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1. The tempecratures of the early-type stars are not known
very -precisely inspite of a number of investigations to establish
the upper end of the lemperature scale. This state of affairs is a
result partly of the complex and largely unknown relationships
existing between the various types of temperature which may be
defined, and partly of the observational difficulties. The methods
of colour temperature are inconclusive for the high temperature
" stars because in the O and B stars most of the {lux is emitted
al inaccessible wavelengths in the far ultraviolet, hence measure-
ments can only be made on the tail of the energy distribution
curve where the gradient is nol very sensitive to temperature,
and because the spectral distribution of the photographic and
visual light received from most O and B stars is modified by the
interstellar material lying between these stars and wus. The
ionisation temperature scale introduced by FowrLEr and MiLNE (1)
and used extensively by Miss Pavyne (2) and also by PaNNE-
KOEK (3), has been the most useful temperature scale for the
carly-type stars, but for the earliest types it is somewhat un-
certain as it depends entirely upon the spectral type .chosen
lypical of the Het™ maximum. R. M. PeTrie (4) has discussed
critically the existing temperature scales for the early Lype stars
and in particular criticises Kuirer’s (5) exlrapolated ionisation
temperature scale. PETRIE has proposed a more compressed
excilation temperature scale, but because his results are based
on a single curve of growth for He I which is used for all the
stars and because of the sensitivity to Stark effect of the lines
of Hel and He Il which he uses, it is doubtful if the method
he has used is very sensitive. In any case it is not clear that
ionisalion temperature, excitalion temperature and effective
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temperature should be closely the same for the early type stars.
UnsoLp’s (6) investigations of the atmosphere of vSco, a BOV
star, show the difficullies to be met in trying to establish from
observations an exact ionisation or excitation temperature for
the early-type stars, and clearly point o the intricate relation-
ship exisling in a stellar atmosphere between the various temper-
atures which may be defined.

In view of the differing observational results that have been
obtained, a theoretical determination of the effective temper-
ature of an early-type atmosphere would be valuable. The
method of model atmospheres offers a powerful tool for deter-
mining effective temperature, for, once an acceptable model
atmosphere has been obtained, the integrated net flux emerging
from it may be calculated. By definition the integrated net flux
determines the effective temperature of the atmosphere. This
temperature will be the effective temperature of the spectral type
corresponding to the model atmosphere. In this paper, methods
for computing model atmospheres for the high temperature stars -
and for determining the spectra of these atmospheres will be
developed and a model atmosphere will be computed. The
spectral type of this model atmosphere will be determined by
comparison with observations and the emergent flux will be
calculated in detail so that the effective temperature of the model
atmosphere may be found and a point determined at the upper
end of the stellar temperature scale.

Recently the method of model atmospheres has been highly
developed by STrROMGREN (7) and applied by Stréomsren and
his co-workers to studies of the solar atmosphere and of the
atmospheres of stars of neighbouring spectral type, while Rubp-
KJGBING (8) has applied these ideas to the study of the atmospheres
of B-type stars. We shall proceed in a manner somewhat dif-
ferent in detail from that adopted by Rudkjebing, who uses the
principle of the Rosseland mean absorption coefficient and
divides the radiation field into two parts and then works with
only the flux at frequencies greater than the Lyman limit to get
the structure of his atmosphere, for we shall work with the whole
radiation field and we shall use the CHANDRASEKHAR straight
mean absorption coefficient (9) which is particularly advanta-
geous for dealing with the effects of radiation pressure on the
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mechanical equilibrium of the atmosphere (10). With a view to
the extension of the method of model atmospheres to atmospheres
of very high effective temperature, we shall consider the effects
of radiation pressure in more detail than has been the case in
previous investigations. Like Rudkjebing we shall assume that
the opacity in our model atmosphere is given by conlinuous
absorption from hydrogen and helium, which are present in the
ratio 86:15 by number, and by eleciron scattering. We shall go
further than Rudkjebing in that we shall test our model atmo-
sphere for radiative equilibrium by computing the net flux without
making any approximations at all. We shall also discuss in detail
the question of the f-values for the lines of L-S coupling multiplets,
and will assemble the necessary formulae for computing these
f-values. The method, due to Strémgren, which we will use for
computing the net flux in the atmosphere by solving the Schwarz-
schild integral equation, provides us with a non-approximate
method of calculating the line spectrum of the model atmosphere.
A by-product of these calculations is the limb-darkening of the
model atmosphere in various wave-lengths.

Numerical methods, such as we will use, give a realistic
picture of the stellar atmosphere, for they take account of the
actual variation of the quantities in the atmosphere, and make
no a priori assumptions about the behaviour of any of these
quantities. The model atmosphere is idealised to the extent that
it is assumed to be symmetrical with respect to the centre of the
star so that the physical parameters vary with depth in the
atmosphere only, and it is assumed that the chemical com-
position is constant throughout the atmosphere. Furthermore the
atmosphere is assumed to be in a state of mechanical equilibrium.
The dependence of temperature upon the pressure and the
electron pressure throughout the atmosphere is then obtained by
integrating the differential equation of mechanical equilibrium.
The model atmosphere so oblained is said to represent a real
stellar atmosphere in radiative equilibrium if it can be shown
that an atmosphere with this structure produces a net flux which
is constant with increasing optical depth. When a model atmo-
sphere satisfying the two conditions of mechanical equilibrium
and constant net flux has been obtained, the line spectrum of
the model atmosphere may be calculated and detailed information
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about the spectral type of the model atmosphere and the abund-
ance of the elemenls in the stars may be derived by comparing
the computed spectrum with obscrved spectra.

2. We shall consider an atmosphere of high effective temper-
ature in which the opacity is a result of continuous absorption
by hydrogen, neulral helium and ionised helium, and of electron
scattering. We shall further assume that the star is a main-
sequence star and that the transport of energy by turbulence is
not important. The equation for mechanical equilibrium in such
an atmosphere is

d + ,
(piiz pe) — —go 1

where p, is the gas pressure, p, is the radiation pressure, and ¢
is the density at the level z in the atmosphere. The surface gravily
of the star is g. In atmospheres of comparatively low effective
temperature the radiation pressure is negligible in comparison to
the gas pressure. However, in atmospheres of high effective
temperature the radiation pressure is not negligible. In an atmo-
sphere in which the opacity is given by continuous absorption
and by electron scattering it may be shown (10) that

dp, A
- S o+ o) o Fydy, @)
0

dz ¢

where xp is the monochromatic mass-absorption coefficient in
the atmoshpere and o is the mass-scattering coefficient assumed
to be independent of wavelength. In such an atmosphere (11)
the gray-body temperature law deduced by CHANDRASEKHAR (9)
remains a valid approximation if the oplical depth is defined by

dv = —(F4+o)ode (3)
where

wy = % (1 + ), | (1)

and if % is defined formally in the manner recommended by
CHANDRASEKHAR (9), that is if

w F(l)

P v
ngx,fd. (5)
'0’1 F v
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Here Fqsl) is the monochromatic flux in a gray atmosphere in
which the opacity is given by continuous absorption and by
continuous scattering, In CHANDRASEEHAR's discussion the opacity
in the atmosphere is given by absorption only. The quantity &,
is a small quantity giving the departure from grayness at any
frequency. When we introduce equation (4) into equatlion (2)
we find

% B, dv— " { 0,5, d 6
&~ o\ pa—cRlsnd. ®

We can be reasonably sure that the second term on the right
side of equation (6) is small since the definition of % (eq. [5])
is equivalent to putting

Séqufl) dy = 0,

0

and we may expect that the actual monochromatic flux Fy, is of
the same order of magnitude as the gray-body monochromatic

flux, F,(,l). We shall neglect the second term and write
dp, 7

== (@t SOFV dv, (M

that is we shall use the radiation pressure gradient of a gray-
atmosphere. The definition of effective temperature gives

nSF,,dvz og T} (8)
0

where ¢g is the radiation constant, 5-67 x 107" ergs/cm?/sec/
degree®. Hence we have

dpy — 9r

If we introduce this expression into equation (1) and change to
the variable 7, optical depth, we find that the equation for me-
chanical equilibrium including the effect of radiation pressure is

dp g o ,
B B :
dr x+o c Te- (10)
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We shall determine the structure of our atmosphere by in-
tegrating this equation. The term (og/c) T} is a constant for any
atmosphere. In atniospheres of low ecffective temperature this
term, representing the effect of radiation pressure, is negligible.
However, when T, is greater than 10 this term becomes important.
This treatment, which is possible only if a straight mean ab-
sorption coefficient is used, hecomes more accurate as the de-
partures from grayness, d,, become small, and the value of the
neglected term approaches zero. This method has the advantage
that we use the true surface gravity of the star in integrating our
atmosphere rather than an effective surface gravity which is not
necessarily constant with depth. That g¢.; is nol necessarily
constant with depth may be seen from its usual definition, (12)

1dp,

e =9+ 575

(1D

We have no a priori reason for supposing the term o~ dp,/dz to
be constant with depth, and indeed reference to equation (6)
will show in general that this term is not constant with depth
for » 4 o and % are not constant with depth. In cases where g
is very nearly the same as g, the possible variations in g.n are
of little account.

In order to integrate equation (10) and obtain the structure
of the atmosphere we must know the dependence of %z + ¢ on 7.
(We shall use the parameter 7 as the independent variable in
the integration). First we need to know the relation between 7
and T, the temperature at any level in the atmosphere, for »
depends on T. Analytical studies, (9) (11), have given relations
between v and T which are valid in a gray atmosphere and
which should be good approximations in a non-gray atmosphere.
However, on integrating a model atmosphere it is immaterial
exaclly what 7— T relation we use so long as we obtain an atmo-
sphere which is in mechanical equilibrium and which yields a
constant net flux. As a first approximation we shall use the
classical relation

T()* = T (1 —i—gr), (12)
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where 7, is the boundary temperature. If the flux fiom our
model is not constant with depth we shall modify this relation
in a second approximation.

The opacity of our atmosphere is given by hydrogen, helium
and by electron scattering. We assume hydrogen and helium to
be present in the proportion 85:15 by number. We can neglect
the small amounts of the other elements present, for these elements
do not contribute appreciably to the opacity of the atmosphere.
The mixture chosen is such that one gram of star material
contains 0.585 grams of hydrogen and 0.415 grams of helium.
If ky, (H) is the monochromatic continuous absorption coef-
ficient of hydrogen per gram of neutral hydrogen, L, (Hel) is
the monochromatic continuous absorption coefficient of neutral
helium per gram of neutral helium, and k&, (He II) is the mono-
chromatic continuous absorption coefficient of ionised helium per
gram of once-ionised helium, then the monochromatic continuous
absorption coefficient per gram of star material is

"y = 0-285 (1 —.’L'H) 1{'1, (H) -+ 0-415 (l—xHeI—xHe 11) k’ﬂ (H(ZI)

(13)
+0-415 2y, 1 ky (HeIT).

Here xp is the degree of ionisation of hydrogen, xy, ; gives the
fraction of singly ionised helium atoms, and xg,;; gives the
fraction of doubly ionised helium atoms. The absorption coef-
ficients ky (H), ky (He I), ky (He IT) depend only on the temper-
ature, or optical depth, whereas the abundance factors, 0-585
(1 —xp), etc., depend on the temperature and the electron pres-
sure. These factors may be calculated from the ionisation
equation. We have

log = —13-530+51log T—0-477 —logp,, (14)
l—xH =
irH,_;_ 5
log—=— = logA = —24-46 0 +5 log T+ 0-125—logp,, (15)
ZVH@O - )
and
L’VHE_F_;- _ 5 B _
log = logB = —54-14 0+ log T—0-477 —log p,, (16)
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where we have put § = 5040/7. Since we define

ZTpror = Nyt [Nie
and
Tyerr = Nyert+ /N

where Ny, is the total number of helium atoms and ions present,
it follows that
4 - . 1

and
AB B

THell = T A1+ B) (1LB)

(18)

The quantities 4 and B are found from equalions (15) and (16).
From equations (5) and (13) it follows that

% = 0685 (1 —ay) k (H)+ 0415 (1—xp, ; — g 1) k (HeI)

+ 0415y,  k (HeIl), (19)
where
(1)
Sl‘v (H) '
» 7
F(Hel) = glw (Hel) v, (20)
¥0

. (1}
k(Hell) = Skv (HeID) - dv.
0

The cocfficient of scattering per gram of star material is
¢ = ¢, X number of electrons per gram of star material where o,
is the scattering coefficient per electron, 8 me*/3 m2c¢t. We find
that

0-585 0-415
¢ = 0, [THH :JCH—FT(J?;I@I‘{‘??UHMI) ,

He

where my is the mass of the hydrogen atom and my, = 4 my is
the mass of the helium atom. When the numerical factors are
introduced we obtain

o = 0-397 [0’585 LCH+O‘104 ($H81+2xH611):] . (21)
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The coefficient of scaltering per gram of star malerial depends
on the electron pressure and the temperature at any level in the
atmosphere. The maximum value o canreach, (xgy = 1, x5, ; = 0,
Xpeyr = 1), is 0-315 with the mixture of H and He used.

The monochromalic absorption coefficients for hydrogen and
for ionised helium corrected for stimulated emission ,can readily
be found from Kramers law. The development of these formula
is discussed for instance by Uxsorp [(12), p. 117 f.]. We have

F(H)D(H) - .
k() = T (1=, (22)
where
4 10 ,—u, (H)
F(H) _ 6473 11.18 e
3)/3 ch®my (kT)?
and .

9
= u,(H) eum(H)

1<n

Here we have extended Unsodld’s (reatment by continuing the
summation over all continua up to that from the level n = 9,
and then have performed an integration. The abreviation
w = hy/kT is used. The quantity u, (H) is the value of u al the
series limit n,
1 Ry he
(M) =50
where Ry is the Rydberg constant for hydrogen. Values of
F(H)D(H) for hydrogen at a number of temperatures are given
in Table 1. From this information ky ({) may bé readily cal-
culated by equation (22) for any temperature and at any wave-
length desired.
Since the ionised helium atom is hydrogen-like, we may
find the continuous absorption coefficient of ionised helium cozr-
rected for stimulated emission in the same way. We have

F(HelIl) D (Hell)
3
u

k, (Hell) — (1—e™), (23)

where
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F(Hell) = — -
( ) 3V3 ch’my, (kT)°
and
n=9 ptin (He 11) ptic (He 1)
. D(H) = Z e +2111(HeII) :
1<n
The quantity u, (He II ) is
4 hc
u, (Hell) = o Ry, T

where Ry, is the Rydberg constant for helium. Values of F (He II)
D (He IT) at a number of temperatures are given in Table 2.

8204 < 4 <14,590 A*

4.65 x10°
6.20x10°
7.50 x 105
8.69 105
9.90 % 105
1.19 x 108
1.36 < 10%
1.61 x 108
1.64 % 108
1.69 %< 108
1.73 x 108
1.76 x 108
1.81 x 108

2.99 x10°
4.12x 108
5.14 x 10
6.08 x 10°
7.07 x 108
8.74 x 10°
1.04 x 108
1.27 % 108
1.33 x 108
1.37 x 108
1.43 x10%
1.46 x 108
1.54 108

Table 1.
F(H)-D(H) per gram of neutral hydrogen.
T 0 <A <911.6A* ‘911.6 </ <3646 A% 3646 <4 < 8204 A*
25,2007 1.17 x10° 1.81 x 108
28,000 8.49 x 108 2,16
30,000 6.96 x 108 2.37
32,000 5.73 x 108 2.62
34,000 4.80 x 108 2.81
38,000 3.42 x 108 3.06
42,000 2.54 x 108 3.22
46,000 1.96 x 108 3.48
50,000 1.52 x 108 3.34
54,000 1.22 x 108 3.42
58,000 9.90 %107 3.28
62,000 8.15 %107 3.21
70,000 5.74 % 107 3.08
80,0007 3.92x 107 | 2,76 108

* vacuum wavelengths.

1.73 x 108

1.49 % 108

We neglect the Gaunt factors in calculaling k,, for reference
to a review of the question of the values of the Gaunt factors by
CHANDRASEKHAR (13) shows that the Gaunt factors are close to
unity excepl near the series limit and in the region » — oco. In
the latter region g (¥, n) — 0, bul this fact is of little importance
for the contribution of k, to k at the very highest frequencies is
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Table 2.
F(He II)-D(He II) per gram of ionised helium.

T 0 <A <228A 228 <A <9124 | 912 < <2052A | 2052 <1 <3646A
25,200° 4.74x10° 4.05 4.47 % 10-2 8.57 x 10-2
28,000 3.40 x 10° 19.2 0.312 6.93 x 10-2
30,000 2.76 x 10° 48.7 1.18 2,41 x 10-1
32,000 2.28 % 108 1.08 x 102 2.70 7.15x10-2
34,000 1.90 x 10° 2.17 %102 6.54 1.86
38,000 1.36 x10? 6.75 x 102 27.9 8.95
42,000, 9.95x 108 1.65 102 88.2 31.4
46,000 7.68 % 108 3.46 % 10 2.29 % 102 88.8
50,000 6.93 x 108 7.64 x 103 6.22 x 102 2,60 x 102
54,000 4.73 x 108 1.01 x 104 9.50 x 102 4.18 102
58,000 3.05 x108 1.21 x 104 1.31 x 108 6.09 x 102
62,000 3.14 x 108 2.13 x 10¢ 2.62 x 108 1.283¢103
70,000 2.18x 108 3.67 x 104 5.59 x 102 2.95 x10%
80,000° 1.45 %108 1.03 x 105 5.43 x 104 6.40 % 102

T 3646 <1 <5698A | 5698 </ <8204 A (8204 <A < 11,170A/11,170 < 4 < 14,590 A
25,200 4.02x10-3 2,70 % 10-3 2.14 x 10-3 1.85 x10-2
28,000 3.51 x 10-2 2.45 x 10-2 1.98 x 10-2 1.74 x 10-%
30,000 1.27 x 10-* 9.11 x 10-2 7.49x10-2 6.61 % 10-2
32,000 3.93 x 10-1 2.87 x 10-1 2,39 x 10~ 2,13 x10-1
34,000 1.05 7.84 % 10-1 6.59 x 10-1 5.90 5 10-t
38,000 5.39 4.13 3.54 3.21
42,000 19.8 15.6 13.5 12.4
46,000 |  58.3 46.8 41.1 37.8
50,000 1.77 3102 1.45x102 1.29 %102 1.19 %102
54,000 2.93x102 2.42x 102 2.19 102 2.03 x 102
58,000 4.34 x 102 3.67 x 102 3.33x 102 3.10x 102
62,000 9.36 % 102 7.96 x 102 7.25 > 102 6.79 x 102
70,000 2.24 %103 1.96 x 103 1.80 x 102 1.70 x 10®
80,000°) 5.00 x 108 4.41 % 100 4.09 x 102 3.87x 103

negligible, because here the weight function approaches zero.
The most serious effect of our neglect of the Gaunt factors is
that we have made the continuous absorption coefficient of
hydrogen too large just to the violet of the Lyman limit and of
the Balmer limit. In praclice, however, at the red side of these
limits an additional source of pseudo continuous absorption
appears owing lo the overlap of the wide-spread wings of the
higher members of the Lyman and Balmer series. This apparent
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continuous absorption is not included in the calculation of the
mean conlinuous absorption coefficient, and its effect on the
mean absorption coefficient may be allowed for by neglecling
the Gaunt factor. When it is a question of calculating the mono-
chromatic continuous absorption coefficient at any wavelength
and working with this, we should closely consider the effect of
Gaunt factor and the overlap of the wings of the lines. We neglect
both these factors in the ensuing computations, consequently the
discontinuity we calculate in the continuous absorption coef-
ficient at the Lyman and Balmer limits will be larger in our
model atmosphere than it would be in an actual stellar atmo-
sphere of the same structure. This is because we calculate k, too
large on the violet side of the limit and loo small on the red side.
The effects of these approximations on the continuous absorption
coefficient of ionised helium are not important for ionised helium
Is not a major contributor to the opacity of our stellar atmosphere.

To obtain ky (He I), the monochromatic absorption coefficient
for neuiral helium per gram of neutral helium corrected for
stimulated emission, we must sum the contributions from each
of the continua of neutral helium. Atomic absorplion coefficients
for the continua from the ground level of neutral helium, 1'S,
and from the excited states 218, 238, 2'p and 23P, have been
published. However, no value of the atomic absorption coefficient
for levels with n >3 are available. In order to evaluate the

Table 3.
The continua of the He I atom.
Level E. P. Alimit ‘ source for a,
118 0.00 v 504 A l '
238 19.73 2601 S. Huawg, Ap. J. 108, 354, 1948,
218 20.53 3112 l
23 P 20.87 3436 L. GorLprERG, Ap. J. 90, 414, 1939, for the
2Lp 21.13 3682 P-D continua and approximate formulae,
privately communicated, for the P-S
continua.
n=3 22.88 7710
n=4 23.60 14,020 hydrogen-like formulac.
n=>5 23.92V 22,030 A
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contribution to the monochromatic absorption coefficient from
the continua arising from these levels and from the free-free
transilions we assume the helium atom is hydrogen-like, and that
Kramer’s law can be used. Information about the position of the
various series limits and the sources we shall use for a,, the
atomic absorption coefficient, is given in Table 3. Mean ex-
citation potentials are given for the levels with n = 3, 4 and 5.

The eontribution to k, (HeI) from any one conlinuum is
ay X number of atoms in the appropriate level. We assume the
excilation is according to Boltzman’s law, hence

n, i,

Hn,s gr,s e“lr s/kT

where n, is the number of aloms in the ' state of ionisation
excited to the stale s which has an excitation energy x,. As
usual n, is the total number of atoms in the it stage of ionisation,
gr s is lhe statistical weight of the level s, and u, is the partition
function. We wish to find ky (He I) per gram of neutral helium,
hence n, = 1/my,, where my, is the mass of the helium atom.
At any temperature 7T, the contribution from level s lo ky (He I),
corrected for stimulated emission, is

Ly (s) e i snr qy(s) (1 — e~ M/kT), (24)

gl,s
1

my,

since the partition function for neutral helium is unity. Here
ay (s) is the atomic absorption coefficient at frequency » in the
continuum arising from level s. The atomic absorption coet-
ficient, a,, for the continua from the 115, 21S and 23S levels
can be found from tables given by Huanc (14). We shall use
a mean of the values given by Huang for the dipole moment
and the momentum interaction. The atomic absorption coef-
ficient for the continua occurring at the limits of the 2'P — nlD.
and 28P — n®D series can be read from a graph given by GorLp-
BERG (15), or computed from the formulae he gives. Dr. Gold-
berg has privately -communicated to me the following approx-
imate formulae for the atomic absorption coefficients in the
continua arising at the heads of the 2'P — n'S and 28P — n3S$
series. In the continuum at the head of the 21P— nlS series,
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2
1 me —15-71 _4-6

~ yh -36
2R me

ay v

and in the continuum at the head of the 23P — n3S series

1 e 1580 43 33
a, ~ .-‘Z‘EE 10 Vi ¥ .

Here R is the Rydberg constant in frequency units, v, is the

frequency of the series limit, and » is the {requency at which

we wish to find the atomic absorption coefficient. When the

numerical factors are introduced we have at the head of the

21 P — nl§ series
log ay = 35-48 — 3-6 log v (25)
and at the head of the 28P — n®S series
log ay = 31-06 — 3-3 log ». (26)

To find the coniributions to k, (He I) from levels with n > 3
and from the free-free transitions we must consider the helium
atom to be hydrogen-like. According to Kramers law the ab-
sorption coefficient per neutral atom at frequency » for a bound-
free transition is

64n* Z4ePm e™™ L
a,(n, ) = 3V3 onb o 2 e (27)

for a hydrogen-like atom of effective nuclear charge Z,; The
summation is carried out over all continua with limits to the
red of the frequency being considered. As in the discussion for
hydrogen and ionised helium, u, is the quantity hv,/k T, where
v, is the frequency of the series limit n. The absorption coef-
cient per neutral helium atom at frequency » due to free-free
transitions is

64 m*e®m2e7™ 1

33 ch®  w P

Ay (0, 0) = (28)
since although for free-free transitions Z,; = 1 as in hydrogen,
the ratio of the partition functions is 2?/; instead of 1/, as for
hydrogen. Upon combining equations (27) and (28) and in-
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tegrating the terms of the sum in equation (27) for values of n > 5
(cf. Unsérp [12] p. 118), we obtain for the absorption coefficient
per atom of neutral helium

a,(Hel ,n>3) =
5 92
_ b4atet?me ™ P " et n (e —1) . 2 (29)
© 3)Y3ch 1® of Z n® 2uy |
3<n '

The absorption coefficient per gram of neutral helium corrected
for stimulated emission is ‘

k,(Hel,n>3) = mi ay(HeI,n>3) (1 —e ™ETy (30)
He

The total absorption coefficient at any frequency » of neutral
helium per gram of neutral helium corrected for stimulated
emission is the sum of the contributions from the individual
conlinua with n <2 (eq. [24]), and the contribution from the
levels with nn > 3, and from the free-free transitions (eq. [30)).

We must now determine Z,; for the levels n > 38 of Hel.
For a hydrogen-like level

Z% = n*(RA)™! (31)
eff

where R is the Rydberg constant, 1-097 X 10° cm™%, and 4, is
the wavelength of the series limit n. We have given 4, in Table 3
for the levels n = 3, 4 and 5. From cquation (31) we find for
n =3, 4 and 5, Z,z = 1-032, 1-019 and 1-017 respectively. The
mean value of Z; is 1.023. Since only the levels with n = 3,
4 and 5 contribute appreciably to the continuous absorption in
the wavelength region in which we are interested, we use the
Zog which gives a mean representation of the energies of these
levels.

We have now shown how to obtain k, (H), ky(Hel) and
ky (He 1I) at any lemperature corrected for stimulated emission.
In this connection it may be remarked that, as Rupxsgsing has

shown (8), the coefficient of electron scattering should not be
D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXV, 13. 2
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multiplied by the factor (1 — ¢~ ™/%T)  With this information we can
readily find k (H), k(Hel) and k (He IT) as functions of the
temperature and hence of the optical depth, for the weight
functions are tabulated, (9) or (11), as functions of the optical
depth. :

To obtain the structure of the atmosphere we must integrate
the equation of mechanical equilibrium, equation (10), step by
step. Since from equations (12), (19), (20) and (21) we can
obtain % 4 o as a function of the election pressure and the optical
depth, it is convenient to express p, in term of p, and work
with 7 as the independent variable and p, as the dependent
variable. We have "

Py Nug(l+ag) + Ny (1 +ape 1+ 2@g.11)
Pe Ny g+ Nue (Tper+ 2 Tme 11)

or inserting numerical values

Py 0585 (1 +x) +0-104 (1 + g+ Tpre 1)
Pe o 0-585 mH+0-104 (CCH61+2$H@11)

(32)

However, for the values of T and p, of interest in the outer
part of the atmosphere p,/p, is very close to 2. Hence we ex-
plicitly assume p, = 2 p,, and find the structure of our atmo-
sphere by integrating numerically the equation

dpe_l[ g URT:]_

dr 2

ste ¢ (3%)

The presence of the term (og/c) T2 in equation (33) shows
that dp,/d7 may become quite small. Consequently dp,/dz will
become small. If such is the case, convection will set in, for K.
Schwarzschild has shown that if the existing temperature and
pressure gradients are such in an atmospherc that

(dlog T)
> —_—
4108 pg/aa
convection will occur. The existing gradient at any level in the
atmosphere may be found from

dlogT
dlog p,
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dosT by (%)_W—T (34)
dlogpg T \dv dr’
and the adjabatic gradienl from
(dlogT_) _ ABEDpfpg 1+ B2+ 5/kT)] 35)
\d1ogpglaa 4 (A+4) p,/py+ [5/2+A(5/2 + o/ kT)]

which gives the adiabatic gradient for a mixture of radiation
and an ionisable gas, one component of which is being ionised,
in thermodynamic equilibrium at temperature 7, (10). Here we

have

1
Py = g(?lT4

where a is the Stefan-Boltzman constant, 7-55 x 1071 ergs/em3/
degree®. In equation (35) y;, is the ionisation energy of the element

being ionised,
. 1-+7 v ]}
R e

A

and

I

B (5/2 4 33 /kT),

where »; is the relative abundance by number of the element
bemg ionised, x; is the degree of ionisalion of this element, and
a is the mean degrce of ionisation,

.’_1—3: E Vi ;.

A comparison of the results from equations (34) and (35) will
show at what depths convection sets in.

In the convective zone the actual temperature gradient will
be greater than the adiabalic gradient and less than the radiative
gradient, and its exact value will depend upon the Ttelative
importance of radiative transport of energy to convective transport.
We shall see that in our model the adiabatic gradient is very
much the same as the radiative gradieni, hence in the con-
vective zone we shall find the slructure of our model, that is

o
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the dependence of lemperature on pressure, by integraling
equation (35). In doing this we do not assume p, = 2 p,, but
use the exact relation

Pg/Pe = (1 + i)/Tc

The use of equalion (35) implies that the radiation field at any
level in the atmosphere is that for an enclosed volume in thermo-
dynamic equilibrium at temperature 7. Since the convective zone
is at some depth in the atmosphere, this approximation is valid.
We continue to assume the existence of a state of local thermo-
dynamic equilibrium for the calculation of the ionisalion in the
atimosphere al any level, as we have done throughout the atmo-
sphere.

3. The numerical results of the integration of a model atmo-
sphere are given in this section. We start from the boundary
conditions that Ty = 25,200° and p, = 0, and integrate equalion
(33) inwards step by slep. In the region 0 << 7z <C 0-10 we use steps
of 47 = 0-01, in the region 0.10 <7<1.0 we use Az = 0-10,
and from 1.0 <7 <30 we use A7z = 0-20. In order to find

[ g
APEZQ[—

%+ o

o
——RT:]AT
c

at any level 7 we must know p, and T at the level 7. The value
of T can be found from equation (12) and the value of p, is
found by, trial so that

1
9 (Aper~dT+Aper) = Per Py

where A p, s the increment in p, calculated at the level v — 47,
4 p., is the increment in p, calculated with the assumed p, at
level 7, and p, is the valuc of the eleclron pressure at the
level 7— A7. We take log g = 4-200 and we use the value T, =
30,000° which is consistent with the use of the temperalure law
given in equation (12) and our boundary temperature of 25,200°.
The quantities k (H), k (Hel) and k (He IT) (cf. eq. [19] and
[20]) were computed at the levels 7 = 0-0, 0-20, 0-50, 1-00, 1-40,
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2.00 and graphical interpolation was used to get the &’s at other
optical depths. We used the weight functions labulated by Cran-
DRASEKHAR (9) to form the &’s although strictly speaking this
procedure is not quite correct (cf. [11]). We felt justified in doing
this because preliminary computations showed that the quantity
4 = %j(% + o) would be close to unity, and under these cir-
cumstances the weight funclions tabulated by Chandrasekhar
arc preferable to those which allow for the cffect of electron
scattering (11), but make a rather restrictive assumption about
the dependence of the Plank function on optical depth. The
graphs of the &’s were extrapolated linearly to v = 3-0, and the
model was inlegrated to this depth step by step. The model
atmosphere found is given in Table 4. Log p, is tabulated rather
than log p,. It will be recalled that we have assumed p, = 2 p,
in this region, and that § = 5040/T.

Table 4.
A model atmosphere with T, = 25,200° log g = 4-200:
Radiative zone.
\

T 7] log p, * a T 9

log pg % o

\
0.00 | 0.200 | 2.121 | 0.802 | 0.274 | 0.60 | 0.170 | 3.301 | 3.418 | 0.275

.01 199 | 2.377 | 1.396 274 | 0.70 167 | 3.357 | 3.447 276
.02 199 | 2.489 ) 1.798 274 ) 0.80 164 ) 3,407 | 3.447 276
.03 198 | 2,563 | 2.033 274 | 0.90 162 3 3.450 | 3.526 277
.04 197 | 2619 | 2.217 274 | 1.00 159 | 3.490 | 3.417 278
.05 197 | 2,665 | 2.467 274} 1.20 154 1 3,549 | 3.167 280
.06 196 | 2.702 | 2.568 274 1 1.40 150 | 3,610 | 3.136 .282
.07 195 | 2,736 | 2.671 274 1.60 147 | 3.679 | 3.230 .284
.08 194 ) 2.765 | 2.730 274 ) 1.80 44 4 3.731 ) 3.220 287
.09 194 27091 | 2.806 | 274 | 2.00 141 4 3.777 | 3.168 .290
10 193 | 2.814 | 2.916 274 | 2.20 139 | 3.818 | 3.224 292
.20 (187 | 2.926 | 2,922 274 | 2.40 137 0 3.856 | 3.241 294
.30 182 | 3.066 | 3.253 274 | 2.60 134 | 3.892 | 3.070 297
.40 178 | 3.162 | 3.428 275 | 2.80 132 ] 3.926 | 3.041 .299
0.50 | 0.174 | 3.237 | 3.467 | 0.275 | 3.00 | 0.131 | 3.958 | 3.142 | 0.300

We must now test this model for stability against conveclion
by computing the radiative gradient (d log T/d log py)raa from
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equation (34) and comparing it with the adiabatic gradient
(dlog T/dlog p,)aqa at the same temperature and pressure cal-
culated according to equation (35). The results of these cal-
culations are given in Table 5. We see that the atmosphere be-
comes convectively unstable at about 7 = 2-00 or 0 = 0-141.
Since the difference beiween the radiative gradient and the
adiabatic gradient is not large, we do not expect any large scale
disturbances to occur as a result of the setting in of conveclion
at these levels.

Table 5.
The temperature—pressure gradients in the radialive zone.
dlogT dlogT \ dlogT dlogT
* legpg rad legpg ad T ‘ dIngg rad legpg ad
1.00 0.168 0.230 2,40 0.197 0.188
1.40 0.161 0.200 3.00 0.201 0.197
2.00 0.183 0.188

In order lo obtain the structure of the atmosphere at greater
depths, higher temperaturcs, we assume an adiabatic temper-
ature gradient and proceed by integrating equalion (35). We
assume the ionisation of hydrogen and the first ionisation helium
to be complete, and we compute x;, the second degree of ionisation

of helium, from the equation.
5}
log — P ~54-140+§logT—0-477—logpe.

We note that in this

ionisation is

approximation the mean degree of
T =100 + 0-15 a;

since the abundance by number of helium is 0-15. The resulting
model atmosphere is given in Table 6. Here the assumption
Py = 2p, is not made, and the quantity % is not defined.

The model atmosphere given in Tables 4 and 6 may be
compared with the model atmosphere with 6, = 0-20 and log
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Table 6.

A model atmosphere with 7, = 25,200°, log g = 4-200:
Convective zone.

6 Tog p,, l log p, o ] log pg‘. log p, G

0.131 \ 3.958 3.657 . 0.300 0.0947 4.558 4.286 0.315

125 | 4.058 3.780 .305 0886 | 4.658 438 | .315
119 | 4.158 3.882 .309 0830 | 4.758 4.486 | 315
A13 | 4.258 3.984 312 0779 | 4.858 4,586 315
107 | 4.358 4.085 5313 0730 | 4.958 | 4.686 315
0.101 | 4.458 | 4.186 0.314 .0685 . 5.058 4.788 315

‘| 0.0842 | 5.158 4986 | 0.315

get = 4-20 computed by Rupxigsing (8). Rudkjebing computes
the structure of his model using an effective acceleration of
gravity, and goes on to estimate that the true acceleration of
gravity of his model is 10*2%, In computing our model we have
assumed that the actual acceleration of gravily is 1042, however,
a rough comparison of our models may be made. In the outer-
most regions of both atmospheres the run of gas pressure with
temperature is about the same, but the gas pressure begins to
increase more rapidly with increasing temperature in Rudkje-
bing’s model than in ours and at moderate depths, 6 ~ 017,
the gas pressure in Rudkjebing’s model is about 16 percent
larger (han in the present model. Rudkjebing finds that con-
vection starts at about the same level, § ~ 0:141, as in the present
mode] atmosphere.

In assessing the behaviour of our model atmosphere it is of
interest to find the run with  depth of log g., obtained from
equations (9) and (11), the quantity 4 = %/(% 4+ ¢), the ralio
Py/Pe computed according to equation (32), and the ratio p,/p,.
We obtain the radiation pressure at any depth v by integrating
the equation, (cf. eq. [9]),

dpr o ORr T4_

dr ¢ ¢

under the boundary condition that p, is zero at v =0. An
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Table 7.

Values of certain quantities in the model atmosphere:
Radiative zone.

T 108 ¢, A pg/pe p,ip, % (H) x(Hel) | %(Hell)
.00 4.152 0.745 1.998 0.000 0.433 0.386 ‘ 0.001
0.05 4.068 900 2.000 .166 1.377 1.087 .003
0.10 4.041 914 2.000 235 1.690 1.222 .004
0.40 4.009 926 1.997 422 2,183 1.228 017
0.80 4.009 .926 1.991 480 2.302 1.088 - 057
1.20 4,025 919 1.979 519 2.144 0.893 .130
1.60 4.017 .919 1.964 .513 2.151 0.808 271
2.00 4.025 916 1,945 512 2.156 0.625 387
3.00 4,025 ‘ 0.913 1.913 0.506 2.287 0.373 0.482

abridged table of these quantities is given in Table 7. Also given
in Table 7 are % (H), = (Hel), % (He II) the contributions of
hydrogen, neutral helium, and ionised helium respectively to the
mean absorplion coefficient, »x.

In the convective zone the ratios p,/p, and p,/p, can be
found directly from their definitions. The value of the effective
acceleralion of gravity is found from the following considerations.
We postulate that the model atmosphere must slill be in mechanical
equilibrium 'in the convective zone. Consequently we require

dpy ~dp,
(TZ+ 4 = 9e (36)

in addition to the condition that dlog 7/dlog p, is adiabatic,
equation (35). Since in the convective zone we assume that the
radiation field is that for an enclosed volume in thermodynamic
equilibrium at temperature 7 we have

dp. 4 _.dT
dz_gaTg'

However
dT _ T(dlogT) dp,

dz p,\dlogpyua dz°
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hence we find
dp, 4 aT*/dlogT\ d
l’,, - __g__ _@. (37)
dz 3 py \dlogp,/.q dz
Remembering that
pr = %aT‘%
and introducing equation (37) into equation (36), we obtain.
d »fdlog T
'&[1+4£ i) }:—gg. ; (38)
dz Pg\d108 py/aa
It follows that
4 p, dlogT> }'1
Jer = g |1+ S Ey— . (39)
Gelt g{ Py <d10gpg ad .

The values for log g.; given in Table 8 were found from
equation (39). '

From Tables 7 and 8 we see that the effective acceleration
of gravity varies with depth in the atmosphere and that the
radiation pressure is an appreciable fraction of the gas pressure
except in the outermost layers of the stellar atmosphere. Conse-
quently radiation pressure and its effects can not be neglected
in an atmosphere such as this. In most of the radiative zone the

Table 8.

Values of certain quantities in the model atmosphere:
Convective zone.

6 logg,, p,/p, p.fp, 6 log ¢, p,p, p,ip,
0.131 4.025 1,91 0.506 | 0.0947 | 3.989 1.87 0.552
125 | 4.024 1.90 .580 0886 | 3.982 1.87 .580
119 | 4.016 1.89 .558 .0830 | 3.978 1.87 505
113 | 4.000 1.88 .542 0779 | 3.973 1.87 601
107 | 4.002 1.88 .542 0730 | 3.968 1.87 .630
0.101 3.990 1.87 0.548 .0685 | 3.964 1.87 648
0.0642 | 3.959 1.87 0.665
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ratio p,/p, is close to the assumed valué of 2-0, but near the
beginning of the convective zone this ratio decreases. This is
because at the temperatures and pressures of these layers the
second ionisation of helium is becoming important. In the
radiative zone the quantity 1 is sufficiently close to unity to
justify the use of CHANDRASEKHAR's weight functions for forming
%, cf. (11). We see that at all depths hydrogen is the main con-
tributor to the opacity. Neuiral helium is an important contributor
in the outer regions but at greater depths the second ionisation
of helium sets in and then neutral helium decreases in importance
as a source of opacity while ionised helium increases in im-
portance. - In the convective zone we have assumed that the
ionisation of hydrogen and the first ionisation of helium are
complete. At the level 7 = 3-0 we have 1 — xy = 277 x 107°
and Ny +/Npgeo = 5:36 x 104 hence these assumptlions are
justified.

4, We have constructed a model atmosphere in mechanical
equilibrium and we must now compute the net flux at various
levels and see if this flux is constant with depth. If this is so
we may say that our model atmosphere represents a real stellar
atmosphere. The following method of computing the net flux at
any level in the almosphere has been developed by STROMGREN
(16). The monochromalic equation of transfer for a stellar atmo-
sphere in which the opacily is given by continuous absorption
and by electron scaltering is

di,

cosﬁﬁ =1,—8, (40)
v

where ¢, is the monochromatic optical depth

t, = — S(%,, —f—vcr)gdz, (41)
and S, is the source function,

S, = 4, By + (1—4) J,, (42)

where

Ay = #,[(%, + 0)
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1 @l

and J, = = 511, sin ¢ dd .
2 0

We have

oo

\s, () &, (t,— 1) at,

v

1 ,
585 t )Al(t £y dt,

DD |

g, (1) =

(43)

where K, is the first exponential integral. If we introduce equation

(42) into equation (43) and also define the quantity
Y, = J, — B,

we obtain the following functional equation for Y, (4,),

i 1 ¢%
Y, (t) = =B, (t)+5 \ B, (K (16, — ] d
*0
1 ' ,
Ty So[l — & ()] Y, () K (|6, — 4, ]) dt,.

We now define

IT( tw) =

DO -

\ B, ({)K,
Y0

and find Y, () by an iterative process which gives
Y, () = Y3 (&) + ALYy + A2V, - -+ -
where

Y'B (tu) = B'p (tv> - Bv (ip) ]

aty, = 1m,1 (t, ) y (YK (| &, —t, ] dt,,

0

B | -

a5, = 3 {L=A@)) 27, (5 Ko (6~ 1, D,

"0

1\31»—

and in general

1

ary, = {1 @] 4" Y, K (1t Dt
*0

(44)

(46)

(47)

(48)
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If the A™Y), very nearly form a series of constant ralio (1—4),
we can wrile

Yo () = Yi(h) + 427, + 45 A2Y, (49)

as an approximation. This approximation is quite good when
2y is not very small. When 4, is small it is betier to cxlend the
series to at least A®Y, or 4*Y, before attempting a summation
of the remaining corrcction terms. It follows from equations (44)
and (42) that the source function at any level ¢, is

Sy(y) = By () + [1— ()] [Y3 () + A2 Yo+ 2, 42 Y,], (50)

and that the net flux at this level £, is given by

] - .[y
Fy(t) = 2{S,(6) Ky (=t dty, =2 {5, (5) Ky (4, ) d, (51)
£, 0

where K, is the sccond exponential integral. The integrations
over the exponeniial integrals occurring in equations (46), (47),
(48), and (51) may be performed by a method of represcntalive
points and weights developed by STrROMGREN (17).
We see that to obtain the source function al any depth we
must know the dependence of the Planck function By on .
#y o

Since dt, = — . dt (52)
¢

we may find ¢ as a function of 7, and thus of temperature, by
integrating equation (52) numerically. With this information we
can construct lables giving B, (fy). In the conveclive zone,
however, the optical depth, 7, is nol defined and the following
device must be used to obtain #, as a function of temperature.
By definilion

dt,

dz —(yt0)0

hence from equation (38) we obtain

dt, xq,+a{1‘ 4p,(dlogT> ]
d])g B q Pg dlogpg ad
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%,,—l—a{ 4p,.<dlogT)
1+ S E———
g Py dlogpg ad

Lng (log p,). (53)

Equation (53) may be integrated numerically to give #, as a
function of log py and hence of lemperature, since in the con-
vective zone we use log p; as the independent variable. Using
equalions (52) and (53) we obtained B, (f,) at a number of
wavelengths and then computed tables of S, (#) according to
equation (50). From these tables of the monochromatic source
function the net monochromatic flux at any level is readily
obtained by evalualing equation (51) by means of STROMGREN’S
tables of representative points and weights (17). I was greatly
privileged to use these tables before publication. Without these
tables it would have been impossible to have done (his work.
We wish to ascertain if the integrated flux

is conslant with depth. In order to perform this integration over
frequency we divide the continuous spectrum into four regions,
A 504, the 118 limit of He I, to A912; 2912 to 4 1458;: 11458 to
A 3646; 1 3646 to 4 8204, the Paschen limil of H. The integrated
flux in each of these intervals is obtained by finding F, at five
points equidistant in frequency and summing with the appro-
priate weights using Cotes’ formula. The selected wavelengths
and the monochromatic fluxes at the depths v = 0.0, 0.10, 0.60,
and 1.00 are given in Table 9. The last line of the table gives
the integrated net flux, I (7), at each level. The emergent flux
in the region A 228, the Lyman limit of He I, to 4 504 was cal-
culated for the level 7 = 0, but it was found to be negligible,
hence the computations for this region were not carried through
to obtain F, al other optical depths. Likewise we neglect the flux
to the red of the Paschen limil. This flux coniributes a very small
part to the total flux, and ils neglect will not affect our deter-
mination of the effective temperature or of the constancy of F
with depth.

The mean flux is 7 = 33-29 x 102 ergs/cm?/sec which cor-
responds to an effective temperature of 36,800°. The devialions
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Table 9.
The monochromatic flux, F,, in the model atmosphere.
A T = 0.0 S == 0410 7 = 0.60 T = 1.00
504.3r 8.05 x 104 9.00 x 107 1.40 1072 1.69x 1078
567.8 8.42 ' 9.28 1.36 1.72
$49.4 8.79 9.64 1,31 1.75
758.7 10.96 11.51 1.31 1.61
911.6 v | 15.41x10™ 13.17 % 107+ 1.20 % 1078 1.42 % 1073
911.6r 18.87 < 1073 18.48 x 1072 18.48 x 1073 19.30 x 103
1006 18.18 18.11 18.69 19.01
1122 16.02 16,19 16.69 17.27
1268 14.06 14.01 ’ 14.06 14.41
1458 11.69 x 1073 11.68 x 1073 11.79 % 1073 11,77 x 1073
1458 11.69 % 1073 11.68 % 1078 11.79 % 1073 11.77 % 10-8
1716 9.5_5 9.50 9.33 9.62
2083 7.82 7.81 7.67 7.36
2652 5.47 5.37 5.07 4.68
3646 v 3.41 % 10t 3.32x 108 2.82x 103 2.36 x 103
3646 r 4.02 x10-3 4.02x 103 3.73 x 1078 3.48 x 1073
4234 3.01 x10-8 2.97 x 10-3 2.70 X 103 2.44 x 1072
5048 2.20 x10-3 2.30 % 10-2 1.87 x 10-3 1.58 x 1073
4251 1,48 % 107 1.48 x 10° 1.11 % 107 8.53 % 107
8204 v 8.84 % 1074 8.24 %10 5.22 x 104 3.26 % 107
F 32.72 % 1012 32.67 x 1012 33.27 x 1012 34.49 x 1012

The units of I7, are ergs/cm*/sec.

from the mean are —1-7, —1-9, 0-0 and -~ 36 percenl re-
spectively at the levels 7 = 0-00, 0-10, 0.60 and 1-00. Thus the
constancy of the net flux with increasing depth is highly satis-
factory in our model. This result vindicates the use of the slraight
mean absorption coefficient recommended by Chandraseckhar
and the trealment of the effects of radiation pressure which we
have employed here. The criticism by UnséLp (18) of the Chan-
drasekhar-mean seems hardly to be justified. It is true as Unsold
points out that in the deeper layers where S, ~ B, the Rosseland-
mean and the Chandrasekhar-mean are equivalent and the
Rosseland-mean may be preferred because of the ease of forming
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Table 10.
Some values of (Sy — By)/B,.
T Ab04 v A759 21122 21716 23646 v 44234 28204 v
\
0.00 0.000 — 0.004 4,98 + 0.362 | — 0.159 | —0.175 | — 0.155
0.50 .000 001 | 112 + 0.036 .031 .060 .012
1.00 000 .000 0.568 | —0.026 014 .037 .004
1.60 000 .000 0.289 — 0.032 .005 021 .001
2.20 .000 .000 0.200 — 0.024 .002 .008 .000
3.00 J 0.000 — 0.000 0.155 — 0.018 | —0.000 | — 0.002 | — 0.000

it. However, in the upper layers of the atmosphere S, = B, and
then the use of the Rosseland-mean is subject to criticism.
Equation [50] enable us to compute S, — By at any layer in the
almosphere. A few values of (S, — By)/B, are given in Table 10
for interest. We see that over much of the spectrum S, deviates
appreciably from B, at depths = < 0-50. In the transparenl
region, 912 << 1 << 1500 A, however, the deviation of S, from B,
extends to greal depths. Since most of the emergent radialion
passes in this region it seems advisable in computing the structure
of the model to use a mean absorption coefficient which allows
for the difference of S, from B,. In order to use a Chandrasekhar-
type mean the weight functions F,/F must be evaluated in some"
manner. This procedure involves certain assumptions about the
process of radiation transfer in the stellar atmosphere. Cman-
DRASEKHAR (9) evaluates F(”/F in a certain systematic way;
Uns6Lp (18) evaluates these weights in another way. Which way
is best, and whether either is better than using the Rosseland-
mean can only be proven by model atmosphere computations
such as carried through here. The present results support the
use of Chandrasekhar’s weight functions.

That the flux from the model atmosphere increases slightly
with depth is not very significant. This behaviour may be the
result of using an adiabatic temperature gradient, which is the
minimum gradient expected, in the convective zone. Thereby the
flux in the wavelength region 912 << 1 << 15600 A, which comes
effectively from the convective zone, arises from greater depths
than it would if the temperature gradient were larger, for a
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decrease of the temperature gradient decreases lhe mono-
chromatic opacity of the atmosphere. The small percentage
reduction of the net flux in the region 912 << 4 << 1500 A neces-
sary to make the net flux perfectly constant could easily be
obtained by increasing the temperalure gradient in the con-
vective zone slightly. Such an increase would be accordant with
present concepts of the structure of the convective zone in stellar
atmospheres.
Referring to equalion (6) we find that

X
s .\Uav F,d, (54)
where
(Sy == (Hy/%) —_— 1 .

We have neglected the last term on the right side of equation
(54) when integrating our model. Furthermore we have put
T, = 30,000°, the value corresponding to the boundary tem-
perature T, = 25,200°, according to the classical T - 7 relation,
equation (12). We have available the information to evaluate
the term

7

x (7
E;&—I—O‘ wadev

at several values of 7, and we find that it does not vary much
with depth and that its mean value is — 2-37 x 103, Using this
value and T, = 36,800° we find thal the mean value of dp,/dz
is 1-18 x 10% The value used in our computations was 1-53 x 102,
Fortunately these lwo quantities are not greatly different. Since

1 dp, _ dp,
gr = —E dz (7+0) dz

we may readily compute the acceleralion due to radiation pres-
sure.. At the levels = = 0-00, 0-10, 0-60 and 1-00 it is 1-57 X 104,
3-38 x 103, 3.99 x 103 and 4.10 x 10% ecm/sec? respectively. For his
model with log gy = 4.20 and T, = 25,200°, Rudkjebing
estimates thal g, = 2.35 x 10% cm/sec?® His value is less than ours
and that is why his model differs from the present model. How-
ever, Rudkjebing’s estimale is somewhat uncertain for he neglects
some terms. Rudkjebing estimates g, from the alternate expression.
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7 .CYJ
g =" S(%,,—I—G)F,,dv.
0
He evaluates the integral! by pulting
TC - —
gr + E(lel”*'kze):

where k; and k, are harmonic mean absorption coefficients
formed in the manner of the Rosseland-mean, F, is the integrated
flux in the region vy < v <o, and F, is the integrated flux in
the region 0 << » < »,. Here »; is the frequency of the Lyman
limit of hydrogen. His approximation means that he is wriling

a0 = Iy [1—{—61(1/)], Vo << ¥ <L 00,
wy + 0 = ky {1—',—52(1))], 0 <y <.

and that he is neglecting the terms

T % X 7T Y0
83 Sal 0) Fydv+ " ky \52 () F,d,. (55)
Y

L)

It is not clear that these lerms may be neglected, for the definition
of a Rosseland-type mean absorption coefficient sets no con-
dition on the vanishing of such integrals in the gray-body or
any olher approximation. In our case where we have used a
Chandrasekhar-type mean absorption coefficient, which implies

\o, 7" d, — 0

v

(F,El) is the monochromatic flux in the gray-body approximation),
we have found that

i Sa,, F, dv

c J
is fairly large.

Rudkjebing does not give enough dala in his paper for us
to evaluate (55) directly. However, if we use the flux compuled
for our model and the values of k;, and k, given by Rudkjebing
we find that at the level where 6 = 0-170, log py; = 330, i.e.

1 Note that Rudkjebing’s F is our = F.
D. Kgl, Danske Vidensk. Selskab, Mat.-fys, Medd, XXV, 13, 3
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T = 0:-60 in the present modecl, the neglected term is 3-13 x 102
cm/sec®. Consequentlly the g, estimated by Rudkjebing should be
increased to 2-66 x 10% This means that log g for his model is
4-27. Considering the real difference in the parameter log g be-
tween Rudkjeobing’s and the present model, there seems to be
no serious difference between our model atmospheres. In order

16} ergs fom* Fsec
9%~
1%
7 =~
% Flux from
Armosphere
S
%=
2=
2
=
16 -
Ik
x
daf
7 ~
-
6 I
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Fig. 1. The emergent flux from the atmosphere as a function of A-1.

to compute model atmospheres at still higher temperalures and
lower surface gravities it would seem preferable to proceed by
a method, such as that followed here, which takes account of
the effects of radiation pressure directly, rather than the method
used by Rudkjebing, for in these atmospheres the effects of
radiation pressure will be important.

The emergent flux is plotted in figure 1 together with B, for
T = 36,800°. We sce that in the transparent region of the
spectrum, 912 << 42 <1500 A, the emergent flux is greatly in
excess of the black-body flux, while in the region beyond the
Lyman limit the emergent flux is considerably less than that of
2 black-body at the effective temperatlure of the star. In the
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visual and pholographic regions the emergent flux is less than
the black-body radiation, but roughly parallels it in intensity
distribution. The gradients at any wavelengths in this region are
of little meaning, for gradient is not a sensitive indicator of
temperature at these high temperatures. The Greenwich gradient,
A 4100—4 6500, of our model corresponds to T > 150,000°. The
intensity discontinuities at the Lyman limit, the Balmer limit,
and at A 504 for 7 = 0-00, 0-10, 0-60 and 1-00, are given in
Table 11. These discontinuities increase a little with depth.

Table 11.
Discontinuities in the continuous spectrum.
Lyman Limit Balmer Limit 4504 Limit
T
F F F
log }% Amag log }% Amag log F—: Amag
\ m m m
0.00 1.088 2.72 0.072 0.18 0.270 0.68
0.10 1.147 2.87 0.083 0.21 0.704 1.76
0.60 1.187 2.97 0.122 0.30
1.00 1.135 2.84 0.168 0.42

We did not calculate the discontinuities at the 21S, 23§, 2'P
and 23P limits of He I. However, this does not mean that small
discontinuilies are absent here.

According to the work of Bareizr and CHALONGE (19), the
size of the Balmer discontinuity corresponds to spectral type B1.
However, as we have indicated in our discussion of the continuous
absorption coefficient #,, we feel our predicted discontinuities
are too large, and it is probable that the model is of carlier
spectral type than B1. Since the Gaunt factor (13) is 0-88 at
4 3646 v, we have made 2, (H) 12 percent loo large at this wave-
length. When 2, (H) is reduced by this amounl and the emergent
flux on the violet side of the Balmer limit is recalculated, we
find that Fyge, (0) is 3-49 X 1073, Consequently we obtain log
F./F; = 0-061. This corrected value corresponds more nearly to
spectral type B0 than the value given in Table 11. If we could
estimate the extra pseudo continuous absorption at 1 36461 due
to overlap of the broad wings of the higher members of the
Balmer series, we could compute a more correct value of Faguq, (0).

3
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In any casc it is evident that our computed value is a maximum
value. In comparing our predictions with observation we should
also note that the observed quantity D, (cf. BARBIER and CHALONGE
[19]), which corresponds to our log F,/F, at the Balmer limit,
cannot be so clearly defined as the theoretical quantity. Because
of the inherent difficulties in the observation of the quantity D,
we should expect the observed value of D to be less than the
predicted log F/F,. It seems probable that our model corresponds
to about spectral type BO.

The observed number of hydrogen lines is an indication of
absolute magnitude (20). Since we can compute the electron
density at any level in our atmosphere from the election pressure
and the temperature, we may readily find n,,, the number of
hydrogen lines visible, by the TELLER-INGLIS formula (21). The
quantity n,, does not vary rapidly with electron density. If we
eslimate that the higher members of the Balmer series are formed
between the levels v = 0-50 and 7 = 1-00 we find that the Balmer
series will break off at n,, about 15. Reference to the determination
of n, in a number of early type stars by Mrczaika (22) and to the
spectral types by MorcaN, KEenaN and KeLLman (23) for these
stars, shows that for spectral types between 09 and B2, n,, = 15
corresponds about to luminosity class V. There is little doubt
thal our model atmosphere represents a main-sequence star.

5. From the continuous spectrum and the electron density
of our model atmosphere we have estimated that Lhe model
corresponds to about spectral type BO V. However, it is desirable
to confirm this estimate by computing the line spectrum and
comparing it to observation. A comparison of the relative strengths
of lines arising from atoms in two slages of ionisation will
determine the spectral type of the model atmosphere, and a
comparison of the absolute slrengths of the lines will enable us
to derive the abundances of the elements forming the lines. The
most prominent lines in the O and B type stars are those from
H, Hel and Hell. These lines are generally used in classifying
the spectra of the earliest type stars (4, 23). However, these
lines are sirongly affected by Stark effect and the adequale re-
presentation of their line-absorption coefficients in a stellar
atmosphere is a complex problem. Since it would take a separale
lengthy invesligation to obtain a detailed form for the line-
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absorption coefficient of the lines of H, He I and He IT selected
by PerriE as the most sensitive indicators of speclral type in
the O stars, these lines will not be studied here, bul we will
attempt to confirm the spectral type of our model by comparing
the relative strengths of the combined doublet 14267-19 of C I
and of 44187-05 of C III, and of the pair of lines A 4819-74 of
SiIII and 14088-86 of SiIV. These lines have been selected either
because they result from transitions between hydrogen-like levels
and hence their f-values may be estimated (cf. below), or be-
cause an evaluation of the dipole momentl matrix element neces-
sary lo compute the fvalue is available. ‘
The method of compuling line profiles is straightforward,
for the method of obtaining the emergent flux, oullined in the
previous seclion, may be used. Since the lines to be studied arise
from levels of high excitation, we shall consider the lines to be
formed in absorption. Then the line-absorplion coefficient per
gram of star material is corrected for stimulated emission and
treated as an addilion to s,. If F, is the emergent flux in the
continuous spectrum al wavelengths bordering the line, and if
F, is the emergent flux al any frequency » in the line, the residual
intensity in lhe line is

Rv = Fv/Fc

and the absorplion in the line is

A, =1—R, = ) (57)

The line absorption coefficient per gram of star material
corrected for stimulated emission is

Vae® [N

Y = me EH(a, ) (1 — e~ M¥/ETy, - (38)

where N* is the number of atoms of the appropriate type per
gram of star material excited to the lower level of the line, and

y kT
AVD = {‘—0 1/2,]{.
[ m 4
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Here my, is the mass of the atom, k is Boltzman’s constant, and
vy is the frequency of the cenlre of the line. The function H(a,v)
gives the shape of the line absorption coefficient broadened by
collisional and radiation damping for atoms in thermal motion.
This function has been tabulated by Hierting (24) for a number
of values of a and v. Also recently a series expansion for H(a,v)
valid for small values of a has been given by Harmis (25).

We have
a e
H(a,l)) = E S(U_y)é_i_a‘z dy
0
where
o 'V‘—’VU
v= Avpy
and ‘
_ yd
a4 = 47EAVI)'

The quantity y is the damping constant for the line. For radiation
damping
Y = Vm T ¥n (59a)

where y,, is the width of the upper level and y, is the width
of the lower level. It may be shown (cf. for instance, UNsGLD
(12), p. 172) that

z 7 — 2 ' 2Jp+1 e ~ _
Ym = , Anm (1— e—lw,l.T) ! + Amn’#1 +1 (ehv‘ld —1) 1’ (59b)
2Jd, 11

n<m n'>m

where 4p,, is the Einstein probability coefficient for spontaneous
emission between two levels m and n which have total angular
momentum quantum numbers J,, and J, respectively.

The fvalue occurring in equation (58) is the absorption
f-value for the line in question. Its value for a line in a multiplet
requires some consideration. According to Connon and SHORTLEY
(26) the absorption f-valve is given by

o vy 8a®my S(af, e’ ) o
f(a]’“ 7 ) = 3 2h 2JI+1 » (60)
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where « is the chief quantum number of the upper level, « is
the chief quantum number of the lower level, and j and j  are
the total angular momentum quantum numbers of these levels
respectively. The quanlity S («j, «'j) is the theoretical strength
of the line, a quantity which is symmetric in the upper and
lower levels. For a line designated by

2 ;
a’_.S+1L’J'_a2S Jr].‘LJ

of a multiplet which obeys L-S coupling, explicit forms may be
found for the theoretical strength (cf. Conpon and SHORTLEY
[26] p. 238). Using these expressions we can write

8atmy

flad.al) =3 pp

| (L] Pl [P CL,s,0,0),  (61)

where ¥ takes the following values depending in the type of
{ransition. '

type. c.’f AL =1 AL = 0
transition .
QW Q(J+1) P(J+1)Q(J)
J>T+1 RN S A o ey
4T+ (2T+3) 4(J+1) (2T +3)
P QW) R
J—=>J B aE LA
4J(J+1) 4J(J+1)
T g1 P(J) P(7-1) ‘ P(1)Q(J-1)
47 (2J-1) 47 (2J—1)

The table gives ¥ (L,S,J,J):

Here

P =({—8+L)(J+S+L+1)
QW) =(S+L—T)J+S—L+1)
R(UJ)=JWT+1)—S(S+1)+L(L+1),

and L is the largest of the two L-values occuwrring while J is
the J-value belonging to that term. To obtain Lhe f~value we need
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now to evaluate l(aL]Pla'L’)]z. For a cenlral field it may
be shown (cf. Conpox and SmorrTLEY [26], p. 132) that

e oL -1\2 .
[@L| Pl L—1) " = =5 (R, (62)
where (sz_l)z is the square of the dipole matrix element of

the radial part of the wave funclion. For ceniral fields only
transitions with AL = 4 1 are allowed. By combining equations
(61) and (62) we find

Satmy (Rm’Lq)Z Y(L,S,J,J)

f(eLd, o L—11) = === (Ry] e (63

It may be noted that

= ()

Consequently we may find the fvalue for all transitions for
e
which we know (Rz If“ 1) . If the energy levels concerned are

hydrogen-like we can put

(RZILL—1>2:[ ch 1(H)]/ (64)

where [ Z LL 1(H)] is the square of the radial matrix element
for hydrogen, tabulated for instance by Berae (27), and Z is
the effective charge on the nucleus. Combining equations (61),
(62) and (64) we find that the f~value for a line occurring be-
tween two hydrogen-like levels is

STEZIII’V{ R,1 (H)] Y(L,S,J,J)

flald, d L—107) = — 75 i1

(65)

Here L is the largest L-value occurring.
In a recent paper (28) Bares and Damcaarp consider the
calculation of the absolute strengths of spectral lines and show

that the quantily (RZ L= 1) /(4 L* — 1), which they call 02, may

be evaluated approximately by neglecting the departure of the
potential of an atom or an ion from its asymptotic Coulomb form.
They show that this approximation is remarkably good for the
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lighter elements, up to Mg, and for simple systems which are
composed of one electron outside a closed shell, and that it
yields useful information for complex systems which have
unclosed shells. For many spectral lines of astrophysical interest

. . "L-1\2. .
this evaluation by Bares and Damcsarp of (RZLL 1) is superior

to a hydrogenlike approximation.

It is of interest to find the sum of the f-values of all com-
ponents of a multiplet arising from a given sub-level, charac-
terised by J', of the lower term. To find this we evaluate

8 7% mo 1 N/ '
§ flad.a'dy = 22220 2J’+12 S(ad, &)
J

keeping J' fixed. Reference to Coxpon and SHORTLEY (26) p. 238
enables us to evaluate the sum on the right side for the various
types of multiplet that occur. In the case AL = —1

Zf(aLJ,a'L—lJ') 8nmv|(aLlP]aL~1)|L(9L—l~1) (66)
.d

In the case AL = 0

8 a2 mv

D @Ld &Ly = SE @ L| PlL)PLL+1), (67)
J

and in the case AL = + 1

zﬁf(aL——lJ, CLI) = 37 (G
J

L(2L—1). (68)

Since the lines we shall study belong to the case AL = —1 (see
Table 12), we shall continue the discussion using only equation
(66). Using equation (62) we find that.

§ f(aLd, o L—1J") = 8” il 2LL (R‘;'LL“Y. (69)

When we compare this expression with the well-known formula
for the oscillator strength in a one electron system (cf. for instance
BeTHE [27] p. 435),
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vy Imax(L,I)( » 2y
fal—d'l “3‘75?1?T”(Y§})(Ra1) : (70)

where [’ is the angular momentum quantum number of the lower
state and (»/Ry) is the frequency of the line in units of the Ryd-
berg frequency, and when we put I’ = L — 1, [ = L in equation
(70), we find that

Zf(aLJ,d'L—lJ') = f;xL—a'L-—l' (71)
J

Throughout this paragraph we are implicitly assuming that the
frequency of all components of the multiplet arising from the
sub-level J' is the same. If this is true then it is apparent that
the f-value of any component may be found from the relation

fleld, ' L—1J)

flald, @ L=17) = D f(eld, & L—1J) far-az-s
T

(72)
_ W(L,S.J,J7

14(2[4_{_ 1) fCCL-Cc"L—l‘

In his paper on 7Sco, UnsdrLp (29) effectively uses equation
(72) to estimate the fvalues of lines in multiplets. However,
what he calls ““f” is
2J +1

f(aLJ, lx'L'J') m

for he combines with the f-value the factor (2J + 1)/(2 S+ 1)-
¢ ‘L' + 1) by which you must multiply

N, = g_”_se-/‘!r,s/kT (73)

uy

to get N¥, the number of atoms excited to the sub-level from
which the line arises. Here, as usual, g, , = (2S+1)(2L+ 1),
and y, , is the excitation energy of the lower level of the line.
Since there is no real advantage to working with the pseudo
f-values introduced by Unséld, and since this procedure may
even lead to error if one should take these “fvalues’’ and
convert them into Einstein spontaneous emission probabilities
by the relation '
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8%’ (2J +1)

4], e]) = meéd (2J+1)

[lad, &J),

in order to compute the radiation damping constant of a line
according to equations (59a) and (59b), it is preferable to
compute the true f~values for the lines of L-S coupling multiplets
by equations (63), (65), or (72).

In order to determine the radiation damping constant for the
lines studied we shall compute the Einstein spontaneous tran-
sition probabilities by the relation

47t 93

Iz 6 v
AW ) = et (R

s W(L,S,J,JY(2J +1) (74)
(412—1) (2J4+1)"

We shall neglect collision damping. Of the lines chosen, only
Si IV 24089 is sufficiently strong that the exact value of the
damping constant is of consequence. For this line RUDKI@BING (8)
has shown that.collision damping is not important.

The lines studied are given in Table 12 together with the
relevant spectroscopic information. The necessary malrix elements,
R?, for obtaining the f-values and damping constants of the C II,
C III and SiIIl lines were obtained by assuming these spectra
to be hydrogen-like. The matrix-elcments for Si IV were found
by the method of Bares and Dimcasrp (28). It is to be noted
that according to equations (59) the radiation damping constant
depends upon the temperature. For the CII, CIII and SilIIl
lines y at 32,000° was used throughout the atmosphere, but for

Table 12.
Lines studied.
Spectrum Designation j—i y) | yat 32,000°
CII .......... 3d:D—4]2F°| 3/, :
- 4267.19 | 1.11 | 1.69x 10
: 3le—"1s
CIII.......... 41F° 516 3—4 4187.05 | 1.44 | 2.22x109
Sifir......... 4f¥F°—3¢g3 —
! f 20°G g i } 481974 | 1.25 | 3.97 x109
SiIV ... . ..., 4285 42p° LY 4088.86 | 0.751| 4.02x10°
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the S7 IV line y was calculated at each depth in the atmosphere.
In evaluating the damping constant account was laken of all
possible transitions to the levels listed by Bacuer and Goupsmrit
(30). . ‘

The line absorption coefficient per gram of star material
corrected for stimulated emission was derived at each level in
the atmosphere according to equation (58). The ionisation and
excitation equilibria were computed at edch level, and account
was taken of the temperature dependence of the various partition
functions involved. The function H (a, v) was evaluated by the
series expansion given by Harris (25). The monochromatic con-
tinuous absorption coefficient corrected for stimulated emission
was also obtained at each level for the central frequency of each
line, and then the relalive absorption at several poinls in the
line profile was computed by the method outlined above. The
results obtained are given in Table 13. These points were plotted
and the profile was integrated graphically to give the equivalent
widths listed in Table 14. The relative amounts of C and Si
to H wused, are those found by Unsorp (29) for tSco, that is
N(H)/N(C) = 5:8x10% and N (H)/N (Si) = 1-6 x 10~

Table 13.
Computed absorption line profiles®
I !
A2 " CI7TA426719 |CIITA4187.05 Si117144819.74| AX | SiIV 2 4088.86

|
0.00 A ! 0.35 0.30 | 0.27 0.00 A 0.41
.07 .31 .26 18 10 .37
14 A7 14 .02 .20 14
0.21 0.04 0.03 0.00 .40 .05
0.80 | 0.03

* The table gives absorption in the line in terms of the continuous spectram at the
wavelenglh in question.

The CII “line”, A4 4267-19, is a blended multiplet of three
components. The two componenls arising from the sub-level wilh
J = 5/2 have the same wavelength, hence we form a summed
[-value for them as in equalion (69). This summed f-value is
the same as that for the one component arising from the level



Nr. 13 45

with j = 3/2. We next assume that all components have the mean
wavelength 4267-19 A, and find the desired line absorption coef-
ficient by adding the contributions from each component. Since
each component has the same damping constant, il follows that
Ly for the combined multiplet is given by formula (58) with f
equal to the summed fvalue for all components arising from
either sub-level j = 3/2 or sub-level j = 5/2, and that N* is the
number of excited atoms given directly by the Boltzman equation
(eq. [73]).

The C III and SiIV lines are single, consequently the pro-
cedure of forming [, is straightforward. The Si IIT line is com-
posed of lwo components which arise from the sub-level j = 3
of the lower term. Since these two components have the same
wavelength. we use a summed fvalue, equation (69), and we
note that in this case N* is not given by Boltzman’s equation
directly; but by N, x (2J + D/(2S+1) (2 L'+ 1).

The strength of the lines in the model atmosphere may be
compared with measurements made on high dispersion plates of
the sirengths of the same lines in 7Sco, a BO V star, by Unsorn
(29), and in 10 Lac, an 09 V star, by ALLer (31).

The observed equivalent widths are given in Table 14
together with the computed equivalent widths. The observed
and computed relative intensities € IT/C IIT and Si IIT/Si IV are
given in Table 15.

Table 14.
Equivalent widths*.
Line Computed T Seo BOV |10 Lac 09V
(Unsold) (Aller)
CIITAA267 (... i, 0.099 0.115 0.081
CIITZA4187 ... . 0.085 0.065 0.089
SiTITAA4820. . ..., : 0.050 0.071 ( <0.050)
SiIVA4089 ... ... .. 0.209 0.174 0.270

* in equivalent angstroms.

Since Aller does not measure the line 14820 in 10 Lac,
I estimate that its equivalent width is less than 0-050 E.A. It is
not certain that the measurements by Unséld and by Aller are
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on the same scale, for the plates used, although of comparable
dispersion, are not taken by the same telescope and spectrograph.
This fact should not seriously affect the interpretation of the
observed and computed relative intensities € II/C 11T and Silll/
Si IV, but it will prevent a precise determination of the abundance
of carbon and silicon by matching the computed equivalent
widths closely to the observed equivalent widths.

Table 15.
Relative intensities.
Ratio Computed TScoBOV |10 Lac 09V
(Unssld) (Aller)
CIICIII.... ... i 1.17 1,77 0.91
SiITISIiIV oo .. 0.24 0.41 (<0.18)

From the data of Table 15 we conclude that the speciral type
of the model atmospherc is definitely earlier than BO V and
somewhat later than O 9V, say 09-5 V on the scale of MoreaN,
KeenaN and Keriman (23). R. M. PETrieE (4) classifies 10 Lac
as an 08-5 star. On his scale the model atmosphere might just
be an 09 star. The effective temperature of 36,800° which we
have found for the model atmosphere is considerably higher
than the excitation temperature of 30,700° found by Pelrie for
09 stars from a study of the relative intensities of the He Il and
He I lines 14542 and 14471 respectively, and is also higher
than the temperature based on the ionisalion scale given by
Kurper (5).

The difference between effective temperature and excitation
temperalure found here for the 09 stars is in the same direction
as that found for later type stars from curve of growth studies.
This result occurs because of the rather greal lransparency of
stellar atmospheres to radiation in the range 912 << A << 1500A,
which tends to increase the integrated emergent flux above that
expected for the lemperatures indicated by the opacity in the
wavelength regions corresponding to the excitation of the com-
monly studied lines.

The dependence of the monochromalic optical depth, ¢, on
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Table 16.
The monochromalic optical depths, ¢, al various wavelengths.

T i 2 314 \ 4649 |4 912v| 21006 | A 1458 |2 3646v | 14234 | A 6251
0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000
0.10 0.77 0.12 0.32 .013 .014 0.039 0.022 0.040
0.20 1.45 0.24 0.64 .023 .026 0.080 0.044 0.082
0.40 2.56 0.49 1.30 .041 .049 0.17 0.092 0.18
0.60 3.43 0.72 1.93 059 074 0.28 0.15 0.30
0.80 4.14 0.96 2.55 .078 .100 0.40 0.21 0.44
1.00 4.71 1.18 3.14 .097 13 0.53 0.28 0.60
1.40 5.58 1.62 4.31 .139 .19 0.83 0.45 0.98
1.80 6.11 2,06 5.46 186 .27 1.18 0.67 1.44
2.20 6.66 2.50 6.60 .236 .35 1.59 | 0.92 1.97
2.60 7.00 2.93 7.73 .289 .44 2.03 1.19 2.55
3.00 7.26 3.35 8.84 0.345 0.53 2.50 1.48 2,97

wavelength in the present model atmosphere is illustrated by the
data of Table 16. The emergent monochromatic flux may be
roughly evaluated by taking B, at the depth £, = 0-60. It is
obvious from the data of Table 16 that the “temperature’” of the
emergent {lux varies considerably with wavelength. In a line, the
monochromatic optical depth varies rapidly with wavelength, as
is illustrated by the data of Table 17, and it is a question what

Table 17.
ty in 44267, N (H)/N(C) = 5-8x 103
T AL =000A | A2 = 007A | AL = 0.14A | AX = 021 A
0.00 0.00 0.00 0.000 0.000
0.10 0.55 0.32 0.080 0.031
0.20 1.14 1 0.66 0.166 0.064
0.40 2.20 1,29 0.34 0.131
0.60 3.10 1.84 0.51 0.20
0.80 3.80 231 0.64 0.28
1.00 4.36 2.70 0.81 0.37
1.40 5.13 3.25 1.08 0.56
1.80 5.68 3.68 1.35 . 0.79
2,20 . 4,08 1.65 1.05
2.60 .. 4.46 1.96 1.33
3.00 .. 4.82 2.28 1.64
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optical depth, or temperature, should be taken as “‘characteristic”
of the whole line, for the level at which # = 0-60 occurs differs
greatly, depending on the distance from the line centre. The data
of Table 17 illustrate nicely that the core of a line is formed
in the outermost layers of the atmosphere, while the wings are
formed at progressively deeper layers. In any case it is evident
that whatever temperature is chosen in order that the actual
process of line formation may be represenied by line formation
in a layer of gas at one temperature and pressure, this temperature
will be less than the corresponding temperature for the continuous
spectrum in the neighbourhood of the line, and that both of these
temperaiures will be less than the effective temperature, for the
effective temperature is largely determined by the magnitude of
the emergent flux in the region 912 << 2 << 1500A, and in this
region the ‘“‘characteristic temperature” is high. Excitation or
lonisation temperatures are effectively ‘‘characterislic temper-
atures” for the lines involved and hence bear a complicaled
relationship to the effective temperature of the atmosphere, which
is defined by the integrated emergent f{lux.

The high effeclive temperature we have found for the 0 9-5V
stars, which is in accord with the estimate of RUDKJIGBING (8
from his study of model atmospheres, means that the B stars
are spread over a large range of cffective lemperature, for the
cffeclive temperature of AQ V stars seems to be close to 10,000°
(32). The greatest spread in effective temperature probably
occurs amongst the early B-type stars, for at the temperatures
estimaled to be characteristic of these atmospheres the peak of
the black-body energy distribulion curve moves into the range
912 <2 << 1500 A. When this happens an excess of emergent
radiation in this critical wavelength range will build up rapidly,
and force up the effective temperature. It is difficult to estimate
how high the effective temperatures of the absorption-line 05 or
06 stars may be. Consideration of the stability of atmospheres
under the effects of radiation pressure (10), indicates that only
stars of large surface gravity will have stable atmospheres at very
high effective temperatures.

From Table 14 we see that the absolute strengths of the lines
in the model atmosphere are intermediate between those observed
in vSco, BOV, and in 10 Lac, 09 V. This result is in accord
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with the spectral type of the model atmosphere being 09-5 V,
and confirms the assumption that the relative abundances of €
and S7 to H used are representative of the chemical composition
of early-type atmospheres. The actual abundances occurring
cannot be far from the chosen abundances, for if the carbon
abundance is reduced by a factor 0-4, the absolute strengths of
the C.II and C IIf lines are reduced to 0-069 E. A. and 0-061 E. A,
respectively. These values are significantly lower than the ob-
served line strengths. The ratio C II/C IIT is nearly unchanged
by this change in the carbon abundance, for it becomes 1-13
instead of 1.17. Since hydrogen is the dominant source of opacity
in the wavelength range of the lines studied, departure of the
real abundance of He from the assumed abundance of He will
not affect the computed line strengths and the relative abundances
of C and S7 deduced therefrom by altering the contrast appreciably.

6. The limb-darkening of early type stars is difficult to
establish from observations of eclipsing variables in which one
or both components are O or B-type stars, and usually the ob-
servations are worked through with estimated values of the coef-
ficient of limb-darkening. Since in the course of the computations
for the net flux in the atmosphere we have obtained the mono-
chromatic source function S, as a function of the optical depth,
we can compute the emergent intensity as a function of the
angle of emergence and can thus find the limb-darkening of the
model atmosphere in various wavelengths. We have

L0, p) = ut SS,, (t,) e~ W dr,, (76)

Yo

where I, (0, ¢) is the monochromatic intensity emerging at the
angle cos™ x to the normal. Here &, is the monochromatic optical
depth. The limb-darkening is expressed by “

5 (0, )/ (0,1) =1 —u+ uu, (76)

where u is the coefficient of limb-darkening.

The values of I, (0, x)/L, (0, 1) given in Table 18 were found
by integrating equation (75) numerically for values of u equal
to 1-00, 0-50, 0-20 and 0-:05. At the limb, x = 0:00, I, (0, ©)

D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXV, 13. 4
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Table 18.

The limb-darkening, I, (0, x)/I, (0, 1), of the model almosphere.
u 7 6251 24234 7 1006 pure scattering
1.00 1.000 1.000 1.000 1.000
0.50 0.892 0.845 0.663 0.688
0.20 0.777 0.726 0.438 0.490
0.05 0.688 0.574 0.373 0.380
0.00 0.561 0.476 ‘ 0.338 0.331

was put equal to S, (0-0). Also given in Table 18 is the limb-
darkening computed by CHANDRASERHAR (33) for an atmosphere
scattering according to the Rayleigh phase function, i.e. for
electron 'scattering. The intensity I, (0,1) equals 1-57 x 1073,
3:17x107% and 24-69 x 1072 ergs/cm?/sec respectively at A 6251,
44234 and 2 1006. The wavelength 2 6251 corresponds roughly
lo the effective wavelength of visual-red observations, while the
wavelenglh 44234 corresponds to the effective wavelenglh of
photographic observations. At both these wavelengths hydrogen
is the predominant source of opacity in the atmosphere. The
limb-darkening was calculated at 21006 also, because here
electron scattering is the predominant source of opacity, and the
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Fig. 2. The limb-darkening of the:model atmosphere.
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limb-darkening at 11006 will be characteristic of electron
scaltering atmospheres,

The data of Table 18 are plotied in Figure 2 as a function
ol p. The limb-darkening at 11006 is closely that obtained by
Chandrasekhar through exact computations of the limb-darken-
ing expected in an atmosphere scattering according to Ray-
leigh’s phase function. In the present computations the scattering
was assumed to be isotropic. At 44234 the electron scaltering
contributes a larger amount to the total opacily than at 4 6251
and the limb-darkening curve is accordingly closer to the limiting
curve for pure scattering.

An expression of the form of equation (76) was fitted to the
plotted points by the method of least squares, yielding the fol-
lowing coefficients of limb-darkening: u = 0-35 at 1 6251, 0.44
at 14234, 0-65 for pure scattering, and 0-67 at 4 1006. From his
study of the light curve of AQ Cassiopeiae, FrRank BRrADSHAW
Woop (34) concludes that the appropriate coefficient of limb-
darkening for O slars is about 0-6. Since AO Cassiopeiae is a
pair of 08 supergianis we may expect electron scattering to be
predominant even in the photographic and visual spectral regions.
The value of the limb-darkening suggested by Wood is consistent
with the results of the present computations which show thal the
limiling value of u = 0-65 is approached when the opacity is
predominanily due to electron scattering.

This investigation was made during the author’s tenure of
a National Research Fellowship (U.S.A.). The author is most
grateful to Professor BENGT STROMGREN for many helpful discus-
sions during her stay al the Copenhagen University Observatory
and for the friendly welcome she received there.
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