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The class may then be of finite order for that part of the sur-
face, even if it is not so for the surface as a whole. Moreover,
the entire surface may be decomposed into such parts. This is,
roughly speaking, the idea of the present invesiigation. To carry
it out requires a thorough application of the general properties
of surface transformations, especially the methods of the uni-
versal covering surface and its limit points. In order not to refer
the reader to investigations scattered in many different papers,
I outline in part I the general foundations without proof. Part II
then deals with a full investigation of the transformation classes
concerned and part III with their homology theory.

In the homology theory of transformations the so-called trace
formula has hitherto been one of the chief means. The trace is
the sum of the roots of the characteristic polynomial. In this matter
I want to show that to get full resulis one should not confine
oneself to the trace but deal wilh the polynomial itself. It con-
tains a good deal of information concerning the t_ransforniation
class in question (section 22). In section 16 the general form

of this polynomial is to be found. All its roots are roots of

unity. Although it is actually not proved that all transformation
classes with this quality are embraced,—which may well be the

case for reasons which I do not intend to discuss here—I propose
for the transformation classes investigated the term ‘“classes of

algebraically finite type”.
The chief means of our investigation is the transformation
group induced in the set of limit points of the universal covering

surface by a prescribed transformation class. This group is an 3

invariant of the transformation class, thus properties common

to all transformations of the class, which concern their behavi-

our in a twodimensional field, are reflected by a topological
transformation in a onedimensional set. It is evident that this
means must be of great efficiency. If a generalization of this
comprehensive invariant to manifolds of higher dimensions were
discovered, a new development of the theory of their transforma-
tions might well be expected.

1 am indebted to my friends S. LauriTzZEN and S. BUNDGAARD
for reading the proof and suggesting many valuable improvements.

- Part I.

Foundations.

1. Group F as starting point. The subject of the investigations
to follow is the orientable, closed or bounded, surface of finite
connectivity. Let.j\) denote the genus and r the number of bound-
ary curves of the surface S. These numbers are only submitted
to the restriction 2 p+ r> 3, thus excluding the cases p=r=20
(,?phel‘e), p =0, r=1 (circular disc), p =0, r = 2 (circular
ring) and p = 1, r = 0 (torus), that is to say all cases in which
The natural metric of the surface is spherical or euclidean. Since
in .the case 2p-+r=>3 the natural metric of S is hyperbolic, thé
u}llx'ersal covering surface of S may be mapped into the unit
circular disc X of the plane of a complex variable & in such

- a way that the elements of the Poincaré group F of S correspond

to linear hyperbolic transformations of z carrying X into itself
fmd ¥eaving two points of the bounding unit circle E of X
Invariant. : )

For the sake of clearness and generality, we may put the
starting point in the following way: Let an arbitrary group F
of (fractional) linear transformations of x be given, which is
not abelian and the elements of which carry X into itself and
—apart from unity—are all hyperbolic. I have shown in {13],
3 4, that under the assigned conditions F is properly discon-

“tinuous in X, i.e. that each point = of X is imbedded in a

neighbourhood containing no image point (== x) of x under the
tra}lsformations of I. Let f be any element of F different from
unity; the points U, and V; of E left invariant by f will be termed
the fundamental poinis of f, the arc of circle joining them in
X at right angles to E the axis of f In terms of hyperbolic
geometry based on E the axis is a straight line, and [is a

“translation of the hyperbolic plane along the axis in the direction
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from U, towards V;, from the negative towards the positive funda-
mental point of f. Two different axes have no fundamental point

Nr.2 7

be of finite connectivity. To obtain this, one more condition

must be imposed on the group F, viz. to be generated by a
finite number of its elements. As shown in [13], § 11—12 this
is equivalent to the condition that there exists a non-euclidean
finite region of X, a circle inside E, say, which contains at least
one point of every set Fx, x being a point of Ky, in its inte-
rior. Under this condition all boundaries of K inside X are axes
of F and they arise from a finite number r of distinct bound- -
aries by the transformations of F. Then K. mod F is a surface
of finite connectivity with r bounding curves, which are closed
geodesics in the sense of the hyperbolic metric imposed on the
surface. In case b), Kp = X, Ky mod F is a closed surface,

r= 0. In both cases a certain genus p arises; in case a) p

may be zero, prov1ded r=3.

To sum up, we start with a transformation group F of X
subject to three conditions:

F is not abelian.

All elements of F other than identily are hyperbolic.

F is generated by a finite number of elements.

Then K mod F is our orientable surface S of finite connec-
tivity with a certain genus p and a certain number r of bound-
ary curves. S may be illustrated by an image in ordinary space.
A hyperbolic metric derived from X is impressed upon S. In
this metric every axis of F corresponds to a closed geodesic
of S; especially the boundary curves are such geodesics. F is
isomorphic to the Poincaré group of §. The minimum number.
of generators of Fis 2p in case r = 0 and 2p+r—1 in case
r>0. In the latter case F is a free group.

Some consequences are immediate: Let A be an axis of F.
The set of its images under the transformations of F is called
the congruence class of A and denoted by FA. All axes of FA
correspond to one closed geodesic a of S. Let 2 be the non-
euclidean length of a. There exists an element f of F with the
axis A, which displaces the points of 4 at the distance 1 along
- A. The element f (and likewise its inverse [~ 1) is called primary

element of I’ to the axis 4, and 1 is called primary displacement
length belonging to the axis 4. All elements of F belonging to
- A are powers of f, and their displacement lengths are multiples
- of 2. The class FA does not accumulate in X. All its axes have

in common, otherwise F would contain a parabolic transformation.

The set of fundamental points of all elements of F is called
the sef of fundamental points of F and denoted by Gp. Under
the assigned conditions for F the elements of F are enumerable
in consequence of the discontinuity of F in X, so G is an
enumerable set of points of E. The closure G of G containing
Gy and derived from Gp by adding all limit points of G is
called the set of limit points of F. The set Gy is perfect (no point
of GF is isolated). Two cases may present themselves:

a) G is not dense on E. In this case E— Gy is made up
of intervals, which are dense on E and which will be termed
intervals of regularity,

b) G is dense on E. In this case Gr coincides with the
entire circumference E.

The smallest subset of X 4 F containing EF and convex in a
non-euclidean sense is denoted by EF In case a) I?F is obtained
by removing from X+ E each interval of regularity together
with the non-euclidean half-plane hounded by it. Inside X
therefore EF is bounded by arcs of circle at right angles to E
]ommg the end points of some interval of regularity. In case
b) IxF coincides with X+ E. In both cases the set of points
common to K, and X is termed convex region of I and denoted
by K. The set K is obtained from K, by adding GF, which
is prec1se1\ the set of limit points of K on E. In case b) the
convex region of F coincides with X.

Now the group F evidently transforms G into itself, the
fundamental pomts of f being transformed into the fundamental .
points of gfg by an element g of F. Therefore by continuity :
F transforms Gr into itself and, being a group of non-euclidean
displacements, transforms KF and X and thus their common
part K, into itself. Speaking of F as a group of transformations *
of K we may in abstracto consider the whole set Fx of images
of x unde1 the transformations of F as one point {x}. The set :
of these points {x} then form a manifold (surface), which we may -
denote by K mod I .

The surface K, mod F obtained in this way from an arbi-
trary group F subJect to the above conditions need not, however, -
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the same primary displacement length. The number of elements
of F the displacement length of which is inferior to a given
positive constant is finite.

The properties of groups F and corresponding surfaces S
shortly recalled in this introductory section are investigated at
length in my paper {13], to which reference may be made for
the proofs. In part I and Il of the present paper most of the
investigations are carried out in the convex region K, of X, the
universal covering surface of S with its group F, but incidentally
we may draw conclusions directly on the illustrative model S.

2. Transiormation functions. Let z denote a topological
(i. e. one-to-one and continuous) transformation of S into itself
preserving orientation. Let {x,} be any point of S and {a;} its
image under zS. Let x, be a point of K, representing {x,; and
x, a point representing {x;}. Then by continuity we have one
topological transformation of K, and one only covering the
surface transformation =S and carrying x, into x,. We denote
this transformation of K, by «’ = x(x). The transformation
function # (x) thus defined in K satisfies a system of functional
equations: Let f be any element of FV. As « and f(x) deter-
mine the same point {x} of S, their images under the trans-
formation x must correspond to the same point {x'} of S:

“(f@) = @) = (x@), FCF.

For reasons of continuity the correspondence f-—f cannot
depend on the choice of x, and it is easily seen that this corre-
spondence constitutes an automorphic transformation of the
group F into itself. Denoting this automorphism by the letter

I and writing f; instead of f, we may write the above func- ‘

tional equation in short

(2.1) “f = fyz.

In (2.1) f and accordingly f; ranges over the group F and the
argument x of the functions (not written explicitly in (2.1)) over
the convex region Kg.

1) We denote this by £ C F, using C as a symbol of inclusion, and write

likewise FD f.

Nr. 2 9

- Since in defining » we have chosen the representing points
x; and ;, of the points {x,} and {x},} of S freely within their
congruence classes Fxy, and Fxj respectively, » is not the only
transformation function to represent the surface transformation
zS. But it is evident that any transformation funection covering
7S can differ from x by an element g of F only. Thus -

gz =g (z (x)), gCF,

is the totality of transformation funcfions covering ¢S, the ele-
ment g ranging over the entire group F. Since (2.1) may be
written '

(2.2) . xfx_1 = [}

we have for gz the functional equation
—1 —1 .
gefx g = gf.g .

The automorphism f— gfl_g_1 corresponding to gx is said to be
relafed to I and is derived from I by applying the inner automor-
phism consisting in transforming by the element g- The totality
of related automorphisms obtained by making g range over F
is termed a family of automorphisms of F. :

If the given topological transformation = of S is made to
vary continuously, even so as not to preserve its quality of
being one-to-one, this will make = vary accordingly, but for
obvious reasons of continuity it will not alter the functional
equation (2.1). Thus the automorphism I induced by x will be

" unaltered. So we infer that the family of automorphisms of F

belonging lo the surface transformation ¢S is an invariant of the
ransformation class of =.

In looking for invariants of surface transformation classes
the chief means lies in the fact that transformation functions
such as #, originally defined in K, extend continuously from
Kp to Ky, thus including the set G, of limit points of F within
the reach of their definition. For closed surfaces (r = 0) this has
been proved in [14]], § 28; in [15], § 4, another proof will be

.found, which is valid also for r>>0. The structure of x in C_#F
Is easily described by first taking into account the set G of
- fundamental points of F. Any point x of Gy is the positive funda-
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mental point V; of exactly one primary element f of F. Then x
is the positive fundamental point of all elements f', n>0, and
of no other element of F. Now # carries the positive fundamental
point of any element of F into the positive fundamental point
of the element corresponding to it under the automorphism I
belonging to x. In symbols:

(2.3) x V= V”.

Since G is dense in GF, the extension of x to G derives from
continuily, and it is seen that x is topological in Gr and pre-
serves the order of GF on E. Cf. [14]1, § 9, and_[ 5], § 3.

From (2.3) we infer that the transformation G, depends on
I only. So it does not vary even if » varies continuously in Kg.
So we have: The transformalions gz, g F, of the set G of limil
points of F are invariants of the transformation class. One of
these, say z, is sufficient to determine all the others.

3. The group 7. Anolher means needed for thorough investi-
gation of a transformation class is iteration of the transformations
of the class. Writing the symbol 1 for the identical transforma-
tion of F, an enumeration of the elements of F may be given by

1, fio for oo in inf.
Writing 7* for the iterated transformation ¢z, this transforma-

tion is covered by #* = x (x(a:)) and likewise by all functions
of the sequence

Supposing = topological in order that it may be defined, this -
extends to all positive and negative powers of #, and we get the °

following scheme written in full:

(T) [TOJ 1 f1 fs

o
]
L, L
X
=
x
4
Do
N

By applying the funclional equation (2.1) it is easily seen
that these transformation functions form a group; e.g. we get

n‘flu.xa'fuxﬁ‘ = f‘u (fu}lrx"a+‘8a
L5 B B PR U PR

This group will be denoled by the-letter T. Moreover F is an
invariant subgroup of T, as is seen by applying the functional
equation in the form (2.2). The lines of the above scheme (7))
stand for the elements of the corresponding factor group 7/F.

The transformation functions written in the scheme (7)) need
not be different. Two functions in the same line are always diffe-
rent, since they differ by an element of F. Let fu Pl and f,#* be
the same transformation function of K. Then f, f 208 =1
is the identical transformation of Ky Puttlng |e—3| = n, we find
that " is an element of F. So 7" is the identical transformation
of 8. Since n 3= 0, 7 is a transformation of finite order (a periodic
transformation)- of §. In this case. T/F is cyclic. In case all
functions of the scheme (T) are different, T/F is infinite, viz. a
free ‘group generated by one element, and = is not periodic.
The above scheme is, however, capable of another aspect. In
consequence of section 2 all functions of the scheme extend to
the set §F of Timit points of F. Moreover, all functions of the
scheme remain topological in EF', even if x by continuous de-
formation does not remain so in K. Therefore the group T
always exists as a group of topological transformations of G,
and by section 2 it is evident that the group T defined in GF is an
invariant of the transformation class under consideration.

With this new aspect of the group T we may ask what are

“the consequences of two elements of the scheme (T) being the

same transformation function in G . It means that x" for some
posmve n transforms (xl; in' the same way as a certain element
fof F; n may be chosen as the smallest positive number with this

‘property. Hence f 1 , which is a function of the line [z"] of (T),

leaves all points of G fixed. The automorphism induced by
f 4" therefore is the 1dentlcal automorphism. This means that
'S belongs to the transformation class of identity, and = is said
to belong to a transformalion class of finite order. These classes
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therefore are characterized by the fact that the factor group T/F

is cyclic of some finite order n with respect to GF alone irrespec-

tive of the behaviour of the transformation functions in K.
Transformation classes of finite order have been investigated

at length in [15]. The chief result of this paper is that a class"

of order n contains a transformation which is itself of order n.
So one may always choose periodic transformations as represen-
tatives of transformation classes of finite order. We take advan-
tage of this fact later on in this paper.

Periodic transformations of surfaces have been the subject of
many investigations. Apart from their réle in the theory of alge-
braic functions I quote in the present connection papers of L. E. J.
Brouwer [3], [4], [5], B.v.KeERERIARTG [8], [9), section 6, § 6, W.
ScHERRER [19], [20], [21], F. STEIGER [22] and myself [16]. Later
on we will have to enter more fully into the details of such pe-
riodic transformations. '

4. Principal region and kernel. From what has been said -
it will be expected that a closer investigation of the behaviour -

of all transformation functions of the scheme (7T) in the set G
of limit points of F will be needed. This investigation has been
carried out in [14]11, and we have merely to draw up the results
as far as they are required for our present purpose. In one respect
a slight addition has to be made: [14] only deals with the case
of a closed surface, whereas we here have to take into account
* the possibility of S being bounded (r > 0). This does, however, not
‘affect the validity of the analysis given in [14]. To be short,
the difference can be eliminated by first mapping the circumference
E continuously on another circumference E’ in such a way that
all intervals of regularity of E are mapped-into single points
of E' and the circular order of E is preserved.
With slight variation in formulating the results, the analysis
of [14]1I may be described in the following way:
Let ¢ denote any element of T and J the automorphism induced
by & If t is unity, all points of G, are left-fixed by t, and J
is the identical automorphism. We are concerned with the case
when { is not unity. Then, in general, the points of a cerlain
true subset M of G, are left fixed by . M is closed, since f is
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c?ntinuous on Gp, and M may contain isolated points.. As a spe-
Qlal case, M may be empty; we have to deal with this case later
on. Also, in general, the elements of a certain subgroup N of F are
left fixed under the automorphism J. The fundamental pomts
of the elements of N then belong to M and so does the set G
of limit points of N. Inversely, a fundamental point of F belong~
ing to M is a point of G. As a special case, N may consist only
of unity, and this may occur even if M is not empty. As another
special case, N may be abelian and then consists of all ele-
ments of Fbelonging to a certain axis; in this case, the two
fundamental points of this axis are the only fundamental points
of F belonging to M. In general, the subgroup N is not abelian
and then is of the same character as F itself; the set G., of its
limit points then is perfect and contained in M. "
Every element of N carries points of M into points of M, thus
reproduces M; it also reproduces the complementary set E~— M.
Since M is a true subset of G,, some at least of the inter-
vals forming E— M contain points of G . If i be such an inter
val, all points of- GF inside i are dlsplaced by t in the same
direction; this is easily seen to be true even in case r>0, when
G is nowhere dense on E; all intervals of regularity of F play
the same réle as single points. A point P of M will be termed
an isolated point of M, if P is common end point of two inter-
vals of E— M and both contain points of G . It will be termed
attractive if the direction of displace- '
ment in both intervals goes towards
P, repulsive if the direction of displace-
ment in both intervals goes from P,
and nentral if the direction of dis-
placement in both intervals are in
accordance on E.
If M contains a neutral point, M is
made up of exactly two points, which
are end points of an axis (fig. 1). The

~ direction of displacement is indicated Fig. 1.
. by arrows.

‘We now define a subset M* of M as follows. Let ¢ belong to
the line [z"] of the scheme (T). If n>0, M* is derived from M by
removing all repulsive isolated points (if any). If n<0, M* is
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derived from M by removing all attractive isolated points (if
any). (If n =10, we have t = f £ 1, fCF; then M consists
only of the fundamental points U; and V; of f. If the axis of f
is not a boundary axis of K, the former is repulsive, the latter
allractive; so M* = VI')

M* is still a closed set. In all cases in which M* consists
of more than one point a convex region may be built on M*
in the same way as was used in deriving the convex region of
F from G—F in section 1: We remove from X all non-euclidean half-
planes bounded by an interval of E— M *. The convex region ob-
tained in this way will be termed the principal region of . In
case M* only consisis of two points, the principal region degene-
rates to a non-euclidean straight line. This may or may not be an
axis of F. In case M* only consists of one point, there is no
principal region at all.

Moreover M* still contains all points of G, with the only
exception of the case in which M is made up of two funda-
mental points (end points of an axis of F) one of which is
repulsive the other attractive; in the latter case, M* only consists
of one point, and there is no principal region. So if a principal
region exists, it contains the convex region of N, and this then
will be termed the kernel of . Two special cases should be no-
ticed: If N only consists of idenlily, there is no kernel at all.
If N is abelian, EN consists of two points only (end points of
an axis): if one of these is repulsive the other attractive, there
is no principal region and no kernel; il not, they are either
both neutral, or M* consists of more than these two points; the
kernel then degenerates to the axis of N.

The mutual situation of principal region and kernel is go-
verned by the fact that points of M (and so of M*) do not
_accumulate in the intervals of E—EN. Points of M in such an
interval (if any) are therefore isolated and alternately attractive
and repulsive. If there is a kernel, the end points of such an
interval are end points of an axis bounding the kernel. All ele-
ments of F belonging to that axis are elements of N. Hence they
reproduce M. If therefore the interval contains a point of M, it
contains an infinity of points of M accumulating towards the
end points of the interval.

The principal region has cuspidal points in all isolated points
of M*. ’

- 15

'review the different cases which may occur.
assumed that ¢ belongs to a line [z"], n>0,

To sum up, we
In the figures ‘it is
of the scheme (7T)."

A. N only consists

of identity. ((_;N is. empty.)
A . M is empty G.

- t leaves no point of Gy fixed.

A,. M is not empty. ¢ leaves a certain number of points of
,GF fixed. This number is finite, since M does not accu-
n'lu%ate on E— Gy = E. Fig. 2 shows an example, M con-
sisting of six’ points, three of which are attractive, the

Fig: 2.

others repulsive. There is a principal region but no kernel.
If there were but four points in M, the principal region
would reduce to a non-euclidean straight line. If there
were but two points in M, the subset M* would reduce
to one point, and the principal region would vanish.
B. N is abelian. (G, consists of two points only.)
B,. M consists of these two points only (the end points of
the common axis of all elements of N). If these are
neutral points, the axis is both principal region and
kernel (fig.1). If, on the other hand, one is attractive,
the other repulsive, M* consists of one point only, and
both kernel and principal region vanish.
- M contains more than these two points. In at least one
of the two intervals of E — G, there are cuspidal points
of the principal region. These accumulate towards the end

points of the axis (fig. 3). This situation may occur in
one or in both intervals.
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of dlﬁ‘eren.t types -o.f functions ¢ arise from this analysis. But
these considerations are not necessary .

C. N is not abelian. (G, is a perfect set.)

C,. M coincides with G, Both kernel and principal region
are made up of the convex region of the group N.
. Here is embraced the case in which N=TF, i.e 11is
identity.

C,. M conlains more points than EN. In some of the inter-
vals of E—(_}N we have a series of cuspidal points of |
the same kind as in fig. 3. The kernel is the convex
region of N and orms a part only of the prineipal
region (fig. 4). :

for our present pur
: : . : pose.
Any fundamental point of F is the positive fundamental

point Vf. of some -element f of F. If V; belongs to M, the ele
‘r?ent [ is fixed under the automorphism J. So V. b::longs to-
(IN. and hence to G,. From this we infer that all cuspidal
points of the principal region, which are situated in inler-

Fig. 4.

vals of E— G,

. , are limi i i
rio e N mit points but not fundamental points

From this analysis two numbers may be derived. Let »:
denote the minimum number of generators of N. In case C we
have »>1, and N is a free group, if for the present we leave
apart the case N = F and S closed. In case B we have a free
group N with » = 1 generator. In case A, when N is unity, we
may agree to call a group consisting of unity only “a free group«
with » = 0 generators”. ‘

In case A the number of cuspidal points of the principal:
region is finite, say w. In cases B and C this number. is either:
zero or infinite, but in the latter case all cuspidal poihts arise
from a certain finite number of cuspidal points by applying th .
elements of N. So we may speak of p as the number mod
of cuspidal points.

It is shown in [14]1I, that » + @ is limited by some function.
of the number of connectivity of S. Hence only a finite number.

5. Classes of fixed points and index. Let us now conside
the fl'mction t of the last section not only as a transformati .
function defined in G, but in K, = r+ Gp, and let 2% S be t(l)ln
corresponding transformation of the surf:::e S. Let Q denot:
~the set f’f points’ of K left fixed by ¢ (if any). The set Q covers
a certain set g of poiits of S left fixed by z". This set ¢ i
.cal'led a class of fixed points of ¢#S. There may be other ﬁq)’(e;
pom?s of «*S than the set ¢, since other functions of the scheme
‘(T) in the line [¢"] of {, functions of the form ft. fCF, may

‘yield a class. For the moment we are concerned with the class

q only. Let x, be some point of Q, thus '
: v Q, try, = x,. What about
fxo, fCF? By (2.1) we get immediately i ' o

tfag = fytmy = fy,.

D. Kgl. Danske Vidensk. Selskab, Mat,-fys Medd. XXI, 2
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We now examine the different i
. » possible values of j in (5.1).
Smce v 0 and >0 the greatest possible value is | o
Ing from v = u = 0. This is the case A

tion. The next section will be devoted to cl
this case. ’

Then we may have j — 0. That requires either » = 0, p = 1,
g; i—g ]i;o‘libn; ?n 11‘; v =20, p=1, we are in case A, with
2 s p anq no kernel nor principal region exists.
by s o= 0, we are in case B,. If one point of M is attrac-
five, the other repu]sive, we have no kernel nor principal region
If both are neutral, we are in the case of fig. 1 with an axgis f
F both as kernel dnd- principal .region. ’

Finally we may have j <0, thus ¥+ pw>1. Then we are in
the cases A, with' more than two points in M, B, or C. In all

l ese case he e s a p p
s .f
t 1 ases t Y 1 rinci al legl()” a]ld i »> () thG[‘e 1§ a

So if f = f;, the point fx, belongs to Q, and if f3=f,, it does
not. Hence Q is reproduced by the subgroup N of I and by
no other element of F.

Let y denote a fundamental region of N in K, i.e. a region
containing exactly one point of each set Nx, x © K. Then the
class ¢ will be covered exactly once by the part of () belonging
to 1. Let us assume 1 to be so chosen as to be bounded by
a simple closed curve ¢ of K, not meeting Q. If x is a point
of ¢, let ¢(x) be the point of E in which a non-euclidean ray
from z through fx meets E. As x describes ¢ once in a positive

s J =1 aris-
of the previous sec-
oser investigation of

sense, ¢(x) will in all make a certain number j%() of tours
of E. This number j will be called the index of the class q in
accordance with the common use of the term “index”; see for
instance J.W. ALEXanNDER [1], section 2, or S. LerscHETZ [12],
p. 276: if ¢ happens to be made up of a finite number of -
isolated fixed points, j is the sum of indices attributed to these
single points.

This number j is computed in [14]II, its value being (with
one exception assigned below)

(5.1) J :J(f) =1—y—u,

It goes V\Tithout saying that { must leave at least one point
of K, ﬁx.ed, if j :t: 0. If j = 0, it is not decided whether ¢ leaves
some point of K, fixed or not.

. In consequence of the limitation of » 4 u mentioned in sec-
tion 4 there is a limit to the possible negative values of indices
of classes of fixed points on a surface of given connectivity.

, o
V\g do not state thjs limit éxplicitly, as we do not need it for
our purpose.

thus only depending on the numbers » and w attributed to t
in the preceding section. If the structure of  be such as not to
allow 1 to be so chosen as to be bounded by a simple curve
avoiding (, this may be achieved by a slight variation of t .
So we fix the value (5.1) to be the index of g in all cases.
' The exceptional case referred to above is a very.special one
well known. from the homology theory of transformations: If -
S is closed and ¢ belongs to the transformation class of identity
one gets

(5.2) j=2—2p,

6. Index j = 1. If the set M of fixed points 6f G, under the
transformation f is not empty, let us examine anyFinterval of
E—M cogtaining_points of EF. These are displaced by f in a
definite direction common to all points of G, in the interval
011.ly the end points remaining fixed. By the ;owvers R
th-ls displacement is-increased, thus no new fixed point,can
arise. Henc? £, £, - .- have the same set M of fixed points as ¢
The same is true of 2, ++-, in which cases the displace-'
ment goes in the opposite direction. Moreover, isolated points

of M which are repulsive fi i
or t are repulsive 2 3.
attractive for ¢, =2, . b for L1,

while in that case 4 = 0 and » = 2p. This is the well known
formula of Birkmorr [2]. The explanation of this difference is:
simple: In all cases which are not the BIRKHOFF case, the deter-
mination of the index of a class of fixed points takes into ac-
count an auxiliary surface (so to speak), viz. the surface cor-
responding to the principal region of ; and this surface in all
these cases is not closed. See also [14}11, §16.

o LA - and
A . *+. In view of the definition of M* in
section 4, this set M* therefore is common to all powers of

" 0
fﬁxcept t°, of course), and so are the principal region, the kernel,
e numbers » and and hence the index j. We thus infer

2% .
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that an index j <0 of a class of fixed poinfs is stable with respect
fo ileration of the transformation. ‘ .

As to an index j = 1, things are different. Ir} this case M is
empty, so the successive displacements qf a point ot: Gr 1‘1nlder
the powers of t may eventually carry it back to its original
position. In fact, in [14) 111, §1, it has been shown. that so.me
power {", n>0, of t will have a set M of fixed po'mts, .Whlch
is not empty, in Gg. It is true that in the p_roof given in [14]
111 the surface was assumed closed, but, as in previous cases,
the extension to bounded surfaces is immediate, if one makes
the intervals of regularity play the réle of single pointsr.1

Let n be the smallest positive number for which ¢ leaves
some points of Gy fixed, and let M denonte the set of these
points. Since M is not empty, we have j(i )=0. Let P be.z any
point of M and P’ = (P its image under the transformation .
Then

P =P = t'P =P = P,

hence P’ M, and M is reproduced by ¢ Moreove.r,'si.nce_:
t- 1 = ', an isolated attractive point of M is carried 1.nto
an isolated attractive point of ‘M, a repulsive into a repulsive,
a neutral into a neutral. Let N be the subgroup of fixed elements
belonging to t". Since fundamental points are transformed_by‘l
into fundamental points, it is seen that G, and hc?nce _GN is
reproduced by {. We now examine the different cases of section 4:

A. If ™ is of type A,, M consists of 2 points, @ of which are
attractive. Since the attractive points of M are interchanged by

- . . . .
#, we must have w > 2. Hence there is a principal region for ¢

(in case w — 2 degenerating into one straight line) ancll, spevaking
symbolically, this principal region is “rotated” in itself by &

B. If t" is of type B, M contains two fundamental points,

and these are interchanged by ¢, so n = 2. In‘case B, these
two points clearly must be neutral. S‘o Wfa are in the cass of
fig. 1 and, symbolically, the axis, which is at the same time
principal region and kernel, is “reversed”. In case B, l]:.le lt\VO
intervals are interchanged, so the two parts of the principal
region separated by the axis (kernel) must have the same
number mod N of cuspidal points.
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C. In case C we merely notice that, symbolically, the prin-
cipal region of " is" “rotated” in itself by f, and so is the
kernel of ¢". , ‘

Thus it is seen that ' has in all cases a principal region,
and we may say that , though it has not itself a principal region,
is affiliated lo the principal region of {". This is of course the

principal region of all powefs of * too. In the same way in
cases B and C, " has a kernel,

affiliated to that kernel.

So the index of a .class of fixed points with index j =1 is
not stable with respect to iteration of the transformation. It is
affiliated to a class of fixed points with index j<<0 of some
power of the transformation. It should be noticed that several
distinct classes with index j = 1 may well be affiliated to one

and the same class with index j <0 of some power of the trans-
formation.

and we may say that ¢ is

7. Simple axes. Equivaience classes and congruence classes.
Iun the first part of this section we consider T as a group of trans-
formations of EF only, thus abstract from the réle of the elements
of T as transformation functions of the convex region K, of F.
Let 4 be any axis of F, f an element of F belonging to 4,
thus U; and V; the end points of A. Let ¢ be any element of
T and J the corresponding automorphism. Then ¢ takes U

; and
V, into the points U; and V, respectively, i.e. into the end
J J

points of the axis belonging to the element f; corresponding to
[ under the autoinorphism J. We denote this axis by #4, thus
speaking purely symbolically of it as the image of A4 under the
transformation t. Making # range over the whole group T we get
a totality of axes, denoted by TA and termed the equivalence
class of A with respect to T. .
If TA satisfies the condition that any two axes of TA are
either identical or have no point in common (thus do not inter-
sect), A and so any axis of TA will be termed simple with re-
spect to T. Examples are obvious: If the surface § is bounded,
an axis bounding the convex region K of F cannot be crossed
by any other axis of F; so it is simple with respect to 7.
More generally, if 4 does not mean an axis of F, but merely

' a non-euclidean straight line joining two points of G, the
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straight line joining the images of these to points under t‘ is
denoted by {A. Then the same considerations may be applied
and simplicity of A with respect to T defined.

. Moreover, if T’ is any subgroup of 7, the meaning of the
denotation T'A and of simplicity with respect to 7" is immediate.
So if F is taken as subgroup of T, simplicity of 4 with respect
to F means that the geodesic a of S corresponding to A does
not intersect; if A is an axis, a is a simple closed geodesic
(without double points). :

Simplicity with respect to T involves simplicity with re.spect
to any subgroup of T, but not vice versa. So if A is smlple
with respect to T, a is a simple geodesic; if a is a simple geodesic,
A is simple with respect to F, but A may be intersected lby
some {4, {C T but not in F, and so need not be simple with
respect to T. o

Let {1, and {#, be two elements &= 1 of T and let a pI‘l'DClpal
region, say 2 (t;) and 2 (¢,), exist for both of them. It is first
assumed that {; and ¢, belong to the same line of the sche.me
(T), say to [z"]. Then n % 0, since there is no principal region
for. an element 4= 1 of F. The mutual situation of 2 (f;) and
2 (t,) in Kg then is one of the following three cases:

1) they are identical,
2) they have no point in common,
3) they have one axis of F in common.

In case 3) both functions of course have a kernel, say I"()
and I'(f,), the axis is a bounding axis for both of these, and
2 (t) and 2(t,) and so I'(#) and I'(1,) are contiguous alqng
that axis.

The proof of this theorem is to be found in chapter 3 of
[14) I with a slight modification: The paper quoted speaks
of a principal region @ (/) only if ¢ leaves more .than \tho
points of EF fixed, whereas we here include the case (fig. 1)
of t having exactly two fixed points, these being neutral. It
will, however, easily be seen that this case exactly fits into the
proof too.—The situation met with later in the present paper
makes our present, broader definition of the concept of prin-
cipal region 2 (f) necessary. In fact 2(%,), say, may hapl?en
to be such an axis as in fig. 1, thus at the same time being

Nr. 2

23
I'(t;), and may coincide with a boundary axis of £ (¢,) (and so of
r (). _ |

The above assumption of f; and {, belonging to the same
line of (T is readily seen to be superfluous. In fact, since
Q(t) and 2(t,) exist, these regions are, as pointed out in
section 6, principal regions. of all powers of #, and ¢, respectively.
S0 in choosing a line of (T") containing a power of #, and of ¢,
simultaneously and applying the above theorem we get the same
three possibilities of the mutual situation of 2(1y) and 2 (t,).

So if we let ¢ range over all elements &= 1 of 7' for which
a principal region 2 (f) exists, the totality of these regions Q (1)
has the property that any two of its members do not intersect.

Now, let ¢ and # be any two elements of T. We consider
t; together with the conjugate element

ty =t 7t

It is obvious that any point of G, left fixed by t, is carried
by t into a point left fixed by £, So M(%,) is the image of
M(t) by t As the character of being isolated, attractive ete.
is preserved for the points of M, and t; and t, belong to the
same line of the scheme (T) (thus n>0 or n<<0 for both
in the definition of M*) we also have M* (L) = tM* (t)). We
may therefore say symbolically that 2 (4,) is the image of 2 (t)
by ¢ and write ' :

' Q(t) =12 ().

The same is valid for the kernels, if any. Making f range over
the whole of T we get an equivalence class T R (t)) of principal
regions and TI(f,) of kernels. All functions ttlt_l are said tfo
form an equivalence class of functions.

We now infer that any non-euclidean straight line, whether
axis. of F' or not, bounding some principal region, is simple
with respect to T'; this follows at once from the above theorem
that two different principal regions do not intersect. Especially

~such a bounding line is simple with respect to F. Thus the

boundaries of a region of the surface corresponding to a prin-
cipal region are simple geodesics. '

Since an equivalence class of principal regions is part of the
totality of all such regions, any two of its members are mutually
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situated in one of the three possible ways indicate'd fibove. We
may express this property by saying that any principal region
is simple with respect to T. ‘ ‘

We return once more to the comparison of two conjugate
clements of 7 such as £, and #, = #,f . If the element fCF
is left fixed by i, .

Lt m = F

the element tft“l, which also belongs to F, is left fixed by f.

So we may write ) )
N(fz) = IN (ti) t

N (t,) and N(,) need not be conjugate subgr(.)ups of F, since

t need not belong to F. But they are isomorphlc, so they have

the same number of generators. Hence

v (tl) =¥ (fz)-

From this isomorphism and from the homeomorphism of M*(i,)
and M*(t,), thus of £ ({)) and 2 (t,), we infer that moreover

g (tl) =W (tz)-
So we find that indices are the same:
.j(tl) =J <t2)'

We now again take T as a group of transformations of the
closed convex region K of F. ‘ .

Any two transformation functions cor}]ugate in T s.uch as
t, and #, yield classes of fixed points W}th the same index J,
as we have just seen. Are these classes diﬁere_nt classes of fixed
points of the surface transformation in question? ' ,

To decide this, let ¢ be a transformation function, J t‘he
corresponding automorphism and x, a.point of K left fixed
by t. No other function of the line of f in the scheme (T) can

leave x, fixed, since it differs from ¢ by an element of F. Now -

let f2=1 be any element of F. The function ftf—1 = ff; t,
which belongs to the line of f, evidently leaves fx, fixed; so no
other function of the line of ¢ can leave fx, fixed. If Q d.enotes
the set of fixed points of ¢, then fQ is the set of fixed points of
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ftf“l. So two functions #; and #, yield the same class of fixed
points, if one is transformed into the other
F, and in that case only. ‘

All functions fif ", t being a fixed element of T and [ rang-
ing over the entire group F, will be termed a congruence class
of functions and the corresponding set F of principal regions

by an element of

" a congruence class of principal regions. Two functions such as ¢

and fif 7 = ff;lt are said to be congruentV.

Any equivalence class is subdivided into congruence classes.

In looking for classes of fixed points of a surface transforma-
tion zS, only one representative of each congruence class of
functions in the line [¢!] has to be examined. These are still in'
infinite number, but only a finite number of them yield a class of
fixed points which is not empty; this is shown in [14]1, § 32.

The principal regions of all functions ftf ' of a congruence
class are the images of 2 (#) by the transformations f< F. They
all cover one and the same region of the surface S.

| Part II.
Transformation classes of algebraically finite type.

8. Definition of the transformation classes concerned. The
matter of part I was an outlining in brief of the general founda-
tions of the theory of surface transformation classes needed
for establishing the main invariants of such classes. We now
proceed to the chief subject of this paper, a full investigation
of all transformation classes for which principal region and ker-

© nel coincide for every element of T for which a principal region

exists.

The different types of functions # are analyzed at the end
of section 4. To make things clear, let us look at the summary
of that section with the present assumptions. Cases B; and C;
are clearly in accordance with the present assumptions, whereas
B; and C: are excluded: the existence of cuspidal points makes

¢ the principal region contain more than the kernel. In case As

there can only be two points in M, one attractive and one repul-

‘D In [14] the term “isogredient” has been used.
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sive, since for more than two points in M there would be a
principal region without a kernel. Case Ay is permitted, but it
has to be remembered that such a function is affiliated to a
principal region corresponding to a certain power of the func-
tion, and this principal region must then belong to one of the
types permitted.

The characterization of the transformation classes in question
may also be put thus: The number w, defined in section 4, is.
zero for all elements of 7 except for the type » =0, p =1,
which is permitted, as it has no principal region.

One may ask whether transformation classes satisfying this

condition are to be found at all. It is readily seen that all
transformation classes of finite order are embraced. For such
classes T/F is a cyclic group of some order n, as pointed out
in section 3. It has been shown in §§ 6,7 of [15], that any
element &= 1 of such a group 7T is either of type j = 0 with
v =1, w = 0, one end point of the axis heihg attractive, the
other repulsive, and so has no principal region, or of type j =1
(v = w = 0). In the latter case the principal region to which the

element is affiliated is the whole of K., as the n-th power ’

of the element is identity. So for the entire group T the convex
region K is the only existing principal region and obviously is
kernel too. Hence the condition imposed above is fulfilled.
We are thus concerned with a rather far-reaching generaliza-
tion of transformation classes of finite order, for which the term

algebraically finite classes is proposed for reasons which will be .

mentioned at the end of this paper.

9. Existence of simple axes. In the rest of this paper ¢S

means a class of surface lransformations, the corresponding group
T of which, defined in Gy, satisfies the condition of section 8.

We first ask whether axes which are simple with respect:
to T, thus are not intersected by any of their equivalents under
T, exist. If S is bounded, the axes forming the boundary of K-
in X are simple with respect 1o T. So let S be closed. We then
use the following theorem: For some power of 7, al least, the
algebraic sum of the indices of all fixed points of any trans- t

formation belonging to the class is == 0. This theorem has been

- 1 belongs to the type Ci, since w =0 (no cuspidal

;"‘such simple axes do exist in general. As pointed out in [15]
there is only one extremely special case of a transformation class
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“proved in [17] by purely algebraic means of homology 'theory

using J. W. ALEXANDER’s theorem [1]concerning the sum of indices:
see also [18]. Now since. the sum of indices of all fixed poinl;
18 .equal to the sum of indices of all different classes of fixed
points, there must exist some function {71 in T, belonging

to 7 or to some power of 7, the index of which is J(@® 0.

. First let j(¢)<0. Then we have 1 —»—u<0: now w=20
since in the only exceptional case v = 0, # = 1, we have j = 0’
Hence »>>1 and we are in case C of section 4. More precisely;
oints).
Then let j(t) = 1. As described in section 6, t f)s ;ftf?l)iated
to the principal region of some power {". Now * must be of
one of the types enumerated in section 6. Of these, A, B, and
C, clearly cancel on our present assumptions. In cazs,e l?n2 we
only have the situation of an axis with neutral end péints
(fig. 1),‘and this axis is kernel. In C, we have a kernel too.
To sum up, under the conditions imposed upon the trans-

formation class, the group T contains an element which has

a kernel (here coinciding with the principal region). Now if a

‘ “kernel is bounded, a bounding axis of the kernel (which may

make up the entire kernel, case B,) is simple with respect to

T, as shown in section 7.

So we are left with. the last possibility of a kernel belonging
10 some element of T and coinciding with the complete convex
reglon Ky, which for a closed surface is the whole circular disc
X. In that case the element 1 belongs to some line [z"], n - 0,

of the scheme (T), and this means that = is =z transformation
~class of finite order (section 3).

As transformation classes of finite order are fully investigated

“in [15], we may here assume that z is not of this special nature.
S0 we have established that an axis, simple with respect to

T, always exists for transformation classes of the kind under
onsideration.

To be precise, even for transformation classes of finite order

2

f finite order for which axes simple with respect to 7' do not

exist; see [15], & 23.
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‘w1th orientation preserved. These geodesics are covered by the
axes - '

10. Decomposition of S by a maximum system of geodesics.
Let 4, be any axis simple with respect to T. We consider the
totality TA, forming its equivalence class (section 7). As 4, is
simple with respect to the subgroup F of T, it corresponds 1o
a simple closed geodesic a; on S, and so do all axes of TA,.
As any two of these simple closed geodesics do not intersect and
S is of finite connectivity, their number is finite. For the groups
F and T this has the following bearing. # being chosen as a
transformation function of G, corresponding to =S, we recall,
that A, is meant symbolically to denote the axis the end points
of which are the images of the end points of A4, under the trans-
formation x. Moreover, if an orientation is assigned to 4; by -
taking its end points in a definite order, this is transferred as
a definite orientation of xzA;. Then in the sequence

g, —
A, A, #°A, ¢, g™ 1A1-

The equivalence cl :
as
classesq' s TA, then is made up of «, congruence

FAI,FxAl, FZZAI, "",F”al—lAl.

(Of course, &, may be 1.) If on the other hand A, is amphidrome
) ,
we get 51— geodesics
“l
» S
ap, cag. - -,c2  q,

oy
whilst 2 a, coincides with a, with orientation reversed. This

requires o; =~ 2 and even. The equivalence class of 4, is made

‘ ) v Oy .
(10. 1) Ay Ay, APAL up of T, congruence classes irrespective of orientation.

' Lel 4, be an axis simple with respect to 7, not comprised
in T'4; and not crossing any axis of T4,, if any such A, exists.
Then TA, and T4, have no point in common and, ey denoting
the number analogous to «,, we have on S in all oy =+ ey simplz
closed geodesics without common 'points, in case bothdA and
4, are not amphidrome, and otherwise a smaller number. 1Then
we may look for a third axis 4; and so on. This process comes

to an end in a finite number of steps in view of the finite
connectivity of S. Let T

there is a first axis, #** 4, say, corresponding to 4; by an ele
ment of F,

#1 A = fA,, fCF,

orientation included. If «, is an even number, it may happen

oy .

that #” 4, corresponds to A by an element of F with orientation

reversed; in thal case A, will be termed an amphidrome axis.
On the surface S we may denote symbolically by

(10.3) A Ag oo Ase
(102) al,zal,'rzlhs"" 1 23 s AE

‘ E be the maximum system finishing the process. This system then

the simple closed geodesics corresponding to the axes (10. 1), al-;‘» ‘has the following property: :

though the real image of a, by any special transformation of the.

class 7 does not, in general, coincide with the geodesic covered by:

the axis x4,, but is only homotopic to it. : :
With this denotation we get e« simple closed geodesics?‘ with-;

out common points

1) In the set of axes
(10.9)

TA, + TA; + -+ TA;

ny two axes do not interseect.

a,, vay, Ty _,. 2) Any axis simple with respect to 7 and not comprised in
‘the set (10.4) crosses at least one axis of this set.
on S from (10.2) in case A, is nof amphidrome, whilst

o.
The nur = or i »
mbers 5 O @ denoting the number of congruence

« . . Ca. . . .
S, = a, i classes in TA;, according as 4; is or is not amphidrome,
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i=1, 2, -+, £, we have on § in all, at most, oy + ey + --+a§ ;
simple closed geodesics without common points. These divide :

S into a certain number =1 of parts.

In the case of a bounded surface it may be noticed that in
whatever way the system (10.3) is chosen, any bounding axis
of Ky is comprised in the set (10.4). Otherwise it would con

tradict condition 2. Moreover, a bounding axis of K cannot :
be amphidrome, since one of the intervals determined by it on

E does not contain points of G.
The set (10.4) of axes clearly is reproduced by any element

-

tc T. Moreover, the arrangement of these axes in Ky is pre-

served, since f preserves the circular order of the points of Gy

So the division of K by the set (10.4) is reproduced under {:
Let B be any region of that division. The boundary of B inside ;
X is made up of a subset of (10.4). If A, A’, A" are any three
axes of this subset, none of them separates the two others. If :
A is an axis not in the subset, axes A" and A” of the subset

may be so chosen that A’ separates A and A”. As these separat

ing qualities are preserved by ¢, the subset of (10.4) into. which

the subset bounding B is transformed by {, is the boundary o
some region of the division. This region will be denoted. sym
bolically by {B. So we may form the concept of equivalence
class TB and of congruence class FB of B, and split any equl
valence class into congruence classes. In the sequence

B, #B, #*B, -- -~
let #xfB be the first to be congruent to B:
#PB = gB, g F. (=1
Then TB is made up of 8 congruence classes
(10.5) FB, FxzB, Fx®B, ---, Fxf'B.

If in the division of S corresponding to the division of K b
the set (10.4) the part covered by B is denoted by b,

(10.6) b, ob, ©2b, -+ -, «f b
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will be 8 different parts, each covered by one of the congruence
_classes (10.5) of regions of K.

I1. Transformation class of finite order in the single
regions. We now consider some definite region B of the division
of K, by the set (10.4) and denote by Ty the subgroup of T
anc_l by Fy the subgroup of F carrying B into itself, F, is the
Poincaré group of the part b of S covered by B, and g is the
convex region of the group F,. If 8 is the least positive number
such that '

#B =
we pat #B = gB, gCF,

g lxf

= ZB.

So #z B = B. It should be noticed that g is not unique but

may be replaced by 9fs, fp being any element of Fg. Then xg

(1s replaced by fi " #;. This replacement has no influence on the

following argument.

Elerr.lents of Ty are to be found in those lines of the scheme
(?’) which contain powers of #g. Moreover, Fyg is clearly inva-
riant in 7T, and we get

TB = FB+FBZB+FBJC%+ e
+FB”;%+EBx—J;2+"

each of these parts of Ty being contained in some line of the
scheme (7). If we assume the factor group T/F to be infinite, -
= not being a transformation class of finite order, even the factor
group Tp/Fp will be infinite.

One may, however,_re'gard Ty merely as a group of trans-
formations of the set GFB of limit points of Fp; that is the set

of all those boundary points of B which are situated on E.

‘Then Ty defines a transformation class 7, (and all its powers)
,Of the surface b = B mod Fg just in the same way as 7, given

in Gg, defines a transformation class = (and all its powers) of
the surface S = K, mod F. In this respect, an element of

Ty being unity only means that it leaves fixed all points
_of Gg_regardless of its behaviour in the rest of G- So in this

1
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view the question as to the order of the factor group Ty/Fy
a”s’(;‘so arl;ea“li;e this important point quite clear, we may pu”} it
in the following way in the language of group tl?eoryt Letf 0B
denote the subset of T, the elements of w.hlch trans ;)il;rg
@F in the same way as some element of Fp, i.e. Typ con'

of ?111 such elements ¢ of Ty to which an element f 0;11;'3 exi)sst;
making the element fi leave all points of GFB fixed. 1s.sud )
T,y forms a group: Let #, and i, belong to T('u‘a ap(;i fl t:;l thz
be the corresponding elements of Fp. Then, if J deno
automorphism induced by £,

fity - fots = fifoy bk

G, ; CTyp-
Jeaves all points of G, fixed and fifs; < Fg; bence fif Top
for ant i , < T,, with f as corre-
Moreover T,p is invariant in Ty: Let f; 0B orre
sponding element, {C Ty with J as correspondmg_ilutomorp‘?ns t
apr)ld thebpoint PC G_F . What is the effect of #;{ ~ upon f Pu
§ — . 1 . _
{'P = P,C Gy . Then (,P = [ 'Pp. Finally if " Py = f; Py
= ]‘"_IP HenceBthe element thtlt_l leaves every point P{o[ Gr,
LT —1 \ ,
g I CTyg.
fixed, and f;C Fy. Thus 1t 0B .
The inva{"iant subgroup T, of T's ev.ldently contains I;P,/;ut
it may contain more. So the corresponding factor groupt Bt OtB
i i 0
may well become finite, even if TB/FB is not. We set on
ve that it actually does. ‘
prOWe first establish the fact, that the transformatz‘on clqss ?
of b satisfies the condition tmposed on the class © ,Of S in section &,

Fig. 5.

inci vith i . In
viz. that every principal region coincides V&th .1tslk?rn.iln "
fac.t assume f to be an element of Ty the prln(:lpat. regi o
’ i i G. t P be attractive, an
which has a cuspidal point P< G . Le

F - 5-
O alld R be the DEIgthuung lepulsl‘e pOll’ltS Of G > see ilgc

- region degenerates into a simple non-euclidean stra

proof. -
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towards P by t except Q, P and R, which are left fixed. Moreover,
O, P and R are accumulation points of such points of §G.

GFB. Now
let i be any interval of E—"GTFB belonging to the segment (QPR.

The end points of 7 belong to G, » but are not Q, P or R, since

these points are accumulation points of (?Fl on either side. So-
3

end points of some
ntains points of G
rmation function in
the whole of G, these points are not left fixed by t. So even
as we regard { as an element of T, the points Q and R are
fixed points neighouring P and the corres
would have P as a cuspidal point.
properly speaking, but ¢ leaves

the end points of i are displaced into the
other interval # nearer to P. If then i co
(not in Gr,) and we regard #'as a transfo

ponding principal region
—If P is not a cuspidal point,

only four points of GFB fixed,

say P and P’ attractive and Q and R repulsive, the principal’

ight line; but
ncipal region
e assumptions

this then is seen by the same argument to be pri
even for £ as an element of T in contradiction to th
made in section 8.—So the proof is complete.

Since B is bounded, Iy is a free group with a certain mini-

mum number », say, of generators. Then at least one of the
lransformation classes

. 2 »
Tor Ty T T

of b yields a class of fixed points the index of which is not zero.
This is seen by the argument of [17], p. 202—203D,

1} As the proof given in the
account, we shortly indicate the

of the paper quoted:
transformation class

paper quoted only takes closed surfaces into

modification required, preserving the notations
The algebraic sum of the indices in the r-th power of the
is 1—s5, instead of 2—s,, since the surface is bounded. If

. v
this sum were to be zero for T, rE, TTCL T we get

Si=sg= =g, = 1.

Now using equations M), (), -, (») of the paper quoted, we get in turn

a; =—1 from (1)
as = 0 from (2)

a,=0 from ().

» is the determinant of the matrix I’ and se is & 0. This completes the

D. Kgl. Danske Vidensk. Selskab, Mat,-fys: Medd. XXI,2, 3
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Now, by section 9, the existence of an element of T, the
index of which is not zero involves the existence of a kernel.

" Nr.2
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hence » A = o i
N 4. (The element f is not unique but may be replaced

by ff7 for e
y ff, for any n, thus replacing x, by fA_nxA Compare the ¢
‘ . orre-

Such a kernel must be bounded, since B is bounded. Let A be spondin
g remark as to xy in the preceding section.) Then we get
: o]

an axis of Fp bounding some kernel. Then by section 7, 4 is
simple with respect to Ty. From this we infer that A is simple
with respect to T. Indeed, let ¢ be any element of 7. If f belongs
to T,, tA does not cross A4, since A is simple with. respect fo
Tg; if ¢ does not belong to Tp, it takes B into some other
region 1B not intersecting B, so AC B and tAC tB do not inter- °
sect. Hence A is simple with respect to T. If A were interior .
to B, i.e. not a bounding axis of B, it would not belong to the
set (10.4) and so would contradict condition 2, which charac-
terizes (10.4) as a maximum set. So the kernel in question must i
coincide with B. This means that the unity element of Ty occurs :
in some set FBx%, nt0, and so Ty'Fyis cyclic of some finite
order ng, if these groups are only considered in Gg . In other
words, using the above notation of the subgroup Tyg defined .
in G—F, the factor group T/ Typ 1s cyclic of order ng-

Hence the transformation class of b = B mod Fy defined by
the element xp is a class of finite order.

Tz:_FA+FAzA+FAzi_;_,_,

‘>+FA321+FA9’ZZ+";

Denoti y i
ing by T, the subgroup of 7 the elements of which

carry A .into i ir i w =
y itself irrespective of orientation, we have 7' T
; 4 A

12. Screw numbers. Let A be any oriented axis of the set
(10.4) and f, the primary element of F belonging to A, so all
powers of f, forming the subgroup F, of F with A as axis.
Let T denote the subgroup of T the elements of which leave
A fixed, orientation included, thus including the end points of
A in their set of fixed points in Gy. This group T#% may be
found in a similar way as the group Ty of the preceding sec-
tion: In the sequence analogous to (10.1)

Fig. 6.

if A i ; :

LA 1; not amphldrome, whereas for an amphidrome 4 ther

Subgroue;nzxfltisl (;)flfl; r'eve'rsiug A, and then T% is an (invaria‘:]lt()e

! , ndex 2 in T,. As will b

o . 4 er .

dloxrgre axis i1s not boundary axis of K emEmbereq, an amphi-

e now assume A t Lo -

of K. 0 be an inner axis (not boundary axis)

Let B ’ ' : '

o A in theagt‘ir'B" (fig. 6Y), denote the two regions contiguous

o e 1x13£01tl O}f Ky by the set (10.4), B on the left hand
» say. Let the numbers & and g’

5 : . belong t ’

res ; o B

‘sllbpger(:lllvelg il;l thersvense of the preceding section. glearly ;fdlsB

in thosep]i0 sz Ty and Ty. The elements of T4 are con‘?aine(‘ji1

- 1;es [£"] of the scheme (T) for which ;11 18 a multipl

of o, i a ulti
 clements of T and T, in the lines for which 1 is o

A, zA, %24, -

we determine the least positive number « for which

A = fA, fCF,

orientation included, and then put .

1) The fi
5 gure is schemati
“of course infinite. - atic.

1o
X = Aa -
f i The number of bounding ares of B and B’ is

R
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multiple of 8 and g8’ respectively. Hence « is a common multiple
of 8 and A’. On the other hand, let ng and np denote the order
of the transformation ¢lass of finite order assigned in the pre-
ceding section to B and B’ respectively. Then the line [¢"8%] of
(T) contains an element leaving all boundary points of B on
E fixed, thus belonging to T%. Hence « divides ng 8. Likewise
e divides ng g’ o '
Denoting by L the least common multiple of ny8 and ng 8,
the line [z"] contains both an element ¢ leaving the boundary
points of B on E fixed ahdLan element # leaving the boundary

points of B’ on E fixed. (%, belongs to lz"], since z, belongs
to [+*]. « divides L, since it divides both ngpg and ngg8'.) Since
{ and t are in the same line of (T), they differ by an element
'f of F. Since both f and t leave the end points of A fixed, [
does so too, and so is a power f, of f,. Hence

(12.1) L= fat.
Now tEFH is the identical transformation of CTFB and
~ o€ 47 v e~
tGFB, = [, GFB, = fAGFB,.
The element f, which leaves all points of (_}FB fixed, displaces

all points of G.. in the same way, as does the element ¢ of F.
p Fy Y A

The rational number
(12.2) S, = 7

will be termed the screw number of the axis A.

The screw number of an axis remains invariant under the opera- -
tions of 7. [To be sure, replace A by ud, uc T. Then x, is'
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13. Division of § into Complete Kernels. Now suppose the
screw number s, of A “to be zero, thus e = 0 and by (12.1)
{ = t'. The element ¢ then leaves hoth the limit poinf set of F
and Fp, fixed, thus both B and B’ belong to the kernel of f
For all other axes of the equivalence class TA the situation is-
the same, as they all have -their screw number equal to zero.
So we may take A to be one of the axes of the set (10.3), 4
say. We then omit the subset TA; from the set (10.4). Procee(,iinj
so for all values of the subscript 4 for which s, = 0 we reb-
duce (10.3) and so (10.4) to a smaller set, if any,As = 0 occurs
. It may happen that the entire set (10.3) and so (10.4) 01"
if S is boundec}f all inner axes of these sels cancel in this way’
This means tHat the convex region Klg is no more subdivided'
So the whole of Ky is the kernel of some element t © T not in.
t'he line [¢°] of the scheme (7). This linethen is identical with the
llr{e [#°] = F, as far as only C_iF is concerned. As stated in section 3
this means that zis a transformation class of finite order. This,
case 1s fully investigated in [15] and we have nothing to add.

Invorder to get a true generalization of transformation classes
of finite order we thus suppose that at least one inner axis of
(10.3) does not cancel. We. denote anew by

(13.1 A A . i>1
) 1 AQ: R ’Ai’ Ai+1’ ’.Ai+r I‘;O

the remaining axes and by
(13.2) TAI~{-TAQ—0—---+TAI.—Q—TA_H_1+---—FTAI.+r

the set of their equivalence classeé taken together. 4,, 4,, --+, A

are taken to d ] " S -
enote inner axes, Ai_H, ~--,Ai+r are representa-

C C -
f t]le re l‘alell e laSSGS ()1 l)OlllldaI axes Of I{ corre

replaced by uxAu_—l, and e« remains unaltered. B and B’ are.
replaced by uB and uB’, uB being to the left of ud. The num-
bers 8, 8', ng, np and hence L remaiu unaltered. f,, ¢ and ¥ are.

sponding to the r (>>0) bounding geodesics of S. The set (13.2)
has still property 1) attributed to the set (10.4) but, in general
not prc?perty 2), as some axes of (10.4) may have been omittedj

As 1> 1 we still have a division of K, by (13.2). We conlinue
to use the letter B to denote some region of that division. So every
region B is now the complete kernel of some function of 7.
Inversely, every kernel of T is someone of the regions B or

sqmeone of the axes separating them, since a kernel does not
cross any other kernel.

replaced by quu_l, ute " and nfu respectively. So ¢ and hence ™
s, remain unaltered.] Thus the screw number may be said to:
belong to the equivalence class TA. »

Since, in case S is bounded, all boundary axes of Ky are.
comprised in (10.4), it should be emphasized that screw num-
bers are only assigned to inner axes. '

%




Nr. 2
38

Hence the transformation classes of algebraically ﬁni_te type
constituting the subject of this paper may be characlerized ic\s
such transformation classes for which K is made up of kern;z sb:
or, if we transfer the notation of “kernel” to a region b ob .
covered by some B, for which S is made up of a finite number
! inn;eliso.uld not be overlooked that even some or all of th;
inner axes A,, A,, -+, 4, of (13.1) and their equivalents liy i
may play the role of independent kfarnels: Let us look'c oseB
at the axis A of fig. 6 together with its .nelghbourmg rf:glonsb
and B and use the notations of section 12. As A4 is to_—1e
one of the axes still in (13.2), e:l:()i let us_-assumg e: d
Then under the transformation ¢ all points of GFB are fixe ane
all points of EFB' are displaced in the same way as .byt's ]’3;
thus towards U = Uf,a' By the element f,tc T all p(zm o
CTF are displaced in the same way as 1?y fas th.us owa.
Vv Z V. , whereas all points of G  are displaced in t?e S?\me
way as by ff:rl, thus still towards U. So these two d:'el(m;:;
of displacement coincide on E, both V and U are neu }ad,ex <
A is the kernel of f,t, being of the type of fig. 1. T-helmla ~ o
f4t is zero, since we have » = 1, @ = 0.—The case e>1 may

ingly. _
trea;eiazzcsgd:pfci}yal importance ‘is that of A being am'phldll“on?e.
Let h be an element of T reversing A.. Then h clez.lrly Bﬁeaa\»ne(s1
no point of G_F fixed, so the index of h is 1. The reglonsivalem\b
B’ contiguous to A are interchanged by h; so they are eqlli2 1 ave;
The element h2 leaves U and V fixed. Now suppose .that eaves
some point P of G, other than U and V fixed. Since.

h*hP = hR?P = hP,

h2 also leaves hP fixed. The axis A separates P and hP. Not:v,n:
since f, belongs o the subgroup N of elements left fixed by thes

automorphism induced by h%, both P and hP are carried into

other fixed points by all powers of f,. So in bOth,igtfva}; v~
determined on E by U and V the points of G left fixed by

. £ . or
are in infinite number. Thus there exists a principal region f.

! . - - . - " -IS.
the element h%, and this region contains A as an nner ax
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- This is in contradiction to the fact thaf the principal region is
- at the same time a kernel, and that 4 is not inner axis of the
kernel of some element ==1 of T; we have h*=£1, since T
contains no element of finite order. Thus we infer that no point
of Gy other than U and V is left fixed by A’ ,

If the direction of displacement by h? to the left of A goes
from U to V, say, to the right of A it goes from V to U; this
follows immediately by using the equation h-h*-h ' = A% So
these two directions cdincid‘e-on £, and both U and V are neutral
(case B of section 6). Hence A is the kernel of h?, belonging
- to the type of figol. So we see that an amphidrome axis is always

an independent Kernel.

As we havé just seen, in contrast to a non-amphidrome axis
.4, for which all elements of T with A as their kernel have

their index equal to zero, an amphidrome axis A4 gives rise to
© an element h © T with j(h) = 1. One may ask if there are more

elements of 7T with J = 1, affiliated to the same kernel 4, in
the transformation class lo which A belongs. As such an element
has its place in the line of h in the scheme (T), it has the
form fh, fC F. As fh is affiliated to A and J(fh) = 1, fh inter-
changes U and V, and as h does too, f must leave U and V
fixed, thus fC F,, [ =T for some n == 0. Hence all elements

. (13.3) iR, n arbitrary,

~and no other elements of the line of h interchange U and V

and so are affiliated to A. Each of the elements (13.3) thus
defining a class of fixed points with index 1 in the surface
transformation class given by h, we have to ask how many
of these classes are different, i.e. what is the number of con-
gruence classes (section 7) into which the funclions (13.3) fall.

- If J denotes the automorphism of F induced by h, J carries
F, into itself, since h interchanges U and V. So J involves an
automorphism of F,, and this is not the identical one. Now,
F, consisting of all powers of the primary element f4. there is
only one non-identical antomorphism of

F,, viz. the replacement
of f4 by f3". So

thhhl = (fA)J = fA—l.
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14. Construction of a special transformation. The analysis
of the preceding sections enables us to construct a surface
transformation of a prescribed class » of algebraically finite
type such -that each class of fixed points with index -=F 0 is
“satisfied” by one single point of the surface and classes of
index zero are completely avoided. In order to distinguish be-
tween the transformation class ¢ and the special transformation
to be constructed, we denote the latter by L.

Let a denote the closed geodesic on S corresponding to some
inner axis AS(;f the set (13.2). We assign lo'a a narrow band a
of constantfb'readth of S enclosing a as its middle line. The part
of K, covering @ is a strip A enclosing A and bounded by two
circular arcs, all points of which are at the same non-euclidean
distance from A; the end points of these arcs coincide with
the end points of A Of course, all strips of the congruence
class FA also cover d.

This construction is made for all closed geodesics of S cor-
responding to inner dxes of the set (13.2). Since these geodesics
are in finite number, the -bands may be chosen so narrow as
oot to have common points. Then also any two of the strips
arising in K, do not interfere. For convenience we may take
all bands equally wide.

We then have a division of K, by the equivalence classes
of strips )

(14'1) ‘ 'Tfil—{— TAZ'*"""I‘TA-

i

Hence we get

f:hf;m _ fi]:(f;m)‘]h — fjmh
fff(fAh)me = f:fA(f;m)Jh = fimflh-

Thus all elements of (13.3) with n even belong to the con-
gruence class of i and all elements with n odd belong to the
class of f, h. It remains to be seen whether these classes are
identical or different. Suppose they are identical. Then an elementl
fCF exists such that

— —1
fah = fof ™ = ffy b,
hence
—1

(13.4) f7
and by applying J

= Ja

fJf,Fl =(fds;= fA_l'

From this we get by multiplying these two equations

So fis left fixed by the automorphism J? induced by h: Now,
as shown above, h? leaves only U and V fixed, so J? leaves
all elements of F, and no other element of F fixed. Hence

f="fa

fa" =

which is impossible. Hence the congruence»classes of h and

are different.—So we have: _
[Ah()qlie of the inner axes of the system (13ri1) which 1s an?—
phidrome for some transformation classr: 7z say, and soTls
reversed by some element of the line [e"] of_the scheme ( ?f»,
gives rise to exactly two classes of fixed pomt's of the suz.];cllce-
transformation class o S each with index 1‘.-—Th.1s may be 11 u-
strated by the fact, that if a surface transtorma‘tmn of the ¢ ass
1S is so chosen as to carry the closed geodesic corresponding
to the axis into itself with orientation reversed, exactly two
fixed points will arise on the closed curve.

and by (13.4) instead of by the inner axes of the set (13.2). We continue to

use the letter B to denote any region of that division and to
~denote by b the corresponding region of S. A boundary curve
~of b which is not a boundary curve of S is then no more a
losed geodesic, but a closed simple curve (boundary curve of
ome band), all points of which are at constant non-euclidean
istance from a closed geodesic. This evidently makes no differ-
nce in speaking of /B as the region correspouding to B by
he element # < T, of the equivalence class TB, and so on.

Now let b be any region of the division of S, B a corre-
ponding region of K, and the number 8 and an element xp
efined as in section 11. It has been shown in that section
hat z; defines a transformation class of some finite order ng
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(or, as we may write, n,) of the sub-surface b. By the chief
theorem of [15] this class may be represented by a periodic
transformation of b of order n,. We construct such a periodic
transformation of b by the process outlined in the paper quoted
and denote it by‘g‘sb.'

If 8>1, x B = B, (section 10) is a region symbolically equi-
valent to B (by T), but not congruent to B (by F); so By cor-

responds to some region b, different from b in the division of ®

S. Denoting as in section 2 by I the automorphism corresponding

to x, the group Fy is carried into Fy by I. To this automorphism
between Fy and Fy corresponds a class of transformations of

b into b,. We choose any topological transformation of b into
b, belonging to that class and denote it by [b. Then §§ﬂ§_1 is
a periodic transformation of b, = {b into itself of order n, = 1y,

which is denoted by Cﬁbl.

Nr. 2
43

!mut points by way of the given transformation class < and
its powers. F carries the set (14.1) of strips into itself and so
talso 'carrles the complementary set of Ky, i, e. the set of region
into itsell. So F is a transformation group of the set of 1’5 ions’
of Kp. To extend this property from F to T, take any rf ioi
B qf Ky. The notation #x B = B, has hitherto been meant sgn
b}ohca»lly to denote the region of K, the limit points of wly' ]l—
are the images of the limit points of B by x. Now, the reglilgli
i)-of S covere(?o’by B 1s subject to a topological transformation
{ into the region by covered by B, and this has been so ¢
structed as to correspond to the automorphism 7 induced Ok?—
x‘and taking Fy into FBI. So there is one topological ’[r:amsforma)i
tion, and one only, mapping B into B, and covering { so as to
correspond to I. We may denote this transformatioﬂ by ihe
same letter x, so that xB = B, now litérally indicateg the

madppmg of B into B, by =z As this applies to all regions B
an ext'ends to all powers’ of x, we have extended T to denote
a gertalnfgroup of topological transformations of the set of
regions of K. This group satisfies the ) i
. . £ Y set of
tions (2.1) or (2.2). °f functional
We now have to extend 7 to tl i
. 0 the strips of X fini
{-in the bands of S. P r thus defining
'Le_t A be. an inllerkaxis of the set (18.1) and « the number
assigned to it in section 12. We first assume A pot to be am-
: ' = A,Y means symbolicall
thf? axis thfa end poinis of which are the images of the eng
points of A' by x. Now, boundary arcs of strips are boundary
arcs of regions too, so the mapping function x is defined on
them. Hence the boundary of the strip A imbedding A is mapped
by # upon the boundary of  the strip ALN1 imbedding A, We
have to extend.this mapping function to the interior of A.
Y‘For convenience we represent the strips A and fil by ihe
§tf1‘1p O§y§1 of a euclidean xy-plane and the strip 0 <y’ <1
of a euclidean x'y’-plane respectively (fig. 7). (This Eaiy:be
achieved by some auxiliary mapping function). The axes 4 and

A . . 1 ?
1, are represented by the lines y = 5 and y' = % respectively.

The primary translations {4 and fa, are both represented by

1) i i
Here subseripts have no connection with the notation of '(13.1) of course

If 8>2, we proceed in the same way for 22 B = B, and:
the corresponding region (b = b, and continue this process,
till we reach {#1p = bg—y. Now, since #*B = gB for some
g C F (section 11), we have to transform bg 4 into b by a
topological transformation §, and there is no choice left; it has
to be such that '

equa-

Che_q = LP7Tb =D

is the transformation of b into itself already constructed. Now,
we have achieved the construction of a group of transformations
consisting of all powers of { in the set of sub-surfaces b, by, -,
bg_1. These regions are interchanged cyclically by G,

t#—1, whereas Cﬂ is for all of them a periodic transformation;
of order n,. So {?™ is the identical transformation in these 4
regions. ‘

If there are more than these 8 regions on S, we choose
another one and repeat the process for its equivalence class.
After a finite number of steps [ is defined in all regions of the
division of S. , ‘ C

We now have to consider what this construction of the trans-
formation { in the regions of S means in Kg. It will be remem-
bered that all elements of F are defined in K, but all other
elements of T have so far only been defined in the set Gy of
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formation may be denoted by {, since it links up with the
transformation { of the adjacent regions of S already defined.

If «>2, we define #24 and so {%a in the same way and
continue this process until we reach »*~ 4 = Ay covering
the band a,_;. We now have to define x*A = x4 __,. Let us first
- suppose this to be done in the same way as before. The strip
4,, upon which A is mapped by #* is congruent to 4,

translations of length 1 of the euclidean strips. So two points
of A corresponding by an element of F, are re.presented byf
two points having the same value of y and having values o
x the difference of which is an integer.

;.
Y a .Y

xA = ffi, fCPF,

‘according to section 12. {%a is a transformation of the band &
into itself. As the values of y are not altered by our construction,
~a curve of a corresponding.to constant y is carried into itself.
-So fixed points may arise in a under the transformation {%. In
‘order to avoid this we first .replace the point (x,y) of A by
the point (x,y*) and then apply the above construction, i. e. the
image of (x,y) under z* is the image of (x,y® by the above
.construction applied to the strips A and ffa. So we get the final
definition of {“a and thus the definition of all powers of [ in
:a and in {a, £24, -+, £ 'd too.—In case @ — 1, the definition
~of {% just given is that of [ itself.

Since # is now defined "in the whole equivalence class TA
‘by means of the functional equation (2.1), the whole group T
is defined in that totality of strips TA. Let us look at the
1::reg'1-0nsB and B’ neighbourin'gfi and use all notations of sectiorz 12.

. . =
ey

Fig. 7.

On the boundary y = 0 of A we have by # a transformatio
function a’ = »(x) taking this boundary into the boundar
y =0 of A, and satisfying the functional equation

#(x+1) = %@ +1,

since »f, = f,; the element fa, corresponds to f, by th
! —
automorphism I induced by z. In the same way on y=1w
have a function ' = #,(x) taking this boundary 1nt0"the bound-
ary yy = 1 of A, and such that

The element x, transforms A into itself. In the line of zi of
_the scheme (T), which is. the line [rcL], there is a function ¢
eaving all limit poiuts of B fixed; this element ¢ now is defined
n all regions of K and in the strip A too. It leaves all points
f B fixed, since we have in B a periodic transformation and
he limit points of B are left fixed. In the same way ¢ leaves
II' points of B’ fixed. Then by (12.1) ¢ displaces all points of
B’ in the same way as does fj. Consider a curve of A joining
z,1) and (z,0) in fig. 7, a segment at right angles to 4, say.
x,1) is left fixed by ¢, since it is on the boundary of B, and
z,0) is carried into (x+e, 0) by 't For the transformation
"~ of the band a into.itself this means that EL is the identical
ransformation on both boundaries of the band but carries
a. straight segment joining two opposite poinis into a curve

o (1) = 2 () + 1.

If now we carry the straight segment joining (x,0) and (x, 1)::
into the straight segment joining (”1(93)»_0) and (xg'(a:), 1) by an
affine transformation, we get a topological mapping # of the

strip A upon the strip 4, coinciding with x, and =, rg§pect1ve
on the boundaries and satisfying the functional equation

Cxf, = fox'
(If (x, y) is carried into (', y), then y = g' and (x+1, y) 1;
carried into (x' 41, y’).) So this transformation x of the s’mP
upon A, covers a topological transformation of the band a o

S covered by A upon the band a, covered by 4,. This trans:
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“points, each of index 1 (section 8), or there may be none. If
wn, = 1, all points of the region are fixed by §, and their totality
forms a class of fixed points of negative index; the index is
- 1=, if » is the minimum number of generators of the Poincaré
group of the region. In this case it is easily seen that { may be
slightly deformed in b so as to leave only one point of b fixed,
the index of which then is 1—»; see [14] I, p. 314.

S thus satisfies the conditions asked for in the beginning
of this section.

which winds e times round the band. This explains the deﬁni‘fmn
of the screw number given in (12.2). As a is transformed into |

L

itself by the powers of [ only, we divide ¢ by e :
M. Denn calls a transformation such as that just defined i,
the band @ “Verschraubung”. Such transformations are _the chief
means of investigation in his paper [6]. See especially § 2

— of {6]. ,

p.li‘linallli?we %ive to assume A lo be amphidrome.NTl;ep W
have azé and even. In this case the definition of zA, A -
described above goes without limitation, thus Fhe auxiliary :
transformation replacing (x, y) by (x, y®), applied in the former .
case in defining = in order to avoid fixed points, does not come .

15. The equivalence problem. Without going into details
we shortly indicate a_problem which may be solved by the
preceding analysis. Let ¢ denote a transformation class of §
into itself and y a topological transformation of S upon a surface
S*, which may coincidé with S or not. Then yry " will be a
transformation class of S* into itself. This will be called equi-
- valent to t. The equivalence problem then consists in establishing

a set of invariants of a transformation class such that it is
- necessary and sufficient for two classes being equivalent that
they agree in this set of invariants. For classes of finite order
such a set of invariants has been given in [16], § 11. For classes
of algebraically finite type a set of invariants may be derived
‘from the considerations of this paper. Indeed, the division of
S into complete kernels, the numbers £ and n, of a kernel, the
number « of an axis of the set (13.1), its screw number and
its character of being amphidrome or not, are readily seen to
be invariants of « not altered by 7- Moreover, the transformation
class of finite order 'assigned to a region b of $ must be equi-
valent to that assigned to the region yb of S$*, the conditions
for which are known from [16]. On the other hand, if two classes
of transformations of two homeomorphic surfaces S and S*
agree in these“invariants, and we construct special transforma-
‘tions ¢ and {* of § and S* respectively as described in the
preceding section, then { and [* become equivalent by a suit-

able transformation y of S into $*, and so do the classes to
which they belong.

o '
~ ~ =1 ~
T N 24 .. x2
into play. The effect is aas follows: As to x4, x2A, s % 4

there is no difference. x24 is congruent to 4 by an element of

o . . :
F, say f. Then f_lxE carries the strip A into itself with bound-

o i
aries interchanged. Then if x* is defined as a transformation:
24

of the strip 4 in the prescribed way, f %2 carries the middle ;

[44

line 4 of A into itself with orientation reversed. Thus {2 trans ,
forms a into itself leaving exactly two points of a and no c?ther
point of the band fixed. Two fixed points cannot be.avmded,'
since they represent two different classes of fixed points bot
with index 1 (section 13). R

After this construction has been made for all' i inner axes,
of the set (13.1), a topological transformation { of the surface
S into itself has been established, and [ belongs to the class ¢
prescribed. What are the fixed points of {? As to jche: I?ands.,_l
there are no fixed points in the interior of a band,‘lf it '1s not
amphidrome, or if it is amphidrome with «>2, §1nce in the:

latter case g bands are interchanged cyclically by . If it

amphidrome with o = 2, there are exactly two fixed points each
with index 1. As to the regions, there is no fixed point in 2
region, if 8>1, since in that case A regions are interchanged

o ’ ’ » v . L
cyclically by ¢ If 8 = 1, the region b is subject to a p,enod)q
transformation into itself. If n, > 1, there may be single 1nvarlamv




48 | Nr. 2
Part Il

Homology theory.

Nr. 2 49

A .special case of a class of algebraically finite type is a class
of finite order. Moreover, by the theorem of [15] already used
such a class contains a periodic transformation, and the general
form of P(x) for a periodic transformation has been shown in
{16] to be -
(16.9) P@) = DG i

(@™ —1) @™ —1) - (@™ —1)

16. Enouncement of the main theorem. Hitherto the Poin-
caré group F of S has been the chief means of our investigation.
In the following sections we fix our attention upon the homology
group H of 8, i. e. the factor group of the commulator group in F.
The homology group H is abelian, and we may speak of the
elements of F as elements of H provided we make them inter-
change freely; thus for instance a set of conjugate elements of
F yields one element of H. As stated in section 1, the minimum
number ¢ of generators of F is & = 2p, if S is closed, and
d =2p+r—1, if F is bounded; in both cases H is a free
abelian group with ¢ generators (for S closed all relations in F
are identically satisfied in H). A set of d free generators of H
is called a homology base.

Any automorphism of F carries with it an automorphism -
of H, especially an inner automorphism of F the identical
automorphism of H. So a complete family of automorphisms
of F, which corresponds to a transformation class ol S (section 2),
yields one auntomorphism of H. While [ continues to denote
the automorphism induced in F by an element x corresponding
to a transformation class =, let J denote the corresponding -
automorphism of H. Choosing a homology base of d elements
for H and using the sign of addition to denote the combination
of elements of H, we describe J by a linear homogeneous trans-
formation of the J basic elements. Let 4/ denote- the matrix of
that linear transformation and E, the unity matrix of d rows
and columns. Then if we pul '

n denoting the order of the periodic transformation and being
0 or 1, according as the surface is bounded or closed. As to the
numbers g, s, u, my, - - -, m, a more detailed explanation is needed :
In [4] Brouwer has shown that a certain auxiliary surface M.
termed. modular surface, may be assigned to any periodic trans:
formation of order n of a surface S in such a way that S may
be looked upon as a regular Riemann surface consisting of n
- sheets over M, and that the transformation consists in inter-

changing the sheets of -§ over M. Then M is closed or bounded
according as S is closed or bounded. S may or may not ramify
over M. Then q denotes the genus and u the number of ramifi-
cation points of M; s is the sum of u and the number of boundary
curves of M. While § has n distinet points over every ordinary
point of M, it has a certain number m of distinct points over

a ramification point; this number m is less than n and divides
n. The set my, my, - -

ramification points.

,» m, denotes these numbers m for all

In sections 17—21 we are concerned with the proof of the

following generalization of this result concerning classes of finite
order: ’ ' '

I Theorem: The characteristic polynomial of a transformation
class of algebraically finite lype takes th
(16.1) P(x) = (—1)6\Z/'—‘xEd‘\:-Td"‘f""'_i‘(_l)\d, ¥ yp € form

(x‘ﬁl”z‘_ 1>2qz +s—2

1{16.3) P(x) = (x>%1)1“+ w© l
{ (xﬂzmu‘l) (xﬁ,ng_l) . (xﬂlmlul . 1)

it is known that P(x) only depends on J irrespective of the
_choice of homology base. P(x) is a polynomial of degree dJ in
x and is called the characteristic polynomial of J.- The roots of:
the equation P(x) = 0 are called the characleristic roots (or
multipliers) of J. It is our aim to eslablish the general form of
P(x), if v is a class of algebraically finite type.

‘He’re again w is 0 or 1 according as S is bounded or cliosed.
»I ranges over all equivalence classes of regions and bands, of
‘which S consists. We now discuss the notations in the factor

corresponding to the equivalence class of number I. In all cases
D. Kgl. Danske Vidensk. Selskab, Mat.-fvs Medd. XXI, 2. ’
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class, thus 8, = «, the number of section 12. Now, if a is one
of the bands, the transformation (*d@ of seclion 14 belongs to
the class of identity. The correspondmg periodic transformation
is the identical transformation, so M, coincides with @ and we have

8, is the number of congruence classes into which the equi-
valence class falls. _

First, let this class be made up of regions. Then g, is the -
number of regions of S in the class. So if b is one of these regions
and B a region of K, covering b, 8, means the number 8 assigned -
to B in section 11. The element xy of section 11 defines a
transformation class of finite order for b, and n; means the
order of that transformation class. In section 14 this class is
represented by a periodic transformation " £%1b. This periodic
transformation gives rise to a modular surface M;, and the
numbers q;, . S, My, © 5 My, are defined as above.

n1=1, ‘.uZ:(), QI:O’ 31:2,

and no factor arises at all in the numerator or denominator .of
P(x). So this value of I 0111y yields the factor 1 in P(«).
We may thus restrict / to. range over the equivalence classes

consisting of regions or of amphidrome bands..
1f M denotes the surface derwed frorn M, by removing u;

small elements, each contalnmg one ramification point, s; is the
number of boundaries of M If ¢, denotes the minimum number
of generators of the Pomcare group of Ml, we get for the ex-
ponent in the numerator of P(x), provided s,>0,

17. Preparations for the proof. The proof of the theorem
expressed by (16.3) will be given by induction using the number

i of equivalence classes of inner axes in (13.1,2) as number of

1nduct10n Since for i = 0 no inner axis exists, K is not divided

~and so forms one single kernel. Then I only takes the value

I'=1. Since K is the only region, we have 8 = 1. The trans-
formation class considered is a class of finite order, and (16.3)
clearly reduces to (16.2). So the theorem is true for i = 0. We

have to show that it is true for any i>0, if it is true for all
smaller values of i.

(16.4) 2q,+5—2=9d—1

Then let the equivalence class consist of bands belonging
to amphidrome axes. ,81 then denotes the number of bands in

the class, hence 8, = —, the number « being defined as in sec-

5:
tion 12. Then by section 14, if a is one of the bands, C‘Bl& =

: We pick out one of the inner axes of the set (13.1), denote

it by A and fix .our attention upon the division of K, by the
equivalence class TA. This division is reproduced by every ele-
ment of T. If C is any region of that. division, we denote by

T, the subgroup of T and by F¢ the subgroup of F reproducing C.
In the sequence

t2q@ is a transformation class of order 2 for a. Thus we take
n, to be 2. This class contains a perlodlc transformation of order
2 interchanging the boundaries of d. So the modular surface
M, has only one boundary; M, is clearly seen to be an.element
with 2 ramification points. Hence we get
. C,xC, z*C, - - -
ql:O, ul=2, s =3, m.,=m, = 1. . :

let y be the least positive number such that
The factor of P(x) corresponding to such an equivalence '

Y0 —
class of amphidrome bands thus reduces to *C=fC, fcF,

and put
2ﬁl—l f_lxy =%,

(16.5) (rﬁl—l)z Then we have
Finally, let the equivalence class COI]SlSt of bands belonglng

to non-amphidrome axes. 8; denotes the number of bands in the

TC: C+Fc”c+F Z?:"f"

-+ F xc —f—F xcz+...

4*
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» Tespectivz?ly. There may or may not be more regions than 17.1)
in the division of S by the geodesics covered by the axes of
the cla.ss TA. For each of the regions (17.1) we have a trans-

- formation class of algebraically finite type defined by

If ¢ denotes the region of S covered by C, a transformation
class of ¢ is defined by =x.. This transformation class is of
algebraically finite type. To be sure we might repeat the argu-
ment of section 11, showing that if the principal region of some
element ¢ T, had a cuspidal point in Gg_, this would be a
cuspidal point in (—?F too. We may also proceed as follows: If
an element tc T, regarded as a transformation‘ function of EFc
only, has a kernel, this is at the same time the complete kernel
of t regarded as a transformation function of G, since every _
boundary of C inside K belongs to TA and so is boundary of
a kernel of T. Inversely, if < T has its kernel inside C, then
{c T, with the same kernel. So C is made up of complete .
kernels of transformation functions belonging to Tg.

If C consists of more than one kernel, the axes dividing C.
"into kernels belong to the set (13.2). If any two of these axés‘}
are equivalent with respect to T, '

i —1 —2 .
Zc, XXCJ? , xzxcx R ,/vy—“-lxcx—o"‘i)

-

:_;isllrylciazilvpecl(y;)'and they all have the same characteristic poly-
. Now we may l»qok upon the subsurfaces (17.1) of S as »
distinct surfaces irrespective of their connection on S. The
h'omology group of this-set of surfaces then is defined as the
direct sum of the y isomorphic homology groups belonging to
the sir}gle subsurfaces. If there are ¢ generators in the group
: helo‘nglng to ¢, then the combined homology group is the free
-abelian group with yd generators.

A transformation class of this set of surfaces is given by =«
In fact » defines a transformation class of ¢ upon ¢,, of c.
: upony cz_,- -, 431'.03,_2 upon ¢, ;. In applying x to PR Wé
geta' C = fC, which covers ¢ and defines the same transformation
class of ¢ upon itself as f—lxyc = x,C. Since x represents the
“transformation class =, we may prefer to say that a transformation
class of the set (17.1) is given by the prescribed class z; this is
expressed in the notation (17.1). ’
We- intend to find the characteristic polynomial of the trans-
:formation class of the set (17.1) given by z. Let ¢ elements be
chosgn as a base of the homology group H(c) of ¢; let 4. be
he transfo.rma'tion matrix of this base corresponding tocthe
farllsformatlon.class 7’ and P.(x) the corresponding characte-
istic polynomial (16.3). By = (i.e. under the isomorphism be-
ween H(c) and H(c;) induced by 7) these d elementé corre-
pond to certain ¢ elements of H{(c,) forming a homology base
of ¢;. By «* they correspond to ¢ elements of H(c,) forming a
homology base of ¢,, and so on till we reach CZ 1+ The yo

A =1tA", tcT,

then fc T,., since { carries an inner axis of C into another:
inner axis of C; so A" and A" are equivalent with respect to:
T.; the inverse is obvious. So ‘the distribution of inner axes of
C belonging to (13.2) into equivalence classes with respect to.
T, is the same as with respect to T. Now the class TA only:
yields boundary axes of C. So the number of equivalence classes:
of inner axes for C is less than the number i of (13.1,2). k

Thus by the assumption of our proof of induction the polyn
mial P,(x) belonging to the transformation class of ¢ given by «
takes the form (16.3), moreover with » = 0, since c-is bounde
(Even if S happens to be closed, it has been cut along on
closed geodesic at least.) :

Now suppose y to be >1. We then have on S an equivalen

class of regions

y—1

_ 2, - = ¢ i i i
(17.1) €, TC=0Cy, 8°C=Cg,""", T €= Cp_4 len(xents obtained 'in this way form a homology base for the
et (17.1). The ¢ el : y
covered by the regions of Kgp ments f)H ¢ ements Of H{e, ) correspond by « to 4 ele-
! o 1 (c), which are the transforms of the elements chosen
: as homology base for ¢ by th i i
o : y the matnx #_. So the matrix of
(172) C, xC, 22C,---, ¥ 'C he automorphism of the homology group H(c +c¢, 4 - - +¢ )
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of the set (17.1) is easily formed. To find the characteristic

1 . In short
polynomial we subtract xE vé and take the determinant :

this determinant may be written

—axE; Eg 0 0o 0
0 —xE; Eg 0 0
0 o 0 —xE; Ey
d 0 0 0 —aEy
c

Here every symbol stands for a matrix with J rows and colu:;:_‘
and there are y symbols in each row and column. To comp

y—1
the determinant we multiply the first y—1 rows by =
y—2
X

"..’

determinant reduces to
¢ ¥
0| 4= Ed\.

Thus we get: | .
The characteristic polynomial of the surface set (17.1) belongin

. . 7/ .
to v is P.(2), if P (x) is the polynomial belonging o v for}
[ ’ c ‘

each separate surface. 1 .
It should be noted, that the po ynomi . 2
(17.1) belonging to the transformation class ¢ is [P,(x)]". Th
is evident. . , . . o
If there are more equivalence classes of regions in the divisio

: be treated
of K by TA than that of C, all other classes }may e |

in the same way.

18. First part of the prooi. In this section we assume tha::
the axis A of section 17 is not amphidl'O}ne, and that S 1;226
" decomposed by the geodesics corresponding to the equiva :

class TA. According to the notations of section 12 the numb

of these geodesics is «, and they are represented by the ax ,

_1A

o

(18.1) A, zA, 224, -, %

i i : ted b
of Ky. The corresponding geodesics may be denoted by

x respeclively and add all to the last row; so the

al of the surface set

-Nr. 2
(18.2)

a ra = aq, fza =y, *

We then have z%a = g,

As S is not decomposed by being cut along these « geodesics,
only one region ¢ arises. So there is but one equivalence class
-and moreover the number y of (17.1) is 1. It should be noted
that in cutting S along the « geodesics the genus p of S decreases
by « and the number r of boundary curves increases by 2e¢.
So if S is bounded, the number of generators of the homology
~group remains unaltered, whereas if S is closed, it decreases by 1.

‘Now by the assumption of our proof of induction, the polyno-
mial P (x) of the transformation class of ¢ given by ¥ takes the
form (16.3), and 0, since ¢ is bounded. The degree of the
polynomial is J, equal to the number of generators of H (c).
We intend to find the polynomial P(x) of the transformation
class of S given by 7. Its degree is 6, if S is bounded, and
§+1, if S is closed. o '

If we orient A and transfer its orientation to all curves (18.1)
and (18.2), we may speak of « boundary curves

H

~

9 (18.3) o

’ ’ l’ ’
@, ay, dy, - -

]

of ¢ as left hand borders and of another « boundary curves

rr

a—1

-(18.4) a’, aj, ag, -, a

n of ¢ as right hand borders of a, a,, a,, -- -, a,_, respectively.

Now we first assume S to be bounded. Then ¢ has more
‘than these 2& boundary curves. So we may allow both (18.3)
and (18.4) to be members of a homology base for ¢. Let such
2 homology base be chosen, and let it be arranged so as firsi
to put d — 2« elements not in (18.3,4) then the « elements (18.3)
‘and finally the « elements (18.4). Then the matrix 4, describing
-the automorphism of H(c) corresponding to the transformation

class given by x. by a linear transformation of the base chosen
may be composed of 9 blocks,

er
es

= 1) ' To avoid misundérstanding, we recall that the notation a; = ta ete.
i$ symbolic and means that any closed curve on § homotopic to a is transformed
by any transformation of the class 7 into a curve homotopic to ay (section 7).
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-, ;
a+a1+"+,a:x_l*a”——ai'__.,_¥au 5
o©—

H

in consequence of (18.8), So all elements of VIIT are zero, all
elements of IX are zero ‘except for the last row of IX, Wl,lich'

is made up of numbers 1, and f :
s 1, or IIl we get ‘ vi
square matrix of «—1 rows e et the Tollowiog

1 |Iv) v \
(18.5) A=< VI | I |\VII
VIII\ Ix | 1T l

I being a square mairix of 6— 2« rows and both Il and Il

square matrices of o rows each. Now A is known to inter- 0 1 0 - 0
change the elements (18.3) cyclically and equally for (18.4). 0 0 1 0
So we have (18.9) I = .
010 -+ 0 0 0 0 -
001 -0 —1 —1 -1 .-+ —1
(18.6) II — III J A R RN LR R ] A
: (()) (()) T Since matrices VI and VIII and moreover VII vanish, we get
1 0 ’

| ] (—DIP,(2) = | 4,~ 2B,

and all elements of VI, VII, VIII, IX are zero. Hence we get - -

irrespective of IV, V = ],I‘xEdﬂ_gaJrll lII——acEw| IIII~:1¢EOHi .
d _ ’ .

(— 1P, () = ljc"xEd“ ~ The last factor is easily computed from (18.9) and we get

— |1 2Bg_s,| |[IT—E,| | HI—2E,].

: : i .
(18.10) |—ar, || = (1%L
The last two factors are easily computed in the way used ir ' : z—1

the preceding section, and we get To sum up, we remember that the letter w means 0 or 1

-dccording as S is bounded or closed. Then we may take both
cases together in _saying that «—® elements of ‘(18 4) enter

Into the base chosen and that these elements alone lyield the
ctor (from (18.7) and (18.10), irrespective of sign)

87 |I—=E,|=|U—=E,| = D — 1.

Then let S be closed. So ¢ has exactly 2« boundaries giifen‘_i
by (18.3) and (18.4). Thus we have the homology relation
(18.8) o +aj+ - +d, —a"—al— - —ag_4 =0
taking the orientation of the curves (18.3) and (18.4) into ac
count. We choose a homology base of ¢ in the same way and.
in the same order as before, only omilling a ;. So in (18.5
III now is a square matrix of e—1 rows. II remains equ
to (18.6) and all elements of VI and VII are zero. Under the’
transformation .7, the element a” of (18.4) goes into aj, thi
into a4, and so on until aj_, Now a;_, goes into a, 4 bu
as this element is not in the base, it has to be replaced by =

‘In. or(‘ier to get S from ¢ we let the boundaries (18.4) of ¢
901nC1de In turn with the boundaries (18.3). We‘get a homolog :
base for S by taking the homiology base for ¢, arranged in thi-
same way as before, then cancelling the last « —m elements
since these become identical with elements of (18.3) already iI;-

t]{e base, and replacing « new homology elements arising from
the « new connections. So let
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1 coefficient. As to the transfmms of by, by, ---, bw_l, things
_are analogous. So III* is equal to (18.6). As to VIII* and IX*
nothing is known, but that does not matter, since V* and VII*

-are known to vanish. Usmg the fact that Vi vanishes too,
we get

denote homology elements corresponding to cycles of S, of
which the first, b, crosses a in one point from left to right
and does not intersect a;, @y, -, @,_,, and the same for b
and a,, b, and a, and so on. These cycles may be taken to
have one point of ¢ in common. Evidently there is no homo-
logy relation between the elements (18.12), and they make the
homology base of § complete.

We may call (18.12) a homology base of connection. We now
divide the matrix o of S into 9 blocks in the same way as in

(18.5):
J Fl v | v 1
A = VI* Ir# VIF .

virs | IX* | I

(—1)7+roply) = [d~xEJ+.wl
= | —2Ey 5o.4| |UF—2aE,| |11 —aE,]|.
Since I* = I and II* = II, the two first factors are the same

as before, and since JIT* ‘is equal to the matrix (18.6), the last
factor is

, (=1 —1)
as in (18.7). o

Hence we have the following result: The cancelling of ¢ —w

elements of (18.4) means multiplication of P, (x) by E - 1))
—1

(from 18.11) and the replacement by « new basic elements
means multiplication by (x*—1). So the total effect is multi-
plication by (x—1)*.

Thus if § is bounded, we have P(x) = P (x), and if S is
closed, we have P(x) = (x—1) P, (x).

So we have to ask if' this is actually the polynomial P(x)
we have to look for according to the description following (16.3).
The initial factor, Wthh was x—1in P, (x), is now (x—1)1 T o,

Here IIT* is a square matrix with a rows corresponding to the
elements (18.12). All other rows of « correspond to the same
basic elements as in A,.

As the elements (18 3) are interchanged cychcally, we have
II* = II, and both VI* and VII* vanish.—We now look at the
basic elements belonging to the rows of I or I*. Their trans-
formation by 4, depends on the matrices I, IV and V. Now the
basic elements (18 4), belonging to the columns of V have been
replaced by the corresponding elements of (18.3). This means
that I* = J, but IV* may differ from IV. Moreover these ele-
ments of the rows of I have their intersection number with cur-
ves (18.2) equal to zero, and this is not changed by the trans-
formation; so their transform by  does not contain any elemen
of (18.12) with a coefficient 3= 0; thus V* vanishes.—Finally
we look at the basic elements belonging to the rows of III* .
As b has its intersection number with a equal to 1 and with
ay, ay, ', A, equal to zero, and as (18.2) are interchanged
cyclically, we infer that the clement corresponding to b by 4
has its intersection number with a; equal to 1 (the trans
formation class preserves the orientation of §) and with_}j
Ag, " 75 Uy, @ equal to zero. So b, is the only element o
(18.12) to appear in the transform of b, and b, has 1 as l’ES.‘

~ As to the factors of the product we recall that such a factor
1

- with all its numbers B, 1y, qy, Sp Uy, My, o, my, arises from an
equivalence class of regions or of amphidrome axes in ¢. Now
- every such equivalence class of ¢ is a class of S too with all
numbers unchanged. And no new class arises on S. It is true
that there is a class of inner axes on S which is not a class
of inner axes in ¢, viz. the class (18.1,2) used for cutting S
But as these axes are not amphidrome, they do not yield a

factor in P(x). — So our theorem is proved in the case con-
sidered.

- 19. Second part of the proof. In this section we assume
that the geodesic a is not amphidrome, and that S is decom-
posed by the geodesics (18.2). Let ¢ denote the region of this
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surface2 has no bcl)undary in common with the subsurfaces
& ) -

S8*, ¢28%, - .., ¢¥'S* S0 S would consist of g distinet sur-

faces, while throughout this paper we suppose S to be one
coherent surface. So we have

decomposition to the left of a; so ¢ has the left hand border
a’ (18.3) of a as one of its boundaries. ¢ may or may not have
some of the right hand borders (18.4) as a boundary. In this
section we make the further assumption that it has not. Since
v interchanges the geodesics (18.2), all regions to the left of
these geodesics are equivalent by 7, and so are all regions to
the right of these geodesics. On our present assumption these
two equivalence classes are different. As every region of the
decomposition bas at least one of the geodesics (18.2) as bound-
ary, we have exactly these two equivalence classes of regions
of the decomposition of S. If ¢ denotes the region to the right
of a, the two classes are represented by ¢ and ¢".

Let y and 3’ denote the number of regions. in these equi-
valence classes (section 17). Then '

v =1,

7 and ;' are relatively prime.

The geodesics (18.2) or, more precisely, their borders (18.3)

and (18.4) are so distributed on the subsurf
: aces (19,1
. (19.2) that (19.1) and

| (19.6) Qs By s Upyiny ooy @

.

vi+oa—y

. are boundaries of ¢, (v =.0,1,2, -- ,r—1) and
— 20 o e 1o = ( e .

(19.1) ¢, we=1¢, TC=2Ca vy T C=0py (19.7) O I

are all regions of the equivalence class of ¢ and ~are boundaries of ¢, (v = 0,1,2, -+, —1).

18.3) ¢ o — Bl = e — 6,7,_1 124 i‘s a transforrpation class of algebraically finite type for
¢ (section 17) and its characteristic polynomial P, (x) takes the

are all regions of the equivalence class of ¢’. We then have form (16.3) with © = 0:

e¢=c and ¢ = ¢. From 7% = a we infer that «%c = ¢;
hence y divides « and so does y'. :
Let g = (y, y') be the greatest common measure of y and

7, and put y = gy1, ¥ = gr;. Then, if we suppose g>1,

e )

if we agree to denote the factor correspoﬁding to [ by

(19.3) c, ¢ (P — 120+ s—2

xﬁtmu_ 1) P (xﬂlmlul_ 1) ’

5 G0 S

fi(x) = (
is a subset of (19.1) and

R I
Accordingly for z¥ as a transformation class of ¢’ we have

P.(x) = (x~1)|—:fl (x).

7 is a 'transformation class of the set (19.1) of ; distinct
subsurfaces, and the corresponding polynomial is by section 17:

(19.4) ¢y ¢y Cag s gy

is a subset of (19.2). All geodesics

(19.5) a, g, Oogs "'y Uy g
and no other geodesics of the set (18.2) are boundaries of (19.3)%
and (19.4). So by joining the regions (19.3) and (19.4) alon
the geodesics (19.5) we get a subsurface S$* of S, and this sub

P,") = (@ —1) ﬂ fG).




62 Nr. 2 Nr. 2

63
-fo,f or’le surface ¢ boundﬂ‘ed by all curves (18.3). So we may take
fz, @, " *°, A,y into the homology base of S’. The correspond-
g part of the transformation matrix then is (18.9). Since these
©—1 basic elements vanish by being identified with (18.4), it is

:‘sée-n from (18.10) that (19.8) is multiplied by
is the same for y = «, /' = 1. *

7 also is a transformation class of the set (19.2), and the corre-
sponding polynomial is

P ) = (=) |rle).

We may thus speak of ¢ as a transformation class of the de-
composed surface S’ (being a set of y+y distinct subsurfaces);
the corresponding polynomial Pg(x) then is the product '

xr—1
P Of course
ThWe now consider the general cése, both y <& and ;' <«
e set of ' is made ach
i bo s;b?urfaces (19.1) is made up of ; surfaces, each
; S oundaries from (18.3), and (19.2) is made up of

. 44
V.._surfaces, each with, —, ‘boundaries from (18.4). For each surface

(19.8) Py(x) = P,(a¥) P («7) =

c

1) —1)] | ()] Tt

: e

“the number of boundaries is greater than 1, and their sum is
gklblomologous to zero. Thus the sum of the elements of (19.6) is
-zero for every value of » and so is the sum of (19.7) .

A homology’ base of (19.1) is now so chosen as tc') include
i'the first @ —y elements of (18.3), thus excluding the last y, as
-they can be expressed by the first ¢-—. By 7z every elemét;t i
replaced by the following except the last, a;_}, 1, which 12

-replaced by the element o’ not in th
Y - e base. S
.from, (19.6) with » = O;M 4 e. So we express

We now ask what is the effect on this polynomial of pass-
ing from S’ to S by joining the boundaries (18.4) in turn to
the boundaries (18.3). This effect is found in two steps as in
the preceding section, a) by cancelling some elements of the
homology base of §' and b) by introducing new ones by a
homology base of connection.

a) First let S be bounded. Then at least one of the subsur-
faces ¢ and ¢ has a boundary not belonging to (18.3,4). Let
¢ have such a boundary; then all subsurfaces (19.1) have. So -
all elements of (18.3) may be allowed to enter into a homology
base of §’. By joining (18.3) to (18.4) these elements (18.3)
become equal to the elements (18.4) of the homology group o
¢ i+ tcq; these elements may or may not be in the
homology base of S’ and may even be zero; in all cases they :
are independent of (18.3). So the elements (18.3) cancel, and :
as they are interchanged cyclically by ¢, this evidently means

multiplication of (19.8) by pr—r see (18.6,7).

Then let S be closed. Thus (18.3) and (18.4) are the only:
boundaries of S’. As a preliminary case let us assume Yy =
thus (19.2) is a set of the maximum number « of subsurfaces,:
each bounded by one of the curves (18.4), and these curves ar
thus all homologous to zero. Then we have y-= 1, since y di
vides @ and is relatively prime to y'. So (19.1) consists onl

’ :—/*.’ ’
Tamy = 7@~ @ty — - —a

Ve a—2y-

We then get the part of the transformation matrix of » which
elongs to the «—y basic elements in question:

-0 0--0 —1 0 0---0 —1---[
l;e last Tow being alternately —1 and a group of y—1 zeros
m this it is evasily computed that the corresponding part of

he‘polynomial, denoted above by P (x7), is St As the
o ar —1
ame 1is true for the set (19.2) with

. v’ instead of »,
ay. that in (19.8) a factor : 7, We may
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@__1)2 d0=a'—|—a’1+a'+... ’
(19.9) S it ), ) P Haa
(m7—1>(m7—1) _ di =a+etagte g+ F @Dy
. e—1

is due to the boundaries of S (19.11) dy = a:_"f‘ el fetapt - fe 2@ Da),

In choosing a homology base for (19.2) we take the a—y = f el
last elements of (18.4) into the base. So the part of the basic d . e
elements of 8§’ corresponding to boundary curves of S may bhe w1 = @t TV gy Rl D g N U )

: «—

written

©

the determinant of which i ;
o ch 1s + 0, since it i .
differences of 1, ¢, 2, - - - it is the product of all

. ’ ' ’ ’
a (11 PR ay,_l aj}, PP a{x—’y—*'l

" 1 22

’
ay/ aa*j/——\‘l a;v—;v a[x—l'

, &¥—1. Then = replaces d. b

by ed,, d, by &d,, --- ] - P‘ e e

of thé sei (379511)23311‘3 ,1d~a_'1 2by F dama- So the multipiiers
' . e 1,6, 6% -, e«—1 respectively, i. e. all

- roots of the polynomial x®—1. If (18.3) were an independeilt

.-set, the set (19.11) wogld be so too. But from (19.6) we have

These two lines have the subscripts from y to a—y—1 ir
common and that is at least one subscript. Since

(e—y—D—G D =e—G+7) C
(19.12) Gttt ot =0,

and both y and y are less than a, divide « and are relativel o

prime, this is positive. In the empty places of the first line we

may substitute linear combinations of the elements written, and"

V:O’ 1, ...,},_1.

Fri i =
rom this we get d,. = 0; moreover, since &%

likewise in the second line. Then passing from S’ to S mean , =1
equating corresponding members of the two lines and reducing A — o = e _(e—N)a

the system. From this it may be directly computed that the’ e = te Yayte Vayt+ oo te ¥ @y,
elements ' ‘ v '

— -' ’ ’ ,
a",a;/'y”'ya(x— a +ay+(12y+-'-—|—aa_7’_

y—1
may be taken as basic elements of the resulting system, and th:
they yield the factor
o A
_.1 Tr—
(19.10) i W Cmd
(a7 —1) (27— 1)

jn the polynomium of S.

Instead of carrying out this direct computation we m
obtain the result more easily in the following way, if we allo
the ring of coefficients of the homology group to be comple

+ & 4

i =0 by (19. \
We first consider the a boundary curves (18.3) of the surfa g y (19.12). In the same way we get dy, = 0,
t ). i = - Ty
se (19 1) Pu ‘_ung o d3(x 0, , d(7~1)a = 0. So the multipliers ¥
p ¥
t=-e -
(19:13) © 2u =D«

1,¢, 67, - g 7

D, Kgl. Danske Vidensk, Selskab, Mat.-tys, Medd. XX1,2.

we introduce the linear transformation

[+
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cancel; they are the roots of x”—1. Hence the corresponding factor was

- So we may sum up the
: a®—1
effect of the step a) in the following way:
The effect of cancélling some elemenis of the homology base of

S by Joining the boundary curves is multiplication of the poly-
nomial Pg(x) (19.8) by.the factor '

x®—1

x¥—1

is the corresponding part of P, (a%), as stated before (19.9).
To pass from S to S we put 19.15) (iu?iw
‘ i

a':aZL1 .4,1,:0,1,"':0‘_1' .

# ' b) We now have to'introduce some new elements in the ho-
mology base of S according to the new connections established
by joining 2« boundary curves (18.3) and (18.4) of 8. This
may be done in the following way. We choose a point in the
interior of each region of the decomposition of S and denote
the point chosen in the region ¢ by {c} Then we join the points
{¢} and {c¢'} by a segment b, crossing a in one point from
the left hand side to the right hand side. In this way we join
{fd‘c} = {cy} and {zf‘c'}.= {c’M} by a segment bH crossing ' a = a

in one point and not meeting any other of the geodesics (18.2);

here p = 0,1, --+, «a—1, and b, = b. As the equivalénce class

of ¢ consists of y regions, we have

Since we have relations from (19.7)
" — — NN r—1,
a;+a:,+4/+"‘+a,,+a7y’—0, v 0: 1, Y
we get the corresponding relations

byt ey = O
(19.123) y — 0’ 1, -, )//__1’

besides (19.12). From this we infer in the same way that the»
multipliers »
N X

(19.14) L e e 7

7

{e,) = {eay) = {erayy == {6 v ay)
: d g segments eradiate from this point. Subscripts of ¢ and ¢’
cancel; they are the roots of 2 —1. Now (19.13) and (19.14)

. nly count modulo y and modulo y respectivelv.
have only the multiplier 1 in common; for since y and y' are J Y v p y
hav ]

The totality of these segments form a coherent complex,

since S is coherent. This complex consists of y+ ' points and
segments. Hence it contains

“ iple.
relatively prime, % and = have « as least common multip

Hence (19.10) is in facit/ the factor in th.e polyrxofnia(l1 oflS_

derived from the system (18.2) of geodesics used in ‘ec%l‘lle

posing S; the factor x—1 in the numerator .of (19.1‘0) 1s

to the fact that the multiplier 1 has been omltte‘d .tw-lce.- h
Comparing (19.9) and (19.10) we see that multiplication by

9.16) pr=14a—(r+y)
dependent cycles. Then any p; independent cycles of this com-

ex may be taken as a homology base of connection to com-
ete the homology base of S.
x—1

x*—1

py = 0 arises only in the case y = « and hence 5/ = 1 (or

versely). In this case we have one subsurface ¢’ and « sub-

rfaces ¢, ¢y, -, ¢, _4, each of which is adjacent to ¢’ along

e of the o geodesics; so evidently no new element has to be
troduced in the base.

is the effect of passing from S’ to the closed surface S sodf:;
as the bounding geodesics of S’ are concerned. For S bounded, ¥
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So we assume y < ea, y <« and hence 69

.thh without restriction
» 18 a linear combination

show that any cycle of the complex, w

may be taken without double points

r<s, V= of the k. A

<5, % and p;>0.
Any cycle with more than four se

- ments is i
with four segments.each. In fact, leg is the sum of cycles

Any region ¢; of the equivalence class of ¢ neighbours any. - t

region c']. of the equivalence class of ¢’ along at least one geo-
desic v"a. For since y and y' are relatively prime, if i is one
of the numbers 0,1, --+, y—1 and j is one of the numbers
0,1, -+, y—1, then n may be so chosen among ihe numbers
0,1, -+, y7'—1, that n = i (mod y) and n = (mod "), and
this in exactly one way. Then ¢ ¢ = ¢; neighbours "¢’ = c; along
“a. Since both y and ' divide « and are relatively prime, ;
we have

Z_: b,—b,+b,—b, + -
‘be a cycle of n segments. If ¢ is so determined as to satisfy

t = z (mod '), t= x (mod ),
we may write |

(19.17) a = Ayy Z = bI_by_{—bz%bt“—bt‘_bu-}—'--.
and infer that ¢, and c']. have exactly 4 of the geodesics (18.2
as common boundary. So 7 of the segments b, join the points
{ci} and {c;}. :

We first consider the simplest case 4 = 1. So there goe
exactly one segment b, from any point {¢}} to any point {¢;}
Any cycle of the complex consists of an even number of seg
ments as the two equivalence classes of regions or, as we ma
say, of points, alternate. Thus the simplest cycle consists o
four segments. Such a cycle is

I .-

aeée the ﬁfrst four‘ segments form a cycle, since {c’}: .
n {Cm} = [Ct>' Qrﬁltt'ing this cycle we reduce Z‘to nz_2 {Ct}
ments and continue the same process. (t =u (mod seg-
=z and z = u (mod ")) od '), since
So we have to sho ;

! : how that any cycele of
be obtained by linear combinationy ’ four segments may

last two segments in K of the cycles (19.18). Since the

" are equal to th
- . e q e first two segme o
w+y With 0pposxte>31gn, we get for any n nts of

kozboib"i’b’ “b/a =k ‘

y Yy T Yy Tu '“+k'r“+.7’+kﬂﬁ“2y+“'+k‘u+(n_1)y
for b, goes from {c} to {c}, ——,b)/ fromj {Cj/} = {c} to {cy/,}
by 4, from {ey 4y = A6y 10 {Cyay) = \¢yy and —b, from {ey
to {cj,}, which is the starting point {c}. From this we get o cycle

=h ——}. ,
u blu,+y +bﬂ+7’+ny—b{-“{‘n7’

from this for any gy

k,=b, buy,+b, iy buiys :
. @ ety pry'+y  Tuty 9+ o ..
(19.18) h— 01, a1, T Quty T Qurzy+ T Gt 1)y

) :by**,by+yy/+by+yy,+n \b .

remembering that subscripts of & only count modulo e. The v o Cutny

cycles k,, are not independent, since their number is >py.
(19.18) contains a homology base of connection, i.e. p; cycl

completing the homology base of S. To see this we have

?nd finally, replacing u by 1+ xy for any = and putting x+n — »

Z—

.“+w7f_b(z+xy+yy’ +by+1y+y7/%bﬂ+z;’.
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» the point IV being a matrix with P1 rows and columns.
This cycle Z goes from the p elements in all in-the base of S, the transfor
d—p, elements (derived from S’ by
do not cdntain(the D1

zero, and we have

If there are §
ms of the first
the considerations under a))
new generators. So all elements of IT are

lewy = {Curay) 1O {€preyy = {Curayruy)
from there to {cu+xy+yy/} = {c‘uﬂ,y'} = {c‘u+zy+yyf},
from there to {c’y+1y+yy'} = {c"uﬂy},
from there to {c, frpp = {cu)- .

hosen arbitra-
i bers w, T, U, Z, May be ¢

Now, since th; f?urem;:llativelg prime, the points {cy}, {eu+uy
i d y and y ar . . v/
o an’ ’ ! } may be any given points in the equiva
. {C#+zy}, {c.u“?’ ! ively. So Z becomes any
lence classes of {c¢} and {c'} respect}ve y. becomes any
enl omposed of four segments. This completes .e P ea.dily
cyc]?{efatiol:ls between the generating cycles (19.18) are r

=|1=aky;_, || 1v-aE, |

Now take any of the new generators

s Icﬂ say. The intersection
- numbers of k(«b with «a

@ Qutyh Qyyyis, aﬂ;y are in turn 1,~1,
~1,—1, and with all other geodesics (18.2) they are zero. The
transform of %, then must have the same intersection numbers
1,—1,1,—1 with Quvts Gy i1 Quty +y+1 Ay 441, and zero
with the rest. From this it follows that it contains k
coefficient 1 and all other elements of (19.18)
zero; if ke, o 4 is'not in the base, it has of course
~by. its expression by the p; elements chosen.
matrix 7V may be derived. III does not matter, si
To compiite the polynomial

o .
l()\lll(l I akl]lg n=-—1m q a]ld. le]llelllbellllg tllat SubSCIlptS
' )/ lu'

= 0 for this particular
of b only count modulo «, we find g, 0
n, thus

+1 with
with coefficient
to be replaced
From this the

[E ., =0, nce Il vanishes.
(1919)  kythuey Tharay o Thurany

(‘ll/ = 0,1, v ',;’_-1)’
and in the same way

- . P 0 »
(19.19 a) k{,L—-l[_k 7"+kH+271+ - +1{"u a—y

| (—1™| IV—2E, |
(‘w — 0’1, _..’}/’——1)

~we follow the same way as in proving (19.10) by means of the
‘transformation (19.11). In fact, the deduction is literally the

ame. Instead of the elements a, ay, -, a,_q of (19.11) we have
he « elements (19.18). The relations (19.12) and (19.12a) corre-
pond exactly to .the relations (19.19) and '(19.19a). So we find

y no
These y + 7' relations between the « gevnerat((l)rs ::s},);c;\xoefvaré.w
sndependent, since the sum of all y left hand m 20y, S
‘s equal the sum of all " left hand members o , (
N to is abundant. Hence we may cancel y+y —1 gen
Onet I;:Ialtlr(z;:)erly chosen and so are left with p, generators I
.erato
accorfance\vwclgrln]ge?t.elﬁ’c)k;e homology base of.S by addmgt’f-heé
Dy :(::v I;(e)nerators derived from the connections. The matrix

esponding to the transformation class ¢ of S then takes th ¢ boundary curves in order to get the surface S. This means
corr

15t cancelling some elements of the homology base of S’ with
form I ‘ 1 e effect of introducing the factor (19.15) into the polynomial,
I R T nd then introducing new elements into the homology base of

m | v

~with the effect of introducing the factor (19:10). Hence
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ENce

l

The sum of these i.cycles is zero for every w. Letting p
range from to v’ —1, we get cycles in all, which for short we
call the l-cycles.: '

(19.21) P(x) = (x—1)'*°
1
i i 5 fS.

belongs to the transformation class = o

Tkis is in accordance with the theorem stated by (16.3).
For since a is not amphidrome, no factor arises from th.e geode:
sics (18.2); and all regions of $" and all other geodesics of S”
(if any) evidently play the same rdle in S.

ng cycles of the b-complex: Any segment of a k-cycle may be
replaced by another segment connecting the same two points
- by adding or subtracting some suitable l-cycles. So modulo the
"subgroup generated by the lLcycles we may look upon the k-cyc-
“les as if we join .all A segments (19.22) to one string. The build-
ing up of the complex from k-cycles of these strings then is
the same as in the case 1 = 1.

If we take n'=y" in the cycle 9. used previously, we get

{Cosso121s)

{C’o246810121418)

\
{C1a71013165

u+y’+4’ —b RRPYVLIPN
{¢1357911 181517 / vy Yy

{C258111417

/- Replacing w in turn by w4y w42y, p+G— 1)y" and add-
. Ing we get the cycle

Fig. 8.

Finally an addition has to be made, as \iv_e have assumed
the factor 4 in (19.17) to be 1. - o '

Let 4 be greater than 1. Each point {¢;} is conne;:;ed w1t;)1
: i : 2 ts. In fig. 8 the case @ = 18,y =
each point {c;} by 4 segmen - = 18,
yo=2 thus{ ])}V = 3, is illustrated in a schema’u‘c way; each
of the five points carries all subscripts belonging to 1tt, 20
e.g. {eoy = {&) = {eo) = {e} = e} = {ews)- ‘Any ;segm(;n '
is one of the segments leading from the c-point with su serip
u to the ¢’-point with subscript p. All segments connecting thes
two points then are

Hut =19y = luy a1y — L,

b s - b 1)y since llu+uc = ZM' Multiplying in turn by 4, 4—1, 1—2 -1 and
(19.22) bus Dutyy's Dutayy’s "7 Opt A—yy . adding, we get
From these we may form A cycles

hay +O—=Dayy )+ sty = A,

=b,—b, .. s :
I(,, w “tyy (W= 01,7y —1 Since the sum of the cycles (19.23) is zero for w fixed.
Loty = buryy “burayy = HLr

So Al, is seen to be a linear combination of the k-cycles
(19.18) for g = 0,1, - - »e—1. Now if any cycle Z belongs to
a certain multiplier (i. e.' root of the characteristic polynomial),

lut 6=y = bura—nyy ™ Pp-
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so does AZ, and AZ is expressible by the k-cycles. In other:
words, if we allow the ring of coefficients of the homology group -
of connections to consist of all rational numbers, then p, of the .
k-cycles (19.18), properly chosen, may be taken as generators.
We thus get the same part IV of the matrix 4 and the same-
characteristic polynomial (19.21) as in the case 4 = 1. ’

20. Third part of the proof. In this section we assume that"
the geodesic a is not amphidrome, that S is decomposed by the
geodesics a, a, - -, 4,1 of (18.2), and that the region ¢ to the
left of a (thus with the left hand border «’ of (18. 3) on iis:
boundary) has also one of the right hand borders (18.4) on its”
boundary. This is-transformed into a by a certain power of =,
and so the region to the right of a is equivalent to c. Hence
we gel only one equivalence class of regions
(20.1) ¢, T = Cy, N A

¢, TC = ¢c=c

y—l

instead of (19.1) and (19.2). Moreover y>1, since S is de-
composed

Let ¢'c = c, be the region of the set (20.1) which is adjacent
to ¢ along a. Then, Cy being the region to the left of Qs Cuth is

R

the region to the right of Ay and Cutn =% Cu So we may
pass from any region to any other region by a power of 7.
From this we infer that h and y are relatively prime. h and «
may or may not be relatively prime. '

Subscripts of ¢ only counting modulo y, we may write the
set (20.1) in another way: -
(20.2) ¢ Cp Cops " Cly—Dh-
In this arrangement they form a ring, each region ¢, neighbouring
¢, _p and Cu+h only.

The « geodesics may be arranged in the following way, 1f
we put

7&,

and count their subscripts modulo «:

Nr. 2
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.a

y oy A1)y

a ay a

& +y ht2y r+E—1y
20.
(20.3) T2 A2h+ g U2h+2y S QangE—1)y

Ay 1yp @A -
y—bh Cy—Dh+y Ay—1)h+ E—1)p

The geodesic | inni i
g s of the rows beginning with a,r and Uy —1yp ATE

on the boundarv of Cun>s and these two rows bound ¢

[“Lh in

" Fig. 9.

pposite senses. Using the notation (18.3) and (18.4) we may
ay that ‘

C Tt Auhrg—1)y ™

(@u—nnt -+ nien,)

To illustrate these facts, ﬁg.‘9 shows the case o = 10, = 5
= 2. One may replace h = 2 by h = 3 and so obtain a case

n which h and « are relatively prime.

The construction of the characteristic polynomial in the case

fthls section goes along similar lines as in the precedmg
ectlons Let
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(xﬁz“l_ 1>2qz+51—2

(xﬂlmu _ 1) .

77

P (@) = (x—1) 1_{

To sum up for:S bounded o '
- . : r closed, the effect of t
-tion a) is to multiply P (V) by ot fhe oper:

e (&—1)"

1

be the polynomial (16.3) belonging to ¢ under the transformation
class . Then by section 17 Pc(xy) is the polynomial of the
decomposed surface §' under the transformation class ». We
now have to take the same two steps as in the preceding
section, a) passing from §’ to S by joining boundary curves
and b) introducing a homology base of connection.

a) If S is bounded, all elements a” and a” of (18.3) and (184)
may be included in a homology base of S’. The effect of joining
the boundary curves then simply means cancelling the a”. As

b | : :
_: ) To set} up a homology base of connection we again in-
troduce the segments b, u = 0,1, ---, aa—1 crossing ;1 fr

‘ ) : . ,. 3 £ Om
the left hand side to the right hand side; here they c[LOLnnect

he Doi
“ ¢ points {CM} and {c,,,}. As we have a coherent complex of
v points and o« segments, we get

Dy = 1+0¢—7

x¥ —1
So let S be closed. Then (20.4) is the complete boundary
of ¢, and we have y relations, which are obviously independent,

in section 19, this means multiplication. of Pc(ocy) by

-1Ilde[)elldel]t C&CIES m the com 1 X3 f- 19-16 IIOlll th.e b we
» ¥ v p € c ( )' 23

Iu(‘lb —b -
, + —(af, La’ N - ' "ty #=0,1,--,a—1,
(20.5) (a;£11+aluh+y Y = (@ nyn T Wty ) =0 and . ‘

k= B
(‘u,: 0,1’...’),,_1 ~ b0+bh+b2h+ '.—’_b(j/hl)h’

.,:iﬁldrtzns from {cy} to .{C‘u+h} and back to {c,}, since both ¢,
: ot n ATE left invariant by ¢¥. The cycle k rans once through
:.the ring formed by the y regions (20.2). It is easily seen that
“the ‘a—l—l cycles I, and & contain a homology base of con-
ection: Any cycle formed of the b, which on its way runs
rl?:lofﬂ;;ep:‘:;t Ingg}hﬁf)i?:ne 1‘egion ¢, to the point {cﬂth} of
! _ 1g Teglons ¢, .p and then returns to
qu} may be reduced to a cycle of fewer segments by addin
I subtracting some suitable cycles l,. Any cycle whuich runf

nce through the ring may be reduced to k by addi .
ombination of the .- ¥ adding a suitable

The [H fulfill j relations

for the « and @’ in the homology base of S'. One of these ;
relations may be replaced by the sum of all:

(20.6) -a'+“'1+"‘+ﬂ'a_1=a"+a’i+-~-+a’;_1.

Both the left hand member and the right hand member of thi
equation are homology elements with the multiplier 1. The effect:
of putting them equal to ome another is to cancel the facto
x—1. So if (20.6) were not used, Pc(:cy) would have to b
multiplied by (x—1). A

Now passing from S to S means replacing every a’ by the
corresponding a’. All «” may be included in the homology ba
of §', as the relations (20.5) may be used for eliminating som
of the a'. The cancelling of the @’ means mulliplication b
(=" — 1)—1. As to the ' the only effect on the polynomial aris
from the fact that (20.6) is satisfied identically; thus the fact

20.8 4
, ‘) bt buvy lysay b by e gy = 0,

= 0’17”'1 ;,_—1)

. x .
x—1 has to be restored. In all, we get the factor ———, if:
is closed. -

y means of which y of the [, rhay' be eliminated. The remaining

—7 cycles IM together with % then are independent and form
homology base of connection of p1 elements.
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The setting up of the part IV of the transformation ma
trix due to these p, basic elements is easily performed as in.
the preceding section and the factor corresponding to (19.20)
computed: From the invariance of intersection numbers it i
seen that the transform of [, contains [, with coefficient
and no other [-cycles nor k. Likewise the transform of k contains :
I with coefficient 1. So from k the factor x—1 is derived, and *

in the equivalence class of a. Let the left ha
borders of a, a,, -

’

_ nd and right hand
! as before be denoted by o, ag, -+ and
» @y, *+ - respectively. They are oriented in ’

‘ t ’
« gondosice (3L.1), in the same way as

We first assume that § is not decomposed by the system

(21.1). So S’ consists.of one region ¢ only. Let

(20.8); this follows directly from the computation attached to:
(19.11) and (19.12).
So in all we have to multiply by

& _
from the l-cycles we get ch___i_ in taking account of the relations P (%) _ (z— 1.)— (xf —1)2e +s—2

be the characteristic polynomial of ¢ for the transformation

las hd ; .

class 7. The 5 geodesics (21.1) yield « boundary curves of ¢

% _ o . . .

(20.9) (;’5,_17/)96_2 If S is bounded, we may ‘take the curves
x’—1 -

MY wdan
as a result of operations b). ‘. T »a

As the final result of both a) and b) we have: In passing
from § to S the polynomial Pc(x?) of S" has to be multiplied
by the factors (20.7) and (20.9), thus giving the polynomigl’f
P(x) of S for the transformation class z:

o

51

:s Ill?elxllbers of a homology base of §'. As they are interchanged

; ;gc ically by 7, we gel x® —1 as the factor in P (x) derived from
ese e boundary curves. If § is closed, the sum of the elements

(21.2) is zero. We then éet it
: x—1

‘w@“’— )
1

24+9—2 as the corresponding factor.

P(.’E) — (.’L‘—l)1+w

(acyﬁlm“— D . Taking both cases togéther, we get
This is in fact the polynomial set up in (16.3), since a is =1
not amphidrome and any kernel of c passes into kernels of ¢, (x—1)®

Car "ty Cypi before returning to c.

In sections 18, 19, 20 we have given the proof of the theorem
stated in (16.3), in case the geodesics of the equivalence class
used in dividing S are not amphidrome. In the following section
we complete the proof by dealing with an amphidrome a.

15 the factor of P, (x) derived from the boﬁndarics (21.1). Com-
are the corresponding more elaborate proof in section 18.

NOW lOlIllIlO th Oll]ld y e
5 a cur S 1n [11[1], t a 1 ments

can retai ’ '
cel and we retain the a’-elements, which we may denote

: a-elements. Then, by 7z, a is replaced by a, -+, a b
21. Fourth part of the prooi. In this section we assume a and this b T ’ a— b
to be amphidrome. If again « is the number assigned to a in -1 s by —a. No homology relation exists between them.

21.1 a, Ta4 = Uy, T2 =dag, ", T
1 2
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So the effect of joinin.g the boundary curves of 5" is to mul-

. then obviously is in accordance with (16.3) and the'explanation
tiply P,(x) by ‘

attached to that formula.

(— 1) Secondly we assume that § is decomposed by the system
(21.3) P (21.1). Let ¢ be the region to the left and ¢y the region to the
r2—1 tight of a. These two regions are not identical, otherwise any

b f nnection we choose 2 two adjacent regions would be identical and § would not be
of cor :
To introduce a homology base R W
i i b, (w=20,1, -~ e— ¥ n
t {c} in ¢ and denote by b, )
wp(ﬁ?ch\st}arts from {c}, crosses z“a once from left to right, and

returns to {c}. Since

3

decomposed. Under" the transformation class #2 all geodesics
. K o

(21.1) are inverted, hence t2e = ¢ Thus all those geodesics of

‘the set (21.1) which bound ¢ must bound ¢, too, and vice
versa. If these were not all geodesics (21.1), S would not be
coherent. So we infer that there are exactly two regions; ¢ and

"cl; the number y of regions in the equivalence class of ¢ is- 2,

7 Za= —ta,

we may choose the cycles by so that

. T g o
b ,e=—b ~and we have z¢ = ¢,, fzc = c¢. Thus 5 must be an odd number.
wtsg - ®r . ’ ]

Let the above ;polynomial P (x) belong to ¢. Then, as

ction numbers that b, has the coeffl ~ pointed out in section 17, the polynomial

. . om
cient zero in the transforms of all basic elements derlveqnfrth
. S
S’ and in the transforms of all b-cycles .egcep’;l b‘u—l-;ribuﬁo
‘ ' fficient of b, is 1. So the con ‘ !
transform of b, 4 the coe - of by,
of the b—elemer[;ts to the polynomial is that of « elements whic

. - "
are interchanged cyclically by = and which satlsfyrthe conditio

It is seen from interse

' ] 2@111‘ 4+ 5—2
—_ 2y — (2. (95__ * 1)2 '
Py (@) = P(a?) = (x 1)\ \ T
elongs to the decomposed surface .
The curves (21.2) are on the boundary of §' and are inter-
“changed cyclically by ‘. If S is bounded, both ¢ and ¢; have
~boundaries not belonging to (21.2). So these « curves may be

' 91D aken as members of a homology base of S’ and yield the factor
formation analogous to (1
It then follows (e. g. by a trans

% —1 a“—1 as before. If S is closed, we remember that. all even
. fartar i lynomial is & owers of ¢ transform ¢ into itself and ¢, into itself. So
that the corresponding factor in the poly 21 1 o v

204) d+dy+d,+ - +a'%_1—a;'—ag_ ma =0,
: 2
by this factor and (21.3):

P(x) = (—x;——l)—w-%:i-(x—l) H
il iy z

x?—1 =

ince these curves constitute the complete boundary of ¢, and

21.5) d\+ay+ay+ - +a, , a—al— - —ay L= 0.
2 2

a® - has to be taken into the sign \ s since 1t 1§ ince these curves constitute the complete boundary of ¢, . Then
The part 73 B 1 _ . ) x—1
< = ) . sing a transformation analogous to (19.11) we see that -~
21/ : from z—
x me bands arising Iror x

the factor corresponding to the amphidro

% . The resul

s'the factor in Pg (x) derived from the boundaries. Taking
the axes (21.1); cf. (16.5) with the notation B = 2 ) '

both cases together :
D.Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXI, 2. 6
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x%—1 [ g_ @ . e,
. 5 L
(21.6) (2% —1)® —ld-xa” —a 4 o 4x— J
24
- = ’EE_I__ .g_2 ‘g—s
is the factor of Pg (x) derived from the boundaries (21.2). T +at -1
We now join the boundaries by putting g
' ' S s C o VA C I )
a, :a;"" M:O’]".”:Pﬁ—"li xh}il (g > |
h ) 2 . ’ N x —1 (:C2- 1)

and denoting it simply by a,. In the sequence (21.1) each Taking both caées together, we find that
element is by 7 replaced by the following and the last element, R

Ay 4 is replaced byéa. If S is bounded, no homology relation

(21.7) | %:;%l)w

has to be observed, and the corresponding factor in the polyno- il
21 (22— 1)° :

mial is as in the first case equal to

is the fac‘tor;{ corresponding to the %—m basic geodesics after

a ¥ — 1 i -
241 = T Jomning the boundary curves. :
1 From a comparison of (21.6) and (21.7) we find that mul-

tiplication of Py (x) by

If S is closed, we get from (21.4) ( 1y
x—

(21.8)

wi

1 x—1

a—a1+a2—a3+"'+a9ﬁ_ :03
2

is thfa effect of joining the boundary curves (21.2) of §'.

w Finally we he}xje to introduce a homology base of connection.

he choose a point {c} in ¢ and a point {cl} in ¢; and connect

them by « segments, the segment bH crossing «”a from left to

right. Since = — '
g Ay 4 & a,, we take by+% = —b,. So we have

and the same relation is derived from (21.5). From this we may
express dy - The matrix corresponding to the transformation

of the set a, a;, **+, g then becomes

2

01 0 0

0 0

0 0 1

\~1 1 —1 1

with %—1 rows and columns. Subtracting ccEﬁ_1 and then add:
2

<@
—

two points and 2 segments i z
2 gments in a coherent complex, thus 5-1

independent cycles. (For & = 2 there is only one common bound-

ary of ¢ and ¢; and no new cycl :
: . ycle has to b t
form the cycles e introduced.) We

<
e R = ==

[—

i =bu+byi1. p=101,, a1,

This system of « cycles evidently contains a homology base of

ing the second, third, etc. columns with coefficients x, x?, etc. :
.connection. Relations are obvious: We have

to the first, one finds the corresponding polynomial equal to
. o
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21.9) I+l =0 ~ This completes the proof of the main homology theorem
. : L tated by formula (16.3).

and moreover 22. Final r'e'marks. In section 14 we have constructed a

(21.10) ly—lyat IM Lo+ l#+§—‘1 = 0. ransformation { of S, belonging to a prescribed transformation

class ¢ of algebraically finite type, such that classes of fixed
points with index j = 0 are completely avoided. We may there-
ore term such classes unessential. Classes with index jko,
which we term :essential classes, cannot, of course, be avoided,
bt are by { “satisfied” by one point each.

"The function (16.1)

B

% of the relations (21.9) together with one of the relations
2

(21.10) form an independent set of relations, and we are left
with %;1 independent cycles [,,.

If we introduce 4
2xi

e=¢e"

P@) = (—1)?| 4~z k|
and set up the transformation analogous to (19.11), we wm}ld E
get all @ powers of £ as multipliers, if the « cycles [, were In-.

dependent. Because of (21.9) all even powers of ¢ cancel, and
24

is a polynomial‘,‘/in x. So if we write it in the fractional form
(16.3), the denominator divides the numerator. It will now be
pointed out that one of the advantages of writing P(x) in the

4 . . fractional form (16.3) is to put all essentjial classes of fixed
2 = ls too. So we get !
because of (21.10) & 1 ‘cance s 8 points, together with ‘the indices of these classes, into evidence.
o1 (% —1) (z—1) For this purpose we examine the factors corresponding to the
x*— 2
(21.11) T e N

different values of I, which, it will be remembered, ranges over
all equivalence classes of kernels, i. e. regions or amphidrome
geodesics, of S.— The statement as to the fixed points of { at
the end of section 14 sheuld he compared.

If-8,>1, the g, kernels of the equivalence class in question
are interchanged cyclically by z, so they do not give rise to
any fixed point of the special transformation { of section 14
and hence not to any essential class.

If 8, = 1 and the kernel is an amphidrome geogesic, it is
seen from' (16.5) that the corresponding factor is (2‘__1—1)2 We
£ then associate the two factors «—1 of the denominator with

e two essential classes of fixed points, each of index j =1,
which are known to arise in the amphidrome band in the con-
straction of ¢, each class being represented by one point.

If 8= 1 and the kernel is a region, we may first have
>1. The region is then mapped into itself by { in such a
way that ™ is the identical transformation, thus { is periodic
the region with n, as its order. (The region is then kernel
) Fixed points of { are such ramification points of the

(Bt @+ la—1)@—D

as the contribution of the homology base of connections. (For
o = 2 this factor is equal to 1.) , :

We thus get the following result: In passing from S .to S we;
get the polynomial P (x) corresponding to the transfgrmatmp .cl?ss
r of S by multiplying P (x) by (21.8) on account of joining
the bou1idary curves and by (21.11) on account of the new
connections thereby established. So we get

w CCDC—I

P(m):(x—l)lrk m ’

The second factor has to be taken under the sign 41] as

the contribution of the amphidrome bands correspondi.ng to the
amphidrome geodesics (21.1); cf. (16.5). So the result is 'clegrly
seen to be in accordance with (16.3) and the explanation at
tached to it.

4

ol




Nr.
36

87
as its contribution, a factor of the denominator with Bymy, =1
'yields 1 and counts for — 1, since it is placed in the deno-

-minator. So if we denote by 5— the sum of all negative indices
and by E* the sum of all positive indices, we get

region over its modular surface M, for which all n sh.eets hanvg
together, thus for which the corresponding number m in. the set,

(22.1) myy, My, = o5 My,

has the value 1. Hence we get as many essential classes as:
the number 1 occurs in the set (22.1), and the index of each
C]aslsf 1,2'1]: lland n, = 1, the region is a kerne_l of z itself. a'nd §0
is identical with its modular surface M; = M,. The minimum
pumber d, of generators of its Poincaré group is given by (16.4)
Putting » = 0 and d, instead of » in (5.1), we get the index

trace # =14+ w—5——5+

~

E=F5"4+E% =14 w—trace A.

- This formula-is due to'J. W. ALExANDER [1] in its first form
oncerning surface transformations. It has received a. far-reaching
eneralization by the investigations of S. LErscarTz [10,11] and
hese have been treated in a modified form by H. Horr [7]. It

seen from the present paper how it is possible for trans-
ormation classes of algebraically finite type to split the alge-
raic sum = given by the trace formula into its different terms,
ositive or negative, due to the single essential classes of fixed
oints. To do this requires not only taking into consideration
he sam of roots of the characteristic polynomial of the trans-
ormation class, but this polynomial itself.

It is seen from (16.3) that all roots of P(x) are roots of
nity. Now the roots of the polynomial belonging to «" are the
-th powers of the roots of P(x). Owing to this the polynomial
[<" is easily deduced from the polynomial of z. Hence trace
" is limited for all values of n, and so is 5 (s?). This justifies
he notation “algebraically finite type” for the transformation
lasses in question. But the full justification lies in a conjecture,
hich I have so far not been able to prove: It will be
emembered that in section 8 classes of algebraically finite
ype were defined by the character that no principal region
ossesses cuspidal points. In all cases known to the author the
}')'(istence of cuspidal points involves the exislénce of multipliers
he numerical value of which is greater than 1, and then =

=
—

s.not limited for the powers of v. If this were proved to be
ue in general, then the transformation classes of algebraically
t finite type would be capable of a purely algebraic definition:
hey would be the only transformation classes for which all
multipliers are roots of unity.

Ji=2—5—2q<0.

Since there are no ramification points, the set (22.1) is emp‘q.r
and the factor in (16.3) corresponding to a region with 8,7, =11

(x—1)"h,

To sum up, we have the following theorem: . .
The number of classes of fixed points with index | = 1. is equ
to the number of factors with g my; = 1 in the denominator.
P(x) written in the fractional form (16.3). The nuamber of clas.?th}
with negative index is equal to the number of values of Ifwl.ih;
8,n, = 1, and the corresponding indices are the exponents wi
osite sign 2—s,—2q;. _ . :
e I(zp?s seen gthat thils resqlilt is due to a close comb%natlon of=
methods of homotopy with methods of homology. It is easy to
deduce from our theorem a well known theorem of' pu.re hom.v‘
logy theory concerning the algebraic sum Z of all'lndlces. Thj
theorem makes use of the trace of the transformation matrx 4
This trace does not depend on the choice of the hgmology base
used and is equal to the sum of the roo.ts of t.he characterlstltc
polynomial P(x). So we have to de’;ermlr.le this sum o'f roo:‘,
from (16.3). The initial factor (x—1)'7 yields 1+ o as its con:

tribution. In —1 a factor of the numerator with g;n,>1 or.d
t

the denominator with 8,m;>1 has the sum of its .ri)(;)ts equa
to zero. A factor of the numerator with g;n, = 1 yelds

2q,ts—2=—j
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