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§ 1. Introduction.

CONTENTS he theory of the penetration of fast charged particles through

matter was originally developed on the basis of an analysis

Introduetion e tiowe and dngant coivions 11111111 6 of collisions between the moving particle and individual atoms?.

Collisions between Izartide j_‘nlitisi?f,g; %t;rﬁci(; oty mosuch a treatme.nt, the influence of phase relations between the

‘g‘ttglr)rgﬁlgm;ir;gl?; rg;tz;)ix;xsecoutaining free electrons .............. 16 @ effects produced in the atoms along the path and, in particular,
Atomic interaction for relativistic particle velocities................ 18

Cerenkov effect and its relation to the stopping problem ...........
The atom as a general dispersive system..............ccoermnnvnns
Estimate of stopping power for heavy SubsStances . ..o e
. Comparison with experimental EVIAENCE o ve v ven i rmn e

the resulting coupling between the different encounters is disre-
garded. This approximation will often be justified, but pheno-
mena do exist for which such atomic interaction effects are of
essential importance.

Thus, it was observed by CERENKOV (1934) that very fast
ectrons, when passing through dense materials, give rise to a
eculiar radiation the properties of which reveal that one has to
0, not with independent emission processes by individual ex-
ited atoms, but with a radiation emitted coherently by larger
ortions of .the substance. A theory of this phenomenon was
eveloped by Frank and Tamm (1937) and by Tamm (1939), who
iowed its immediate connection with the fact that the velocity
f the electrons may exceed the rate of propagation of electro-
Iﬁagnetic waves in the surrounding medium. Jusl on account
the interplay of the atoms, the phase velocity of such waves
may indeed, over certain spectral regions, be smaller than the
elocity of light in vacuo. '

The problem of a possible influence of atomic interaction on
ihe stopping and ionization of fast particles was raised by Swann
38), who pointed out that the polarization ‘induced by the
rticle in the matter through which it passes will give rise to
certain screening effect which might, under ecircumstances,
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DA comprehensive treatment of this subject has recently been given by
oHR (1948) and, in the following, we shall often refer to this survey for fuller
fiormation regarding general aspects of penetration theory.
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reduce the rate of energy loss. The question was treated in detail f

by Ferui (1939, 1940), who found that the phenomenon may be 3

4 taken into account. For particle vel
of great significance for very fast particles, but is in general ] . yelocities close to that of light,

4 the atomic interaction presents new
negligible for non-relativistic velocities. Still, there are exceptions i > ppesS pomnocted with the

4 retardation of the forces. This prob
to this rule and, in particular, it has been shown by KrAMERS proplem is discussed in outline

(1947) that the stopping power of metals is always essentially § tivistic two-body problem considered in Appendix I, and a simpl
1 e

{ interpretation of the main results of Fermi is obtained.

influenced by the polarization effect.

In the above-mentioned treatments, the matter penetrated is
described, in a macroscopic way, as a continuum and since,
moreover, on account of the dispersive properties of the medium,
which are essential for the phenomena, the electromagnetic fields
are resolved in harmonic components, the connection with the
simple theory of atomic collisions is somewhat obscure. For this
reason, we shall in the following aftempt a. treatment of ‘the
coupling between the encounters from a microscopic point of
view so as to bring out as clearly as possible the relationship
to ordinary penetration theory. Such an approach is also found
to be well suited to obtain simple generalizaﬁons of FERMI'
formulae.

As a preliminary, we shall in § 2 briefly discuss the arguments
which justify a distinction between close and distant collisions of
the particle with the atoms in the substance. The mutual inte X
action of the atoms is of significance only in the distant en
counters, the treatment of which is especially simple, since t
description may be based entirely on classical mechanical pic
tures. A few main principles from ordinary stopping theory,
use in the following, are reviewed in § 3, in particular with
respect to the influence of the atomic binding forces wh
effectively limit the radius of action of the penetrating partlcle
giving the collisions beyond a certain distance an adiabati
character.

In § 4, it is shown how the atomic interaction, from the mlc
scopic point of view, may be 1e6arded as a further ‘screeni
factor and, especially in the non-relativistic case, may be trea
in close analogy to the effect of the atomic binding forces.'Mo
over, a treatment of the energy loss of the particle is given,
which the stopping power is described as a force with wh1
the atoms in the medium act on the moving particle. The spe
‘case of materials containing free electrons is cons_ldere

5

closely in § 5, where also the influence of damping effects is

in § 6 with reference to correspondmg modifications in the rela-

The Cerenkov radiation and its relation to the stopping power
is dealt with in § 7. From the microscopic pomt of view, the
phenomenon simply implies that part of the energy which is
intermediately transferred from the particle to the atomic elec-

trons is subsequently emitted as coherent electlomagnetlc waves.

In a macroscopic description, the energy loss of the particle falls
naturally into two parts, the first of which is absorbed by the
substance in the neighbourhood of the path, while the second
is directly transmitted to larger distances in the form of radi-

ation. The distinction leads to some general relations regarding

the stopping power for relativistic and non-relativistic particle
locities. In this connection, it is shown in Appendix II how
the stopping problem may be treated by the formalism of radia-

tion theory well known from quantum electrodynamics.

While, in the first part of the paper, the atoms are treated as

smple dispersion oscillators of a single frequency, more general

oin.ic models are considered in § 8. In this case, exact cal-
lations are rather complicated, but it is shown how the analysis
§ 6 makes it possible to obtain a general survey of the phe-

B lomena and leads to simple approximate formulae. In §9, an

ttempt is made to deduce comprehensive expressions for the in-
uence of atomic interaction on the stopping power of heavy sub-
ances. Finally, some experimental data are discussed in & 10.
mong the more important applications of the theory is the
opping power of metals and the stopping and iomization of

ery fast particles; there appears to be satisfactory agreement
'1th the available empirical evidence.
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7
moreover, for p>> a,, the perturbing field is approximately con-

The collisions between a charged particle and an atom must, iliﬁlsovc?fr S&;’;olmllec I?llen;]ins{onls » the -en_cou.nter may be trea‘ted by
of course, in general be treated in configuration space by means | known, e. g E' om dis 2::;03 tcl;) nmde:la;tlons. In .fact, a8 1 w.ell
of proper quantum-mechanical methods, but for a large varie’Fy 9 respect’ to ::verage enl?ar ‘:b eo?z, e zzitom. will behave, with
of problems it is permissible to use a simplified procedure in ; electromagnetic field it gzn : :orpll'(;(n and with respect to .the
which the particle is described as a centre of force moving along harmonic oscillat generates, like an en.svemble ?f t?lassmal
a well-defined path. This description was proved by MoTr (1931) ' . . . seillators corresponding to the various excitation and

. o 1egs 4 lonization possibilities.

to lead to the same atomic excitation probabilities as the more 4 In order to iustify that clo List )
general treatment, in case of particles of mass large compared | have stll to m;ke Zn estic ts © Cg tLSIOHS are dlsregarfied, we
with that of the electron and energy great in comparison with # the distances at which them:te o et orde'r of magnitude of
the atomic binding energies. Actually, it is a sufficient condition § sienificant. This interaction .Omlf m eraCtl(')Il effects become
for the adequacy of the procedure that the momentum of the fatbomic el«;dctrons during th amsﬁi Jrom th‘e disp lacement of the
incident particle be large compared with the momentum changes & ., . . dipoles ang " eisco ‘(S-;OI;’ ;Vthh turns the neutral
involved in the collision. In fact, the effect of the collision on @ cting on an atomi’c eleciron W(?;{lben that the ensuing for(::e K
the atom will, under such circumstances, be approximately in- ‘moment per unit volume mult'l 5 de ]:OIEP arilble W{th the dipole
dependent of the inertial properties of the particle which, thus, . [ zie and v denote the ::har elp led yl lfwe e;:tromc cl.lgrge —e.
acts as if it were infinitely heavy. The condition in question, which 1 the electron mass, the dis fac:n :e (;mh ¥ 01 th‘e partlcl.e, and
is essentially equivalent to the requirement that the wave-length g .. = o, o fr’ee e tfons n};en fot}f ¢ edectlons d;”ng the
of the particle be small compared with atomic dimensions, is also, & 3.3)) and te,nd to b 1 » DE 0 e order of ze //“’ (_Cf-
from the possibility of representing the particle by a wave-packet , o be smaller if account is taken of the binding
) . . . ; orces. We thus have
immediately seen to ensure the validity of the simple method

As regards the problem of the mutual influence of the atom
in the stopping substance, the more violent collisions involvin
large momentum transfers may obviously be neglected and, in
the present connection, we may thus treat the penetrating particl
as moving along a fixed path. The atoms may then be specifie
by their distance from the path, the so-called impact parametel
p; as we shall see later in this paragraph, the atomic int
action phenomena will be of importance only for p >> a,, wher
a, denotes the “‘radius’ of the hydrogen atom, which is a suitabl
measure for atomic dimensions.

In such distant collisions, the effect of the impact on the aton
will, in general™, amount to only a small perturbation and. sing

§ 2. Separation between Close and Distant Collisions. '

~ Zlez
K= Py ne?, (2.1)

where n denotes the number of electrons per unit volume. Now,

. ] - .3 . -
S;ren in dense materials, n never exceeds a, ® and, introducing

S 2 . e I .
. #v5, where v, is the ““velocity” of the electron in the hydrogen

atom, it follows that K will be small compared with the direct

: ) 2
rce of the particle, z%, at any rate if
. ’ pr

12
p<ag . (2.2)

1) For very large values of the charge of the incident particle combined Wit
a relatively small velocity, special considerations areé necessary since the
condition p ))«, may not be sufficient to justify a perturbation procedure. Althougl
in this case, one may proceed by much the same methods (cf. N. Bonr I
p. 84), we shall disregard such problems in the present connection, since
may be shown to be quite insignificant under circumstances where the ato
interaction phenomena are of importance.

hus, for v large compared with v,, representing the order of
agnitude of the “‘orbital velocity”’ of the muost loosely bound
ectrons in atoms, it is seen that the polarization effect is of
portance only for p >> a,. In this case we may, therefore, cor-
.sponding to the above argumentation, divide the collisions into
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two gfﬁup_s—with p <gq and p > ¢, respectively, where ¢ is chosen .'
in such asmanner that, for the first group, the atomic interaction 3

2\

- . o 2\—" S
where 7 is the displacement and where y = (1 — i> . Bysimple

c2
effect is negligible'and ordinary penetration theory applies while, integrations, (3.1) gives
for the second group, we are dealing only withv distant collisions, _A . . 7,02 oyt L
which can be treated by classical mechanical methods. ‘ h= 1po (1‘ + Vm) o @32)
For particle velocities comparable with or smaller than vy, & and | :

the penetration phenomena change essentially in character (cf.
N. Bour 1948). In such problems, one need in first approximation
consider only the influence of the particle on those atoms through 4§
which it actually passes, and the interaction effects will only 1
constitute a minor correction, the taking inte account of which
would even be a rather spurious refinement due to the difficulties
of an accurate treatment of the penetration problem for very slow
particles. Throughout the following, we shall therefore confine
ourselves to the case of v>) p,.

z€® (l/ YRt yvt) : ’

H=-——\l/ 14—+ : 3.3

-yt P p 5

As is seen from these expressions, the encounter may be ap-
~proximately characterized by an effective *‘collision time” of the
order of p/yv, during which the acting force is comparable with
ze*y/p*. a ;

From (3.2) we get in particular

' et 1

ot ? (34)

, -
= gu(n)fw =

for the energy transferred to an electron in a free collision. Since
the stopping power of a substance is proportional to the integral
of Tpdp, expression (3.4) cannot, however, be applied for arbi-
trarily large values of p, and it is thus essential in penetration
theory to take into account the factors which tend to restrain the
electrons from moving freely. These factors, acting as a kind of
screening, may be said to determine a “‘radius of action™ of the
particle, representing an upper limit Pmax. below which the simple
expression (8.4) applies. At larger distances, the collisions acquire
-an increasingly adiabatic character due to the influence of the
screening, and the energy transfer will be small compared to that
bf free encounters. For the energy loss of the particle per unit .
“'path, originating in collisions with atoms for which p > ¢, we
have accordingly

§ 3. Collisions between Particle and Single Atom.

Before turning to the problem of the mutual influence of the
atoms in penetration phenomena, it will be convenient to review
briefly some of the main aspects of a collision between a fas
particle and an isolated atom. If, in the first instance, the atomic
binding forces are disregarded, we have a pure two-body problem
which, in case of distant collisions, is further simplified by th
fact that the displacement of the- electron during the actual
encounter will be small compared with the impact parameter
Moreover, in such encounters, the momentum transfer is alWay
small compared with zc, where ¢ is the light velocity, and w
may, therefore, neglect relativity effects as regards the electroni
motion.

From symmelry reasons, it follows that the final velocity

Dmax .
; p v
the electron will be practically perpendicular to the path of th S, = IlS T-27pdp = Blog % (3.5)
particle, and for the motion of the electron in this direction !

thus have, by means of the well—knqwn expression for the elec
field surrounding a uniformly moving point charge, '

z:e°py

T e

.
po (3.6)
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In the following, a main problem will just be to examine the
various screening factors and estimate the corresponding limits
of free energy transfer.

In collisions between the particle and isolated atoms, the -only
screening effect arises from the influence of the atomic binding
forces. As mentioned in § 2, we may account for the binding by
treating the atom as an ensemble of oscillators of frequencies
corresponding to the various transition possibilities. For simplicity,

however, we shall in the first instance consider all oscillators’ ]

to have the same cyclic frequency w,; in § 8, we shall return to
the problem of more general atomic models.

Besides the force of the particle, there will thus be a binding
force of magnitude uw?7n, acting on the electrons. Of course, the
latter force will eventually, when the particle has passed, deter-
mine the state of motion of the electrons, but it will be negligible
during the actual encounter and, therefore, of no influence on
the energy transfer, provided only

pe®n { (3.7)

for[t]z')‘—f:—), or, according to (3.1) and (3.3), if

pld, = . (3.8) "

a

The limiting distance d, just corresponds to a collision time com-
parable with the proper period of the oscillators and it is, indeed,
evident that, in case of shorter impulses, the energy balance is
independent of the binding forces. For collisions of larger duration,
however, these forces will essentially reduce the energy transfer
In fact, in the extreme case of p>>
high approximation pass through a succession of equilibrium
states and, finally, be left in its original position.

A more detailed calculation of the energy transfer to an

electron bound in a quasi-elastic field of force leads (N.BOHR .
1913, 1915) to the following expression for the stopping effect in 4]

distant collisions

qo, 2 c?

S,=B <logm——1—£>, (3.9)

d,, the electron will with'
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where k is a numerical factor equal to 1.123. Formula (3.9) is
seen to coincide with (3.5) for a value of pp., closely equal to
d, given by (3.8). It may be noted that, in the deduction of (3.9),
it is assumed that ¢ may be chosen small compared with d,.
For the treatment of the atomic interaction problems it is re-
quired (ef. § 2) that ¢ > a,, and the two conditions are thus
compatible only for d,>> a,. The problem of larger frequencies
w, for which d, = a, may, however, be neglected in the present
connection, since in that case the atomic binding forces produce

a scfeening already at distances where the interaction effects
are negligible.

§ 4. Atomic Interaction for Non-Relativistic
Particle Velocities.

" Turning now to the problem of the mutual interaction of the
atoms in the stopping material, we shall see that this phenomenon
may be characterized essentially as a further screening effect. In
fact, when the electrons during the passage of the particle are
displaced from their equilibrium positions, the medium is polar-
ized- and, hence, each atomic electron will be subjected to a
restitutional force. from the surrounding material.

It will be convenient first to contine ourselves to the more
simple case of non-relativistic particle velocities, where the pro-
blem can be treated quite analogously to the influence of the

. internal atomic binding forces discussed in § 3. Introducing the

field vectors F and I, we note that, in the quasi-electrostatic
approximation corresponding to » {{ ¢, we have rot I = 0 and,
therefore, also rot D = 0, assuming the medium to be homo-
geneous and isotropic. This last relation will hold irrespective of
the dispersion properties of the substance. Thus, D is determined
from the same equations as, and must equal, the field sur-
rounding the particle in vacuo. Now, the average electric field
in the medium is given by E = D— 4z P, where Pis the dipole
moment per unit volume and, consequently, the polarization

produces a force on the electrons, equal to 4me P.

Since P is given by —ne&, where £ is the electronic displace-
ment vector and n is the density of electrons, the polarization
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force is seen to be of the quasi-elastic type, corresponding to a
cyclic frequency » given by ‘
4 mne® Lo
V2= 4.1)
P (
and representing the frequency with which “‘free” electrons may
oscillate in the medium. The influence of the atomic interaction
forces on the motion of the ele¢trons may, thus, be treated exactly
like the effect of the atomic binding forces and will, in partlcular
imply a screening at a distance d, given by

, B
d, =~ (4.2)

in analogy to (3.8) for.y = 1.

It should be noted that the total force with which the medium
acts on an electron may differ from 4ze P, corresponding to the
well-known fact that the actual average field ¥ to which. the
electrons are subjected will, in general, deviate from £. In simple
dielectrica like gases, where the neutral molecules may be regarded
as independent entities, it may, thus, be shown that F equals

4 7 . . :
E + Y P, and, also in denser materials, the same relation between

F and ¥ will hold in certain cases. Still, it is of particular interest '

for the following discussion to note that, if the electrons are not
bound to certain fixed positions, but move all over space, as in
metals or ionized materials, ¥ and £ will coincide (cf. DARWIN
1934). More generally, we may put F' = E + 4wa P, where a is
a numerical constant characteristic of the structure of the sub-
stance. Since, however, the additional force ¥ — K may be
ascribed to the effect of the atoms in the immediate neighbour-
hood of the electron comsidered, it will be convenient to include
it in the atomic binding force — yw&. If, thus, @ represents
the binding frequency of an isolated atom, we have,

where » is given by (4.1). As is well known from dispersion

theory, w, will then represent the absorption frequency of the :

substance.

w? = a)(’lz—avz, (4.3}'
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The combined influence of the atomic binding and the polar-

ization may be treated by introducing an effective frequency w4
defined by

w? = ol 4 2 (4.4)

to replace w, in formulae deduced for isolated atoms. In par-
ticular, the stopping power may be obtained in this manner from
the non-relativistic approximation of (3.9).

In order to estimate the significance of the atomic interaction
effects in stopping problems, we must thus compare » with the
atomic frequency w,. From (4.1) we have, introducing the elec-
tronic velocity v, and the radius e, of the hydrogen atom,.

»? 4nna;(uo>2. ‘ | -. (4.5)

Qg

v . .
Now, aJ represents the order of magnitude of the frequencies of
. 0

the most loosely bound electrons in atoms and since, even in
dense materials, naj is always smaller than unity, it follows that,
compared with atomic frequencies, v will never be very large
and, in most cases, actually quite small. It is just for this reason
that, in the non-relativistic problem which we have hitherto con-
sidered, the atomic interaction effects are usually of only secondary
importance for the stopping power. Still, as already mentioned
in the Introduction, there are exceptions to this rule. In fact, for
the free electrons in metals or ionized substances, the binding

 frequency vanishes and, in this case, which we shall discuss more

closely in § 5, the polanzatlon effects become of dec1swe im-
portance.

In the present paragraph, we shall further show how the stop-
ping power of a substance may be direclly described as a force
with which the medium acts on the moving particle?. This
alternative way of approach also allows of a simple deduction
of the stopping formula which corresponds to (3.9) when due
account is taken of the polarization eflects. For illustration we
shall, however, first briefly con51de1 the analogous problem for
the two-body collision.

) Thls method bhas been outhned in a more qualitative way by N. Bomr
(1948, § 3.1).
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Instead of calculating the energy loss of the particle from the
momentum transfer to the electron, one might in fact directly
have estimated the reactive force of the struck electron. Thus, in
the non-relativistic case considered here, the displacement of the
electron implies that, taking the particle to be positive, the de-
celeralive force in the last half of the collision more than com-
pensates the acceleration in the first half. That part of the
reactive force, directed against the motion of the particle, which
is produced by the electronic displacement is given by

3 z;e? npuot

0 ze’vt ‘
0K — L - Gadum, (4.6)

BTG

and, by introducing 7 from (3.3), putting = 1, one finds for
the resulting decrease in kinetic energy of the particle

oo o

22 et 2 dt
(S dt = 3 1 3 T = .
Kuv e v i+ v T (4.7)

—_—C

as given by (3.4).

In case of a particle penetrating through a substance, it is
in a similar way the polarization which acts as a brake on the
particle. If the medium is homogeneous and isotropic, however,
no free charges will be generated (div. P = 0) except at the
position of the particle. Inside the medium, therefore, edch
volume element remains neutral and gives rise to no resultant
force, but along the path of the particle opposite charge will bé
accumulated. Of course, such considerations depending on average
quantities like free charge cannot be applied to the material in
the immediate neighbourhood of the particle but, for the pur-
pose of considering the interaction between the particle and the
medium at distances large compared with atomic dimensions,
we may imagine removed a cylindrical tube of radius ¢ >> ay
around the path of the particle. The force S, with which the
more distant part of the medium acts on the particle may then:
be calculated from the attraction of the free charges induced on
the inner surface of this cylindrical tube.

The surface density ¢ of these charges equals — eny. For the
value of #, however, we may not use the simple formula (3.3);

4 nr.19 - 15

since we must take into account the presence of a harmonic force

4 v
A of frequency w,. If, however, we choose g <{{ oo an electron

A

- at the surface will, during the time when the direct force of the

particle is active, behave as if it were free and, assuming it to

- be at rest before the encounter, we get from (3.3)

z12 m
—o{(—x) = 4.8
o(x)—o(—x) = 2e en g (4.8)
where x = — vt denotes the distance of the electron from the

instantaneous position of the particle, measured in the direction

of v. The expression (4.8) will hold for |x| {{ —C:)U— but, for larger
A

values of | x|, the harmonic force becomes of importance. Since,
'ﬁowever, at such large distances the direct influence of the
particle on the electronic motion perpendicular to the path is
negligible, (4.8) may be simply generalized to

ze? v Tw
2en%~sin( A). (4.9)
poto,q v

o(x)—c(—x) =

or the force acting on the particle, we thus have

£ w© | wa
¢(x) —0 (—x) v xsm( v >

(xz + qg)3/= 27thdx-— Ba;l' 0(1:2—‘—(]2)3/“
0

= Zye
where B is given by (3.6). This integral can be expressed in terms

. v
of a Hankel function and gives asymptotically for g {< P

A
kv

w,q

S, = Blog (4.11)

corresponding to (3.9) for » ({c, if only w, is replaced by w,.
" The results of this paragraph, expressed by the formulae
(4.1), (4.4), and (4.11), correspond for non-relativistic velocities
to those obtained by the more general treatment of FErmx (1940),
who, in order to cover the case of v v, proceeds by a formally
ther different method in which S, is estimated as the flux of
the Poynting vector through the surface of the cylinder of radius ¢.

dx, (4.10)
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§ 5. Stopping Power of Materials Containing
Free Electrons.

As already mentioned, the atomic interaction effects are, for
non-relativistic particle velocities, of special importance if the
substance contains free electrons. Of particular interest in this
respect is the stopping power of metals, where the conduction
electrons may to a large extent be regarded as free (cf. § 10a).

A few remarks would seem required to justify an application
of the considerations in the previous paragraph to problems of
free electrons. Indeed, we have here in a sense to do with in-
finitely large atoms and the very definition of distant collisions,
as encounters with impact parameter large compared with atomic
dimensions, is therefore, strictly speaking, ambiguous. Still, to
our purpose, it is not essential that the electrons are able to move

freely throughout space, but we may imagine them confined within

limited volumes of linear dimensions «, if only the corresponding

oscillation flequency, which will be of the order of
ma

compared with w,. This condition may be fulfilled and a at the

same time chosen small in comparison with the screening

distance —, provided #v?>)> hiw,. For smaller particle velocities,
Wy

the stopping mechanism here considered is of only minor signific-
ance (cf. the concluding passage in § 2).

In the estimate of the stopping power, it must be taken 1nto

account that also other effects than the polarization will tend to
restrain the electrons from moving freely.

with ions or electrons in the medium. The influence of these col

lisions may be compared with the effect of a frictional force:

S . B : 1. » :
— pwe§, where § is the velocity vector and where — is a measure

g .
of the time interval in which the electronic momentum is sub
stantially changed. In particular for metals,
from the theory of conduction that
E _ \
wg =0,

N

where g is the specific resistance.

§ frictional force can influence the collisions only for p = do = —.

hg , issmall

In fact, during ﬂie_;
encounter with the incident particle, the electron may collide

it is well known
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In an early treatment of the stopping power of metals, by

{ v. WerzsAckER (1933), it was actually suggested that the limit of

effective interaction between the particles and the free electrons
was determined by the resistance. As pointed out by KraMERS
(1947), however, such effects will, in general, be of only very
small influence as compared with that of the polarization of the
medium. In fact, since the momentum transfer from the particle

{to a free electron is comparable with the force of the particle

multiplied by the effective collision timef, it foliows that a

12
W

Now, in metals at ordinary temperatures, wo < v and, thus,

d(, >> dy given by (4.2). Consequently, the effective adlabatlc limit
s primarily determined by the polarization.

A closer estimate of the influence of the friction on the stopping

:power may be obtained in complete analogy to the considerations
leading to (4.11), the only difference being that (4.9) must now
 represent a damped oscillation. Thus, we merely have to add an

Dy

extra factor exp {—%m} and substitute for w, the effective

oscillation frequency which, for w,= 0, will be equal to

1 . .
vz_zmz. Evaluating S,, one thereby finds asymptotically,
for ¢ small compared with the adiabatic: limit,
kv 47— o '
S, =B Iog—— 9_ arctg V ¢ (5.2)

V4 vz—w @,

his formula is equivalent to that obtained by KrameRrs by a
somewhat different method and also coincides with the non-
elativistic approximation of Ferur's formula?. For wg {{ ¥, the
st term in the brackeis in (5.2) has the approximate value
W,

Z_vg’ and the stopping formula therefore reduces to (4.11) for

A—”+

1 Ve In the opposite extreme case of w, >> », the last

1) In the case of bound electrons, there may likewise be a damping to take
to account, e. g., due to radiative forces. In this more general case we get,
f.course, an expression for S; which follows from (5.2) by simply replacing .
with . given by (4.4) and o with the damping constant (cf. Permr 1940).
;. D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXIV, 19, .
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term in the brackets in (5.2) has the asymptotic value log 201

so that (5.2) now coincides with (4.11) for w, = @y, just cor-. ,.

responding to the result of v. WEIZSACKER.

It may be noted that, in the above calculations, we have_j
assumed the electrons to be at rest before the collision with the §
particle, whereas in metals or ionized materials the electrons
actually have quite considerable velocities, often greatly surpassing’

the velocity changes induced by the particle. However, this circum-
stance should have no essential effect on the average energy.
transfer. In fact, if we denote by w the initial velocity, and by
a the velocity alteration, the increase in kinetic energy is given by
1 1 1 ;
T=§ILL(’LU+’M)2—§‘LLL1)2:§M112+Mwu (5.3)

and, averaged over all directions of w, the last term vanishes.:
Still, of course, it must be assumed that the electrons, during
the actual collisions, do not move over distances comparable with -
the impact parameter and that, therefore, w must be small com-
pared with the particle velocity. In most cases of importanc .
this condition is amply fulfilled but, e.g. in ionized media at
very high temperatures, the thermal velocities may exceed v evell
for ‘‘fast” particles and, under such circumstances, the whe
stopping phenomenon acquires an essentially different characte
However, we shall not here enter more closely on this problem.

§ 6. Atomic Interaction for Relativistic
Particle Velocities.

The preceding considerations regarding the polarization efl Cti g

were confined to particle velocities small compared with that
light. While, in this case, it was seen that, with the few excep

discussed in § 5, the atomic interaction is of only minor.i
portance, being in general of small influence compared Wi
that of the internal binding forces, the situation is ‘essentd

different for relativistic velocities. In fact, for sufficiently larg
2

— Y, ]
values of y = (1 —%) , the radius of action of the particle

5
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- as shown by Frerm1 (1940), always determined by the polarization

effects.

As reg:flrds collisions with single atoms, the modifications to
be taken into account for v X ¢ are of very simple character
Thus, as long as we are within the adiabatic limit, the ener .
transfe1: mn distant collisions is, according to (3.4) ’inde endeg};
of re'latlvity effects. In fact, the retardation merely i’mplief a COIII—
tr'actl(?n by a factor y of the field of the incident pérticle in the
direction of motion and an intensification. of the field iﬁ the
same ratio, and, therefore, does not affect the total momentum
transfer. On account of the contraction of the field. and -the

_r.esglt%ng. shortening of the collision time, however, the adiabatic
limit is increased by a factor v, as also follows from (3.8).

. It may be added that the influence of resistive forces discussed

n§ 5 is .modiﬁed in a similar manner. Since a frictional force
. — 1@y § is comparable with the force from the particle only if

the collision time is of the order of or larger than L, the screening
w

distance corresponding to such effects will be given by

d =2
¢ w, 7

(6.1)

hich, for velocities sma i i |

o the ostimate m & 5.m Il compared with that of light, reduces
‘An analysis of the atomic interaction effects in the relativistic
ase presents, however, a somewhat more intricate problem.. In
‘artlc'ula.r, we may no longer, like for » <{(e¢, compare the
iolarl.zatlon force with a simple harmonic restitutional force. In
act, in contrast to the screening effect of a force of this t- e
ne finds that the adiabatic limit for a material in whichy‘]sh(;
legt;ons are free, and where the polarization is determining for
he stopping effect, is uninfluenced by retardation effects. This
esult, which follows from Frermr’s formula and which .as we
hall see, can also be obtained by more elementary cc,)nsider-
ons, shows that in the relativistic case the mutual influence of
h ‘electrons is much stronger than corresponding to the electro-
tah.c forces considered in § 4. Indeed, as was to be expected,

nteraction effects become, for i i
! , y 2> 1, primarily of electro-
gnehc character. P y o

o%
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In order to illustrate this latter point, it is instructive to con-
sider a simple two-body collision from the point of view of
the reaction of the struck electron on the incident particle. This
problem was treated in § 4 for v <{ ¢, but is essentially modified
by retardation effects. In fact, the particle will not “‘know’” that
the electron has been perturbed before the pulse caused by this j
perturbance catches up with the particle and, for velocities very
close to ¢, this will happen a comparatively long time after the
actual collision is initiated. Thus, a signal emitted by the electron
at t — 0 will reach the particle at a distance py. Now, ‘the
periods characterizing the electronic motion will be comparable

with the collision time Bl; and, for v & ¢, the field which this
v

motion produces will, thus, mainly contain harmonic components

of wave-lengths of the order of % Since such wave-lengths are

small compared with the distances in question, it follows that
the reaction of the electron on the particle is primarily determined
by the electromagnetic wave field emitted by the accelerating
electron. The electrostatic part of the field which depends on the
electronic displacement and which, in the non-relativistic case,
is responsible for the reaction, is here of only secondary im-
portance. : :

The following estimate may serve to illustrate that the accelera-
tion of the electron, for y ») 1, is actually determining for the
reaction. In fact, the electric field intensity produced by an
accelerated electron is, at large distances r, asymptotically

given by
efj(t")

cir

E(t) — sing,

where ¢ is the angle between the acceleration and the radi;iS

vector and where, as indicated; 77 is to be taken at the retardegl

fime ¥ — { — L. Since this field is transverse, i. e. perpendicular
c ‘

to r, the corresponding force acting on the particle against th;

direction of motion will be .

z,e?

SK (1) = ﬁ—(:—) sing cos@. (63,

C2
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Now, during the actual collision, # is, according to (3.1), com-

oy 212y . -
parable with s and since, as already mentioned, the r-values

in question are of the order of py, we may, for y > 1, put
o 1 L
sin ¢ = 1 and cosg¢g = » Furthermore, the pulse given out by
the accelerated electron, although it has a spatial exiension of

p .
about *, i ) i
»’ will act on the particle through a distance com-

.parable with py, since the velocities of pulse and particle only

differ by a relative amount of the order of »2. It will thus be

seen that the force compobnent (6.3) gives rise to an energy loss
just of the order of T given by (3.4).

A more accurate analysis of the reaction in the two-body

collision is given in Appendix I, but the above cursory consider-

at?ons suffice to illustrate the decisive part played by the radi-
ation field. It is also just this circumstance which is manifested in

» the peculiar radiation effects which accompany the passage of

very fast particles through matter and which will be discussed
more closely in the next paragraph.

On similar lines as the simple analysis of the two-body col-
lision, one may obtain an estimate of the mutual interaction

Fig. 1. -

between the electrons in the penetrated substance. To this purpose

consider an electron at point Q (see Fig. 1), which is colliding

with the. particle Z passing at distance p. At the same time, the
}electr‘on is acte.d upon by the surrounding electrons, and the major
contribution will come from those electrons which, at the retarded

time ' = ¢ — 2 i
e f t o were themselves accelerated, i. e. were colliding

-with the particle. Now, an electron at point A will, at the retarded
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time, be in a phase of collision which, as compared with that

of the electron at Q at the instant considered, is earlier by a time
interval t given by
r=1 (6.4)

where x is the projected distance from Q to A measured against
the direction of motion of the particle. Introducing r? = x* + b*
(see the figure), one gets from (6.4)

(x+v1y?H)? b?

PG PR

(6.5)

which shows that the points of constant 7 are situated on a
hyperboloid. In particular, the electrons which at the retarded

time were in the same stage of collision as the electron at @,
will be found on the conical surface C extending backwards from °

Q and having an opening angle @ for which sin g = :7 This

surface intersects the path of the particle at the distance x = %yp.

In the figure, the electron at Q is, at the instant considered, ‘
at the peak of collision. The electrons which, at the retarded -
time, were “‘beginning” or ‘‘concluding” their collisions are, thus, -
approximately situated on the two hyperboloids H; and H,, cor-

P
2yv
represents the order of magnitude of the collision time

responding to v = —
P

1)

Accordingly, the main contribution to the force with which the

material acts on the electron at Q will arise from the electron
in the shaded region between H,; and H,. For y >> 1, the essentia

part of this region is situated behind the electron at distances

of the order of or smaller than py. In fact, further away, w

have contributions from electrons accelerated in all directions, |

and therefore the total field of these electrons is small.
According to (6.2), the field from each electron is inversely pro
portional to r; furthermore, since sin ¢ ~ 1 and since the majorit
1) Strictly speaking, it should be taken into account that the collision tim
_varies with the impact parameter. For the present purpose of estimating orde
of magnitude,
major part of the polarization force arises
comparable with that of the atom at Q.

from atoms with impact paramete

and v = + 2—?}—1—) , respectively, since

however, the more cursory considerations should suffice, since th
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of the electrons in question have accelerations comparable with

that of the electron at Q, the resulting polarization force K will
be of the order of magnitude of - .

e,
K~ 5 ipn (6.6)

aI.ld directed against 17 This force is evidently small compared
with the total force p7 acting on the electron, only if

(6.7)

| .\jvhere v is given b}.r (4.1). This upper limit should, therefore,
%eprese{lt the screening distance d, corresponding to the atomic
- interaction effects. The estimate of the polarization force is, of

¢
P<<;,

- -course, of a rather cursory character but, due to the complicated
_ calc1‘11ations which would be implied, we shall not attempt a
3 detailed analysis from the microscopic point of view. 1?'I‘he
abf)\;e t(;fl:sitierations suffice, however, to bring out the essenﬁal
oin at, for v — ista: £

f,)alue T or dver Ofc,c/’:}lTe distance d, approaches a constant

In estimating the stopping power of a substance we now have
to compare d, with the adiabatic limit d, corresponding to the
effect of the binding and given by (3.8). As to the former distance
we may use the expression (4.2) which was originally deduced fo;
v{{c, but which has been seen to apply, approximately, for
all velocities. Even if w, >> », as is generally the case, it thus foliows

_ ()
a . .
that only for y < > the polarization effects may be neglected and

,.(3'9) be applied. For larger values of y, the binding is of litile
influence on S, and the value of py,. in (3.5) is of the order
.‘01’ dy. A more accurate determination of Pmax may be obtained
by. noting that the stopping power of a substance containing
dree electrons (cf. p. 27) is not affected by retardation. For large
7, we thus have the asymptotic- expression. ;

_ kv
Sy = Blogﬁ (6.8)

corresponding to (4.11) for wy = ».
‘ We ha.ve here neglected the possible influence of frictional
forces which may become significant if d, given by (6.1) is
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smaller than both d, and d,. Under such circumstances, the
stopping formula is obtained from (3.9) by substituting w, for w,..

These results are in complete agreement with the more rlgor-
ously deduced formulae given by Ferwmi (1940). Only in the':;'
transitional cases, in which neither of the three distances d,, dy
or do is very much smaller than the two others, certain refine-
ments have to be introduced in analogy to the more detdiled ex-
pressions given in § 4 and § 5 for non-relativistic velocities. Such

corrections, however, amount at most to only a few per cent ofi
the stopping power.

§ 7. Cerenkov Effect and its Relation to
the Stopping Problem.

As already mentioned in the Introduction, the passage of very ;
fast particles through dense matter is accompanied by a peculiar
radiation (Cerenkov effect). An analysis of this phenomenon was"
first given by Frank and Tamwm (1937), who pointed out its im-
mediate connection with the circumstance that the phase velocity

of light in the substance may be smaller than the speed of the'
particle. In fact, the Cerenkov radiation presents a close analogue
to familiar acoustical and hydrodynamical phenomena produced
by an object moving with a velocity exceeding that of the wav
velocities in the medium (Tamm 1939). ;

Since the phase velocity of electromagnetic waves is given b

c/)e, where & is the dielectric constant, the radiation will tak
place over speciral regions for which

— ¢
Ve > =

v

Moreover, since the waves must be stationary with respect to th

moving particle, the angle of emission for a frequency for Whlch
(7.1) is fulfilled is given by

(1

c

cos O =

— s

v)e

(7.2

where ©is measured from the direction of motion of the particle

In the present paragraph, we shall discuss,

. by means o
simple arguments,

some of the general characteristics of th
Cerenkov effect and, in particular, its relation to stopping theory
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In order to obtain a survey of the various aspects of the pheno-
menon, it is of interest fo consider the problem from the micro-
scopic as well as from the macroscopic point of view. In the
former case, we have immediate connections to the considerations
of § 6, while the latter approach is more in analogy to that of
Frank and Tamm, and of FerwmI

From the microscopic point of view, the Cerenkov effect
simply originates in the circumstance that part of the energy.
transferred from the penetrating particle to the electrons in the
substance may be subsequently emitted as coherent radiation.
Thus, it was not necessary in the previous paragraph to take the
effect explicitly into account since, in problems of stopping power,
one need, in the first instance, consider only the behaviour of
the struck electrons during the actual collision with the particle.
In fact, the energy loss of the particle may be said to be decided
within this short time interval and is not affected by the question
of the later distribution of the energy transferred to the electrons.
In particular it is, from such considerations, immediately evident
that the Cerenkov effect corresponds to part of the stopping power
estimated in § 6 and should not be regarded as an additional
source of energy loss (cf. FERMI 1940).

Some of the main features of the radiation may also be under-
stood from an analysis like that in § 6. Thus, an emission of

“coherent radiation will demand the fulfilment of proper phase

relations between the wavelets originating from the individual
electrons, and this condition leads immediately to (7.2). More-
over, the spectral distribution is correlated to the rate at which
the energy of the electronic oscillations is dissipated into radiation.
For an isolated atom, this rate is very low, but it may be strongly
increased by the influence of surrounding atoms. In fact, just due
to the phase relations, the superposition of the electromagnetic
fields of the individual oscillators may lead to greatly enhanced
radiative effects.

In order to estimate the influence of atomic interaction on
the Cerenkov spectrum, we may consider the two extreme cases,
d, >y d, and d, ({d,, in which, according to the considerations in
§ 6, the interaction forces may be regarded as, respectively, very
weak and very strong compared with the binding forces. In the
former case, we should expect the atoms to perform a large
number of oscillations before their energy is radiated, and the
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emitted spectrum to consist of a narrow line around the proper
frequency of oscillation. In the latter case, however, the atoms
will not be able to perform even a single oscillation and the
frequency distribution should bear no simple resemblance to a
spectral line.

Such general features of the radiation are just in accordance
with those implied by the condition (7.1) for the spectrum. In
fact, the dispersion law corresponding to the simple atomic model
considered, involving only a single proper frequency w,, may
be written ‘

,1)2
e=14—— (7.3)
a
where v is given by (4.1). Furthermore, according to (3.8) and
(4.2), the two cases in question correspond to »y {{w, and
vy >> w,, respectively. It is, therefore, seen that, in the former
case, (7.1) is fulfilled only in a narrow region around w, while,
in the latter case, it holds for all frequencies smaller than w,.

From the macroscopic point of view, the energy loss of the
particle appears to take place in two essentially different modes.
In fact, neglecting absorption due to damping forces, energy may
either be radiated or it may be absorbed by the matter, giving
rise to oscillations persisting in the medium after the passage of
the particle. For the distinction between these two mechanisms,
it is convenient to divide the electromagnetic field produced by
the particle in the substance into a transverse (divergence-free)
and a longitudinal (irrotational) component. The radiative part of
the field is obviously of the transverse character, while the residual

oscillations, left in the “‘wake” of the particle, must correspond .

to a longitudinal field. In fact, in the absence of electric currents,
a divergence-free field consists of free electromagnetic radiation
which propagates to infinite distances.

The longitudinal component just represents the field cal-
culated with neglect of retardation effects and is, therefore, simply
that considered in § 4, where the velocity of light was regarded
as infinite. It is thus immediately seen that the energy absorbed
by the medium in the neighbourhood of the path of the particle
is given by the non-relativistic stopping formula®.

1) It must be noted that, when damping is taken into account, also some part of

the transverse field energy may be absorbed by themedium close to the particle (cf.§8).
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The relativistic increase of the stopping effect is due to the
transverse field and, hence, represents the radiated energy. More-
over, it is evident from such considerations that, while the energy
stored in the medium corresponds to that transferred to the atoms
within the non-relativistic adiabatic limit, the radiation is emitted
by the atoms at larger distances from the path of the particle.

In particular, it is of interest to note that, for substances con-
taining {ree electrons (w, = 0), it follows from (7.3) that ¢ is
always smaller than unity, and the condition (7.1) can, thus, never
be fulfilled. Consequently, no radiation occurs and the stopping
power must, therefore, as already mentioned in § 6, for all veloci-
ties be given simply by the expression originally deduced for v {{ c.

For the residual field left in the medium after the passage of

the particle, we have, of course, D = 0 since, from the macro-

scopic point of view, no ‘“‘true” charges are present. The dielectric
constant of the medium must, therefore, vanish for the oscillation
frequency concerned and, according to (7.3), this condition will
just be fulfilled for w = w4 given by (4.4), which was seen in
§ 4 to represent the proper frequency of the substance. It may
be added that, from the very circumstance that we have to do
with the excitation of oscillators of proper frequency corresponding
to ¢ = 0, it may immediately be concluded that their energy
absorption is unaffected by retardation effects. In fact, this energy

-depends, as is well known, exclusively on the resonance com-

ponent of the exciting field, for which the phase velocity of light,
¢/Ve, is infinite.
In the evaluation of the radiated energy, Frank and Tamm

. (1937) and Ferm1 (1940) expand the electromagnetic field pro-

duced by the particle in harmonic components with respect to
time-dependence. It is, however, also possible to adapt to the
case of ponderable media the well-known method of radiation
theory in which the field is dissolved in plane waves. In Appendix
II, we shall consider. the application of this formalism {o the
problems of stopping power and Cerenkov radiation. The
method sheds some light on the phenomena in question and, in
addition, is illustrative of the difference in approach between
ordinary procedures of classical electromagnetic theory and the
formalism which has become the conventional tool in quantum
electrodynamics.
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§ 8. The Atom as a General Dispersive System.

The preceding considerations have been based on a highly
simplified atomic model in which the virtual oscillators were
considered to have all the same frequency. This simplification
was made in order to bring out as clearly as possible the princi-
pal points regarding the atomic interaction effects, but in a more
detailed treatment, the atom should be compared with an ensemble
of oscillators corresponding to the different excitation possibilities
(cf. § 2). The proper frequencies of these oscillators will be
denoted by w;, and their relative strengths by f; normalized per
electron (Z fi = 1). If the atoms are bound together, this model

is still adequate if only the oscillators represent the traunsition possi-
bilities of the electrons in the molecules or in the lattice.

Such refinements are readily accounted for in the usual
stopping theory. In fact, if the oscillators can be regarded as
independent, formula (3.9) is simply to be replaced by

5= B 31 (1og 22~ 1%), 81) |

qo; 2c*
where the electron density n entering in the expression (3.6)
for B is equal to z,N, if z, denotes the atomic number of the
substance and N the number of atoms per unit volume.

The polarization phenomena, however, introduce a coupling
between the different oscillators. In principle, this effect presents
no great difficulties, since the calculation of Fermr (1940), or a
procedure like that used in Appendix II, may be immediately
generalized by replacing the simplified dispersion law (7.3) by

f; ¥

=1+ —— (8.2)

w? —w*’

corresponding to the atomic model on which (8.1) is based. Still,
exact calculations by means of such methods lead to rather com-
plicated expressionsl) and it is, therefore, of interest that, on the

1) The case of two dispersion frequencies has been considered by HaLprrn
and Harwn (1940). The more general model corresponding to (8.2) has been treated
by STerNHEIMEP (1946), but an evaluation of the expressions deduced is difficult
and has been attempted only under simplifying assumptions. The accuracy in-
volved seems, therefore, hardly to go beyond that of the more simple analysis
given here, the results of which also coincide in essentials with those obtained
by STERNHEIMER.

See also Postscript (i), p. 50.
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basis of considerations analogous to those in § 6, it is possible
to obtain simple formulae representing a degree of accuracy suf-
ficient for most purposes.

In such a microscopic treatment, the influence of the polar-
ization on the stopping effect may be estimated by comparing
the distance dy with the adiabatic limits d;, corresponding to the
various atomic frequencies w; and given by (3.8) for v, = w;.
The value of 'dy will be given by an expression of the type of
(4.2), but an essential point will be to estimate the effective
electronic density determining for the polarization. In fact, due
to the influence of the binding forces, this density will decrease
with increasing distance from the path of the particle.

At distances comparable with d;, the number of electrons per

_ unit volume which contribute materially to the polarization will

be equal to nF;, where F; represents the sum of the oscillator
strengths, corresponding to atomic frequencies equal to or smaller
than w;. According to the estimates in § 6, the atomic interaction
will therefore be effective, provided yvF{® > w;, where » is given
by (4.1) for n = z,N. For a survey of the problem, it will thus
be convenient to introduce a critical frequency w, defined by

w, = ywFr, ‘ (8.3)
where
F,=>"f. (8.4)

v; = o

In general, we may assume that equation (8.3) has only a single
root, a point to which we shall return briefly in § 9, where ap-
proximate expressions for the frequency distribution of the oscil-
lators are considered.

" In this case, the situation is especially simple, and it is seen
that the limit of free energy transfer will be determined primarily
by the binding forces or the polarization, according as w; > w,
or w; < w,, respectively. The contribution to the stopping power
of the former oscillators will approximately be given by the

‘respective terms in (8.1), while for the latter oscillators the expres-

sion (6.8) for an effective electron density nF, will apply.

The total stopping power of distant collisions may, thus, be
written
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kv kv 1 0?
Sq=B{FCIog—W+Zfi<log Z~_:)} (85)

v
q c W > W,

In particular, it may be noted that, for very large velocities for
which y» exceeds the largest significant atomic frequencies, we
have F,~ 1 and, in this case, the stopping formula will be
especially simple, being practically independent of the atomic
frequencies. The latitude involved in (8.5) arises mainly from the
estimate of the contribution of the oscillators with w; ~ w., for
which, of course, the polarization as well as the binding forces
have a significant influence. The accuracy of the above ap-
proximation would, however, seem to be quite high since, as

already mentioned in § 6, even in the case where all frequencies .

are equal and, therefore, may all fall in the transition region,

the necessary corrections will never exceed a few per centl).
The part of the energy loss which is radiated to large distances

may, according to the considerations in § 7, be readily estimated,

provided the absorption due to damping effects can be dis-

regarded. In this case, the radiated energy, in fact, simply re-

presents the difference between (8.5) and the stopping power -

which would be obtained by disregarding relativity effects.
Actually, however, we have to do with a considerable absorption

in the spectral region extending from the lowest proper frequency

of the substance to the highest relevant atomic frequencies, and
an estimate shows that, in this region, by far the greater part of
the radiation will, in not too dilute materials, be reabsorbed
close to the path of the particle. It would thus seem that, to a
first approximation, an actual emission of radiation, easily access-
ible to observation, will be confined to the region below the first
absorption band. For such frequencies, which in generally com-
prise primarily the visible and infrared region and possibly part
of the ultraviolet, the radiation spectrum may be calculated from
formula (12) in Appendix II by introducing the proper values
for the dielectric constant.

Finally, we shall consider briefly the influence of atomic
interaction on the number of ions produced by the particle along

. the path. This problem involves in principle a detailed investi- ‘

gation of the distribution of the energy loss on the various atomic
1) Cf. Postscript (i), p. 50.
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oscillators, but it appears that the relationship between stopping
power and ionization is not essentially affected by the polarization
effects, and recourse may therefore be taken to the results of
ordinary penetration theory. In the analysis of the problem, we
may conveniently make use of the considerations in § 6 and § 7
and shall, in particular, divide the field surrounding the particle
into a longitudinal and a transverse part.

The former part, corresponding to the energy loss calculated
with neglect of retardation, will (cf. § 4) be only little influenced
by the polarization, especially in case of dilute materials like
gases, where the ionization problem is of particular importance,
For this part of the interaction between particle and matter, we
may thus immediately use the result, derived for collisions with
isolated atoms, that in distant encounters the contribution of any
bound electron to the number of primary ionization processes
is closely proportional to the corresponding contribution to the
stopping power. In the simplest case, of hydrogen, it follows in
particular from the detailed calculations of BeTue (1930) that
the number of ions produced per unit path, in collisions with
impact parameter greater than ¢, is given by

p o g 0.285

= S e, (8.6)

-For heavier substances; generalized approximate expressions may

be given (cf. N. Bour 1948, § 3.4).

The relativistic increase in the energy loss was seen to be
correlated to the transverse part of the field, but it is of importance
that, according to the above considerations, only a negligible part
of the energy transfer due to the interaction with the ionization
oscillators will be emitted as radiation to larger distances, since
this energy is mainly concentrated in frequency regions of strong
absorption. v

A detailed investigation of the energy absorbed by the various
oscillators from the transverse field is rendered difficult by the
circumstance that the radiation emitted by one type of oscillators
may, as discussed in § 7, contain frequencies extending over a
wide interval and may, consequently, be absorbed by oscillators
of a different type. However, just in case of gases, where » is

* very small compared with atomic frequencies, this “‘mixing’’ effect
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should be rather insignificant. In fact, even in case of d; >y dy,
where the frequency distribution of the emitted radiation is most
strongly spread out, it may be shown that, for » {{ w;, the larger
part of the energy is concentrated on frequencies which differ
from «; by an amount small in comparison with o; itself. The
mixing will, therefore, primarily take place between very close
lying levels and should not essentially affect the relative number
of ionization processes.

Relations of the type of (8.6) must thus, in general, be ex-

pected to be only little influenced by the atomic interaction
effects. As regards the total ionization, including primary as well
as secondary processes, one may likewise conclude that, as has
been deduced for collisions with isolated atoms (cf., e. g., Fano
1946), the average energy expenditure per ion is largely indepen-
dent of the particle velocity.

§ 9. Estimate of Stopping Power fot Heavy Subs_tances.

It follows from the considerations in the previous paragraph
that the influence of atomic interaction may imply a considerable
simplification in the stopping formula since, for very large values
of vy corresponding to F, x 1, the stopping becomes independent
of the atomic frequencies and is determined only by the electronic
density of the substance. In order, however, to evaluate S, in
the transition region where the polarization graduaily becomes
effective, it is mecessary to investigate the distribution of the
atomic oscillator frequencies involved in expressions like (8.5).
In the case of heavy snksteaces, a detailed analysis of this problem
is complicated?, but more cursory estimates, sufficient for many
purposes, may be derived on the basis of sunphfymg assumptions
regarding the frequency distribution.

In penetration problems, one thus often obtains an ap-
proximate account of general features (cf. N. Bour 1948, § 3.5)
by representing the sum F of the oscillator strengths corresponding
to w; < ® by an expression of the simple type

Fe ( o )’ | | (9..1)‘ |

25 Wq

1y Cf. Postseript (iii), p. 51.

Nr. 19 33

where ®, denotes the Rydberg frequency. Of course, such a
relation needs modification for the most loosely as well as the
most firmly bound electrons in the atom. While the corrections
in the low frequency region are of only minor significance in the
present connection, it will be necessary to make adjustments in
1%
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the high frequency region so as to take into account that the totai

oscillator strength equals unity. To this purpose, it would seem
natural to put tentatively

< w )1/2
S

Zq 0

F 2 %o

T LY - (9.2)

s
1 ( Sw >
Zo Wy

as a simple function which corresponds to (9.1) f01 F {1 and
gives I = 1 for large w.

In particular, it may be noted that, for distributions of the
type (9.1) or (9.2), the equation (8.3) determining for the inter-
action effects will have only a single root. The stopping power

will, thus, be given by (8.5) and one finds, by replacing the sum
by an integral and introducing (9.2),

kv
Sq:B{lov—q ——( _F)"z‘j (9.3)

as a simple approximate formula involving only F,. The varia-

- tion of this quantity in the transition region is shown in Fig. 2
which gives F, as a function of « defined by

D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXV, 19, 3
b
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2 . .
( s > = 167 y? Naj z'77%, (9.4)
z3wq »
where the ratio between », given by (4.1), and the Rydberg
frequency e, has, for convenience, been written in terms of N
and the radius g, of the hydrogen atom.
For small values of F,, formula (9.3) reduces to

UZ
CZ

and the difference between (9.5) and (9.3) represents thus the de-
crease in stopping power as a result of the interaction effects. This
decrease 4, in units of B, is shown in Fig. 3 where, for simplicity,

kvy
q W 25

(9.5)

1
Sq = B {log —5

the ratio ~ in the last terms in (9.3) and (9.5) has been put equal
10 _

to unity, since only for large y the problems in question are of
actual importance. The straight line to which 4 approacl‘l_es
asymptotically for large o represents the decrease in stopping
power, which would follow from the simple formula (6.8).to be
applied when the polarization effects have reached full efficiency:

In order to estimate the exponent s in (9.2) which gives the
best fit to the actual frequency distribution of the atomic oscillators,
we may compare (9.5) with theoretical and experimental deter-

t
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minations of the stopping power for heavy atoms in cases where
the polarization effects are negligible. The expression (9.5) cor-
responds to (8.1) for @ = wyz3, where ® represents the average

excitation frequency defined by
. log w = Z f; log o, < (9.6)

i

This quantity has been calculated on the basis of the Thomas-
Fermi method by SoMMERFELD (1932), who found @ proportional
to zy* corresponding to s = %/, although with a proportionality
factor somewhat smaller than w,. In order to account for the
influence of the screening of the nuclear field on the excitation
energies of the inner electrons, use is made in these calculations
‘@ of a general relation between average kinetic and potential energies
~ holding for a Fermi gas at zero temperature. Such averagings
(arithmetic) would seem, however, to be of an essentially different

type from that (geometrical) by which @ is defined.

The stopping power for large z, has also been treated by
Brocu (1933b) who, likewise, compared the atom with a Fermi
gas, but considered explicitly its dynamic properties. Although
the details of the distribution of the proper frequencies involved:
highly complicated calculations, it was found that F depends only
on the ratio wz;", a result which leads to @ proportional to z,.
Later, the problem has been reconsidered by H. JEnseEN (1937),
who poinfed out minor corrections to the results of Brocu; but
these refinements are of little importance in the present con-
nection. ‘

The estimate of BLocx is confirmed by experiments of WiLson
(1941) on the stopping power of protons which, in the region
where the polarization effects are insignificant, is found to be in
good agreement with the theory, if @ is taken proportional to z,.-
* Moreover, the proportionality factor is estimated to be very nearly
- equal to @, and the results, therefore, just correspond to (9.5)
for s = 1. This circumstance may perhaps be taken as an in-
- dication of the approximate adequacy of the procedure used

“in the present paragraph to estimate the polarization effects in
* the transition region.

3%
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§ 10. Comparison with Experimental Evidence.

a) Non-relativistic velocities.

Considering, first, the case of particle velocities small COlT'l—
pared with that of light, it was seen in § 4 and § 5 that the atomic
interaction effects are of particular importance W.hen. the su]'a-
stance penetrated contains free electrons. Of special interest in
this respect is the problem of metals.

According to thé dispersion theory of metals (cf., e. g., Kronig
1929, 1931), the behaviour of the valence electr(?ns may be
represented by a series of oscillators the first of which has.zero
frequency, corresponding to free electrons, and the remainder
of which represent the transitions of the electrons between
different bands (Brillouin zones). The most prominent of these
transitions will have frequencies of the order of

n® ki

= —0 (10.1)
2 ub?

Dy,
_if, for simplicity, we compare the lattice with a cubic structure
oi" spacing b = N . Denoting the number of valence electrons
per atom by z,F,, we have thus, by means of (4.1),
F,»* 160

= _3_22Fu

= (10.2)
w,? 7> ay

and since, in general, b will be equal to 2 or 3 A units, while

a, = L A, it follows that, even for monovalent metals, the inter- -

éction between the valence electrons will overshadow the binding

in the lattice. Since, furthermore, for the electrons in the interior

atomic shells, the polarization is negligible, formula (8.5) should

)

represent a fair approximation if F is simply put equal to F,.

For the effective average excitation potential I = fiw, we thus

have (cf. (9.6))
1= F,log hvF,* + > f;log ho;,

where the summation is to be extended to the transition .possib-_ :
ilities of the electrons bound in the atomic shells lying below the k

conduction band.
1) Cf., however, Postscript (ii), p. 50.

(10.3)
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The most favourable circumstances for testing this formula
are found in the lightest metals like lithium and beryllium, where
the relative number of conduction electrons is largest. In Li, we

have F, = 1- and hvF/* =

3 7.6 eV while, for Be, one obtains

By = 2 and ivFy* = 18 eV. For comparison, it may be mentioned

that fiw, is about 4.5 eV and 9 eV in Li and Be, respectively,
and the corrections to the effective frequency of the valence
electrons due to the lattice binding may, thus, from expressions
like (4.4), be estimated to be only of the order of 5 9/,. It is, how-
ever, of interest to note -that, in the gaseous state, where the
polarization is negligible, we must reckon with effective excitation
energies. for the valence electrons of the order of the ionization
* potentials, which are 5.4 eV for Li and 9.3 eV for Be. The atomic
‘stopping power of the metals must, therefore, be expected to be
appreciably smaller than for the corresponding gases.

An evaluation of the sum in (10.3) involves, of course, a
detailed analysis of the binding of the inner electrons, but just
in case of Li and Be the problem is comparatively simple, since
the terms represent only the excitations of the K-electrons. An
estimate of the average excitation potentials for the K-shell has
been made by Livineston and Brrue (1937, p. 264), who give
110 eV and 205 eV for Li and Be, respectively. By means of
(10.3) these values lead to Iy; = 45 eV.and I, — 60 ¢V. It may
be noted that we here assume the total oscillator strength Z' T f;
for the K-electrons to be equal to ;2— This value should actually

2
be somewhat decreased since the presence of outer electrons may

prevent certain transitions from the K-shell (LivingsTon and Be-
THE, 1937). For Ii and Be, however, the effect would appear
negligible; in fact, not only is the number of L-electrons very small
compared with the cases considered by LivinegsToN and BETHE,
~but the effect even vanishes in the approximation in which the
binding of the outer electrons can be represented by s-states.
The stopping power of Li has been determined by Rosen-
BLUM (1928), whose results indicate a value of I of about 40 eV
(cf. Mano 1933). However, the experimental uncertainty of
~-about 10 9/, in the stopping power corresponds to a latitude in
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I,; of 50 °/,. For Be, no reliable measurements appear available,
but empirical evidence would be of considerable interest due to
the high density of valence elecirons which should imply a com-
paratively small stopping power?.

It may be added that the influence of the metallic resistance
is in general quite negligible (cf. Kramers 1947). Thus, the
value of w, given by (5.1) corresponds, in the case of Li at
normal temperatures, to we = (.01 yF2. The use of (5.2) for
the valence electrons may, thus, be estimated to increase the
above value for I;; by less than 1%, On the other hand,
v. Werzs ickeR’s theory in which @, is assumed to determine the
adiabatic limit for the oscillator of zero frequency leads to
I;; = 10 eV, which is decidedly at variance with the empirical
data. Furthermore, this theory predicts a considerable tempera-
ture dependence of the stopping power which, for a decrease in
resistance by a factor 100, should increase by about 20 °/, in
the case of fast a-rays..Experiments by GERRITSEN (1946) have
shown that no such temperature variation occurs.

Also in other substances than those actually containing free

electrons, the polarization effect may be of some significance for
the stopping already for v {{¢. In fact, in solid or liquid ma-
terials, the values of hv F 2 will, even for Fz, ~ 1, most frequently
be of the order of 10 eV and may, therefore, exceed the excitation
energies of the most loosely bound electrons. In many cases, one
may accordingly put z,F, in (8.5) equal to the number of bonding
electrons, and it is of interest that the atomic interaction pheno-
mena thus not only imply a certain reduction in stopping
power, but also entail a simplification in the theoretical estimate

of §. Indeed, under such circumstances, it is not necessary to

consider details of the rather complicated mechanism of mole-
cular binding or lattice structure, since the electrons involved will

give practically the same contribution to S as if they were free.

b) Relativistic velocities.

As often mentioned in the preceding, the polarization phen-

omena become of special importance in the domain of relativistic

1) Note added in proof. A recent investigation of the stopping power of
protons in metallic Be (C. B, MapSEN and P. VENKATESWARLU, Phys. Rev. 74.648.

(1948)) has given Ip, =64 + 5 eV in good agreement with the above estimate. -
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velocities where, for sufficiently large values df y, they imply a
considerable reduction of the stopping power. In the original
treatment of FErmI, attention was in particular called to the im-
plications of this effect on the interpretation of measurements of
fast cosmic ray particles.

" A direct experimental test of the influence of atomic inter-
action on the stopping power is made difficult by the large energies
required, but some evidence is given by the measurements of
Crang, OLEsoN and Crao. (1940) of the stopping in carbon of
10 MeV electrons. These investigators found an energy loss ap-
preciably smaller than corresponding to formula (8.1), but (cf.
Harrern and Harr 1940) in good agreement with expression
(6.8) which may be applied for the velocity in question; In fact,
we have F,x 1 since the value of hAvy is about 900 eV and,
therefore, exceeds z3hiw, ~ 500 eV, representing the order of
magnitude of the largest significant excitation energies of carbon.

Moreover, .the influence of the polarization effects has been
observed by ionization measurements. While it was shown by
Hazen (1945) in experiments with cosmic ray electrons that, for
not too large values of y, the ionization increases logarithmically
with y, corresponding to (8.1), some indication was obtained
by Haywarp (1947) that, for very large v, the ionization reaches
a constant value. Compared with the minimum in the ionization

“for y ~ 1, the limiting value represents a relative increase which

was found to conform, within the experimental latitude, with the
theoretical estimate of the increase in stopping power, given by
(6.8) and (8.1). '

This evidence agrees with the considerations of § 8, according
to which the atomic interaction, although of importance for the
absolute values of ionization and stopping power, should have
only minor influence on the ratio between these two quantities. In
particular, it may be noted that this relationship rests on the
assumption that the major part of the radiative energy loss
correlated with the iomization oscillators is absorbed close to
the path of the particle. Since the radiation represents the re-
lativistic increase in the stopping effects, the observations of
Hazen; as well as those of HaywaRD, thus confirm the expected
sirong absorption.

As rtegards the interpretation of ionization measurements, it




40 Nr. 19 : Nr. 19 41

may under circumstances be necessary to take into account that | the motion and position of the electron at the retarded time #
the average energy expenditure per ion, although largely in- for which, on account of the simplifications mentioned, we have
dependent of velocity, must still be expected to increase some-
what with ¥ due to the increasing importance of distant collisions g1 72

4 § 1mp ] t t . t p Vp2+ 1 (I.1)

relative to close collisions (cf. Fano 1946). As regards the mea-
surements of Haywarp, however, the increase in energy loss
per ion from p~ 1 to very large y may be estimated, from
FaNo’s expressions, to be of the order of only 1 °/¢in a He gas at
norm.al pressure. . to the particle, we disregard it in the present connection. In higher
Finally, it may be recalled that the atomic interaction manifests 1 approximations, we have reactive forces depending on the elec-
itself very conspicuously in the radiative effects accompanying ¥ tronic displacement and motion. In the case of distant collisions
the penetration of fast particles, a phenomenon which has been  § we need consider only linear terms in 7, of which there wﬂi
investigated in detail since its discovery by Cerenkov (1934). firstly be the force corresponding to a uniform motion of the
Thus, the general properties of the radiation, such as its polar- electron. This force may simply be obtained from (4.6) by re-
ization and the relation (7.2) bvetween frequency and angle of ¥ placing #(f) by () - (t—t"y 5 (£, representing the position
emission, have been tested by Cerenkov (1937, 1938) and by which would have been reached by the electron at time f if it
Corrins and Rerming (1938), and also the intensity of the radiation had proceeded from time ¢ with uniform velocity. Secondly, the
was shown by the latter investigators to be in accordance with acceleration of the electron at time t' produces a field g,iven
theory. Recently, attempts have been made to use the radiation by (6.2). .
as a velocity indicator by applying the simple relation (7.2) for For the total effective force of reaction one thus obtains, b
the directions in which the emission occurs (GETTING 1947, means of (1.1), Y
Furry 1947, Dicke 1947).

In the first approximation, the force is simply given by the static
field corresponding to the electron at rest in its original position.
Since, however, this field gives rise to no resultant energy transfer

SE() = 2 vt { +3’7+cz}, (1.2)

where 7 and its derivatives are to be taken at the retarded time ',
This expression might, of course, also have been found from the
general formula for the field produced by a point charge in
arbitrary motion (cf.,, e. g., M. ABrRaHAM, Theorie der Elektrizitit,

3rd ed., Leipzig and Berlin 1914, p. 92). The energy decrease
- of the particle is given by

Appendix I.

Reaction in Relativistic Two-body Collision.

In § 6, it was indicated in outline how the collision between
two point charges may in classical mechanics be analyzed by
tracing the reaction of the struck particle on the incident particle.
We shall here consider this problem in some greater detail, con-
fining ourselves, as in the text, to the treatment of distant col-

2
lisions or, to be more specific, to the case of p>> %—é. In this

+o
= SéKU'dt,= T+ T+ Ty, (1.3)
approximation, the displacement, during the collision, of the '
struck particle, referred to as the electron, is small compared

with p and its velocity remains negligible in comparison with ¢.

. corresponding to the three terms in (I.2).
By a partial integration one finds

Moreover, we may disregard the change of velocity of the incident’ : °°°1 d @ )
particle. . | To=aep \ 550dt = nep \ Ll ar, @
The force which acts on the partlcle at time f depends on dt
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where, according to (L.1), So far, we have considered only the problem of the energy
, S ; 4 transfer but, for the sake of completeness, we shall briefly examine
Cg; —q1zv (I.5) - also how the momentum transfer in the relativistic, two-body

cr :

collision is described. The component perpendicular to the path
of the incident particle presents no special problems; in fact, the
momentum transferred in this direction to the electron was
analyzed already in § 3, and the corresponding reactive force is,
of course, simply the electrostatic force of the electron considered
approximately at rest. It is of interest, however, that the latter
circumstance is sufficient to show that, in distant collisions, the
momentum transfer in this direction and, consequently, the total

Consequently, we have

t
T+ Ty = z:6%p % (1 42 ”—”—) di (1.8)

—oo

and, by another partial integration, again making use of (I.5),

A Vo r , energy transfer is uninfluenced by relativity effects.
202 | .t ze? \ .. t*z L7 The problem of the component parallel to the path requires
T:1+ T, = I i M "},— n r dt. (L.7) somewhat more delailed considerations. It is true that, in distant
t=—o . Ve

collisions, the momentum transfer in this direction is very small
) di s e e s . compared with that perpendicular to the path but, still, cor-
Now, from (I.1) it follows that —= = ydt’ (2o’ -+ p*)” " and it responding to the slowing down of the particle, there must, of
is therefore seen, by a transformation of the last term in (1.7) course, be such a momentum transfer of magnitude % T. Froma
fo an integral over t-’ that this term vanishes, sinee 7 13 an even the point of view of the reaction of the electron on the particle,
this momentum is just that transferred by the force 6K given
by (1.2).

In the non-relativistic case where actio equals reactlo the
corresponding transfer of momentum from the particle to the
electron is accounted for by the difference, due to the electronic
displacement, in the eleciric force of the particle, in the first
and last half of the collision. In the relativistic case, however,

this force in the direction parallel to the path is given by

function of ¢ and since t—% = t'. Applying (3.2) for %, one

thus -finds from (1.7) that T = T,+ T,+ T3 coincides with the
value given by (3.4). 1

An evaluation of T,, T,, and T, separately, involves somewhat %
more lengthy calculations which lead to rather complicated ex-
pressions, indicating that the division of T into three parts in the
above manner is not of a very significant character. ‘Put_ting

....

v .
f = =, one obtains
c

; z1e®y vt
=T ——ﬁ) ’ —eE, = (pE+ yroitd)s | ‘ (1.9)
1—p*, 148 . . B
T, = —3 (1 8% + 5 ﬁ2 lo 0871 8 (1.8) and, by a simple calculation, one obtains from (3.3)
1 31, 1+6 | - .
T,=T {3(34/32)——2— 101 1), “lra—pm, 1o

— @

In particular, it is seen that, as stressed in § 6, the term Ty,
depending on the acceleration of the electron, becomes dominating

where 7 is given by (3.4). Thus, for f x 1, the electric field
for f — 1.

accounts for only a small part of the momentum transfer.
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The remaining part is transferred by magnetic interaction. In
fact, the magnetic ficld of the particle, which is directed per-
pendicular to the plane containing the electron and the path of
the particle, equals §E,, where Ej is the component of the electric
field perpendicular to w. The tlansfer of momentum through
magnetic forces is, thus, given by

7 1 o .
EﬂﬁEydi ==Tp ' (1.11)
c v

—o

since the integral of e E,7dt just represents the energy transfer.

It should be stressed that the decisive part played by the
radiative field of the struck electron in the slowing down of the
particle, of course, in no way implies that the energy actually
radiated during the encounter constitutes a major part of the
energy transfer. In fact, this energy W111 be given by

2e
. w5 S|§|2dt (1.12)
neglecting the acceleration of the incident particle, the mass of
which we may, for simplicity, consider to be very large. Intro-
ducing for & the force divided by u, one obtams by a simple

integration
2 p2 z§e4y2 ® p2+ 22 ( 1 )
=2 = (1.13
w 38 /1'2 (P2+V2 U2i2)3 d

—

Since, in distant collisions, p is extremely large compared with
2

the classical electron radius —, the value of W will thus be

we?’
negligible compared with T. For excessively large values of

¥, where the field of the particle at distance p is contracted to-
2

dimensions comparable with —, the situation would be different,

but such problems lie outside the scope of the simple classical
picture of two colliding point charges.
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Appendix II.

Application to Penetration Problems of
Formalism of Radiation Theory.

As mentioned in § 7, it is possible to treat also ponderable
media by the method, particularly well known from quantum
electrodynamics (cf., e. g., W. HEITLER, Theory of Radiation I.6,
Oxford 1944), of dissolving the field in plane waves, and we shall
here consider its application to the problems of stopping power
and - Cerenkov radiation. This method implies an expansion in
Fourier components with respect to the spatial variation of the
field and may, therefore, not always be well adapted to the
case of dispersive media. Just for-a field produced by a uniformly
moving charge, however, the spatial components will also be
harmonic . in time. i

We shall first treat the Cerenkov effect which is the more
naturally suited to the formalism¥. Since this phenomenon is
connected with the rotational part of the field, we consider the

transverse part of the vector potential which we expand in the
familiar manner

A, = > T g Ayt Ay Ay =)4ncc 0 e ef("w (1L.1)
where ¢* and A" denote the complex conjugates of q and 4. The
field is here assumed to be enclosed in a volume 2, and the unit
vector e, gives the direction of polarization. We follow the usual
procedure in which terms corresponding to both x; and
— %; = %, are contained in the summation. The amplitudes q
are then not uniquely defined by (II.1), but are determined by
certain extra conditions imposed on their time dependence.
On account of the aforementioned difficulties in treating quite’
generally the case of dispersive media, we assume in the first
instance the substance to have a constant value of £. Neglecting
specific magnetic properties of the medium, the field is given by

aa—52 4= - (L2)

where ¢ denotes the current density corresponding to the moving
particle. Multiplying this equation by 4, and integrating over 2,
one thus finds

1) Cf. Postscript (iv), p. 51.
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Zle

(4, + @) T o (a,+ ¢y = @ 45@), (L3

where x denotes the position of the particle, considered to be a
point charge. The frequency w; is given by

%
Ve
We now require that the free waves associated with ¢; must have
the time dependence e~io; 1 ywhich condition leads to

@, =

b

(I1.4)

1+ ofg, = 25 (14 L G) e di@), (L)

an equation describing an oscillator in forced vibration.

If the particle moves with constant velocity, we may put
. = vt and the right hand side of (II.5) is harmonic with
frequency (#1,?). The equation (II.5) then reduces to

z€e (HA,’U_)
2 ce{(m;,v)} < + A

In this particular case, there is no difficulty in treating dispersive
media; as indicated in (I1.6), one simply inserts for ¢ the value
corresponding to the frequency (x;, v).

In vacuum, it follows from (II.4) that w; is numerically greater
than (%, v), since v < ¢. The solutions to (I1.6) are, therefore,
simple forced vibrations of constant amplitude. However, in a
ponderable mediwm (or in the imaginary case of v > ¢) we may
for certain wave numbers have w; = (x,;, v), corresponding to
resonance between the exciting force and the oscillator. In this
case, the oscillator will continue to absorb energy, corresponding
to an actual emission of radiation. This effect just represents the
Cerenkov radiation and it is also seen that, according to (I1.4),
the condition for resonance is identical with (7.2).

The treatment of an oscillator in resonance presents certain

el = > (v, A5 (wt)). (I1.6)

mathematical intricacies which may be overcome by introducing, -

formally, an infinitesimal damping. A more convenient re-
presentation is obtained, however, by making use of the Dirac
d-function. The general solution to (II.6) may thus be written,
symbolically,
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zie -1 1
q;,=

2 cwy e{(x;,v)}

as may be easily verifiedV.

In particular, we shall use the expression (IL.7) to determine
the force §, acting on the particle. For symmetry reasons, the
Lorentz force obviously vanishes and we. have, thus,

Z.e Zje . cx ax
§p=—"g A, W) = === 374, 4wt + §; 4; (wt) (IL8)
y

which gives, by means of (IL.7) and (II.1),

o e : (23, v)
S = — 42220 1 - - 7 _ —
v n2zle §,1 e; (e, v) POV (P d(wy— (x5, v)). (IL9)

Summing first over the two directions of polarization and intro-

ducing (%;, v) = xvy, we get in the usual manner in the
limit of infinitely large volumes 02

,Str = Zi"e2 So;ﬂdh’ Sdgm(l_ 2)5((0_9,051) (11. 10)

where S is the component of 8§, directed against v. The other
components vanish for symmetry reasons.

In evaluating the integral (II 10) it is convenient to change
to the new variables w, defined by (11.4), and z = — y Velxvy).

Since vdxdy = dwdz, one finds

2 .2
zle

Sy = A5 SiodcoSzdz(l—%o?}>50~—z), (1.1.1_1)

0

where the last integral is to be extended over values of z for

1) It may be shown that the equation z + wc,:r = k(f) with the boundary

condition x = a: = 0 for { = — », in a Fourier expansion has ‘the solution
Tz = o L] +in6(w w) 4 1 [ 756 (w,
2wy |y — @ S lwo+w*”7; (@0 T @),

where x(l) —‘»S x® e 100 g4 ana similarly for k(%).

0;— (a0 +ind (wi—(x,w))> (v, 4; (vt)), (IL7)
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cz :
which — 1 <«—7——=—= < 1. This integral vanishes, except for
vl e{wz) :
frequencies for which z = 1 is contained in the integration inter-
val, i. e. for which v J/e{w} > c.

Thus, one gets finally

2 2 2
S, = ilc_f_ 8(1—;5’]—2)mdw, (11.12)

vfex>c

which is just the expression given by Frank and Tamm (1937)
for the Cerenkov radiation and its spectral distribution. For the
simple dispersion formula (7.3) the expression (11.12) may easily
be evaluated, and one finds the values given by Fermr (1940)
which, as mentioned in § 7, represent the relativistic increase in
the stopping formula.

The non-relativistic part of the stopping power is, as discussed
in § 7, determined by the irrotational part of the field. It should
'be emphasized that the application to this problem of a formalism
analogous to that used for the Cerenkov effect is somewhat
artificial but, for the sake of completeness, we shall give a brief
account of the procedure.

Choosing, for convenience, a gauge in which the vector
potential is purely transverse, the longitudinal part of the field
is given by the scalar potential ¢, for which we have

_4dme
—

Ap= (11.13)

where ¢ denotes the charge density of the particle and where,
like for the transverse field, we consider first the case of constant
e. Expanding ¢, one gets, in analogy to (IL.1),

o= q.B,+ 3, O,=|incQ %" (1L14)
g

and may obtain, by considerations similar to those leading to ‘

AL5),

Zy€e

i d\ ;« s
€qs = 2 22 (1 + ;‘;E) D (), (11.15)

where o, represents the effective frequency defined by (4.4). As
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discussed in § 7, only free oscillations of this particular frequency
can be excited in the medium, and we have, accordingly, defined
the variables g, so as to contain terms corresponding to free

waves of the type e~ '®4a, only. In case of a uniformly moving
particle, we get from (I1.15),

e{(0)) 4o = 5n (1+(";’ ”))qb;(w) (11.16)

2 .2
2xsc 4

where, like in (I1.6), we have taken into account the dispersion.
Now, the force acting on the particle is given by

SIong =— ze grad P = —ze Z i"o‘ (%QSG (’Ut) _— q;®;(vt)) (1117)
< .

and, therefore, vanishes except for the contribution from the
singularity in the terms representing wave-numbers for which
¢ = 0. It was to be expected, however, that only these components
give rise to a stopping force, since the energy transfer to the
medium takes place over the frequency w, for which just e = 0
(cf.§ 7).

In the neighbourhood of w = w, we may write the dispersion
formula (7.3), by means of (4.4),

EN————5— : (I1.18)

and, in complete analogy to the symbolism used in (II.7), we
thus get '

zie VP 1 B
_T;Z;gg(mﬂna(%—(xa,v)))qb;(m). (IL.19)

Introducing in (I1.17) one finally gets, similarly to (I11.10),

o v

S 3.9 1 1 ‘ 2e2? ("
ong = 22 €% Sxdx Sydy——é(wA—xvy) =& & (11.20)
ey, ”

1
2%

This expression, however, ceases to be valid for very large =,
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since the whole procedure applies to distant collisions only. In
analogy to § 4, where we considered the medium outside a certain

distance ¢ from the path of the particle, we may here introduce

. : 1. .
a cut-off at some wave number x»,,,. Choosing sy ~ — 1t 1s seen,
q

by means of (3.6) and (4.1), that (II.20) coincides with (4.11)
as closely as could be expected, considering the arbifrariness in
cut-off procedure. h
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Postscript Added in Proof.

Since the completion of the present manuscript, a number of inve-
stigations dealing with the same topics have come to the notice of the
writer; some of these have been published only quite recently, while
others were published already during the war, but the respective per-
iodicals were not available in Copenhagen at the time in question.

(i) G.C. Wick (Ric. Scient. 11, 273 (1940), ibid. 12, 858 (1941),
and Il Nuovo Cimento 9, no. 3 (1943)) has considered the extension of
Fermr’s calculations to the multi-frequency meodel (cf. § 8) and, on
the basis of a dispersion formula of the type (8.2), has worked out an
expression for the reduction in stopping power, easily susceptible to
numerical calculation for. any given set of dispersion frequencies. The
result had been obtained independently by O. HALPERN and IH. Hain
(Phys. Rev. 73, 477 (1943)), the publication of whose work was delayed
by the war. These latter authors moreover have deduced an explicit
formula for the stopping power, valid under certain simplifying assump-
tions which are fulfilled in most cases of interest. This formula just
coincides with (8.5); in fact, the approximation involved is equivalent
to that underlying the analysis in § 8. It may be noted that the authors
start from a dispersion law which, in contrast to (8.2), takes into
account the Lorentz-Lorenz correction (cf. p. 12), but it would seem
that, in the approximation considered, this correction may be neglected.

(i) HatperN and Havr (loc. cit.) consider also the influence of the
damping of conduction electrons and point out that the effect, although
in general negligible, may be of significance in special cases like that
of carbon, where the resistance is excessively large. From the line of

it
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approrach adopted in § 8, this effect is readily taken into account: in
fact, it follows from (6.1) that, as regards the stopping power ’the
conduction electrons are equivalent to dispersion oscillators of eﬁe’ctive
frequency wg. Thus, the phenomenon may be said to be actually
covered by (8.5).

(iii) The influence of the polarization on . the stopping power has
been computed for various substances by HaLPERN and Harr (loc. cit.)
on the basis of approximate dispersion-conduction models derived from
?(-ray ionization data. As pointed out by these authors, this procedure
1nvol\_res a certain latitude but, due to the relative insensitivity of the
stqpplng effect on the exact model, the results 'may be expected to he
reliable within a few per cenl. More detailed estimates have been made
for a number of substances, by Wick (loc. cit.), who has employed X—ra};
data as well as theoretical calculations on the basis of the Hartree
method in the establishment of appropriate sets of oscillators for. the
atoms in question.

(iji_) V. 1. GinssUuRG (Journ. of Physics II, 441 (1940)) has treated
t?e_Cerenkov radiation by a Hamiltonian formalism which is very
SIml_lar to the procedure applied in Appendix II. Such a formalism can
be immediately quantized in the usual manner, and GINSBURG has
de\feloped a quantum electrodynamics which describes, in a phenomeno-
logical way, the radiation field in a ponderable medium. In particular
GINSBURG verifies that the average radiated energy is practically equal,
to that given by the classical formula, a’ result which was to be ex-
pected from quite general arguments (cf. § 2).

4*
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