the topology only referred to). We also introduce fhe analogous definition when M is a closed module in \Re_{∞}.

By a substifution $\boldsymbol{x}=T \boldsymbol{y}$ in \Re^{∞}, we understand a linear transformation of the form

$$
\begin{aligned}
& x_{1}=a_{11} y_{1}+a_{12} y_{2}+\cdots+a_{1 p_{1}} y_{p_{1}} \\
& x_{2}=a_{21} y_{1}+a_{22} y_{2}+\cdots++a_{2 p_{2}} y_{p_{2}} \\
& \cdots \cdots
\end{aligned}
$$

which establishes a one-to-one mapping of \Re^{∞} on (the whole) \Re^{∞}. It turns out to be the same as a linear, one-to-one, bicontinuous transformation of \Re^{∞} onto itself.

The following theorems were proved.
Theorem A. A closed module in the infinite-dimensional space \Re^{∞} is a point set E which by a substitution can be transformed into a point set of a special form, in the following denoted by S^{∞}, namely a point sel $\left\{\left(y_{1}, y_{2}, \cdots\right)\right\}$ of the following structure: The indices $1,2, \cdots, n, \cdots$ can be divided into three fixed classes $\left\{n_{r}\right\},\left\{n_{s}\right\},\left\{n_{t}\right\}$, such that the coordinates $y_{n_{r}}$ independently run throagh all numbers, and the coordinates $y_{n_{s}}$ independently run through all integers, while all the remaining coordinates $!_{n_{l}}$ are constantly zero. Conversely, each such point set E is a closed module.

Theorem B. If M is a closed module in \Re^{∞} or in \Re_{∞}, then the daal module $M^{\prime \prime}$ of its dual module M^{\prime} is the module M itself; i. e.

$$
M^{\prime \prime}=M
$$

2. The Pontrjagin-van Kampen duality theorems.

Let G be a locally compact abelian group satisfying the second axiom of countability. We use the additive notation for the group. By a continuous character on G we understand (cp. [4], p. 127) a real multi-valued function $\alpha(x)$ uniquely defined modulo 1 on G with the properties

1. $\alpha(x+y) \equiv \alpha(x)+\alpha(y)(\bmod 1)$.
2. To every $\varepsilon>0$ can be found a neighborhood U of 0 such that $|\alpha(x)|<\varepsilon(\bmod 1)$ for $x \varepsilon U$.

We organize the set of continuous characters on G so that it becomes a topological group. The sum $\left(\alpha_{1}+\alpha_{2}\right)(x)$ of two characters $\alpha_{1}(x)$ and $\alpha_{2}(x)$ is defined by $\left(\alpha_{1}+\alpha_{2}\right)(x) \equiv$ $\equiv \alpha_{1}(x)+\alpha_{2}(x)$. With this addition the characters form a group. The zero-element is the character $\alpha(x) \equiv 0$. Corresponding to every $\varepsilon>0$ and every compact set F in G we define a neighborhood of the zero-character as the set of characters $c(x)$ satisfying

$$
|\alpha(x)|<\varepsilon(\bmod 1) \text { for } x \varepsilon F
$$

In this way the group of characters becomes a topological group. We call it the character group of G and denote it by \widehat{G}.

Pontrjagin ([4], p. 128) showed that \widehat{G} is also a locally compact group satisfying the second axiom of countability, and furthermore he proved the following two fundamental theorems.

Theorem 1. For a group G of the type mentioned the character group $\widehat{\widehat{G}}$ of the character group \widehat{G} is isomorphic with the group G itself, i.e.

$$
\widehat{G} \simeq G .
$$

The isomorphism between $\widehat{\widehat{\widehat{G}}}$ and G is realised in the natural way that the clement $x \in G$ corresponds to the character $\chi(\alpha)=\alpha(x)$ on \widehat{G}.

Theorem 2. Let H be a subgroup of a group G of the type mentioned. If H^{*} denotes the set of characters on G which are $\equiv 0$ on H, and analogously $H^{* *}$ denotes the set of characters on \widehat{G} which are $=0$ on H^{*} then the set $H^{* *}$ by the identification of \widehat{G} with G is identical with the set H, i.e.

$$
H^{* *}=H .
$$

The purpose of this paper is to prove the following special case of these theorems by help of the connection between the spaces \Re^{∞} and \Re_{∞}.

Simpler Pontrjagin duality theorems. For compact and for discrete abelian groups satisfying the second axiom of countability the theorems 1 and 2 are palid. By the operation of passing to the character group, a group of one of the two types is transformed into a group of the other type.

A group of the first type is in the sequel abbreviatively referred to as a compact group. A group of the second type, i.e. a countable discrete abelian group, is referred to as a discrete group.

By help af these simpler duality, theorems and an investigation of the structure of locally compact groups, Pontrjagin and van Kampen obtained the theorems 1 and 2 in the general case.

[^0]
3. A realization of a compact group as a factor group inside \Re^{∞}.

In this section we shall prove a theorem about a concrete way of realizing every compact group. For theorems used in the proof we shall, as before, refer the reader to [4].

Theorem. Every compact group G is isomorphic to a factor group M / I where I is the module of integral points in \Re^{∞} and M is a closed module in \Re^{∞} containing I. The topology of M / I is given in the natural way by help of the topology in \Re^{∞}. Conversely, every factor group M / I of the type mentioned, is a compact group.

For the proof we talse our starting point in the following theorem ([4], p. 46):

Urysohn's lemma. Let R be a compact regular topological space satisfying the second axiom of countability, and let E and F be two of its non-intersecting closed subsets. Then there exists a continuous function $f(x)$ defined on R such that $0 \leqq f(x) \leqq 1$ for $x \varepsilon R, f(x)=0$ for $x \varepsilon E$, and $f(x)=1$ for $x \in F$.

Now, let E be a single point a in R and take a countable complete system of neighborhoods of $a: U_{1}, U_{2}, \cdots$. For F successively equal to $R-U_{1}, R-U_{2}, \cdots$ we construct by Urysohn's lemma the functions $f_{1}(x), f_{2}(x), \cdots$. The function

$$
g(x)=\sum_{n=1}^{\infty} \frac{f_{n}(x)}{n^{2}}
$$

is then a continuous function on R with $g(\alpha)=0$ and $g(x)>0$ for $x \neq a$.

We may apply this to the compact group G above since the underlying space of a topological group is always regular ([4], p. 56). Let a be chosen as the zero of the group. In this way we get a continuous function $g(x)$ on G with $g(0)=0, g(x)>0$ for $x \neq 0$.

As a continuous function on a compact group, $g(x)$ is uniformly continuous and hence also almost periodic. Thus $g(x)$ is a continuous almost periodic function on G. We shall use the unicity theorem for Fourier series of continuous almost periodic functions
on a topological abelian group. Concerning the fact that we use such a deep-lying theorem we may remark that the main result of the Peter-Weyl theory on continuous functions on compact abelian groups, viz. the possibility of approximating every continuous function on the group by a linear combination of functions $e^{2 \pi \dot{i} c(x)}$, is at the bottom of all proofs of the duality theorems. For a proof of the main results in the theory of almost periodic functions on an abelian group which utilizes the abelian type of the group, see my paper [3]. There no topology was considered, but it is a well-known and obvious fact that if such a topology exists and the almost periodic function $f(x)$ is continuous, then the characters in its Fourier series are all continuous since $C_{n} e^{2 \pi i C_{n}(x)}=M_{i}\left\{f(x-t) e^{2 \pi i \pi_{n}(t)}\right\}$ where $f(x)$ is uniformly continuous.

Let our function $g(x)$ above have the Fourier series

$$
g(x) \sim \sum_{n=1}^{\infty} C_{n} e^{2 \pi i c_{n}(x)}
$$

To the arbitrary element h in G we consider the translated function

$$
g(x+h) \sim \sum_{n=1}^{\infty} c_{n} e^{2 \pi i \kappa_{n}(h)} e^{2 \pi i \omega_{n}(x)} .
$$

If $\alpha_{n}(h) \equiv 0$ for $n=1,2, \cdots$, then h must be equal to 0 , for on account of the unicity theorem $g(x+h)=g(x)$, in particular $g(h)=g(0)=0$.

We now map the arbitrary element $h \in G$ in the points $\left(\alpha_{1}(h), \alpha_{2}(h), \cdots\right)$ in \Re^{∞}; these points form a coset in \Re^{∞} modulo the integral module I, i. e. an element in \Re^{∞} / I. Let the image of G in \Re^{∞} be (the module) M. Then, G considered as an abstract group is mapped isomorphically on M / I considered as an abstract group. Moreover, this mapping of the topological group G is continuous when the topology in \Re^{∞} / I is given in the natural way by the topology in \Re^{∞}. Since G is compact and M / I is a regular topological space satisfying the second axiom of countability, the mapping is bicontinuous ([4], p. 44). Hence we have an isomorphic mapping of the topological group G on the togological group M / I,

$$
G \cong M / I .
$$

As the image of a compact space by a continuous mapping, M / I is closed in \Re^{∞} / I. This implies that the image M of G in \Re^{∞} is closed in \Re^{∞} (since otherwise we could choose a sequence in M converging to a point not in M, and the corresponding sequence in M / I would then converge to the corresponding point in \Re^{∞} / I, a point outside of $\left.M / I\right)$. Hence M, in the realization of G above, is a closed module in \Re^{∞}.

Conversely, every factor group M / I, where M is a closed module in \Re^{∞} containing the integral module I, is a compact group since a sequence of points in M can be reduced modulo 1 to lie in the compact set $0 \leqq x_{1} \leqq 1,0 \leqq x_{2} \leqq 1, \cdots$ (the second axiom of countability being obviously fulfilled).

4. Proof of the simpler duality theorems.

Let G be a compact group. We make use of the theorem of the preceding section which states that we can realize G as a factor group M / I inside \Re^{∞}. By help of this we shall see that the character group \widehat{G} can be realized as a factor group inside \Re_{∞}.

Let $\alpha(X)$ be a continuous character on M / I where X is a variable coset in M modulo I. We put $\alpha(x) \equiv a(X)$ for every $\boldsymbol{x} \varepsilon X$. In this way we get a continuous character $\alpha(\boldsymbol{x})$ on M. Our first task is to show that

$$
\alpha(\boldsymbol{x}) \equiv \boldsymbol{a} \cdot \boldsymbol{x} \text { where } \boldsymbol{a} \varepsilon \Re_{\infty} .
$$

To see this we choose by theorem A a substitution $\boldsymbol{x}=T \boldsymbol{y}$ in \Re^{∞} which transforms M into a module $\left\{\left(y_{1}, y_{2}, \cdots\right)\right\}$ of the simple form S^{∞}. Since M contains I, the class $\left\{n_{t}\right\}$ from theorem A must be empty. By this substitution the continuous character $\alpha(\boldsymbol{x})$ on M is transformed into a continuous character $\beta(\boldsymbol{y})=$ $=\alpha(T \boldsymbol{y})$ on the transformed module $\left\{\left(y_{1}, y_{2}, \cdots\right)\right\}=\{$ (arbitrary, integral) $\}$. Now, let

$$
\begin{aligned}
& \beta\left(y_{1}, 0,0, \cdots\right) \equiv b_{1} \eta_{1} \\
& \beta\left(0, y_{2}, 0, \cdots\right)=b_{2} y_{2}
\end{aligned}
$$

where in case y_{n} is of "integral" type we may assume b_{n} reduced modulo 1 to lie in the interval $0 \leq b<1$. (It has been used here that a continuous character $\gamma(x)$ on the straight line, and on the integers, has the form $\gamma(x) \equiv b x$.) Then

$$
\beta\left(y_{1}, y_{2}, \cdots, y_{n}, 0,0, \cdots\right) \equiv b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{n} y_{n},
$$

but for $n \rightarrow \infty$

$$
\left(y_{1}, y_{2}, \cdots, y_{n}, 0,0, \cdots\right) \rightarrow\left(y_{1}, y_{2}, \cdots\right)
$$

and hence from the continuity of β the sequence

$$
\begin{equation*}
b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{n} y_{n} \tag{1}
\end{equation*}
$$

shall converge modulo 1 for every (y_{1}, y_{2}, \cdots) from the transformed module.

Suppose now that b_{n} was not $=0$ for $n \geqq$ a certain N. Then there would exist a sequence $n_{1}<n_{2}<\cdots$ such that $b_{n_{p}} \neq 0$ for $p=1,2, \cdots$. To obtain a contradiction we shall indicate a point from the transformed module such that the sequence (1) is not convergent modulo 1 . We put $y_{n}=0$ if $b_{n}=0$. For the n with $b_{n} \neq 0$, i. e. n_{1}, n_{2}, \cdots we choose y_{n} by induction. $y_{n_{1}}$ is chosen in accordance with its type (arbitrary or integral). Suppose $y_{n_{p}}$ chosen. Then we shall determine $y_{n_{p+1}}$ such that the numerical difference modulo 1 between

$$
\begin{equation*}
b_{n_{1}} y_{n_{7}}+b_{n_{2}} y_{n_{2}}+\cdots+b_{n_{p}} y_{n_{n}} \tag{2}
\end{equation*}
$$

and

$$
b_{n_{1}} y_{n_{1}}+b_{n_{2}} y_{n_{2}}+\cdots+b_{n_{p}} y_{n_{p}}+b_{n_{p+1}} y_{n_{p+1}}
$$

is $\geq \frac{1}{4}$, i. e. such that

$$
\begin{equation*}
\left|b_{n_{p+1}} y_{n_{p+1}}\right| \geq \frac{1}{4}(\bmod 1) . \tag{3}
\end{equation*}
$$

If $y_{n_{p+1}}$ is of the "arbitrary" type we only choose $y_{n_{p+1}}$ such that $b_{n_{p+1}} y_{n_{p+1}}=\frac{1}{2}$ which satisfies. (3). If $y_{n_{p+1}}$ is of the "integral". type we write $b_{n_{p^{\prime}+1}}$, which is lying in the interval $0<b<1$, as a dyadic fraction. Since not all ciphers after the
"point" in the fraction are zero or one we may choose $y_{n_{p+1}}$ as a power of 2 such that the first ciphers after the "point" in $b_{n_{p+1}}$ $y_{n_{p+1}}$ are 01 or 10 . Then $b_{n_{p+1}} y_{n_{p+1}}$ reduced modulo 1 to the interval $0 \leqq b<1$ must in the first case lie in the interval $\frac{1}{4} \leqq b \leqq \frac{1}{2}$ and in the second case in the interval $\frac{1}{2} \leqq b \leq \frac{3}{4}$. In both cases (3) is satisfied.

For this choice of the point $\left(y_{1}, y_{2}, \cdots\right)$ from the transformed module it is obvious that (1) cannot converge modulo 1 since the distance modulo 1 between consecutive elements in the subsequence (2) is always $\geqq \frac{1}{4}$.

Thus we have seen that

$$
\beta(\boldsymbol{y})=\alpha(T \boldsymbol{y}) \Longrightarrow \boldsymbol{b} \cdot \boldsymbol{y} \text { wilh } \boldsymbol{b} \varepsilon \Re_{\infty},
$$

and then

$$
\alpha(\boldsymbol{x})=\beta\left(T^{-1} \boldsymbol{x}\right) \equiv \boldsymbol{b} \cdot T^{-1} \boldsymbol{x}=\boldsymbol{a} \cdot \boldsymbol{x} \text { with } \boldsymbol{a} \varepsilon \Re_{\infty}
$$

where \boldsymbol{a} is determined by $\boldsymbol{b} \cdot T^{-1} \boldsymbol{x}=\boldsymbol{a} \cdot \boldsymbol{x}$.
On the other hand every function $a(\boldsymbol{x}) \equiv \boldsymbol{a} \cdot \boldsymbol{x}$ with $\boldsymbol{a} \varepsilon \Re_{\infty}$ obviously is a continuous character on M. But in order that it has arisen from a (continuous) character on M / I a necessary and sufficient condition is that

$$
\alpha(\boldsymbol{x}) \equiv \boldsymbol{\epsilon} \cdot \boldsymbol{x}=0 \text { for } \boldsymbol{x} \varepsilon I
$$

and this means $\boldsymbol{a} \in I^{\prime}$ where I^{\prime} is the dual module in \Re_{∞} of I, i. e. the module of integral points in \Re_{∞} (see 1). Now, however, different a 's in I^{\prime} may determine the same character on M, in fact

$$
\boldsymbol{a}_{1} \cdot \boldsymbol{x} \equiv \boldsymbol{a}_{2} \cdot \boldsymbol{x} \text { for } \boldsymbol{x} \in M
$$

means $\boldsymbol{a}_{1}-\boldsymbol{C}_{2} \varepsilon M^{\prime}$ where M^{\prime} is the dual module in \Re_{∞} of M (see 1).

Hence, considered as abstract groups, the character group of M / I and the group I^{\prime} / M^{\prime} are isomorphic. Furthermore the arbitrary continuous character $\alpha(X)$ on M / I is

$$
a(X) \equiv A \cdot X \text { with } A \varepsilon I^{\prime} / M^{\prime}(X \varepsilon M / I)
$$

(the product $A \cdot X$ being defined by help of representatives a and x of A and X).

The topology which is ascribed to the group I^{\prime} / M^{\prime} in \Re_{∞} is the discrete one since already I^{\prime} is discrete (see 1). This, however, is also the topology ascribed to it as the character group of a compact group, for if in \widehat{G} we consider the neighborhood of the zero-character determined by $F=G$ and $\varepsilon=\frac{1}{4}$ it consists of the characters α with

$$
|a(x)| \ll_{4}^{1}(\bmod 1) \text { for } x \varepsilon G,
$$

and the zero-character is the only such character. In fact, if $\alpha\left(x^{\prime}\right) \equiv 0$ for an element $x^{\prime} \varepsilon G$ we could find a power 2^{N} of 2 such that $\left|\alpha\left(2^{N} x^{\prime}\right)\right| \geqq \frac{1}{4}(\bmod 1)$ (see top of $\left.p .10\right)$.

Hence we have the result that the character group of $G \cong M / I$ is

$$
\widehat{G} \cong I^{\prime} / M^{\prime} .
$$

To prove theorem 1 for a compact group G we have to prove that the character group of I^{\prime} / M^{\prime} is isomorphic to M / I by the correspondence mentioned in theorem 1. Let $\chi(A)$ be a (continuous) character ${ }^{1}$ on I^{\prime} / M^{\prime}. For every ac\& we put $\chi(\boldsymbol{\epsilon}) \equiv \chi(A)$. Then $\chi(\boldsymbol{a})$ is a character on I^{\prime}. Assume that

$$
\begin{aligned}
& \chi(1,0,0, \cdots) \equiv x_{1} \\
& \chi(0,1,0, \cdots) \equiv x_{2}
\end{aligned}
$$

Then obviously

$$
\chi(\boldsymbol{a}) \equiv \boldsymbol{x} \cdot \boldsymbol{a} \text { with } \boldsymbol{x}=\left(x_{1}, x_{2}, \cdots\right) \varepsilon \mathfrak{R}^{\infty} .
$$

On the other hand every function $\chi(\boldsymbol{a}) \equiv \boldsymbol{x} \cdot \boldsymbol{a}$ with $\boldsymbol{x} \varepsilon \mathfrak{R}^{\infty}$ is a character on I^{\prime}. But in order that it arises from a character on I^{\prime} / M^{\prime} a necessary and sufficient condition is that

$$
\chi(\boldsymbol{a}) \equiv \boldsymbol{c} \cdot \boldsymbol{a} \equiv 0 \text { for } \boldsymbol{a} \in M^{\prime}
$$

which by theorem B means that $x \in M^{\prime \prime}=M$. Now, however, different \boldsymbol{x} 's in M may determine the same character on I^{\prime}, in fact

$$
\boldsymbol{x}_{1} \cdot \boldsymbol{a} \equiv \boldsymbol{x}_{2} \cdot \boldsymbol{u} \text { for } \boldsymbol{a} \varepsilon I^{\prime}
$$

means $x_{1}-x_{2} \varepsilon I^{\prime \prime}=I$.
${ }^{1}$ They are all continuous since the group is discrete.

Hence, considered as abstract groups, the character group of I^{\prime} / M^{\prime} and the group M / I are isomorphic. Furthermore an arbitrary character $\chi(A)$ on I^{\prime} / M^{\prime} has the form

$$
\chi(A) \equiv X \cdot A \text { with } X \in M / I\left(A \in I^{\prime} / M^{\prime}\right) .
$$

We shall now see that the topology of M / I considered as a character group of I^{\prime} / M^{\prime} coincides with the topology of M / I induced by the topology in \Re^{∞}.

In the first topology a neighborhood of zero is determined by an $\varepsilon>0$ and a compact set F from I^{\prime} / M^{\prime}, and since I^{\prime} / M^{\prime} is discrete F consists of a finite number of elements $A_{1}, A_{2}, \cdots, A_{N}$ from I^{\prime} / M^{\prime}. The neighborhood consists of all $X \varepsilon M / I$ with

$$
\begin{equation*}
\left|X \cdot A_{n}\right|<\varepsilon(\bmod 1), n=1,2, \cdots, N . \tag{4}
\end{equation*}
$$

We now consider an arbitrary neighborhood of zero in the other topology. It consists of the $X \varepsilon M / I$ for which a representative $\boldsymbol{x}=\left(\boldsymbol{x}_{1}, x_{2}, \cdots\right)$ satisfies

$$
\begin{align*}
& \left|x_{1}\right|<\varepsilon(\bmod 1) \\
& \left|x_{2}\right|<\varepsilon(\bmod 1) \tag{5}\\
& \ldots \ldots \ldots \ldots \ldots . \\
& \left|x_{N}\right|<\varepsilon(\bmod 1) .
\end{align*}
$$

where $\varepsilon>0$, and N is a positive integer. In order to find a neighborhood (4) in the first topology contained in this neighborhood (5) we use the same ε : and N in (4) as in (5) and choose for $A_{1}, A_{2}, \cdots, A_{N}$ the (not necessarily different) cosets with the respective representatives $(1,0,0, \cdots),(0,1,0, \cdots), \cdots$, $(0,0,0, \cdots, 0,1,0,0, \cdots)$. In fact, for this choice the neighborhood (4) will coincide with (5).

Conversely, given an arbitrary neighborhood (4) it is possible to choose ε and N in (5) such that the neighborhood (5) is contained in the neighborhood (4). This is true since the A_{n} have integral $\boldsymbol{\pi}_{n}$ as representatives in \Re_{∞}.

Hence the two topologies are equivalent, and we have the result that the correspondence from theorem 1 is an isomorphism

$$
\widehat{\widehat{G}} \cong G .
$$

This proves theorem 1 for a compact group G.
Theorem 1 for the case of a discrete group which is written in the form G where G is compact, follows from the result above. In order to prove theorem 1 for an arbitrary discrete group it is therefore enough to prove that every such group is the character group of a compact group, a fact which is also stated in the "simpler theorems" on p. 5. This is easily done. Let G be an arbitrary countable discrete group. We choose a system of generators a_{1}, a_{2}, \cdots of G (for instance all elements in G). An arbitrary element $a \in G$ may be written

$$
\begin{equation*}
a=a_{1}^{n_{1}} a_{2}^{n_{2}} \cdots . \tag{6}
\end{equation*}
$$

We map a in the set of integral points (n_{1}, n_{2}, \cdots) of \Re_{∞} for which (6) holds good. Let 0 by this procedure be mapped in the module M_{1}. Then obviously

$$
G \simeq I^{\prime} / M_{1} .
$$

Hence, from the result on p. 11 and theorem B, the group G is the character group of the compact group M_{1}^{\prime} / I.

This proves theorem 1 for compact and discrete groups.
We now pass to the proof of theorem 2 for compact and discrete groups. Let Q be a compact group and H a subgroup. By the isomorphism

$$
G \simeq M / I
$$

the set H corresponds to the set N / I where N is a closed module in $\Re^{\infty}, I \subseteq N \subseteq M$. As found on pp. 10-11, the character group of M / I is I^{\prime} / M^{\prime} and an arbitrary continuous character $\alpha(X)$ on M / I is of the form

$$
\alpha(X) \equiv A \cdot X\left(A \varepsilon I^{\prime} / M^{\prime}, X \varepsilon M / I\right)
$$

We shall now pick out the characters which are $\equiv 0$ on N / I, i. e. for which

$$
A \cdot X \equiv 0 \text { for } X \varepsilon N / I,
$$

but this means (by the definition of dual module, p. 3) that the A's from I^{\prime} / M^{\prime} shall be taken from the subset N^{\prime} / M^{\prime}.

We repeat the procedure. As found on p.12, an arbitrary character χ (A) on I^{\prime} / M^{\prime} has the form

$$
\chi(A) \equiv X \cdot A\left(X \varepsilon M / I, A \varepsilon I^{\prime} / M^{\prime}\right)
$$

and we have to pick out the characters which are $\equiv 0$ on N^{\prime} / M^{\prime}, i. e. for which

$$
X \cdot A \equiv 0 \text { for } A \varepsilon N^{\prime} / M^{\prime},
$$

but this means (by the definition of dual module, p. 3) that the X 's from M / I shall be taken from the subset $N^{\prime \prime} / I$ which by theorem B is equal to N / I, q.e.d.

Since $\widehat{G} \cong I^{\prime} / M^{\prime}$ is an arbitrary discrete group and $H^{*} \cong N^{\prime} / M^{\prime}$ is an arbitrary subgroup of $G \cong I^{\prime} / M^{\prime}$, the theorem 2 is also proved for a discrete group.

References.

[1] H. Bohr and E. Følner: Infinite systems of linear congruences with infinitely many variables. D. Kgl. Danske Vidensk. Selskab. Mat.-fys. Medd. XXIV, 12 (1948).
[2] H. Bohr and E. Folner: On a structure theorem for closed modules in an infinite-dimensional space. Courant Anniversary Volume 1948, pp. 45-62.
[3] E. Følner: A proof of the main theorem for almost periodic functions in an abelian group. Annals of Mathematics, Vol. 50, pp. 559-569 (1949).
[4] L. Pontriagin: Topological groups. Princeton University Press. 1946.

[^0]: ${ }^{1}$ In this fall generality first 1 y van Kampen ([4], p. 126).

