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I . Two infinite-dimensional spaces, Jt o' and co .

I n a paper by H . Bona and the author [1]-and more detailed

in [2]-a connection between two infinite-dimensional spaces

was established . We shall state explicitly those of the results

which will be used in the sequel .

The space T°0 consists of all points x = (x i ,x 2 , • • •) wit h

a countable number of coordinates which are arbitrary rea l

numbers . The convergence notion in N' is defined by conver-

gence in each of the coordinates, i, e . (xn
i , x 2

n
, • • •) -> (xi , x 2 , •

if xi-* xn x 2 , - This convergence notion arises from a

topology defined by help of neighborhoods UN,F of (0, 0, • • • )

where UN, F (N positive integer, s > 0) consists of all .x, =-

= (xi ,x2 , • •) with

	

<e for i = 1,2, • •,N.

The space R . consists of all points a = (a i , (1 2 , • •) with

a countable number of real coordinates, but so that they ar e

all zero from a certain step (depending on the point), i . e . all = 0

for n>N = N(a) . By the topology chosen in. Leo-we need no t

state it here-the module of integral points in N ., i . e% the points

with mere integral coordinates,, is discrete .

For an arbitrary closed module M in N' we define its dual

module M' in DiL, as the set of points a in Ns, for which

• x = a l xi + a 2 .x2 + • • • _ 0 (mod 1) for every ,EM.

It is a closed module in (in the topology only referred to) .

We also introduce the analogous definition when M is a closed

module in N. .

By a substitution x. = Ty in Ri ` ° we understand a linea r

transformation of the for m

xi = ait eh + 0 12 t><2 + . . . .
+'aip i Un 1

x2 = 0 21 iÎl + ao2 yg +
. . . + ah ! , 2 ~Ps

i
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which establishes a one-to-one mapping of JU on (the whole)
N ` ° . It turns out to be the saine as a linear, one-to-one, bicon-

tinuous transformation of bi z onto itself .

The following theorems were proved .

Theorem A . A closed module in the infinite-dimensional spac e
' is a point set E which by a substitution can be transforme d

into a point . set of a special form, in the following denoted b y

SØ , namely a point sel ((y1, y2 ,

	

•)} of the following structure :
The indices 1, 2, ,n, can be divided into' three fixed classe s
(n,.)-, (n,}, {nr}, such that the coordinates cjn independently ru n

through all numbers, and the coordinates yn independently run

through all integers, while all the remaining coordinates yn arei
constantly zero . Conversely, each such point set E is a closed module .

Theorem B . If M is a closed module in N' or in N„ then th e
dual module M " of its dual module M ' is the module M itself; i . e .

M " = M.

2 . The Pontrjagin-van Kampen duality theorems .

Let G be a locally compact abelian group satisfying the se-

cond axiom of countability . We use the additive notation fo r
the group . By a continuous character on G we understand (cp .
[4], p. 127) a real multi-valued function a (x) uniquely define d
modulo 1 on G with the propertie s

1. a(x+y)

	

a(.x)+cc(y) (mod 1) .
2. To every r> 0 can be found a neighborhood U of 0 such

that I a (x) I <e (mod 1) for xc U .
We organize the set of continuous characters on G so tha t

it becomes a topological group . The sum (a1 -{- a 2 ) (x) of tw o
characters a i (x) and a 2 (x) is defined by (al +, a 2) (x)

al (x) ± a 2 (x) . With this addition the characters form a group .
The zero-element is the character a (x) = O . Corresponding to
every e> 0 and every compact set F in G we define a neighbor-
hood of the zero-character as the set of characters a (x) satisfyin g

a (x) I < e (mod 1) for xcF .
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In this way the group of characters becomes a topological _group .

We call it the character group of G and denote it by G .

Pontrjagin ([4], p . 128) showed that G is also a locally com-

pact group satisfying the second axiom of countability, an d

furthermore he proved the following two fundamental theorems'.

Theorem 1 . For a group G of' the type mentioned the character

group G of the character group G is isomorphic with the grou p

G itself, i .e .

7 .

The isomorphism between G and G is realised in the natural way

that the element xe G corresponds to the character z (a) = a (x)

on G .

	

-

Theorem 2 . Let H be a subgroup of a group G of the typ e

mentioned . If H denotes the set of characters on G which are = 0

on H, and analogously H" denotes the set of characters on G which

H""-H .

The purpose of this paper is to prove, the following specia l

case of these theorems by help of the connection between th e

spaces Di' and DL, .

Simpler Pontrjagin duality theorems. For compact and for dis-

crete abelian groups satisfying the second axiom of countability

the theorelrrs 1 and 2 are valid. By the operation of passing to
the character group, a group of one ofthe two types is transforme d
into a group of the other type .

A group of the First type is in the sequel abbreviativel y

referred to as a . compact group. Agroup of the second type, i . e .

a countable discrete abeliali- group, is re;ferjed to as a discret e

group .
By help of these . simpler . duality,theorems and an investigatio n

of the structu.re, .of locally; compact groups, Pontrjagin and va n

Kampen obtained r the ,theorem- .s 1 and 2 in the general case .

1
Li 'this full_ generality firstIV van Kampen (M, p 126) .

	

. . .

are --= 0 on H' then the set H** by the identification of G with

G is identical with the set H, i . e .
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3 . A realization of a compact group as a factor

group inside %'° .

In this section we shall prove a theorem about a concret e

way of realizing every compact group . For theorems used i n

the proof we shall, as before, refer the reader to [4] .

Theorem . Every compact group G is isomorphic to a facto r
group Mil where I is the module of integral points in T' and M
is a closed module in ~i containing I. The topology of MII i s
given in the natural way by help of the topology in N ' . Conver-
sely, every factor group M/I of the type mentioned, is a compac t
group .

For the proof we take our starting point in the following

theorem ([4], p . 46) :

Urysohn's lemma . Let R be a compact regular topological space
satisfying the second axiom of countability, and let E and F b e
two of its non-intersecting closed subsets . Then there exists a con-
tinuous function f(x) defined on R such that 0< f(x) for
xsR, f(x) = 0 for xeE, and f(x) = 1 for xEF.

Now, let E be a single point a in R and take a countabl e
complete system of neighborhoods of a : U 1 , U2 , • • • . For F succes-

sively equal to R- U1 , R - U2 , - . • we construct by Urysohn's
lemma the functions fi (s), f2 (x), • • • . The function

tn (x)
x9 ( ) -,	 n z

n--= 1

is then a continuous function on R with g (a) = 0 and g (x) > 0
for xta .

We may apply this to the compact group G above since the

underlying space of a topological group is always regular ([4] ,
p . 56) . Let a be chosen as the zero of the group . In this wa y

we get a continuous function g (x) on G with g (O) = 0, g (x) > 0
for x 0 .

As a continuous function on a compact group, g (x) is uniformly

continuous and hence also almost periodic. Thus g (x) is a con-
tinuous almost periodic function on G . We shall use the unicity
theorem for Fourier series of continuous almost periodic functions
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on a topological abelian group . Concerning the fact that we us e
such a deep-lying theorem we may remark that the rnain resul t

of the Peter-Weyl theory on continuous functions on compac t

abelian groups, viz . the possibility of approximating every con-

tinuous function on the group by a linear combination of func-

tions e27'r"(x) is at the bottom of all proofs of the duality theo-

reins. For a proof of the main results in the theory of almos t

periodic functions on an abelian group which utilizes the abelia n

type of the group, see my paper [3] . There no topology wa s

considered, but it is a well-known and obvious fact that if suc h

a topology exists and the almost periodic function f (x) is con-

tinuous, then the characters in its Fourier series are all continu-

ous since en e2' '',t(x) = M { f (x-t) e2 n it (t)} where f (x) is uni -
t

formly continuous .

Let our function g (x) above have the Fourier serie s

	

g (x)

	

\ 7

To the arbitrary element h in G we consider the translated

function
~ ,

g (x~ h)

	

n
e27ia (h) e 2TCia i (x )

~
71= t

If an (h)

	

0 for n = 1, 2, • -, then h must be equal_ to 0 ,
for on account of the unicity theorem g (x + h) = g (x), in parti -

	

cular g (h) = g (0) = O .

	

.

'We now map the arbitrary element hEG in the point s

(a l (h), a2 (h), • • -) in N ; these points form a coset in N'

modulo the integral module I, i . e . an element in SJi `° lI . Let

the image of G in Vii ' be (the module) M . Then, G considere d

as an abstract group is mapped isomorphically on M/I considere d

as an abstract group . Moreover, this mapping of the topologica l

group G is continuous when the topology in Ski' /I is given i n

the natural way by the topology in N ' . Since G is compac t

and Mil is a regular topological space satisfying the secon d

axiom of countability, the mapping' is bicontinuous ([4], p . 44) .

Hence we have an isomorphic mapping of the topological grou p

G on the togological group Mil,
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As the image of a compact space by a continuous mapping ,

M/I is closed in ßi°0 /I. This implies that the image M of G in

ßi°0 is closed, in N' (since otherwise we could choose a se-

quence in M converging to a point not in M, and the correspond -

ing sequence in M/I would then converge to the correspondin g

point in 9v /I, a point outside of M/I) . Hence M, in the reali -
zation of G above, is a closed module i

n Conversely, every factor groupM/I, where M is a closed

module in 9i' containing the integral module I, is a compac t

group since a sequence of points . in M can be reduced modulo l
to lie in the compact set 0 < x 1 < 1, 0_5_x 2 < 1, (the secon d
axiom of countability being obviously fulfilled) .

4. Proof of the simpler duality theorems .

Let G be a compact group. We make use of the theorem

of the preceding section which states that we can realize G a s
a factor group M/1 inside T' . By help of this we shall see tha t

the character group G can be realized as a factor group inside i . .

Let a (X) be a continuous character on MII where X is a

variable coset in M modulo I . We put a (x) = a (X) for every
xrX. In this way we get a continuous character a (x) on M .
Our first task is to show tha t

a (x) ^ a • a where «E%, .

To see this we choose by theorem A a substitution x = Ty
in N " which transforms M into a module {(yl , y,, • . •)} of th e
simple form S°° . Since M contains I, the class {n i} from theorem
A must be empty . By this substitution the continuous characte r
u (x) on M is transformed into a continuous character ß (y)

= a (Ty) on the transformed module {0 1 , y 2 , • • •)} {(arbitrary ,
integral)}. Now, let

ß0i,0,0, . . .) ----=-- bi

ß (0, y2, 0, . . .)	 . h 2 92
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where in case y n is of "integral" type we may assume bn redu-

ced modulo 1 to lie in the interval 0 < b < 1 . (It has been. used

here that a continuous character y (x) on the straight line, an d

on the integers, has the form ' (x)

	

bx .) Then

ß ( t11 , Y2 ,

but for n-->

ZIn
0 0 . . .)

	

v l yl+ b 2 yz + . . . -l- bn
yn ,

x

Oh

	

,u 7, 0>0, . . .)--, (91,g2,
. . . )

and hence from the continuity of ß the sequenc e

(1)

	

b l yl+ b2y2+ . . .-Î- bnyn

shall converge modulo 1 for every (y t , y2 , • • •) from the trans -
formed module .

Suppose now that b n was not = 0 for n> a certain N . Then

there would exist

	

sequence n l < n 2 < • • • such that b,, = 0 fo r
p

p 1, 2, • • • . To obtain a contradiction we shall indicate a poin t

from the transformed module such that the sequence (1) is not

convergent modulo l. . We put yn = 0 if b n = O . For the n with

b n - 0, i . e . n 1 n 2 , we choose yn by induction . y,., , is chosen

in accordance with its type (arbitrary or integral) . Suppose y n
p

chosen. Then we shall determine y77n+1 such that the numerica l

difference modulo S betwee n

(2)

	

. .

	

.

	

b ng ylt, . + U„ 2 y,~ 2 +

and

+ b.lp yll

bn i yn, . + b n2 yn2
.+ . . .

+ bn yn
p
+ b

+
n

	

Ilnp1' P-1- 1

is > , i . e . such that

(3)

	

j b,,
+ ;t yap +l =

(mod 1) .

If ynp+1 is of the " arbitrary" type we only choose ynp+l such

that b n

	

y r

	

= 1 which satisfies . (3). If yn

	

is of the
p-f l

	

p-l-1

	

p+ 1

"integral" type we write
b„p+1,

which is lying in the interval

0 < b< 1, as a dyadic fraction . Since not all ciphers after the



10

	

Nr . 1 9

"point" in the fraction are zero or one we may choose y,,

	

as a
P+ 1

power of 2 such that the first ciphers after the "point" in bnv+ l

( i are 01 or 10. Then b„ n-i_1 y„pl_1 reduced modulo 1 to th e

interval 0 <b< 1 must in the first case lie in the interva l

	

<b< and in the second case in the interval 1 < b<

	

In4 2 -

both cases (3) is satisfied .

For this choice of the point (yi' g 2 , • • •) from the transforme d

module it is obvious that (1) cannot converge modulo 1 since

the distance modulo 1 between consecutive elements in the

subsequence (2) is always > q1 .-

Thus we have seen tha t

ß(y) = a(Ty)

	

b- 'y with bENc,, ,
and then

cc (x) =

	

x) --- b•T A .X.' = a . x with ŒEJi r

where a is determined by b • T
_1

x = a • x .
On the other hand every function a (x)

	

a • sx' with ar3
obviously is a continuous character on M . But in order that i t

has arisen from a (continuous) character on M/I a necessary

and sufficient condition is tha t

a (x) = a . C' --- : 0 for x E l

and this means aEI ' where I ' is the dual module in 91 «, of I ,
i, e . the module of integral points in Sir (see 1). Now, however ,

different a's in I ' may determine the sane character on M ,

in fact
a1 x = a,•x for sx€ M

means ai- a2 EM ' where M ' is the dual module in 9i ., of M
(see t) .

Hence, considered as abstract groups, the character grou p

of Mil and the group I' /M' are isomorphic. Furthermore th e

arbitrary continuous character a (X) on M/I i s

cc (X) = A . X with AEI' /M ' (XEM/I )

(the product A . X being defined by help of representatives a

and x of A and X) .



The topology which is ascribed to the group I'/M' in 91 ., is

the discrete one since alr eady I' is discrete (see 1) . This, how-

ever, is also the topology ascribed to it as the character grou p

of a compact group, for if in G we consider the neighborhood

of the zero-character determined by F = G and e = 4 it consist s

of the characters a with

a (x) I <4 (mod 1) for xEG ,

and the zero-character is the only such character . In fact, i f

a (x ')

	

0 for an element x ' EG we could find a power 2N of 2

such that I a (2N x ') > - (mod 1) (see top of p . 10) .

Hence we have the result that the character group of G M/I i s

(x = l ' /M' .

To prove theorem 1 for a compact group G we have to prove

that the character group of 1'/M' is isomorphic to M/I by the

correspondence mentioned in theorem 1 . Let x (A) be a (continu-

ous) character' on I' /M' . For every aEA we put x (a) - x (A) .

Then x (a) is a character on I ' . Assume tha t

x(1 , 0, 0, ••) = x z

x(0,1,0, . . .)-x2
. . . . . . . . . . . . . . . . . . . . .

Then obviously

x (a) -- x • a with æ = (x l , x 2 , • • ) E~Ji cO .

On the other hand every function x (a) = x • a with xEN'''

is a character on 1 ' . But in order that it arises from a character

on I'/M' a necessary and sufficient condition is tha t

x(a)	 x•a = 0 for aEM'

which by theorem B means that xEM" = M . Now, however ,

different ac's in M may determine the same character on I' , in fac t

x i •a = x2 •a for aEI '

means x l -x 2 E I " = I .

1 They are all continuous since the group is discrete .
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Hence, considered as abstract groups, the character group o f
I '/M' and the group M/I are isomorphic . Furthermore an arbi-

trary character ti (A) on I'/M ' has the form

x (A)

	

X A with X E M/I (A).

We shall now see that the topology of M/I considered as a

character group of I' /M ' coincides with the topology of M/I

induced by the topology in N' .

In the first topology a neighborhood of zero is determine d

by an e > 0 and a ~ compact set F from I '/1YI' , and since 17M' i s

discrete F consists of a finite number of elements A l , A 2 , • •, A N

from I' /M' . The neighborhood, consists of all XEM/I with

(4)

	

1
X'An~<e

(mod 1), n = 1,2, . . .,N.

We now consider an arbitrary neighborhood of zero in th e

other topology. It consists of the Xs M1l/I for which a represen-

tative

	

= (xl , x2 , • • •)` satisfies

~ x i~ <e (mod 1 )

x2 <& (mod 1 )

where e> 0, and N is a positive integer . In order to `find a

neighborhood (4) in the first topology contained in this neigh-

borhood .(5) we. use the same 'e and N in (4) as in (5) and

choose for A I A N the (not necessarily different) coset s

with the respective representatives (1 , 0, 0, • •), (0, 1 , 0,' •), •
(0, 0, 0, . • •, 0, 1, 0, 0, . . •) . In fact, for this choice the neighbor -

hood (4) will coincide with (5) .

Conversely, given an arbitrary neighborhood (4) it is possibl e

to choose e and N in (5) such that the neighborhood (5) is
contained in the neighborhood (4) . This is true, since the A ft

have integral an as representatives in dim .

Hence the two topologies are equivalent, and we have th e

result that the correspondence from theorem 1 is an isomorphism
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G .

This proves theorem 1 for a compact group G .

Theorem 1 for the case of a discrete group which is writte n

in the form G where G is compact, follows from the result above .

In order to prove theorem 1 for an arbitrary discrete group i t

is therefore enough to prove that every such group is the char-

acter group of a compact group, a fact which is, also stated i n

the "simpler theorems" on p.5.This: is easily done. Let G he

an arbitrary countable discrete group . We choose a system o f

generators a 1 , a 2 , • of G (for instance all elements in .-G) . An

arbitrary element at G may be written

(6)

	

a = 4142 . . . .

We map a in the set of integral points of for

which (6) holds good. Let 0 by this procedure be mapped i n

the module 1VI1 . Then obviousl y

Hence, from the result on p . 11 and theorem B, the group G is the

character group of the compact group Ml/I .

This proves theorem 1 for compact and discrete groups .

We now pass to the proof of theorem 2 for compact and

discrete groups . Let G be a compact group and H a subgroup .
By the isomorphism

G M/I

the set H corresponds to the set N/I where N is a closed module

in iø , IC N M . As found on pp . 10-11, the character grou p

of M/I is I'/M' and an arbitrary continuous character a (X) on M/I

is of the form
a (X) = A•X (ArI' /M ' , XEM/I) .

We shall now pick out the characters which are = 0 o n

N/I, i . e . for which
A•X=0 for XEN/I ,

but this means (by the definition of dual module, p . 3) that th e

A's from I ' /M ' shall be taken from the subset N ' /M ' .
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We repeat the procedure. As found on p . 12, an arbitrary
character z (A) on I'/M' has the form

y(A) - X. A (XsM/I, At ' /M') ,

and we have to pick out the characters which are - 0 o n

i . e . for which
I' •A- 0 for A E N'/M' ,

but this means (by the definition of dual module, p . 3) that the

X's from M/I shall be taken from the subset N"/I which by

theorem B is equal to N/I, q . e . d .

Since G I'/M' is an arbitrary discrete group and II* N'/M'

is an arbitrary subgroup of G-I'/M', the theorem 2 is also proved

for a discrete group .

1~~' lNI' ,
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