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INTRODUCTIO N

The following well-known theorem by KUONECKE R

Theorem L If m real numbers

	

• , 2.rn do not satisfy any
(abort

t •1

	

+ . . . +
t'ntAnt =, 0 ,

sere rl ,

	

, r,n are rational numbers and al least one r„ is $ 0 ,
en there exists to any given real numbers v i ,

	

pm and any posi -
e E a number t satisfying

t-v,,1 :5 E (mod. 2m), v = 1, .,In ,

equivalent to the following

Theorem 2. If h,, (t) =

	

v = 1, • • to are pure oscilla -

ns,. whose frequencies 2 ; v = 1, • ,m do not satisfy an y

l illi

	

Z

	

ZmJ

r-27E
i + . . . H-r

	

= 0 ,
m 2Tc

here

	

, rm are rational numbers and at least one r„ is $ 0 ,

en there exists to any given real numbers u 1 ,

	

•, vm and any

sitive e a number t satisfyin g

h,.(t)- e1DV~C.E ; v = 1,, . .,In .

If the numbers 2, 1 , • , gy m satisfy the condition of Theorem 1 ,

c~ are called rationally independent. Theorem 1 states that th e
raiht line x,, = 2,,t ; v = 1, • •, in, whe-.e •,2m are ration -

h' independent, is mod . 27T everywhere dense in the m-dimen-
gnal space .

In this paper we shall consider phase-modulated oscillations,

functions
H t = e

;(0+tr(t))
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where c is a real constant and g (t) a real-valued function, alm e

periodic in the sense of Bona. . Its frequency (in mean) is de t

mined by the constant c, which is called the mean motio n

H(t) . We shall prove in this paper that Theorem 2 is valid a
for phase-modulated oscillations, i . e . we shall prove the followi r

Theorem. 3. Let H i (t), • ,H171 (t) be phase-modulated oscillatic

with rationally independent mean motions . To any given real nu )

bers

	

• • •, u rn and any positive e there exists a number t, sa t

filing
~ H,,( t)

-e

	

_<__s
; v=1, . . .,m .

Apparently we lose nothing by this generalization althol e

Theorem 3 is evidently much more far-reaching than Theorem

However, it is well-known that Boni, has proved that the

of numbers t satisfying (1) is relatively dense ,and WEYL h :

proved that the set of numbers t satisfying (l) has the relati ,

e m
/2 arc sin

2
measure on the 1-axis . It will be proved that Bon

Tc

result is valid also in the general case, but we lose WE)' i

result . This is, in fact, not valid for the single oscillati c

H (t) = ei(t +siet) if we take v = 0 and < 2 .

Theorem 3 states that the curve x,, = c,;l+g„(t) ; v = 1, . •.

where c 1 , • , c1n are rationally independent, is niod 2 az ever

where dense in the rn-dimensional space .

The result is brought in closer connection with the the o

of almost periodic functions by the following theorem 1

H . BOHR ' .

Theorem 4 . A complex-valued almost periodic function

- oo < t < oo , satisfying f (1) >k> 0 , can be written

f(t) = r(t) • H(t) ,

where r (t) is a positive almost periodic function and H (t)

phase-modulated oscillation .

The mean motion of H (t) is also called the mean motto

f (O . If f (t) is almost periodic and a and b are comple x

H . Bolin : Kleinere Beiträge zur Theorie der fastperiodische n

tiouen, I . Det Kgl . Danske Videnskabernes Selskab . Math .-fys . Meddelelser,

(1930) . Über fastperiodische ebene Bewegungen . Comment . math . heiv.4il

r11
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nits such that f(t) - a and f (t) -b satisfy the condition o f
'éorem 4, the mean motions of these functions have a rationa l
Ito . This was first proved by JESSEN 1 and later JESSEN and
NCHEL 2 found a more general theorem concerning almos t
iodic movements on closed or plane surfaces . In this paper
<hall deduce some generalizations of JESSEN ' S original theorem
another direction . For the present we observe that JESSEN ' S

eorem is a corollary of Theorem 3. In fact, JESSEN ' S theorem
ay he expressed as the followin g

Theorem 5. If two almost periodic functions f1 (t) and f2 (t) ,
irh do not come arbitrarily near to zero, satisfy a linear relatio n

alh.( t ) +a212( t) = a s

re a 1 , a 2 and as are complex constants

	

0, the mean motion s
Ind c2 of f1 (t) and f2 (t) are rationally dependent .
In fact, if cl and c2 were rationally independent, there woul d
ording to Theorem 3 exist a number t such that the corn -

numbers ai fi (t), a 2f2 (t) and - a3 would have nearly equa l
;laments and that would render the relation (2) impossible .
We shall prove that Theorem 5 is valid for an arbitrar y
Huber of almost periodic functions satisfying a simila r
Idition. If, on the other hand, we restrict the number o f
rctions to three, we may replace the linear relation (2) by a
mogeneous quadratic equation, and the theorem is still true .

§ 1 . Some Preliminary Remarks .

For the convenience of the reader we shall first mention
le results concerning periodic and limit periodic functions of
denumerable set of variables, which we shall use in the sequel .
shall permanently use the vector notations

	

(x1 , x2 , • . •) .

r two vectors ae = (x i , x2 , • • •) and y = (g i , y 2 , . . •) and two
mhers k and 1 we define the linear combinatio n

kx±ly = (kxi + ly i ,ka;2 +ly2 , . . . )

13 . JESSEN : Ober die Säkularkonstanten einer fastperiodischen Funktion .
nu . 111 (1935) .
J . FENCHEL und B . JESSEN : Ober fastperiodische Bewegungen in ebenen

c chen und auf Flächen . Kgl . Danske Videnskabernes Selskab . Math .-fys .
'rldelsei XIII, 6 (1935) .



6

and if one of the vectors x and y has only a finite nu n

of coordinates $ 0, we have the inner produc t

xy = xtiil + x2tÏ2' +

A sequence x„ •) ; v = 1, 2, • of vector :

said to converge towards a vector xo = ( xot, x02, • • •) if x„fi r

for is = 1, 2, - • - and v----e Do . A function F(x) is called co

tinuous for x = xo if F(x,,) -e F(x0), when x,, runs throu

a sequence of vectors belonging to the domain where F(x, )

defined, and converging towards x o . A function is continu o

in a domain (i . e . continuous in every point of this doma i

if it can be approximated uniformly with any given accure

by a continuous function depending only on a finite numbe r

variables . In what follows the domain in question is the r e

infinite-dimensional space . A function F(x) = F(xi ,x2 , • • • )

called limit periodic with the limit period 2 Tr, if it can be a

proximated uniformly in the whole space by a continuous fu t

tion depending only on a finite number of variables and peria

in each of these with a period that is an integral multipl e

2 7U . Hence a limit periodic function is continuous . The functi

F(x) can be approxinmpted uniformly in the whole space 's

any given accuracy by an exponential polynomia l

P
(x)

	

ti
=

	

a,e `

where r runs through a finite set of vectors with rational c

ordinates, among which only a finite . number are $ 0 1 .

The numbers Z 1 , • •, gy m are called rationally independee !

a relation

with rational rat , • , rn2 is possible only when r 1 = •

	

= r,,
,

The numbers

	

• are rationally independent if I L , -

are rationally independent for all values of rn .

In the sequel we shall give a very brief account of s i

principal theorems concerning almost periodic functions° . 1

shall start with two preliminary definitions :

t A detailed discussion of the properties of limit periodic functio .

given by H . Bone : Zur Theorie der fastperiodischen Funktionen II . Acta

46 (1925) .
For detailed proofs, cf. H . Bone : Fastperiodische Funktionen, Berlin

1 set . of real numbers is called relatively dense if there exists
number 1 such that any interval of length 1 contains at leas t
le number of the set .
A number r is called a translation number of a function

t), - oo < t < oc corresponding to F > 0, i f

I f(t+-f(t) I < e
oc<t<oc .

1. function f(t) is called almost periodic if it has the followin g
'opert y

(i) The set of translation numbers of [(I) corresponding t o
y e> 0 is relatively dense .
It is a main result of the theory of almost periodic functions

at any of the following two properties is equivalent to th e
eceding one:

(ii) To any e> 0 exists an exponential polynomia l

. s: azet
'

i
,

rere I runs through a finite set of real numbers, approximatin g
t) everywhere with the accuracy E .

(Hi) There exist a series of linearly independent real num -
es ß 1 ,ß2 , • • • and a function F(x) with the limit period 2 r
ch that

f( t) = F (,8t) - = 1'(ßtt,ß2t, . . .) .

ie ;function F(x) is called a spatial extension (or the spatia l
tension, although F (x) is not uniquely determined) of f (0 .
The equivalence of the two latter properties is rather easil y

ov'ed land it is also rather simple to prove that they impl y
e property (i), but it is much more difficult to prove that (i )

plies (n) or (in). This is the main theorem in the theory of
most periodic functions . In the sequel we shall almost ex-
üsively use the property (iii) . From the theory of almost

imiic functions we also hav e

Marren' 6 . The set of values assumed by the spatial extension
ell almost periodic function TO) is a subset of the closure of the

values assumed by At) .

i



Theorem 7. The set of common translation numbers of a fi r

number of almost periodic functions corresponding to an arbitre
r > 0 is relatively dense .

Sum and product of a finite number of almost periodic fu i

tions are almost periodic, and if g (t) is almost periodi c
function ei0(0

is also almost periodic .

It is important that the numbers ,64 , ß 2 , in (iii) ca n
chosen in a great variety of manners . E . g . any set yi , y 2 ,
of linearly independent numbers such that any , 6 7, can be writ$

as a linear combination with rational coefficient of a fi u
number .of the y 's . From this follows further

Theorem 8. To a sequence f1(t), f2 (t), • • of almost perin
functions exist a sequence N1,ß2, - • of rationally independent r
numbers and a sequence Fl (x), F2 (x), • - • of limit periodic fir .
tions such that

f (t) = F,~(ßt) ; v = 1 , 2 , . .

and the sequence ,6 1 ,,82 ,

	

• can be chosen such that it con e
any given sequence of rationally independent numbers as a
sequence .

From the theory of almost periodic functions follows furl )

Theorem 9 . If a denumerable set f1(t), f2 (0,.-- . of ab) ,
periodic functions satisfy an equatio n

(D(fi ( t), f2 (t), . . .) = 0 ,

where Ø (ul , u 2 , • •) is continuous when u„ for v = 1, 2 ,
longs to the closure of the set of values assumed by ,,(t) ,

spatial extensions Fl (x), F2 (x), • • satisfy the equatio n

(D (Fl (x) , F2 (x) , . . ) = 0

Theorem T0 . If G (x) has the limit period 2 7r, and (r 1 , r2

is a vector with rational coordinates, of which only a finit e
ber are $ 0, the function

e i
( r ~ x, + rs xz+ '.

	

+ G ( .x,))

r .ll

	

9

If g(t) is almost periodic and c is an arbitrary real number ,
u function

7 2 . The Mean .Motions of Limit Periodic and Almost

Periodic Functions.

A continuous argument of a continuous function P (x) =
P(x1 , • , x, ) with the period 27r in each variable and no t
wining the value 0 can evidently be writte n

arg P (x) = px + Q (x) = ptxl -+ . . . + pmxnt -+ Q• (00 ,

here pi , • • , pm are integers and O (x) is continuous and has
t period 2 Tr. . For a limit periodic function we hav e

Theorem ].1 . If F(x) = F(xi,x2, . • •) has the limit period
T and satisfies I F(x) I> k> 0, a continuous argument of F(x)

be writte n

arg F (x) = r•ix 1 -+ r 2 x 2, +
. . . + G (x) = rx -I- G (x) ,

re rl , r2 ,

	

• are rational numbers, of which only a finite
.uiber• are *0, and G (x) has the limit period 27r .

The vector r is called the mean motion vector of F (x) .

Vor the proof' we consider a sequence P1 (x),P2 (cx) ,
continuous functions with the following properties : (i) Each
action depends only on a finite number of variables and has
period that is an integral multiple of 2 7r . (ii) The function s
ix) converge uniformly towards F (x) and satisfy

~F(x)-P„(x)v=,,2,•• •

Tr
arg F (ac) arg P„ (x) ~ < -

2
; v = 1

, The following proof is very similar to a proof of Theorem 4 given b y

e i(ct + o(i) )

has the limit period 27r . T inc. cit .
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Bu rg P (x) = rlxi + r 2 x2 -I-

	

. -- Q„ (x) ,

where 1-1 ,1 .2 , • are rational numbers, of which only a finl i

number are It 0, and Q,,(x) is a continuous function . dep e

ing on a finite number of variables and having a period ti r

is an integral multiple of 27r . From this and (3) follow s

	

arg F (x) = r 1x1 + 1'2x2 +

	

+ G ( :fin) ,

where G (x) is continuous and bounded . But it also follo w

that the numbers r i , r2 , • • do not depend on v . Hence it foli o

that (),,(x) converges towards G(x), which implies that G( x

has the limit period 27r .

Concerning almost periodic functions we have

Theorem 12 . Let f(t) denote an almost periodic function o r

F(x) its spatial extension such tha t

f(t) = F(ß1t,ß2t, . . . )

where ßi „8 2 , • • are rationally independent real numbers . It

satisfies the condition f(t) I> k> 0, continuous arguments of F i

and f(t) can be writte n

arg F (x) = r ix e + r2x2 + . . . + G (x)

and

where

and

arg f(t) = et+g (t) ,

c = r'1ßl+ r'2ß2+ . .

g(t) = G(ßit,ß2t, . . .) ,

i . e . g (t) is almost periodic.

The constant c is called the mean motion off (O .
The theorem is an immediate consequence of Theorem, .

and ll . It contains Theorem 4 as a special case .

3 . An Auxiliary Theorem on Convergence in an

Infinite-Dimensional Space .

A denumerable set af, = (aLLi , a„2 , • .) ; lc = 1, 2, • • of i

finite-dimensional vectors, each with only a finite number

its coordinates 4= 0, is called a complete set of linearly in -
Li pendent vectors if every vector with only a finite number o f
k : coordinates 4 0 in one and only one way can be written

a linear combination of a finite number of the vectors . al, .
I1 is will be the case if and only if any finite number of th e
ectors af, are linearly independent and each of the unit we -
Ts ei=(1,0,0,• •), e2=(0,1,0, . .-), . can be written as a
iaear `combination of a finite number "of the vectors a, r .

For the proof of a generalization of Theorem 3 to a denumer-
tble set of phase-modulated oscillations we shall need th e
allowing theorem .

Theorem 13 . Let a i , a2 , • - be a complete set of linearly . in -
rependent vectors, each with only a finite number of its coordinate s
= 0, and let K1 , K2 , • • be a sequence of positive numbers. Any
etluence x,, = (x ,,,, x ), 2 , • •) ; v = 1, 2,• • • of vectors satisfying

	

auxr,~ = ~ afeLxr•t+C(f,2xv2+'_

	

Cp, = 1, 2,

	

Y ;

	

v
_ 1,2

	

. .

assesses a convergent subsequence.
In fact, for each n we have a representatio n

e,t = ccn l a t + . .-f-
anN,, a

[rich implies that

xvn = enxr. =
an i ai,ei, + . . -I-

a nN,, tLN„xs.

rai from (4) and (5) follows that

n ~~Ianlll a l x,i I + . '' + I anN„I cN„xvI <

+ I anN 1 KN,.> v= ri, n+ 1,

	

•

IxrttltÎlr,, n

	

1,2 •' , v = 1, 2,

	

. ,

üd it follows by the usual diagonal method that the sequenc e
a convergent subsequence .

It is easily proved that any sequence of vectors a i , a2, •

I n with only a finite number of its coordinates

	

0, and of
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which any finite number are linearly independent, can be en i

larged to a complete set of linearly independent vectors, e .

by adding to the sequence a conveniently chosen subsequen t

of the sequence of unit vectors .

§ 4 . An Auxiliary Theorem from the Topology.

The greater part of our theory will be founded on the follo e

ing topological, theorem, which is an immediate consequence t

the theory of the Kronecker index of a surface t .

Theorem 14 . Let y = f (x) or y i = fi (x), , ym = &»'{

be a 'continuous vector function in m-dimensional space . If th. ,

exists a constant K such that 1 f,,(x) < K' for v = 1, • , m ,ar

all vectors x, the vector function y = x + f (x) ;naps the tot

m-dimensional space on itself

Generally, of course, the mapping is not a one-to-one-co t

respondence . For the infinite-dimensional space we shall pro°:

the somewhat more general theorem :

Theorem 15 . Let a1 , a2 , denote a complete set of lineur f

independent real vectors, Kt , K2 , • • • positive numbers and Q 1 (a .

Q 2 (x), • • . continuous real functions satisfying t Q,,(x) I <1,

v = 1, 2, • . To arbitrary real numbers yt , ye, • • exists a a

responding vector x satisfyin g

(6)

	

a,,x+Q,,(x) = y,, ; v = 1,2, . . . .

At first we shall restrict our considerations to the equatio n

a; x -k. Qv(x)

	

y v ; v = 1, . . . ,m .

It is easily proved that these equations possess a solution . I

fact we can enlarge the system so that we obtain a new syste m

b,,x + R„ (x) = y,,; v =

	

, N ,

where b1 , • • , blé, are linearly independent N-dimensional veet > r

such that for v = 1, • • , m the coordinates of b,, are identi h

Cf. e . g . J . TANNERY : Introduction ä la théorie des fonctions d'une varia i

2 . éd ., vol . 2, Paris 1910 . Note de M . J . HADAMARD .

ïth the N first coordinates of a,, including all that are differen t
Him zero. If we introduce z„ = b„x ; v = 1, • • , N as new
sriables, we obtain a new system of equations satisfying th e
}nditions of Theorem 14 and the assertion follows . We choose

ro for the coordinates xN+1 , xiv+2, '
The solution xm found in this manner satisfie s

avxml = I yv-Q,(x)I

	

y„I+K„

nd from Theorem 13 follows that some subsequence of th e
,quence of vectors xm converges towards a limit vector x, which

1 vidently satisfies all the equations (6) .

§ 5. The Main Theorems.

From Theorems 11 and 15 follows immediatel y

Theorem 16 . Let F,,(x) = F „ (x 1 , x2 , • • •) ; v = 1, 2, • • . be a
sequence of functions with the limit period 2 rr, and satisfying
Moe)! > k„ > 0 for all vectors w . If the mean motion vectors cor -

,pondinq to any finite number of the functions F,,(x) are linearl y
dependent and v1, v2 , . • • are arbitrary real numbers, there exists

1 hector x such tha t

arg F,(x) = v,, ; v = 1 , 2, . .

In fact, if the set of mean motion vectors is not a complet e
et of linearly independent real vectors, we can make it coln -

,lete by enlarging the system of functions F,,(x) .
For a finite set of almost periodic functions we have

Theorem 17. If c1 , • , cn are rationally independent real num -
hers and g1 (t), •

	

gn(t) are arbitrary almost periodic functions ,
There exists to any given real numbers u t ,

	

. , vn and any positive
a number t satisfyin g

+g,,(t) - vv~<e (mod . 2rr) ; v = 1, • .,n ,

the curve x,, = c,,t+ g v (t) ; . v = 1 ,

	

,n is mod . 2 rr, every -

where dense in the n-dimensional space .
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According to Theorem 8 we choose a sequence ,6 1 , ß 2 , • • o

rationally independent real numbers, where ß 1 = c1 , • , ßn e „
such that

evt+ge(t) = ß,,t+G,,(,8t) ; v = 1, • ,n ,

where the functions G„ (x) ; v = 1, • • ,n have the limit perio (

2 T . It follows from Theorem 14 that there exists a vect o

x* = (xi , • • • , x, , 0 , • • .), satisfyin g

x ;;.+G,,(x'') = u„ .

We can further choose continuous periodic functions Q 1 (æ )

- • - , (Msx;) each depending only on a finite number of variable ,

such that

for all vectors x . From Kronecker's theorem follows the existen

of a number t satisfying

~Q,,(x .:_Q~ (ß t ) I
<

	

v = 1,

	

, n

x;; --ß,,t I

	

(mod . 27r) ; v = 1, • ,n .

Henc e

c„t+g„(t)v,, = ß,t+ G, (ßt) U„ I_<_ f Gp (A t)--Qv&t) I

+ I

	

x 7r I+ I MO-- Mx') + QY(x
:.: ) -G„(x

:
') I +

-I- .r.i; + G„(of. `) - v„1< 3+6+6+3+0
= (mod.2 ,-r, )

which proves the theorem .

Theorem 3, announced in the introduction, is evident ]

equivalent with Theorem 17 . We observe that the theorem

not valid for a denumerable set of almost periodic functo n

E. g . the pure oscillations e`i8li, ei r3 2 t , where the numt ,

ß l , ß 2 , • are rationally independent and converge towards e+ r

will never simultaneously obtain values near -1 .

We shall further prove the following generalization of tl ]

Kronecker-Bohl theorem .

r .11

	

1 5

Theorem 18. The set of numbers satisfying (7) is relatively
nse .

In fact, if we choose the real number to satisfying

c;,to+g,,(to)-6(mod.2m) ; v= 1, . . ., n ,

nÿ number to+T., where z is a common translation number
i the almost periodic function s

e`
(c,,t + n, .(i) -D,, )

orresponding to 2 sin -, satisfies (7) . Hence the theorem follow s

lam Theorem 7 .

§ 6 . On Limit Periodic and Al-niost Periodic Function s
Satisfying Linear Relations .

From Theorem 15 follows

Theorem 19 . I f a sequence of functions F7, (x) _ F,,(x 1 , x2 , . . . )
ni'th the limit period 2 er and with the property

I
F,,(x) > k,, > 0 ;

=1,2, - . for all x satisfies a linear relation

cc i li (a^) -I- a 2F2 (x) + . . = 0

there a 1 , a 2 ,

	

are complex constants that are $ 0, and the
ries on the left converges for all real vectors x, the mean motio n
'does • • • are linearly dependent, i . e . the set ofmean motion
edoi•s has a finite subset of vectors that are linearly dependent.
his is still true even if the condition I P,, (at!) > k„> 0 is satis
éd for only one value of v, if for every 2 we have a representation

there G,, (x) is continuous and bounded and r,, is a vector with
rational coordinates, of which only a finite number are

	

0 .
la . fact, if the vectors r„ were linearly independent, accord -

ti to Theorem 15 there would exist a vector x''' satisfying

rYx*+G,(o*)+arga,, = 0 ; v = 1,2, . . ,

G„(x)Qv(x) ; v = 1, •, n

and
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and for x = x`r the left side of (8) would be positive and tl l

relation would not be satisfied .

Theorem 20 . Let f1 (t) ; f2 (t) , • be a sequence of alma

periodic functions satisfying 1 f„ (t) l > k,,> 0 ; v = 1 , 2, • . a n

let If, denote the upper bound of f„ (t) I ; v = 1, 2, . . If al , a 2,

atfl ( t) + a2f2(t)+ . . . = 0 ,

the mean motions c 1 , c2 ,

	

of ft (0, T2(0, • . are rationally d))

pendent .
From Theorem 9 follows that the relation (9) implies an an

logous relation between the spatial extensions and the theore m

therefore follows immediately from Theorems 19 and 12 .

We shall prove some stronger theorems concerning ,finiH

sets of almost periodic functions satisfying linear relations . Fe

the sake of brevity a function r (O ei(`t+s(t)) where g (t) is ,

real almost periodic function and r (t) is a real,' non-negati . :

function, will be called a modulated oscillation . It will further

called normal if the set of zeros of r (t) contains no intervnI ,

Theorem 21 . If a finite set of modulated oscillations f,,(t)

= r„ (t) e`(c"t+°"(t)) ; v

	

1, •

	

, n satisfy a linear relation

(10)

	

a1ft(t)+ . . . + anfn( t)+ß

	

0 ,

where a l , • , an , and ,8 are arbitrary complex numbers $ 0 ,

mean motions c1 , • , en are rationally dependent.

If the numbers co • • • , c,1 were rationally independent ,

would follow from Theorem 17 that the inequalitie s

+ .q;c„t

	

,, (t) -- arg a„ - arg ~ I<
Tr.

9
(mod. 2 7c) ; v= 1. , . .

were satisfied for some value of t in contradiction t o

relation (10) .

We notice that Theorem 21 is a generalization of theore m

mentioned in the introduction . In the case where r4 = 0, we lt :n

1 1

Theorem 22. If a finite set of modulated oscillations f„ (t) =
!w(t)e1(cyt

+ 9„(t)) , v = 1, • • ,n, of which at least one is normal,
isfy a relation

ai fi ( t) -I- . . . + anfn ( t) = 0

irere a1 ,

	

, an are arbitrary complex numbers that are $ 0 ,
e mean motions cl ,

	

en satisfy a linear relatio n

riel+
. . . +rata = 0 ,

here r L ,

	

, r, are rational numbers satisfying

ri+ . . .
+t•n

= 0

td not all zeros .

We choose a real number c that rcannot be written c = r 1 c1 +
• +ra ta with rational r 1 ,

	

, rn . If the real numbers
., . ,c+ en were rationally independent, it would follow

can Theorem 17 and the continuity of g i (t), . • , g n (t) that
Le inequalities

c+c„)t+g,, (t)+arga,,! < -214

tre satisfied for all values of t belonging to some interva l
-t<t 2 . One of the oscillations, say ft,(t), is normal, and
nee the interval t i < t < t2 contains a point 1*, where rt (t*) > O .
.om this would follow that the term a„ f (t*)

clef
had a positive

al part and none of the terms a„ f,,(t*)
etcc

had negative rea l
rts, and the relation (11) could not be satisfied for t = 1* .

'e have thus proved the existence of a . relation

2)

	

r1 (c +e1)+ . . +r (c cn) = 0 ,

here rl, . • • , rn are rational and not all zero . As c cannot b e
niter' as a linear combination of c1 , , cn with rational
ëfticients the relation (12) implies the following two relation s

t i + . . . + r•n = 0

+ . . . + rata = 0 ,

[hi~ .r proves the theorem .
h I .gL DanskeVidensk. Selskab, Matfrs . Medd . XXIV, Ii .

	

2

convergent and if we have

are complex numbers different from zero such that 2 ai, K,,
y=o

(9)

1 7

(mod . 2 •rr) ; v1,•• ,n
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Nr .

As a very special case of Theorem 21 we have the followüi .

theorem, which is a slight generalization of Jessen 's origin

theorem mentioned in the introduction .

Theorem 23. Let f (t) be an almost periodic function . We on

sider all complex numbers a, for which we have a representatir l

f(t)- a = I f(t)-ae
i(a+go))

where g (t) is an almost periodic function . The values c correspow

ing to all possible values of a are rational multiples of one r ' ,

rm tuber .

§ 7 . On Almost Periodic Functions Satisfying Quadrati c

Relations .

Theorem 24 . Let f1 (t), f2(t), and f3 (t) be three almost perio d

functions satisfying I f,,(t) I> k> 0 ; v = 1, 2, 3, and let u

c 3 denote their mean motions . If we have a relation

alfl ( t) 2 + a2f2 ( t) 2 + c1 3f3 ( t) 2 + b lf2 ( t ) f3 (1) + b 2f3 (t) fl (t) -1 7

+ t'sfl (t) f2 (0+ k = 0 ,

where at least one of the complex numbers a 1 , a2 , , a 3 , b l , b 3 . t

and k is $ 0, we have a relatio n

r1c 1 -{-1 ' 2Ç2 -Î'r3eg = 0 ,

where r l , r2 , and r 3 are rational numbers of which at least o

is tO .

From Theorem 9 follows that the spatial extensions F l

F2 (x), and F,4) satisfy the equation

(13)

	

a lzi + a2z7 + a 3 z3 ± blz 2 z 3 + b3 z3z 1 + b 3z 1 z 2 + k

	

0

and if c l , c2, c3 were rationally independent it would follow fro

Theorems 12 and 16 that the equation (13) would pß« û

solutions z1 , z2 , z 3 with any given set of arguments 9)1 ,

Hence it is sufficient to prove the existence of a set of numb;

pi, 92, 9913 such that the equation

1 9

2i +a21.2e2i<P'+air e2T3+b1r2r3 e i(T .+T .) +b,r 3 r 1 e'(T .+T.) +
+ b 3 r 1 r 2 ei (991,+T=) + k = o

îlot satisfied for any positive values of r 1 ,

	

r 3 . Without
estricting the generality we may suppose that k > 0 (if not,

`ie multiply the equation by a convenient factor e( T) .
Let us first suppose that at most one of the numbers bl ,b2 , b 3

is zero . In this case it is sufficient to determine 9911, !'2, 9913 such
[hat

12 9p „ + Arg a,, I<~ (mod . 2 7r) ; v = 1, 2, 3

I992 +T3 + Arg b, l < -7
2

(mod . 27u)

7r.
19)3 + ~1 + Arg b 2 <

	

(mod. 2 7r )

1 9911 + p2 + Arg b3 I < 12 (mod . 2 70 ,

where the sign < holds in at least two of the three las t
inequalities (If a coefficient is zero, its argument is in thi s
6naection defined as zero) . If we put

iui to prove our theorem we shall find solutions to this syste m
û. h that the sign < holds in two of the last three inequalities .

If at least two of the numbers al , a 2 , a 3 , say al and a2 , are
1[h her 0 nor 7r (mod . 27r), we have

1P,, _ SPY + +21 Arg a,, ; v = 1, 2, 3 ,

obtain a new set of equation s

Iv I

Y2+913-a1IÇ
7

2

r ,

1~3+~1- a2f~ z

I Y'I

	

'/ ~
1 +y~2_

a3I~ .2

(mod. Tr) ; v = 1, 2, 3

(mod. 2 7►.' )

(mod. 2 7r, )

(mod . 2 sr) ,
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Nr .1 2 1

~
E12 -al

7r
-~
2

(mod. 2 7r )

7 Ti
E 2 ~ - a2 < 9 (mod. 2 7T)

7T

	

I

	

2T
632-a3 <~ (mod . 27T)

when E l , r,, E3 are chosen conveniently as 1 or - 1 . if we cho p s

"tl'1, 02, zß 3 such that

~2 + ~3

(17)

	

11)a+ Y1 = 6 2 2

Tr
wi +

	

= 6s
2 ,

the inequalities (16) are satisfied and the sign < holds in a

least two of them . But from the equations (17) result s

n;

	

3 rr.
o1+

4 '

and it follows that

	

and . iß3 have also values

	

or + `

which proves ,that the inequalities (15) are satisfied .

If at least two of the numbers a l , a 2 , a 3 , say al and a 3 ,

0 or Tr (mod . 2n), we choose E3 = + I such that e 3

< Z (mod. 2 m), and it is sufficient to choose p1, îp2 ,2ß 3 as sO n

tions of the equations

2t12+ = a 1

7P3+ = a2
.

	

7r
Zß 1 -}-

	

3 -.2 •

Finally we consider the case, where at least two oi' ali

numbers b,, b 2 , and b 3 , say b, and b2 , are zero. It is then ,at

ficient to determine zß 1 , zß 2 , and ip 3 such' that

2 99 1 + Arg a l I<

	

(mod. 2 ?r)

Tc
1 2 p2 + Arg a 2 <

	

(mod . 2 7r)

TC2 fP 3 + Arg a 3 I<

	

(mod . 2n)

I 99, 1+ 99 2 Argb sÎ C 2 (mod. 27r) .

is 9) 3 occurs in only one, inequality, it is sufficient to conside r
pl and 991 2 . If we use (14) once more, we obtain the inequalitie s

I ~1-+ - Y2-+- a I<Z (mod .2 7r) ,

which have solutions . In fact, any angle between - Z and 2
é.~n' be written as 1ß l + zß2, where I'Pi I < 4 and i 2 < 4 , and

my angle between
2

and
32TC

can be written 1,171 iß2 with

VI <- , and
3

4 21 < zp2 < 0
4

. This proves the theorem .

Theorem 25. If the constant k vanishes, the numbers r1 , r 2 ,
and r3 can be chosen such tha t

r l + r2 , - r3 = 0 .

We choose a real number c that cannot be written r l cl +
+r2 c2+ r3ç3, and Theorem 25 follows, when Theorem 24 i s
applied to the functions f, (t) e i`t f2 (t) eict,

f3 (t) eict .

Indleveret til Selskabet den 9. Mej 1947 ,
Færdig fra Trykkeriet den 11 . Mad 1948 .

~ r
E I 2

lß 1 -r- 2p2 + lß3 =

)(mod .

(mod . Tt )


