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1. Introduction . The present paper deals with two limit
theorems on integrals in an abstract set . The first limit theore m
is a generalization of the well-known theorem on differentiatio n
on a net, the net being replaced by an increasing sequence o f
a-fields . The second limit theorem is a sort of counterpart of
the first, the sequence of a-fields being now decreasing . The
proofs follow the lines of the proof of the theorem on differen-
tiation on a net .

In case of integrals in an infinite product set the theorem s
lead to known results, when for the n th a-field of the sequence
we take either the system of measurable sets depending on the
n first coordinates only, or the system of measurable sets depend -
ing on all except the n first coordinates .

If the abstract theory of integration is interpreted as proba-

bility theory, our theorems lead to two theorems concernin g
conditional mean values .

For the convenience of the reader the main definitions and
theorems used are stated at the beginning of the paper . For
references and proofs we may refer to the book by Saks [1] or
to a series of articles by .Jessen [2], which we follow closely .

Sets and functions . Let E be a set containing at leas t
one element. Elements of E will be denoted by x, y, • • • an d
sub-sets of E by A, B, • • • . The set E itself and the empty se t
0 will be reckoned among the sub-sets of E . The notation
xEA means that the element x belongs to the set A, while xs A
means that x does not belong to A . If A is a subset of B we
write A g B or

	

while A c B or BD A means that A is a
proper sub-set of B. By SA T, or Al -j- A„,+

	

we denote th e
n

1*
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sum of the sets A 1 , A 2 , • • . If no two of the sets have element s

	

in common the signs C5 and + may be replaced by

	

and + .
By Z Z A n or A 1A 9, • • • we denote the common part of the set s

n

A,, A 2 , • • . The notation A-B will be used only when ADB ,
and denotes the difference between A and B.

A real function f in E is given, when to every element x of
a set A there corresponds a value f(x),- oc < f (x) <+ oc . The se t
A is called the domain of f. Functions in E will be denote d
by f, y, • • • . By [• • • ], where • - • indicates a number of expres-

sions or relations involving functions in E, we denote the set o f
elements x of E for which these expressions are defined an d
the relations are valid . For example [f] denotes the domain of f.

3. Systems of sets and set-fnnetious . Lett denote the set of
all sub-sets of E. Sub-sets of ?pî will be denoted by ` , (j , • ,

and will be called systems of sets, the notation `set' bein g
reserved for sub-sets of E .

A system is called additive, if A l -{- • • + A n e when al l
A y e , and multiplicative, if A,-• • A ,A-y when all A i e . It i s
called subtractive, if A Beg when Aeg, BE, and AD B . It i s
called completely additive, if A, + A 2 4 • • e when all A i e , and
completely multiplicative, if A L A, • •

	

when all A ieg.
A system of sets is called a field, if it contains at least on e

set and is additive and subtractive (and hence also multipli-
cative) .

A system of sets is called a o-field, if it contains at least
one set and is completely additive and subtractive (and hence
also completely multiplicative) .

Functions in 9)2, i . e . functions for which the domain is a
system of sets, are called set-functions and will be denoted b y
1.4,

v, • .

A set-function t c with domain - is called additive, if tc (A 1 +

• • + A n ) _. p, (A,) + . . . + (An) when all A y e and A 1 --I-- . . . +
A R e - . It is called completely additive, if µ (A L + A 2 + • •) = µ (A,) +
,w (A 2 ) + • . - when all A le- and A l + A 2 + • • e .

If two set-functions p, and v have the domains and Ci ,
we call v an extension of p, or p, a contraction of v and write
v-3 tr, or p .v when zpc(S3 and ,a (A) = v(A) for all AE ' .



Nr . 14

	

5

4. Content and measure . A set-function p is called a con -
tent, i f

(i) its domain - is a field ,
(ii) . 0 <p,(A) <+ oo for any A E ,

(iii) lU is additive ,
(iv) to every Aeg there corresponds a set GA n where all A s

n
such that A GAn and ,w(An) <+0o for all n . l

A set-function p is called a measure, if

(i) its domain

	

is a a-field ,

(ii) O <,a (A) <+ oo for any Ae ,
(iii) p is completely additive ,
(iv) to every Aea there corresponds a set

	

where all A n E 5 ,
n

such that A GAn and ,u, (A n) <+ o'o for all n . 1
n

Of fundamental importance is the followin g
Extension Theorem . If p is a content, then there exists a measur e
p, if, and only if, p is completely additive . If so, there exist s

a unique measure vPp, such that w v for any measure co Pp .
The domain of v is the smallest o-field containing the domai n
of p, .

The measure v is called the narrowest extension of tc to a
measure .

For the complete additivity of a content we have the follow -
ing criterion :

A finite content p with domain is completely additive if ,
and only if, lim ,u (A n) = 0 for any sequence of sels A n s, for

which Al 2, A, 2 • • • and Z A n = O .
n

5. Integration with respect to a measure . By the system
of functions over a a-field

	

we mean the system of all function s
f for which [f>a]s for any a, -oo<a<+oo . If is the
domain of a measure p,, the functions of this system are calle d
,u,-ineasurahle .

The theory of integration of p-measurable functions with
respect to tite measure p may be developed in the usual way .

1 This is the definition adopted in Jessen [21 . In the sequel we shall i n
the main only consider contents and measures for which E e ir and u. (E) < + co .
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For the integral of the function f over the p-measurable se t

A c [ f] we shall use the notation

f(x)µ(dE ) .

A

If the integral of f over its domain [f] exists and is finite ,

the function f is called p-integrable . The set-functio n

y (A ) = f(x) p (dE)
A

is then defined for all sub-sets AE

	

of [f] and is called th e

indefinite integral of f.
Two ,u,-integrable functions f and g with [f] _ [g] have the

same indefinite integral if, and only if, p ([ f+g]) = O .

6. Completely additive set-functions . Let cp denote a boun-
ded set-function with domain a . We define two other set-func-
tions p + and y- with the same domain by placing

y+ (A) = upper bound P (B) and p (A) = lower bound 99 (B) ,

where the upper and lower bounds are taken with respect to
all sub-sets Bea of A . We then have the followin g

Decomposition Theorem . If a is a field, and y is completely
additive, then cp + and -y are completely additive contents ,
and y = y + + y- . If moreover a is a a-field, then p + and - 99-
are measures .

The set-functions cp + and 99- are called the positive and ne-
gative parts of cp

Moreover we have the followin g

Extension Theorem . If a is a field, and y is completely addi-

tive, then there exists a unique set-functions which i s

bounded and completely additive and is defined on the smalles t
a-field containing a . Moreover p+ 2 y+ and z~ ? y , i . e . CJs +

and - ç are the narrowest extensions of the contents
y+

and
-

	

to measures .

This theorem implies that if a is a field, and fi is the smal -

lest a-field containing a, then a bounded, completely additiv e

set-function defined on CSi, for which the contraction to a i s

non-negative, will itself be non-negative .
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7 . Continuons and singular set-functions . Let . denote a
measure in E with domain g, and suppose that Eel .

A bounded, completely additive set-function p defined on g
is called p-continuous, if T (111) = 0 for any Meg with p, (M) = O .
It is called u-singular, if there exists a set Neg with ,u(N) = 0 ,

such that p(A) = 0 for every sub-set Aeg of E- N.

We have the following
Decomposition Theorem . Any bounded, completely additiv e

set-function p defined on g admits of a unique representation
p = p . + p s , where p ,, and T s are hounded, completely additiv e
set-functions defined on g, of which p e is pp-continuous, whil e
T s is p-singular .

The set-functions p e and Ts are called the ps-continuous and
p-singular parts of T .

A set-function p defined on is the indefinite integral o f
a p-integrable function f with [f] = E if, and only if, it is boun-
ded, completely additive, and pc-continuous .

S . First limit theorem. Let E be a set containing at least.one
element, and p a measure in E with domain g, such that Ee g
and p (E) = 1 . Let gi Ç=g2 • • • be , an increasing sequence o f
c-fields contained in g, such that Eeg i . The system

	

=

	

g. n is.
n

a field . The smallest a-field containing Cis will be denoted be ' .
The contraction of p to n is a measure, which will b e

denoted by ,a n . Similarly the contraction of p to g' is a measure ,
which will be denoted by p ' .

Let p be a bounded, completely additive set-function define d
on g, whose contraction p 1, to g i, is p it-continuous for any n .

By § 7 this means, that Ti, is the indefinite integral with respec t
to p n of a p,n -integrable function fn , i . e . there exists for every
n a p,, -integrable function fn. , such tha t

J fn (x) p,(dE) = TO) for every A e n .
A

This function fn need not be uniquely determined . In the seque l
fn denotes for every n some such function . We shall conside r
the functions

f = lim inf fn and f = lim sup fn . .
rz

	

n
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Evidently these functions pue i ' -measurable . The contraction of

y to R' will be denoted by q' .

The first limit theorem now states :
With the above notations we have the relatio n

fL ([f<fI ) = 0 ,

and p (C) = 0 for any sub-set Cep' of [f< f] .

Moreover f and f are ,a'-integrable, and their indefinite integrals
with respect to II,' are the ,a'-continuous part y ', of p', i . e . for any
AE ' we have

P; (A) = f (x) Ft (dE) = f (x) p(dE) .
A

	

A

Finally, the positive and negative parts of the ,a'-singular par t

Ps of 99' satisfy for any AeR' the relation s

(s+ (A) = 99 (A [f = + oo]) and (A) = (A [f = - o:)]).1

9. The proof will be based on the following lemma :
Placing H = [f< h] and K = [f > k] for arbitrary numbers h

and k we have for any Cs' the inequalities

p (HC) <h,a (HC) and P (KC) > k ite (KC) .

In order to prove the first inequality we pu t

Hn = [inf fn+p <hn ]
p

l
j [fn+1<hn] for p = 1

l [fn+l~ h n ,

	

, fn+p-1 >hn' fn+p <hn] for p>1 ,

where h 1 , h 2 , • . . denotes a decreasing sequence of numbers con -
verging towards h . Then HnpERn+p and Hnp ç [fn +p < hn] . Clearly
(for a given n) no two of the sets Hnp have elements in com-
mon, and Hn = In p . Further H t Q H2 _D • • • and H = Hn .

p

	

n

1 The assumption ,u (E) =1 has been introduced for the sake of convenience .
The theorem may easily be extended to the case where Eel and µ(E) i s
arbitrary (finite or infinite) .

and

H =
np
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Now, if CEO) = a n , we shall have CE n for all u > (some)
n

n o ; hence H,I CE n+p for n>n o and all p. We therefore hav e

	

p (Hn C ) = (
p

Hnp C ) =

	

(Hna,C)

	

fn

	

OE)
11,, nc

<
p

hn p, (HnpC) = hn (1,

(t`
H,,pC) =

	

p, (H U C) .

Since H1 C D H. G

	

• • and HC = fine, we have p,(HC)- =
n

lim p(HnC) and p (HC) = limp (H1 ,C) . We therefore obtain y (HC)
n

	

n

< hp, (HC) .
We now define a set-function x on 3' by placing

x (C) = h pu, (HC) - p (HC) .

Clearly x is bounded and completely additive . Moreover, since
p (HC) <hp,(HC) for CE(, the contraction of x to CAS is non-
negative . Hence, by § 6, the set-function x is itself non-negative ,
i . e . the inequality p (HC) < h,w (HC) is valid for all Ce' .

The inequality p(KC)>k(KG) is proved analogously .

10. By means of the lemma we shall now first prove tha t
p ([ f < f]) = 0, and that yo(C) = 0 for any sub-set CES' of

[f< f] .

Since [f <f] = C5 (De < h, f > k]), where the summation is with
respect to all pairs of rational numbers h and k, for which
h< k, it is sufficient to prove that p,(C) = 0 and p (C) = 0 for
any sub-set CES' of [f<h, f>k], when h<k.

This follows from the lemma . For, when CES' is a sub-set
of [[<h, f>k], we have C c H and C ` K, and henc e

hp (C) ? p (C) ? kp, (C) •

Since h< k, this shows that p,(C) = 0, and hence also p (C) = 0 .

11. Next we prove that the functions f and f are fir ' - integrabl e

and that their indefinite integrals with respect to p,' are th e
µ'-continuous part ye of p' .
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Placing N = [ f= + Do] and N- = [7= - oc] we shall firs t

prove that p (N÷) = 0 and ,u (N) = O.

For every k we have N ç [f = + oo] Ç [ f° >k] . From the
lemma it follows that when k >0 we have

p (N+) < p, ([f > k]) <k ~ ([f > k]) 5_ 11-; ,p+ (E) .

Making k-±+oo we obtain p(N+) = O. Analogously it is prove d
that ,u (N) = 0 .

For an arbitrary finite d >0 we now put

fd (x) _
0 for xi: [-oo< f = f <+ 0°]

and apply for an arbitrary set AE' the lemma on the se t

G n = A [nd < f = f < (n + 1) d] together with Fn = [f < (n + 1) d ]

and Kn = [ f > nd] . This yield s

nd,u (Cn) Ç p (Cd Ç (n + 1) d ca ( Cn) .

A e '

	

Ind for xe[nd< f = 7<(n+1)d],-oo<n<+oo ,

If we choose A = E, these inequalities show that fd is p'-inte-

grable. For an arbitrary AE' they show, together with th e

relations p, (A[ f < f ]) _ 0 and p (A[f < f ]) = 0, that

S td (x) ,u (dE) < p (AD) < S fd (x) (dE) -I- d ,

AD

	

A D

where D = E - (N+ + N ) .

Since in the set D - [ f < f ] we have fd < f = f < fd + d, it is

plain that f and 7 are ,u '-integrable, and that for an arbitrary

5 f (x) pL (dE)

~

D

df (x) (dE) < AD

	

fd (x) p (dE) + d.

Sf(x)u(dE)

	

A D

AD



Since d may be chosen arbitrarily small, the preceding in -
equalities show that

p (AD) = f(x) p, (dE)

	

f (x) ,tk (dE) .

AD

	

A D

The set-function cL (A) = p (AD) defined on ' is therefore
pt '-continuous, and since p' (A) = p (AD) + p (A (E -D)), where
pt (E - D) = 0, so that x (A) = p (A (E- D)) is pt'-singular, i t
follows from the decomposition theorem of § 7 that ip and x
must he the pt '-continuous and pt'-singular parts of p'. Since
the integrals of f and f over AD are equal to the integrals ove r
A, the last relations may therefore also be writte n

p', (A) = f(x) pt (dE)

	

f (x ) Ft '(dE).
A

	

A

1.2 . The set-function x being the pt'-singular part of p', i t
is plain that for any AEA '

p5
(A) = (A (E - D)) = p (AN+) + p (AN ) .

Since AN+ E [f > 0], it follows from the lemma that p (AN+ ) > 0

for any AET. Similarly it is proved that p (AN-) <O.
For any sub-set BEC' of A we therefore have 0 < p (BN+) <

c p - (AN+ ) and p (AN ) < p (BN ) < O . Since ps (B) = p (BN+) +
p (BN ), this shows that p (AN) < ps (B) < p (AN+)

Hence by the definition of §6 we have for any AES'

p ç + (A) = p (AN+ ) and ps (A) = p (AN-) .

This completes the proof of the theorem .

13. Corollaries of the first limit theorem . If in particular
= ', we have p/ = pt and p' = p, so that the first limit

theorem contains statements about the set-function p itself.
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Even ifwe may, however, under certain additiona l

assumptions, deduce less precise results regarding the set-func-

tion p .

Let us first assume that to any set Ae3 there exists a se t

Beg', such that BQA and p(B-A) = 0. We shall then prove
two results :

(i) If p is non-negative, then the indefinite integrals of f and

f with respect to p are the p,-aontinuous part ye of y, and the
,w-singular part of p satisfies for any AE the relation cps (A) =

p (A [f = + 0c ]) .
Proof. We have the decomposition p (A) = p (AD) ~- cp (AN+) .

The set-function p (AN+) is ,u-singular, since tti (N+ ) = O. The

set-function p (AD) is u-continuous. For if A E and ,u, (A) = 0 ,

there exists a set Be', such that B A and p, (B - A) = 0, i .e .
p (B) = 0 . Hence, since p is non-negative, 0 < p (AD) p (BD) = 0,
and therefore p (AD) = 0. Finally p (AD) is the indefinite integral

of f and f with respect to p. For to an arbitrary A E there
exists a BES-', such that B?A and ,u,(B- A) = 0, and v<r e then
have

p

	

S f(x) FL (dE) = I(x) F L (dE)

(AD) = p (BD) =
BD

	

A D

f (x) ,a (dE) = f (x) (dE) .
BD

	

AD

(ii) Without restriction on the sign of p the indefinite integrals

of f and f with respect to p are the p-continuous part ye of p .

Proof . The statement follows from the decomposition p =

y + + p , when we apply the previous result on each of the set -

functions p+ and -

We mention that not only the relations ps (A) = p (AN+) and

ps (A) = (AN-), but even the relation T s (A) = (A (N+ + N )) ,
need not hold generally . This is shown by the followin g

example :

Let

	

consist of all sub-sets of a set E of three elements a ,

b, and c, and let p ({a}) = 1, µ({b}) = tu({c}) = 0, and 9904) = 0,

y ({b)) = 1, p ({c}) = -1 . Let each of the a-fields z i , I2 , .
consist of all sets containing either both or none of the element s

b and c. Then the above condition is satisfied, but p is singular,



Nr . 14 1 3

and there exists no set NE ' for which p (A) = p (AN) for al l
AE .

14. Next, let us assume that to any set AEA there exists a
set Be', such that ,u(A---B-AB) = O . Evidently this condition
is weaker than the preceding one. We shall then prove : .

If p is p-continuous, then p is the indefinite integral of f or f
with respect to µ .

Proof. Let AEA be arbitrary ; and let BE' be chosen such
that ,u(A-}-B-AB) = O . Since µ(A-AB) = 0 and t(B-AB) = 0 ,
we have

p (A) = p (B) + p (A -AB) - p (B - AB) = p (B) ,

and, denoting by f any of the functions f and 7,

(x) p, (dE) = +

	

^ f(x) (dE) = S f (x) u (dE) ,
B A-AB B-AB

	

B

from which the result follows .

15. Differentiation on a net. Let E be a set containing a t
least one element, andµ a measure in E with domain , such
that EE. and p,(E) = 1 .

By a partition of E with respect to p, we shall mean a parti -
tion E

		

Dp of E into sets D p E, for which µ (Dp) > 0 . These
p

sets D p are called the meshes of the partition . By a net in
E with respect to µ we shall mean a sequence of partition s
E = Dp, E = p Dp,

	

with respect to p, each of which i sP
a sub-partition of . the preceding one .

If we denote by n the d-field consisting of all sums o f
meshes from the nth partition E = .1Dp, it is plain that th e

p
conditions 3' i C 2 ç . , . ç and Es l of § 8 are satisfied . More -
over, since µ (Dp) >.0 for all meshes, it is plain that for an y
bounded, completely additive set-function p defined on , th e
contraction pn to t̀ R is µn-continuous: Thus the first limit theo-
rem is applicable . The µn-integrable function fn in this case i s
uniquely determined by
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(D)

	

n
fn (x)

	

(Dn) for xE Dp .

p

The two functions f and f are called the lower and upper
derivatives of

	

with respect to p, on the net.

16 . Density of a set with respect to a v-field. Let p be a
fixed measure in E with domain a, such that EEa and ,a (E) = 1,
and let , be a a-field contained in a. Let v denote the con-
traction of p to fj .

For an arbitrary set AEa the set-function p on a defined
by p (B) = p (AB) is bounded, completely additive, and p,-con-
tinuous. Its contraction t to is therefore bounded, completel y
additive, and v-cbntinuous, and is therefore the indefinite inte -
gral with respect to v of a v-integrable function f. By the den -
sity of A with respect to (and the measure ,a) we mean any
such function f, i . e . any v-integrable function f with [f] = E ,
such that

'LOB) = f (x) p, (dE) for any Be .)
B

Suppose now, as in § 8, that a sequence of o-fields at ß`a2
contained in a is given, such that EEa 1 , and let -' denote th e
smallest a-field containing 05' ' = CS n . Let further AEa be arbi-

n
trar_y . From the first limit theorem then follows :

Denoting by fn the density of A with respect to an and b y
f' the density of A with respect to a' we have ,a ([lim fn = f']) = I .

n
If to the set A there exists a set CEa', such that ,a (A -{- C

-AC) = 0, we have the more precise result, that ,a ([lim fit = f])
n

= 1, where f denotes the characteristic function of A .
This implies the following nought-or-one-theorem :
If for every n the density fn of the set A with respect to ar,

satisfies the relation ,a ([fn = kn ]) = 1 for some number kn , an d
there exists a set C e ' such that ,a (A -j- C - AC) = 0, then the
measure of the set A is either 0 or 1 .
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We shall also give an independent proof of this theorem :
From the relation µ (AB) = knµ (B) for any BE ` n we obtain,

by placing B = E, the equality µ (A) = kn . Hence µ (AB)
µ (A) µ (B) for any Be0. By the extension theorem of § 4 th e
relation µ (AB) = µ (A) µ (B) is then valid for any Be ' . Choos-
ing B such that µ (A --- B-AB) = 0, we have µ (AB) = µ (A)
and µ (B) = FL (A) . The relation therefore becomes µ (A) = p, (A)2 ,
which shows that µ (A) is either 0 or 1 .

17. Second limit theorem . Let E be a set containing at leas t
one element, and p, a measure in E with domain , such tha t
Eel and p (E) = L Let nowt be a decreasing se-
quence of a-fields contained in , such that EE k for every n .
The system

	

Z n is a o.-field, and Ee'.

The contraction of µ to n is a measure, which will b e
denoted by µ n . Similarly the contraction ofµ to ' is a measure
which will be denoted by u' .

We shall consider a µ-integrable function f with [f] = E.
Its indefinite integral

95(A) = ~ f (x) µ (dE)
A

with respect to µ is, by § 7, a bounded, completely additive
and µ-continuous set-function, in . Since the contraction o f
to "Un is for every n a p -continuous set-function, there exists ,
by § 7, a µn-integrable function fn , such that

S fn (x) (dE) = p (A) for any A e n .

A

Similarly there exists a µ'-integrable function f', such that

5 f' (x) µ (dE) = p (A) for any AE '.

A

The functions fn and f' need not be uniquely determined . In
the sequel fn and f' will denote some such functions .

The second limit theorem now states :

With the above notations we have the relatio n

,u ([lim fn = f']) = 1.
n
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To prove this it is sufficient to prove that µ ([ f < f']) = 0
and p,([f <f]) = 0, where

f = lim inf fn and f = lim sup fn .
n

	

n

For E--[lim fn = f ' ]E[f < f'] [f' <7] .

18. The proof will be based on the following lemma :
Placing H = [inf fn < h] and K = [sup fn > k] for arbitrar y

n

	

n
numbers h and k, we have for any Ce ' the inequalities

(HC) h,u (HC) and 9D (KC) > kFL (KC) .

In order to prove the first inequality it is sufficient to prove ,
that if for an arbitrary n we put

Hn = [min ?en< h] ,
p� n

we have ffl (HnC) < h p (Hn G) for any Cs ' . For H1 C H2 C
and H = SHn . Hence p(HC) = lim pu (HnC) and çP (HC) =

n

	

n
lim P (HnC) .
n

To prove the inequality y (HnC) < h,u (HnC) we put

f [fp < h, fp + 1 � h, . . . fn > h] for p < n

Hnp

	

[fn < h] for p = n.

Then Hnp e p and Hnp Ç [fp < h] . Moreover Hn = 2'Hnp . Since
pin

Ce p for any p, this implie s

cp (Hn C) = ~ cp (HnpC) = Sfp(x)(dE) <h t(H C) =h (HC).

p<n

	

p ~ n H C

	

p< n

The inequality (KC) > k,u (KG) is proved analogously .

19. The proof of the theorem now runs as follows :
In order to prove that l;-([f< f']) = 0 it is sufficient to prov e

that p ([f <h, f'> k]) = 0 for any pair of rational numbers h
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and k for which h <k . For [f< f'] = [f h, f'> k], where the

summation is with respect to all such pairs .

We now apply the inequality cp (HG) < (HG) to the set

C = [f< h, f' > k] . Since f is ,wn-nieasurable for all n, it i s

,u ' -measurable ; hence Cad' . As CÇH, we obtain

(C) < hp, (G) .

On the other hand, since CC [f' > k], we hav e

(C)>kp,(C) .

Since h< k, these two inequalities show that p, (C) = O .
The relation p ([f ' < f]) = 0 is proved analogously .

20. Corollary of the secoml limit theorem . If in particula r

p, ' only attains the values 0 and 1, i . e . if for any set Aag' eithe r
,u (A) = 0 or µ (A) = 1, we must hav e

p ([f ' = f (x) FU (dE)]) = 1 ,

since otherwise one of the sets

[f >S f (x) ,u (dE)] or [f ' < f (x) alp (dE) ]
E

	

E

would have the measure 1, which is impossible, a s

S f ' (x) p, (dE) _ f (x) p ,(dE) .

By the second limit theorem we therefore in this case hav e

([ lim fR = f(x),w(dE)]) = 1 .

21. Approximation of a Lebesgue integral by Riemann
sums. Let E be the real axis --- oo < x < -{- oo ,

	

the system
of Lebesgue measurable sets A on E with period 1, and ,u (A )

the measure of a period of A. Let

	

denote the system of Le-

besgue measurable sets of period n . Then

	

i 2

	

• • , and
2-

D . Kgl . Danske Vidensk- Selskab- Mat-Tys . Merid - X%11, 14 .

	

2
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Eck for all n. The systems

	

• are o.-fields . The a-fiel d
= Z& consists of all Lebesgue measurable sets having th e

period n for any n. Hence' for any Ash ' we have eithe r
2

,u, (A) = 0 or ,e (A) = 1 . The corollary of the second limit theo-

rem is therefore applicable and leads to the following theorem: 2

If f(x) is a Lebesgue integrable function of period 1, then th e
sequence of functions

~
fn (x)

~~ ~
f x , ~t )~

k= 0

converges for almost all x towards the integral

t

`f (x) dx .

22. Product sets . Let El , E 2 ,

	

- denote a finite or infinite
sequence of sets . By the finite or infinite product

E = (El,E2, . . . )

we shall mean the set of all symbols

x = (x i x 2 . . . )

where xn sEn for every n. The elements x n are called the coor-
dinates of x .

For every n except the last in case of a finite product we
shall writ e

En= (E t , • • , En ) and En = (En+1 , En+2, . . .) .

For an arbitrary element x = (x t , x 2 , • • •) of .E, the correspond -
ing element s

1 By the well-known theorem, that a Lebesgue measurable set wit h
arbitrarily small periods is either a null-set or the complement of a null-set .

We mention that in case of the periods „ this theorem is an easy conse-

quence of the nought-or-one-theorem of § 16 .

2 Jessen [1].

,,r,
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xn =
(xl

. . . , xn) and xn = (xn+1, xn+2, . . )

of En and En" are called the projections of x on E;, and E . We
may write

E = (En , En ) and x = (xn, xn) .

If An is a set iii En, the set (An, En) in E is called a cylinder
in E with base An' in En ; it consists of all elements xEE fo r
which the projection xn on En belongs to A . Similarly, if An
is a set in En", the set (En, A n") is called a cylinder in E with
base A n" in E .

Suppose now that every En contains at least one element,
and let 'n for every n be a field in En such that Enem . A set
A = (A 1 , A 2 , . . •) in E, where A nem for every n, and A n = En
for all n from a certain stage in case of an infinite product ,
will be called a simple set in E with respect to the fields n . We
notice that in case of an infinite product any simple set A is a

cylinder with base in some En .
The smallest field containing all simple sets will be denoted by

_ [a1, a2, . . . ] .

This field

	

consists of all sets in E which are a sum of a

finite number of simple sets no two of which have elements i n
common. Hence, in case of an infinite product, any set i n

is a cylinder with base in some E .
The smallest o-field containing all simple sets will b e

denoted by

- (ZJ1 , a2'

	

.) .
On placing

_ ' - .ol . . 'Y?n], <)n - [ün+1' ün-I-2'
. .

r
- (~1'

	

, 2S n ), ~n = (75''''n +1' U n +2' " ) '

it is easily seen that

U = [a' , n] and

	

(Z)n, a) = (On' &D .

23. Measure and integration in product sets . Let Fon fo r

every n be a content in En with domain Vin , such that EnE n and

2*
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ttn (En) = 1 . Then it is easily seen that there exists a uniqu e
content f t in E = (El , E2 , • • •) with domain = [fit, ' ] •
such that

11, 0) = cw t (A 1)11'2 (A2) . . .

for any simple . set A = (A 1 , A 2 , • •) . We notice that the factor s
of the product µ1 (A0 14 2 (A 2) are 1 front') a certain stage in
case of an infinite product .

This content f t will be denoted b y

It = [ i t Nt 2 , . . . ]

On placing

htn

	

[tt1 . . . , ltn ]

it is easily seen tha t

We shall now prove the following theorem :
If the contents ,wn are all completely additive, then the conten t

	

= [Ft ' , 1,12,

	

•] is also completely additive .
By the criterion of § 4 it is sufficient to prove that for an y

sequence A l A 2 D • of sets A mE for which ,w (A m ) > (some)
k > 0 for all m, there exists an element x* =

	

, x 2 , . . . ). .) of E
which belongs to all kn .

In the proof we shall use the relations

E,, = (En+ ' En" + 1) and

	

n

	

1

	

+wn - [ltn+1' I tn+1] '

For an arbitrary set A in E and an arbitrary element
xn' = (x l , • • , xn) EE« we shall denote by A (xn) = A (x i , • • • , xn)
the set of all elements xnsEä for which x = (xn, xn) belongs
to A .

We choose an arbitrary sequence of number s

k>k1 >k2 > . . . > 0 .

Corresponding to the relations E = (E1 , E ' ) and t = [ µ l , ft'; ]
we begin by considering for every in the set B m of all x 1 EE1
for which

iw l (Am(x1)) > k1 .

r, _
iwn

	

[ Ftn+1' P.'n+2 '

,tt

	

[tun, ,w n ] .

and
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A simple consideration shows tha t

ial Om ) + kl (1 ._
ha l (Bm)) ? 1,t (A m ) > k,

k kl

(BIn) > 1-k,

Since B 1 B 2

	

, and p is completely additive, this implies
the existence of an element x1EE 1 , which belongs to all Rm .
Thus for this xi we have for all m

F
a l (Am (xl)) > k, .

Corresponding to the relations Ei = (E2 , ED and

	

= [11, 2 ,

we may now repeat the argument to the sets A 1 (æ,) A2 (xi )
in E' . This proves the existence of an element .x2, eE2 , such tha t

jttz ( A m (x t , xa)) > k 2

for all in . Continuing in this manner we arrive at a sequenc e
xi, x2,

	

, where xneEn , such that

N, R(Am(x: ,

	

, xn))>kn

for every n and all m .
If the product .E = (E 1 , E 2 , • • •) is infinite, the element

x* = (xi, x2, •••) of E must belong to all A m . For every A m i s
a cylinder with base in some En, and the set A m (xi , • • • , x;)
is not empty .

If the product E = (E 1 , E 2 , •) is finite, say E _ (E 1 , Ep) ,
the above procedure breaks off for n = p -1, and the last rela-
tion becomes

,tk p (Am(xi

	

xp- 1)) > kn_I
.

Since A l (x1,

	

xp_ 1 ) A 2 (xi,

	

, xp_ 1 )

	

, and ,cop is
completely additive, this implies the existence of an elemen t
x* EEp , which belongs to all A m (xi , • , xp_ 1 ) . The element

x* = (xi , • • , xp) of E then belongs to all Am .

whence
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24. The conditions of the previous theorem are in particula r
satisfied if the contents +un are measures . Applying the extension
theorem of § 4 we therefore obtain the following theorem : 1

If E = (E1 , E2 , • • ), and p,n is for every n a measure in En with
domain n , for which En E n and p (En) = 1, then there exists
a unique measure v in E with domain Ct _ ( 1, 2 , • • •), such
that

v (A) = he t (A l) F e 2 (A2)
.

for any simple set A = (A 1 , A 2 , • • • ) .

This measure v will he denoted by

v = (tut, Fee,
. . .) .

On placin g

vn = (Pt, . . . tun)

it is easily seen tha t

25. Regarding integration in a product of two sets the usua l
theorem on repeated integration is valid . Applying this theore m
to E = (En, En) and v = (v'n , vR) we obtain the following results :

If f is a v-integrable function defined in E, then on placin g

fn (x rt) = f (xn , xn) vn (dErz)

when the integral exists, we have 1f1 E@ n' and µrz (En' - [fn]) = 0 ,
and for every set A n E gn

f (x) v (dE) = f;t (xil) vrz (dEn) .
( A -„' E

,z )

1 Lomnicki and Ulam [1] have given an incomplete proof of this theore m
On the proof of lemma 4 the number N is chosen twice) . The proof given here
is taken from Jessen [2, article 41. An analogous theorem on arbitrary measures
in product sets has been given by Doob [1], but his proof seems incomplet e
(it is not seen how the sets A ,, on p . 92 are chosen) . The proof by Sparre An-
dersen of a more general theorem is incomplete (the relation sup f ) (x2) 1
on p . 21 needs not be valid) .

vn - (Plre +1' Pn +2' . . . )

(vn, vn) .

and
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Similarly, on placin g

to (xn) = f (xn, xR) vn (dEn)
E,,

when the integral exists, we have [fn"] Et

	

and ,wn (L n -- [fn]) = 0 ,
and for every set AnE(53n

	

5f'(x)v(dE) .S f (x) v (dE) =

( E,,, A„)

	

[t„1 A,

26. Let denote the system of all cylinders in E with a
base in En belonging to Litt, i . e . the system of all sets (An, ER) ,

where ARE k' . Evidently On, is a a-field, ( 1' l 2' Ç • • • , and ( i
is the smallest a-field containing all (W n' . Finally EEN l' .

Let f be a v-integrable function defined in E, and le t

P (A) = 5 f(x) v (dE)
A

be its indefinite integral . Let fn' denote the function fn introduce d
in § 25, considered as a function in E which is independent o f
xn . Then [fn' ] er r and v (E [r]) = 0, and for every set AECW n'

rp (A) = S fn '(x) v (dE) .

[I'''1 A

By the first limit theorem we therefore obtain the followin g
result : 1

If f(x) = f(x1 , x2 , • •) is a v-integrable function defined in
E, then the sequence of integrals

fn (x) =
J f

(x'n, xn) vn (dE'1)
E,z

converges towards f(x) for all x outside a set NE (_Si with v (N) = O .

27. Let in particular f be the characteristic function of a se t
SECT having the property, that any two elements x = (x1 , x 2 , • • )

1 This theorem, and the two which follow, have been stated without proo f
in Jessen and Wintner [1], where some applications are given . Proofs were give n
in Jessen [2, article 41 .
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and y = (yl , y2 , • •), for which xn = gn for all n from a certain

stage, either both belong to S or both do not belong to S . Then

f is for every n actually independent of xn . The integral f"' (x)

is therefore in this case defined for all x and is a constant k n .

The nought-or-one-theorem in § 16 therefore gives the follow -

ing result :
If SE 03 is a set in E, such that any two elements x = (x l , x 2 , • • )

and y = (ui , g,, • ), for which xn y n f'or ull n from a certai n

stage, either both belong to S or both do not belong to S, the n

v (S) is either 0 or 1 .

28 . Let C,"" denote the system of all cylinders in E with a base
in En belonging to Cori, i . e . the system of all sets (E,, An), where

4E05." . Then V1" Q03 2 "

	

• • is a decreasing sequence of a-field s
contained in CAS, and Eeß3" " for all n . . The system

	

= Z03n" i s
n

the system of sets SECS, which for every n is a cylinder wit h

a base in En, i .e. satisfying the condition of § 27 . Thus v (S)

is either 0 or 1 for any See .
Let f be a v-integrable function defined in E, and le t

(A)
= J

f (x) v (dE)
A

be its indefinite integral . Let f" denote the function fn introduced

in § 25, considered as a function in E which is independent o f
xn . Then [fn" ] eCsi "'' and v (E - [fn" ]) = 0, and for every set Aet3 ""

92
(A) =

V"(x)v(dE) .
[I n„ A

By the corollary of the second limit theorem we therefor e

obtain the following result :
If f (x) = f(æ, xa, • . .) is a v-integrable /Unction defined in E ,

then the sequence of integrals

xn , xn) vn (dE")

converges towards
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Ç1x)v(dE)
E

for all x outside a set NE1 with v(N) = 0 .

29. Applications to the theory of probability. Let E be a
set containing at least one element . A measure .t in E with
domain , for which Est and ,u (E) = 1, may also be called
a probability distribution in E. The measure ,u(A) of a set AE .

is then called the probability of the event A . A ,u-measurabl e

function f with [f] = E is called a random variable, and the
integral

tai (f) _ f (x) ,a (dE) ,
E

when it exists, is called the mean value of f.
Besides E we shall now consider another set E * . We suppose

that to every xEE is assigned a definite element x*EE* . Let @*
be a a-field in E* such that E*EO* . For every set A*EC3* we

consider the set A of all elements xEE for which x * belongs
to A *. The system of all sets Ael of this particular type wil l
be denoted by (b . As is easily proved, i is a a-field, and EEO .

The contraction of ,a to t l will be denoted by v .
Let now f be a random variable for which the mean valu e
(f) exists . Let

(p (A) = S f (x)u(dE)
A

be its indefinite integral, and let g be some v-integrable function

with [q] = E, for which

(A) =
S
g(x),u(dE) for any Ae .

The function g evidently depends on x * only, i . e . it has th e
same value for any two elements xEE with the same correspond -
ing element x* EE *. We call g (x) the conditional mean value of

f by known x* , taken with respect to the a-field 0 * , and shal l
use the notation

1 If for (S* we take the system of all sets in E*, the conditional mean
value is that defined by Kolmogoroff [1, chap . V]. The modification here adopted i s
necessary for the results of §§ 33-34 .

g (x) - T-tx" (f) .1
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From the definition of g it follows, that

Ut (g) = ll ( tx* (f)) = 1 (f) .

When f is the characteristic function of a set AEa, the con-
ditional mean value tx . (f) is also called the conditional proba-

bility of A by known x*, taken with respect to 0* .

30. Let 01 ç 0;Ç • • • be an arbitrary increasing sequenc e
of a-fields in E * , such that E*E01, and let CS* be the smalles t
a-field containing 63n . Let ßj1 , 02 ,

	

, and ( ,l be the correspond -
n

ing a-fields in E . Clearly 01 ç 02 Ç • • • Ç C5 . Assuming that fo r
every set A*E0* the corresponding set A in E belongs to a we
shall now prove that 0 is the smallest a-field containing 0Pn .

n
Let for the moment this smallest a-field be denoted by 0' ,

and let j * be the system of sets A* in E *, for which the cor -
responding set Ain E belongs to 0' . From the mere fact tha t

' is a a-field, follows easily that * is a a-field . Moreover,
by our assumption every 0n çj*. Hence 0 * ç k) * . Thus for every
set A*E C3* the corresponding set A in E belongs to 0', i . e . CS Ç Ci' ,
and hence (i = 0' .

31. Next, let t l D CS2 • • • be an arbitrary decreasing sequenc e
of a-fields in E*, such that E*E07, for all n . Then 0* = 5)0n is

n

also a a-field, and E*EC3 *. Let 01 , C 2 , • , and 0, be the cor -
responding a-fields in E . Clearly 0 1 D_ Ci e ? • • • O. We shall now
prove that 0 =ZCin .

n

To see this, we have to prove that any set AeZOn cor-
n

responds to some A*ECS*. Since AECin , it corresponds to a se t
AnEOn . These sets An will differ only by elements x * which do
not correspond to any x . Hence any set A* in E* for which
ZAn* c A* Ç An will have A as its corresponding set . Let us take
n

	

n
A * = lim sup An = `a , An +p . For every rn we have Ane(m for

n

	

n p
n > m. Hence A*E Clm for all in, i .e . A*e O* .

32. Let us now consider a finite or infinite sequence of ran -
dom variables g 1 , g 2 , • • • , and let E* be the space (R 1 , R2 , • • •) ,

Nr . 14
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where each Rn is the real axis -- oo < xn < ± co . To every xEE ,

let us assign the poin t

x* - (g1 (x), 92 (x),

	

. )

of E * . Let( * denote the system of Borel sets in E*, i . e . th e

smallest a-field containing all sets xn<an . The corresponding a-field

in E will then be denoted by gt gz

	

and the correspond -

ing conditional mean value E xk (f) will be called the conditiona l

mean value of f by known values of g 1 , g 2 ,

	

, and will be

denoted by

If fis the characteristic function of a set A E , the conditiona l

mean valued

	

(f) is also called the conditional probabi -

lity of A by known values of g1 , g2,

	

'

33. Let us now suppose that the sequence g1 , g 2 , is infi-

nite . Let O rr* for every n denote the system of Borel sets in E* ,

which are cylinders with base in (R1 , • • • , Rn) . The bases of

these setsÿ being just all Borel sets in (R 1 , • • . , R, ), the a-field
in E corresponding to Can will be k , . ., gro .

Now tlY g 0*2 • , and Ci* is the smallest a-field containin g

0n ; moreover, it is easily seen that for every set A*ECG* th e
n
corresponding set A in E belongs to . Hence by § 30 we hav e

ga g

	

•, andg
as

	

is the smallest a-field containin g

g _ . . qn . The first limit theorem is therefore applicable an d

yields the following result :

The conditional mean value g . ., g (f) of f by known values

of g 1 , • , g n converges for n - oo with the probability 1 towards

the conditional mean value Ç.Dl

	

(f) of f by known values of
fh ,

91, g 2 ,

When f is the characteristic function of a set Aeg, th e

theorem becomes a theorem on conditional probabilities . If in
particular A s k, q, •••, the theorem shows that the conditiona l

probability of A by given values of q1, • • • , gn converges fo r
n - - oo with the probability 1 towards 1 in A and 0 in E - A . '

1 Lévy [1, pp . 128-1301 .

9i, gs, . . . (f)'
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34. Still assuming the sequence gi , g,, • • to he infinite, le t

us now by fn denote the system of Borel sets in E*, which ar e

cylinders with hase in (Rn +i , Rn+? , . . •)• The bases of these

sets being just all Borel sets in (Rn +i , Rn+2 , •), the a-field i n

E corresponding to 0n will be egn
+~• ~~~+2 , "

We have flli Q f2

	

. Let us put (* = Z@,,* . Then Cl* is
n

the system of Borel sets A* in E* with the property that tw o
points .x* = (xi , x 2 , • • • ) and y* _ (g i , y,, • • • ), for which xn =

yn
for all n from a certain stage, either both belong to A * or both

do not belong to A * .
The class of all sequences obtained from a given sequence

xi , x 2 ,-• • by changing only a finite number of elements wil l
briefly be called an end, and will be denoted by {xi , x2 , - .
The a-field (b in E corresponding to the above a-field (b' = ZC3

will be denoted by (g„ g a,	 and the corresponding conditional
mean value ltx.(f) will be called the conditional mean value of f

by known end of the sequence gi , g2 , • • , and will be denoted b y

From § 31 it follows that

	

, and that
=

		

. The second limit theorem is there -
n

fore applicable and yields the following result :

The conditional mean value ß,J2 (f) of f by known

values of ga+i, gn+•„ .
. . converges for n-* cc with the probabilit y

1 towards the conditional mean value fai {g, ga, . . .} (f) of f by known
end of the sequence gi, g2 , •

-

The corollary of the second limit theorem shows that if th e
probability of any event Aeg{gi, qa, . . .). is either 0 or 1, then the

conditional mean value

	

t g c i-1 g +2,
. . . (f) converges for n - oc

with the probability-1 towards the mean value VW. In par-

ticular, this will be so when the probability of any event A what-

soever with the property, that two elements x and y for whic h
gn (x) = gn (y) for all n from a certain stage, either both belon g

to A or both do not belong to A, is either 0 or 1 .
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