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INTRODUCTION

The following well-known theorem by K RONECKER
Theorem 1. If m real numbers 1., - - “, A, do not satisfy any
ridy+ - L+ rpd, =0, .

ere 1y, + - -, r, are rational nainbers and al least one r, is £ 0,
1 there exists to any given real numbers vy, - - -,v, and any posi-
¢ ¢ a number t safisfying

‘2’1/t—.vul§6 (H_]Od. 2”), v = 1’ R L
quivalent to the following

heorem 2. If h, () = el y=1,--,m are pure oscilla-

whose frequencies 5’— v=1,--,m do not salisfy any
; 7T

o g 2”“—0’

Ly Amo
mon

o
Lon
€Ty, -+, Iy, are rational numbers and at least one r, is £ 0,

there exisls to any given real numbers v, -+, v

n and any
ve ¢ a number t satisfying

|11,,(I)~ei"”|:<:s; y=1,:-,m.

“the numbers ,, - - /lm satisfy the condition of Theorem 1,
are called rationally independenf. Theorem 1 states that the
aight line @, = 4,¢; v =1, -+, m, whee 4;,---,2, are ration-

Printed in Denmark

Bianco Lunos Boglrykkeri

1*




11

where ¢ is a real constant and g () a real-valued function, almo
periodic in the sense of Bowur. Its frequency (in mean) is dete
mined by the constant ¢, which is called the mean motion ‘
H (). We shall prove in this paper that Theorem 2 is valid als ,
for phase-modulated oscillations, i.e. we shall prove the followmg,

o

nts such that f(f) —a and f(f) —b satisfy the condition of
eorem 4, the mean motions of these functions have a rational
io. This was first proved by Jessen® and later Jessen and
NcHEL® found a more general theorem concerning almost
iodic movements on closed or plane surfaces. In this paper
shall deduce some generalizations of JEssEN's original theorem
another direction. For the present we observe that JESSEN'S
orem is a corollary of Theorem 3. In fact, JESSEN’s theorem
y be expressed as the following

Theorem 3. Let Hy (1), - - -, H, () be phase-modulaled oscillatio,
with rationally mdcpendent mean motions. To any given real nur
bers vy, -+ +,v,, and any posilive & there exists a number t, sat

foing (=S e v =1, ym.

. Theorem 5. If two almost periodic functions f,(f) and f, (),
A ently we lose nothing by this generalization althou h do not come arbitrarily near lo zero, satisfy a linear relation
ppar ’

Theorem 3 is evidently much more far -reaching than rheo&fm ey (D s fy (O — ..
However, it is well-known that BonrL has proved that the |
Where @, ay and oy are complex constants &= 0, the mean motions

: 7 d WeyL h
f numbers ¢ satisfying (1) is relatively dense an ’ A :
;roi::d that the set of numbers ( satisfying (1) has the 1e]at1 and- ¢ of fi(t) and f, () are rationally dependent.

m In fact, if ¢; and ¢, were rationally independent, there would
2are sin S ording to Theorem 3 exist a number f such that the com-

_axi i e proved that Bon S
measure (*; > | on the f-axis. It will be proved numbers a, f (1), o, f, (£) and — e, would have nearly equal

result is valid also in the general case, but we lose WEY
result. This is, in fact, not valid for the single oscﬂlaﬁ
H(H) = SUTSD Gp e take v = 0 and £<<2. »

Theorem 3 states that the curve x, = ¢,! + g (1) y =1,
where ¢;, :*-,¢, are rationally mdependent is mod 27 eve
where dense in the m-dimensional space.

The result is brought in closer connection with the theor
of almost pe110d1c functions by the following theorem
H. Bour™.

uments and that would render the relation (2) impossible.

We shall prove that Theorem 5 is valid for an arbitrary
ber of almost periodic functions satisfying a similar
nd}tlon If, on the other hand, we restrict the number of
flinctions to three, we may replace lhe linear relation (2) by a
ogeneous quadratic equation, and the theorem is still true.

o § 1. Some Preliminary Remarks.

For the convenience of the reader we shall first mention
e resulls concerning periodic and limit periodic functions of
numerable set of variables, which we shall use in the sequel.
hall permanently use Lhe vector notations a = (g, x5, -+ ).

ortwo vectors o = (a, a5, *+-) and ¥ = (y;,y,, - -) and two
ibers k and [ we define the linear zombination

Theorem 4. A complex-valued almost periodic functionf
— o< t< oo, salisfying |f ()| = k>0, can be wrilten

[ = r(H-H®,

where r(t) is a positive almost periodic fanction and H(t)
phase-modulated oscillation.

The mean motion of H(t) is also called the mean motior
}"(t) It f(0) is almost periodic and @ and b are complex’

ko + ly = (kg + ly,, kory + ly,, - - -),

B.Jmssen: Uber die Sikularkonstanten eiper fastperiodischen Funktion.
Ann, 111 (1935).

W.FexcrEL und B. Jussen:
en. und auf Flichen.
elser XIH, 6 (1935).

fastperiodischen
' H. ur: Kleinere Beitrige zur Theorie der

tionen }_{ ggt Kgl. Danske Videnskabernes Selskab. Math.fys. Medldellelszr
(1930).’ Uber fastperiodische ebene Bewegungen. Comment. math. helv

Uber fastperiodische Bewegungen in ebenen
Kgl. Danske Videnskabernes Selskab. Math.-fys.
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A set of real numbers is called relatively dense if there exists
‘number [ such that any interval of lengtb ! contains at least
ne number of the set.

‘ A number 7 is called a franslation number of a
(), —oo < t< oo corresponding to &>0, if -

and if one of the vectors ¢ and ¥ has only a finite num
of coordinates 4= 0, we have the inner product

aY = g, T TolYat -

function
‘A sequence &, = (x,;,%,,, "-); v = 1,2,--- of vector

said to converge towards a vector acg = (@41, Logs * *°) if Ly >0
for v = 1,2,--- and »—oo. A function F(a) is called coni
linuous for @ = a¢, if F(oe,)— F(a,), when e, runs throug
a sequence -of veclors belonging to the domain where F(x)
defined, and converging lowards &,. A [unction is continuo
in a domain (i.e. contibuouns in every point of this domai
if it can be approximated uniformly with any given accura
hy a continuous function depending only on a finite number
variables. In what follows lhe domain in question is the r
infinite-dimensional space. A function F(a¢) = F{(x;, x,, )
called limit periodic with the limit period 2 s, if it can be-a
proximated uniformly in the whole space by a continuous fur
tion depending only on a finite number of variables and periodi
in each of these with a period that is an integral multiple g
2 7. Hence a limit periodic function is continuous. The functi
F(o¢) can be approximated uniformly in' the whole space W
any given accuracy by an exponential polynomnl '

p (m) _ Z:k a, eir.r. -

[fU+)—fF)]<Ze

A function f(f) is called almost periodic if it has the following
perty

(i) The set of translation numbers of f(f) corresponding to
ny ¢>>0 is relatively dense.
It is a main result of the theory of almost periodic functions

t any of the following two properties is equivalent to the
cedlng one:

(11) To any ¢>>0 exists an exponential polynomial

>ﬁ$ alei“,

\

ere A runs through a finite set of real numbers, approximating
) everywhere with the accuracy e.

(iii) There exist a series of linearly independent real num-
81,8y, -+ and a function F(2x) with the limit period 2

where 2 runs through a finite set of vectors with rational.
ordinates, among which only a finite. number are + 0t

The numbers 2, ---,4, are called rationally independen
a relation

[(D) = F(BH = F(B,L,Bt, ).

e function F(a) is called a spatial extension (or the spatial
nsion, although F(a) is not uniquely determined) of f(1).

he equivalence of the two latter properties is rather easily
red and it is also rather 51mple lo prove that they imply
propelty (i), but it is much more difficult to prove that (i)
lies (11) or (iii). This is the main theorem in the theory of
ost periodic functions. In the’ sequel we shall almost ex-

lvely use the property (iil). From the theory of almost
odic functions we also have

rl)"l+ ARy rmlm =0

with rational r, - - -, r_, is possible only when ry = ---=r
The numbers }{1,12, -+- are rationally mdependent if ll,
are rationally independent for all values of m.

In the sequel we shall give a very brief account of
principal theorems concerning almost periodic functions?
shall start with two preliminary definitions:

' A detailed discussion of the properties of limit periodic functil

given by H.Bour: Zur Theoric der fastperiodischen Funktionen II. Acta
46 (1925).

* For detailed proofs, cf. H. Bonr: Fastperiodische Funktionen, Berli

Theorem 6. The set of values assumed 'bg the spafial extension

‘almost periodic function [(t) is a subsel of the closure of the
values assumed by f(t).
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Jf g(®) is almost periodic and ¢ is an arbitrary real number,

namber of almost periodic functions, corresponding io an arbilrd ¢ fanction

£>>0 is relatively dense.

Sum and product of a finite number of almost periodic fuu
tions are almost periodic, and if g(#) is almost periodic:th
function ¢?® is also almost periodic.

It is important that the numbers 8,,8,, -+ in (iii) can
chosen in a great variety of manners. E.g. any set y,,7s,
of linearly independent numbers such that any B, can be writts
as a linear combination with rational coefficient of a . finil
number .of the y ’s. From this follows further

L’i (et + g1y ’
«almost periodic.

§ 2. The Mean Motions of Limit Periodic and Almost
Periodic Functions.

A continuous argument of a continuous function P (a) =
P (), - - ,x,) with the period 27 in each variable and not
suming the value 0 can evidently be written

Theorem 8. To a sequence f, (), f, (1), -+ of almost. perio‘d_i:
functions exist a sequence 8, f,, - - of rationally independent ¢

numbers and a sequence Fy (o), F, (i), - - - of limjt periodic fi
tions such that

arg P () = poec+ Q () = pey+ -+ -+ prxe, +Q (o),

here py, - - -, are integers and Q(a¢) is continuous and has
HELE Py m £ )
¢ period 27. For a limit periodic function we have

L) = F,80; v = 1’ Tt ‘heorem ]1 If F(a(‘) = F(xl,xz, --+) has the limil peliod

and the sequence 8,,8,,:+ can be chosen such that it confal

any given sequence of rafionally independent numbers as a
sequence.

From the theory of almost periodic functions follows furth

i be wrilten
arg F(oe) = ryx, + g2, + - - - + G () = wac+ G (),

here ry,ry, --- are rational numbers, of which only a (finite
ber are &= 0, and G (se) has the limit period 2 7.

The vector 9* is called the mean molion vector of F(a).

For the proof’ we consider a sequence P, (a), Py(ar),
continuous funclions with the following properties: (i) Each
ction ‘depends only on a finite number of variables and has
eriod that is an integral multiple of 27. (ii) The functions
a) converge uniformly towards F (a¢) and satisfy

Theorem 9. If a denumerable set f, (1), fy(Dy--+ of al
periodic functions salisfy an equation :

OH®, B, ) =0,

where @ (g, u,, ---) is continuous when u, for v = 1,2,
longs fo the closure of the set of values assumed by f,(f)
spatial extensions F; (x), F,(a), -+ satisfy the equation

(D(Fl(w)vFE(w)!) =0."

[F@)—P,Go)|=h; v =12,

Theorem 10. If G () has the limit period 27, and (ry,r
is a vector with rational coordinates, of which only a finite
ber are 3= 0, the function

can choose continuous arguments such that

arg F(x) —arg P, () <Ziu=1,2,.-
&7 2

L a6 ) e ‘have for any integer »

has the limit period 2 =.

he followmg proof is very similar to a proof of Theorem 4 given by
EN {oe. cit.
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ts coordinates 3= 0, is called a complete set of linearly in-
ependent vectors if every vector with only a finite number of
coordinates =0 in one and only one way can be written
5:a" linear combination of a finite number of the vectors e,,.
is will be the case if and only if any finite number of tlﬂle
ectors e, are linearly ‘independent and each of the unit vec-
use; = (1,0,0,--+),e,=1(0,1,0,---),--- can be written as a
_ ihear ‘combination of a finite number of the vectors @,
where G (ac) is continuous and bounded. But it also folloy  For the proof of a generalization of Theorem 3 to a denumer-
that the numbers r, ry, - - - do not depend on ». Hence it follow W table set of phase-modulated oscillations we shall need the
that Q, () converges towards G (s), which implies that G 01[0wing theorem.
has the limit period 2 m. ' |
Concerning almost periodic funclions we have

arg P, (1) = rix; + ryxg+ -+ Q, (),

where ry,ro, -+ are rational numbers, of which only a fi
number are &0, and Q, (%) is a continuous function. depend
"ing on a finite number of variables and having a period il
is an integral multiple of 2. From this and (3) follows

Carg Fae) = rp +rxyt oo G (),

Theorem 13. Let e, @,, -+ be a complele set of linearly in-
dependent veclors, each with only a finile number of its coordinales
0, and let K\, K, -+ be a sequence of positive numbers. Any

Theorem 12. Let f(f) denote an almost periodic funclion ar 0, ana
sequence @, = (x,,,,,, " *); v = 1,2+ -+ ‘of veclors salisfying

F(x) its spatial exlension such that
f(t) :F(/Blta /32t’ o ')a

where 84,85, - -+ are rationally independent real numbers. If f
satisfies the condition | f()|> k>0, continnous arguments of Fq;
and f(#) can be wrilten

5 {'“‘uwwl Iaulx +a/l2xv2+ g |<__K‘“, M= 1,2," L,V
y=1,2,

ssesses a convergent subsequence.

) In fact, for each n we have a 1eplesentat10n
arg F(x) = rax; b+ - + 6 () |
-

and ‘ ‘ €, = @+t @y,
arg f({) = ct+qg (¢ Lo ;
g [ + g (0, hich implies that
where '
¢ =r +r . — e = g .
1 Lﬂl 2/32+ N ‘rvn - en‘”w - C‘111.“’1””1’_l_ ot + alﬂ\/ ttN w1
al]( Y " 2

g () = G(Bit, Bats ),

i.e. g(1) is almost periodic. ;
The constant ¢ is called the mean motion of f(1).
The theorem is an immediate consequence of Theore

and 11. It contains Theorem 4 as a special case.

from (4) and (5) follows that

yn|§_lan1H¢"1w1/l+ e + ( 'an,,’ ‘ C’/)anl/'vl;_g_,ft

+ e [ By v =r,n41,

ntlArl-F +

!a’VIlI/K* 1:1123"';’}:1:2’

n?
$ 3. An Auxiliary Theorem on Convergence in an

. it follows by tk
Infinite-Dimensional Space. » s by the usual diagonal method that the sequence

convergent subsequence.

s easily proved that any sequence of vectors @, a,, - -
W}th only a finite number of its coordinates == 0, and of

A denumerable set e, = (@, ayy. -~ )5 p=1,2,"+
finite-dimensional vectors, each with only a finite numb
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which any finite number are linearly independent, can be & ith the N first coordinates of e, including all that are different
larged to a complete set of linearly independent vectors, e: om. zero. If we introduce z, = byoe; v =1,---, N as new

by adding to the sequence a conveniently chosen subsequen

ariables, we obtain a new system of equations satisfying the
of the sequence of unit vectors.

onditions of Theorem 14 and the assertion follows. We choose
ero for the coordinates Tnp10 TNpgs ="

The solati in thi \ is
S 4. An Auxiliary Theorem from the Topology. e solation @ found in this manner salisfies

The greater part of our theory will be founded on the follo
ing topological theorem, which is an immediate consequence
the theory of the Kronecker index of a surface®.

laoe, | =1y,—Q, ()| <y, |+ K,

nd from Theorem 13 follows that some subsequence of the
equence of vectors ae,, converges towards a limit vector a2, which

Theovem 14. Let y = £ () or y, = (), -y, = [, () vidently satisfies all the equations (6).

be q continuous vector function in m-dimensional space. If ther
exists a constant K such that |f, (%) | <K for v =1, -+, m.an
all vectors e, the veclor function y = @x--f(ae) maps the lok
m-dimensional space on itself. : : :

& 5. The Main Theorems.

From Theorems 11 and 15 follows immediately

)

Generally, of course, the mapping is not a one-to-one-c
respondence. For the infinite-dimensional space we shall pr

. Theorem 16. Let F, (o) = F,(x,, 25, - -); v = 1,2,-++ be a
the somewhat more general theorem:

equence of functions with the limil period 2w ‘and salisfying
F,()| =k, >0 for all vectors a¢. If the mean motion vectors cor-

Theorem 1. Let @, @, - -+ denote a complete set of linearl esponding to any finite number of the functions F, (x) are linearly
independent real vectors, K, K,, -+ positive numbers and Qy () ndependent and vy, vy, - -+ are arbitrary real numbers, there exists
Qs (), - -+ continuous real fanctions satisfying |Q, ()| =< ‘vector a¢ such that
v =1,2, --. To arbilrary real numbers y,,y,, - -Cc.a:isis ac v !

responding veclor o satisfying arg I, (90) =0, v =1,2,-"-.

(6) ' wx+Q, () =y, v=1,2,-.

In fact, if the set of mean motion vectors is not a complete
.of linearly independent real vectors, we can make it com-
te by enlarging the system of functions F, (o).

‘For a finite set of almost periodic fuactions we have

At first we shall restrict our considerations to the equati
a,x+Q,(x)=y,; v=1,---,m.

Theorem 17. If ¢;, - -, ¢, are rationaily independent real num-

is and g, (1), -+ -, g, (1) are arbitrary almost periodic functions,

ere exisls o any given real numbers vy, -+ -,v, and any positive
number t satisfying '

It is easily proved that these equations possess a solutiom.
fact we can enlarge the system so that we obtain a new sys

b7"a:+R7/(m) =y ¥V = 1) "':Ny

where by, - - -, b, are linearly independent N-dimensional vec!

- [c,,f—{—g,,(l‘)-u,,lés (mod. 2m); v=1,---,n,
such that for » = 1, -+-,m the coordinates of &, are ide - . ’
‘the curve x, = c,t+g,(H; »=1,---,n is mod. 2x every-

G e g. J. TannNeny: Introduction 4 la théorie des fonctions d’une vari . R .
re dense in the n-dimensional space.

2. éd., vol. 2, Paris 1910. Note de M.J. HapaMARD.
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According to Theorem 8 we choose a sequence 8,4, Theorem 18. The set of numbers satisfying (7) is relatively
cco 2 By,
rationally independent real numbers, where 8; = ¢, -+, 8, =
such that

In fact, if we choose the real number {, satisfying
, - 0 p=1,-,n, .
(VH—gV(t) o G”(ls i : IC»fo -+ Q’p(fo) *U,,Ii 69 (mod. ‘2 ) v =1,+--,n,

where the functions G, (x); » = 1, -, n have the limit period
2. It follows fl‘om Theorem 14 that there exists a vecto

ny number #,+ 7, where z is a common translation number
ax* = (x¥, -+, a¥,0, ), satisfying

f the almost periodic functions
e ei(c,,z + 4, —n,)
2+ G, @) =,
| Q;respbnding to 2 sin%, satisfies (7). Hence the theorem follows
rom Theorem 7.

We can further choose continuous periodi.c functions Qi(w)
Q. (sc) each depending only on a finite number of variable
b "N -
such that o, |
D) 0 <S s =1,---,n. o o . o '
|6,0) = Q)| = 3" . §6. On Limit Periodic and Almost Periodic Functions
Satisfying Linear Relation}s.

‘rom Theorem 15 follows

for all vectors a¢. From Kronecker's theorem follows the existen:
of a number t satisfying

’l‘heorem 19. If a sequence of functions F, (a) = F, (x,, 2y, )

ey o < — = 1 . , It

1@, () - Q, B0 [ = 6" vith the limit period 2w and wilh the property |F, (.)c) | =k, >0;

and 1,2, for all ax satisfies a linear relation

& y .
abi-—g,t|<—(mod.2m); v=1,---,n. ) o

) 8 l“b N o FL(e) + ayFy () + -+ = 0,
Hence = ere. wy, ey, * -+ .are complex constants that are == 0, and the
let+g,(D—0v,| =181+ G, (8D —0,]<]6,BD--Q, (ﬂt)H” ics_on the left converges for all real vectors ze, the mean motion
:Hﬂ / 1410, (80— ()(. |+ () (%) — G, tors P, %, - - - are linearly dependent, i.e. the set of mean motion

plt Ly v . «Q A L4

ctors has.a finite subset of veclors fhaf are linearly dependent.

is. is still fr (@) >k, >0 is salis-
for only one ualue of v, if for ever y 1 we have a 1eplesentatlon

+lat 4 G, () — v, | < 3 + - f) +6 + 5 40 = & (mod. 2_'/7’)

which proves the theorem. . . o

Theorem 3, announced in the introduclion, 1s eviden
equivalent with Theorem 17. We observe that .the‘ theore!
not valid for a denumerable set of almost periodic funct
E.g. the pure oscillations el ethel ... where the numb
8,,8,, - - - are rationally independent and converge towards:
will never simultaneously obtain values near —1.

We shall further prove the following generalization o
Kronecker-Bohl theorem.

F,(a6) = | F, (a) | "+ G0

e G, () is continuons and bounded and 7, is a vector with
nal coordinates, of which only a finite number are = 0.
n fact, if the vectors #, were linearly independent, accord-

to Theorem 15 there would exist a vector ac* satisfying

raoat+ G, (e*)t+arga, =0; »=1,2,---
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and for a¢ = ae* the left side of (8) would be positive and th

heorem 22. If « /’mte set of modulaled osclllaz‘zons [ (0 =
relation wonld not be satisfied.

i(c t+9,,(t))
r,(De™ = 1,.--,n, of which at least one is normal,
. , tlisfy a relalion
¥ 9, ; AT S ' .
.lhieorfam ._0., Let .fl ('t), 1o (D), be a sequence of almos 1) WD+t f (D) =0
periodic fanctions satisfying |f, (D] =k, >0; v = 1,2, » 11 nln 0,

let K, denote the upper bound of |f, (t)[- =1,2, If Gy g, here éu <+, are arbitrary com};Ie:c numbers that are == 0

are complex nambers different from zero such that Z | e, |K e mean mokons cy, -+, ¢, satisfy a linear relation

¥=0
convergent and if we have

riegt e trpe, =0,

©) afy(D+agfy D+ =0, |

_ _ here i, -, r, are rational numbers satisfying
the mean motions ¢, ¢y, -+ of fL(6), [y (1)’ .+ are rationally d _
pendent- : ri+ e, =0,

From Theorem 9 follows that the relation (9) implies an an _hot all zeros.
logous relation between the spatial exlensions and the theorem;
therefore follows immediately from Theorems 19 and 12.

We shall prove some stronger theorems concerning fini
sets of almost periodic functions satisfying linear relations. F
the sake of brevity a function r(® e @ ??, where g(f) is.
real almost periodic function and r(f) is a real, non-negati;
function, will be called a modulated oscillation. It will further b

called normal if the set of zeros of r(¥) conlalnq “no mtelval

: ) .
, \R ¢ choose a real number ¢ that cannot be written ¢ = r¢, +

- +r,c, with rational r;, ---,r . If the real numbers

O ¢+, were rationally independent, it would follow
0 Theorem 17 and the continuity of ¢, (1), *e,g,() that
-inequalities

(c+c)t+g,(H)+arg a,,}§g (mod. 25); » =1, , I
i ‘satisfied for all values of ¢ belong-ihg to some interval
1< 1,. One of the oscillations, say fu (t), is normal, and
ice the interval ¢, < ¢ < {, contains a point ¢*, Whele r (l*) >0.

m this would follow that the term ayfu (t”’)c had a positive

Theorem 21. If a finite set of modulated oscillations f, ()
i(c,t (1) v )
() LT 1 e n satisfy a linear relation

_ eal part and none of the terms e, f, () ¢ had negative real

(10) a [y (D + - Fayfy(D+ 8= and the relation (11) could not be satisfied for { = f*.
_ . have thus proved the existence of a.relation

where «y, -+, a,, and 8 are arbitrary complex numbers + 0, { : »

mean motions c,, - -+, ¢, are rationally dependent. riete)+--+r (cte) =0,

If the numbers ¢, ---,c, were rationally independent,.

would follow from Theorem 17 thal the inequalities ry, ¢+, r, are rational and not all zero. As ¢ cannot be

) iten as a linear combination of ¢;,---,¢, with rational
le,t+g, (1) +arg a, —arg 81 §%T (mod. 27); v = 1,1 fficients the relation (12) implies the following two relations
were satisfied for some value of f in cortradiction to Iyt kg =0
relation (10).

We notice that Theorem 21 is a generalization of theore

mentioned in the introduction. In the case where 8 = 0, we

rcgt e A, =0,

:proves the theorem.
J Danske Vidensk. Selskab, Mat.-fys. Medd. XXIV, 11,
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111621«7)‘_(_ a212601(92+ a.3]% e2i%a | byroryel (Tt Ps) 4 Dargty ez(q7,+(p1) -+

- byryry e PP o =

As a very special case of Theorem 21 we have the followi
theorem, which is a slight generalization of Jessen’s orlgu
theorem mentioned in the introduction.

not satisfied for any positive ‘values of r,, ry, r,. Without
tricting the generality we may suppose that k > 0 (if not
e multiply the equation by a convenient factor e"P)

Let us first suppose that at most one of the numbers by, by, by

zero. In this case it is sufficient to determine P15 Paa Py such
t

“Theorem 23. Lel f({) be an almost periodic function. We ¢
sider all complex numbers a, for which we have a representat

f(O—a = [fB—alTO,

where g (t) is an almost periodic function. The values ¢ correspol
ing to all possible values of a are rational mulfiples of one ret

!2¢V+Arga,,l§% (mod. 27); v =1,2,3
number.

71,'

| oa+ 93+ Argb, |[<Z  (mod. 2 )

) I\?

§ 7. On Almost Periodic Functions Sat1sfy1ng Quadrat
Relations.

Theorem 24. Let f,(D), fo(D), and f3(t) be three almost periot] ;
fanetions satisfying | [, () |=k>0; v = 1,2,3, and let ¢, c5,,
¢y denote their mean motions. If we have a relation

,973+S”1+A1gbo :.,7; (mod. 27)
los+pa+Arg by [ <5 (mod. 21),

ere the sign < holds in at least tw6 of the three last
‘ e.qgali.ties (If a coefficient is zero, its argumenl is in this
a O+ aafy O+ afs O+ D (D fr (O +ba k(O£ () nection deflned as xero). If we put
+0: /i (D (D+k =

1
wﬂ = ¢u+§

¢

obtain a new set of equations

Arga,; » =1,2,3,
where at least one of the complex numbers a,, da, gy, by, by,

and k is =0, we have a relation

roeyFroce+ryc; = 0, |
1€y T I €y T 3Gy Iw”]§g fmod. ); v =1,2,3

where r,,r,, and ry are rational numbers of which at least

s £0.

[ + 03—y | <2 (mod. 27
From Theorem 9 follows that the spatial extenslons F( Vo ¥ 1|_2 (mo )

T, d y 1 )
F, (ae), and F,(ae) satisfy the equation |‘y”3+‘/’1—,“zl§g (mod. 2 )

(18) a2} + apzl + agzl 4 byzazg + bozgz + byzize + k=0

l¢1+w2~a31§g‘ (mod. 2 7),
and if ¢, ¢y, ¢; were rationally independent it would follow
Theorems 12 and 16 that the equation (13) would p
solntions z,,7,,z; with any given set of arguments ¢,
Hence it is sufficient to prove the existence of a set of numbgj
%1, ¥s, g such that the equation ‘

prove our theorem we shall find solutions to this system
hat the sign < holds in two of the last three inequalities.
t least two of the numbers a,, a,,a;, say «, and oy, are
er 0 nor & (mod. 2 ), we have

. g%




20 , Nr. 1 r11 91
glg—al <g (mod. 2 ) l2gul—i—Argal|<%K (mod. 2 7)
52%~c¢2 <;_r (mod. 2 1) [2 9,4 Arga, | < g (mod. 2 )
53721—053 é;_r (mod. 2 ) |2 93+ Arg a, | < g (mod. 2 )
|¢1+_¢2Argb31< 2 (mod. 27).

when &, 5, &5 are chosen conveniently as 1 or —1. If we choo

W, Wy such that S €. . . . . . |
48" g3 occurs in only one inequality, it is sufficient to consider

$1 and g,. If we use (14) once more, we obtain the inequalities

Yyt Py = 51%
lal <X (mod. 7T)

a7 Yot = ey 4
T

T . |e]<<= (mod. =

Wit Yy = ey i )

I8

[ 91+t al<Z (mod. 2m),

: 2
the inequalities (16) are satisfied and the sign < holds in

least two of them. But from the equations (17) results bich have solutions. In fact, any angle between -g and =

. . 2
" 3 an' be written as 1+ y,, where [1y| <7 and [y, <7, and
'L/)1+1P2+1‘D3:ﬂ:—101‘i‘ s - | T 3

4 4 ny an le between 5 and T can be written ¢1+¢2 with

_ 3 5m
1 <—, and — <C ,
and it follows that ¥y, W,, and ¥, have also values ig or + ¥l 4 4 U’z 4 . This proves the theorem.
which proves that the inequalities (15) are satisfied.

Theorem 25. If the constant k vanisk "
If at least two of the numbers «,, , ¢y, say g and a,, ! ishes, the numbers ry,ry,

d ry can be chosen such_that

0 or 7 (mod. 27), we choose ¢ = &1 such that 53?”‘“3‘ ! '

o . 2 f r+r =
ég- (mod. 27), and it is sufficient to choose Yy, W,, W5 as 0 1¥fertry = 0.
:We choose a real number ¢ that cannot be wrilten ry¢; +
TyCy+rycy, and Theorem 25 follows, when Theorem 24 is
plied to the functions f; (D e, f, (e, fy (1) &

Hions of the equations

Yo+ Yy = o )
Wy Yy = e <

i

Wiy = 85

Finally we consider the case, where at least two of
numbers by, b,, and by, say b; and by, are zero. It is then
ficient todetermine ,,, and zps such’ that .

Indleveret til Selskabet den 9. Maj 1947,
Fierdig fra Trykkeriet den 11. Maj 1948. -




