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1. Two infinite-dimensional spaces, f® and R .

In a paper by H. Bour and the author [1]—and more detailed
1 in [2]—a conneetion between two infinite-dimensional spaces
was eslablished. We shall slate explicitly those of the results
which will be used in the sequel.

The space R® consists of all points & = (x;, x,, -+ +) with
a countable number of coordinates which are arbitrary real
numbers. The convergence notion in R® is defined by conver-
gence in each of the coordinates, i.e. (], @y, - ) > (g, 2,0 0)
if af >, xy—> x,, -+ -. This convergenee nolion arises from a
topology defined by help of neighborhoods Uy, . of (0,0, --)
where Uy . (N positive integer, &> 0) consists of all a =
= (xy, Xy, -+ +) with |x,|<e for i =1,2,---,N.

The space R consists of all points @ = (g, a3, --+) with
a countable number of real coordinates, but so that they are
all zero from a certain step (depending on the point), i.e. a, =0
for n> N = N(a). By the topology chesen in R—we need not
state it here—the module of integral points in R, i. e. the points
with mere integral ceordinmates, is discrete.

For an arbitrary closed medule M in R® we define its dual
module M’ in R.. as the set of points @ in R, for whick

a-x = ax;+a,x,+ -+ =0 (mod 1) for every axsM.
It is a closed module in R (in the topology only referred to).
We also introduce the analogous definition when M is a closed
module in Re.

By a substitution o = Ty in R* we understand a linear
transtormation of the form

X = A Yy T A Yo+ Ty Yp,

Xy = Qg Yy T g Yyt 0 T Gap, U,

1*
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which establishes a one-to-one mapping of ® on (the whole)
R®. It turns out to be the same as a linear, one-to-one, bicon-
tinaous transformation of N*® onto itself.

The following theorems were proved.

Theorem A. A closed module in the infinite-dimensional space
RN*® is a poinl set E which by a substitution can be fransformed
info a point.set of a special form, in the following denoled by
S*®, namely a point sel {(y,, Yy, -+ )} of the following structure:
Thé indices 1,2,---,/n, -+ can be divided ‘inlo ithreé fixed classes
{n},{ng, {n}, such that the coordinates Y, independently run
through all numbers, and the coordinates YUn, independently run
through all integers, while all the remaining coordinates U, are

constantly zero. Conversely, each such point set E is a closed modiile.

‘Theorem B. If M is a closed module in R® or in Ry, then the
dual module M" of its dual module M' is the module M itself; i. e.

M =M.

2. The Pontrjagin—van Kampen duality theorems.

Let G ‘be a locally compact abelian group satisfying the se-
cond axiom of countability. We use the addilive notalion for
the group. By a continnous character on G we understand (cp.
(4], p- 127) a real multi-valued function « (x) uniquely defined
modulo 1 on  -with the properties : A

1. e(x+y) = e(@)+a(y) (mod 1).

2. To every >0 can be found a neighborhood U of 0 such
that |a (x)|<e (mod 1) for xel.

We organize the set of continuous characters on G so thal
it becomes a topological group. The sum (ul—f—az) (J.,) of two
thractels a () and a, (x) is defined by (e + ap) (x) =
= o, (x) + oy (). With this addition the characters form a group.
The zero-element is the character o (a) == 0. Couespondmg to
every £¢>0 and every compact set F in G we define a neighbor-
hood of the zero-character as the set of characters « (x) satisfying

[e(x)|<e (mod 1) for xeF.
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In this way the group of characters becomes a topological group.
We call it the character group of ¢ and denote it by G.
Pontrjagin ([4], p. 128) showed that G is also a locally com-
pact group satisfying the second axiom of countability, ‘and
furthermore he proved thefollowing two fundamental theo’re‘ms'v'l'.

Thcmem 1. For a group G of the type menhoned the charactel

group G of the characler group G is isomorphic with the qloup
G itself, 1. e.

~ (.

)

P

The isomorphism between G and G is realised in the natural way
that the clement xe( conasponds to the characler y(a) = ¢ (1)
on G

Theorem 2. Let H be a subgroup of a group G o/' the type
mentioned. If H* denotes the set of char acters on G which are =
on H, and analogously H** denotes the set of characters on G _which

are = 0 .on H* then the set H** by Ihe ldentz/lcatlon of G with
G is identical with the set H,

H#* = H.

The purpose of this paper is to prove:the following special
case ol these theorems by help of the connection ‘between the
spaces N and R..

Simpler Pontrjagin duality theorems. For compact and for dis-
crele abelian groups satisfying the second axiom of countability
the theorems. 1. and 2. are-palid.- By ‘the operation of passing to
the characler group, a group of one of the two types is transforimed
into a group of lhe other type. -

A group .of the first type is -in, lhe sequel abbrevialively
ref&;ned lo as a compdct group. A group of_ the second type, i.e.
a countable discrete abelian group,- is referred. to as a discrete
group. :

- By help of these simpler, duality theorems and an’ mvestlgatlon
of the structure of locally compact groups, Pontmagm and van
Kampen.jobtained the  theorems 1 and 2 in the general case.

3 this fall getierality first by van Kampen (4], p. 126).
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3. A realization of a compact group as a factor
group inside R*®.

In this section we shall prove a theorem about a concrete
way of realizing every compact group. For theorems used in
the proof we shall, as hefore, refer the reader to [4].

Theorem. FKvery compact group G is isomorphic to a faclor
group M/I where I is the module of infegral points in R* and M
is a closed module in N” containing I. The topology of M/I is
given in the natural way by help of the fopology in R*. Conver-
sely, every factor qroup M/I of the lype mentioned, is a compact
group.

For the proof we take our starting point in the following
theorem ([4], p. 46):

Urysohn’s lemma. Let R be a compact regular topological space
satisfying the second axiom of countability, and let E and F be
lwo of its non-infersecting closed subsets. Then there exists a con-
tinnous function f(x) defined on R such that 0<f(x) <1 for
xeR, f(x) = 0 for x¢E, and f(x) = 1 for xeF.

Now, let E be a single point ¢ in R and take a countable

complete system of neighborhoods of a: U;, U,, - - -. For F succes-
sively equal to R—U,, R—U,, --- we construct by Urysohn’s
lemma the functions /| (x), f5(x), -+ -. The function
*x
NUAC
7 -‘,;}1 K

is then a continuous function on R with g(a) = 0 and g(2)>0
for x + a.

We may apply this to the compact group G above since the
underlying space of a topological group is always regular ([4],
p. 56). Let a be chosen as the zero of the group. In this way
we get a conlinunous function ¢ () on G with g(0) = 0, g(t)>0
for x £ 0.

As a confinuous function on a compact group, g (x) is uniformly
continuous and hence also almost periodic. Thus g (x) is a con-
tintous almost perlodl(' fanctzon on G. We shall use the unicity
theorem for Fourier series of continuous almost periodic functions



Nr. 19 7

on a topological abelian group. Concerning the fact that we use
such a deep-lying theorem we may remark that the main result
of the Peter-Weyl theory on conlinuous functions on compact
abelian groups, viz. the possibility of approximating every con-
tinuous function on the group by a linear combination of func-
tions 277 is at the bottom of all proofs of the duality theo-
rems. For a prool of the main results in the theory of almost
periodic functions on an abelian group which utilizes the abelian
type of the group, see my paper [3]. There no topology was
considered, but it is a well-known and obvious fact that if such
a topology exists and the almost periodic function f(x) is con-
linuous, then the characters in its Fourier series are all conlinu-
ous since C, A, @ — JiVI {/"(xft) 2nie, (l)\ where f(x) is uni-

formly continuous.
Let our function g (x) above have the Fourler series

io"7
g (x) ~ 2, Gy

n=1

ani .
e e, (:c)_

To 'the arbitrary element h in G we consider the translated
function

o]
2 . .
g (x 1 11) > G z—uocn(h) 82 e, (x).

If «,(h) = 0 for n=1,2,.--, then h must be equal to 0,
for on account of the unicity theorem g (x4 h) = g (x), in parti-
cular g(h) = ¢g(0) =

We now map the arbitrary element heG in the points
(ay (), @y (R), --) in R*; these points form a coset in R”
modulo the integral module I, i.e. an element in RN*/I. Let
the image of G in R* be (the module) M. Then, G considered
as an abstract group is mapped isomorphically on M/I considered
as an abstract group. Moreover, this mapping of the topological
group G is continuous when the topology in N*/I is given in
the nmatural way by the topology in M*. Since G is compact
and M/I is a regular topological space satisfying the second
axiom of countability, the mapping is bicontinuous (4], p. 44).
Hence we have an isomorphic mapping of the topological group
G on the togological group M/I,
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' ‘ G~ M/I. '

As the image of a compact space hy a continuous mapping,
M/I is closed in R®/I. This implies that the image M of G in
R® is closed in N* (since otherwise we. could choose a se-
quence in M converging to a point not in M, and the correspond-
ing sequence in M/I would then converge to the corresponding
point in N*/I, a point outside of M/I). Hence M, in the reali-
zation of G above, is a closed module in N>

Conversely, every factor group M/I, where M is a closed
module in R™ containing the integral module I, is a compact
group since a sequence of points. in M can be reduced modulo 1
to lie in the compact set 0<<x, <1,0=<x, =1, .- (the second
axiom of countability being obviously fulfilled).

4. Proof of the simpler duality theorems.

Let G be a compact group. We make use of the theorem
of the preceding section which states that we can realize G as
a factor group M/l inside R*. By help of this we shall see that
the character group G can be realized as a factor group inside R ..

Let «(X) be a continuous character on M/l where X is a
variable coset in M modulo /. We put « () = «(X) for every
aeX. In this way we get a continuous character « () on M.
Our first task is to show that

a(xe) = ¢« o where aefl,.

To see this we chioose b"y theorem A a substitution a = T'y
in ®° which transforms M into a module {(yi,ys, ++)y of the
simple form S®. Since M contains 7, the class {n,} from theorem
A must be empty. By this substitution the continuous chalactex
«(a) on M is transformed into a continuous character f(#) =
= « (Ty) on the transformed module {(yy, 1 JZ, -+ )} = {(arbitrary,
integral)}. Now, let

By, 0,0, =) = by,
ﬂ(O,yg,O, ) = bzyg
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where in case y, is of “integral” type we may assume b, redu-
ced modulo 1 to lie in the interval 0 <5 <C1. (It has been used
here that a continuous character v (x) on the straight line, and
on the integers, has the form y (x) = bx.) Then

BCyis yos 04, 0,0, --0) = byy, +boys+ -+ by,

but for n—oc

Wis Yoo 5 Yps 0,0, ) = (g, Yy, - -0)
and hence from the continuity of g ithe sequence
(1 brgitbyyget- by,

shall converge modulo 1 for every (g, ys, *+-) from the trans-
formed module. ‘

Suppose now that b, was not = 0 for n= a certain N. Then
there would exist a sequence n; < ny,<C--- such that bnp:Q: 0 for
p=1,2,---. To obtain a contradiction we shall indicate a point
from the transformed module such that the sequence (1) is not
convergent modulo 1. We put y, = 0 if b, = 0, For the n with
b, 0, i.e ngn,, - we choose y, by mductlon YUn, is chosen
in accordance with its type (f\rbltlaxy or integral). Suppose Yn,,
chosen. Then we shall determine g Un, . such that the numerical

difference modulo I bet“ een

(2 . b, Yy + iy Yy + 70+ bn Yn,
and
b111 Yn, + bn2 Un, + —l_ bn Jn + bn /11]%{ 1
1 -
is ?;, i. e. such that
(3) ‘ b Un (mod .

R S RALTE Y b 4

1f : ~“ ‘, . 1ol Cy .
Yn, , I8 of the “arbitrary type we only choose U, | such

that bnp+1gn = g\Whlch‘ satisfies. (3). If Un,, 18 ot the

Pl
“integral” type we write‘;bnp}l, which is lying in the interval
0<b<1, as a dyadic fraction. Since not all ciphers after the
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“point” in the fraction are zero or one we may choose g, L asa
power of 2 such that the first ciphers after the “point” in bn,

. 3
g];17)+1 are 01 or 10. Then b,

+1

yn . reduced modulo 1 to the
p+1" g1

interval 0 <06 <1 must in the first case lie in the interval

1 1 . . . 1 3
Zébéé and in the second case in lhe interval - =<b<~. In
both cases (3) is satisfied,

For this choice of the point (g, y,, - ++) from the transformed
module it is obvious that (1) cannot converge modulo 1 since

the distance modulo 1 between consecutlive elements in the
. . 1
subsequence (2) is always 25'
Thus we have seen that

B = «(Ty) = b-y with beR,,
and then

w(e) =0T "a) =b-T ‘o = @ a with ach,

where @ is delermined by & - Tl = a .

On the other hand every function « () == a@-x with @R
obviously is a continuous character on M. But in order that it
has arisen from a (continuous) characler on M/I a necessary
and sufficient condition is that

() = a o = 0 for ael

and this means ec!” where I’ is the dual module in Ne of I,
i.e. the module of integral points in J, (see 1). Now, however,
different e’s in I' may determine the same character on M,
in fact ,

@, x = a, x for wel

means €, — @,cM’ where M’ is the dual’ module in R, of M
(see 1).

Hence, considered as abstract groups, the character group
of M/I and the group I'/M’' are isomorphic. Furthermore the
arbitrary continuous character « (X) on M/I is

(X)) = A-X with -AeI'/M" (XeM/I)

(the product 4-X being defined by help of representatives a
and a¢ of 4 and X).
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The topology which is ascribed to the group I'/M’ in R, is
the discrete one since already I’ is discrete (see 1). This, how-
ever, is also the topology ascribed lo it as the character group
of a compact group, for if in G we consider the neighborhood

. . 1. .
of the zero-character determined by /' = ¢ and ¢ = i it consists
of the characters « with

|a(m)|<‘11 (mod 1) for xeG,

and the zero-characler is the only such character. In fact, it
a(x') == 0 for an element x'¢G we could find a power 9™ of 2

such that |« (2Nx’)|gi (mod 1) (see top of p. 10).

Hence we have the result that the character group of G M/I is

G I'/M.

To prove theorem 1 for a compact group G we have to prove
that the character group of I'/M’ is isomorphic to M/I by the
correspondence mentioned in theorem 1. Let 7 (4) be a (continu-
ous) character' on I'’/M’. For every acd we put y(a) = y(A4).
Then % (@) is a character on I'. Assume that

7(1,0,0, ) = xa,
Then obviowsly T
g (@) = x-a with & = (x,, 2y, ---) eR”.

On the other hand every function y (@) = x-@ with xeR™
is a character on I'. But in order that it arises from a character
on I'’M" a necessary and sufficient condition is thal

y () = x¢-a = 0 for asM

which by theorem B means that aceM” = M. Now, however,
different a¢’s in M may determine the same character on I',in fact

.

x, - a = x, a lor acl
means a¢;, —ax, €l = 1.

! They are all continuous since the group is discrete.
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Hence, considered as-abstract groups, the character group of
I'/M" and the group M/I are isomorphic. Furthermore an arbi-
trary character y(A4) on I'/M’ has the form-

2 (4) = X-A with XeM/T (Ael'/M").

We shall now see that the topology of M/I considered as a
character group of I'/M’ coincides with the topology of M/I
induced by the topology in R*

In the first topology a neighborhood of zero is determined
by an ¢>0 and a compact set I'"from I'/M’, and since I'/M’ is
discrete I consists of a {inite number of elements 4,, Ay, - -+, 4
from I'/M’. The neighborhood. consists of all XeM/I with

(1) |X-4,|<e (mod 1), n=1,2,---,N.

We now consider an arbitrary neighborhood ol zerc in the
other topology. It consists of the XeM/I for wlnch a represen-
tative ae = (@, g, - - ) satisfies

|ncl [<e {mod 1)
2, | <e (mod 1)

Ty | <e (miod 1)

where £>0, and N is a positive integer. In order to find a
neighborhood (4) in the first topology contained in this neigh-
borhood (5) we use the: same e :and..N in (4) as in (5) and
choose for Ay, A4,.,-‘+, Ay the (not nécessarily: diﬂ'erent) cosets
with the reSpecti»Ve representatives'(l 0,0, ), (0,1,0,), -,
0,0,0,---,0,1,0,0,---). In fact, for this choice the nelghbor-
hood (4) w1ll coincide with (5). ”

Conversely, given an arbitrary neighborhood (4)-it is possible
to choose ¢ and :N:in-(5) such that:the neighborhood (5) is
contained in the neighborhood (4). This is true since the A,
have integral e, as representatives in R..

Hence the two topologies are equivalenl, and we have' the
result that the correspondence from theorem 1.is an isomorphism
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~G.

Q%

This proves theorem 1 for a compact group G.

Theorem 1 for the case of a discrete group which is writlen
in the form G where G is compact, follows from the result above.
In order to prove theorem 1 for an arbitrary discrete group it
is therefore enough to prove that every such group is the char-
acter group of a compact group, a fact which is. also stated in
the ““simpler theorems” on p. 5. This is easily done. Let- G he
an arbitrary countable discrete group. We choose a system of
generalors d,, a,, -+ of G (for instance all ;elements in -G). An
arbitrary element aeG may be written

(6) a = apajp---.

We map a in the set of integral points (n, ny, ---) of Ry for
_which (6) holds good. Let 0 by this procedure be mapped in
the module M;. Then obviously

G>I'/M,.

Hence, from the result on p. 11 and theorem B, the group G is the
character group of the compact group M;/I.
This proves theorem 1 for compact and discrete groups.
We now pass to the proot of theorem 2 for compact and
discrete groups. Let ¢ be a compact group and H a subgroup.

By the isomorphism
G>~MI

the set H corresponds to the set’ N/I where N is a closed module
in R®, ICNC M. As found on pp. 10—11, the character group
of M/Iis I'/M’ and an arbitrary continuous character « (X) on M/I

1s of the form
a(X) = A-X (Ael'/M', XeM/T).

We shall now pick out the characters which are = 0 on
N/I, i.e. for which
A-X =0 for XeN/I,

but this means (by the definition of dual module, p. 3) that the
A’s from I'/M’ shall be taken from the subset N'/M'.
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We repeat the procedure. As found on p.12, an arbitrary
character y(4) on I'/M’ has the form

7 (A) = X-A (XeM/I, Acl'/M"),

and we have to pick out the characters which are ==0 on N'/M’,

i, e. for which
X A =0 for AeN'/M’,

but this means (by the definition of dual module, p. 3) that the
X’s from M/I shall be taken from the subset N”/I which by
theorem B is equal to N/I, q.e.d.

Since G~ I'/M’ is an arbitrary discrele group and H*~N "IM"
is an arbitrary subgroup of G~F/M, the theorem 2 is also proved
for a discrete group.
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