
Nr . 1866

Table VI .

Distances between
the major planets an d

Comet Olbers
Jupiter Saturn Uranus Neptun Pluto

~
a Ifa

L815 Aug .

	

14 .5 . . . 4 .3 9 .7 17.3 28 .7 45 .6 74 .8 7

1818

	

Jan .

	

30 .5 . . . 5 .2 8 .7 12 .6 22 .7 42 .1 73 .49

1820

	

Jul .

	

18 .5 . . . 11 .8 14 .7 11 .6 20.6 40 .3 72 .52

1825

	

Jun .

	

22 .5 . . . 25.4 26 .8 11 .8 18 .9 39 .0 72 .45

1830 May

	

27 .5 . . . 22 .1 33 .6 14 .2 18 .6 39.4 72 .6 5

1835 May

	

1 .5 . . . 32 .0 33.4 18 .2 18 .9 40.5 72 .3 9

1840 Apr .

	

4 .5 . . . 32 .2 28 .8 23 .1 19.7 41 .9 72 .5 8

1845

	

Mar .

	

9 .5 . . . 31 .0 25 .8 28.1 20.8 43 .4 72 .54

1850

	

Feb .

	

11 .5 . . . 37 .6 29.6 32.9 22 .3 44.7 72.43

1855

	

Jan .

	

16 .5 . . . 29 .7 36.7 36 .9 24.0 45.7 72 .5 6

1859

	

Dec .

	

21 .5 . . . 35 .8 39 .9 39 .7 25.5 46 .3 72 .4 6

1864 Nov .

	

24 .5 . . . 30 .5 36 .3. 41 .2 26.7 46 .6 72 .3 9

1869

	

Oct .

	

29 .5 . . . 27 .0 28 .0 40.8 27 .5 46 .3 72 .6 7

1874

	

Oct .

	

3 .5 . . . 27 .6 18 .9 38 .5 27 .6 45 .5 72 .3 6

1879

	

Sep .

	

7 .5 . . . 15 .2 13 .7 33 .9 26 .9 44.4 72.8 1

1884 Aug .

	

11 .5 . . . 13 .4 11 .5 26 .5 25 .7 43.6 72.96

1 '888

	

Jan .

	

3 .5 . . . 4 .0 9 .7 17 .1 31 .3 49 .9 72.5 1

1888

	

Jul .

	

11 .5 . . . 2 .2 12 .0 17 .3 33 .2 51 .7 72 .8 1

1889

	

Jan .

	

17 .5 . . . 1 .5 13 .6 17 .8 34 .4 52.7 72 .0 1

1889

	

Jul .

	

16 .5 . . . 2 .2 14.8 18 .3 35 .3 53.4 70.2 7

1890

	

Jan .

	

12 .5 . . . 3 .6 15.8 18 .8 36.1 54 .0 69.5 5

1894 Jun .

	

20.5 . . . 20 .0 19 .6 21 .6 41 .9 57 .5 68.5 1

1899 Apr .

	

15 .5 . . . 22 .9 18 .4 22.1 47 .1 60 .4 69 .0 1

1904 Jul .

	

18 .5 . . . 25 .4 19.3 21 .1 51 .7 62.9 68 .7 2

1909

	

Oct .

	

20 .5 . . . 33 .2 27 .8 20 .0 55.2 64 .7 68 .7 3

1914 Aug .

	

15 .5 . . . 27 .5 36 .5 19.8 57 .3 65,9 68.7 9

1919 Nov .

	

17 .5 . . . 36 .5 39 .9 21 .1 58.6 66 .4 68.64

1925

	

Feb .

	

19 .0 . . . 29 .9 35 .7 23.6 58 .6 66.0 68 .7 5

1930 May

	

24.0 . . . 33 .4 27 .7 26 .4 57 .5 64.8 68 .7 7

1935 Aug .

	

26 .0 . . . 29 .9 22 .6 28 .8 55.2 62.5 68 .6 7

1940

	

Nov .

	

27 .0 . . . 24 .7 24 .4 29.9 51 .7 58 .9 68.9 9

1946 Mar .

	

1 .0 . . . 24 .5 26 .3 29.0 47 .0 53 .8 68.6 0

1951

	

Jun.

	

3 .0 . .
,

. 10 .7 21 .7 25.0 40 .9 46.2 69 .0 `

1956

	

Jun .

	

16 .0 . . . 4 .6 10 .1 17 .7 30 .0 33 .8 69 .5
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§ 1 . Introduction.

The

theory of the penetration of fast charged particles through
matter was originally developed on the basis of an analysis

of collisions between the moving particle and individual atomsi) .
In such a treatment, the influence of phase relations between th e
effects produced in the atoms along the path and, in particular ,
the resulting coupling between the different encounters is disre-
garded. This approximation will often be justified, but pheno-

mena do exist for which such atomic interaction effects are o f
essential importance .

Thus, it was observed by CERENKOV (1934) that very fast
electrons, when passing through dense materials, give rise to a
peculiar radiation the properties of which reveal that one has to

o, not with independent emission processes by individual ex-

iited atoms, but with a radiation emitted coherently by larger
portions of ,the substance . A theory of this phenomenon was
developed by FRANK and TAMM (1937) and by TAMM (1939), who
showed its immediate connection with the fact that the velocity
(It the electrons may exceed the rate of propagation of electro-
magnetic waves in the surrounding medium . Just on account
f the interplay of the atoms, the phase velocity of such wave s

may indeed, over certain spectral regions, be smaller than th e
elocity of light in vacuo.

The problem of a possible influence of atomic interaction o n
ie stopping and ionization of fast particles was raised by SWAN N

«1938), who pointed out that the polarization induced by the
article in the matter through which it passes will give rise to
certain screening effect which might, under circumstances ,

1) A comprehensive treatment of this subject has recently been given by
BoHR (1948) and, in the following, we shall often refer to this survey for fuller

nfotmation regarding general aspects of penetration theory.

§ 1 -
§ 2
§ 3 .
§ 4 .
§ 5 .
§ 6 .

§ 7 .
§ 8 .
§ 9 .
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reduce the rate of energy loss . The question was treated in detail

by FERMI (1939, 1940), who found that the phenomenon may b e

of great significance for very fast particles, but is in genera l

negligible for non-relativistic velocities . Still, there are exceptions

to this rule and, in particular, it has been shown by KRAMER S

(1947) that the stopping power of metals is always essentiall y

influenced by the polarization effect .

In the above-mentioned treatments, the matter penetrated i s

described, in a macroscopic way, as a continuum and since ,

moreover, on account of the dispersive properties of the medium ,

which are essential for the phenomena, the electromagnetic field s

are resolved in harmonic components, the connection with th e

simple theory of atomic collisions is somewhat obscure . For thi

reason, we shall in the following attempt a, treatment of the

coupling between the encounters from a microscopic point o f

view so as to bring out as clearly as possible the relationship

to ordinary penetration theory . Such an approach is also foun d

to be well suited to obtain simple generalizations of FERMr' s

formulae .
As a preliminary, we shall in § 2 briefly discuss the argument s

which justify a distinction between close and distant collisions o f

the particle with the atoms in the substance . The mutual inte r

action of the atoms is of significance only in the distant en-

counters, the treatment of which is especially simple, since the

description may be based entirely on classical mechanical pie -̀

tures. A few main principles from ordinary stopping theory, o f

use in the following, are reviewed in § 3, in particular wth

respect to the influence of the atomic binding forces whic h

effectively limit the radius of action of the penetrating particle h,

giving the collisions beyond a certain distance an adiabatic

character .
In § 4, it is shown how the atomic interaction, from the micr o

scopic point of view, may be regarded as a further screening

factor and, especially in the non-relativistic case, may be tre, d , l

in close analogy to the effect of the atomic binding forces . :M r

over, a treatment of the energy loss of the particle is given, i s

which the stopping power is described as a force with whic h

the atoms in the medium act on the moving particle . The special

case of materials containing free electrons is considered

closely in § 5, where also the influence of damping effects i s
taken into account . For particle velocities close to that of light ,
the atomic interaction presents new aspects connected with th e
retardation of the forces . This problem is discussed in outline
in § 6 with reference to corresponding modifications in the rela-
tivistic . two-body problem considered in Appendix I, and a simple
interpretation of the main -results of FERMI is obtained .

The (àerenkov radiation and its relation to the stopping power
is dealt with in § 7 . From the microscopic point of view, the
phenomenon simply implies that part of the energy which i s
intermediately transferred from the particle to the atomic elec-

trons is subsequently emitted as coherent electromagnetic waves .
In a macroscopic description, the energy loss of the particle falls
naturally into two parts, the first of which is absorbed by th e
substance in the neighbourhood of the path, while the second
is directly transmitted to larger distances in the form of radi-
ation. The distinction leads to some general relations regardin g
he stopping power for relativistic and non-relativistic particl e
velocities . In this connection, it is shown in Appendix II ho w
the stopping problem may be treated by the formalism of radia-
tion theory well known from quantum electrodynamics .

While, in the first part of the paper, the atoms are treated a s
imple dispersion oscillators of a single frequency, more genera l
tomic models are considered in § 8 . In this case, exact cal-
dlations are rather complicated, but it is shown how the analysi s
n § 6 makes it possible to obtain a general survey of the phe -
,mena and leads to simple approximate formulae . In § 9, an
ttempt is made to deduce comprehensive expressions for the in-

luence of atomic interaction on the stopping power of heavy sub -
stances . Finally, some experimental data are discussed in § 10 .
Among the more important applications of the theory is th e
stopping power of metals and the stopping and ionization o f
very fast particles ; there appears to be satisfactory agreement
with the available empirical evidence.
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§ 2. Separation between Close and Distant Collisions .

The collisions between a charged particle and an atom must ,

of course, in general be treated in configuration space by mean s

of proper quantum-mechanical methods, but for a large variet y

of problems it is permissible to use . a simplified procedure in

which the particle is described as a centre of force moving alon g

a well-defined path . This description was proved by MOTT (1931)

to lead to the same atomic excitation probabilities as the mor e

general treatment, in case of particles of mass large compare d

with that of the electron and energy great in comparison wit h

the atomic binding energies . Actually, it is a sufficient condition

for the adequacy of the procedure that the momentum of th( '

incident particle be large compared with the momentum change s

involved in the collision. In fact, the effect of the collision on

the atom will, under such circumstances, be approximately in -

dependent of the inertial properties of the particle which, thus ,

acts as if it were infinitely heavy . The condition in question, which

is essentially equivalent to the requirement that the wave-length

of the particle be small compared with atomic dimensions, is also ,

from the possibility of representing the particle by a wave-packet ,

immediately seen to ensure the validity of the simple method .

As regards the problem of the mutual influence of the atom s

in the stopping substance, the more violent collisions involvin g

large momentum transfers may obviously be neglected and, in

the present connection, we may 'thus treat the penetrating particl e

as moving along a fixed path . The atoms may then be specifie d

by their distance from the path, the so-called impact paramete r

p ; as we shall see later in this paragraph, the atomic inter -

action phenomena will be of importance only for p »» ao, wher e

ao denotes the "radiu s " of the hydrogen atom, which is a suitable;

measure for atomic dimensions .
In such distant collisions, the effect of the impact on the ato m

will, in general l) , amount to only a small perturbation and . since

1) For very large values of the charge of the incident particle combined willi .

a relatively small velocity, special considerations are necessary since then th e

condition p )) ao may not be sufficient to justify a perturbation procedure . Althcit0 i,
in this case, one may proceed by much the same methods (cf . N . Boxx' 1911

p . 84), we shall disregard such problems in the present connection, since the y

may be shown to be quite insignificant under circumstances where the atomi c

interaction phenomena are of importance .

moreover, for p» ao, the perturbing field is approximately con-
stant over atomic dimensions, the encounter may be treated by
means of simple mechanical considerations . In fact, as is well
known, e . g., from dispersion theory, the atom will behave, wit h
respect to average energy absorption and with respect to th e
electromagnetic field it generates, like an ensemble of classica l
harmonic oscillators corresponding to the various excitation and
ionization possibilities .

In order to justify that close collisions are disregarded, w e
have still to make an estimate of the order of magnitude o f
the distances at which the atomic interaction effects becom e
significant . This interaction arises from the displacement of th e
atomic electrons during the collision, which turns the neutra l
atoms into dipoles, and it is evident that the ensuing force K
acting on an atomic electron will be comparable with the dipol e
moment per unit volume, multiplied by the electronic charge -e.
if z1 e and v denote the charge and velocity of the particle, an d
Fc the electron mass, the displacement of the electrons during th e
collision will, for free electrons, be of the order of z 1e 2f,av 2 (cf.
(3 .3)) and tend to be smaller if account is taken of the bindin g
forces . We thus have

K
N

zle2 n e 2 ,< ,u v 2

where n denotes the number of electrons per unit volume . Now,
even in dense materials, n never exceeds aw 3 and, introducing
s
-= ,u vL where vo is the "velocity" of the electron in the hydroge nZO

».tom, it follows that K will be small compared with the direct

force of the particle, z12 , at any rate if
P

U
p<ao - .

vo

(2 .1 )

(2 .2 )

Thus, for v large compared with vo, representing the order o f
Magnitude of the "orbital velocity" of the most loosely bound
ectrons in atoms, it is seen that the polarization effect is of
nportance only for p» ao . In this case we may, therefore, cor -
•sponding to the above argumentation, divide the collisions into
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two groups with p < q and p > q, respectively, where q is chosen

in such a'-manner that, for the first group, the atomic interactio n

effect is negligible and ordinary penetration theory applies while ,

for the second group, we are dealing only with distant collisions ,

which can be treated by classical mechanical methods .

For particle velocities comparable with or smaller than vo ,

the penetration phenomena change essentially in character (cf .

N. Bona 1948) . In such problems, one need in first approximatio n

consider only the influence of the particle on those atoms through

which it actually passes, and the interaction effects will only

constitute a minor correction, the taking into account of which

would even be a rather spurious refinement due to the difficultie s

of an accurate treatment of the penetration problem for very slow

particles . Throughout the following, we shall therefore confine

ourselves to the case of vva .

§ 3. Collisions between Particle and Single Atom .

Before turning to the problem of the mutual influence of th e

atoms in penetration phenomena, it will be convenient to review

briefly some of the main aspects of a collision between a fas t

particle and an isolated atom . If, in the first instance, the atomic

binding forces are disregarded, we have a pure two-body problem

which, in case of distant collisions, is further simplified by th e

fact that the displacement of the electron during the actual

encounter will be small compared with the impact parameter .

Moreover, in such encounters, the momentum transfer is alway s

small compared with pc, where c is the light velocity, and w e

may, therefore, neglect relativity effects as regards the electronic

motion .
From symmetry reasons, it follows that the final velocity of i

the electron will be practically perpendicular to the path of tli e

particle, and for the motion of the electron in this direction w

thus have, by means of the well-known expression for the electri c

field surrounding a uniformly moving point charge,

where n is the displacement and where y = I 1 - 2

	

. By simple

integrations, (3 .1) gives

zi e /I/

+

	

yvt
. .

	

. .

	

q

	

iup U \

	

V p 2 + y 2 U2t2 ~

/ 1+ y2U 2 t2 +y vt

/

	

P2

As is seen from these expressions, the encounter may be ap-

proximately characterized by an effective " collision time " of the
order of pfy v, during which the acting force is comparable with
zle2 y/P2

From (3 .2) we get in particular

z2 e 4
T =

2

	

t-> coiu (n)2

	

= 2 vz
p2

for the energy transferred to an electron in a free collision . Since
the stopping power of a substance is proportional to the integra l
of Tpdp, expression (3 .4) cannot, however, be applied for arbi-
trarily large values of p, and it is thus essential in penetratio n
theory to take into account the factors which tend to restrain th e
electrons from moving freely. These factors, acting as a kind o f
screening, may be said to determine a "radius of action" of th e
particle, representing an upper limit pm,, below which the simpl e
expression (3 .4) applies . At larger distances, the collisions acquir e
an increasingly adiabatic character due to the influence of th e
screening, and the energy transfer will be small compared to tha t
of free encounters . For the energy loss of the particle per unit

'path, originating in collisions with atoms for which p > q, we
have accordingly

Pn'sx

	

pmax
S q = n Ç T•2acp dp =B log	 ,

	

(3 .5 )
., q

	

q

a relation which may be taken to define an effective value of

Pinax• The abbreviation B is given by

=
zie l

y1u u2

(3.2)

(3 .3 )

I"?

	

z i e 2Py 	
~"/ = (p2 + y 2 U2t2) 9/9 '

(3.6)B = 4n -



In the following, a main problem will just be to examine th e

various screening factors and estimate the corresponding limit s

of free energy transfer .
In collisions between the particle and isolated atoms, the onl y

screening effect arises from the influence of the atomic binding

forces . As mentioned in § 2, we may account for the binding b y

treating the atom as an ensemble of oscillators of frequencie s

corresponding to the various transition possibilities . For simplicity ,

however, we shall in the first instance consider all oscillator s

to have the same cyclic frequency w a ; in § 8, we shall return to

the problem of more general atomic models .

Besides the force of the particle, there will thus be a bindin g

force of magnitude aco 71 , acting on the electrons . Of course, the

latter force will eventually, when the particle has passed, deter -

mine the state of motion of the electrons, but it will be negligibl e

during the actual encounter and, therefore, of no influence on

the energy transfer, provided only

ttwåYJ << 1,6

for It ~ <

	

or, according to (3 .1) and (3 .3), i f
yv

p«da =
c~

y .
a

The limiting distance da just corresponds to a collision time com-

parable with the proper period of the oscillators and it is, indeed ,

evident that, in case of shorter impulses, the energy balance i s

independent of the binding forces . For collisions of larger duration ,

however, these forces will essentially reduce the energy transfer .

In fact, in the extreme case of p» da , the electron will with

high approximation pass through a succession of equilibrium

states and, finally, be left in its original position .

A more detailed calculation of the energy transfer to a n

electron bound in a quasi-elastic field of force leads (N . BOH R

1913, 1915) to the following expression for the stopping effect in

distant collisions

(
kyv_1 v \

S q = B log~wa
2c2 ,

Nr . 19 1 1

where k is a numerical factor equal to 1 .123 . Formula (3.9) is
seen to coincide with (3 .5) for a value of pma closely equal to
da given by (3.8) . It may be noted that, in the deduction of (3 .9) ,
it is assumed that q may be chosen small compared with da .
For the treatment of the atomic interaction problems it is re-

quired (cf. § 2) that q» a 0 , and the two conditions are thu s
compatible only for da » ao . The problem of larger frequencie s
wa for which da < ao may, however, be neglected in the present
connection, since in that case the atomic binding forces produce
a screening already at distances where the interaction effects
are negligible .

§ 4. Atomic Interaction for Non-Relativistic
Particle Velocities.

Turning now to the problem of the mutual interaction of the
atoms in the stopping material, we shall see that this phenomeno n
may be characterized essentially as a further screening effect . In
fact, when the electrons during the passage of the particle are
displaced from their equilibrium positions, the medium is polar-

ized and, hence, each atomic electron will be subjected to a

restitutional force . from the surrounding material .

It will be convenient first to confine ourselves to the mor e
simple case of non-relativistic particle velocities, where the pro -
blem can be treated quite analogously to the influence of th e
internal atomic binding forces discussed in § 3 . Introducing th e

field vectors E and D, we note that, in the quasi-electrostatic

approximation corresponding to v « c, we have rot E = 0 and ,
therefore, also rot D = 0, assuming the medium to be homo-

geneous and isotropic . This last relation will hold irrespective of
the dispersion properties of the substance . Thus, D is determined
from the same equations as, and must equal, the field sur -

rounding the particle in vacuo . Now, the average electric fiel d
in the medium is given by E D -4n P, where Pis the dipol e
moment per unit volume and, consequently, the polarizatio n

produces a force on the electrons, equal to 4 n e P.
Since Pis given by-nee, where E is the electronic displace -

ment vector and n is the density of electrons, the polarization
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Nr . . l:9

force is seen *o be of the quasi-elastic type, corresponding to a
cyclic frequency v given by

4 scne 2
v2 =

and representing the frequency with which "free" electrons may

oscillate in the medium . The influence of the atomic interaction

forces on the motion of the electrons may, thus, be treated exactly
like the effect of the atomic binding forces and will, in particular ,

imply a screening at a distance d„ given b y

v

d°

	

v

in analogy to (3 .8) for y = 1 .

It should be noted that the total force with which the medium

acts on an electron may differ from 47e P, corresponding to the
well-known fact that the actual average field F to which the
electrons are subjected will, in general, deviate from E . . In simple

dielectrica like gases, where the neutral molecules may be regarded

as independent entities, it may, thus, be shown that l equal s

E + 43 P, and, also in denser materials, the same relation betwee n

F and E will hold in certain cases . Still, it is of particular interes t

for the following discussion to note that, if the electrons are no t

bound to certain fixed positions, but move all over space, as in

metals or ionized materials, F and E will coincide (cf . DARWI N

1934) . More generally, we may put F = E+ 4n aP, where a i s

a numerical constant characteristic of the structure of the sub-

stance. Since, however, the additional force F - E may be

ascribed to the effect of the atoms in the immediate neighbour -

hood of the electron considered, it will be convenient to include

it in the atomic binding force - ,ce w 2j . If, thus, w a' represents

the binding frequency of an isolated atom, we have ,

wå = wå 2 - avl ,

where v is given by (4.1). As is well known from dispersion

theory, w a will then represent the absorption frequency of th e

substance .

Nr.19

	

.
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The combined influence of the atomic binding and the polar-
ization may be treated by introducing an effective frequency w A

defined by

= wå + v 2

to replace w a in formulae deduced for isolated atoms . In par-
ticular, the stopping power may be obtained in this manner fro m
the non-relativistic approximation of (3 .9) .

In order to estimate the significance of the atomic interaction
effects in stopping problems, we must thus compare v with the

atomic frequency Coa . From (4.1) we have, introducing the elec-
tronic velocity vo and the radius ao of the hydrogen atom ,

v 2 = 4nnao (v o

ao
.

Now, - represents the order of magnitude of the frequencies o f
ao

the most loosely bound electrons in atoms and since, even in

dense materials, nag is always smaller than unity, it follows that,
compared with atomic frequencies, v will never be very large
and, in most cases, actually quite small . It is just for this reason
that, in the non-relativistic problem which we have hitherto con -

sidered, the atomic interaction effects are usually of only secondar y
importance for the stopping power. Still, as already mentioned

in the Introduction, there are exceptions to this rule . In fact, for
the free electrons in metals or ionized substances, the bindin g

frequency vanishes and, in this case, which we shall discuss more

closely in § 5, the polarization effects become of decisive im -
portance .

In the present paragraph, we shall further show how the stop -

ping power of a substance may be directly described as a forc e

with which the medium acts on the moving particle 1) . This

alternative way of approach also allows of a simple deductio n

of the stopping formula which corresponds to (3 .9) when due

account is taken of the polarization effects . For illustration we

shall, however, first briefly consider the analogous problem for

the two-body collision .

1) This method has been outlined in a more qualitative way by N . Boar
(1948, § 3 .1).

(4 .4)

2

(4.5)



Instead of calculating the energy loss of the particle from the
momentum transfer to the electron, one might in fact directl y
have estimated the reactive force of the struck electron . Thus, in
the non-relativistic case considered here, the displacement of th e
electron implies that, taking the particle to be positive, the de-

celerative force in the last half of the collision more than com-

pensates the acceleration in the first half . That part of the
reactive force, directed against the motion of the particle, whic h
is produced by the electronic displacement is given b y

dK - - 7

	

zi e 2vt

	

= 3 z1 e 2 ripvt

7 8P
(p2

+ v 2 t 2)' 1'

	

(p2 + v2t2)'/s

4

ÇåKudt = 3 ~
ve- v3

	

t

2
dit2)6ra = T

(p2 f
_.

as given by (3 .4) .

In case of a particle penetrating through a substance, it is
in a similar way the polarization which acts as a brake on th e
particle . If the medium is homogeneous and isotropic, however,
no free charges will be generated (div P = 0) except at the
position of the particle. Inside the medium, therefore, each
volume element remains neutral and gives rise to no resultan t
force, but along the path of the particle opposite charge will be
accumulated . Of course, such considerations depending on averag e
quantities like free charge cannot be applied to the material in

the immediate neighbourhood of the particle but, for the pur -
pose of considering the interaction between the particle and th e
medium at distances large compared with atomic dimensions ,

we may imagine removed a cylindrical tube of radius q » a o
around the path of the particle. The force Sq with which the
more distant part of the medium acts on the particle may the n

be calculated from the attraction of the free charges induced o n

the inner surface of this cylindrical tube .
The surface density a of these charges equals - ens . For the

value of , however, we may not use the simple formula (3 .3),.

Nr .19 15

since we must take into account the presence of a harmonic force

of frequency WA . If, however, we choose q « v , an electron
øA

at the surface will, during the time when the direct force of the

particle is active, behave as if it were free and, assuming it t o

be at rest before the encounter, we get from (3 .3)

2

~ (x)- o (-x) = 2en~Û2 g ,

	

(4 .8)

where x = - v t denotes the distance of the electron from the

instantaneous position of the particle, measured in the directio n
u

of v . The expression (4.8) will hold for ~ x ~ « ~ but, for larger
A

values of i x I, the harmonic force becomes of importance . Since,

however, at such large distances the direct influence of the

particle on the electronic motion perpendicular to the path i s

negligible, (4 .8) may be simply generalized to

6(x)-~(-x) = Zen v2 ~Ag sinl x v A J

	

(4 .9)

corresponding to (3 .9) for v « c, if only wQ is replaced by WA .

The results of this paragraph, expressed by the formula e

(4 .1), (4 .4), and (4.11), -correspond for non-relativistic velocitie s

to those obtained by the more general treatment of FERMI (1940) ,

who, in order to cover the case of v N c, proceeds by a formally

rather different method in which Sq is estimated as the flux of

the Poynting vector through the surface of the cylinder of radius q .

and, by introducing ?t from (3 .3), putting y = 1, one finds for
the resulting decrease in kinetic energy of the particle

where B is given by (3 .6). This integral can be expressed in term s

of a Hankel function and gives asymptotically for q «
v

(DA

Sq = Blog

	

,
coA q

(4 .11)kv



§ 5. Stopping Power of Materials Containing

Free Electrons .

As already mentioned, the atomic interaction effects are, for

non-relativistic particle velocities, of special importance if th e

substance contains free electrons . Of particular interest in thi s

respect is the stopping power of metals, where the conduction

electrons may to a large extent be regarded as free (cf . § 10 a) .

A few remarks would seem required to justify an applicatio n

of the considerations in the previous paragraph to problems of

free electrons. Indeed, we have here in a sense to do with in -

finitely large atoms and the very definition of distant collisions,

as encounters with impact parameter large compared with atomi c

dimensions, is therefore, strictly speaking, ambiguous. Still, to

our purpose, it is not essential that the electrons are able to mov e

freely throughout space, but we may imagine them confined within

limited volumes of linear dimensions a, if only the corresponding

oscillation frequency, which will be of the order of 2 , is small
,u a

compared with WA . This condition may be fulfilled and a at the

same time chosen small in comparison with the screening
v

distance -, provided ,u v2 » h WA . For smaller particle velocities,
wA

the stopping mechanism here considered is of only minor signific-

ance (cf . the concluding passage in § 2) .

In the estimate of the stopping power, it must be taken int o

account that also other effects than the polarization will tend t o

restrain the electrons from moving freely . In fact, . during the

encounter with the incident particle, the electron may collid e

with ions or electrons in the medium. The influence of these col-

lisions may be compared with the effect of a frictional forc e

- ,cC we , where Ë is the velocity vector and where 1 is a measur e
w o

of the time interval in which the electronic momentum is sub -
it is well known

In an early treatment of the stopping power of metals, by
v. WEIZSÄCKER (1933), it was actually suggested that the limit of
effective interaction between the particles and the free electron s
was determined by the resistance. As pointed out by KRAMERS

(1947), however, such effects will, in general, be of only ver y
small influence as compared with that of the polarization of th e
medium. In fact, since the momentum transfer from the particl e
to a free electron is comparable with the force of the particl e

multiplied by the effective collision time p , it follows that a
v

frictional force can influence the collisions only for p > de = w .
e

Now, in metals at ordinary temperatures, roe «« v and, thus ,
de » dv given by (4 .2) . Consequently, the effective adiabatic limi t
is primarily determined by the polarization .

A closer estimate of the influence of the friction on the stoppin g
power may be obtained in complete analogy to the consideration s
leading to (4 .11), the only difference being that (4 .9) must now
represent a damped oscillation . Thus, we merely have to add an

( w
extra factor exp j - 2 Û x } and substitute for W A the effective

oscillation frequency which, for w a = 0, will be equal to

/0 4 (' . Evaluating Sq , one thereby finds asymptotically,

for q small compared with the adiabatic limit ,

ICU

	

CO

	

V4v 2 -w 2
= B log - -	 ~ .	 arctg

	

(5 .2 )
qv V4v2-wÉ,

	

we

This formula is equivalent to that obtained by KRAMERS by a
somewhat different method and also coincides with the non -

relativistic approximation of FERMI's formular) . For we «« v, the
last term in the brackets in (5 .2) has the approximate value

n

4
v, and the stopping formula therefore reduces to (4 .11) for

= v + 4 W . In the opposite extreme case of we» v, the las t

1) In the case of bound electrons, there may likewise be a damping to tak e
rto account, e . g ., due to radiative forces . In this more general case we get,
of course, an expression for Sq which follows from (5 .2) by simply replacing v.
with WA given by (4.4) and WE) with the damping constant (cf. FEsuci 1940) .

D. Kgl. Danske Vidensk . Selskab, M at.-fys . Medd . XXIV, 19.
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stantially changed. In particular for metals ,

from the theory of conduction that
Ret

w '̀

	

il
P

where q is the specific resistance .
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term in the brackets in (5 .2) has the asymptotic value log -

so that (5 .2) now coincides with (4 .11) for w A = coo, just cor -

responding to the result of v . WEIZSÄCKER .

It may be noted that, in the above calculations, we have

assumed the electrons to be at rest before the collision with th e

particle, whereas in metals or ionized materials the electrons

actually have quite considerable velocities, often greatly surpassing

the velocity changes induced by the particle . However, this circum-

stance should have no essential effect on the average energ y

transfer . In fact, if we denote by w the initial velocity, and b y

u the velocity alteration, the increase in kinetic energy is given by .

T = 2 u (w + ~ C) 2 -2 tc w 2 = 2 ,u u 2 + Nc w U

	

(5 .3)

and, averaged over all directions of w, the last term vanishes

Still, of course, it must be assumed that the electrons, during

the actual collisions, do not move over distances comparable wit h

the impact parameter and that, therefore, w must be small com-

pared with the particle velocity. In most cases of importance,

this condition is amply fulfilled but, e . g. in ionized media at

very high temperatures, the thermal velocities may exceed v even

for "fast" particles and, under such circumstances, the whol e

stopping phenomenon acquires an essentially different character ..

However, we shall not here enter more closely on this problem .

§ 6. Atomic Interaction for Relativistic

Particle Velocities .

The preceding considerations regarding the polarization effect ,

were confined to particle velocities small compared with that of

light . While, in this case, it was seen that, with the few exception s

discussed in § 5, the atomic interaction is of only minor ini

portance, being in general of small influence compared wit }

that of the internal binding forces, the situation is essentiall y

different for relativistic velocities . In fact, for sufficiently tar,

values of y = (\ 1 - z

	

, the radius of action of the particle i

c
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as shown by FERMI (1940), always determined by the polarization
effects .

As regards collisions with single atoms, the modifications t o
be taken into account for v c are of very simple character .
Thus, as long as we are within the adiabatic limit, the energ y
transfer in distant collisions is, according to (3 .4), independent
of relativity effects . In fact, the retardation merely implies a con -
traction by a factor y of the field of the incident particle in th e
direction of motion and an intensification of the field in the
same ratio, and, therefore, does not affect the total momentu m
transfer . On account of the contraction of the field . and the
resulting shortening of the collision time, however, the adiabatic
limit is increased by a factor y, as also follows from (3 .8) .

It may be added that the influence of resistive forces discusse d
in § 5 is modified in a similar manner . Since a frictional forc e
- ,u we g is comparable with the force from the particle only i f

the collision time is of the order of or larger than 1 , the screeningco e
distance corresponding to such effects will be given b y

d
-

e

	

) Y ,

which, for velocities small compared with that of light, reduces
to the estimate in §, 5 .

An analysis of the atomic interaction effects in the relativistic
ase presents, however, a somewhat more intricate problem . In
particular, we may no longer, like for v « c, compare th e
polarization force with a simple harmonic restitutional force . In
fact, in contrast to the screening effect of a force of this type ,
one finds that the adiabatic limit for a material in which th e
èlectrons are free, and where the polarization is determining fo r
11i stopping effect, is uninfluenced by retardation effects . This
result, which follows from FERMI's formula and which, as w e
'tall see, can also be obtained by more elementary consider-

ations, shows that in the relativistic case the mutual influence o f
hc electrons is much stronger than corresponding to the electro-

ltic forces considered in § 4 . Indeed, as was to be expected ,
II interaction effects become, for y» 1, primarily of electro-

netic character.

2 *

(6 .1)
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In order to illustrate this latter point, it is instructive to con -

sider a simple two-body collision from the point of view of

the reaction of the struck electron on the incident particle . Thi s

problem was treated in § 4 for v « c, but is essentially modified

by retardation effects . In fact, the particle will not "know " that

the electron has been perturbed before the pulse caused by thi s

perturbance catches up with the particle and, for velocities ver y

close to c, this will happen a comparatively long time after th e

actual collision is initiated . Thus, a signal emitted by the electron

at t = 0 will reach the particle at a distance py . Now, the

periods characterizing the electronic motion will be comparable

with the collision time P - and, for v c, the field which this
v y

motion produces will, thus, mainly contain harmonic component s

of wave-lengths of the order of V . Since such wave-lengths ar e
Y

small compared with the distances in question, it follows that

the reaction of the electron on the particle is primarily determined

by the electromagnetic wave field emitted by the accelerating

electron. The electrostatic part of the field which depends on the

electronic displacement and which, in the non-relativistic case ,

is responsible for the reaction, is here of only secondary im -

portance .
The following estimate may serve to illustrate that the accelera -

tion of the electron, for y» 1, is actually determining for th e

reaction . In fact, the electric field intensity produced by a n

accelerated electron is, at large distances r, asymptotically

given by

where (p is the angle between the acceleration and the radius <

vector and where, as indicated, is to be taken at the retarde d

time i ' = t

	

. Since this field is transverse, i . e . perpendicular
c

to r, the corresponding force acting on the particle against th e

direction of motion will be

åK (t) = Z«2 ,('')

2 1

Now, during the actual collision, is, according to (3 .1), com-

parable with Zp2Y and since, as already mentioned, the r-value s

in question are of the order of py, we may, for y »» 1, put

sin =- 1 and cos Ø = Y . Furthermore, the pulse given out by

the . accelerated electron; although it has a spatial extension o f

about p , will act on the particle through a distance coin -

parable with py, since the velocities of pulse and particle onl y
differ by a relative amount of the order of y -2 . It will thus be
seen that the force component (6 .3) gives rise to an energy los s
just of the order of T given by (3 .4) .

A more accurate analysis of the reaction in the two-bod y
collision is given in Appendix I, but the above cursory consider-
ations suffice to illustrate the decisive part . played by the radi-
ation field . It is also just this circumstance which is manifested i n
the peculiar radiation effects which accompany the passage of
very fast particles through matter and which will be discusse d
more closely in the next paragraph .

On similar lines as the simple analysis of the two-body col-
lision, one may obtain an estimate of. the mutual interaction

between the electrons in the penetrated substance . To this purpose,
consider an electron at point Q (see Fig . 1), which is collidin g
with the particle 'Z passing at distance p . At the same time, th e
electron is acted upon by the surrounding electrons, and the major
contribution will come from those electrons which, at the retarde d

time t ' = t - r, were themselves accelerated, i . e . were collidingc
with the particle. Now, an electron at point A will, at the retarde d

20

,
E(t) = eY2t sincp ,

c r

sings' cos gp . r
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time, be in a phase of collision which, as compared with tha t

of the electron at Q at the instant considered, is earlier by a tim e

interval z given by

where x is the projected distance from Q to A measured against

the direction of motion of the particle . Introducing r 2 x 2 + b 2

(see the figure), one gets from (6 .4)

(x+ u r y2) 2

	

b 2

2 .~2 ( y 2

which shows that the points of constant r are situated on a

hyperboloid . In particular, the electrons which at the retarded

time were in the same stage of collision as the electron at Q ,

will be found on the conical surface C extending backwards fro m

Q and having an opening angle for which sin 2 = Y . This

surface intersects the path of the particle at the distance x = yp .

In the figure, the electron at Q is, at the instant considered ,

at the peak of collision. The electrons which, at the retarded

time, were "beginning" or "concluding" their collisions are, thus ,

approximately situated on the two hyperboloids Hl and H2 , cor -

responding to r =

	

p
	 and z = +

2p ,
respectively, sinc e

2
P

Y

v

P represents the order of magnitude of the collision time r) .
Y v
Accordingly, the main contribution to the force with which th e

material acts on the electron at Q will arise from the electrons

in the shaded region between Hl and H2 . For y» 1, the essential

part of this region is situated behind the electron at distance s

of the order of or smaller than py . In fact, further away, w e

have contributions from electrons accelerated in all directions .

and therefore the total field of these electrons is small .

According to (6.2), the field from each electron is inversely pro -

portional to r ; furthermore, since sin q ti 1 and since the majorit 3

1) Strictly speaking, it should be taken into account that the collision Um ,

varies with the impact parameter . For the present purpose of estimating order

of magnitude, however, the more cursory considerations should suffice, since ti

major part of the polarization force arises from atoms with impact paramete r

comparable with that of the atom at Q .

23

of the electrons in question have accelerations comparable with
that of the electron at Q, the resulting polarization force K wil l
be of the order of magnitude o f

e 2
K

c
pen

and directed against ai . This force is evidently small compared
with the total force ,u i7 acting on the electron, only i f

p« y

where v is given by (4 .1). This upper limit should, therefore ,
represent the screening distance d„ corresponding to the atomic
interaction effects . The estimate of the polarization force is, o f
course, of a rather cursory character but, due to the complicate d
calculations which would be implied, we shall not attempt a
detailed analysis from the microscopic point of view . The
above considerations suffice, however, to bring out the essential
point that, for v c, the distance d„ approaches a constant
value of the order of c /v .

In estimating the stopping power of a substance we now hav e
to compare d„ with the adiabatic limit da corresponding to the
effect of the binding and given by (3 .8). As to the former distance,
we may use the expression (4 .2) which was originally deduced fo r
v (< c, but which has been seen to apply, approximately, for
all velocities . Even if W a i> v, as is generally the case, it thus follows

that only for y <

	

the polarization effects may be neglected an dv
(3 .9) be applied . For larger values of y, the binding is of littl e
influence on S, and the value of pmax in (3 .5) is of the order
of dv . A more accurate determination of pmax may be obtained
by . noting that the stopping power of a substance containin g
free electrons (cf . p . 27) is not affected by retardation . For large
y, we thus have the asymptotic expression .

S4. = B log
kv

IA'

corresponding to (4 .11) for W A = v .

We have here neglected the possible influence of frictiona l
forces which may become significant if de given by (6.1) is

r x
z=--- ,

C v

v 2z2Y 2 (Y2 1)

(6 .6)

(6.7).

(6.8)
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smaller than both da and dv . Under such circumstances, th e
stopping formula is obtained from (3 .9) by substituting coe for UJ a .

These results are in complete agreement with the more rigor-
ously deduced formulae given by FERMI (1940) . Only in the
transitional cases, in which neither of the three distances da , dv

or de is very much smaller than the two others, certain refine-
ments have to be introduced in analogy to the more detailed ex -
pressions given in § 4 and § 5 for non-relativistic velocities . Such
corrections, however, amount at most to only a few per cent of
the stopping power .

§ 7. Cerenkov Effect and its Relation to
the Stopping Problem.

As already mentioned in the Introduction, the passage of very
fast particles through dense matter is accompanied by a peculia r
radiation (Ùerenkov effect) . An analysis of this phenomenon was
first given by FRANK and TAMM (1937), who pointed out its im-
mediate connection with the circumstance that the phase velocity
of light in the substance may be smaller than the speed of th e
particle . In fact, the Cerenkov radiation presents a close analogu e
to familiar acoustical and hydrodynamical phenomena produce d
by an object moving with a velocity exceeding that of the wav e
velocities in the medium (TAMM 1939) .

Since the phase velocity of electromagnetic waves is given b y
c/j/c , where s is the dielectric constant, the radiation will tak e
place over spectral regions for which

Moreover, since the waves must be stationary with respect to tle
moving particle, the angle of emission for a frequency for whic h
(7.1) is fulfilled is given by

c
cos O =	

i)

where O is measured from the direction of motion of the particle .
In the present paragraph, we shall discuss, by means o f

simple arguments, some of the general characteristics of th e
Cerenkov effect and, in particular, its relation to stopping theor

Nr . 19
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In order to obtain a survey of the various aspects of the pheno-

menon, it is of interest to consider the problem from the micro-

scopic as well as from the macroscopic point of view . In the

former case, we have immediate connections to the consideration s

of § 6, while the latter approach is more in analogy to that o f

FRANK and TAMM, and of FERMI .

From the microscopic point of view, the Cerenkov effect

simply originates in the circumstance that part of the energy

transferred from the penetrating particle to the electrons in the

substance may be subsequently emitted as coherent radiation .

Thus, it was not necessary in the previous paragraph to take th e

effect explicitly into account since, in problems of stopping power ,

one need, in the first instance, consider only the behaviour o f

the struck electrons during the actual collision with the particle .

In fact, the energy loss of the particle may be said to be decide d

within this short time interval and is not affected by the questio n

of the later distribution of the energy transferred to the electrons .

In particular it is, from such considerations, immediately evident

that the Cerenkov effect corresponds to part of the stopping powe r

estimated in § 6 and should not be regarded as an additional

source of energy loss (cf. FERMI 1940) .

Some of the main features of the radiation may also be under -

stood from an analysis like that in § 6 . Thus, an emission of

coherent radiation will demand the fulfilment of proper phas e

relations between the wavelets originating from the individua l

electrons, and this condition leads immediately to (7 .2). More-

over, the spectral distribution is correlated to the rate at which

the energy of the electronic oscillations is dissipated into radiation .

For an isolated atom, this rate is very low, but it may be strongl y

increased by the influence of surrounding atoms . In fact, just du e

to the phase relations, the superposition of the electromagneti c

fields of the individual oscillators may lead to greatly enhanced

radiative effects .
In order to estimate the influence of atomic interaction o n

the Cerenkov spectrum, we may consider the two extreme cases ,

d,, » da and d,., « da , in which, according to the considerations i n

§ 6, the interaction forces may be regarded as, respectively, very

weak and very strong compared with the binding forces . In the

former case, we should expect the atoms to perform a large

number of oscillations before their energy is radiated, and the
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emitted spectrum to consist of a narrow line around the prope r

frequency of oscillation . In the latter case, however, the atoms

will not be able to perform even a single oscillation and th e

frequency distribution should bear no simple resemblance to a

spectral line .
Such general features of the radiation are just in accordance

with those implied by the condition (7 .1) for the spectrum . In
fact, the dispersion law corresponding to the simple atomic mode l
considered, involving only a single proper frequency w a , may

be written
2

8
= 1 w

2 v w2 ,

	

(7 .3)
a

where v is given by (4 .1). Furthermore, according to (3 .8) and

(4.2), the two cases in question correspond to vy << w a and

v y » wa , respectively . It is, therefore, seen that, in the former

case, (7 .1) is fulfilled only in a narrow region around w a while ,

in the latter case, it holds for all frequencies smaller than co, .

From the macroscopic point of view, the energy loss of th e
particle appears to take place in two essentially different modes .

In fact, neglecting absorption due to damping forces, energy may

either be radiated or it may be absorbed by the matter, givin g

rise to oscillations persisting in the medium after the passage o f

the particle. For the distinction between these two mechanisms ,

it is convenient to divide the electromagnetic field produced by

the particle in the substance into a transverse (divergence-free )
and a longitudinal (irrotational) component . The radiative part o f

the field is obviously of the transverse character, while the residual

oscillations, left in the "wake" of the particle, must correspon d

to a longitudinal field . In fact, in the absence of electric currents ,

a divergence-free field consists of free electromagnetic radiatio n

which propagates to infinite distances .
The longitudinal component just represents the field cal-

culated with neglect of retardation effects and is, therefore, simply

that considered in § 4, where the velocity of light was regarded
as infinite. It is thus immediately seen that the energy absorbe d

by the medium in the neighbourhood of the path of the particl e

is given by the non-relativistic stopping formulat) .

1 ) It must be noted that, when damping is taken into account, also some part o f
the transverse field energy may be absorbed by themedium close to the particle (cf .§ 8) .

Nr . 19
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The relativistic increase of the stopping effect is due to th e
transverse field and, hence, represents the radiated energy. More-
over, it is evident from such considerations that, while the energ y
stored in the medium corresponds to that transferred to the atom s

within the non-relativistic adiabatic limit, the radiation is emitte d
by the atoms at larger distances from the path of the particle .

In particular, it is of interest to note that, for substances con-

taining free electrons (w a = 0), it follows from (7 .3) that e is
always smaller than unity, and the condition (7 .1) can, thus, never
be fulfilled. Consequently, no radiation occurs and the stoppin g

power must, therefore, as already mentioned in § 6, for all veloci-
ties be given simply by the expression originally deduced for u «c .

For the residual field left in the medium after the passage o f

the particle, we have, of course, D = 0 since, from the macro-

scopic point of view, no "true" charges are present . The dielectric
constant of the medium must, therefore, vanish for the oscillatio n
frequency concerned and, according to (7 .3), this condition wil l

just be fulfilled for w = WA given by (4 .4), which was seen in

§ 4 to represent the proper frequency of the substance It ma y
be added that, from the very circumstance that we have to do

with the excitation of oscillators of proper frequency corresponding

to e = 0, it may immediately be concluded that their energy
absorption is unaffected . by retardation effects . In fact, this energy

depends, as is well known, exclusively on the resonance com-

ponent of the exciting field, for which the phase velocity of light ,

c/V/ E , is infinite .
In the evaluation of the radiated energy, FRANK and TAMM

(1937) and FERMI (1940) expand the electromagnetic field pro-
duced by the particle in harmonic components with respect t o

time-dependence . It is, however, also possible to adapt to th e

case of ponderable media the well-known method of radiatio n

theory in which the field is dissolved in plane waves . In Appendix

II, we shall consider the application of this formalism to the

problems of stopping power and Cerenkov radiation . The
method sheds some light on the phenomena in question and, i n

addition, is illustrative of the difference in approach betwee n

ordinary procedures of classical electromagnetic theory and th e

formalism which has become the conventional tool in quantum

electrodynamics .



28 Nr . 1 9

§ 8. The Atom as a General Dispersive, System.

The preceding considerations have been based on a highly
simplified atomic model in which the virtual oscillators wer e
considered to have all the same frequency . This simplification

was made in order to bring out as clearly as possible the princi-
pal points regarding the atomic interaction effects, but in a more
detailed treatment, the atom should be compared with an ensemble

of oscillators corresponding to the different excitation possibilitie s
(cf. § 2) . The proper frequencies of these oscillators will b e
denoted by coi, and their relative strengths by fi normalized per

electron (

	

fi = 1) . If the atoms are bound together, this model

is still adequate if only the oscillators represent the transition possi -

bilities of the electrons in the molecules or in the lattice .

Such refinements are readily accounted for in the usua l
stopping theory. In fact, if the oscillators can be regarded a s
independent, formula (3 .9) is simply to be replaced by

2
Sq. = B

		

fi (log 4 w

	

2 c 2 ,

	

(8.1 )
i

where the electron density n entering in the expression (3 .6)

for B is equal to z 2N, if z 2 denotes the atomic number of th e

substance and N the number of atoms per unit volume .
The polarization phenomena, however, introduce a coupling

between the different oscillators . In principle, this effect present s

no great difficulties, since the calculation of FERMI (1940), or a

procedure like that used in Appendix II, may be immediately

generalized by replacing the simplified dispersion law (7 .3) by

	

f`
v2

	

(8 .2)
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basis of considerations analogous to those in § 6, it is possibl e
to obtain simple formulae representing a degree of accuracy suf-

ficient for most purposes .

In such a microscopic treatment, the influence of the polar-
ization on the stopping effect may be estimated by comparin g

the distance dv with the adiabatic limits di , corresponding to the

various atomic frequencies wi and given by (3 .8) for wa = wi .
The value of dv will be given by an expression of the type o f

(4.2), but an essential point will be to estimate the effectiv e

electronic density determining for the polarization . In fact, due
to the influence of the binding forces, this density will decreas e
with increasing distance from the path of the particle .

At distances comparable with di , the number of electrons pe r

unit volume which contribute materially to the polarization wil l

be equal to nFi , where Fi represents the sum of the oscillator

strengths, corresponding to atomic frequencies equal to or smalle r

than wi . According to the estimates in § 6, the atomic interactio n

will therefore be effective, provided yvFil' > w i , where v is give n

by (4.1) for n = z2 N . For a survey of the problem, it will thu s

be convenient to introduce a critical frequency we defined by

w e = yvF° ,

where

F6 =

	

fi .

	

(8 .4 )

W G (Ae

In general, we may assume that equation (8 .3) has only a single

root, a point to which we shall return briefly in § 9, where ap-

proximate expressions for the frequency distribution of the oscil-
lators are considered .

In this case, the situation is especially simple, and it is seen

that the limit of free energy transfer will be determined primaril y

by the binding forces or the polarization, according as wi > we

or w i < w c , respectively. The contribution to the stopping power

of the former oscillators will approximately be given by th e

respective terms in (8 .1), while for the latter oscillators the expres -

sion (6 .8) for an effective electron density nF, will apply .

The total stopping power of distant collisions may, thus, b e

written

i wi - w2 '

corresponding to the atomic model on which (8 .1) is based. Still,

exact calculations by means of such methods lead to rather com-

plicated expressions .) and it is, therefore, of interest that, on the

1) The case of two dispersion frequencies has been considered by HALPERN
and HALL (1940) . The more general model corresponding to (8 .2) has been treated
by STERNHEIMER (1946), but an evaluation of the expressions deduced is difficult
and has been attempted only under simplifying assumptions . The accuracy in-
volved seems, therefore, hardly to go beyond that of the more simple analysi s
given here, the results of which also coincide in essentials with those obtaine d
by STERNHEIMER.

See also Postscript (i), p . 50 .

(8 .3)
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kv

	

kv y 1 v2
Fe log qv

Pc/ .
-~ 1~ fi (log

4w~
- 2 c} }

.

	

(8 .5 )

In particular, it may be noted that, for very large velocities fo r
which yv exceeds the largest significant atomic frequencies, w e

have Fe 1 and, in this case, the stopping formula will be
especially simple, being practically independent of the atomi c

frequencies . The latitude involved in (8.5) arises mainly from the
estimate of the contribution of the oscillators with w i ti w c , for
which, of course, the polarization as well as the binding force s
have a significant influence . The accuracy of the above ap-

proximation would, however, seem to be quite high since, a s
already mentioned in § 6, even in the case where all frequencie s
are equal and, therefore, may all fall in the transition region ,

the necessary corrections will never exceed a few per cent' ) .

The part of the energy loss which is radiated to large distance s
may, according to the considerations in § 7, be readily estimated,

provided the absorption due to damping effects can be dis -

regarded . In this case, the radiated energy, in fact, simply re -

presents the difference between (8 .5) and the stopping power

which would be obtained by disregarding relativity effects .
Actually, however, we have to do with a considerable absorptio n

in the spectral region extending from the lowest proper frequency

of the substance to the highest relevant atomic frequencies, an d
an estimate shows that, in this region, by far the greater part o f

the radiation will, in not too dilute materials, be reabsorbed

close to the path of the particle . It would thus seem that, to a
first approximation, an actual emission of radiation, easily access-

ible to observation, will be confined to the region below the firs t

absorption band . For such frequencies, which in generally com-

prise primarily the visible and infrared region and possibly par t

of the ultraviolet, the radiation spectrum may be calculated from

formula (12) in Appendix II by introducing the proper values

for the dielectric constant .

Finally, we shall consider briefly the influence of atomi c

interaction on the number of ions produced by the particle alon g

the path. This problem involves in principle a detailed investi -

gation of the distribution of the energy loss on the various atomic

1 ) Cf . Postscript (ii), p . 50 .
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oscillators, but it appears that the relationship between stopping

power and ionization is not essentially affected by the polarization
effects, and recourse may therefore be taken to the results o f
ordinary penetration theory. In the analysis of the problem, w e
may conveniently make use of the considerations in § 6 and § 7

and shall, in particular, divide the field surrounding the particl e
into a longitudinal and a transverse part .

The former part, corresponding to the energy loss calculate d
with neglect of retardation, will (cf. § 4) be only little influenced
by the polarization, especially in case of dilute materials like

gases, where the ionization problem is of particular importance .

For this part of the interaction between particle and matter, w e
may thus immediately use the result, derived for collisions with

isolated atoms, that in distant encounters the contribution of any

bound electron to the number of primary ionization processe s

is closely proportional to the corresponding contribution to th e
stopping power . In the simplest case, of hydrogen, it follows i n

particular from the detailed calculations of BETHE (1930) that
the number of ions produced per unit path, in collisions with

impact parameter greater than q, is given by

0.28 5
P Sq

	

q }t wo

For heavier substances, generalized approximate expressions ma y

be given (cf. N. Bona 1948, § 3 .4) .

The relativistic increase in the energy loss was seen to b e

correlated to the transverse part of the field, but it is of importanc e

that, according to the above considerations, only a negligible par t

of the energy transfer due to the interaction with the ionizatio n

oscillators will be emitted as radiation to larger distances, since

this energy is mainly concentrated in frequency regions of strong

absorption .

A detailed investigation of the energy absorbed by the various

oscillators from the transverse field is rendered difficult by the

circumstance that the radiation emitted by one type of oscillator s

may, as discussed in § 7, contain frequencies extending over a

wide interval and may, consequently, be absorbed by oscillator s

of a different type . However, just in case of gases, where v i s

very small compared with atomic frequencies, this "mixing" effec t

Sq =
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should be rather insignificant . In fact, even in case of di» dr ,
where the frequency distribution of the emitted radiation is most

strongly spread out, it may be shown that, for v « wi, the larger

part of the energy is concentrated on frequencies which diffe r

from wi by an amount small in comparison with wi itself . The

mixing will, therefore, primarily take place between very clos e

lying levels and should not essentially affect the relative numbe r

of ionization processes .
Relations of the type of (8 .6) must thus, in general, be ex-

pected to be only little influenced by the atomic interactio n

effects . As regards the total ionization, including primary as wel l

as secondary processes, one may likewise conclude that, as ha s

been deduced for collisions with isolated atoms (cf ., e. g ., FAN O

1946), the average energy expenditure per ion is largely indepen -

dent of the particle velocity .

§ 9. Estimate of Stopping Power fol. Heavy Substances .

It follows from the considerations in the previous paragrap h

that the influence of atomic interaction may imply a considerabl e

simplification in the stopping formula since, for very large value s

of vy corresponding to F 5 x 1, the stopping becomes independent

of the atomic frequencies and is determined only by the electroni c

density of the substance. In order, however, to evaluate S7 in

the transition region where the polarization gradually become s

effective, it is necessary to investigate the distribution of the

atomic oscillator frequencies involved in expressions like (8 .5) .

In the case of heavy _~n -sm . es, a detailed analysis of this problem

is complicated ly , but more cursory estimates, sufficient for man y

purposes, may be derived on the basis of simplifying assumptions

regarding the frequency distribution .
In penetration problems, one thus often obtains an ap-

proximate account of general features (cf . N . BOHR 1948, § 3 .5)

by representing the sum F of the oscillator strengths corresponding

to w i < w by an expression of the simple type

z2o }
l!a '

1 ) Cf . Postscript (iii), p . 51 .
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where wo denotes the Rydberg frequency. Of course, such a
relation needs modification for the most loosely as well as the
most firmly bound electrons in the atom. While the corrections
in the low frequency region are of only minor significance in th e
present connection, it will be necessary to make adjustments in

-12

	

-8

	

-4

	

0

	

4

	

8
Fig. 2 .

the high frequency region so as to take into account that the tota l
oscillator strength equals unity. To this purpose, it would see m
natural to put tentatively

w

	

(

	

s

z2 COO ~~

!

	

F _ - -

	

~

as a simple function which corresponds to (9 .1) for F << 1 and
gives F = 1 for large w .

In particular, it may be noted that, for distributions of the
type (9 .1) or (9 .2), the equation (8 .3) determining for the inter -
action effects will have only a single root . The stopping powe r
will, thus, be given by (8 .5) and one finds, by replacing the su m
by an integral and introducing (9 .2) ,

(

	

kuF'!'

	

1

	

v 2 l

	

Sq = B { log --

	

- (1 -Fqv

	

2

	

c c2 f

	

(9 .3 )
as a simple approximate formula involving only Fe. . The varia-
tion of this quantity in the transition region is shown in Fig . 2
which gives F5 as a function of a defined by

D . Kgl. Danske V ) deask . Selskab . Mat-fys . Medd . XXI V D) .

F= (9 .1)

12 log a

+	 w1/\z 2 wo

(9.2)

3
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2

a= I
/

s v )= 16 a y2 Naô zz 2s ,

	

(9 .4)
za w o

where the ratio between v, given by (4.1), and the Rydberg

frequency wo has, for convenience, been written in terms of N

and the radius ao of the hydrogen atom .

For small values of Fe , formula (9.3) reduces to

{log	
kv y _ 1 UZl

	

(9 .5)Sq = B

	

gwoz2
2 c

and the difference between (9 .5) and (9 .3) represents thus the de-

crease in stopping power as a result of the interaction effects . This

decrease 4, in units of B, is shown in Fig. 3 where, for simplicity,

the ratio in the last terms in (9 .3) and (9 .5) has been put equal
c

to unity, since only for large y the problems in question are o f

actual importance . The straight line to which d approache s

asymptotically for large a represents the decrease in stoppin g

power, which would follow from the simple formula (6 .8) to be

applied when the polarization effects have reached full efficiency.

In order to estimate the exponent s in (9 .2) which gives th e

best fit to the actual frequency distribution of the atomic oscillators ,

we may compare (9 .5) with theoretical and experimental deter-

4

rim

minations of the stopping power for heavy atoms in cases where
the polarization effects are negligible . The expression (9.5) cor -
responds to (8 .1) for co = cooz2, where w represents the average
excitation frequency defined by

log w =

	

fi log wi .

	

(9 .6 )

This quantity has been calculated on the basis of the Thomas -
Fermi method by SOMMERFELD (1932), who found T proportional
to 4' corresponding . to s = 4 / 3 , although with a proportionality
factor somewhat smaller than wo . In order to account for the
influence of the screening of the nuclear field on the excitatio n
energies of the inner electrons, use is made in these calculation s
of a general relation between average kinetic and potential energie s
holding for a Fermi gas at zero temperature . Such averagings
(arithmetic) would seem, however, to be of an essentially different
type from that (geometrical) by which T is defined .

The stopping power for large z2 has also been treated by
BLOCH (1933b) who, likewise, compared the atom with a Fermi
gas, but considered explicitly its dynamic properties . Although
the details of the distribution of the proper frequencies involve d
highly complicated calculations, it was found that F depends onl y
on the ratio wz21 , a result which leads tow proportional to z 2 .

Later, the problem has been reconsidered by H . JENSEN (1937) ,
who , pointed out minor corrections to the results of BLOCH, but
these refinements are of little importance in the present con-
nection .

The estimate of BLOCH is confirmed by experiments of WILSO N
(1941) on the stopping power of protons which, in the regio n
where the polarization effects are insignificant, is found to be in
good agreement with the theory, if T is taken proportional to z2 .

Moreover, the proportionality factor is estimated to be very nearly
equal to w o and the results, therefore, just correspond to (9 .5)
for s = 1. This circumstance may perhaps be taken as an in-
dication of the approximate adequacy of the procedure use d
in the present paragraph to estimate the polarization effects i n
the transition region .

-12 -8 -4 4 8 12 log a
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§ 10. Comparison with Experimental Evidence.

a) Non-relativistic velocities .

Considering, first, the case of particle velocities small com-

pared with that of light, it was seen in § 4 and § 5 that the atomi c

interaction effects are of particular importance when the sub -

stance penetrated contains free electrons . Of special interest in

this respect is the problem of metals .

According to the dispersion theory of metals (cf ., e . g ., KRONI G

1929, 1931), the behaviour of the valence electrons may b e

represented by a series of oscillators the first of which has zer o

frequency, corresponding to free electrons, and the remainder

of which represent the transitions of the electrons betwee n

different bands (Brillouin zones) . The most prominent of thes e

transitions will have frequencies of the order o f

h

if, for simplicity, we compare the lattice with a cubic structur e

of spacing b = N-1I' Denoting the number of valence electrons

per atom by z 2F0, we have thus, by means of (4 .1) ,

	

F0 v 2

	

16 b

	

2

	

7t3 a°
z2 Fu

b

and since, in general, b will be equal to 2 or 3 Å units, whil e

a0 = 2 A, it follows that, even for monovalent metals, the inter -

action between the valence electrons will overshadow the bindin g

in the lattice . Since, furthermore, for the electrons in the interio r

atomic shells, the polarization is negligible, formula (8 .5) should

represent a fair approximation if F, is simply put equal to TV) .

For the effective average excitation potential I = h -co , we thus

have (cf. (9.6))

	

I = F„ log

	

hvF;;r'
+

	

ff log . hw i ,

	

(10.3)
J

where the summation is to be extended to the transition possib -

ilities of the electrons bound in the atomic shells lying below th e

conduction band .

I) Cf., however, Postscript {ii), p . 50 .

The most favourable circumstances for testing this formul a
are found in the lightest metals like lithium and beryllium, wher e
the relative number of conduction electrons is largest . In Li, we

have F„ = 3 and hvFv' 7 .6 eV while, for Be, one obtains

F0 = 2 and IevF„' = 18 eV. For comparison, it may be mentione d

that h Cob is about 4 .5 eV and 9 eV in Li and Be, respectively,
and the corrections to the effective frequency of the valenc e
electrons due to the lattice binding may, thus, from expression s
like (4.4), be estimated to be only of the order of 5 °/ 0 . It is, how -
ever, of interest to note that, in the gaseous state, where th e
polarization is negligible, we must reckon with effective excitatio n
energies for the valence electrons of the order of the ionizatio n
potentials, which are 5 .4 eV for Li and 9.3 eV for Be . The atomic
stopping power of the metals must, therefore, be expected to b e
appreciably smaller than for the corresponding gases .

An evaluation of the sum in (10 .3) involves, of course, a
detailed analysis of the binding of the inner electrons, but jus t
in case of Li and Be the problem is comparatively simple, since
the terms represent only the excitations of the K-electrons . An
estimate of the average excitation potentials for the K-shell has
been made by LIVINGSTON and BETHE (1937, p . 264), who give
110 eV and 205 eV for Li and Be, respectively . By means of
(10.3) these values lead to ILA = 45 eV and 'Be = 60 eV . It may
be noted that we here assume the total oscillator strength

	

fi

for the K-electrons to be equal to 2 . This value should actuall y
z2

be somewhat decreased since the presence of outer electrons may
prevent certain transitions from the K-shell (LIVINGSTON and BE-

THE, 1937) . For Li and Be, however, the effect would appear
negligible ; in fact, not only is the number of L-electrons very smal l
compared with the cases considered by LIVINGSTON and BETHE ,

but the effect even vanishes in the approximation in which the
binding of the outer electrons can be represented by s-states .

The stopping power of Li has been determined by RosEN-
SLUM (1928), whose results indicate a value of I of about 40 e V
(cf. MANO 1933). However, the experimental uncertainty of
about 10 °/0 in the stopping power corresponds to a latitude i n

2
(10 .1)

(10 .2)
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In of 50 °/° . For Be, no reliable measurements appear available ,

but empirical evidence would be of considerable interest due to

the high density of valence electrons which should imply a com-

paratively small stopping power ') .

It may be added that the influence of the metallic resistanc e

is in general quite negligible (cf . KRAMERS 1947) . Thus, the

value of we given by (5 .1) corresponds, in the case of Li at

normal temperatures, to wo = 0 .01 vF'elz . The use of (5 .2) for

the valence electrons may, thus, be estimated to increase th e

above value for .I-Li by less than 1 °Jo . On the other hand ,

V . WEIZSÄCI ER ' s theory in which coo is assumed to determine th e

adiabatic limit for the oscillator of zero frequency leads t o

ILi = 10 eV, which is decidedly at variance with the empirica l

data. Furthermore, this theory predicts a considerable tempera-

ture dependence of the stopping power which, for a decrease in

resistance by a factor 100, should increase by about 20 °Jo in

the case of fast a-rays . .Experiments by GERRITSEN (1946) have

shown that no such temperature variation occurs .

Also in other substances than those actually containing free

electrons, the polarization effect may be of some significance fo r

the stopping already for v << c . In fact, in solid or liquid ma-

terials, the values of hvF '!' will, even for Fz 2 1, most frequently

be of the order of 10 eV and may, therefore, exceed the excitatio n

energies of the most loosely bound electrons . In many cases, one

may accordingly put z2Fe in (8 .5) equal to the number of bonding

electrons, and it is of interest that the atomic interaction pheno-

mena thus not only imply a certain reduction in stopping

power, but also entail a simplification in the theoretical estimat e

of S. Indeed, under such circumstances, it is not necessary t o

consider details of the rather complicated mechanism of mole-

cular binding or lattice structure, since. the electrons involved will

give practically the same contribution to S as if they were free .

b) Relativistic velocities .

As often mentioned in the preceding, the polarization phen -

omena become of special importance in the domain of relativisti c

1 ) Note added in proof. A recent investigation of the stopping power of

protons in metallic Be (C . B . MADSEN and P . VENKATESWARLU, Phys. Rev . 74 . 648
(1948)) has given ine = 64 + 5 eV in good agreement with the above estimate .

Nr. 19
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velocities where, for sufficiently large values of y, they imply a
considerable reduction of the stopping power . In the original
treatment of FERMI, attention was in particular called to the im-
plications of this effect on the interpretation of measurements o f
fast cosmic ray particles .

A direct experimental test of the influence of atomic inter -
action on the stopping power is made difficult by the large energie s
required, but some evidence is given by the measurements o f
CRANE, OLESON and CHAO (1940) of the stopping in carbon o f
10 MeV electrons . These investigators found an energy loss ap-

preciably smaller than corresponding to formula (8 .1), but (cf.
HALPERN and HALL 1940) in good agreement with expressio n
(6.8) which may be applied for the velocity in question . In fact ,
we have F5 1 since the value of hay is about 900 eV and,
therefore, exceeds 4h co o ti 500 eV, representing the order o f
magnitude of the largest significant excitation energies of carbon .

Moreover, the influence of the polarization effects has been
observed by ionization measurements . While it was shown by
HAZEN (1945) in experiments with cosmic ray electrons that, fo r
not too large values of y, the ionization increases logarithmically
with y, corresponding to (8 .1), some indication was obtaine d
by HAYWARD (1947) that, for very large y, the ionization reache s
a constant value . Compared with the minimum in the ionization
for y ,‘-, 1, the limiting value represents a relative increase whic h
was found to conform, within the experimental latitude, with th e
theoretical estimate of the increase in stopping power, given b y
(6.8) and (8 .1) .

This evidence agrees with the considerations of § 8, accordin g
to which the atomic interaction, although of importance for th e
absolute values of ionization and stopping power, should hav e
only minor influence on the ratio between these two quantities . In
particular, it may be noted that this relationship rests on th e
assumption that the major part of the radiative energy los s
correlated with the ionization oscillators is absorbed close to
the path of the particle . Since the radiation represents the re-
lativistic increase in the stopping effects, the observations o f
HAZEN, as well as those of HAYWARD, thus confirm the expecte d
strong absorption .

As regards the interpretation of ionization measurements, i t

38
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may under circumstances be necessary to take into account that

the average energy expenditure per ion, although largely in -

dependent of velocity, must still be expected to increase some -

what with y due to the increasing importance of distant collision s

relative to close collisions (cf . FANG 1946) . As regards the mea-

surements of HAYWARD, however, the increase in energy los s

per ion from y ti 1 to very large y may be estimated, from

FANG ' S expressions, to be of the order of only 1 0 / 0 in a He gas at

normal pressure .
Finally, it may be recalled that the atomic interaction manifest s

itself very conspicuously in the radiative effects accompanying

the penetration of fast particles, a phenomenon which has bee n

investigated in detail since its discovery by CERENKOV (1934) .

Thus, the general properties of the radiation, such as its polar-

ization and the relation (7 .2) between frequency and angle of

emission, have been tested by CERENKOV (1937, 1938) and by

COLLINS and REILING (1938), and also the intensity of the radiation

was shown by the latter investigators to be in accordance with

theory. Recently, attempts have been made to use the radiatio n

as a velocity indicator by applying the simple relation (7 .2) for

the directions in which the emission occurs (GETTING 1947,

FURRY 1947, DIcKE 1947) .

Appendix I .

Reaction in Relativistic Two-body Collision .

In § 6, it was indicated in outline how the collision betwee n

two point charges may in classical mechanics be analyzed b y

tracing the reaction of the struck particle on the incident particle .

We shall here consider this problem in some greater detail, con -

fining ourselves, as in the text, to the treatment of distant col-

lisionslisions or, to be more specific, to the case of p>>

	

In thi s
du v

approximation, the displacement, during the collision, of th e

struck particle, referred to as the electron, is small compared

with p and its velocity remains negligible in comparison with c .

Moreover, we may disregard the change of velocity of the inciden t

particle .
The force which acts on the particle at time t depends on

the motion and position of the electron at the retarded time t '
for which, on account of the simplifications mentioned, we have

t ' = t-
r

= t
c

In the first approximation, the force is simply given by the static
field corresponding to the electron at rest in its original position .
Since, however, this field gives rise to no resultant energy transfe r
to the particle, we disregard it in the present connection . In higher
approximations, we have reactive forces depending on the elec-
tronic displacement and motion . In the case of distant collisions ,
we need consider only linear terms in n, of which there wil l
firstly be the force corresponding to a uniform motion of the
electron. This force may simply be obtained from (4.6) by re-
placing n (t) by n (t') + (t -t ' ) (t ') , representing the position
which would have been reached by the electron at time t if i t
had proceeded from time t ' with uniform velocity . Secondly, the
acceleration of the electron at time t' produces a field given
by (6.2) .

For the total effective force of reaction one thus obtains, b y
means of (I .1),

åK(t)

	

Zle 2

	

{
3 n= r3utp l
r 2 { rc

	

c 2

1

'

where n and its derivatives are to be taken at the retarded time t' :
This expression might, of course, also have been found from th e
general formula for the field produced by a point charge in
arbitrary motion (cf., e . g ., M . ABRAHAM, Theorie der Elektrizität,
3rd ed., Leipzig and Berlin 1914, p . 92) . The energy decrease
of the particle is given by

T - SKUdt ,= Ti -}-T2 + T3 ,

	

(1 .3)

corresponding to the three terms in (I .2) .
By a partial integration one finds

,
Ti = zle2p

1
-

d
dt = zle2p 1 f?~t dt,

	

(I . 4)dt

	

r3 dt
-.

Cy

p2 v2 t 2 •=L

(I.2)
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where, according to (I .1) ,

dt '

	

U U t
- Crr

Consequently, we hav e

.

	

T1 + T2 - z1e2C S4(1+2) dt
c r

and, by another partial integration, again making use

-cc

	

•°°
t - r

z1 e 2

	

t

	

z1 e 2

	

c
T1 -{- T 2 =~ fl r

-T3 - p ~ r dt .

t= -co

Now, from (I .1) it follows that dl = ydt ' (y2v 2t '2 + p 2 )-'l ' and it

is therefore seen, by a transformation of the last term in (I .7 )

to an integral over t ' , that this term vanishes, since ij is an even

function of t ' and since t - r = t ' . Applying (3 .2) for

	

one
c

thus finds from (1 .7) that T = T1 + T2 + T3 coincides with th e

value given by (3 .4) .

An evaluation of T1 , T 2 , and T3 , separately, involves somewhat

more lengthy calculations which lead to rather complicated ex -

pressions, indicating that the division of T into three parts in th e

above manner is not of a very significant character . Putting

ß =
U

one obtain s
c

T1 = T (1-p)

[_(i_ ß 2)Tz = T

	

-I- 2	 ß~ log + ~

	

(I . 8

_ z
T3

=
T

ß (3
-eß2) 2 1 ß2ß 10 1	 +	

1
.

In particular, it is seen that, as stressed in § 6, the term T3 ,

depending on the acceleration of the electron, becomes dominating

for ß--1 .

So far, we have considered only the problem of the energy
transfer but, for the sake of completeness, we shall briefly examin e
also how the momentum transfer in the relativistic, two-bod y
collision is described . The component perpendicular to the pat h
of the incident particle presents no special problems ; in fact, th e
momentum transferred in this direction to the electron was
analyzed already in § 3, and the corresponding reactive force is ,
of course, simply the electrostatic force of the electron considered
approximately at rest . It is of interest, however, that the latter
circumstance is sufficient to show that, in distant collisions, the
momentum transfer in this direction and, consequently, the tota l
energy transfer is uninfluenced by relativity effects .

The problem of the component parallel to the path require s
somewhat more detailed considerations . It is true that, in distant
collisions, the momentum transfer in this direction is very small
compared with that perpendicular to the path but, still, cor -
responding to the slowing down of the particle, there must, o f

course, be such a momentum transfer of magnitude 1 T. From.
v

the point of view of the reaction of the electron on the particle,
this momentum is just that transferred by the force SK, given
by (1.2) .

In the non-relativistic case where actio equals reactio, th e
corresponding transfer . of momentum from the particle to the

electron is accounted for by the difference, due to the electroni c
displacement, in the electric force of the particle, in the first
and last half of the collision. In the relativistic case, however ,

this force in the direction parallel to the path is given b y

z1 e 2 y v t-eEx = (p2 +y2v2t2)'/ s

ôE

	

1
e

dp
dt = T(1-ß2 ) ,

a

	

(I .10)

where T is given by (3 .4). Thus, for ß

	

1, the electric field

accounts for only a small part of the momentum transfer .

(I .5)

(1 .9)
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The remaining part is transferred by magnetic interaction . In

fact, the magnetic field of the particle, which is directed per-

pendicular to the plane containing the electron and the path o f

the particle, equals SEy , where Ey is the component of the electric

field perpendicular to v . The transfer of momentum through

magnetic forces is, thus, given by

c ßEy dt=-Tß2

since the integral of e Eyi7 d t just represents the energy transfer .

It should be stressed that the decisive part played by th e

radiative field of the struck electron in the slowing down of th e

particle, of course, in no way implies that the energy actuall y

radiated during the encounter constitutes a major part of th e

energy transfer . In fact, this energy will be given by

2 e 2

W = 3 c s S2dt,

	

(I .12)

neglecting the acceleration of the incident particle, the mass o f

which we may, for simplicity, consider to be very large. Intro-

ducing for e- the force divided by ,u, one obtains by a simpl e

integration

2 e 2 zie4y2
\(P+Y2V2ts)3dt
	 p2+U2 t 2 	 e 2

	

(
	 	 1

)W

	

3 c3
,u2

	

= T 8
.,uc2P

ßy 1+ 3
y2

.(I .13 )

Since, in distant collisions, p is extremely large compared wit h
2

the classical electron radius	
e

2 , the value of W will thus be
,u C

negligible compared with T. For excessively large values of

y, where the field of the particle at distance p is contracted t o

e 2dimensions comparable with 2 , the situation would be different,
,u c

but such problems lie outside the scope of the simple classical

picture of two colliding point charges .

Appendix II.

Application to Penetration Problems of
Formalism of Radiation Theory.

As mentioned in § 7, it is possible to treat also ponderable
media by the method, particularly well known from quantu m
electrodynamics (cf., e . g ., W. HEITLER, Theory of Radiation I .6 ,
Oxford 1944), of dissolving the field in plane waves, and we shall
here consider its application to the problems of stopping power
and Cerenkov radiation. This method implies an expansion in
Fourier components with respect to the spatial variation of th e
field and may, therefore, not always be well adapted to the
case of dispersive media . Just fora field produced by a uniformly
moving charge, however, the spatial components will also b e
harmonic in time .

We shall first treat the Cerenkov effect which is the mor e
naturally suited to the formalism i) Since this phenomenon is
connected with the rotational part of the field, we consider th e
transverse part of the vector potential which we expand in th e
familiar manner

At, -

	

q) A .,t + q'i A~ A,l = j/ 4 v c2

	

e i (xz r ) , (11 .1 )
A

where q* and A* denote the complex conjugates of q and A. The
field is here assumed to be enclosed in a volume Q, and the unit
vector e t gives the direction of polarization. We follow the usua l
procedure in which terms corresponding to both xA and
- - x_2 are contained in the summation . The amplitudes q

are then not uniquely defined by (II .1), but are determined by
certain extra conditions imposed on their time dependence .

On account of the aforementioned difficulties in treating quite
generally the case of dispersive media, we assume in the firs t
instance the substance to have a constant value of r . Neglecting
specific magnetic properties of the medium, the field is given by

s â 2

	

4 ac i
AA-

c2 -at'
A _

-
c ,

where i denotes the current density corresponding to the moving
particle . Multiplying this equation by Al* , and integrating over D,

one thus find s
1 ) Cf. Postscript (iv), p . 51 .

(II.2)
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(II .3)

where x denotes the position of the particle, considered to be a

point charge . The frequency cut is given by

x2 C
w 2

1/ E

We now require that the free waves associated with q2 must have

the time dependence e-I02t, which condition leads t o

q,t + w~ q2 = 2c (i+) (v,4(x)),

	

(I1.5)

an equation describing an oscillator in forced vibration .

If the particle moves with constant velocity, we may pu t

x. = vt and the right hand side of (II .5) is harmonic with

frequency (xA, v) . The equation (I1 .5) then reduces t o

	 z l e	
q A +

	

q2 = 2ce{(x,~,v)}(1+-
	

2
) J (v, A~(vt)) . (II .6)

In this particular case, there is no difficulty/ in treating dispersiv e

media ; as indicated in (I1 .6), one simply inserts for e the valu e

corresponding to the frequency (xx, v).

In vacuum, it follows from (11 .4) that w ,t is numerically greater

than (x2 , v), since v < c. The solutions to (I1 .6) are, therefore,.

simple forced vibrations of constant amplitude. However, in a

ponderable medium (or in the imaginary case of v > c) we may

for certain wave numbers have w2 = (x2 , v), corresponding to

resonance between the exciting force and the oscillator . In this

case, the oscillator will continue to absorb energy, correspondin g

to an actual emission of radiation . This effect just represents th e

Cerenkov radiation and it is also seen that, according to (11.4) ,

the condition for resonance is identical with (7 .2) .

The treatment of an oscillator in resonance presents certain

mathematical intricacies which may be overcome by introducing ,

formally, an infinitesimal damping . A more convenient re -

presentation is obtained, however, by making use of the Dirac

8-function . The general solution to (II.6) may thus be written ,

symbolically,

Nr. 19 4 7

zl e

	

1 1

qA
-

(cå22c u0 2 e {(x2 , v)}
-f-i~c8 (w~-(x,1v))) (v,A;t (vt)) , (1I .7)(x,l, v)

as may be easily verified l) .

In particular, we shall use the expression (I1 .7) to determine
the force St,. acting on the particle . For symmetry reasons, th e
Lorentz force obviously vanishes and we . have, thus ,

z ec
A . (v t) = zce ~

gq2.A2 (v t) J- q~ A~ (v t)
A

which gives, by means of (II .7) and (I1 .1),

_ -4a2zie2 S2 -I Ze,t (e,t ,v)

	

({
~~ )v)} b(w~,-(x,~,,v)) . (II .9 )w2 e(x2

Summing first over the two directions of polarization and intro-
ducing (x t , v) = xAvy, we get in the usual manner in the
limit of infinitely large volumes S2

m

	

D' 12 S
:2dxSdy

	

-y2)å(w-vy), (I1 .10 )
y}

where S t,. is the component of Str directed against v . The other
components vanish for symmetry reasons .

In evaluating the integral (1I.10) it is convenient to change

to the new variables w, defined by (II .4), and z = u yVe{xvy} .
c

Since vdxdy = dwdz, one finds

SU = 22 Cwdw zdz(1-
v 2£

{
2wzI/

Z	 	 } S(1 -z) ,

	

(II .11 )
o

where the last integral is to be extended over values of z fo r

1) It may be shown that the equation 1 + coåx = Ic(t) with the boundar y
condition x = = 0 for t = - co , in a Fourier expansion has the solutio n

xw_kw	 1	 t	 1

	

1

2w w _ w +i~så(çuo -
co

	

+w -ins(wo + u>)l ,
0

	

o

	

p

where x(t) = xw e -iwt dw and similarly for k(t) .

z e
(42 + 4*2) +w~ ( q 2

+g*d)

	

ec (v, A; (x)),

Str = -

- 1
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c z
which - 1 <	 < 1 . This integral vanishes, except for

vV s{wz}
frequencies for which z = 1 is contained in the integration inter -

val, i . e . for which v Ve {w} > c .

Thus, one gets finally

z 2 e 2St,

	

S(l_c2 ) WcW(I1.12)

which is just the expression given by FRANK and TAMM (1937)

for the Cerenkov radiation and its spectral distribution . For the

simple dispersion formula (7 .3) the expression (II .12) may easily

be evaluated, and one finds the values given by FERMI (1940)

which, as mentioned in § 7, represent the relativistic increase i n

the stopping formula .
The non-relativistic part of the stopping power is, as discussed

in § 7, determined by the irrotational part of the field . It should

be emphasized that the application to this problem of a formalis m

analogous to that used for the Cerenkov effect is somewhat

artificial but, for the sake of completeness, we shall give a brie f

account of the procedure .

Choosing, for convenience, a gauge in which the vecto r

potential is purely transverse, the longitudinal part of the fiel d

is given by the scalar potential q', for which we hav e

where e denotes the charge density of the particle and where ,

like for the transverse field, we consider first the case of constant

e . Expanding 99, one gets, in analogy to (I1 .1) ,

q' =

	

q 6 Ø, + geøc Ø6 = 1/4 7E c 2 52
-'1 :

el
(xo'

	

(II .14)

and may obtain, by considerations similar to those leading to

(II.5),

sqc = 2 z2c2 (1+wA d)Øc(~x) ,

where WA represents the effective frequency defined by (4 .4) . As

discussed in § 7, only free oscillations of this particular frequency
can be excited in the medium, and we have, accordingly, define d
the variables q r so as to contain terms corresponding to fre e
waves of the type e vi 'A t , only. In case of a uniformly moving
particle, we get from (11 .15),

s{(x,v)} qc = 2 xGc2 ( 1 + (xwA )) Ø6 (v t)

	

(II .16)

where, like in (II .6), we have taken into account the dispersion .
Now, the force acting on the particle is given by

Slong = - zle grad 99

	

x,(qffØc (vt) - gcC(vt)) (II .17)

and, therefore, vanishes except for the contribution from the
singularity in the terms representing wave-numbers for whic h
s = 0. It was to be expected, however, that only these components
give rise to a stopping force, since the energy transfer to the
medium takes place over the frequency WA for which just s = 0
(cf. . § 7) .

In the neighbourhood of w

	

W A we may write the dispersio n
formula (7 .3), by means of (4 .4) ,

w 2
A
-w2

~ -

and, in complete analogy to the symbolism used in (II .7), we
thus get

z e v2

	

1
q u. = - 2 wA x: c2

(WA -
(x,

v)
+ in å ((DA- (x,, v))) (v t) • (1I .19)

Introducing in (II.17) one finally gets, similarly to (II .10) ,

Slung = zi e2v2
So

dx
Sqdy-å

(wA- vy) =
ze v 22

	

dx1

1

V 0 A

This expression, however, ceases to be valid for very large x ,
D . Kgl . Danske Vidensl . Selskab, Mat.-fys . Medd. XXIV, 19 .

	

4

v2

(II .20)
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since the whole procedure applies to distant collisions only. In

analogy to § 4, where we considered the medium outside a certai n

distance q from the path of the particle, we may here introduce

a cut-off at some wave number xmax . Choosing xmax -- 1 it is seen ,

by means of (3 .6) and (4 .1), that (II .20) coincides with (4.11 )

as closely as could be expected, considering the arbitrariness i n

cut-off procedure .

The present investigation has been carried out at the Institut e

for Theoretical Physics, Copenhagen, and the writer wishes to

acknowledge the great benefit he has derived from the continual

interest of Professor NIELS BOHR in the work . He is also grate -

ful to Professor C. MØLLER for helpful discussions and to M . Sc .

BØRGE MADSEN for preparing the figures .

Postscript Added in Proof .
Since the completion of the present manuscript, a number of inve-

stigations dealing with the same topics have come to the notice of th e

writer ; some of these have been published only quite recently, while

others were published already during the war, but the respective per-
iodicals were not available in Copenhagen at the time in question .

(i) G . C . WICK (Ric. Scient . 11, 273 (1940), ibid . 12, 858 (1941) ,

and Il Nuovo Cimento 9, no . 3 (1943)) has considered the extension o f

FERMI ' S calculations to the multi-frequency model (cf. § 8) and, o n

the basis of a dispersion formula of the type (8 .2), has worked out an
expression for the reduction in stopping power, easily susceptible t o

numerical calculation for . any given set of dispersion frequencies . The

result had been obtained independently by O . HALPERN and H. HALL
(Phys . Rev. 73, 477 (1948)), the publication of whose work was delaye d

by the war. These latter authors moreover have deduced an explici t
formula for the stopping power, valid under certain simplifying assump -

tions which are fulfilled in most cases of interest . This formula just

coincides with (8 .5) ; in fact, the approximation involved is equivalent

to that underlying the analysis in § 8 . It may be noted that the author s

start from a dispersion law which, in contrast to (8 .2), takes int o

account the Lorentz-Lorenz correction (cf. p. 12), but it would see m
that, in the approximation considered, this correction maybe neglected .

(ii) HALPERN and HALL (loc . cit .) consider also the influence of th e

damping of conduction electrons and point out that the effect, although

in general negligible, may be of significance in special cases like tha t

of carbon, where the resistance is excessively large . From the line of

5 1

approach adopted in § 8, this effect is readily taken into account ; in
fact, it follows from (6 .1) that, as regards the stopping power, th e
conduction electrons are equivalent to dispersion oscillators of effectiv e
frequency we . Thus, the phenomenon may be said to be actually
covered by (8 .5) .

(iii) The influence of the polarization on the stopping power ha s
been computed for various substances by HALPERN and HALL (loc . cit . )
on the basis of approximate dispersion-conduction models derived fro m
X-ray ionization data . As pointed out by these authors, this procedure
involves a certain latitude but, due to the relative insensitivity of th e
stopping effect on the exact model, the results may be expected to b e
reliable within a few per cent . More detailed estimates have been made ,
for a number of substances, by WICK (loc. cit .), who has employed X-ra y
data as well as theoretical calculations on the basis of the Hartre e
method in' the establishment of appropriate sets of oscillators for th e
atoms in question .

(1V) V. I. GINSBURG (Jo .urn . of Physics II, 441 (1940)) has treated
the Gerenkov radiation by a Hamiltonian formalism which is ver y
similar to the procedure applied in Appendix II . Such a formalism can
be immediately quantized in the usual manner, and GINSBURG has
developed a quantum electrodynamics which describes, in a phenomeno -
logical way, the radiation field in a ponderable medium. In particular ,
GINSBURG verifies that the average radiated energy is practically equal
to that given by the classical formula, a result which was to be ex-
pected from quite general arguments (cf . § 2) .
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