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1 . The temperatures of the early-type stars are not known

very precisely inspite of a number of investigations to establis h

the upper end of the temperature scale . This state of affairs is a

result partly of the complex and largely unknown relationships

existing between the various types of temperature which may b e
defined, and partly of the observational difficulties . The method s
of colour temperature are inconclusive for the high temperatur e

stars because in the 0 and B stars most of the flux is emitte d

at inaccessible wavelengths in the far ultraviolet, hence measure-

ments can only be made on the tail of the energy distributio n
curve where the gradient is not very sensitive to temperature ,

and because the spectral distribution of the photographic and

visual light received from most 0 and B stars is modified by th e

interstellar material lying between these stars and us . The
ionisation temperature scale introduced by FowLER and MILNE (1 )

and used extensively by Miss PAYNE (2) and also by PANNE-

KOEK (3), has been the most useful temperature scale for the

early-type stars, but for the earliest types it is somewhat un -
certain as it depends entirely upon the spectral type chose n

typical of the He++ maximum. R . M . PETRIE (4) has discussed

critically the existing temperature scales for the early type star s
and in particular criticises KuIPEx's (5) extrapolated ionisation

temperature scale . PETRIE has proposed a more compressed

excitation temperature scale, but because his results are based

on a single curve of growth for He I which is used for all th e

stars and because of the sensitivity to Stark effect. of the lines
of He I and He II which he uses, it is doubtful if the metho d
he has used is very sensitive . In any case it is not clear that
ionisation temperature, excitation temperature and effective
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temperature should be closely the same for the early type stars .

UNSÖLD ' s (6) investigations of the atmosphere of -rSco, a BO V

star, show the difficulties to be met in trying to establish from

observations an exact ionisation or excitation temperature fo r

the early-type stars, and clearly point to the intricate relation -

ship existing in a stellar atmosphere between the various temper-
atures which may be defined .

In view of the differing observational results that have bee n

obtained, a theoretical determination of the effective temper-

ature of an early-type atmosphere would be valuable . The

method of model atmospheres offers a powerful tool for deter -

mining effective temperature, for, once an acceptable model

atmosphere has been obtained, the integrated net flux emergin g

from it may be calculated. By definition the integrated net flu x

determines the effective temperature of the atmosphere . This

temperature will be the effective temperature of the spectral typ e

corresponding to the model atmosphere. In this paper, method s
for computing model atmospheres for the high temperature star s

and for determining the spectra of these atmospheres will b e

developed and a model atmosphere will be computed . The

spectral type of this model atmosphere will be determined b y
comparison with observations and the emergent flux will b e

calculated in detail so that the effective temperature of the mode l

atmosphere may be found and a point determined at the upper

end of the stellar temperature scale .
Recently the method of model atmospheres has been highl y

developed by STRÖMGREN (7) and applied by Strömgren an d

his co-workers to studies of the solar atmosphere and of th e
atmospheres of stars of neighbouring spectral type, while RUD -

IiJØBING (8) has applied these ideas to the study of the atmosphere s

of B-type stars . We shall proceed in a manner somewhat dif-

ferent in detail from that adopted by Rudkjobing, who uses th e
principle of the Rosseland mean absorption coefficient and

divides the radiation field into two parts and then works wit h

only the flux at frequencies greater than the Lyman limit to ge t

the structure of his atmosphere, for we shall work with the whol e
radiation field and we shall use the CHANDRASERHAR straigh t

mean absorption coefficient (9) which is particularly advanta-

geous for dealing with the effects of radiation pressure on the
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mechanical equilibrium of the atmosphere (1.0) . With a view t o

the extension of the method of model atmospheres to atmospheres

of very high effective temperature, we shall consider the effects

of radiation pressure in more detail than has been the case in
previous investigations . Like Rudkjobing we shall assume that
the opacity in our model atmosphere is given by continuou s

absorption from hydrogen and helium, which are present in th e

ratio 85 :15 by number, and by electron scattering . We shall g o

further than Rudkjobing in that we shall test our model atmo-

sphere for radiative equilibrium by computing the net flux withou t

making any approximations at all . We shall also discuss in detail

the question of the f-values for the lines of L-S coupling multiplets ,
and will assemble the necessary formulae for computing thes e

f-values. The method, due to Strömgren, which we will use for

computing the net flux in the atmosphere by solving the Schwarz-

schild integral equation, provides us with a non-approximat e
method of calculating the line spectrum of the model atmosphere .

A by-product of these calculations is the limb-darkening of the

model atmosphere in various wave-lengths .

Numerical methods, such as we will use, give a realisti c

picture of the stellar atmosphere, for they 'take account of th e

actual variation of the quantities in the atmosphere, and mak e

no a priori assumptions about the behaviour of any of 'thes e

quantities . The model atmosphere is idealised to the extent that

it is assumed to be symmetrical with respect to the centre of th e

star so that the physical parameters vary with depth in the

atmosphere only, and it is assumed that the chemical com-

position is constant throughout the atmosphere . Furthermore th e

atmosphere is assumed to be in a state of mechanical equilibrium .

The dependence of temperature upon the pressure and th e

electron pressure throughout the atmosphere is then obtained b y

integrating the differential equation of mechanical equilibrium .

The model atmosphere so obtained is said to represent a rea l

stellar atmosphere in radiative equilibrium if it can be shown

that an atmosphere with this structure produces a net flux which

is constant with . increasing optical depth . When a model atmo-

sphere satisfying the two conditions of mechanical equilibriu m

and constant net flux has been obtained, the line spectrum o f
the model atmosphere may be calculated and detailed information
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about the spectral type of the model atmosphere and the abund-

ance of the elements in the stars may be derived by comparing

the computed spectrum with observed spectra .
2 . We shall consider an atmosphere of high effective temper-

ature in which the opacity is a result of continuous absorptio n

by hydrogen, neutral helium and ionised helium, and of electro n

scattering. We shall further assume that the star is a main -
sequence star and that the transport of energy by turbulence i s

not important . The equation for mechanical equilibrium in such

an atmosphere is

(t )

where po is the gas pressure, pt. is the radiation pressure, and o

is the density al the level z in the atmosphere . The surface gravity

of the star is g. In atmospheres of comparatively low effectiv e

temperature the radiation pressure is negligible in comparison t o

the gas pressure . However, in atmospheres of high effectiv e

temperature the radiation pressure is not negligible . In an atmo-
sphere in which the opacity is given by continuous absorption

and by electron scattering it may be shown (10) tha t

dpr

	

n x

dz

	

c ~ (~v+ o)o Fv dv ,
0

where xv is the monochromatic mass-absorption coefficient in

the atmoshpere and a is the mass-scattering coefficient assume d

to be independent of wavelength . In such an atmosphere (11 )

the gray-body temperature law deduced by CHANDRASEKHAR (9)

remains a valid approximation if the optical depth is defined b y

dz =- (x+°')odz

	

( 3 )
where

xv = r (1 + dv) ,

and if ss is defined formally in the manner recommended b y
CHANDRASEKHAR (9), that is if

(2 )

(4)

V . (5)
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Here Fvl) is the monochromatic flux in a gray atmosphere i n

which the opacity is given by continuous absorption and by
continuous scattering . In CHANDRASEKHAR ' S discussion the opacity

in the atmosphere is given by absorption only . The quantity b y
is a small quantity giving the departure from grayness at an y

frequency . When we introduce equation (4) into equation (2)

we find
dpr

	

n

	

°°

	

z

dz

	

c
+6)e

)
F„dv-~Sv F„dv .

	

(6)
o

	

o

We can be reasonably sure that the second term on the right

side of equation (6) is small since the definition of x (eq . [5])

is equivalent to putting

6v Fvl) dv = 0 ,
0

and we may expect that the actual monochromatic flux Fv, is of

the same order of magnitude as the gray-body monochromati c

flux, F,, . We shall neglect the second term and writ e

dpr

dz

	

c (N+ a)e ~Fv dv ,
0

that is we shall use the radiation pressure gradient of a gray -

atmosphere . The definition of effective temperature give s

Fv dv = aRTé

	

(8)
J o

where crR is the radiation constant, 5 . 67 X 10 -5 ergs/cm 2 /sec /
degree' . Hence we have

0' .,4
z

	

~ 6)e
C

l e

If we introduce this expression into equation (1) and change to
the variable r, optical depth, we find that the equation for me-

chanical equilibrium including the effect of radiation pressure i s

dpq

	

g

	

6R T4
di

	

x+6 c

(7)

dpr
(9 )

(10)
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We shall determine the structure of our atmosphere by in-
tegrating this equation . The term (oR 'c) TQ is a constant for an y
atmosphere. In atmospheres of low effective temperature thi s
term, representing the effect of radiation pressure, is negligible .
However, when Te is greater than 1 0 4 this tern becomes important .
This treatment, which is possible only if a straight mean ab -
sorption coefficient is used, becomes more accurate as the de -
partures from grayness, å,,, become small, and the value of th e
neglected term approaches zero . This method has the advantag e
that we use the true surface gravity of the star in integrating ou r
atmosphere rather than an effective surface gravity which is no t
necessarily constant with depth . That g olf is not necessarily
constant with depth may be seen from its usual definition, (12 )

1 di),

gerf = g + -
dz •

We have no a priori reason for supposing the term e -1 dp,./dz to
be constant with depth, and indeed reference to equation (6 )
will show in general that this term is not constant with depth
for + e and are not constant with depth. In cases where g e a
is very nearly the same as g, the possible variations in goy ar e
of little account .

In order to integrate equation (10) and obtain the structur e
of the atmosphere we must know the dependence of x + a on T .
(We shall use the parameter r as the independent variable i n
the integration) . First we need to know the relation between r
and T, the temperature at any level in the atmosphere, fo r
depends on T. Analytical studies, (9), (11), have given relations
between z and T which are valid in a gray atmosphere an d
which should be good approximations in a non-gray atmosphere .
However, on integrating a model atmosphere it is immateria l
exactly what r- T relation we use so long as we obtain an atmo -
sphere which is in mechanical equilibrium and which yields a
constant net flux. As a first approximation we shall use the
classical relation

T (r)' = Tô
(1

+r) ,r),

	

(12)
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where To is the boundary temperature . If the flux from our

model is not constant with depth we shall modify this relation

in a second approximation .

The opacity of our atmosphere is given by hydrogen, heliu m
and by electron scattering . We assume hydrogen and helium t o
be present in the proportion 85 :15 by number . We can neglect
the small amounts of the other elements present, for these element s
do not contribute appreciably to the opacity of the atmosphere .
The mixture chosen is such that one gram of star materia l

contains 0 .585 grams of hydrogen and 0 .415 grams of helium .

If kv (H) is the monochromatic continuous absorption coef-
ficient of hydrogen per gram of neutral hydrogen, kv (He I) i s
the monochromatic continuous absorption coefficient of neutra l
helium per gram of neutral helium, and k„ (He II) is the mono-
chromatic continuous absorption coefficient of ionised helium pe r

gram of once-ionised helium, then the monochromatic continuou s

absorption coefficient per gram of star material i s

xv = 0•585 (1 -xH)kv (H) -}- 0 . 415(1 -xHe r-xHeH)kv (HeI)
(13 )

+ 0 .415xHel kv (HeII) .

Here xH is the degree of ionisation of hydrogen, xHe I gives the.
fraction of singly ionised helium atoms, and xHe II gives the

fraction of doubly ionised helium atoms. The absorption coef-

ficients kv (H), kv (He I), kv (He II) depend only on the temper -

ature, or optical depth, whereas the abundance factors, 0 .585
(1- xH), etc ., depend on the temperature and the electron pres -
sure. These factors may be calculated from the ionisatio n
equation. We have

5
og l x

	

= - 13.53 0 -~ - log T- 0 . 477 -logpc ,

	

(14 )
x

	

log
NHe

	

2	 = logA = -24.460+logT+0.125 - logp c , (15 )
NHe a

and

	

NHe+ .

	

5
log	 = 1ogB = -54 . 140-x- 1, logl--0 . 477-logpc , (16)

NHe +
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where we have put 0 = 5040/T . Since we define

xHe l - NHe+INHe
and

xHeII = NHe++I NHe

where NHe is the total number of helium atoms and ions present ,
it follows that

A

	

1
xxe I = 1+ A (1 + B)

	

1-}- B

AB	 B

	

(18)xHe II= 1-I-A(1 -I- B)

	

(1-f-B) '

The quantities A and B are found from equations (15) and (16) .
From equations (5) and (13) it follows that

c = 0 . 585(1 - xIH) k (H)+ 0.415 (1 - xHe7- xxel7) k (HeI)

-L0 . 415xHeI k(HeII), (19)

where
~,

	

F (1 )

k(H) = SkVH)	 dv ,
0

F,(,1 )
k(HeI) _ ~k„(HeI)	 F, dv,

	

(20)

F(1 )

	

k(HeII) = k,,(HeII)	 dv .
o

The coefficient of scattering per gram of star material i s
a = ae X number of electrons per gram of star material where a e

is the scattering coefficient per electron, 8 7re 4 /3 m 2 c4 . We find
that

[0 . 585

	

0 .41 5
a = ae

	

xH +

	

(xFIe 7+ 2 xI7eI7)J ,
mH

	

mHe

where mH is the mass of the hydrogen atom and mHe = 4 mH i s
the mass of the helium atom . When the numerical factors ar e
introduced we obtain

(17)

and

o = 0 . 397 [ 0 . 585xH + 0.104 (xHeI-I- 2xHeII)] .

	

(21)
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The coefficient of scattering per gram of star material depend s
on the electron pressure and the temperature at any level in th e
atmosphere . The maximum value a can reach, (x fI = 1, xne I = 0 ,
xHe II = 1), is 0.315 with the mixture of H and He used .

The monochromatic absorption coefficients for hydrogen and

for ionised helium corrected for stimulated emission ,can readil y

be found from Kramers law. The development of these formula

is discussed for instance by UNSÖLD [(12), p. 117 ff .] . We have

kv (H) = F(H)D	 (H) (1 e
-n)

	

(22)

u

where

I(H)

	

64 014 n2e 1 0

3V3 ch 3 nI II (kT) 3

n = 9
e tt,, (H)

	

e u io (H)
D (H)

	

n3 + 2 « (H)i < n

Here we have extended Unsöld's treatment by continuing the
summation over all continua up to that from the level n = 9 ,

and then have performed an integration . The abreviation

u = h r/k T is used. The quantity u n (H) is the value of u at th e

series limit n,
1 RH l2c

un
(H) n2 kT

where RH is the Rydberg constant for hydrogen. Values of

F(H)D(H) for hydrogen at a number of temperatures are give n

in Table 1 . From this information kv (H) may be readily cal-

culated by equation (22) for any temperature and at any wave -
length desired .

Since the ionised helium atom is hydrogen-like, we ma y

find the continuous absorption coefficient of ionised helium cor-
rected for stimulated emission in the same way . We have

F(HeII)D(HeII)
II

kv (HeII) =

	

a

	

0-e -"),

	

(23)

and

where
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64 ?G 4 111e
t0 (2 4 )

	

(Re I)
F(HeII)

= 3 V3 ch 3 m lle

	

(kT )
3

n- 9
e u n (Hell)

	

eum (He II )
D(H)

	

n3
+ 2

ut (He II )
1< n

The quantity u, Z (He II) i s

u 15 (HeII) = RHe k T

where RHe is the Rydberg constant for helium . Values of F (He II )
D (He II) at a number of temperatures are given in Table 2 .

Table 1 .

F(H)-D(H) per gram of neutral hydrogen .

T 0 <d <911 .6A* 911 .6 < .t <3646A* 3646 < . <8204A 8204 <A <14,590A *

25,200° 1 .17 x 108 1 .81 x 10 6 4 .65 x10 5 2 .99 x10 5
28,000 8 .49 x 108 2.16 6 .20 x 10 5 4 .12 x 10 5
30,000 6 .96 x 108 2 .37 7 .50 x 10 5 5 .14 x 105
32,000 5 .73 x 108 2 .62 8 .69 x 10 5 6 .08 X 10 5
34,000 4.80 x 108 2 .81 9 .90 x 10 5 7 .07 x 10 5
38,000 3 .42 x 10 8 3 .06 1 .19 x 106 8 .74 x105
42,000 2 .54 x 108 3 .22 1 .36 x 10 6 1 .04 x 10 6
46,000 1,96 x 10 8 3 .48 1 .61 x 10 6 1 .27 x 10 6
50,000 1 .52 X 108 3 .34 1 .64 x 10 6 1 .33 x 106
54,000 1 .22 x 108 3 .42 1 .69 x 106 1 .37 x 106
58,000 9 .90 x 10 , 3 .28 1 .73 x 10 6 1 .43 x 10 6
62,000 8 .15 x 10, 3 .21 1 .76 x106 1 .46x 106
70,000 5 .74 x 10 7 3 .08 1 .81 x 10 6 1,54x106
80,000° 3 .92 x 10 , 2 .76 x 10 6 1 .73 x10 6 1 .49 x 10 6

* vacuum wavelengths .

We neglect the Gaunt factors in calculating ky, for referenc e
to a review of the question of the values of the Gaunt factors by
CHaNDRASEIHAR (13) shows that the Gaunt factors are close to
unity except near the series limit and in the region v- Do . In
the latter region g (v, n) -~ 0, but this fact is of little importanc e
for the contribution of kv to k at the very highest frequencies i s

and
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Table 2 .

F(He II) •D(He II) per gram of ionised helium.

T 0 <2 <228A 228 <2 <912A 912 <2 <2052A 2052 <2 <3646 A

25,200° 4 .74 x 10 9 4 .05 4 .47 x 10- 2 8 .57 x 10- 3
28,000 3 .40 x 10 9 19 .2 0 .312 6 .93 x 10- 2
30,000 2 .76 x 10 9 48 .7 1 .18 2 .41 x 10- 1
32,000 2 .28 x 10 9 1 .08 x 10 2 2 .70 7 .15 x 10- 1
34,000 1 .90 x 10 9 2 .17 x 10 2 6 .54 1 .8 6
38,000 1 .36 x10 9 6 .75 x 10 2 27 .9 8 .95
42,000, 9 .95 x 10 8 1 .65 x10 3 88 .2 31 . 4
46,000 7 .68 x10 8 3 .46 x 10 3 2 .29 x 10 2 88 . 8
50,000 6.93 x 10 8 7 .64 x 10 3 6 .22 x102 2 .60 x 10 2
54,000 4.73x10 8 1 .01x10 4 9 .50x10 2 4 .18x10 2
58,000 3 .05 x 10 8 1 .21 x 10 4 1 .31 x 10 3 6 .09 x 10 2
62,000 3 .14x10 8 2 .13x10 4 2.62x10 3 1 .28x10 3
70,000 2 .18 x 10 8 3 .67 x 10 4 5 .59 x 103 2 .95 x 10 3
80,000° 1 .45 x 10 8 1 .03 x 10 3 5 .43 x 10 4 6 .40 x 10 3

T 3646 <2 <5698A 5698 <2 <8204A 8204 <2 <11,170A11,170 <2 <14,590 A

25,200° 4 .02 x 10-3

	

2 .70 x 10- 3 2 .14 x 10-3 1 .85 x 10- 3
28,000 3 .51 x 10-2

	

2 .45 x 10- 2 1 .98 x 10- 2 1 .74 x 10- 2
30,000 1 .27 x 10-1

	

9 .11 x 10- 2 7 .49 x 10- 2 6 .61 x 10- 2
32,000 3 .93 x 10-1

	

2 .87 x 10- 1 2 .39 x 10- 1 2 .13 x10 -
34,000 1 .05 7 .84 x 10-1 6 .59 x 10- 1 5 .90 x 10- 1
38,000 5 .39 4 .13 3 .54 3 .2 1

42,000 19 .8 15 .6 13 .5 12 . 4
46,000 58 .3 46 .8 41 .1 37 . 8
50,000 1 .77x10 2 1 .45 x 10 2 1 .29x10 2 1 .19x10 2

54,000 2 .93 x 10 2 2 .42 x 10 2 2 .19 x 10 2 2 .03 x10 2
58,000 4 .34x10 2 3 .67x10 2 3 .33 x 10 2 3 .10x10 2
62,000 9 .36x10 2 7.96x10 2 7 .25x10 2 6 .79x10 2
70,000 2 .24 x 10 3 1 .96 x 10 3 1 .80 x 10 3 1 .70 x 10 3
80,000° 5 .00 x 10 3 4.41 x 10 3 4 .09 x 1.0 3 3 .87 x 103

negligible, because here the weight function approaches zero .
The most serious effect of our neglect of the Gaunt factors i s
that we have made the continuous absorption coefficient of
hydrogen too large just to the violet of the Lyman limit and o f
the Balmer limit . In practice, however, at the red side of these
limits an additional source of pseudo continuous absorptio n
appears owing to the overlap of the wide-spread wings of th e
higher members of the Lyman and Balmer series . This apparent
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continuous absorption is not included in the calculation of th e

mean continuous absorption coefficient, and its effect on the
mean absorption coefficient may be allowed for by neglectin g
the Gaunt factor . When it is a question of calculating the mono-
chromatic continuous absorption coefficient at any wavelengt h
and working with this, we should closely consider the effect o f
Gaunt factor and the overlap of the wings of the lines . We neglect
both these factors in the ensuing computations, consequently th e
discontinuity we calculate in the continuous absorption coef-
ficient at the Lyman and Balmer limits will be larger in our
model atmosphere than it would be in an actual stellar atmo-

sphere of the same structure . This is because we calculate k„ to o
large on the violet side of the limit and too- small on the red side .
The effects of these approximations on the continuous absorptio n
coefficient of ionised helium are not important for ionised helium
is not a major contributor to the opacity of our stellar atmosphere .

To obtain k,, (He I), the monochromatic absorption coefficien t
for neutral helium per gram of neutral helium corrected fo r
stimulated emission, we must sum the contributions from eac h
of the continua of neutral helium . Atomic absorption coefficient s
for the continua from the ground level of neutral helium, 1 1 S ,
and from the excited states 2 1 S, 2 3 S, 2 1 P and 2 3P, have been
published. However, no value of the atomic absorption coefficien t
for levels with n > 3 are available . In order to evaluate the

Table 3 .

The continua of the He I atom .

Level D. P . .limit source for a, ,

1 1 5 0 .00 V 504 A
2'S 19 .73 2601 S . HuANG, Ap . J . 108, 354, 1948 .
21 S 20 .53 3112

L . GOLDBERG, Ap . J . 90, 414, 1939, for th e2'P 20 .87 3436 1
2 1 P 21 .13 3682 Il

J

P-D continua and approximate formulae ,
privately

	

communicated,

	

for

	

the

	

P-S

continua .
n = 3 22 .88 771 0
n=4 23 .60 14,020 hydrogen-like formulae .
n = 5 23 .92 V 22,030 A
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contribution to the monochromatic absorption coefficient fro ni

the continua arising from these levels and from the free-fre e

transitions we assume the helium atom is hydrogen-like, and tha t

Kramer's law can be used . Information about the position of the

various series limits and the sources we shall use for av, the
atomic absorption coefficient, is given in Table 3 . Mean ex-

citation potentials are given for the levels with n = 3, 4 and 5.

The contribution to kv (He I) from any one continuum is

av x number of atoms in the appropriate level . We assume th e

excitation is according to ßoltzman ' s law, hence

gr, s=

	

e Xr,s~ k Tnr

	

u r

where nn, s is the number of atoms in the r th state of ionisation

excited to the state s which has an excitation energy xr,s . As

usual n,. is the total number of atoms in the rth stage of ionisation ,

gr,s is the statistical weight of the level s, and ur is the partition

function. We wish to find kv (He I) per gram of neutral helium ,

hence nr = 1 /mHe , where mHe is the mass of the helium atom .

At any temperature T, the contribution from level s to kv (He I) ,
corrected for stimulated emission, i s

kv (s) g's

	

sikTav(s) (1 -e -hv!kT),

	

(24)
n2He

since the partition function for neutral helium is unity . Here

av (s) is the atomic absorption coefficient at frequency v in th e

continuum arising from level s . The atomic absorption coef-

ficient, av, for the continua from the VS, 2 1S and 2 3S levels

can be found from tables given by HUANG (14) . We shall us e

a mean of the values given by Huang for the dipole moment

and the momentum interaction. The atomic absorption coef-

ficient for the continua occurring at the limits of the 2 1P 	 n 1 D
and 2 3P	 n3 D series can be read from a graph given by GoLn -

BERG (15), or computed from the formulae he gives . Dr. Gold-
berg has privately communicated to me the following approx-

imate formulae for the atomic absorption coefficients in th e

continua arising at the heads of the 2 1P - n 1S and 2 3P	 n 3 S
series . In the continuum at the head of the 2 1P - n1S series ,

n n, s
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1 7L e
a .

	

2
10-15 .71 v 4 . 6 v -3 .6 '

y ~ 2R mc

	

n

and in the continuum at .the head of the 23P -n 3 S serie s

a

	

7r 	 e2
10

-15. 80 v4 . 3 3 . 3
v2Rmc

	

n

Here R is the Rydberg constant in frequency units, vre is the

frequency of the series limit, and v is the frequency at whic h
we wish to find the atomic absorption coefficient . When the
numerical factors are introduced we have at the head of th e
2 1 P	 n 1S serie s

log a„ = 35 .48 - 3 . 6 log v

and at the head of the 2 3 P - n 3S serie s

log a, = 31 .06 - 3 .3 log v .

To find the contributions to k2, (He I) from levels with n > 3
and from the free-free transitions we must consider the helium

atom to be hydrogen-like . According to Kramers law the ab -

sorption coefficient per neutral atom at frequency v for a bound -
free transition is

6474 Zeae1mm e -u,

	

eLirz
a. n, ~

	

„(

	

)

	

3 V3

	

ch'

	

v 3

	

n3 '

	

(27)

for a hydrogen-like atom of effective nuclear charge Z ed . The
summation is carried out over all continua with limits to th e
red of the frequency being considered . As in the discussion fo r
hydrogen and ionised helium, u7L is the quantity hv,,/k T, wher e
v,t is the frequency of the series limit n . The absorption coef-
cient per neutral helium atom at frequency v due to free-free
transitions is

3 y3 eh°

	

u 1 v 3

since although for free-free transitions Zea = 1 as in hydrogen ,
the ratio of the partition functions is 2/1 instead of 1 / 2 as for
hydrogen. Upon combining equations (27) and (28) and in -

(25 )

(26 )

a, (oc , oo) _
64 n.4 e10m 2 e - L1` 1

( 28 )
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tegrating the terms of the sum in equation (27) for values of n > 5

(cf . UNSÖLD [12] p . 118), we obtain for the absorption coefficient

per atom of neutral heliu m

a„(Hel,n>3) =

~ ett,t

	

(eu' - 1)

	

2

n3 ~

	

2 ui

	

+ ul

64 7L 4 e10 ni e-

3 V3 ch' v 3

J

The absorption coefficient per grain of neutral helium correcte d

for stimulated emission is

k],(HeI,n>3) = - 1	 a v (HeI,n>3) (1 e -r17,/kr)

	

(30)
mHe

The total absorption coefficient at any frequency v of neutra l

helium per gram of neutral helium corrected for stimulate d

emission is the sum of the contributions from the individua l
continua with n < 2 (eq. [24]), and the contribution from th e
levels with n > 3, and from the free-free transitions (eq . [30]) .

We must now determine Zeff for the levels n > 3 of He I .
For a hydrogen-like leve l

IéØ = n2 (R20 -1

	

(31 )

where R is the Rydberg constant, 1 . 097 X 10' ein -1, and 2n i s

the wavelength of the series limit n . We have given An in Table 3
for the levels n = 3, 4 and 5. From equation (31) we find fo r

n = 3, 4 and 5, Ze a = 1 . 032, 1 .019 and 1 .017 respectively. The

mean value of Zea is 1 .023 . Since only the levels with n = 3 ,

4 and 5 contribute appreciably to the continuous absorption in
the wavelength region in which we are interested, we use th e

ZePf which gives a mean representation of the energies of thes e

levels .

We have now shown how to obtain k„ (H), k, (He I) and
k0 (He II) at any temperature corrected for stimulated emission .
In this connection it may be remarked that, as RUDKJØBING has

shown (8), the coefficient of electron scattering should not b e
D . Kgl . Danske Cidensk. Selskab, klat.-fys. Medd . XXV, 13 .

	

2
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multiplied by the factor (1	 enui') . With this information we can

readily find k (H), k (He I) and k (He II) as functions of the

temperature and hence of the optical depth, for the weigh t

functions are tabulated, (9) or (11), as functions of the optica l

depth .
To obtain the structure of the atmosphere we must integrat e

the equation of mechanical equilibrium, equation (10), step b y

step. Since from equations (12), (19), (20) and (21) we can

obtain x + a as a function of the election pressure and the optica l

depth, it is convenient to express pg in term of p e and work

with r as the independent variable and p e as the dependent

variable . We have

pu NH (1 + xH ) -{- NHe ( 1 + xxe I + 2 xHe II)
Pe

	

NH xH+ NHe(xHeI+ 2xHeII)

or inserting numerical values

pg 0 . 585(1 + xH) +0 .104(1 + xxel + xHell)

Pe

	

0 .585 xH+ 0 • 104 (xHeI + 2 xHeII )

However, for the values of T and p e of interest in the outer

part of the atmosphere pg /pe is very close to 2 . Hence we ex-

plicitly assume pg - 2p,, and find the structure of our atmo-

sphere by integrating numerically the equatio n

dpe

	

1	
g

- oR T4

	

(33)
dy

	

2 [Ts T +a

	

c e .

The presence of the term (aR/c) Te in equation (33) show s

that dpe/dz may become quite small . Consequently dp g/dr will

become small . If such is the case, convection will set in, for K .

Schwarzschild has shown that if the existing temperature an d

pressure gradients are such in an atmosphere that

(32 )

>
d log T

d logpu
(dlog T
d l .ogpg å a

convection will occur . The existing gradient at any level in the

atmosphere may be found from
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d log T

	

pg dp n 1 dT

dlogpg

	

T (dz) dz '

and the adiabatic gradient from

(dlogT 4 (B-}-1 ) prl pg+ [ 1 + B ( 5 / 2 +x1/k T ) i

d logpg J aa 4 (A+ 4) pr/ pg+ [5/2 +A (5/2 + x1/kT) ]

which gives the adiabatic gradient for a mixture of radiatio n

and an ionisable gas, one component of which is being ionised ,
in thermodynamic equilibrium at temperature T, (10) . Here we
have

where a is the Stefan-Holtzman constant, 7 .55 x 10-15 ergs/em 3 /
degree4. In equation (35) x1 , is the ionisation energy of the element
being ionised,

1 x

	

vl 1

B = v 1	
x 1 (1 - xi) x

A = B (5/2 + x1/k T) ,

where vl is the relative abundance by number of the elemen t
being ionised, x 1 is the degree of ionisation of this element, an d

ix s the mean degree of ionisation ,

x =

	

vi xi .

A comparison of the results from equations (34) and (35) will

show at what depths convection sets in .

In the convective zone the actual temperature gradient will
be greater than the adiabatic gradient and less than the radiativ e
gradient, and its exact value will depend upon the relativ e
importance of radiative transport of energy to convective transport .
We shall see that in our model the adiabatic gradient is ver y
much the same as the radiative gradient, hence in the con-

vective zone we shall find the structure of our model, that i s

(34)

(35)

and

2*
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the dependence of temperature on pressure, by integratin g

equation (35) . In doing this we do not assume pg = 2 p e , but
use the exact relation

Pg/Pe = (1 + x)/æ .

The use of equation (35) implies that the radiation field at an y

level in the atmosphere is that for an enclosed volume in thermo-
dynamic equilibrium at temperature T. Since the convective zon e
is at some depth in the atmosphere, this approximation is valid .

We continue to assume the existence of a state of local thermo-

dynamic equilibrium for the calculation of the ionisation in th e
atmosphere at any level, as we have done throughout the atmo-

sphere .

3 . The numerical results of the integration of a model atmo-
sphere are given in this section. We start from the boundar y

conditions that To = 25,200° and pe = 0, and integrate equation

(33) inwards step by step . In the region 0 < r < 0 . 10 we use step s

of 4 r = 0-01, in the region 0.10 <x< 1 .0 we use 4 r = 040 ,

and from 1 .0 <T < 3 .0 we use 4 r = 0 .20 . In order to fin d

	

1

L-g

	

GR 4 1
4Pe

	

r, - 2 xi

	

~ Te r

at any level r we must know p e and T at the level r. The value

of T can be found from equation (12) and the value of p e i s

found by, trial so tha t

( APe
r-

er + 4Per) = Per- Pe-, -dr

where 4 pe r_4, is the increment in p e calculated at the level r 4 r,

4 p er is the increment in p, calculated with the assumed p e at

level r, and Pez jr is the value of the electron pressure at th e

level r-4 r . We take log g = 4 . 200 and we use the value Te =

30,000° which is consistent with the use of the temperature law

given in equation (12) and our boundary temperature of 25,200° .
The quantities k (H), k (He I) and k (He II) (cf . eq. [19] and
[20]) were computed at the levels r = 0 . 0, 0 . 20, 0 .50, 1 . 00, 1 . 40,
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2 .00 and graphical interpolation was used to get the k's at other

optical depths . We used the weight functions tabulated by CI3AN-

DRASEKHAß (9) to form the k's although strictly speaking this

procedure is not quite correct (cf. [11]) . We felt justified in doin g

this because preliminary computations showed that the quantit y
= .c!C + o) `would be close to unity, and under these cir-

cumstances the weight functions tabulated by Chandrasekhar

are preferable to those which allow for the effect of electro n

scattering (11), but make a rather restrictive assumption about

the dependence of the Plank function on optical depth. The

graphs of the k's were extrapolated linearly to r = 3 .0, and the

model was integrated to this depth step by step. The model
atmosphere found is given in Table 4 . Log p g is tabulated rather

than log p e . It will be recalled that we have assumed pa = 2 pe

in this region, and that 0 = 5040/T.

Table 4 .

A model atmosphere with To = 25,200°, log g = 4 . 200 :

Radiative zone .

t

	

0 log p~ 5G

	

I

	

o 0

	

tog py

	

ti o

0 .00 0 .200 2 .121 0 .802 0 .274 0 .60 0 .170

	

3.301 3 .418 0 .27 5

.01 .199 2.377 1 .396 .274 0 .70 .167 3 .357 3 .447 .27 6

.02 .199 2 .489 1 .798 .274 0 .80 .164 3 .407 3 .447 .27 6

.03 .198 2 .563 2.033 .274 0 .90 .162 3 .450 3 .526 .27 7

.04 .197 2 .619 2.217 .274 1 .00 .159 3 .490 3 .417 .278

.05 .197 2 .665 2 .467 .274 1 .20 .154 3 .549 3 .167 .28 0

.06 .196 2 .702 2.568 .274 1 .40 .150

	

~ 3 .619 3 .136 .28 2
.07 .195 2 .736 2 .671 .274 1 .60 .147 3 .679 3 .230 .28 4

.08 .194 2 .765 2 .730 .274 1 .80 .144 3 .731 3 .220 .28 7
.09 .194 2 .791 2 .896 .274 2 .00 .141 3 .777 3 .168 .29 0

.10 .193 2 .814 2 .916 .274 2 .20 .139 3 .818 3 .224 .29 2

.20 .187 2 .926 2 .922 .274 2 .40 .137

	

3 .856 3 .241 .29 4
.30 .182 3 .066 3 .253 .274 2 .60 .134 3 .892 3 .070 .29 7
.40 .178 3 .162 3 .428 .275 2 .80 .132 3 .926 3.041 .29 9

0 .50 0 .174 3 .237 3 .467

	

0 .275 3 .00 0 .131 3 .958 3 .142 0 .300

We must now test this model for stability against convectio n
by computing the radiative gradient (d log T/d logpg)rad from
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equation (34) and comparing it with the adiabatic gradien t

(d log T/d logpg)ad at the same temperature and pressure cal-

culated according to equation (35) . The results of these cal-

culations are given in Table 5 . We see that the atmosphere be -

comes convectively unstable at about z = 2 .00 or 0 = 0 . 141 .

Since the difference between the radiative gradient and the

adiabatic gradient is not large, we do not expect any large scal e

disturbances to occur as a result of the setting in of convectio n

at these levels .

Table 5 .

The temperature-pressure gradients in the radiative zone .

d log T d1ogT d1ogT dlog T
a (dlogpg ) rad (dlogpy ) .~d

z dlogp9 )r .~d( dlogp~ .~ d

1 .00 0 .168 0 .230 2 .40 0 .19 7 0 .18 8
1 .40 0 .161 0 .200 3 .00 0 .201 0 .1.9 7
2 .00 0 .183 0 .188 . . . .

In order to obtain the structure of the atmosphere at greate r

depths, higher temperatures, we assume an adiabatic temper-

ature gradient and proceed by integrating equation (35). We

assume the ionisation of hydrogen and the first ionisation heliu m

to be complete, and we compute xi, the second degree of ionisation

of helium, from the equation .

5
log 1

xlx
= - 54. 140+ 1ogT-0 .477 logpe .

We note that in this approximation; the mean degree o f

ionisation is

= 1 . 00 + 045 xi

since the abundance by number of helium is 0 . 15 . The resulting

model atmosphere is given in Table 6 . Here the assumption
p0 = 2p, is not made, and the quantity x is not defined .

The model atmosphere given in Tables 4 and 6 may be

compared with the model atmosphere with O o = 0 .20 and log
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Table 6 .

A model atmosphere with To = 25,200°, log g = 4.200 :

Convective zone .

i

	

i Nr. 1 3

B

	

log pg

	

log pe

	

6

	

I

	

0

	

log py

	

log p e

	

6 -

0 .131

	

3 .958

	

3 .657

	

0 .300

	

0 .0947

	

4 .558

	

4 .286

	

0 .31 5

.125

	

4 .058

	

3 .780

	

.305

	

.0886

	

4 .658

	

4 .386

	

.31 5

.119

	

4 .158

	

3 .882

	

.309

	

.0830

	

4 .758

	

4 .486

	

.31 5

.113

	

4 .258

	

3 .984

	

.312

	

.0779

	

4 .858

	

4 .586

	

.31 5

.107

	

4 .358

	

4 .085

	

.313

	

.0730

	

4 .958

	

4 .686

	

.31 5

0 .101

	

4 .458

	

9 .186

	

0 .314

	

.0685

	

5 .058

	

4 .786

	

.31 5

0.0642

	

5 .158

	

4 .986

	

0 .315

geff = 4 .20 computed by RUDKJØBING (8) . Rudkjøbing compute s

the structure of his model using an effective acceleration o f

gravity, and goes on to estimate that the true acceleration o f

gravity of his model is 10 426 . In computing our model we hav e

assumed that the actual acceleration of gravity is 10 4' 20, however ,

a rough comparison of our models may be made. In the outer-

most regions of both atmospheres the run of gas pressure wit h

temperature is about the same, but the gas pressure begins to

increase more rapidly with increasing temperature in Rudkjø-

bing's model than in ours and at moderate depths, 0 -- 047 ,

the gas pressure in Rudkjobing's model is about 16 percent

larger than in the present model . Rudkjøbing finds that con-

vection starts at about the same level, 0 0 . 141, as in the present

model atmosphere .

In assessing the behaviour of our model atmosphere it is of

interest to find the run with depth of log geiï, obtained from

equations (9) and (11), the quantity , = x/(x + a), the ratio
p g /pe computed according to equation (32), and the ratio p, ./p g .
We obtain the radiation pressure at any depth r by integratin g

the equation, (cf . eq. [91) ,

dpr --T4
R

dr

	

c e

under the boundary condition that pr is zero at r = 0 . An
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Table 7 .

Values of certain quantities in the model atmosphere :

Radiative zone .

t log g eff A p g/p e P,./Pg Ts (H) x (He I) Ts (He II )

0.00 4.152 0 .745 1 .998 0 .000 0 .433 0 .386 0 .00 1

0 .05 4 .068 .900 2.000 .166 1 .377 1 .087 .003
0 .10 4 .041 .914 2.000 .235 1 .690 1 .222 .004

0 .40 4 .009 .926 1 .997 .422 2 .183 1 .228 .01 7

0 .80 4 .009 .926 1 .991 .480 2 .302 1 .088 .05 7
1 .20 4 .025 .919 1 .979 .519 2 .144 0 .893 .13 0
1 .60 4 .017 .919 1 .964 .513 2 .151 0 .808 .27 1

2 .00 4 .025

	

.916 1 .945 .512 2 .156 0 .625 .38 7
3 .00 4 .025

	

0 .913 1 .913 0 .506 2 .287 0 .373 0 .482

abridged table of these quantities is given in Table 7 . Also given

in Table 7 are x (H), r (He I), n (He II) the contributions o f

hydrogen, neutral helium, and ionised helium respectively to the

mean absorption coefficient, c .

In the convective zone the ratios p g /p e and pr./p g can be

found directly from their definitions . The value of the effectiv e
acceleration of gravity is found from the following considerations .
We postulate that the model atmosphere must still be in mechanica l

equilibrium in the convective zone . Consequently we require

dpg dpT

+
=
-dz dz

	

~ ~

in addition to the condition that d log T/d log pa is adiabatic ,
equation (35) . Since in the convective zone we assume that th e
radiation field is that for an enclosed volume in thermodynami c

equilibrium at temperature T we have

dp, .

	

4

	

dT_

dz

	

3 aT dz

However

dT

	

T (dlogT~ dpa

dz

	

pa d log pg/ad dz '

(36)
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hence we find

di),

	

4 aT 4 /dlogT) dpg

dz

	

3 po \d logpg ad dz

Remembering that

Pr - 3-aT 4

and introducing equation (37) into equation (36), we obtain .

p,
--

dlog T

= -
g (38 )

p o d log p o, ad

- 11+
d

d 1og

logpg/

T ~

ad

4
Pg

p,
(39)

The values for log g ea given in Table 8 were found fro m
equation (39) .

From Tables 7 and 8 we see that the effective acceleration
of gravity varies with depth in the atmosphere and that th e
radiation pressure is an appreciable fraction of the gas pressur e
except in the outermost layers of the stellar atmosphere . Conse-
quently radiation pressure and its effects can not be neglecte d
in an atmosphere such as this . In most of the radiative zone th e

Table 8 .

Values of certain quantities in the model atmosphere :
Convective zone .

0 log 9eir P,/Pe Pr/Pg 0 log gen. Pg ~Pe P, .~Pg

0 .131 4 .025 1 .91 0 .506 0 .0947 3 .989 1 .87 0.55 2
.125 4 .024 1 .90 .580 .0886 3 .982 1 .87 .58 0
.119 4 .016 1 .89 .558 .0830 3 .978 1 .87 .59 5
.113 4 .009 1 .88 .542 .0779 3 .973 1 .87 .60 1
.107 4 .002 1 .88 .542 .0730 3 .968 1 .87 .63 0

0 .101 3 .990 1 .87 0 .548 .0685 3 .964 1 .87 .64 8
. . 0 .0642 3 .959 1 .87 0 .66 5

(37 )

+ 4

It follows that

gelt

	

g
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ratio p g /p e is close to the assumed value of 2 . 0, but near the

beginning of the convective zone this ratio decreases . This is

because at the temperatures and pressures of these layers th e

second ionisation of helium is becoming important . In the

radiative zone the quantity 2 is sufficiently close to unity t o

justify the use of CHANDRASEKHAR 'S weight functions for formin g

x, cf. (11) . We see that at all depths hydrogen is the main con-

tributor to the opacity. Neutral helium is an important contributor

in the outer regions but at greater depths the second ionisatio n

of helium sets in and then neutral helium decreases in importanc e

as a source of opacity while ionised helium increases in im -

portance . In the convective zone we have assumed that th e

ionisation of hydrogen and the first ionisation of helium ar e

complete. At the level r = 3 .0 we have 1 -'xF1 = 2 .77 X 10_
6

and NHe+/NHeo = 5 . 36 x 10 4 , hence these assumptions ar e

justified .

4 . We have constructed a model atmosphere in mechanical

equilibrium and we must now compute the net flux at various

levels and see if this flux is constant with depth . If this is so
we may say that our model atmosphere represents a real stella r

atmosphere . The following method of computing the net flux a t

any level in the atmosphere has been developed by STRÖMGRE N

(16) . The monochromatic equation of transfer for a stellar atmo-

sphere in which the opacity is given by continuous absorptio n

and by electron scattering is

di;
cos ?9'

d
= Iv -Sv

where tv is the monochromatic optical dept h

= - S(v+)odz,

	

(41 )

and S. is the source function ,

Sv = .1v 13v+( 1 - 2„) J,,,

	

( 42 )
where

.1,, = v/( xv + a)

(40)
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and

We have

1 '
Jv =

2

	

„sin+% d
0

27

°°

	

t v

Jv( ty)

	

Ç Sv(tw) K ,(t-tv) dty + S,(t;) K,( ty -tv) dty (43)2 . o

where Ki is the first exponential integral . If we introduce equatio n

(42) into equation (43) and also define the quantit y

1v = Jv - B p ,

	

(44)

we obtain the following functional equation for Y,, (t v ) ,

Yv( ty) = -Bv( tv)+ (Bv( t v) h 1 (1 tv t v I ) dty

(45)

+ Slo 1 -4901 Yv ( tv ) Kl tv - tv I) dtv .

We now define

Bv (t,.~) = ~ 1 Bv( tv) K l(~~ ty- tv~) dty, o

and find I;, (tv) by an iterative process which gives

Yp (tv) = yo
( ty) + 4i 1v + 42 yp ~_ . . .

where

Yv (ty) = Bv ( tv) - By ( tv) ,

	

(46 )

4 i Yv
= 2

[1

	

(t;,)] Y°(tv) KiQ tv -tv~) dt;„

	

(47 )

42 Yv = 2 Ç [1 -4(01 41 I;, ( tv) Ki tv - t v ~) dty, (48 )

and in genera l

A ny, =

	

S ~1

	

( tv)] 4n 1yv(t;)K1(it; - tvI)d1 .
0
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If the 4" Yv very nearly form a series of constant ratio (1 - Av) ,
we can write

Yv (t„) = Yv (tv) + 4 2 Yv + Av 1 4 2 Yv

	

(49)

as an approximation . This approximation is quite good when

Av is not very small . When ,1„ is small it is better to extend th e

series to at least 4 3 Y„ or 4 4 Y, before attempting a summation
of the remaining correction terms . IL follows from equations (44 )

and (42) that the source function at any level tv i s

Sv( ty) = Bv( tv)+ [1-Av(tv) I [Yv (ty) +421v + A v i42Yy] , (50)

and that the net flux at this level tv is given by

Fv(tv) = 2 Ssv(t;) K2 (i-tu ) dt -2 ~ Sv( tv) K 2 ( ty - t.;,) dry, (51 )
t

	

o

where K 2 is the second exponential integral . The integration s

over the exponential integrals occurring in equations (46), (47) ,
(48), and (51) may be performed by a method of representativ e

points and weights developed by STHÖMGxnv (17) .

We see that to obtain the source function at any depth we

must know the dependence of the Planck function By on tv .

Y v -H
dtv = =	 dr

x + G

we may find tv as a function of r, and thus of temperature, b y
integrating equation (52) numerically . With this information w e
can construct tables giving B„ (tv) . In the convective zone ,

however, the optical depth, r, is not defined and the followin g

device must be used to obtain tv as a function of temperature .

By definition
dtv

dz - (xv + G)

hence from equation (38) we obtain

dtv

	

~v	 {
G[

	

4A,.( dlogTl

1

	

/) Jf

dPg

	

g

	

pa d log p a ad

Since (52)
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x,,, -I- c

	

4 p,. d log T
or

	

dt,, =

	

1 -I	 	 pg d (log pg) .

	

(53)
g

	

pg d log pa, ad

Equation (53) may be integrated numerically to give t„ as a
function of log pg and hence of temperature, since in the con-
vective zone we use log pg as the independent variable . Using
equations (52) and (53) we obtained B,, (t„) at a number of
wavelengths and then computed tables of S„ (t„) according t o
equation (50) . From these tables of the monochromatic sourc e
function the net monochromatic flux at any level is readil y

obtained by evaluating equation (51) by means of STRÖMGREN ' S

tables of representative points and weights (17) . I was greatly

privileged to use these tables before publication . Without these
tables it would have been impossible to have done this work .

We wish to ascertain if the integrated flu x

is constant with depth . In order to perform this integration ove r

frequency we divide the continuous spectrum inlo four regions ,
2 504, the 1 1 S limit of He I, to 2 912 ; 2 912 to 2 1458 ; 2 1458 to
A 3646 ; 2 3646 to 2 8204, the Paschen limit of H . The integrate d
flux in each of these intervals is obtained by finding F„ at fiv e

points equidistant in frequency and summing with the appro-
priate weights using COTES ' formula. The selected wavelengths
and the monochromatic fluxes at the depths r 0 .0, 0 .10, 0 .60 ,
and 1 .00 are given in Table 9 . The last line of the table give s
the integrated net flux, F CO, at each level . The emergent flu x

in the region 2 228, the Lyman limit of He II, to 2 504 was cal-

culated for the level r = 0, but it was found to be negligible ,

hence the computations for this region were not carried throug h

to obtain F„ at other optical depths . Likewise we neglect the flu x

to the red of the Paschen limit . This flux contributes a very small

part to the total flux, and its neglect will not affect our deter-

mination of the effective temperature or of the constancy of F
with depth .

The mean flux is F = 33 .29 X 1012 ergs/cm 2/sec which cor -

responds to an effective temperature of 36,800° . The deviations
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Table 9.

The monochromatic flux, Fv, in the model atmosphere .

z=0.0 Z = 0 .10 t = 0 .60 i = 1.0 0

504 .3 r 8 .05 x 10-4 9 .00 x 10-4 1 .40 x 10-3 1 .69x10- 3

567 .8 8 .42 9 .28 1 .36 1 .7 2

649 .4 8 .79 9 .64 1 .31 1 .75
758 .7 10 .96 11 .51 1 .31 1 .6 1
911 .6 v 15 .41 x 10-4 13 .17 x 10- 4 1 .20 x 10- 3 1 .42 x 10-3

911 .6 r 18 .87x10 -3 18 .48x10- 3 18 .48 x 10- 3 19 .30 x 10-3

1006 18 .18 18 .11 18 .69 19 .0 1

1.122 16 .02 16 .19 16 .69 17 .27

1268 14 .06 14 .01 14 .06 14 .41

1458 11 .69x10-3 11 .68 x 10- 3 11 .79 x 10- 3 11 .77x10-3

1458 11 .69 x 10-3 11 .68 x 10- 3 11 .79x10-3 11 .77x10- 3

1716 9 .55 9 .50 9 .33 9 .6 2

2083 7 .82 7 .81 7 .67 7 .3 6

2652 5 .47 5 .37 5 .07 4 .6 8

3646 v 3 .41 x 10-3 3 .32 x 10 -3 2 .82 x 10- 3 2 .36 x 10- 3

3646 r 4 .02 x 10-3 4 .02x10-3 3 :73x10- 3 3 .48 x 10- 3

4234 3 .01 x 10- 3 2 .97 x 10-3 2 .70x10-3 2 .44 x 10 - 3

5048 2.20x10- 3 2 .30 x 10-3 1 .87 x 10-3 1 .58 x 10 - 3
6251 1 .48x10- 3 1 .43x10 -3 1 .11 x10-3 8 .53 x 10 - 4
8204 v 8.84x10- 4 8.24 x 10- 4 5 .22 x 10-4 3 .26 x 10 - 4

F 32 .72x10 12 32 .67x10 12 33 .27 x 1012 34 .49 x 10 12

The units of Fv are ergs/cm''/sec .

from the mean are - 1 .7, -1 .9, 0 .0 and + 3 .6 percent re-
spectively at the levels z = 0 .00, 0 . 10, 0.60 and 1 .00. Thus the

constancy of the net flux with increasing depth is highly satis-
factory in our model . This result vindicates the use of the straigh t
mean absorption coefficient recommended by Chandrasekhar

and the treatment of the effects of radiation pressure which w e
have employed here . The criticism by UNSÖLD (18) of the Chan-
drasekhar-mean seems hardly to be justified . It is true as Unsöl d
points out that in the deeper layers where S„ B„ the Rosseland-
mean and the Chandrasekhar-mean are equivalent and th e

Rosseland-mean may be preferred because of the ease of formin g
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Table 10.

Some values of (Sv - Bv)/Bv .

t 2 504 v 2759 21122 71716 23646 v

	

24234 28204 v

1
0 .00 0 .000 - 0.004 4 .98 + 0 .362 - 0 .159

	

- 0.175 - 0.15 5
0 .50 .000 .001 1 .12 + - 0 .036 .031 .060 .01 2

1 .00 .000 .000 0 .568 - 0.026 .014 .037 .004

1 .60 .000 .000 0 .289 - 0.032 .005 .021 .00 1
2 .20 .000 .000 0 .200 - 0 .024 .002 .008 .000
3 .00 0 .000 - 0.000 0 .155 - 0.018 - 0 .000 - 0 .002 - 0 .000

I I

it . However, in the upper layers of the atmosphere Sr � By and
then the use of the Rosseland-mean is subject to criticism .

Equation [50] enable us to compute Sr By at any layer in the

atmosphere . A few values of (Sr - B,)/B, are given in Table 10

for interest. We see that over much of the spectrum Sr deviate s
appreciably from B . at depths r < 0 . 50. In the transparent

region, 912 < 2 < 1500 A, however, the deviation of Sr from By
extends to great depths . Since most of the emergent radiatio n

passes in this region it seems advisable in computing the structur e

of the model to use a mean absorption coefficient which allow s

for the difference of Sr from Br . In order to use a Chandrasekhar -

type mean the weight functions Fv/F must be evaluated in som e

manner . This procedure involves certain assumptions about th e

process of radiation transfer in the stellar atmosphere . . CHAN-

DRASEKHAR (9) evaluates F»JF in a certain systematic way ;

UNSÖLD (18) evaluates these weights in another way. Which way

is best, and whether either is better than using the Rosseland-

mean can only he proven by model atmosphere computations
such as carried through here . The present results support th e

use of Chandrasekhar's weight functions .

That the flux from the model atmosphere increases slightly

with depth is not very significant . This behaviour may be th e

result of using an adiabatic temperature gradient, which is th e

minimum gradient expected, in the convective zone . Thereby the

flux in the wavelength region 912 < < 1500 A, which comes
effectively from the convective zone, arises from greater depth s

than it would if the temperature gradient were larger, for a
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decrease of the temperature gradient decreases the mono-

chromatic opacity of the atmosphere. The small percentag e

reduction of the net flux in the region 912 < < 1500 A neces-

sary to make the net flux perfectly constant could easily b e

obtained by increasing the temperature gradient in the con-

vective zone slightly. Such an increase would be accordant wit h

present concepts of the structure of the convective zone in stella r

atmospheres .

Referring to equation (6) we find that

d
dPr

	

a R 4 7r

	

Ç.

Te +c -I--6
bvFvdv

	

(54 )
where

år = (xv/x) - 1 .

We have neglected the last term on the right side of equation

(54) when integrating our model . Furthermore we have pu t

Te = 30,000°, the value corresponding to the boundary tem-

perature To = 25,200°, according to the classical T 	 a relation ,

equation (12) . We have available the information to evaluat e

the term
x

	

Ç006c x+a , vFvdv

at several values of r, and we find that it does not vary muc h

with depth and that its mean value is - 2 . 37 x 10 e . Using thi s

value and Te = 36,800° we find that the mean value of dp,./dr
is 1 . 18 x 10 3 . The value used in our computations was 1 .53 X 10 e .

Fortunately these two quantities are not greatly different . Since

1 dp, .

	

dp r
g, . _

	

dz
= (. + a)

dz

we may readily compute the acceleration due to radiation pres-

sure . .At the levels r = 0 . 00, 0 .10, 0-60 and 1 .00 it is 1-57 x 10 4,

3 .38 X 10 3, 3.99 X 10 3 and 4 .10 x 10 3 cm/sec t respectively . For his

model with log geff = 4.20 and To = 25,200°, Rudkjøbing
estimates that gr = 2.35 x 10 3 cm/sec 2 . His value is less than our s

and that is why his model differs from the present model . How -

ever, Rudkjøbing's estimate is somewhat uncertain for he neglect s
some terms. Rudkjobing estimates gr from the alternate expression .
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.7r

S (r+a)Fvdv .

~

=
o

He evaluates the integral s by putting

9r + C(k1 F1 + F2) ,

where k l and k2 are harmonic mean absorption coefficient s
formed in the manner of the Rosseland-mean, Fl is the integrated
flux in the region vo < v < co, and F2 is the integrated flux in

the region 0 < v < vo . Here vo is the frequency of the Lyma n

limit of hydrogen . His approximation means that he is writin g

xy-I-

	

= Ic 1 [1 + 81(v)] ,

xv + o = k2 [1

	

b 2 (v)] ,

and that he is neglecting the term s

_
~ hi

	

( v ) Fy dv + ~ka ~bz(v)Fydv

	

(55)
' o

It is not clear that these terms may be neglected, for the definitio n

of a Rosseland-type mean absorption coefficient sets no con-
dition on the vanishing of such integrals in the gray-body o r

any other approximation. In our case where we have used a

Chandrasekhar-type mean absorption coefficient, which implie s

~
Ç6 y Fv1) dy = 0

(s) .
(F), is the monochromatic flux in the gray-body approximation) ,
we have found that

8„Fv dv
c

is fairly large .

Rudkjobing does not give enough data in his paper for u s
to evaluate (55) directly . However, if we use the flux computed
for our model and the values of k1i and k 2 given by Rudkjøbin g

we find that at the level where 0 = 0-170, log pi = 3 . 30, i . e .

r Note that Rudkjøbing's F is our Tr F.

D . Kgl . Danske Vidensk . Selskab, \tat .-fis . Medd . XXV, 73 .

	

3

v 0 <v < ~

0<v<vo .

yo
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c = 0°60 in the present model, the neglected term is 3 . 13 x 10 2
cm/sec 2 . Consequently the g, estimated by Rudkjøbing should b e
increased to 2 .66 X 10 3 . This means that log g for his model i s
4 .27 . Considering the real difference in the parameter log g be-

tween Rudkjøbing's and the present model, there seems to b e
no serious difference between our model atmospheres . In order

Fig . 1 . The emergent flux from the atmosphere as a function of H .

to compute model atmospheres at still higher temperatures an d
lower surface gravities it would seem preferable to proceed b y
a method, such as that followed here, which takes account of
the effects of radiation pressure directly, rather than the metho d
used by Rudkjøbing, for in these atmospheres the effects o f
radiation pressure will be important .

The emergent flux is plotted in figure 1 together with B„ for
T = 36,800°. We see that in the transparent region of the
spectrum, 912 < 1 < 1500 A, the emergent flux is greatly in
excess of the black-body flux, while in the region beyond the
Lyman limit the emergent flux is considerably less than that o f
a black-body at the effective temperature of the star . In the
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visual and photographic regions the emergent flux is less tha n

the black-body radiation, but roughly parallels it in intensit y

distribution. The gradients at any wavelengths in this region ar e

of little meaning, for gradient is not a sensitive indicator of

temperature at these high temperatures . The Greenwich gradient ,

A 4100-2 6500, of our model corresponds to T > 150,000 0 . The

intensity discontinuities at the Lyman limit, the Balmer limit ,

and at 2.504 for r = 0 .00, 0 . 10, 0 . 60 and 1 . 00, are given in

Table 11 . These discontinuities increase a little with depth .

Table 11 .
Discontinuities in the continuous spectrum .

Lyman Limit Balmer Limit ).504 Limit

Z Fr
log d mag

Fr
log

F~
d mag

Fr
log- d mag

m In m

0 .00 1 .088 2 .72 0 .072 0 .18 0 .270 0.6 8

0 .10 1 .147 2 .87 0 .083 0 .21 0 .704 1 .7 6

0 .60 1 .187 2 .97 0 .122 0 .3 0

1 .00 1 .135 2 .84 0 .168 0 .42

We did not calculate the discontinuities at the 2 1S, 2 3 S, 2 1P

and 2 3P limits of He I. However, this does not mean that smal l

discontinuities are absent here .

According to the work of BARBIER and CHALONGE (19), the

size of the Balmer discontinuity corresponds to spectral type B1 .

However, as we have indicated in our discussion of the continuou s

absorption coefficient x,,, we feel our predicted discontinuitie s

are too large, and it is probable that the model is of earlie r

spectral type than B1 . Since the Gaunt factor (13) is 0 .88 at

A 3646 v, we have made x,(H) 12 percent loo large at this wave -
length . When xv (H) is reduced by this amount and the emergent

flux on the violet side of the Balmer limit is recalculated, w e

find that F3646v (0) is 3 . 49 x 10 -3 . Consequently we obtain log
F,./F, = 0 . 061 . This corrected value corresponds more nearly t o
spectral type BO than the value given in Table 11 . If we could
estimate the extra pseudo continuous absorption at A 3646r due

to overlap of the broad wings of the higher members of th e

Balmer series, we could compute a more correct value of F3646,. (0) .
3 *
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In any case it is evident that our computed value is a maximum
value. In comparing our predictions with observation we shoul d
also note that the observed quantity D, (cf . BARBIER and CHALONG E

[19]), which corresponds to our log Fr./Fv at the Balmer limit,
cannot be so clearly defined as the theoretical quantity . Because
of the inherent difficulties in the observation of the quantity D,
we should expect the observed value of D to be less than th e
predicted log It seems probable that our model corresponds
to about spectral type BO .

The observed number of hydrogen lines is an indication o f
absolute magnitude (20) . Since we can compute the electron
density at any level in our atmosphere from the election pressur e
and the temperature, we may readily find li nt , the number o f
hydrogen lines visible, by the TELLER-INGLIS formula (21) . The
quantity nm does not vary rapidly with electron density . If we
estimate that the higher members of the Balmer series are formed
between the levels r = 0 .50 and z = 1 .00 we find that the Balmer
series will break off at nm about 15 . Reference to the determination
of nm in a number of early type stars by MICZAIKA (22) and to the
spectral types by MORGAN, KEENAN and KELLMAN (23) for these
stars, shows that for spectral types between O 9 and B2, Ji m = 1 5
corresponds about to luminosity class V . There is little doubt
that our model atmosphere represents a main-sequence star .

5. From the continuous spectrum and the electron densit y
of our model atmosphere we have estimated that the model
corresponds to about spectral type BO V. However, it is desirabl e
to confirm this estimate by computing the line spectrum an d
comparing it to observation . A comparison of the relative strength s
of lines arising from atoms in two stages of ionisation wil l
determine the spectral type of the model atmosphere, and a
comparison of the absolute strengths of the lines will enable u s
to derive the abundances of the elements forming the lines . The
most prominent lines in the O and B type stars are those from
H, He I and Hell . These lines are generally used in classifying
the spectra of the earliest type stars (4, 23) . However, thes e
lines are strongly affected by Stark effect and the adequate re -
presentation of their line-absorption coefficients in a stella r
atmosphere is a complex problem . Since it would take a separate
lengthy investigation to obtain a detailed form for the line-
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absorption coefficient of the lines of H, He I and He II selected
by PETRIE as the most sensitive indicators of spectral type i n

the 0 stars, these lines will not be studied here, but . we will

attempt to confirm the spectral type of our model by comparin g

the relative strengths of the combined doublet A 4267 . 19 of C II

and of A 4187 . 05 of C III, and of the pair of lines 24819.74 of

Si III and A 408 8 . 86 of Si IV. These lines have been selected either

because they result from transitions between hydrogen-like levels
and hence their f-values may be estimated (cf . below), or be-

cause an evaluation of the dipole moment matrix element neces-

sary to compute the f-value is available .

The method of computing line profiles is straightforward ,

for the method of obtaining the emergent flux, outlined in th e

previous section, may be used . Since the lines to be studied aris e
from levels of high excitation, we shall consider the lines to be

formed in absorption . Then the line-absorption coefficient per

gram of star material is corrected for stimulated emission an d

treated as an addition to xv . If F, is the emergent flux in the

continuous spectrum at wavelengths bordering the line, and i f

Fv is the emergent flux at any frequency v in the line, the residua l

intensity in the line is

Rv = F,/F,

and the absorption in the line is

-Fv
= 1-R, = F

	

(57 )

The line absorption coefficient per gram of star materia l

corrected for stimulated emission i s

I/ 7[ ea fN :,

Iv
- mc

AvDH(a, v)(1-e -hv/vr)

	

(58)

where N" is the number of atoms of the appropriate type pe r
gram of star material excited to the lower level of the line, an d

vn /2kI
AvD = -c ~ inA
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Here mA is the mass of the atom, k is Boltzman's constant, an d
ro is the frequency of the centre of the line . The function H(a, v)

gives the shape of the line absorption coefficient broadened by
collisional and radiation damping for atoms in thermal motion .
This function has been tabulated by HJERTING (24) for a number
of values of a and v. Also recently a series expansion for H(a, v )
valid for small values of a has been given by HARRIS (25) .

We have
~

	

- ,j x

H(a,v) - a (

	

y)-2 + a
d y

-z

	

v

	

2

0
where

v - vo
v =

/J v
D

a = y
4 7c4vn

The quantity y is the damping constant for the line . For radiatio n
damping

Y = Ym-F Yn

	

(59 a )

where ym is the width of the upper level and y n is the width
of the lower level . It may be shown (cf. for instance, UNSÖL D

(12), p. 172) that

and

n'> m

1
Ym =

	

Arun (1 - e
- h v' kT

)
-

n <m

2 Jnc -I- 1 (ehvrkT-1) -1 , (59b)
n' 2J,, + 1

where Anm is the Einstein probability coefficient for spontaneou s
emission between two levels m and n which have total angular
momentum quantum numbers J,,, and Jn respectively .

The f-value occurring in equation (58) is the absorptio n
f-value for the line in question . Its value for a line in a multiplet

requires some consideration. According to CONDON and SHORTLE Y

(26) the absorption f-valve is given b y

8~2 mv S(a,J, ay)
f(aj,a 'j ' ) =

3 é 2h

	

2j' -I-1
(60)
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where a is the chief quantum number of the upper level, a ' i s

the chief quantum number of the lower level, and j and ,j ' are

the total angular momentum quantum numbers of these level s

respectively. The quantity S (aj, a 'j ' ) is the theoretical strength.
of the line, a quantity which is symmetric in the upper an d

lower levels . For a line designated b y

a ,2S+1L,
J

_a2S+11,
J

of a multiplet which obeys L-S coupling, explicit forms may b e

found for the theoretical strength (cf . CONDON and SnoRTLE Y

[26] p. 238). Using these expressions we can writ e

f(a La,Jr) = 8 ~2 m v

3 e2h

	

(a L lP la'L')
2
W(L,S,J,J'),

	

(61 )

where ' takes the following values depending in the type o f

transition .

type of
transition dL =1 d .T= O

J-->-J +1
Q(J)Q(J + 1 ) P(J+ 1) Q (J )

4 (J + 1) (2 J+ 3) 4 (J+ 1) (2J+ 3 )

P(J) Q(J) [R (J)1 2
J--->- J

4J (J+1) 4J (J+ 1 )

J

	

J-i
P(J) P(J-1) P(J) Q(J-1 )

4J (2J-1 )

The table gives W(L, S, J, Jr) .

Here

P(J)=(J	 S +L)(J +S+L +l )

Q(J) = (S+L-J)(J +S-L+ 1 )

R(J) = J(J -;- 1)-S(S -F- 1) + L(L -f 1) ,

and L is the largest of the two L-values occurring while J i s

the J-value belonging to that term . To obtain the f-value we need

4J(2J-1 )
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now to evaluate 1 (aL I PI a ' L ' ) 1 2 . For a central field it may
be shown (cf. CONDON and SHORTLEY [26], p . 132) tha t

2(aL IPIa'L -1)
4L2-1 (Re L 1 )

2
(62)

where (Tel l r is the square of the dipole matrix element o f

the radial part of the wave function . For central fields onl y
transitions with A L = ± 1 are allowed . By combining equations
(61) and (62) we find

8 3"L21ttv

	

a'L 1 2 tI'(L, S,J, J ' )f(aLJ, a L-1 J') =	
3h (RaL

	

4L2_1

	

(63)

It may be noted that

a ' L-1) 2

	

aL

	

2
( RaL

	

( Ra'L-1 )

Consequently we may find the f-value for all transitions for

which we know (RåL -1 ) 2 . If the energy levels concerned are

hydrogen-like we can put

(R LL-1 ) =
L
Ra'L 1 (H)

J 2 / Z2

	

(64)a

	

aL

where [RåL -
1 (H) ] 2 is the square of the radial matrix elemen t

for hydrogen, tabulated for instance by BETHE (27), and Z i s
the effective charge on the nucleus . Combining equations (61) ,

(62) and (64) we find that the f-value for a line occurring be-

tween two hydrogen-like levels is

87t 2nty [Ra
c.'
t
L-1

(H)]
2

(L , S, J, J ' )
f (a LJ, a L -1 J) =	

3h

	

Z 2

	

4 L 2 -1
• (65)

Here L is the largest L-value occurring .

In a recent paper (28) BATES and DAMGAARD consider the
calculation of the absolute strengths of spectral lines and sho w

that the quantity (R
å
L -1 ) 2 (4 L 2 - 1), which they call 6 2 , may

be evaluated approximately by neglecting the departure of the
potential of an atom or an ion from its asymptotic Coulomb form .
They show that this approximation is remarkably good for the
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lighter elements, up to Mg, and for simple systems which ar e
composed of one electron outside a closed shell, and that i t
yields useful information for complex systems which hav e
unclosed shells . For many spectral lines of astrophysical interes t
this evaluation by BATES and DAMGAARD of (RaL-1)2is superior

to a hydrogenlike approximation .

It is of interest to find the sum of the f-values of all com-
ponents of a multiplet arising from a given sub-level, charac-
terised by J ' , of the lower term . To find this we evaluate

2

f(aJ,a ,J,) =
8z my

	

1

	

'S(aJ,a'J' )
3e2h 2J' + 1

J

keeping J' fixed. Reference to CONDON and SHORTLEY (26) p . 23 8
enables us to evaluate the sum on the right side for the variou s
types of multiplet that occur. In the case AL = - 1.

f(aLJ,a 'L-1J) = 870 Zn v
3 Oh

(.LI Pl a 'L-1) 2 L(2L+1) . (66 )
. J

In the case 4 L = 0

f(aLJ,a 'LJ') = 8 7 2 m v
3 e2h

J

and in the case AL = + 1

(aLI Pl a'L) 2 L (L -I-1 ) , (67 )

X f(aL --1 J,a'LJ')=
83e

2'h
v

(aL-1P~a'L)I 2 L(2L1). (68)
J

Since the lines we shall study belong to the case AL =	 1 (see
Table 12), we shall continue the discussion using only equatio n
(66). Using equation (62) we find that .

.X f (aLJ, a ' L -1 J') = $ 7L2 122v L	 (Ra'I.-112

	

(69)
3h 2L-1 aZ /

J

When we compare this expression with the well-known formul a
for the oscillator strength in a one electron system (cf . for instance
BETHE [27] p. 435),
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fal- rxl '
- lmax l,l

)

v

	

R

	

(70)
2

3 21'-+--1(Rg)
((1

at

	

,
~

where I ' is the angular momentum quantum number of the lowe r

state and (v/Ry) is the frequency of the line in units of the Ryd-

berg frequency, and when we put l ' = L	 1, I = L in equation

(70), we find that

f(aLJ,a ' L-1 J ' ) = taL-a'L-1•

	

(71)
J

Throughout this paragraph we are implicitly assuming that the

frequency of all components of the multiplet arising from th e

sub-level J' is the same. If this is true then it is apparent that

the f-value of any component may be found from the relatio n

f(aLJ,a 'L-1J' ) =	
f(a LJ, a ' L- 1 J)

faL-aL- 1f(aLJ, a'L-J)

	

~
J

_ tl'(L,S,J,J' )
L(2L+1) faZ-rc'L- 1

In his paper on -cSco, UNSÖLD (29) effectively uses equation
(72) to estimate the f-values of lines in multiplets . However,

what he calls "f" is

i
f(aLJ,a'L'J')' (2S

+1)(2E+ 1)

for he combines with the f-value the factor (2 J ' + 1)/(2 S + 1) .
(2 L ' + 1) by which you must multiply

Nr,s

	

-ïlr, s i k Tr,s
= u

e
r

to get N", the number of atoms excited to the sub-level from

which the line arises . Here, as usual, g, s = (2S + 1) (2 L ' + 1) ,

and xr, s is the excitation energy of the lower level of the line .

Since there is no real advantage to working with the pseud o
f-values introduced by Unsöld, and since this procedure ma y
even lead to error if one should take these "f-values" an d

convert them into Einstein spontaneous emission probabilitie s

by the relation

(72 )

(73)
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A(a'J, aJ)

	

8n2e3v2

(2
J+ 1) f (a J, a 'J ' ) ,

in order to compute the radiation damping constant of a lin e
according to equations (59a) and (59b), it is preferable t o
compute the true f-values for the lines of L-S coupling multiplet s
by equations (63), (65), or (72) .

In order to determine the radiation damping constant for th e

lines studied we shall compute the Einstein spontaneous tran-

sition probabilities by the relatio n

	

A(a ,J , ,aJ) -
64yr 4 3 2 Ra'r-12-w(L,S,J,J')(2X+1)

	

(74)
e3h

	

c .

	

)

	

(4 L 2 -

	

(2J±1 )

We shall neglect collision damping. Of the lines chosen, only
Si IV 2,4089 is sufficiently strong that the exact value of th e
damping constant is of consequence . For this line RunaJØBING (8)
has shown that collision damping is not important .

The lines studied are given in Table 12 together with the
relevant spectroscopic information . The necessary matrix elements ,
R2, for obtaining the f-values and damping constants of the C II,
C III and Si III lines were obtained by assuming these spectr a
to be hydrogen-like . The matrix-elements for Si IV were found
by the method of BATES and DAMGAARD (28) . It is to be note d
that according to equations (59) the radiation damping constan t
depends upon the temperature . For the C II, C III and Si III
lines y at 32,000° was used throughout the atmosphere, but fo r

Table 12 .

Lines studied.

Spectrum I Designation j' - j f y at 32,000 °

C II	 3 d 2D-4 f 2 F° 3/E5 /2

' /z5 /z 4267 .19 1 .11 1 .69 x 10 10
' /z

	

~/2
C.III	 4 1 F°-5 1 G 3-4 4187 .05 1 .44 2 .22 x 10 9
Si III	 4 f 3F°-5g 3 G 3-3 1

3-4
17 4819 .74 1 .25 3 .9 7 x 10 9

Si IV	 4 2S-4 2 P° 1 /z

	

3 /z 4088 .86 0 .751 4 .02 x 10°



44

	

\'r . 1 3

the Si IV line y was calculated at each depth in the atmosphere .

In evaluating the damping constant account was taken of all
possible transitions to the levels listed by BACHER and GouDSivil T

(30) .

The line absorption coefficient per grain of star materia l
corrected for stimulated emission was derived at each level i n

the atmosphere according to equation (58) . The ionisation and

excitation equilibria were computed at each level, and accoun t

was taken of the temperature dependence of the various partitio n

functions involved. The function H (a, v) was evaluated by the

series expansion given by HARRIS (25) . The monochromatic con-

tinuous absorption coefficient corrected for stimulated emissio n

was also obtained at each level for the central frequency of eac h
line, and then the relative absorption at several points in th e

line profile was computed by the method outlined above . The

results obtained are given in Table 13 . These points were plotte d

and the profile was integrated graphically to give the equivalen t
widths listed in Table 14 . The relative amounts of C and Si

to H used, are those found by UNSÖLD (29) for rSco, that is

N (H)/N (C) = 5 . 8 X 10 3 and N (H)/N (Si) = 1 . 6 x 10 4 .

Table 13 .

Computed absorption line profiles *

d A

	

C I1 :4 4267•19 C IIId 4187 . 05 1i Si III2 4819 .74 dR Si IV), 4088 . 8 6

0 .00 A 0 .35 0 .30 0 .27 0 .00 A 0 .4 1

.07 .31 .26 .18 .10 .3 7

.14 .17 .14 .02 .20 .1 4

0 .21 0 .04 0 .03 0 .00 .40 .0 5

0 .80 0 .03

x The table gives absorption in the line in terms of the continuous spectrum at th e
wavelength in question .

The C II "line", A 4267 .19, is a blended multiplet of three
components. The two components arising from the sub-level with
j = 5/2 have the sanie wavelength, hence we form a summe d
f-value for them as in equation (69) . This summed f-value i s

the saine as that for the one component arising from the level
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with j = 3/2 . We next assume that all components have the mea n
wavelength 4267 .19A, and find the desired line absorption coef-
ficient by adding the contributions from each component . Since

each component has the same damping constant, it follows tha t
1v for the combined multiplet is given by formula (58) with f
equal to the summed f -value for all components arising fro m
either sub-level j = 3/2 or sub-level j = 5/2, and that N* is the
number of excited atoms given directly by the Boltzman equatio n
(eq. [73]) .

The C III and Si IV lines are single, consequently the pro-

cedure of forming Iv is straightforward . The Si III line is com-

posed of two components which arise from the sub-level j = 3
of the lower term. Since these two components have the sam e
wavelength we use a summed f-value, equation (69), and w e
note that in this case N* is not given by Boltzman's equatio n
directly ; but by Nr,s X (2 J ' + 1)/(2 S + 1) (2 L' + 1) .

The strength of the lines in the model atmosphere may b e

compared with measurements made on high dispersion plates of
the strengths of the same lines in -tSco, a BO V star, by UNSÖL D

(29), and in 10 Lac, an 0 9 V star, by ALLER (31) .

The observed equivalent widths are given in Table 1 4

together with the computed equivalent widths . The observed
and computed relative intensities C II/C III and Si III/Si IV are
given in Table 15 .

Table 14 .

Equivalent widths* .

z Seo BO V 10 Lac 09 V
Line Computed

(Unsold) (Aller)

C II 2.4267	 0 .099 0 .115 0 .08 1

C

	

2, 4187	 0 .085 0 .065 0 .08 9

Si III A 4820	 0 .050 0 .071 (<0.050)
Si IVd 4089	 0 .209 0 .174 0 .270

* in equivalent angstroms .

Since Aller does not measure the line 2 4820 in 10 Lac ,
I estimate that its equivalent width . is less than 0 . 050 E.A. It i s
not certain that the measurements by Unsold and by Aller are
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on the same scale, for the plates used, although of comparabl e

dispersion, are not taken by the same telescope and spectrograph .

This fact should not seriously affect the interpretation of th e
observed and computed relative intensities C II/C III and Si III

Si IV, but it will prevent a precise determination of the abundanc e

of carbon and silicon by matching the computed equivalen t

widths closely to the observed equivalent widths .

Table 15.

Relative intensities .

TScoBOV 10 Lac 09 VRatio Computed
(Unsöld) (Aller)

C II/C III	 1 .17 1 .77 0 .9 1
Si ill/Si IV	 0 .24 0 .41 (<0.18)

From the data of Table 15 we conclude that the spectral typ e
of the model atmosphere is definitely earlier than BO V an d

somewhat later than 0 9 V, say O 9 . 5 V on the scale of MORGAN,
KEENAN and KELLMAN (23) . R. M . PETRIE (4) classifies 10 Lac

as an 0 8 .5 star. On his scale the model atmosphere might just

be an 09 star . The effective temperature of 36,800° which w e

have found for the model atmosphere is considerably higher

than the excitation temperature of 30,700° found by Petrie fo r

0 9 stars from a study of the relative intensities of the He II and
He I lines 2 4542 and 2 4471 respectively, and is also highe r

than the temperature based on the ionisation scale given b y
KUIPER (5).

The difference between effective temperature and excitatio n

temperature found here for the 09 stars is in the same directio n

as that found for later type stars from curve of growth studies .

This result occurs because of the rather great transparency o f
stellar atmospheres to radiation in the range 912 < .l < 1500A,
which tends to increase the integrated emergent flux above that

expected for the temperatures indicated by the opacity in th e
wavelength regions corresponding to the excitation of the com-

monly studied lines .

The dependence of the monochromatic optical depth, t,,, on



N Nr . 13 4 7

Table 16 .

The monochromatic optical depths, 4, at various wavelengths .

a A, 314

	

A 649 2 912v 7. 1006 A. 1458 A 3646v A 4234 A 625 1

0 .00 0 .00 0 .00 0 .00 0 .000 0.000 0 .000 0 .000 0 .000

0 .10 0 .77 0 .12 0 .32 .013 .014 0 .039 0 .022 0 .04 0

0 .20 1 .45 0 .24 0 .64 .023 .026 0 .080 0 .044 0 .082

0 .40 2 .56 0 .49 1 .30 .041 .049 0 .17 0 .092 0 .1 8

0 .60 3 .43 0 .72 1 .93 .059 .074 0 .28 0 .15 0 .3 0

0 .80 4.14 0 .96 2 .55 .078 .100 0 .40 0 .21 0 .44

1 .00 4 .71 1 .18 3 .14 .097 .13 0 .53 0 .28 0 .6 0

1 .40 5.58 1 .62 4 .31 .139 .19 0 .83 0 .45 0 .9 8

1 .80 6 .11 2,06 5 .46 .186 .27 1 .18 0 .67 1 .44

2 .20 6 .66 2 .50 6 .60 .236 .35 1 .59 0 .92 1 .9 7

2 .60 7 .00 2 .93 7 .73 .289 ,44 2 .03 1 .19 2 .5 5

3 .00 7 .26 3 .35 8 .84 0 .345 0 .53 2 .50 1,48 2 .9 7

wavelength in the present model atmosphere is illustrated by the

data of Table 16 . The emergent monochromatic flux may b e

roughly evaluated by taking B„ at the depth t„ = 0 .60. It is

obvious from the data of Table 16 that the "temperature " of the

emergent flux varies considerably with wavelength . In a line, the

monochromatic optical depth varies rapidly with wavelength, a s

is illustrated by the data of Table 17, and it is a question what

Table 17 .

t„ in R 4267, N (H)/N (G) = 5 . 8 x 10 3 .

z 4d = 0 . 00 A 4A = 0 . 07A 42. = 0 .14 A 42=0. 21 A

0 .00 0 .00 0 .00 0 .000 0 .00 0

0 .10 0 .55 0 .32 0.080 0 .03 1

0 .20 1 .14 0 .66 0 .166 0 .064

0 .40 2 .20 1 .29 0 .34 0 .13 1

0 .60 3 .10 1 .84 0 .51 0 .20

0 .80 3 .80 2 .31 0 .64 0 .2 8
1 .00 4.36 2 .70 0 .81 0 .3 7

1 .40 5 .13 3 .25 1 .08 0 .5 6
1 .80 5 .68 3 .68 1 .35 0 .7 9

2 .20 4 .08 1 .65 1 .0 5
2 .60 4 .46 1 .96 1 .3 3

3 .00 4.82 2 .28 1 .64
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optical depth, or temperature, should be taken as "characteristic "
of the whole line, for the level at which tv = 0•6O occurs differ s
greatly, depending on the distance from the line centre . The dat a

of Table 17 illustrate nicely that the core of a line is formed
in the outermost layers of the atmosphere, while the wings ar e
formed at progressively deeper layers . In any case it is evident

that whatever temperature is chosen in order that the actual
process of line formation may be represented by line formation
in a layer of gas at one temperature and pressure, this temperatur e
will be less than the corresponding temperature for the continuous
spectrum in the neighbourhood of the line, and that both of thes e
temperatures will be less than the effective temperature, for th e
effective temperature is largely determined by the magnitude of

the emergent flux in the region 912 < A < 1500A, and in thi s
region the " characteristic temperature" is high . Excitation or
ionisation temperatures are effectively "characteristic temper-

atures" for the lines involved and hence bear a complicated
relationship to the effective temperature of the atmosphere, which
is defined by the integrated emergent flux .

The high effective temperature we have found for the 0 9 . 5 V
stars, which is in accord with the estimate of RUDIaJØBING (8)
from his study of model atmospheres, means that the B stars

are spread over a large range of effective temperature, for th e
effective temperature of AO V stars seems to be close to 10,000 °
(32) . The greatest spread in effective temperature probabl y
occurs amongst the early B-type stars, for at the temperature s
estimated to be characteristic of these atmospheres the peak o f
the black-body energy distribution curve moves into the rang e
912 < 2 < 1500A . When this happens an excess of emergent

radiation in this critical wavelength range will build up rapidly ,
and force up the effective temperature . It is difficult to estimate
how high the effective temperatures of the absorption-line 0 5 o r
06 stars may be. Consideration of the stability of atmosphere s
under the effects of radiation pressure (10), indicates that only
stars of large surface gravity will have stable atmospheres at very
high effective temperatures .

From Table 14 we see that the absolute strengths of the line s
in the model atmosphere are intermediate between those observed
in tSco, BO V, and in 10 Lac, 0 9 V. This result is in accord
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with the spectral type of the model atmosphere being O 9 . 5 V,
and confirms the assumption that the relative abundances of C
and Si to H used are representative of the chemical compositio n

of early-type atmospheres . The actual abundances occurring
cannot be far from the chosen abundances, for if the carbon

abundance is reduced by a factor 0 . 4, the absolute strengths of

the C II and C III lines are reduced to 0 .069 E.A. and 0 . 061 E.A .

respectively . These values are significantly lower than the ob -

served line strengths . The ratio C II/C III is nearly unchange d

by this change in the carbon abundance, for it becomes 1 . 1 3

instead of 1 .17. Since hydrogen is the dominant source of opacity

in the wavelength range of the lines studied, departure of th e

real abundance of He from the assumed abundance of He wil l
not affect the computed line strengths and the relative abundance s

of C and Si deduced therefrom by altering the contrast appreciably .

6. The limb-darkening of early type stars is difficult to
establish from observations of eclipsing variables in which on e
or both components are O or B-type stars, and usually the ob-

servations are worked through with estimated values of the coef-

ficient of limb-darkening . Since in the course of the computations

for the net flux in the atmosphere we have obtained the mono -

chromatic source function S i, as a function of the optical depth ,

we can compute the emergent intensity as a function of th e

angle of emergence and can thus find the limb-darkening of th e

model atmosphere in various wavelengths . We have

Iy (O,,Cb) = y-1
1
Sv( tv) e

t> ~ w
dtv,

	

(76)

where 4 (0, ,u) is the monochromatic intensity emerging at th e

angle cos-1,u to the normal. Here t„ is the monochromatic optica l

depth. The limb-darkening is expressed by

Iv (0, ,u)/Iv (0, 1) = 1	 u + u,u,

	

(76)

where u is the coefficient of limb-darkening.

The values of 4 (0, ,u)/It, (0, 1) given in Table 18 were found

by integrating equation (75) numerically for values of ,u equa l

to 1 . 00, 0 .50, 0 .20 and 0 . 05 . At the limb, ,u = 0 . 00, 4 (0, ,u)
D . Kg] . Danske Vidensk. Selskab, Mat.-fys . Medd . XXV, 13 .
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Table 18.

The limb-darkening, 4 (0, u)/Iv (0, 1), of the model atmosphere .

F~ A. 6251 A 4234

	

A 1006 pure scatterin g

1 .00 1 .000 1 .000 1 .000 1 .000

0 .50 0 .892 0 .845 0 .663 0.688

0 .20 0 .777 0 .726 0 .438 0.49 0

0 .05 0 .688 0 .574 0 .373 0.38 0

0 .00 0 .561 0 .476 0 .338 0.331

was put equal to Sr (0.0). Also given in Table 18 is the limb -
darkening computed by CHANDRASERHAR (33) for an atmosphere
scattering according to the Rayleigh phase function, i . e . for
electron scattering . The intensity I„ (0,1) equals 1 .57 x 10 -3,
3 .17 X 10 -3 and 24 . 69 x 10 -3 ergs/cm 2/sec respectively at A 6251 ,
A 4234 and 2 ,1006. The wavelength 26251 corresponds roughly

to the effective wavelength of visual-red observations, while th e
wavelength ).4234 corresponds to the effective wavelength of

photographic observations . At both these wavelengths hydrogen

is the predominant source of opacity in the atmosphere. The
limb-darkening was calculated at A 1006 also, because here
electron scattering is the predominant source of opacity, and th e

Fig . 2 . The limb-darkening of the model atmosphere .
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limb-darkening at 21006 will be characteristic, of electron
scattering atmospheres .

The data of Table 18 are plotted in Figure 2 as a functio n
of ,u . The limb-darkening at 2 1006 is closely that obtained by
Chandrasekhar through exact computations of the limb-darken-

ing expected in an atmosphere scattering according to Ray-
leigh's phase function. In the present computations the scatterin g
was assumed to be isotropic. At 2 4234 the electron scatterin g
contributes a larger amount to the total opacity than at A 625 1
and the limb-darkening curve is accordingly closer to the limitin g
curve for pure scattering .

An expression of the form of equation (76) was fitted to th e
plotted points by the method of least squares, yielding the fol -
lowing coefficients of limb-darkening : u = 0 .35 at 2 6251, 0 .44
at A 4234, 0 . 65 for pure scattering, and 0 .67 at 2 1006. From his
study of the light curve of AO Cassiopeiae, FRANK BRADSHAW

WOOD (34) concludes that the appropriate coefficient of limb -
darkening for 0 stars is about 0 . 6 . Since AO Cassiopeiae is a
pair of 08 supergiants we may expect electron scattering to be
predominant even in the photographic and visual spectral regions .
The value of the limb-darkening suggested by Wood is consisten t
with the results of the present computations which show that the
limiting value of u = 0 . 65 is approached when the opacity i s
predominantly due to electron - scattering .

This investigation was made during the author's tenure o f
a National Research Fellowship (U . S . A .) . The author is most
grateful to Professor BENGT STRÖMGREN for many helpful discus-
sions during her stay at the Copenhagen University Observator y
and for the friendly welcome she received there .

4*
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