
DET KGL. DANSKE VIDENSKABERNES SELSKA B
MATEMATISK-FYSISKE MEDDELELSER, BIND XXI, Nr . 2

SURFACE TRANSFORMATION CLASSE S

OF ALGEBRAICALLY FINITE TYPE

B Y

JAKOB NIELSEN

KØBENHAV N

I KOMMISSION HOS EJNAR MUNKSGAAR D

1944



TABLE OF CONTENTS

Part I : Foundations .

1. Group F as starting point	
:	

55

2. Transformation functions	

3. The group T	
1 0

4. Principal region and kernel	
1 2

5. Classes of fixed points and index 	
1 7

6. Index j - 1	
1 9

7. Simple axes . Equivalence classes and congruence classes 	 2 1

Part II : Transformation classes of algebraically finite type .

8 . Definition of the transformation classes concerned	
2
25

6
9. Existence of simple axes	

10.
Decomposition of S by a maximum system of geodesics	 28

11 . Transformation class of finite order in the single regions 	
3
31

4
12. Screw numbers	 3 4
13. Division of S into complete kernels	

4 7
14. Construction of a special transformation	

4 7
15. The equivalence problem	

Part III : Homology theory .

16. Enouncement of the main theorem	
48

17. Preparations for the proof	
5 1

18. First part of the proof	
5 4. . . . . . . . . . .

	

. . . . . . . .
19. Second part of the proof	

5 9

20. Third part of the proof	
7 4. . . . . . . . . . . . . . . . . . . . .

21. Fourth part of the proof	
7 8

22. Final remarks	
8 5

Printed in Denmark .

Bianco Lunos Bogtrykkeri AfS

INTRODUCTIO N

The theory of surface transformations has received a grea t
deal of attention from many authors during the last 60 years .

This is, of course, partly due to the rôle they play in the theory
of analytic functions . But from the very beginning, even in th e
fundamental work of HENRI POINCARÉ, the theory of surface s
has had an interest of its own from a purely topological poin t
of view. In recent developments of topology it is chiefly in th e
theory of surfaces that it has been possible to penetrate beyon d
the general line characterized by an extensive use of homolog y
theory .

So far as surface transformations are concerned, many in-
vestigations have, for good reasons, been focussed upon periodic
transformations . This may be seen from the list of works given
at the end of this paper, a list to which we refer by number s
in square brackets and which does not pretend to cover al l
investigations on that topic. In view of generalizations trans -
formation classes of finite order naturally present themselves .
They do not, however, furnish essentially new features . This is
explained by the fact, proved in [15], that every transformatio n
class of finite order contains a periodic transformation . Hence
it seemed to me that a true generalization might start from th e
fact that in the homology theory of periodic transformations al l
multipliers, i . e . roots of the characteristic polynomial, are root s
of unity. It turns out that this quality belongs to a far-reachin g
totality of transformation classes . Imagine some part of a sur -
face bounded by a set of simple closed curves and this set car -
ried into a homotopic set by the members of some transformatio n
class . One may then choose a transformation of the class such
that this set is carried into itself and then look on the trans -
formation class as carrying that part of the surface into itself .
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The class may then be of finite order , for that part of the sur -

face, even if it is not so for the surface as a whole . Moreover,

the entire surface may be decomposed into such parts . This is ,

roughly speaking, the idea of the present investigation . To carr y

it out requires a thorough application of the general propertie s

of surface transformations, especially the methods of the uni-

versal covering surface and its limit points . In order not to refe r

the reader to investigations scattered in many different papers ,

I outline in part I the general foundations without proof . Part I I

then deals with a full investigation of the transformation classe s

concerned and part III with their homology theory .

In the homology theory of transformations the so-called trac e

formula has hitherto been one of the chief means . The trace is

the sum of the roots of the characteristic polynomial. In this matte r

I want to show that to get full results one should not' confin e

oneself to the trace but deal with the polynomial itself . It con-

tains a good deal of information concerning the transformation

class in question (section 22). In section 16 the general for m

of this polynomial is to be found . All its roots are roots o f

unity . Although it is actually not proved that all transformatio n

classes with this quality are embraced,-which may well be th e

case for reasons which I do not intend to discuss here-I propos e

for the transformation classes investigated the term "classes o f

algebraically finite type " .
The chief means of our investigation is the transformation

group induced in the set of limit points of the universal coverin g

surface by a prescribed transformation class . This group is a n

invariant of the transformation class, thus properties commo n

to all transformations of the class, which concern their behavi-

our in a twodimensional field, are reflected by a topologica l

transformation in a onedimensional set. It is evident that this

means must be of great efficiency . If a generalization of thi s

comprehensive invariant to manifolds of higher dimensions were

discovered, a new development of the theory of their transforma-

tions might well be expected .

I am indebted to my friends S . LAURITZEN and S . BUNDGAAR D

for reading the proof and suggesting many valuable improvements .

Part I .

Foundations .

1 . Group F as starting point . The subject of the investigation s
to follow is the orientable, closed or bounded, surface of finit e
connectivity . Let p denote the genus and r the number of bound-
ary curves of the surface S. These numbers are only submitte d
to the restriction 2 p+ r> 3, thus excluding the cases p = r = 0
(sphere), p = 0, r = 1 (circular disc), p = 0, r = 2 (circula r
ring) and p = 1, r = 0 (torus), that is to say all cases in whic h
the natural metric of the surface is spherical or euclidean . Since
in the case 2p+ r> 3 the natural metric of S is hyperbolic, the
universal covering surface of S may be mapped into the uni t
circular disc X of the plane of a complex variable x in such
a way that the elements of the Poincaré group F of S correspon d
to linear hyperbolic transformations of x carrying X into itsel f
and leaving two points of the bounding unit circle E of X
invariant .

For the sake of clearness and generality, we may put th e
starting point in the following way : Let an arbitrary group F
of (fractional) linear transformations of x be given, which i s
not abelian and the elements of which carry X into itself an d
-apart from unity-are all hyperbolic . I have shown in [13] ,
§ 4, that under the assigned conditions F is properly discon-
tinuous in X, i . e . that each point x of X is imbedded in a
neighbourhood containing no image point (t x) of x under the
transformations of F. Let f be any element of F different from
unity; the points Ut and Vf of E left invariant by f will be termed
the fundalnental points of f, the arc of circle joining them in
X at right angles to E the axis of f. In terms of hyperboli c
geometry based on E the axis is a straight line, and f is a
translation of the hyperbolic plane along the axis in the direction
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from Ut towards Vi , from the negative towards the positive funda-

mental point of f. Two different axes have no fundamental point

in common, otherwise F would contain a parabolic transformation .

The set of fundamental points of all elements of F is called

the set of fundamental points of F and denoted by G F . Under

the assigned conditions for F the elements of F are enumerable

in consequence of the discontinuity of F in X, so GF is an

enumerable set of points of E . The closure GF of GF containin g

GF and derived from GF by adding all limit points of GF is

called the set of limit points of F. The set GF is perfect (no poin t

of G F is isolated) . Two cases may present themselves :

a) GF is not dense on E . In this case E - GF is made up

of intervals, which are dense on E and which will be termed

intervals of regularity ,

b) G F is dense on E . In this case GF coincides with the

entire circumference E .

	

_

The smallest subset of X+ E containing GF and convex in a

non-euclidean sense is denoted by Ku . In case a) KF is obtained

by removing from X+ E each interval of regularity togethe r

with the non-euclidean half-plane hounded by it . Inside X

therefore Kr is bounded by arcs of circle at right angles to E

joining the end points of some interval of regularity . In case

b) KF coincides with X + E . In both cases the set of point s

common to KF and X is termed convex region of F and denote d

by KF . The set KF is obtained from KF by adding G F , which

is precisely the set of limit points of KF on E . In case b) th e

convex region of F coincides with X .

Now the group F evidently transforms GF into itself, the

fundamental points of f being transformed into the fundamenta l

points of gfq1 by an element g of F. Therefore by continuity

F transforms GF into itself and, being a group of non-euclidea n

displacements, transforms KF and X and thus their common

part KF into itself. Speaking of F as a group of transformation s

of KF we may in abstracto consider the whole set Fx of image s

of x under the transformations of F as one point {x} . The se t

of these points {x) then form a manifold (surface), which we may

denote by KF mod F.

The surface KF mod F obtained in this way from an arbi-

trary group F subject to the above conditions need not, however,

be of finite connectivity. To obtain this, one more conditio n
must be imposed on the group F, viz . to be generated by a
finite number of its elements . As shown in [13], § 11-12 this
is equivalent to the condition that there exists a non-euclidean
finite region of X, a circle inside E, say, which contains at leas t
one point of every set Fx, x being a point of- KF, in its inte-
rior. Under this condition all boundaries of KF inside X are axes
of F and they arise from a finite number r of distinct bound -
aries by the transformations of F. Then KF mod F is a surface
of finite connectivity with r bounding curves, which are closed
geodesics in the sense of the hyperbolic metric imposed on th e
surface. In case b), KF = X, KF mod F is a closed surface ,
r = O . In both cases a certain genus p arises ; in case a) p
may be zero, provided r> 3 .

To sum up, we start with a transformation group F of X
subject to three conditions :

F is not abelian .

All elements of F other than identity are hyperbolic .
F is generated by a finite number of elements .

Then KF mod F is our orientable surface , S of finite connec-
tivity with a certain genus p and a certain number r of bound-
ary curves . S may be illustrated by an image in ordinary space .
A hyperbolic metric derived from X is impressed upon S . In
this metric every axis of F corresponds to a closed geodesi c
of S ; especially the boundary curves are such geodesics . F is
isomorphic to the Poincaré group of S. The minimum number
of generators of F is 2p in case r = 0 and 2p+ r- 1 in case
r> O. In the latter case F is a free group .

Some consequences are immediate : Let A be an axis of F.
The set of its images under the transformations of F is called
the congruence class of A and denoted by FA . All axes of FA
correspond to one closed geodesic a of S. Let 2 be the non -
euclidean length of a . There exists an element f of F with the
axis A, which displaces the points of A at the distance 2, alon g
A . The element f (and likewise its inverse f -l) is called primary
element of F to the axis A, and 2. is called primary displacement
length belonging to the axis A . All elements of F belonging to
A are powers of f, and their displacement lengths are multiples
of 1 . The class FA does not accumulate in X . All its axes have
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the same primary displacement length . The number of element s

of F the displacement length of which is inferior to a given

positive constant is finite .
The properties of groups F and corresponding surfaces S

shortly recalled in this introductory section are investigated a t
length in my paper [13], to which reference may be made fo r

the proofs . In part I and II of the present paper most of th e

investigations are carried out in the convex region KF of X, the
universal covering surface of S with its group F, but incidentally

we may draw conclusions directly on the illustrative model S .

2. Transformation functions . Let a denote a topologica l

(i . e . one-to-one and continuous) transformation of S , into itsel f

preserving orientation . Let {xo} be any point of S and {x'o} it s

image under TS. Let x o be a point of KF representing {xo} an d

xo a point representing {x'o }. Then by continuity we have on e

topological transformation of KF and one only covering the

surface transformation cS and carrying xo into x~ . We denot e

this transformation of KF by x' = x (x) . The transformation

function x (x) thus defined in KF satisfies a system of functiona l

equations : Let f be any element of F 1) . As x and f(x) deter -

mine the same point {x} of S, their images under the trans -

formation x must correspond to the same point {x ' } of S:

z (f (x)) = f ' (x' ) = f' (x (x)), f' c F.

For reasons of continuity the correspondence f->- f' cannot

depend on the choice of x, and it is easily seen that this corre-
spondence constitutes an automorphic transformation of th e

group F into itself. Denoting this automorphism by the letter

I and writing fi instead of f' , we may write the above func-

tional equation in shor t

(2A)

	

xf= fi x .

In (2.1) f and accordingly fl ranges over the group F and th e

argument x of the functions (not written explicitly in (2 .1)) over

the convex region KF .

1 ) We denote this by f C F, using C as a symbol of inclusion, and writ e
likewise F D f.

Since in defining x we have chosen the representing point s
x o and x', of the points {x o} and {x'o} of S freely within thei r
congruence classes Fx o and Fx'o respectively, x is not the only
transformation function to represent the surface transformatio n
'LS. But it is evident that any transformation function coverin g
zS can differ from z by an element g of F only. Thus

gx=g(x(x)), gCF,

is the totality of transformation functions covering TS, the ele-
ment g ranging over the entire group F. Since (2 .1) may be
written

(2 .2)

	

xfx 1 = f1 ,

we have for gx the functional equation

gfx
1g-1

= g
6

g-
1

The automorphism f ,gfrg-1 corresponding to gx is said to be
related to I and is derived from I by applying the inner automor-
phism consisting in transforming by the element g . The totality
of related automorphisms obtained by making g range over F
is termed a family of automorphisms of F .

If the given topological transformation of S is made t o
vary continuously, even so as not to preserve its quality o f
being one-to-one, this will make z vary accordingly, but for
obvious reasons of continuity it will flot alter the functiona l
equation (2 .1). Thus the automorphism I induced by x will b e
unaltered . So we infer that the family of automorphisms of F
belonging to the surface transformation rS is an invariant of th e
transformation class of T .

In looking for invariants of surface transformation classes
the chief means lies in the fact that transformation function s
such as_x, originally defined in KF , extend continuously from
KF to KF, thus including the set GF of limit points of F withi n
the reach of their definition. For closed surfaces (r = 0) this has
been proved in [14] I, § 28 ; in [15], § 4, another proof will b e
found, which is valid also for r > O . The structure of x in GF
is easily described by first taking into account the set GF of
fundamental points of F. Any point x of GF is the positive funda-
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mental point Vi of exactly one primary element f of F. Then x

is the positive fundamental point of all elements fn , n> 0, and

of no other element of F . Now x carries the positive fundamenta l

point of any element of F into the positive fundamental poin t

of the element corresponding to it under the automorphism I

belonging to x . In symbols :

(2 .3)

	

x V1 = Vtl

Since GF is dense in GF , the extension of x to GF derives from

continuity, and it is seen that x is topological in GF and pre -

serves the order of G F on E. Cf. [14] I, § 9, and [15], § 3 .

From (2 .3) we infer that the transformation x GF depends o n

I only. So it does not vary even if x varies continuously in KF .

So we have : The transformations gx, ge F, of the set GF of limi t

points of F are invariants of the transformation class . One of

these, say z, is sufficient to determine all the others .

3. The group T. Another means needed for thorough investi -

gation of a transformation class is iteration of the transformation s

of the class . Writing the symbol 1 for the identical transforma-

tion of F, an enumeration of the elements of F may be given b y

1, fi, f2,	 in inf.

Writing r2 for the iterated transformation rrS, this transforma-

tion is covered by x 2 = x (x (x)) and likewise by all function s

of the sequence

Nr.2

	

1 1

By applying the functional equation (2 .1) it is easily seen
that these transformation functions form a group ; e. g. we get

fu xa •fv xß = fit (fu)l"
xaF ß

(f z"Y-1 = z "fu 1 - (fu 111-ati " .

This group will be denoted by the letter T . Moreover F is an
invariant subgroup of T, as is seen by applying the functiona l
equation in the form (2 .2) . The lines of the above scheme (T)
stand for the elements of the corresponding factor group T/F.

The transformation functions written in the scheme (T) need
not be different . Two functions in the same line are always diffe-
rent, since they differ by an element of F. Let fi x" and f„xß be

4the same transformation function of KF. Then f„
1
tuxa- = ~ 1

is the identical transformation of KF . Putting l a-ill = n, we find
that xn is an element of F. So rn is the identical transformatio n
of S. Since n 0, r is a transformation of finite order (a periodi c
transformation) of S . In this case T/F is cyclic. In case al l
functions of the scheme (T) are different, T/F is infinite, .viz . a
free group generated by one element, and r is not periodic .

The above scheme is, however, capable of another aspect . In

consequence of section 2 all functions of the scheme extend t o
the set GF of limit points of F. Moreover, all functions of th e
scheme remain topological in GF , even if x by continuous de -
formation does not remain so in KF . Therefore the group_ T
always exists as a group of topological transformations of GF,
and by section 2 it is evident that the group T defined in GF is an

invariant of the transformation class under consideration .
With this new aspect of the group T we may ask what ar e

the consequences of two elements of the scheme (T) being the

same transformation function in GF . It means that x n for som e
positive n transforms G . in the same way as a certain elemen t
f of F ; n may be chosen as the smallest positive number with thi s
property . Hence flxn , which is a function of the line [in] of (T) ,
leaves all points of G F fixed. The automorphism induced by
f-lxn therefore is the identical automorphism . This means that
znS belongs to the transformation class of identity, and r is said
to belong to a transformation class of finite order . These classes

10

{'

	

2
x 2 , flx2, f2x , 	

Supposing r topological in order that r-1 may be defined, thi s

extends to all positive and negative powers of r, and we get th e

following scheme written in full :

(T)

-2

	

-2

	

-
2x

	

fi x

	

f2 x

f1
ÿ1 f2x-1 . . . .

1

	

fi

	

f2

x

	

fi x

	

f2 x
~

xJ

	

fl x2

	

f2 xa
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therefore are characterized by the fact that the factor group T/F

is cyclic of some finite order n with respect to GF alone irrespec-

tive of the behaviour of the transformation functions in KF .

Transformation classes of finite order have been investigate d

at length in [15] . The chief result of this paper is that a clas s

of order n contains a transformation which is itself of order n .

So one may always choose periodic transformations as represen-

tatives of transformation classes of finite order . We take advan-

tage of this fact later on in this paper .

Periodic transformations of surfaces have been the subject o f

many investigations . Apart from their rôle in the theory of alge-

braic functions I quote in the present connection papers of L . E . J .

BROUWER [3], [4], [5], B . v . KERÉKJART6 [8], [9], section 6, § 6, W.

SCHERRER [19], [20], [21], F . STEIGER [22] and myself [16] . Later

on we will have to enter more fully into the details of such pe-

riodic transformations .

4. Principal region and kernel . From what has been sai d

it will be expected that a closer investigation of the behaviour

of all transformation functions of the scheme (T) in the set GF

of limit points of F will be needed . This investigation has been

carried out in [14 1 11 , and we have merely to draw up the result s

as far as they are required for our present purpose . In one respect

a slight addition has to be made : [14] only deals with the cas e

of a closed surface, whereas we here have to take into accoun t

the possibility of S being bounded (r>. 0). This does, however, no t

affect the validity of the analysis given in [14] . To be short ,

the difference can be eliminated by first mapping the circumferenc e

E continuously on another circumference E ' in such a way tha t

all intervals of regularity of E are mapped into single points

of E' and the circular order of E is preserved .

With slight variation in formulating the results, the analysi s

of [14] I1 may be described in the following way :

Let t denote any element of T and J the automorphism induced

by t . If t is unity, all points of GF are left fixed by t, and J

is the identical automorphism. We are concerned with the cas e

when t is not unity. Then, in general, the points of a certai n

true subset M of GF are left fixed by t . M is closed, since t is

Nr . 2

continuous on GF , and M may contain isolated points . As a spe-
cial case, M may be empty ; we have to deal with this case later
on . Also, in general, the elements of a certain subgroup N of F ar e
left fixed under the automorphism J. The fundamental points
of the elements of N ' then belong to M and so does the set G am,
of limit points of N. Inversely, a fundamental point of ,F belong-
ing to M is a point of GN . As a special case, N may consist onl y
of unity, and this may occur even if M is not empty . As another
special case, N may be abelian and then consists of all ele-
ments of F belonging to a certain axis ; in this case, the tw o
fundamental points of this axis are the only fundamental point s
of F belonging to M. In general, the subgroup N is not abelian
and then is of the same character as F itself ; the set Gr, of its
limit points then' is perfect and contained in M.

Every element of N carries points of M into points of M, thus
reproduces M ; it also reproduces the complementary set E - M.

Since M is a true subset of GF, some at least of the inter -
vals forming E-M contain points of GF . If i be such an inter
val, all points of GF, inside i are displaced by t in the same
direction ; this is easily seen to be true even in case r> 0, when
GF is nowhere dense on E ; all intervals of regularity of F play
the same rôle as single points . A point P of M will be termed
an isolated point of M, if P is common end point of two inter -
vals of E - M and both contain points of GF . It will be termed
attractive if the direction of displace -
ment in both intervals goes toward s
P, repulsive if the direction of displace -
ment in both intervals goes from P,
and neutral if the direction of dis -
placement in both intervals are i n
accordance on E.

If M contains a neutral point, M i s
made up of exactly two points, which
are end points of ari axis (fig. 1) . The

direction of displacement is indicate d
by arrows .

We now define a subset M* of M as follows. Let t belong to
the line [T' ] of the scheme (T) . If n > 0, M* is derived from M by
removing all repulsive isolated points (if any) . If n <0, M* i s

1 3

Fig. 1 .
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derived from M by removing all attractive isolated points (i f

any) . (If n= 0, we have t= f $ 1, f c F; then M consist s

only of the fundamental points U1 and Vi of f. If the axis of f

is not a boundary axis of KF, the former is repulsive, the latter

attractive ; so M* = V 1 .)
M* is still a closed set . In all cases in which M* consist s

of more than one point a convex region may be built on M *

in the same way as was used in deriving the convex region o f

F from GF in section 1 : We remove from X all non-euclidean half -

planes bounded by an interval of E- M *. The convex region ob-

tained in this way will be termed the principal region of t. In

case M* only consists of two points, the principal region degene-

rates to a non-euclidean straight line . This may or may not be a n

axis of F. In case M* only consists of one point, there is n o

principal region at all .

	

_

Moreover M* still contains all points of GN , with the only

exception of the case in which M is made up of two funda-

mental points (end points of an axis of F) . one of which is

repulsive the other attractive ; in the latter case, M* only consist s

of one point, and there is no principal region . So if a principa l

region exists, it contains the convex region of N, and this then

will be termed the kernel of t . Two special cases should be no-

ticed : If N only consists of identity, there is no kernel at all .

If N is abelian, G N consists of two points only (end points o f

an axis) : if one of these is repulsive the other attractive, there

is no principal region and no kernel ; if not, they are either

both neutral, or M* consists of more than these two points ; the

kernel then degenerates to the axis of N.
The mutual situation of principal region and kernel is go-

verned by the fact that points of M (and so of M*) do not

accumulate in the intervals of E- GN . Points of M' in such an

interval (if any) are therefore isolated and alternately attractiv e

and repulsive. If there is a kernel, the end points of such an

interval are end points of an axis hounding the kernel . All ele-

ments of F belonging to that axis are elements of N. Hence they

reproduce M. If therefore the interval contains a point of M, i t

contains an infinity of points of M accumulating towards th e

end points of the interval .
The principal region has cuspidal points in all isolated point s

of M*.

1 5

To sum up, we review the different cases which may occur .
In the figures it is assumed that t belongs to a line [r" ], n > 0 ,
of. the scheme (T) .

A. N only consists of identity. (GN is empty . )
Al . M is empty. t leaves no point of GF fixed .
A 2 . M is not empty . t leaves a certain number of points o f

GF fixed. This number is finite, since M does not accu-
mulate on E- G N = E. Fig. 2 shows an example, M con-
sisting of six points, three of which are attractive, th e

Fig : 2 .

others repulsive . There is a principal region but no kernel .
If there were but four points in M, the principal regio n
would reduce to a non-euclidean straight line . If there
were but two points in M, the subset M* would reduce
to one point, and the principal region would vanish .

B. N is abelian . (GN consists of two points only . )
Bl . M consists of these two points only (the end points o f

the common axis of all elements of N) . If these are
neutral points, the axis is both principal region an d
kernel (fig . 1). If, on the other hand, one is attractive ,
the other repulsive, M* consists of one point only, and
both kernel and principal region vanish .

B . M contains more than these two points . In at least on e
of the two intervals of E- GN there are cuspidal points
of the principal region . These accumulate towards the en d
points of the axis (fig. 3). This situation may occur i n
one or in both intervals .

14



1 6

C.

Nr. 2

N is not abelian. (GN is a perfect set.)

C 1 . M coincides with GN. Both kernel and principal region

are made up of the convex region of the group N.

Here is embraced the case in which N = F, i . e. t i s

identity .

C . M contains more points than GN . In some of the inter -

vals of E- GN we have a series of cuspidal points o f

the same kind as in fig. 3 . The kernel is the conve x

region of N and orms a part only of the principal

region (fig . 4) .

1 7

of different types of functions t arise from this analysis . But
these considerations are not necessary for our present purpose .

Any fundamental point of F is the positive fundamenta l
point Vf of some element f of F. If Vf. belongs to M, the ele -
ment f is fixed under the automorphism J. So VI/ belongs to
GN and hence to G N . From this we infer that all cuspidal
points of the principal region, which are situated in inter -

Fig. 3 .

Fig . 4 .

vals of E GN' are ,limit points but not fundamental point s
of F.

From this analysis two numbers may be derived . Let v

denote the minimum number of generators of N. In case C we

have v > 1, and N is a free group, if for the present we leav e

apart the case N = F and S closed. In case B we have a free

group N with v = 1 generator. In case A, when N is unity, w e

may agree to call a group consisting of unity only "a free grou p

with v = û generators " .
In case A the number of cuspidal points of the principa l

region is finite, say lc . In cases B and C this number . is either

zero or infinite, but in the latter case all cuspidal points aris e

from a certain finite number of cuspidal points by applying th e

elements of N. So we may speak of p, as the number mod 14

of cuspidal points .

It is shown in [14111, that v ± p is limited by some function

of the number of connectivity of S. Hence only a finite number

5. Classes of fixed points and index. Let us now consider
the function t of the last section not only as a transformatio n
function defined in GF but in KF = KF + GF , and let rn S be the
corresponding transformation of the surface S . Let Q denote
the set of points' of KF left fixed by t (if any). The set Q covers
a certain set q of points of S left fixed by rn. This set q is
called a class of fixed points of rn S. There may be other fixed
points of r1 S than the set q, since other functions of the schem e
(T) in the line [r n] of t, functions of the form ft, f c F, may
yield a class. For the moment we are concerned with the clas s
q only . Let xo be some point of Q, thus tx 0 = x 0 . What about
fxo , f c F? By (2 .1) we get immediately

tfx 0 = fj tx 0 = fj x 0 •

D . Kgl . Danske Vidensle . Selskab, Mat,-fys Medd . XXI,2 .
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So if f = 6, the point fx° belongs to Q, and if f $ fJ it does

not. Hence Q is reproduced by the subgroup N of F and by

no other element of F.

Let p denote a fundamental region of N in KF , i . e. a region

containing exactly one point of each set Nx, x C KF . Then the

class q will be covered exactly once by the part of Q belongin g

to V . Let us assume Ili to be so chosen as to be bounded by

a simple closed curve e of K r, not meeting Q . If x is a point

of e, let T (x) be the point of E in which a non-euclidean ra y

from x through tx meets E. As x describes c once in a positiv e

sense, (x) will in all make a certain number j 0 of tour s

of E . This number j will be called the index of the class q in

accordance with the common use of the term "index" ; see for

instance J .W . ALEXANDER [1], section 2, or S. LEFSCHETZ [12] ,

p. 276 : if q happens to be made up of a finite number o f

isolated fixed points, j is the sum of indices attributed to thes e

single points .
This number j is computed in [14] II, its value being (wit h

one exception assigned below )

.1 °j (t) = 1 - v -

thus only depending on the numbers v and p, attributed to t

in the preceding section . If the structure of Q be such as not t o

allow p to be so chosen as to be bounded by a simple curv e

avoiding Q, this may be achieved by a slight variation of t .

So we fix the value (5 .1) to be the index of q in all cases .

The exceptional case referred to above is a very, special on e

well known. from the homology theory of transformations : I f

S is closed and t belongs to the transformation class of identity ,

one gets

(5.2)

while in that case p , = 0 and v = 2p . This is the well know n

formula of BIRKHOFF [2] . The explanation of this difference is

simple : In all cases which are not the BIRKHOFF case, the deter-

mination of the index of a class of fixed points takes into ac -

count an auxiliary surface (so to speak), viz . the surface cor -

responding to the principal region of t ; ånd this surface in all

these cases is not closed. See also [14] II, § 16 .
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We now examine the different possible values of j in (5 .1) .
Since v > 0 and > 0 the greatest possible value is j = 1 aris-
ing from v = p, = 0 . This is the case A l of the previous sec-
tion. The next section will he devoted to closer investigation of
this case .

Then we may have j = 0 . That requires either v = 0, = 1 ,
or v = 1, ,u, = 0. If v = 0, p, = 1, we are in case A 2 with
2p, = 2 points in M, and no kernel nor principal region exists .
If v = 1, il = 0, we are in case B 1. If one point of M is attrac-
tive, the other repulsive, we have no kernel nor principal region .
If both are neutral, we are in the case of fig . 1 with an axis o f
F both as kernel and principal region .

Finally we may have j < 0, thus v + > 1 . Then we are i n
the cases A3 with' more than two points in M, B 2 or C . In all
these cases there is a principal region, and if v > 0 there is a
kernel .

It goes without saying that t must leave at least one poin t
of KF fixed, if j $ 0. If j = 0, it is not decided whether t leaves
some point of KF fixed or not .

In consequence of the limitation of v+p, mentioned in sec-

tion 4 there is a limit to the possible negative values of indice s
of classes of fixed points on a surface of given connectivity .
We do not state this limit explicitly, as we do not need it fo r
our purpose .

6 . Index j = I . If the set M of fixed points of GF under the
transformation t is not empty, let us examine any interval o f
E-M containing points of GF . These are displaced by f in a
definite direction common to all points of GF in the interval,
only the end points remaining fixed . By the- powers f 2 , t3 ,
this displacement is increased, thus no new fixed point ca n
arise . Hence t2 , t 3 , . • have the same set M of fixed points as t.
The same is true of t-2, • • • , in which cases the displace -
ment goes in the opposite direction . Moreover, isolated points
of M which are repulsive for t are repulsive for t 2 , t 3 , - • an d
attractive for t-1 , t-2 , - . In view of the definition of M* in
section 4, this set 111* therefore is common to all powers of t
(except t°, of course), and so are the principal region, the kernel ,
the numbers v and 1.1, and hence the index j. We thus infe r

2* .

(5.1)

j = 2-2p,
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that an index j 0 of a class of fixed points is stable with respect

to iteration of the transformation .

As to an index j = 1, things are different. In this case M i s

empty, so the successive displacements of a point of GF under

the powers of t may eventually carry it back to its origina l

position . In fact, in [14] III, § 1, it has been shown that som e

power tn , n> 0, of t will have a set M of fixed points, which

is not empty, in G F . It is true that in the proof given in [14]

III the surface was assumed closed, but, as in previous cases ,

the extension to bounded surfaces is immediate, if one makes

the intervals of regularity play the rôle of single points .

Let n be the smallest positive number for which to leaves

some points of GF fixed, and let M denote the set of these

points . Since M is not empty, we have j (tn ) < 0 . Let P be any

point of M and P' = tP its image under the transformation t .

Then

t nP' = tntP = ttnP = tP = P' ,

hence P' e M, and M is reproduced by t. Moreover, sinc e

t • in . t--l = tn , an isolated attractive point of M is carried into

an isolated attractive point of 'M, a repulsive into a repulsive ,

a neutral into a- neutral . Let N be the subgroup of fixed elements

belonging to t n . Since fundamental points are transformed by t

into fundamental points, it is seen that GN and hence GN i s

reproduced by t . We now examine the different cases of section 4 :

A. If In is of type A 2, , Al consists of 2,, points, p, of which are

attractive . Since the attractive points of M are interchanged b y

t, we must have p, > 2. Hence there is a principal region for t n

(in case ,u = 2 degenerating into one straight line) and, speakin g

symbolically, this principal region is "rotated " in itself ,, by t.

B. If t o is of type B, M contains two fundamental peints ,

and these are interchanged by t, so n = 2 . In case B1 these

two points clearly must be neutral . So we are in the case of

fig .1 and, symbolically, the axis, which is at the same tim e

principal region and kernel, is "reversed". In case B 22 the two

intervals are interchanged, so the two parts of the principa l

region separated by the axis (kernel) must have the same

number mod N of cuspidal points .
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C. In case C we merely notice that, symbolically, the prin-
cipal region of to is ' "rotated" in itself by t, and so is the
kernel of t n .

Thus it is seen that t-o has in all cases a principal region ,
and we may say that. t, though it has, not itself a principal region ,
is affiliated to the principal region of tn . This is of course the
principal region of all 'powers of to too . In the same way i n
cases B and C, in has. a kernel, and we may say that t is
affiliated to that kernel .

So the index of a ,class of fixed points with index j = 1 i s
not stable with respect to iteration of the transformation . It i s
affiliated to a class of fixed points with index j< 0 of some
power of the transformation . It should be noticed that severa l
distinct classes with index j = 1 may well be affiliated to on e
and the same class with index j < 0 of some power of the trans -
formation .

7 . Simple axes . Equivalence classes and congruence classes .
In the first part of this section we consider T as a group of trans -
formations of GF only, thus abstract from the rôle of the elements
of T as transformation functions of the convex region KF of F.

Let A be any axis of F, f an element of F belonging to A,
thus Ut and Vi the end points of A . Let t be any element o f
T and J the corresponding automorphism . Then t takes Ut and
Vt into the points Utz and VtJ respectively, i . e. into the end

points of the axis belonging to the element ff corresponding to
f under the automorphism J. We denote this axis by tA, thus
speaking purely symbolically of it as the image of A under the
transformation t . Making t range over the whole group T we ge t
a totality of axes, denoted by TA and termed the equivalenc e
class of A with respect to T.

	

-

If TA satisfies the condition that any two axes of TA are
either identical or have no point in common (thus do not inter-
sect), A and so any axis of TA will be termed simple with re-
spect to T . Examples are obvious : If the surface S is bounded ,
an axis bounding the convex region KF of F cannot be crosse d
by any other axis of F ; so it is simple with respect to T.

More generally, if A does not mean an axis of F, but merel y
a non-euclidean straight line joining two points of G F , the

20
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straight line joining the images of these to points under t i s

denoted by tA. Then the same considerations may be applie d

and simplicity of A with respect to T defined .

Moreover, if T' is any subgroup of T, the meaning of the
denotation T'A and of simplicity with respect to T' is immediate .

So if F is taken as subgroup of T, simplicity of A with respec t

to F means that the geodesic a of S corresponding to A does

not intersect ; if A is an axis, a is a simple closed geodesi c

(without double points) .
Simplicity with respect to T involves simplicity with respect

to any subgroup of T, but not vice versa . So if A is simpl e

with respect to T, a is a simple geodesic ; if a is a simple geodesic ,

A .is simple with respect to F, but A may be intersected by

some tA, t c T but not in F, and so need not be simple wit h

respect to T.
Let t i and t2 be two elements 1 of T and let a principa l

region, say S? (t i ) and S? (t 2 ), exist for both of them . It is firs t

assumed that ti and t 2 belong to the same line of the schem e

(T), say to [2R ] . Then n $ 0, since there is no principal regio n

for an element $ 1 of F. The mutual situation of Q (ti ) and

D. (t2 ) in KF then is one of the following three cases :

1) they are identical ,
2) they have no point in common ,

3) they have one axis of F in common .

In case 3) both functions of course have a kernel, say F (t i )

and T (t2), the axis is a bounding axis for both of these, an d

Q (t i ) and Q (t 2 ) and so r (t i ) and F (t2) are contiguous alon g

that axis .

The proof of this theorem is to be found in chapter _3 of

[14] II with a slight modification : The paper quoted speak s

of a principal region S? (t) only if t leaves more than tw o

points of GF fixed, whereas we here include the case (fig . 1 )

of t having exactly two fixed points, these being neutral . I t

will, however, easily be seen that this case exactly fits into th e

proof too.-The situation met with later in the present paper

makes our present, broader definition of the concept of prin-

cipal region D. (t) necessary . In fact S2 (t2 ), say, may happen

to be such an axis as in fig . 1, thus at the same time being

23

T(t2), and may coincide with a boundary axis of D. (t i ) (and so of
T (I I )) .

The above assumption of t i and t2 belonging to the sam e
line of (T) is readily seen to be superfluous . In fact, since
P. (ti ) and S? (t 2 ) exist, these regions are, as pointed out i n
section 6, principal regions. of all powers of t i and t2 respectively .
So in choosing a line of (T) containing a power of t i and of t2
simultaneously and applying the above theorem we get the sam e
three possibilities of the mutual situation of S3 (ti) and Q (t2 ) .

So if we let t range over all elements $ 1 of T for which
a principal region D (t) exists, the totality of these regions S? (t)
has the property that any two of its members do not intersect .

Now, let t and t i be any two elements of T. We consider
ti together with the conjugate element

i2 = tti t i .

It is obvious that any point of (F, left fixed by t i is carried
by t into a point left fixed by 12. So M(t2) is the image of
M (ti ) by t . As the character of being isolated, attractive etc .
is preserved for the points of M, and ti and t 2 belong to the
same line of the scheme (T) (thus n> 0 or n < 0 for both
in the definition of M*) we also have M* (t 2) = till* (t i ) . We
may therefore say sÿmbolically that Sd (t 2) is the image of Q (ti )
by t and write

( t2)

	

ts? ( ti) .

The same is valid for the kernels, if any . Making t range over
the whole of T we get an equivalence class TS? (ti ) of principa l
regions and TF (ti) of kernels . All functions tt i t 1 are said to
form an equivalence class of functions .

We now infer that any non-euclidean straight line, whethe r
axis of F or not, bounding some principal region, is simpl e
with respect to T ; this follows at once from the above theore m
that two different principal regions do not intersect . Especially
such a bounding line is simple with respect to F. Thus the
boundaries of a region of the surface corresponding to a prin-
cipal region are simple geodesics .

Since an equivalence class of principal regions is part of th e
totality of all such regions, ally two of its members are mutuall y

Nr.2
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situated in one of the three possible ways indicated above . W e

may express this property by saying that any principal region

is simple with respect to T.
We return once more to the comparison of two conjugat e

elements of T such as t i and t2 = ttjt 1 . If the element f c F

is left fixed by ti ,

1
N (t2) = tN (t1) t .

N (ti ) and N (t2 ) need not be conjugate subgroups of F, since

t need not belong to F . But they are isomorphic, so they hav e

the same number of generators . Hence

v ( t1) = v(t 2 ) .

From this isomorphism and from the homeomorphism of M*(t 1 )

and M* (t2 ), thus of S? (t 1) and Q (t 2), we infer that moreover

p, ( t i) = p, ( t2) '

So we find that indices are the same :

j (ti) = j (t2) .

We now again take T as a group of transformations of th e

closed convex region KF of F.

Any two transformation functions conjugate in T such a s

t 1 and t 2, yield classes of fixed points with the same index j,

as we have just seen . Are these classes different classes of fixe d

points of the surface transformation in question ?

To decide this, let t be a transformation function, J the

corresponding automorphism and xo a point of KF left firme d

by t. No other function of the line of t in the scheme (T) can

leave x o fixed, since it differs from t by an element of F. Now

let f $ 1 be any element of F. The function ftf 1 ffJ 1 t,
which belongs to, the line of t, evidently leaves Tx, fixed ; so no

other function of the line of t can leave Tx, fixed . If Q denotes

the set of fixed points of t, then fQ is the set of fixed points of

2 5

ftf
i .

So two functions ti and 4 yield the same class of fixe d
points, if one is transformed into the other by an element o f
F, and in that case only.

All functions ftf 1 , t ' being a fixed element of T and f rang-
ing over the entire group F, will be termed a congruence class
of functions and the corresponding set FSd of principal regions
a congruence class of principal regions . Two functions such as t
and ft fr = f fJ1 t are said to be congruents > .

Any equivalence class is subdivided into congruence classes .
In looking for classes of fixed points of a surface transforma-

tion zS, only one representative of each congruence class o f
functions in the line [z l] has to be examined . These are still in '
infinite number, but only a finite number of them yield a class of
fixed points which is not empty ; this is shown in [14] I, § 32 .

The principal regions of all functions ftf
-1

of a congruenc e
class are the images of .Q (t) by the transformations f c F. They
all cover one and the same region of the surface S .

Part 11 ,

Transformation classes of algebraically finite type .

8. Definition of the transformation classes concerned. The
matter of part I was an outlining in brief of the general founda-

fons of the theory of surface transformation classes needed
for establishing the main invariants of such classes . We now
proceed to the chief subject of this paper, a full investigatio n
of all transformation classes for which principal region and ker-
nel coincide for every element of T for which a principal region
exists .

The different types of functions t are analyzed at the en d
of section 4. To make things clear, let us look at the summar y
of that section with the present assumptions . Cases B 1 and Cs
are clearly in accordance with the present assumptions, wherea s
B2 and C 2 are excluded : the existence of cuspidal points make s
the principal region contain more than the kernel . In case A 2
there can only be two points in M, one attractive and one repul -

1) In [14] the term "isogredient" has been used .

Lift'
i

= f,

the element tft-1 , which also belongs to F, is left fixed by t2 .

So we may write
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sive, since for more than two points in M there would be a

principal region without a kernel . Case Al is permitted, but i t

has to be remembered that ' such a function is affiliated to a

principal region corresponding to a certain power of the func-

tion, and this principal region must then belong to one of the

types permitted .
The characterization of the transformation classes in questio n

may also be put thus : The number p,, defined in section 4, i s

zero for all elements of T except for the type v = 0, to = 1,
which is permitted, as it has no principal region .

One may ask whether transformation classes satisfying thi s

condition are to he found at all . It is readily seen that al l

transformation classes of finite order are embraced . For such

classes T/F is a cyclic group of some order n, as pointed out

in section 3 . It has been shown in §§ 6, 7 of [15], that any

element $ 1 of such a group T is either of type j = 0 with

v = 1, ,a = 0, one end point of the axis being attractive, th e

other repulsive, and so has no principal region, or of type j = 1

(v = p, = 0) . In the latter case the principal region to which th e

element is affiliated is the whole of KF, as the n-th power

of the element is identity . So for the entire group T the convex

region KF is the only existing principal region and obviously i s

kernel too . Hence the condition imposed above is fulfilled .

We are thus concerned with a rather far-reaching generaliza-

tion of transformation classes of finite order, for which the ter m

algebraically finite classes is proposed for reasons which will be

mentioned at the end of this paper.

9. Existence of simple axes . In the rest of this paper- rS

means a class of surface transformations, the corresponding grou p

T of which, defined in GF, satisfies the condition of section 8 .

We first ask whether axes which are simple with respec t

to T, thus are not intersected by any of their equivalents unde r

T, exist . If S is bounded, the axes forming the boundary of K F

in X are simple with respect to T. So let S be closed . We then

use the following theorem : For some power of r, at least, th e

algebraic sum of the indices of all fixed points of any trans -

formation belonging to the class is $ O. This theorem has been

Nr . 2

proved in [17] by purely algebraic means of homology theory,
using J . W. ALEXANDER ' S theorem [1] concerning the sum of indices ;
see also [18] . Now since. , the sum of indices of all fixed point s
is equal to the sum of indices of all different classes of fixe d
points, there must exist some function t $ 1 in T, belongin g

-tor or to some power of z, the index of which is j(t) $ 0 .
First let j(t)<O. Then we have 1 -v- ,u < 0 ; now ,u = 0 ,

since in the only exceptional case v = 0, ,u, = 1, we have j = 0.
Hence v> 1 and we are in case C of section 4 . More precisely ,
t belongs to the type Cl , since h = 0 (no cuspidal points) .

Then let j(t) = 1 . As described in section 6, t is affiliated
to the principal region of some power tn. Now ttn must be of
one of the types enumerated in section 6 . Of these, A 2 , B2 and
C 2 clearly cancel on our present assumptions . In case B x we
only have the situation of an axis with neutral end point s
(fig .1), and this axis is kernel . In C1 we have a kernel too .

To sum up, under the conditions imposed upon the trans -
formation class, the group T contains an element which ha s
a kernel (here coinciding with the principal region) . Now if a
kernel is bounded, a bounding axis of the kernel (which ma y
make up the entire kernel, case B,) is simple with respect t o
T, as shown in section 7 .

So we are left with, the last possibility of a kernel belongin g
to some element of T and coinciding with the complete conve x
region KF , which for a closed surface is the whole circular dis c
X. In that case the element 1 belongs to some line [En ], n It 0 ,
of the scheme (T), and' this means that r is a transformatio n
class of finite order (section 3) .

As transformation classes of finite order are fully investigate d
in [15], we may here assume that r is not of this special nature .
So we have established that an axis, simple with respect t o
T, always exists för transformation classes of the kind under
consideration .

To be precise, even for transformation classes of finite orde r
such simple axes do exist in general. As pointed out in [15] ,
[here is only one extremely special case of a transformation clas s
of finite order for which axes simple with respect to T do not
exist ; see [15], § 23 .

26 27



28

	

N r. 2

10. Decomposition of S by a maximum system of geodesics .

Let A l be any axis simple with respect to T. We consider th e

totality TA 1 forming its equivalence class (section 7) . As A l i s

simple with respect to the subgroup F of T, it corresponds t o

a simple closed geodesic a 1 on S, and so do all axes of TA 1 .

As any two of these simple closed geodesics do not intersect an d

S is of finite connectivity, their number is finite . For the groups

F and T this has the following bearing . z being chosen as a

transformation function of G F corresponding to TS, we recall ,

that xA 1 is meant symbolically to denote the axis the end point s

of which are the images of the end points of Al under the trans -

formation x. Moreover, if an orientation is assigned to A l by

taking its end points in a definite order, this is transferred as

a definite orientation of zA 1 . Then in the sequenc e

(10. 1)

there is a first axis, xal A 1 say, corresponding to A 1 by an ele-

ment of F,
xa1 Ai = fA 1 , f c F,

orientation included . If a l is an even number, it may happe n

that x 2 Al corresponds to A by an element of F with orientatio n

reversed ; in that case Al will be termed an amphidrome axis .

On the surface S we may denote symbolically by

a1 , wa l Z2a1, . . .

the simple closed geodesics corresponding to the axes (10 . 1), al -

though the real image of a, by any special transformation of the

class w does not, in general, coincide with the geodesic covered b y

the axis xA1 , but is only homotopic to it .

With this denotation we get a l simple closed geodesics with -

out common points

a l wa l w2a1 . . . wayla l

on S from (10 .2) in case Al is not amphidrome, whils t

Tat al = a 1

29

with orientation preserved . . These geodesics are covered by th e
'axes

Al , xAL, x 2 g l, . . : , xal-1A 1 .

The equivalence class TA 1 then is made up of a1 congruenc e
classes

FA 1 , FZA 1 , Fx 2 A 1 , 	 Fxal-1A 1

(Of course, a 1 may be 1 .) If on the other hand A l is amphidrome ,
we get

21
geodesics

a ~

whilst v2 al coincides with a l with orientation reversed . This
requires a 1 > 2 and even. The equivalence class of A l is mad e

up of
2 congruence classes irrespective of orientation .

Let A 2 be an axis simple with respect to T, not comprise d
in TAl and not crossing any axis of TA 1 , if any such A 2 exists .
Then TA 1 and TA 2 have no point in common and, a2 denotin g
the number analogous to a1, we have on S in all a1 + a 2 simple
closed geodesics without common points, in case both A l an d
A2 are not amphidrome, and otherwise a smaller number . Then
we may look for a third axis A 3 and so on . This process comes
to an end in a finite number of steps in view of the finit e
connectivity of S . Let

(10 .3 )

be the maximum system finishing the process. This system then

any two axes do not intersect .

2) Any axis simple with respect to T and not comprised i n
the set (10 .4) crosses at least one axis of this set .

a
The numbers 2̀ or ai denoting the number of congruenc e

classes in TA i, according as A i is or is not amphidrome ,

(10.2)

bas the following property :

1) In the set of axe s

(10 .4)

	

TA 1 +TA,+•--+TA1

a` -1
al , wa 1 	 w2

	

a l ,

A l , A 2 , . . . A ~ .
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i = 1, 2, • , fi, we have on S in all, at most, a 1 + a2 + • • + a 1

simple closed geodesics without common points . These divid e

S into a certain number > 1 of parts .

In the case of . a bounded surface it may be noticed that i n

whatever way the system (10 .3) is chosen, any bounding axi s

of KF is comprised in the set (10 .4) . Otherwise it would con-

tradict condition 2 . Moreover, a bounding axis of KF cannot

be amphidrome, since one of the intervals determined by it o n

E does not contain points of GF .

The set (10 .4) of axes clearly is reproduced by any elemen t

tc T . Moreover, the arrangement of these axes in KF is pre-

served, since t preserves the circular order of the points of GF .

So the division of KF by the set (10 .4) is reproduced under t :

Let B be any region of that division . The boundary of B inside

l' is made up of a subset of (10 .4). If A, A ' , A " are any three

axes of this subset, none of them separates the two others . If

A is an axis not in the subset, axes A ' and A" of the subset

may be so chosen that A ' separates A and A ". As these separat -

ing qualities are preserved by t, the subset of (10 .4) into which

the subset bounding B is transformed by f, is the boundary o f

some region of the division . This region will be denoted . sym-

bolically by tB . So we may form the concept of equivalence

class TB and of congruence class FB of B, and split any equi-

valence class into congruence classes . In the sequenc e

B, z B, x2B, - .

let dB be the first to be congruent to B :

~B = gB, g F.

	

(S =�= 1 )

Then TB is made up of ß congruence classe s

FB, FxB, Fx 2 B, • - •, Fx~~ 1 B.

If in the division of S corresponding to the division of KF by

the set (10.4) the part covered by B is denoted by b ,

b, zb,z 2 b, . . ., wß-1b

3 1

will be ,8 different parts, each covered by one of the congruenc e
classes (10 .5) of regions of KF .

11 . Transformation class of finite order in the singl e
regions . We now consider some definite region B of the divisio n
of KF by the set (10 .4) and denote by TB the subgroup of T
and by FB the subgroup of F carrying B into itself. FB is the
Poincaré group of the part b of S covered by B, and B is the
convex region of the group FB . .If f is the least positive number
such that

x~B = gB, g c F,

-1 3
g x =

So xBB = B . It should be noticed that g is not unique bu t
may be replaced by gfB , fa being any element of FB . Then xB
is replaced by fB1ZB . This replacement has no influence on th e
following argument .

Elements of TB are to he found in those lines of the schem e
(T) which contain powers of xB . Moreover, FB is clearly inva-
riant in TB , and we get

TB - FB + FB xB+ FBxB-}- . . .

-Î' FB xB 1 +FB xB 2 -f- . . .

each of these parts of TB being contained in some line of th e
scheme (T). If we assume the factor group T/F to be infinite ,
'r not being a transformation class of finite order, even the facto r
group TB/FB will be infinite .

One may, however, regard TB merely as a group of trans-
formations of the set

GFB of limit points of FB ; that is the se t
of all those boundary points of B which are situated on E.
Then TB defines a transformation class rb (and all its powers)
of the surface b = B inod FB just in the same way as T, given
in GF, defines a transformation class a (and all its powers) o f
the surface S = KF mod F. In this respect, an element o f
TB being unity only means that it leaves fixed all point s
of GFB regardless of its behaviour in the rest of GF . So in this

(10.5)

(10 .6)

we put
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view the question as to the order of the factor group TB/FB

arises anew .
To make this important point quite clear, we may put i t

in the following way in the language of group theory . Let To B

denote the subset of TB the elements of which transfor m

G in the same way as some element of FB , i . e . ToB consist s
F B

of all such elements t of TB to which an element f of FB exists,

making the element ft leave all points of
GFB

fixed. This subset

ToB
forms a group : Let t i and l belong to ToB and fi and f2

be the corresponding elements of FB . Then, if J denotes the

automorphism induced by t1 ,

fl t ]. . f2t2 = fif2J ti t)

leaves all points of
GFB

fixed and flf2J
e FB ; hence tl t 2 c ToB .

Moreover ToB is invariant in TB : Let t1 c T0B with f as corre-

sponding element, to TB with J as corresponding automorphis m

and the point Pc GFB. What is the effect of ttlf
1 upon P? Put

t
1
P = P l C G . Then tlP = f

1P1 .
Finally tf PI = fj tPi =

= fJ 1 P. Hence the element ff tt lt-1 leaves every point P of GF
B

fixed, and ff C FB . Thus tt1 t 1 ToB .
The invariant subgroup ToB of TB evidently contains FB , but

it may contain more . So the corresponding factor group T B/To B

may well become finite, even if TB/FB is not. We set out to

prove that it actually does .

We first establish the fact, that the transformation class rb

of b satisfies the condition imposed on the class a of S in section 8 ,

P
Fig . 5 .

viz . that every principal region coincides with its kernel . In ,

fact, assume t to be an element of TB the principal region of

which has a cuspidal point PC GFB. Let P be attractive, and let

Q and R be the neighbouring repulsive points of GFB; see fig . 5 .

All points of GFB contained in the segment QPR are displaced

Nr. 2
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towards P by t except Q, P and R, which are left fixed . Moreover,
Q, P and R are accumulation points of such points of GF . Now
let i be any interval of

E-GF belonging to the segment QPR.
The end points of i belong to GFB , but are not Q, P or R, since
these points are accumulation points of

GF~I
on either side. So

the end points of i are displaced into the end points of som eother interval ti nearer to P. If then i contains points of GF(not in GFB) and we regard t' as a transformation function i n
the whole of GF, these points are not left fixed by t . So even
as we regard t as an element of T, the points Q and R are
fixed points neigbouring P and the corresponding principal regio n
would have P as a cuspidal point.-If P is not a cuspidal point ,
properly speaking, ,but t leaves only four points of GF fixed ,
say P and P' attractive and Q and R repulsive, the principa l
region degenerates into a simple non-euclidean straight line ; but
this then is seen by the same argument to be principal regio neven for t as an element of T in contradiction to the assumptions
made in section 8 .-So the proof is complete .

Since B is bounded, FB is a free group with a certain mini -
mum number v, say, of generators . Then at least one of th e
transformation classes

. z b

of b yields a class of fixed points the index of which is not zero .
This is seen by the argument - of [17], p. 202-2031) .

1) As the proof given in the paper quoted only takes closed surfaces int o
account, we shortly indicate the modification required, preserving the notation

sof the paper quoted : The algebraic sum of the indices in the r-th power of thetransformation class is 1 -s, instead of 2-s,, , since the surface is bounded . If
this sum were to be zero for r.,, q, -, ri' ; we get

S1=s2= . . .

	

sy=1 .

Now using equations (1), (2), • -, (e) of the paper quoted, we get in tur n

a l = --1 from (1 )
a 2 = 0 from (2 )

ay - 0 from (e) .

But a y is the determinant of the matrix l and so is

	

O . This completes th e
proof. -

D . Kgi . Danske Vidensk . Selskab, Mat .-rys : Medd . XX I, 2 .

b'
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Now, by section 9, the existence of an element of TB the

index of which is not zero involves the existence of a kernel .

Such a kernel must be bounded, since B is hounded. Let A be

an axis of FB bounding some kernel . Then by section 7, A is

simple with respect to TB . From this we infer that A is simpl e

with respect to T. Indeed, let t be any element of T. If t belongs

to TB , tA does not cross A, since A is simple with respect t o

TB ; if t does not belong to TB , it takes B into some othe r

region tB not intersecting B, so A c B and to C tB do not inter-

sect . Hence A is simple with respect to T. If A were interio r

to B, i . e . not a bounding axis of B, it would not belong to th e

set (10
.4) and so would contradict condition 2, which charac-

terizes (10.4) as a maximum set. So the kernel in question must

coincide with B. This means that the unity element of TB occurs

in some set FB 4.B, n 0, and so TB /FB is cyclic of some finite

order nB, if these groups are only considered in GFB . In other

words, using the above notation of the subgroup ToB defined

in GF , the factor group TB/To B is cyclic of order nB .

Hence the transformation class of b = B mod FB defined b y

the element xB is a class of finite order .

12. Screw numbers . Let A be any oriented axis of the se t

(10.4) and fA the primary element of F belonging to A, so al l

powers of fA forming the subgroup FA of F with A as axis .

Let TĒ denote the subgroup of T the elements of which leav e

A fixed, orientation included, thus including the end points o
f

A in their set of fixed points in G F . This group TA may be

found in a similar way as the group TB of the preceding sec-

tion : In the sequence analogous to (10 .1)

A, zA, x2A, . .

we determine the least positive number a for which

x" A = fA , f c F,

orientation included, and then pu t

f 1x " - xA'

hence xA A = A . (The element f is not unique but may be replace d
by ff1 for any n, thus replacing xA by f~-ncA . Compare the corre-
sponding remark as to xB in the preceding section.) Then w e

TA - 1ÿA + FA zA -{- FA xÅ + .

+FA x41+FAxA2+ . .

Fig . 6 .

if A is not amphidrome, whereas for an amphidrome A ther e
exist elements of -T reversing A , and then TÅ is an (invariant)
subgroup of index 2 in TA . As will be remembered, an amphi -
drome axis is not boundary axis of KF .

We now assume A to be an inner axis (not boundary axis )
of KF.

Let B and B' , (fig. 61)), denote the two regions contiguou s
to A in the division of KF by the set (10 .4), B on the left hand
side of A, say. Let the numbers p3 and /3' belong to B and B'
respectively in the sense of the preceding section . Clearly TÅ is a
subgroup both of TB and TB, . The elements of TÅ are contained
in those lines [va ] of the scheme (T) for which n is a multipl e
of a, the elements of TB and TB, in the lines for which n is a

1) The figure is schematic. The number of bounding arcs of B and B' i sof course infinite .

Denoting by TA the subgroup of T the elements of whic h
carry A into itself irrespective of orientation, we have TA = TÅ,

c;

get

3*



N r . 236

multiple of ,6 and ß ' respectively . Hence a is a common multiple

of ß and f ' . On the other hand, let nB and nB, denote the order

of the transformation class of finite order assigned in the pre -

ceding section to B and B ' respectively . Then the line [r ' BP 1 of

(T) contains an element leaving all boundary points of B on

E fixed, thus belonging to TA . Hence a divides nB ß . Likewise

a divides
Denoting by L the least common multiple of n B ß and nB,ß' ,

the line [vL] contains both an element t leaving the boundary

points of B on E fixed and an element t' leaving the boundary

points of B' on E fixed . (4 belongs to [rL], since ;I A belongs

to [el . a divides L, since it divides both nBß and nB,ß' •) Since

t and t' are in the same line of (T), they differ by an element

f of F. Since both t and t ' leave the end points of A fixed, f

does so too, and so is a power fA of fA . Hence

(12.1)

	

t = fft .
Now tGFn is the identical transformation of GFß

and

will be termed the screw number of the axis A .

The screw number of an axis remains invariant under the opera -

tions of T . [To be sure, replace A by nit, u e T . Then x A i s

replaced by ux.A U , and a remains unaltered . B and B' are

replaced by uB and uB ' , uB being to the left of ult . The num-

bers

	

n B , nB , and hence L remain unaltered . fA , t and t ' ar e

replaced by ufAu 1 , utu 1 and u1 ' u1 respectively . So e and hence-

sA remain unaltered .] Thus the screw number may be said t o

belong to the equivalence class TA .
Since, in case S is bounded, all boundary axes of KF are

comprised in (10.4), it should be emphasized that screw num -

bers are only assigned to inner axes .

Nr.2
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13. Division of S into complete kernels . Now suppose the
screw number sA of A to be zero, thus e = 0 and by (12.1)
t = t' . The element t then leaves both the limit point set of FB
and FB, fixed, thus both B and B' belong to the kernel of t .
For all other axes of the equivalence class TA the situation i s
the same, as they all have their screw number equal to zero .
So we may take A to be one of the axes of the set (10 .3), A~
say. We then omit the subset TA, from the set (10 .4) . Proceeding
so for all values of the subscript 7 for which

sA ;t
= 0 we re -

duce (10 .3) and so (10 .4) to a smaller set, if any s = 0 occurs .
It may happen that the entire set (10 .3) and so (10 .4) or ,

if S is bounded,, å 1 inner axes of these sets cancel in this way .
This means tlxåt he convex region KF is no more subdivided .
So the whole of KF is the kernel of some element t e T not in
the line [r°] of the scheme (T) . This line then is identical with the
line [v°] = F, as far as only GF is concerned . As stated in section 3 ,
this means that r is a transformation class of finite order . This
case is fully investigated in [15] and we have nothing to add .

In order to get a true generalization of transformation classes
of finite order we thus suppose that at least one inner axis o f
(10.3) does not cancel . We denote anew b y

(13 .1)

	

A l , A2, . . . . Ai, Ai+1,

	

. . ,A('' )1+r r> 0
the remaining axes and by

(13 .2)

	

TAI -I-TA 2 +

	

+ TA 1 +Till+1 +

	

+ TAi

the set of their equivalence classes taken together. Al , A 2 , • • , A i
are taken to denote inner axes, A i_F1 , • • • , Ai+r are representa-
tives of the r equivalence classes of boundary axes of KF corre-
sponding to the r (> 0) bounding geodesics of S . The' set (13 .2)
has still property 1) attributed to the set (10.4) but, in general ,
not property 2), as some axes of (10 .4) may have been omitted .

As i> 1 we still have a division of KF by (13.2). We continu e
to use the letter B to denote some region of that division . So every
region B is now the complete kernel of some function of T.
Inversely, every kernel of T is someone of the regions B or
someone of the axes separating them, since a kernel does not
cross any other kernel.

_ e a

sA

	

L

tGFL;= [At'GFB, fA GF
R•

The element t, which leaves all points of GFß fixed, displaces

all points of GFB, in the same way, as does the element fAe of F.

The rational number

(12.2)
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Hence the transformation classes of algebraically finite typ e

constituting the subject of this paper may be characterized as

such transformation classes for which KF is made up of kernels ,

or, if we transfer the notation of "kernel " to a region b of S

covered by some B, for which S is made up of a finite numbe r

of kernels .
It should not be overlooked that even some or all of th e

inner axes A l , A 2 , • , A i of (13.1) and their equivalents by T

may play the rôle of independent kernels . Let us look closer

at the axis A of fig. 6 together with its neighbouring regions B

and B ' and use the notations of section 12 . As A is to be

one of the axes still in (13.2), e O ; let us assume e <-1 .

Then under the transformation t all points of
GFR

are fixed and

all points of GFR, are displaced in the same way as by fA ,

thus towards U = Utz . By the element fA t e T all points of

G-FE

	

displaced in the same way as by fA , thus toward s
FI3

V = V
1A , whereas all points of GFE,

are displaced in the same

way as by fA
e+l , thus still towards U. So these two direction s

of displacement coincide on E, both V and U are neutral, an d

A is the kernel of fA t, being of the type of fig. 1 . The index o f

fA t is zero, since we have v = 1, u, = O .-The case e> 1 may be

treated accordingly .
A case of special importance is that of A being amphidrome .

Let h be an element of T reversing A . Then h clearly leaves

no point of GI. fixed, so the index of h is 1 . The regions B an d

B' contiguous to A are interchanged by h ; so they are equivalent .

The element h2 leaves U and V fixed . Now suppose that h 2 leave s

some point P of GF other than U and V fixed . Since .

h-̀'hP = hh 2 P = hP,

h' also leaves hP fixed. The axis A separates P and hP . Now ,

since fA belongs to the subgroup N of elements left fixed by the,

automorphism induced by h 2 , both P and hP are carried int o

other fixed points by all powers of fA . So in both intervals

determined on E by U and V the points of GF left fixed by h2

are in infinite number . Thus there exists a principal region fo r

the element h', and this region contains A as an inner axis .

This is in contradiction to the fact that the principal region i s
at the same time a kernel, and that A is not inner axis of th e
kernel of some element $ 1 of T ; we have h 2 1, since T
contains no element of finite order. Thus we infer that no poin t
of GF other than U and V is left fixed by Ir .

If the direction of displacement by h 2 to the left of A goe s
from U to V, say, to the right of A it goes from V to U ; thi s
follows immediately by using the equation h • h 2 • h1 = h2 . So
these two directions coincide on E, and both U and V are neutra l
(case B of section 6) . Hence A is the kernel of h 2 , belongin g
to the type of figcl, . So we see that an amphidrome axis is always
an independent kernel .

As we liav just seen, in contrast to a non-amphidrome axi s
A, for which all elements of T with A as their kernel hav e
their index equal to zero, an amphidrome axis A gives rise t o
an element h e T with j (h) = 1 . One may ask if there are more
elements of T with j 1., affiliated to the same kernel A, in
the transformation class Jo which h belongs. As such an elemen t
has its place in the line of h in the scheme (T), it has th e
form fh, f c F. As fh is affiliated to A and j (fh) = 1, fh inter-
changes U and V, and as . h does too, f must leave U and V
fixed, thus f c FA , f = T , for some n O. Hence all element s

fAh, n arbitrary ,

and no other elements of the line of h interchange U and V
and so are affiliated to A . Each of the elements (13.3) thu s
defining a class of- fixed points with index 1 in the surfac e
transformation class given by h, we have to ask how man y
of these classes are different, i . e . what is the number of con-
gruence classes (section 7) into which the functions (13 .3) fall .

If J denotes the automorphism of F induced by h, J carries
FA into itself, since h interchanges U and V. So involves an
automorphism of FA , and this is not the identical one . Now ,
FA consisting of all powers of the primary element fA , there i s
only one non-identical automorphism of FA, viz. the replacemen t
of fA by fA--l . So

h fAh-1 - (fA)J = fA-1 .

i!



fJfJ '-1 = (fA) J = fA
i

From this we get by multiplying these two equation s

fff"1=1 .

So f is left fixed by the automorphism J 2 induced by h2. Now ,

as shown above, h 2 leaves only U and V fixed, so J 2 leaves

all elements of FA and no other element of F fixed. Hence

f = fA

fA '

which is impossible . Hence the congruence classes of h and

fAh are different .-So we have :

One of the inner axes of the system (13 .1) which is am-

phidrome for some transformation class, ,rn say, and so i s

reversed by some element of the line [rn] of the scheme (T) ,

gives rise to exactly two classes of fixed points of the surface

transformation class cn S each with index 1 .-This may be illu-

strated by the fact, that if a surface transformation of the clas s

rtt S is so chosen as to carry the closed geodesic corresponding

to the axis into itself with orientation reversed, exactly tw o

fixed points will arise on the closed curve .

Ni'. 2

= fA(fA nl)Jh = fAmh

- fAfA(fAm)Jh = f
2m-hlh .

Thus all elements of (13 .3) with n even belong to the con-

gruence class of h and all elements with n odd belong to the

class of fAh . It remains to be seen whether these classes ar e

identical or different . Suppose they are identical . Then an elemen t

f e F exists such that

fAh = fhf-1 = ffJ lh ,

hence

(13.4)

and by applying J

Nr.2
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14. Construction of a special transformation . The analysis
of the preceding sections enables us to construct a surfac e
transformation of a prescribed class a of algebraically finit e
type such that each class of fixed points with index 0 is
"satisfied" by one single point of the surface and classes o f
index zero are completely avoided . In order to distinguish be-
tween the transformation class i and the special transformatio n
to be constructed, we denote the latter b y

Let a denote the closed geodesic on S corresponding to som e
inner axis A CSôf the set (13 .2). We assign to a a narrow band å
of constant 1l readth of S enclosing a as its middle line . The par t
of KF covering å is a strip A enclosing A and bounded by tw o
circular arcs, all points of which are at the same non-euclidea n
distance from A ; the end points of these arcs coincide wit h
the end points of A. Of course, all strips of the congruence
class FA also cover å .

This construction is made for all closed geodesics of S cor -
responding to inner axes of the set (13 .2). Since these geodesics
are in finite number, the bands may be chosen so narrow as
not to have common points . Then also any two of the strips
arising in KF do not interfere . For convenience we may take
all bands equally wide .

We then have a division of KF by the equivalence classes
of strip s

instead of by the inner axes of the set (13 .2). We continue to
use the letter B to denote 'any region of that division and t o
denote by b the corresponding region of S . A boundary curv e
of b which is not a boundary curve of S is then no more a
closed geodesic, but a closed simple curve (boundary curve o f
some band), all points of which are at constant non-euclidea n
distance from a closed geodesic . This evidently makes no differ-
ence in speaking of tB as the region corresponding to B b y
the element t c T, of the equivalence class TB, and so on .

Now let b be any region of the division of S, B a corre-
sponding region of KF and the number /3 and an element xß
defined as in section 11 . It has been shown in that sectio n
shat z B defines a transformation class of some finite order nB

40

Hence we get

fA 12 f A m

fA (fA ll) fA
m

ffJ
1
- 1A

and by (13 .4)
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(or, as we may write, n b) of the sub-surface b . By the chief

theorem of [15] this class may be represented by a periodic

transformation of b of order ri b . We construct such a periodic

transformation of b by the process outlined in the paper quote d

and denote it by b .

If ,8> 1, x B = B 1 (section 10) is a region symbolically equi-

valent to B (by T), but not congruent to B (by F) ; so B 1 cor -

responds to some region b 1 different from b in the division o f

S. Denoting as in section 2 by I the automorphism correspondin g

to x, the group FB is carried into FB, by I . To this automorphis m

between FB and FB corresponds a class of transformations o f

b into b 1 . We choose any topological transformation of b into

b 1 belonging to that class and denote it by b . Then ~S ß S

	

is

a periodic transformation of b i = b into itself of order ri b = rrb ,

which is denoted by eb 1 .

If "3> 2, we proceed in the same way for x 2 B = B2 and

the corresponding region 'ç. 2 b = b 2 and continue this process ,

till we reach ß-1 b = ba_ 1 . Now, since z B = gB for som e

g e F (section 11), we have to transform bß_ 1 into b by a

topological transformation and there is no choice left ; it has

to be such that

=

	

= VI)

is the transformation of b into itself already constructed . Now

we have achieved the construction of a group of transformation s

consisting of all powers of in the set of sub-surfaces b, b 1 ,

These regions are interchanged cyclically b y

whereas e is for all of them a periodic transformatio n

of order n b . So sß' is the identical transformation in these )3
regions .

If there are more than these f regions on S, we choos e

another one and repeat the process for its equivalence class .

After a finite number of steps is defined in all regions of th e

division of S .
We now have to consider what this construction of the trans-

formation S in the regions of S means in KF . It will be remem -

bered that all elements of F are defined in K F , but all other

elements of T have so far only been defined in the set GF

Nr.2
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limit points by way of the given transformation class c an d
its powers . F carries the set (14.1) of strips into itself and so
also carries the complementary set of KF , i . e . the set of regions ,
into itself. So F is a transformation group of the set of region s
of KF . To extend this property from F to T, take any regio n
B of KF . The notation x B = B 1 has hitherto been meant sym-
bolically to denote the region of KF the limit points of whic h
are the images of the limit points of B by z. Now, the region
h of S covered by B is subject to a topological transformatio n

into the region b 1 covered by Bi ., and this has been so con-
structed as tb correspond to the automorphism I induced b y

and taking FB into FBt . So there is one topological transforma-
tion, and one only, mapping B into Bi and covering s, so as to
correspond to I. We may denote this transformation by th e
same letter x, so that xB = B 1 now literally indicates th e
mapping of B into B 1 'by x . As this applies to all regions B
and extends to all powers` of x, we have extended T to denot e
a certain group of topological transformations of the set o f
regions of KF . This group satisfies the set of functional equa-
itons (2.1) or (2.2) .

We now have to extend T to the strips of KF thus definin g
in the bands of S.

Let A be an inner axis of the set (13 .1) and a the numbe r
assigned to it in section 12. We first assume A not to be am-
phidrome and take a> 1 . Then xA = A 1 1> means symbolicall y
the axis the end points of which are the images of the en d
points of A by x . Now, boundary arcs of strips are boundary
arcs of regions too, so the mapping function x is defined on
them . Hence the boundary of the strip A imbedding A is mappe d
by x upon the boundary of the strip A l imbedding A 1 . We
have to extend this mapping function to the interior of A .

For convenience we represent the strips A and A l by the
strip 0 < y < 1 of a euclidean .xy-plane and the strip 0 < y ' < 1
of a euclidean x 'y '-plane respectively (fig . 7). (This may be
achieved by some auxiliary mapping function) . The axes A an d
A, are represented by the lines y = 2 and y' = 2 respectively .

The primary translations fA and fA are both represented b y
1 ) Here subscripts have no connection with the notation of (13 .1), of course .
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translations of length 1 of the euclidean strips . So two point s

of A corresponding by an element of FA are represented b y

two points having the same value of y and having values of

x the difference of which is an integer .

i3 '

On the boundary y ° 0 of A we have by x a transformatio n

function x' = x t (x) taking this boundary into the boundary

y ' = 0 of Al and satisfying the functional equatio n

x i (x+1) = xi(x)+ 1 ,

since x fA = fA,x ; the element
fAi

corresponds to fA by the

automorphism I induced by x . In the same way on y = 1 w e

have a function x' = x 2 (x) taking this boundary into the bound-

ary y'

	

1 of Al and such that

x 2 (x + 1) = x2 (x) +l .

If now we carry the straight segment joining (x, 0) and (x, 1 )

into the straight segment joining (x t (x), 0) and (x 2 (x), 1) by al l

affine transformation, we get a topological mapping x of th c

strip A upon the strip Al coinciding with xt and x 2 respectivel y

on the boundaries and satisfying the functional equatio n

x fA = fA X .

(If (x, y) is carried into (x' , g ' ), then y = y ' and (x + 1, y) i u

carried into (x ' + I, Y').) So this transformation x of the strip .1

upon A i covers a topological transformation of the band å o f

S covered by A upon the band å l covered by A 1 . This trans

Nr.2

	

45

formation may be denoted by

	

since it links up with th e
transformation

	

of the adjacent regions of S already defined .
If a> 2, we define x 2A and so 2 å in the same way and

continue this process until we reach xa-1A = A a_1 covering
the band å a _ 1 . We now have to define x"A = xAa _l . Let us first
suppose this to be done in the , same way as before . The strip
Aa , upon which A is mapped by x" is congruent to A ,

x"A = fA, f c F,

according to section 12 . "å is a transformation of the band å
into itself. As the values of y are not altered by our construction ,
a curve of å corresponding . to constant y is carried into itself .
So fixed points may arise ip å under the transformation I n
order to avoid this we first ,replace the point (x, y) of A b y
the point (x, y 2 ) and then apply the above construction, i . e . the
image of (x, y) under x" is . the image of (x, y 2) by the above
construction applied to the strips A and Aa . So we get the fina l
definition ofand thus, the definition of all powers of

	

in
å and in rå, S 2 å, • •, "

-1
å too.-In case a = 1, the definition

of V" just given is that of

	

itself.
Since r. is now defined - in the whole equivalence class TA

by means of the functional equation (2 .1), the whole group T
is defined in that totality of strips TA . Let us look at the
regions B and B' neighbouring A and use all notations of section 12 .

L
The element r. A transforms A into itself. In the line of xÅ of
the scheme (T), which is, the line [TL ], there is a function t
leaving all limit points of B fixed ; this element t now is define d
in all regions of IÇ and in the strip A too. It leaves all point s
~f B fixed, since we have in B a periodic transformation an d
the limit points of B are left fixed. In the same way t' leaves
all . points of B' fixed. Then by (12 .1) t displaces all points o f
13' in the same way as does fAe . Consider a curve of A joinin g

x, 1) and (x, 0) in ' fig. 7, a segment at right angles to A, say .
(x,1) is left fixed by t, since it is on the boundary of B, ånd
(x, O) is carried into (x + e, 0) by - t. For the transformatio n
L of the band å into . itself this means that is the identical
transformation on both boundaries of the band but carries
a straight segment joining two opposite points into a curv e

	A,
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which winds e times round the band . This explains the definitio n

of the screw number given in (12 .2). As å is transformed int o

L
itself by the powers of r only, we divide e by - .

M . DEHN calls a transformation such as that just defined i n

the band å "Verschraubung". Such transformations are the chief

means of investigation in his paper [6] . See especially § 2,

p.141-142 of [6] .
Finally we have to assume A to be amphidrome . Then w e

have a> 2 and even . In this case the definition of xA, x2A ,

described above goes without limitation, thus the auxiliar y

transformation replacing (x, y) by (x, y 2 ), applied in the forme r

case in defining x" in order to avoid fixed points, does not com e
a
-1 -

into play . The effect is as follows : As to xA, x 2 A, • . •, x 2 A ,

there is no difference . x2A is congruent to A by an element o f
a

F, say f. Then f
-1

x carries the strip A into itself with bound -
a

aries interchanged . Then if x 2 is defined as a transformatio n

of the strip A in the prescribed way, f 1 x carries the middl e
a

line A of A into itself with orientation reversed . Thus V trans -

forms a into itself leaving exactly two points of a and no other

point of the band fixed . Two fixed points cannot be avoided ,

since they represent two different classes of fixed points bot h

with index 1 (section 13) .
After this construction has been made for all i -inner axe s

of the set (13 .1), a topological transformation S of the surface

S into itself has been established, and belongs to the clas s

prescribed. What are the fixed points of ? As to the bands ,

there are no fixed points in the interior of a band, if it is no t

amphidrome, or if it is amphidrome with a> 2, since in the

latter case
2

bands are interchanged cyclically by

	

If it i .

amphidrome with a = 2, there are exactly two fixed points eac h

with index 1 . As to the regions, there is no fixed ,point in a

region, if ,8> 1, since in that case

	

regions are interchanged

cyclically by

	

If ,8 = 1, the region b is subject to a periodi c

transformation into itself. If 11 5 > 1, there may be single invariant

Nr . 2

points, each of index 1 (section 8), or there may be none . If
li b = 1, all points of the region are fixed by and their totalit y
forms a class of fixed points of' negative index ; the index i s
1-v, if v is the minimum number of generators of the Poincaré
group of the region . In this case it is easily seen that may b e
slightly deformed in b so as to leave only one point of b fixed ,
the index of which then is 1 -v; see [14] I, p . 314.

SS thus satisfies the conditions asked for in the beginnin g
of this section.

15. The equivalence . problem . Without going into detail s
we shortly indicate a , problem which may be solved by th e
preceding analysis . Let r denote a transformation class of S
into itself and y a topological transformation of S upon a surface
S*, which may coincide with S or not . Then yry-l will be a
transformation class of S t into itself. This will be called equi-
valent to r. The equivalence problem then consists in establishin g
a set of invariants of a transformation class such that it is
necessary and sufficient for two classes being equivalent tha t
they agree in this set of invariants . For classes of finite order
such a set of invariants has been given in [16], § 11 . For classe s
of algebraically finite type a set of invariants may be derived
from the considerations of this paper. Indeed, the division o f
S into complete kernels, the numbers ,8 and nb of a kernel, the
number a of an axis of the set (13.1), its screw number an d
its character of being amphidrome or not, are readily seen t o
be invariants of r not altered by y . Moreover, the transformation
class of finite order assigned to a region b of S must be equi-
valent to that assigned to the region yb of S i`, the condition s
for which are known from [16] . On the other hand, if two classes
of transformations of two homeomorphic surfaces S and S` '
agree in these invariants, and we construct special transforma -
tions S and

	

of S and St` respectively as described in th e
preceding section, then and S Y' become equivalent by a suit -
able transformation y of S into S*, and so do the classes t o
which they belong .
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Part I l l .

Homology theory.

16. Enouncement of the main theorem . Hitherto the Poin-

caré group F of S has been the chief means of our investigation .

In the following sections we fix our attention upon the homology

group H of S, i . e . the factor group of the commutator group in F.

The homology group H is abelian, and we may speak of th e

elements of F as elements of H provided we make them inter -

change freely ; thus for instance a set of conjugate elements o f

F yields one element of H. As stated in section 1, the minimu m

number d of generators of F is d = 2p, if S is closed, and

d = 2 p H- r-1, if F is bounded ; in both cases H is a free

ahelian group with d generators (for S closed all relations in F

are identically satisfied in H). A set of d free generators of H

is called a homology base .
Any automorphism of F carries with it an automorphis m

of H, especially an inner automorphism of F the identica l

automorphism of H. So a complete family of automorphisms

of F, which corresponds to a transformation class of S (section 2) ,

yields one automorphism of H. While I continues to denote

the automorphism induced in F by an element z correspondin g

to a transformation class a, let J denote the corresponding

automorphism of H . Choosing a homology base of d element s

for H and using the sign of addition to denote the combinatio n

of elements of H, we describe J by a linear homogeneous trans -

formation of the d basic elements . Let iJ denote: the matrix o f

that linear transformation and E d, the unity matrix of d rows

and columns. Then if we pu t

(16 .1)

	

P(x) _ (-1)ö d-xEd

	

xd' + . . . + (-1)`t ,

it is known that P(x) only depends on J irrespective of the

choice of homology base . P(x) is a polynomial of degree d i n

x and is called the characteristic polynomial of J. The roots of

the equation P(x) = 0 are called the characteristic roots (or

Multipliers) of J. It is our aim to establish the general form o f

P(x), if z is a class of algebraically finite type .

4 9

A special case of a class of algebraically finite type is a clas s
of finite order. Moreover, by the theorem of [15] already used ,
such a class contains a periodic transformation, and the genera l
form of P(x) for a periodic transformation has been shown i n
[16] to be

(16 .2)

	

P(x)	 	
(x-1)1+w (xn-1)2q+s-

-

2

(xm'-1) (x" --1) . . . (xm « 1) ,

n denoting the order of the periodic transformation and w bein g
0 or 1, according as the surface is bounded or closed . As to the
numbers q, s, u, m l , , r3~u a more detailed explanation is needed :
In [4] Brouwer has shown that a certain auxiliary surface M,
termed modular surface, may be assigned to any periodic trans -
formation of order n of a- surface S in such a way that S ma y
be looked upon as a regular Riemann surface consisting of n
sheets over M, and that the transformation consists in inter -
changing the sheets of 'S over M. Then M is closed or bounde d
according as S is closed or bounded . S may or may not ramify
over M. Then q denotes the genus and a the number of ramifi-
cation points of M; s is the sum of u and the number of boundar y
curves of M . While S has n distinct points over every ordinary
point of M, it has a certain number m of distinct points over
a ramification point ; this number m is less than n and divide s
n. The set ml, m2 ,

	

, m, denotes these numbers m for al l
ramification points .

In sections 17-21 We are concerned with the proof of the
following generalization of this result concerning classes of finite
order :

.Theorem : The characteristic polynomial of a transformation
class of algebraically finite type takes the form

(xß ln1- 1 `24 1 +s 1 2

(xßtmt
1

1) (xßlmt2-1) . . . (xß1mtnj - 1 )

Here again w is 0 or 1 according as S is bounded or closed .
1 ranges over all equivalence classes of regions and bands, o f
which S consists . We now discuss the notations in the factor
corresponding to the equivalence class of number 1 . In all cases

D . Kgl . Danske Vidensk . Selskab, Mat.-fys Medd. XXI, 2.
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ß1
is the number of congruence classes into which the equi-

valence class falls .

First, let this class be made up of regions . Then ßr is the

number of regions of S in the class . So if b is one of these region s

and B a region of KF covering b, ßr means the number i6 assigne d

to B in section 11 . The element xB of section 11 defines a

transformation class of finite order for b, and ni means the

order of that transformation class . In section 14 this class i s

represented by a periodic transformation 5ß 1b . This periodi c

transformation gives rise to a modular surface MI , and the

numbers q,, u 1 , s i , mil ,

	

, mare defined as above .

If M1 denotes the surface derived from MI by removing u 1

small elements, each containing one ramification point, s z is the

number of boundaries of M i . If al denotes the minimum numbe r

of generators of the Poincaré group of M I , we get for the ex -

ponent in the numerator of P(x), provided s,>0,

2 gr+ s 1 -2 = a1-1 .

Then let the equivalence class consist of bands belongin g

to amphidrome axes . fir then denotes the number of bands i n

the class, hence Nr = 2 , the number a being defined as in sec-

tion 12. Then by section 14, if å is one of the hands, ßßi ei =
a

ßz ä is a transformation class of order 2 for a . Thus we tak e

n 1 to be 2. This class contains a periodic transformation of order

2 interchanging the boundaries of å . So the modular surface

M I has only one boundary; M I is clearly seen to be an element

with 2 ramification points . Hence we ge t

qr = 0, u r = 2, s r = 3, mil = mie = 1 .

The factor of P(x) corresponding to such an equivalenc e

class of amphidrome bands thus reduces t o

x"1- 1
(16.5)

	

(.x ß1-1) 2

Finally, let the equivalence class consist of bands belongin g

to non-amphidrome axes . ,B1 denotes the number of bands in the

class, thus

	

= a, the number of section 12 . Now, if å is one
of the bands, the transformation ßa a of section 14 belongs to
the class of identity. The corresponding periodic transformatio n
is the identical transformation, so MI coincides with å and we have

n i = 1, u1 = 0, a l = 0, s i = 2,

and no factor arises at all in the numerator or denominator of
P(x) . So this value of I oily yields the factor 1 in P(x) .

We may thus restrict Ito . range over the equivalence classe s
consisting of regions or of amphidrome bands . .

17. Preparations for the proof. The proof of the theore m
expressed by (16 .3) will be given by induction using the numbe r
ï of equivalence classes of inner axes in (13 .1,2) as number of
induction. Since for i 0 no inner axis exists, KF is not divided
and so forms one single kernel . Then I only takes the valu e
1 = 1 . Since KF is the only region, we have i 8 = 1 . The trans-
formation class considered is a class of finite order, and (16 .3)
clearly reduces to (16.2). So the theorem is true for i = O. We
have to show that it , is true for any i> 0, if it is true for al l
smaller values of i .

We pick out one of the inner axes of the set (13 .1), denote
it by A and fix .our attention upon the division of KF by the
equivalence class TA. This division is reproduced by every ele-
ment of T. If C is any region of that . division, we denote b y
Tc the subgroup of T and by Fc the subgroup of F reproducing C .
In the sequence

C,xC,x2C,•• -

let y be the least positive number such that

x7C = fC, f c F,

1
f xy = x C .

Tc = Fc --F- FC xc -I- FÇr.c-1- . . .

-{-FoxC 1 + Fc xc-2 ~-• • • .

(16.4)

Nr.2
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If c denotes the region of S covered by C, a transformatio n

class of c is defined by x c . This transformation class is of

algebraically 'finite type . To be sure we might repeat the argu-

ment of section 11, showing that if the principal region of som e

element t c Tc had a cuspidal point in GFc,
this would be a

cuspidal point in GF too . We may also proceed as follows : If

an element t c Tc , regarded as a transformation function of GF
c

only, has a kernel, this is at the same time the complete kerne l

of t regarded as a transformation function of. GF, since ever y

boundary of C inside KF belongs to TA and so is boundary of

a kernel of T. Inversely, if t e T has its kernel inside C, then

t c Tc, with the same kernel . So C is made up of complet e

kernels of transformation functions belonging to T .
If C consists of more than one kernel, the axes dividing C

into kernels belong to the set (13 .2). If any two of these axe s

are equivalent with respect to T,

A' = tA ", tcT,

o

then t c Tc, since t carries an inner axis of C into another

inner axis of C ; so A ' and A " are equivalent with respect t o

Tc ; the inverse is obvious . So the distribution of inner axes of

C belonging to (13 .2) into equivalence classes with respect to

Tc is the same as with respect to T . Now the class TA only

yields boundary axes of C . So the number of equivalence classe s

f inner axes for C is Iess than the number i of (13.1,2) .

Thus by the assumption of our proof of induction the polyno-

mial Pe (x) belonging to the transformation class of c given by x c

takes the form (16 .3), moreover with co = 0, since cis bounde d

(Even if S happens to be closed, it has been cut along on

closed geodesic at least . )

Now suppose y to be > 1 . We then have on S an equivalenc e

class of region s

. (17.1)

	

c, rc = cl,r2c = c2,• •, ry-lc
=

covered by the regions of KF

(17 .2)

	

C, x C, r.2 C, • • , x7-1 C

5 3

respectively . There mayor may not be more regions than (17 .1)
in the division of S by the geodesics covered by the axes o f
the class TA . For each of the regions (17 .1) we have a trans :
formation class of algebraically finite type defined b y

-1 2

	

- 2x C , Xx C Y.

	

, X x C r.

respectively, and they all have the same characteristic poly-
nomial Pe(x) .

Now we may look upon the subsurfaces (17 .1) of S as y
distinct surfaces irrespective of their connection on S . The
homology group of this set of surfaces then is defined as th e
direct sum of the y isomorphic homology groups belonging t o
the single subsurfaces . If there are d generators in the group
belonging to c, then the combined homology group is the fre e
abelian group with yd generators .

A transformation class of this set of surfaces is given by x .

In fact x defines a transformation class of c upon c 1 , of c1
upon c 2 , • • of cy_2 upon cy_1 . In applying x to x1-1 C we
get x 2' C = fC, which covers c and defines the same transformatio n
class of c upon itself as f 1 x 1C = C. Since x represents the
transformation class r, we may prefer to say that a transformation
class of the set (17 .1) is given by the prescribed class r; this i s
expressed in the notation (17 .1) .

We intend fo find the characteristic polynomial of the trans -
formation class of the set (17 .1) given by r . Let d elements be
chosen as a base of the homology group H(c) of c; let 4 be
the transformation matrix of this base corresponding to th e
transformation class ry and PP(x) the corresponding characte-
ristic polynomial (16.3). By r (i . e . under the isomorphism be-
tween H(c) and H(c1 ) induced by r) these d elements corre-
spond to certain d elements of H(c 1) forming a homology bas e
of c 1 . By r 2 they correspond to d elements of H(c2 ) forming a
homology base of c 2 , and so on till we reach cy_1 . The yd
elements obtained in this way form a homology base for th e
et (17 .1). The d elements of H(cy-1) correspond by r to d ele-

iaents of H(c), which are the transforms of the elements chose n
is homology base for c by the matrix 4 . So the matrix of
the automorphism of the homology group H(c + c1 + • • - + cy_1)
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of the set (17 .1) is easily formed . To find the characteristi c

polynomial we subtract xE yd , and take the determinant . In short

this determinant may be written

- xE d Ed 0 0

0 - xEd E& 0 0

0 0 0 - .xEd Ed

~h 0 0 0 - xEd

Here every symbol stands for a matrix with d rows and colums .

and there are y symbols in each row and column. To compute

the determinant we multiply the first y-1 rows by xy-1 ,

xy-2 , , x respectively and add all to the last row ; so the

determinant reduces to

(-1)yd de -- xyE d, I .

Thus we get :
The characteristic polynomial of the surface set (17 .1) belonging

to T is Pe (xy), if Pc(x) is the polynomial belonging to TY fo r

each separate surface .
It should be noted, that the polynomial of the surface se t

(17.1) belonging to the transformation class Ty is [PP (x)]y . This

is evident .
If there are more equivalence classes of regions in the division

of KF by TA than that of C, all other classes may be treate d

in the same way .

18. First part of the proof . In this section we assume that

the axis A of section 17 is not amphidrome, and that S is no t

decomposed by the geodesics corresponding to the equivalenc e

class TA. According to the notations of section 12 the number

of these geodesics is a, and they are represented by the axe s

a-1
(18.1)

	

A, xA, x2A, . . . , x

	

A

of KF . The corresponding geodesics may be denoted by

5 5

a-1 -

We then have ea = a l > .

As S is not decomposed by being cut along these a geodesics ,
only one region c arises. So there is but one equivalence clas s
and moreover the number y of (17 .1) is 1 . It should be noted
that in cutting S along the a geodesics the genus p of S decreases
by a and the number r of boundary curves increases by 2 a .

So if S is bounded, the number of generators of the homolog y
group remains unaltered, whereas if S is closed, it decreases by 1 .

Now by the assumption of our proof of induction, the polyno-
mial Pe (x) of the transformation class of c given by e takes the
form (16.3), and w = 0, since c is bounded. The degree of th e
polynomial is d, equal to the number of generators of H(c).
We intend to find the polynomial P(x) of the transformation
class of S given by T . Its degree is d, if S is bounded, an d
l-j-- 1, if S is closed .

If we orient A and transfer its orientation to all curves (18.1)
and (18.2), we may speak of a boundary curves

a, ai a~ . . ., a
s- 1

of c as left hand borders and of another a boundary curve s

(18 .4)

	

a", a' a2 .

	

a:_1

of c as right hand borders of a, a 1 , a 2, , - • , aa

	

respectively .
Now we first assume S to be bounded . Then c has mor e

than these 2a boundåry curves . So we may allow both (18 .3)
and (18.4) to be members of a homology base for c . Let such
a homology base be chosen, and let it be arranged so as firs t
to put d - 2 a elements not in (18.3,4) then the a elements (18 .3)
nd finally the a elements (18.4). Then the matrix L~ describin g

the automorphism of H(c) corresponding to the transformatio n
class given by x G by a linear transformation of the base chose n
may be composed of 9 blocks ,

1) To avoid misunderstanding, we recall that the notation a l = ra etc .
symbolic and means that any closed curve on S homotopic to a is transformed

y any transformation of the class r into a curve homotopic to a l (section 7) .
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IIIVI V

3, =

	

VII III VII

VIII k IX
I

III

I being a square matrix of d- 2a rows and both II and III

square matrices of a rows each . Now z, is known to inter-

change the elements (18.3) cyclically and equally for (18 .4) .

So we have

and all elements of VI, VII, VIII, IX are zero. Hence we get

irrespective of IV, V

(-1)6 P,(x) = Ia~ -xE~ I

= I -- xEd,_2a I I II- xEa I I III- xEa I .

The last two factors are easily computed in the way used i n

the preceding section, and we ge t

(18.7)

	

III- xEak = III - xEa k = (-1)a(xa-1) .

Then let S be closed. So c has exactly 2 a boundaries give',

by (18.3) and (18.4). Thus we have the homology relatio n

(18.8) a' + a1-I- . . . + aa J1 -a "- a1 -

taking the orientation of the curves (18 .3) and (18 .4) into ac -

count. We choose a homology base of c in the same way an d

in the same order as before, only omitting a',', 1 . So in (18. 5

III now is a square matrix of a-1 rows . II remains equa l

to (18.6) and all elements of VI and VII are zero . Under the

transformation the element a " of (18 .4) goes into a'1, thi s

into a2 , and so on until aä_ 2 . Now aa_ 2 goes into aa_ 1 , bu t

as this element is not in the base, it has to be replaced by

a' -}-ai+ - • + aa_ 1 - a " -ai - . - - aa- 2

in consequence of (18 .8) . So all elements of VIII are zero, all
elements of IX are zero except for the last row of IX, which
is made up of numbers 1, and for III we get the following
square matrix of a-1 rows

0

	

0

1

	

0

	

(18 .9)

	

III

0

	

0

	

0 • --

	

1
- - . . -

Since matrices VI and VIII and moreover VII vanish, we get

(-1)
6Pc(x) ° 2/c -xEd

II-xEd,_9a+1 I III-xEa IIII-xEa1 .
The last factor is easily computed from (18 .9) and we ge t

	

(18 .10)

	

HI -

To sum up, we remember that the letter w means 0 or 1
according as S is bounded or closed. Then we may take both
cases together in saying that a - w elements of (18 .4) enter
into the base chosen and that these elements alone yield th e
factor (from (18.7) And (18.10), irrespective of sign )

(18 .11)
(x - 1)w

in, the polynomial P (x) of c .
In order to get S from c we let the boundaries (18 .4) of c

coincide in turn with the boundaries (18 .3). We get a homology
base for S by taking the homology base for c, arranged in th e
same way as before, then cancelling the last a - w elements ,
since these become identical with elements of (18 .3) already in
the base, and replacing a new homology elements arising fro m
the a new connections . So let

(18.5)

- - aIX_ 1 = o

_

	

1 xa - 1

x- 1

-
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(18 .12)

	

b, b 1 , b2 , - • - • , ba_ 1

denote homology elements corresponding to cycles of S, o f

which the first, b, crosses a in one point from left to righ t

and does not intersect a1 , a2 , •, aa_1 , and the same for b 1

and a 1 , b 2 and a2 and so on. These cycles may be taken to

have one point of c in common . Evidently there is no homo -

logy relation between the elements (18.12), and they make the

homology base of S complete .

We may call (18.12) a homology base of connection . We now

divide the matrix e of S into 9 blocks in the same way as in

(18.5) :

VIII*

	

IX*

	

III*

Here III* is a square matrix with a rows corresponding to the

elements (18.12) . All other rows of zf correspond to the sam e

basic elements as in Je .
As the elements (18.3) are interchanged cyclically, we hav e

II* = II, and both VI* and VII* vanish.-We now look at th e

basic elements belonging to the rows of I or P . Their trans-

formation by d e depends on the matrices I, IV and V. Now the

basic elements (18 .4), belonging to the columns of V have been

replaced by the corresponding elements of (18 .3). This means

that I* = I, but IV* may differ from IV. Moreover these ele-

ments of the rows of I have their intersection number with cur -

ves (18 .2) equal to zero, and this is not changed by the trans -

formation ; so their transform by z/ does not contain any element

of (18.12) with a coefficient $ 0 ; thus V* vanishes .-Finally

we look at the basic elements belonging to the rows of III* .

As b has its intersection number with a equal to 1 and with

a1, a2, ' • ' , aa_1 equal to zero, and as (18.2) are interchanged

cyclically, we infer that the element corresponding to b by 4

has its intersection number with al equal to 1 (the trans-

formation class preserves the orientation of S) and with

a2, • - •, aa_1 , a equal to zero. So b, is the only element o f

(18.12) to appear in the transform of b, and bl has 1 as its

coefficient . As to the transforms of b 1 , b2 , •, ba_1 , things
are analogous. So III* is equal to (18 .6) . As to VIII* and IX*
nothing is known, but that does not matter, since V* and VIP
are known to vanish . Using the fact that VI* vanishes too ,
we get

(- 1 ) d' +w P(x) = I 4 -xEd 1 w

= II*- xEd_2 a_ w I I II* -- xEa l III*- xEa I .

as in (18.7) .

Hence we have the following result : The cancelling of a - w

elements of (18.4) means multiplication of Pe (x) by
(x-
	 1) w

(xa -1)
(from 18.11) and the replacement by a new basic elements
means multiplication by (x"-1) . So the total effect is multi-
plication by (x-1)' . '

Thus if S is bounded, we have P(x) = Pe (x), and if S is
closed, we have P (x) = (x - 1) P~ (x) .

So we have to ask if this is actually the polynomial P(x)
we have to look for according to the description following (16 .3) .
The initial factor, which was x-1 in P, (x), is now (x-1)1+ w

As to the factors of the product

	

we recall that such a facto r
z

with all its numbers n 1 , q 1 , s i , o , mil , , m 1 , arises from an
equivalence class of regions or of amphidrome axes in c . Now
every such equivalence class of c is a class of S too with al l
numbers unchanged. And no new class arises on S . It is true
that there is a class of inner axes on S which is not a clas s
of inner axes in c, viz. the class (18.1,2) used for cutting S .
But as these axes are not amphidrome, they do not yield a
factor in P (x) . - So our theorem is proved in the case con-
sidered .

19. Second part of the proof. In this section we assum e
that the geodesic a is not amphidrome, and that S is decom-
posed by the geodesics . (18 .2) . Let . c denote the region of thi s

I.

	

IV* 1 V *

</ =

	

VI* I II* VII*

Since I* = I and II* = II, the two firsl factors are the sam e
as before, and since III* is equal to the matrix (18.6), the las t
factor is

(-1)a(xa-1)
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decomposition to the left of a ; so c has the left hand border

a ' (18.3) of a as one of its boundaries . c may or may not hav e

some of the right hand borders (18 .4) as a boundary. In this

section we make the further assumption that it has not . Sinc e

r interchanges the geodesics (18.2), all regions to the left o f

these geodesics are equivalent by T, and so are all regions to

the right of these geodesics . On our present assumption thes e

two equivalence classes are different. As every region of th e

decomposition has at least one of the geodesics (18 .2) as bound-

ary, we have exactly these two equivalence classes of region s

of the decomposition of S . If c ' denotes the region to the righ t

of a, the two classes are represented by c and c ' .

Let y and y ' denote the number of regions in these equi-

valence classes (section 17) . Then

(19.1)

	

c, rC = C1, r2 C = C2, . . ., ry-1C = C y_ 1

are all regions of the equivalence class of c an d

(19.2)

	

c ' , rC ' = c1 , Z 2 c' = c 2 ,

	

, r~ c' = c y _

are all regions of the equivalence class of c '. We then have

ry c = c and ry c ' = c ' . From T' a = a we infer that ra c = c ;

hence y divides a and so does y' .

Let g = (y, y ') be the greatest common measure of y and

y ' , and put y = gy1 , y ' = gy1 . Then, if we suppose g> 1 ,

c, C g, C2g,

	

, C (y, -1 ) g

is a subset of (19 .1) an d

	

(19.4)

	

c , cg, C2 g,

	

c (y,-1) g

is a subset of (19 .2) . All geodesics

	

(19.5)

	

a, ag, a24 ,

	

, a a _ g

and no other geodesics of the set (18 .2) are boundaries of (19 .3 )

and (19 .4). So by joining the regions (19 .3) and (19.4) along

the geodesics (19.5) we get a subsurface S* of S, and this sub

6 1

surface has no boundary in common with the subsurfaces
rS*, T 2 S*, - • •, rg-1 S*. So S would consist of g distinct sur -
faces, while throughout this paper we suppose S to he on e
coherent surface . So we have

(y,y ')=1 ,

y and y' are relatively prime .

The geodesics (18 .2) ` or, more precisely, their borders (18 .3)
and (18.4) are so distributed on the subsurfaces (19 .1) and
(19.2) that

(19 .6)

are boundaries of c,, (v

	

0, 1, 2, • • , y -1) an d

(19 .7)

	

a
av,avy,

	

+ , y , ,

	

. al
+ a y'

are boundaries of c ',, (v = 0, 1, 2, • • , y'-1) .

ry is a transformation class of algebraically finite type for
c (section 17) and its characteristic polynomial Pc (x) takes th e
turm (16.3) with co = 0 :

Pc (x) = (X-1)

	

fi(x) ,

if we agree to denote the factor corresponding to 1 b y

(xßt n,-1)24,+ s,- 2

fI (x) =
(x ß,mu - 1)

	

1 )

Accordingly for ry' as a transformation class of c ' we have

Pc , (x) (x -1) fl fi, (x) .
r

r is a transformation class of the set (19 .1) of y distinct
subsurfaces, and the corresponding polynomial is by section 17 :

P, (xy) = (xy --1)
~

	

fI (xY) .

60

(19 .3)

ay , ay'+y, av +2y, • • , av+ct -y
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,c also is a transformation class of the set (19 .2), and the corre-

sponding polynomial i s

Pc,( .xy )• =

We may thus speak of -c as a transformation class of the de-

composed surface S' (being a set of y -}- y ' distinct subsurfaces) ;

the corresponding polynomial PS, (x) then is the product

PS, (x) = P~ (xy) Pc, (x/ )

ing from S' to S by joining the boundaries (18.4), in turn t o

the boundaries (18 .3) . This effect is found in two steps as in

the preceding section, a) by cancelling some elements of the

homology base of S ' and b) by introducing new ones by a

homology base of connection .

a) First let S be bounded . Then at least one of the subsur-

faces c and c' has a boundary not belonging to (18 .3,4) . Let

c have such a boundary ; then all subsurfaces (19 .1) have . So

all elements of (18.3) may be allowed to enter into a homolog y

base of S ' . By joining (18.3) to (18.4) these elements (18 .3)

become equal to the elements (18 .4) of the homology group of

c ' + ci + -f- c7,ß 1 ; these elements may or may not be in th e

homology base of S ' and may even be zero ; in all cases they

are independent of (18 .3) . So the elements (18.3) cancel, and

as they are interchanged cyclically by z-, this evidently mean s

1
multiplication of (19 .8) by e	 1 ; see (18 .6,7) .

Then let S be closed . Thus (18.3) and (18 .4) are the only

boundaries of S ' . As a preliminary case let us assume y ' = a;

thus (19 .2) is a set of the maximum number a of subsurfaces ,

each bounded by one of the curves (t 8 .4), and these curves are

thus all homologous to zero . Then we have y = 1, since y di -

vides a and is relatively prime to y ' . So (19.1) consists only
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of one surface c bounded by all curves (18 .3). So we may take
u ' , ai, • • aå_2 into the homology base of S ' . The correspond-
Lag part of the transformation matrix then is (18 .9) . Since these
a- l basic elements vanish by being identified with (18 .4), it i s

seen from (18 .10) that (19.8) is multiplied by x-1. Of course
it is the same for y = a, y ' = 1 .

We now consider the general case, both y < a and y ' < a .
The set of subsurfaces (19.1) is made up of y surfaces, each
with

a
boundaries from (18.3), and (19.2) is made up of y 'Y

surfaces, each with,
a

boundaries from (18.4). For each surfaceY
the number of boundaries is greater than 1, and their sum i s
homologous to zero . Thus the sum of the elements of (19.6) i s
zero for every value of v and so is the sum of (19.7) .

A homology base of (19 .1) is now so chosen as to include
the first a-y elements of (18.3), thus excluding the last y, as
they can be expressed by the first a--y . By z every element i s
replaced by the following except the last, aå_y_1 , which i s
replaced by the element a _y not in the base. So we express
it from (19.6) with v = 0 :

a'a =-a'_a'-a2,- .--aå 2 -
- y

We then get thé part of the transformation matrix of ,c which
Belongs to the a - y basic elements in question :

0 0 • . 0 -1 -

the Iast row being alternately -1 and a group of y-1 zeros .
From this it is easily computed that the corresponding part o f

the polynomial, denoted above by Pe (xy) , is xa - 1 . As the
xy - 1

same is true for the set (19 .2) with y ' instead of y, we may
say that in (19.8) a factor

(x7'-1)
r

(19.8)

(x7 -1)(xy' -1) I f~ (xy ) nfr (x'' ' )

We now ask what is the effect on this polynomial of pass -

xa - 1

0

	

0

	

1 -- .

o o ••• o -

Ii~
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is due to the boundaries of S ' .

In choosing a homology base for (19 .2) we take the a - y '

last elements of (18 .4) into the base. So the part of the basic

elements of S ' corresponding to boundary curves of S ' may be

written
a' a'1

	

- aŸ,_ 1 a ;, •

	

a", . - as-y

	

as-y -

These two lines have the subscripts from y ' to a- y - 1 ill

common and that is at least one subscript . Since

(a-y-1)-(y'1) = -(y+y ')

and both y and y ' are less than a, divide a and are relativel y

prime, this is positive . In the empty places of the first line w e

may substitute linear combinations of the elements written, an d

likewise in the second line . Then passing from S ' to S mean s

equating corresponding members of the two lines and reducing

the system. From this it may be directly computed that the

elements a , ay,

	

., as

may be taken as basic elements of the resulting system, and that

do = a '+ai+ a2,+ . . . + aIX

d1 = a '+~ 1 ai+ e` 2a+ . . . + 6-(' -1) a '

d2 = a '+ e- 2 ai+ s 4a2-I- . . . .+6-2(a -1)aa -1

da _1 = a'+S (a-1)ai-f-s -'(a -1)a2+ . . . .+~

	

a '
a-1

the determinant of which is

	

0, since it is the product of al l
differences of 1, e, r 2, , ea -1 . Then r replaces do by do, d1
by ed1, d2 by e2 d2 , • • •, da-1 by ea-1 da_1 . So the multipliers
of the set (19 .11) are 1, e, r2 , • • , ea-1 respectively, i . e. al l
roots of the polynomial xa-1 . If (18.3) were an independen t
set, the set (19.11) would be so too . But from (19 .6) we have

a,',+a ',,+y + . . . +av
+a-ÿ=0 ,

v = 0, 1, . . ., y-1 .

From this we get do,- 0; moreover, since ea = 1 :

a

	

2a

	

(a-7) a

da = a ' +e y a',+e Y a2+ . . . +e

	

Y

Y

+ai + Y
+ . . . + a IX -y+ 1 ]

(19 .9)
- 1 )

	

Y(x2"-1 )

aa-y -

(19 .11 )

(19 .12)

a.-1

= a ' + aŸ+ . . . -I- aIX_y

+e [

they yield the

(19.10)
(xa-1)(x-1)

(xY -1) (xY -1)

2 a

+e y

	

-f-a +y +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

factor

+aa-y+2]

in the polynomium of S .
Instead of carrying out this direct computation we may

obtain the result more easily in the following way, if we alloy

the ring of coefficients of the homology group to be complex .

We first consider the a boundary curves (18 .3) of the surface

set (19 .1). Putting

a
e = e

we introduce the linear transformation

(y-1) a

Y

	

[+ s

	

ay' - 1 + a2 y-1 + . . . + aa 1 ,

hence da = 0 by (19.12) . In the same way we ge t
Y

d3a = 0 , ' • , d(y_1) a = 0 . So the multipliers

Y

(19:13)

D.Kgl . Danske Vidensk . Selskab, Mat : tys. Medd . XXI,2 .

22cî

a 2a

	

(y-1) a

1 , ÈY , eY ~ . . .~ e

	

y

d2a =0 ,

Y

5
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is the corresponding part of Pe (x '), as stated before (19 .9) .

To pass from S' to S we put

Since we have relations from (19.7)

a~,+ ay+y' i . . . E av+a y'
= 0, v = 0, 1, . . ., -1 ,

we get the corresponding relation s

uY+aY+~ + . . .
-rav+a-y

- ,

v = 0, 1, . . .~ y ' --1 ,

2 a
;

1 ., EY , E Y ,

cancel ; they are the roots of xY -1 . Now (19 .13) and (19 .14)

have only the multiplier 1 in common ; for since y and y ' are

relatively prime, a and a have a as least common multiple .

Y

	

Y
Hence (19.10) is in fact the factor in the polynomial of S

derived from the system (18.2) of geodesics used in decom-

posing S; the factor x-1 in the numerator of (19 .10) is due

to the fact that the multiplier 1 has been omitted twice .

Comparing (19 .9) and (19 .10) we see that multiplication b

x- 1

is the effect of passing from S ' to the closed surface S so ff r

as the bounding geodesics of S ' are concerned. For S bounded

the corresponding factor was

	

1 . So we may sum up the
xa - 1

effect of the step a) in the following way :
The effect of cancelling some elements of the homology base of

S ' by joining the boundàry curves is multiplication of the poly-
lioinial Ps,(x) (19.8) by, the factor

(x1) °

xa- 1

b) We now have to introduce some new elements in the ho-
mology base of S according to the new connections establishe d
by joining 2a boundary, curves (18.3) and (18.4) of S'. This
may be done in the following way. We choose a point in th e
interior of each region, of the decomposition of S and denot e
the point chosen in the region c by {c} . Then we join the point s
c} and {c '} by a segment b, crossing a in one point fro m
the left hand side to the right hand side . In this way we join
fee} _ {ca) and (i- c '} =

lc ) by a segment b it, crossing i' a = a,u
in one point and not meeting any other of the geodesics (18 .2) ;
here p = 0, 1, - - • , a-1, and b 0 = b . As the equivalence class
of c consists of y regions, we hav e

{Cv} = {cv+y} = {ev+2y}

	

. . . = { cv+a-y}

a
ind

	

segments eradiate from this point . Subscripts of c and c '
Ally count modulo y and modulo y ' respectively .

The totality of these segments form a coherent complex ,
ince S is coherent. This complex consists of y + y ' points and

segments . Hence it contains

P1 = 1-}-a.-(y-l-y')

independent cycles. Then any pi independent cycles of this com -
plex may be taken as a homology base of connection to coin-
plete the homology base of S .

p1 = 0 arises only. in the case y = a and hence y' = 1 (or
in versely) . In this case we have one subsurface c' and a sub-
,Lrrfaces c, e 1 , • , cå_1 , each of which is adjacent to c' along
pile of the a geodesics; so evidently no new element has to b e
introduced in the base .

(19.12 a)

besides (19 .12) . From this we infe r

multipliers

(19.14)
(y'-1>

,

	

y '

5"
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So we assume y< a, ÿ < a and hence

, <2, y'<

	

and pi >0 .

Any region c i of the equivalence class of c neighbours an y

region ct of the equivalence class of c ' along at least one geo-

desic zn a . For since y and y ' are relatively prime, if i is one

of the numbers 0, 1, • • •, y-1 and j is one of the number s

0, 1, • • • , y'- 1, then n may be so chosen among the number s

0, 1, • • , yy'- 1, that n = i (mod y) and n = j (mod y'), and

this in exactly one way . Then zn c = ci neighbours z" c ' = ci along

w n a . Since both y and y ' divide a and are relatively prime ,

we have

69

show that any cycle of the complex, which without restrictio n
may be taken without double points, is a linear combinatio nof the km .

Any cycle with more than four segments is the sum of cycle swith four segments ,each . In fact, le t

Z = bx- by -I- bz - bu -f- . . .

be a cycle of n segments . If t is so determined as to satisfy

t z (mod y'), t

	

x (mod y) ,

(19 .17) a = 7yy' -by -{--bz - -f-

and infer that c i and c'i have exactly

	

of the geodesics (18 .2 )

as common boundary . So of the segments b1 join the points
i

(ci)
and {ci} .

We first consider the simplest case a. = 1 . So there goes

exactly one segment b from any point {c i} to any point { c'1} .

Any cycle of the complex consists of an even number of seg-
ments as the two equivalence classes of regions or, as we ma y

say, of points, alternate . Thus the simplest cycle consists oÎ '

four segments . Such a cycle i s

ko = bo by, +bÿ +- by ;

for bo goes from
l
{c} to {c '} . - by' from (cÿ) = {c '} to {cÿ1 ,

by , + y from (c7'+y} = {cy} to {cy,+7} = {c'y}
and-by from {c Y

to {cy}, which is the starting point (c) . From this we get a cycles

ku = b µ b +y'+btu+y,+y-ba+y ,

= 0, 1, . . . a-1 ,

remembering that subscripts of b only count modulo a . Thes e

cycles k F, are not independent, since their number is >pl .

(19.18) contains a homology base of connection, i . e . pi cycles

completing the homology base of S. To see this we have t(

Here the first four segments form a cycle, since {c;} = {cf }and (ex) _ (ci) . Omitting this cycle we reduce Z to n-2 seg-
ments and continue the same process . (t = u (mod y'), since
t z and z = u (mod y ' ) . )

So we have to show that any cycle of four segments may
be obtained by linear combination of the cycles (19 .18) . Since th e
last two segments in Ici are equal to the first two segments o fkF + y with opposite sign, we get for any n

+qty + i+ q ,+2ÿ + . . . + q~+(y-l)y '

= bt,-bl,+y ye+b,u+yy'+ny- bda+ny

ad finally, replacing p by ,w + x y for any x and putting x + n = z ,

(19.18)
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This cycle Z goes from the poin t

ke tt) _ {cP+xŸ) to {c'P+yy} _ {c'a+xy+yy'

from there to {cu +xy+ yy'} _ {ca+gy'} _ {cp+=y+yy} '

from there to {c' +Zy +y y} = {c' P +zyj ,

from there to {cµ+zy} = {cµ} .

Now, since the four numbers x, g, z, may be chosen arbitra -

rily and y and y ' are relatively prime, the points { c } , {ca+y y '1
and {c 'P+xy}, {c',u+=y} may be any given points in the equiva

lence classes of {c} and {c'} respectively . So Z becomes any

cycle composed of four segments. This completes the proof.

Relations between the generating cycles (19 .18) are readil y

found. Taking n =
a

in qua and remembering that subscripts
Y

of b only count modulo a, we find qua, = 0 for this particular

n, thus

and in the same wa y

(19 .19 a)

	

kP + kta + y , -1- k ,u + 2y' -i-- . ' . - 1- kµ + a-ÿ = 0

(P,=0,1, . . .,y'

These y + y' relations between the a generators are, however, no t

independent, since the sum of all y left hand members of (19 .19 )

is equal to the sum of all y ' left hand members of (19 .20) . So

one relation is abundant. Hence we may cancel y + y' -1 gen-

erators properly chosen and so are left with pi generators in

accordance with (19 .16) .
We now complete the homology base of S by adding thes e

pi new generators derived from the connections . The matrix 1

corresponding to the transformation class z of S then takes th e

form

Nr.2
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IV being a matrix with pi rows and columns. If there are a
elements in all the base of S, the transforms of the firs tô-pl elements (derived from S' by the considerations under a))do not contain the pi new generators . So all elements of II arezero, and we have

.
d, 1_ 1I-

	

-pi I l IV-xEpl 1 .

Now take any of the new generators, lct,t say. The intersectio nnumbers of kP with at„, a s+ ~, au+ÿ +y, at,+y are in turn 1,-1 ,
1,-1, and with all other geodesics (18 .2) they are zero. Thetransform of kP then must have the same intersection numbers1,-1, 1,-1 with a

F,+1 aP+y'+1, a,a+y'+y+1, at, +y+1, and zero
with the rest . From this it follows that it contains kt, +1 with
coefficient 1 and all other elements of (19 .18) with coefficientzero ; if kt., +1 is'not in the base, it has of course to be replacedby. its expressipn by the p 1 elements chosen . From this thematrix IV may be derived . III does not matter, since II vanishes .To compute the polynomia l

(-- 1)p, J IV-xEp

we follow the same way as in proving (19.10) by means of th etransformation (19 .11). In fact, the deduction is literally th esame. Instead of the elements a; o , • • • ,aß_ 1 of (19.11) we havethe a elements (19 .18) . The relations (19 .12) and (19.12 a) corre-
spond exactly to the relations (19.19) and '(19.19 a) . So we find(19.20) equal to (19 .10) .

We now have the following result : (19 .8) was the polynomia lPS,(x) belonging to the transformation class r of the decompose dturface S', and we had to consider the effect on it from joinin g
We boundary curves in order to get the surface S . This means
first cancelling some elements of the homology base of S ' with
the effect of introducing the factor (19 .15) into the polynomial,
and then introducing new elements into the homology base o f

with the effect of introducing the factor (19 .10) . Hence
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(19.19) k ta +kµ+y+ k ,u+2y+ " ' +1Sa +a-y = 0,

(,a = 0,1, . . . y-1) ,

I I II

III I Iv

(19.20)

1
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(19.21)

	

P(x) = (x-1)
1+
'

	

ft (xY)

	

fr(xY )
I

	

I'

belongs to the transformation class r of S .

This is in accordance with the theorem stated by (16 .3) .

For since a is not amphidrome, no factor arises from the geode-

sics (18.2) ; and all regions of S ' and all other geodesics of S '

(if any) evidently play the same rôle in S.

ß( C 03691215!

1C ' 0246810121416Î

.(C1 4 7 10 13 16f

1 0 1357911131517

\C 258n1417î

Fig . 8 .

Finally an addition has to be made, as we have assume d

the factor

	

in (19.17) to be 1 .

Let 2, be greater than 1 . Each point {ci} is connected with

each point {c» by % segments . In fig . 8 the case a = 18, y = 3.

y ' = 2, thus ~, = 3, is illustrated in a schematic way ; each

of the five points carries all subscripts belonging to it ; so

e . g . {co) = (CO) = (c6) = (c 3} = {c12) = { c 15}. Any segment bF,

is one of the segments leading from the c-point with subscrip t

p to the c '-point with subscript p . All segments connecting thes e

two points then are

(19 .22)

	

bu,

	

bm+2yÿ ,
. ., U µ+ca-1)Y V

From these we may form 1 cycles

+Y Y

(19.23)

	

lu+yy' = bp +YY'-
bu+2YY

Iu+(A-l)yy' = b p +().-l) yy' - bp .

Nr.2
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The sum of these cycles is zero for every p . Letting prange from 0 to yy ' - 1, we get a cycles in all, which for short w e
call the I-cycles .

The 1-cycles (19 .23) together with the the k-cycles (19 .18)
contain a homology base of connection consisting of p i generat-
ing cycles of the b-complex : Any segment of a k-cycle may b e
replaced by another segment connecting the same two point s
by adding or s;hbtracting some suitable 1-cycles . So modulo the
subgroup generated by the 1-cycles we may look upon the k-cyc-
les as if we join all ), segments (19.22) to one string. The build-
ing up of the complex from k-cycles of these strings then is .
the same as in the case L. = 1 .

If we take n= y' in the cycle q ,u used previously, we ge t

qu = b~-b + + bu+y , + y ,y - y,y

Replacing p in turn by p + y', p + 2y', . . . p,+ (y- 1)y' and add-
ing we get the cycle

uu b~ - bp + yy, ± bp + 2 yy' -- + yy ,

= 1 d -1p + yy , .

Hence by replacing p we get the cycle s

u~ = 1
p
-1

p + yY

u
p +yy% = 1p +Y1,- 1~ +2Yy '

. . . . . . . . . . . . . . . . . . . . . . . .

uu+(a-1lyY ' = lp+ca.-1~ 1,ÿ -lp '
Ante lu+ = 1 . Multiplying in turn by 2,- 1, A - 2, . . • , 1 and
adding, we get

u ,u +(- 1) uu+yy,+ . .+ u2+r~-1> ;7 ' = . I,u ,

,ince the sum of the cycles (19 .23) is zero for p fixed .
So is is seen to be a linear combination of the k-cycle s

(19.18) for W = 0, 1, - . -, a - 1 . Now if any cycle Z belongs to
a certain multiplier (i . e . root of the characteristic polynomial),
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so does 1Z, and tZ is expressible by the k-cycles . In other

words, if we allow the ring of coefficients of the homology grou p

of connections to consist of all rational numbers, then p1 of the

k-cycles (19.18), properly chosen, may be taken as generators .

We thus get the same part IV of the matrix A and the sam e

characteristic polynomial (19 .21) as in the case I = 1 .

20. Third part Of the proof . In this section we assume thai

the geodesic a is not amphidrome, that S is decomposed by the

geodesics a, a1 , • • , aa _ 1 of (18.2), and that the region c to th e

left of a (thus with the left hand border a ' of (18 .3) on its

boundary) has also one of the right hand borders (18 .4) on it s

boundary. This is .transformed into a by a certain power of r ,

and so the region to the right of a is equivalent to c . Hence

we get only one equivalence class of regions

(20.1)

	

c, wc = c 1 , r '̀c = c2, • • •, zy - 1 c = cy- 1

instead of (19.1) and (19.2). Moreover y > 1, since S is de -

composed .

Let n ce = c h be the region of the set (20.1) which is adjacent

to c along a . Then, c being the region to the left of a, c+h is

the region to the right of at,, and et, +h = whet, . So we mah

pass from any region to any other region by a power o f

From this we infer that h and y are relatively prime . h and c

may or may not be relatively prime .

Subscripts of c only counting modulo y, we may write th e

set (20.1) in another way :

(20.2)

	

C, C
h, c2h , . . . , C(y-1)h ,

In this arrangement they form a ring, each region c t, neighbourin g

cPh
and c, +h only .

The a geodesics may be arranged in the following way, i f

we put

and count their subscripts modulo a :

. .
a(~-1) y

' a h +(1)y
. .

a2h +(-1) y

a(y -1) h (-1)y .

The geodesics of the rows beginning with ash and a (,_ 1)h are
on the boundary of c ,,, h , and these two rows bound c tuh in

r 5
a

rig . 9 .

opposite senses. Using the notation (18.3) and (18.4) we may
say that

(20 .4) all h +ash+y

	

. . ash+(-1)y -

li part of the boundary of c,u .
To illustrate these facts, fig. 9 shows the case a = 10, y = 5 ,

h = 2 . One may replace h = 2 by h = 3 and so obtain a cas e
In which h and a are relatively prime .

The construction of the characteristic polynomial in the cas e
,f_ this section goes along similar lines as in the precedin g
(xtions . Let

7 5

_1)h + . .
+a~(2-1)h+a'-1)y)
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P,(x) = (x-1) I
(xNIn1	 1)2q1+s1-2

1

	

Ie8 Im 11

	

. .

7 7

To sum up for S bounded or closed, the effect of the opera-
tion a) is to multiply PP (xy) by

be the polynomial (16.3) belonging to c under the transformatio n

class J. Then by section 17 P(x r ) is the polynomial of th e

decomposed surface S ' under the transformation class z . We

now have to take the same two steps as in the precedin g

section, a) passing from S' to S by joining boundary curve s

and b) introducing a homology base of connection .

a) If S is bounded, all elements a ' and a" of (18 .3) and (18 .4)

may be included in a homology base of S ' . The effect of joinin g

the boundary curves then simply means cancelling the a " . A s
1

in section 19, this means multiplication . of PP (xy ) by

(a«1: +aurt+y+ . . .)_(a'(',a-1)h +a(µ -1)h +y+ . . .) = 0

(hU=0,1, .,y-1}

for the a ' and a " in the homology base of S'. One of thes e

relations may be replaced by the sum of all :

(20.6)

	

a' + ai 7- . . . + aIX_ 1 = a -{-

	

-{- . . . + as-1 .

Both the left hand member and the right hand member of thi s

equation are homology elements with the multiplier 1 . The effect

of putting them equal to one another is to cancel the facto r

x-1 . So if (20 .6) were not used, P,(x ') would have to be

multiplied by (x-1) .
Now passing from S' to S means replacing every a" by th e

corresponding a' . All a" may be included in the homology base

of S' , as the relations (20 .5) may be used for eliminating som e

of the a '. The cancelling of the a" means multiplication b y

(x" -- 1)-1 . As to the a ' the only effect on the polynomial arise s

from the fact that (20.6) is satisfied identically ; thus the facto r
x- 1

x -1 has to be restored . In all, we get the factor

(x -- 1) w

x"- 1

b) To set up a homology base of connection we again in-
troduce the segments b,,,,, p, = 0, 1, . . , a-1, crossing a~ from
the left hand side to the right hand side ; here they connect
the points {chi} and

{cu+h} . As we have a coherent complex o f
y points and a segments, we get

Pi=l+a - y

independent cycles in the complex ; cf . (19 .16) . From the b et we
form the cycle s

ru= b,u,--ba+y, p0 1 . . . ,a-1 ,

k = bo+bh+ben+ . . . +b
(y-1) h -

l runs from {c } to {chi+h} and back to {ca}, since both cu
and c . +h are left invariant by e . The cycle k runs once throughthe ring formed by the y regions (20 .2). It is easily seen tha t
the a +1 cycles 7 and k contain a homology base of con-
nection : Any cycle formed of the b which on its way run s
from the point {c4 of some region c(, to the point {chz . h} of
one of the two neighbouring regions ctuih and then returns to

u} may be reduced to a cycle of fewer segments by adding
nr subtracting some suitable cycles 'u' Any cycle which runs
once through the ring may be reduced to k by adding a suitabl e
ombination of the 1

P
The l fulfill y relations

1 20 .8)

	

+l11+y =, lp+,y+ . . . lp,+(f-i)y = 0 ,

, l a = 0, 1, . . . , y-1 ,

means of which y of the 1u may be eliminated . The remainin g
-y cycles 1du together with k then are independent and for m
homology base of connection of p i elements .

x"- 1

So let S be closed . Then (20.4) is the complete boundar y

of ct, and we have y relations, which are -obviously independent ,

(20.5)

,ifs '
x" - 1

is closed .

(20 .7 )

and
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The setting up of the part IV of the transformation ma-

trix due to these pl basic elements is easily performed as i n

the preceding section and the factor corresponding to (19 .20)

computed : From the invariance of intersection numbers it i s

seen that the transform of l contains I12 + 1 with coefficient 1

and no other 1-cycles nor k . Likewise the transform of k contains

k with coefficient 1 . So from k the factor x-1 is derived, and

from the 1-cycles we get xy-1
in taking account of the relation s

(20.8) ; this follows directly from the computation attached t o

(19.11) and (19 .12) .

So in all we have to multiply b y

(x"-1) (x-1 )

xy- 1

as a result of operations b) .

As the final result of both a) and b) we have : In passin g

from S' to S the polynomial PP(x7 ) of S' has to be multiplie d

by the factors (20.7) and (20.9), thus giving the polynomia l

P(x) of S for the transformation class r :

(xi'1s nd-
1) 2q, +s i -2

P(x) (x- 1)1+w
I

	

(xyßc m ai- 1) . . . .

This is in fact the polynomial set up in (16 .3), since a i s

not amphidrome and any kernel of c passes into kernels of c1 ,

c 2 ,

	

, cy,_1 before returning to c .
In sections 18, 19, 20 we have given the proof of the theorem

stated in (16 .3), in case the geodesics of the equivalence class

used in dividing S are not amphidrome . In the following section

we complete the proof by dealing with an amphidrome a .

21 . Fourth part of the proof . In this section we assum e

to be amphidrome. If again a is the number assigned to a i n

section 10 or 12, a is even, and there are 2 different geodesic,

a_ 1

(21 .1)

	

a, ra = al , r2 a = a2 , • . ., r2 a = aa_12

7 9

is the equivalence class of a . Let the left hand and right han d
borders of a, a 1 , • • • as before be denoted by a ' , al' ,

	

• and
a",

	

• • - respectively. They are oriented in the same way as
the geodesics (21 .1) .

We first assume that S is not decomposed by the system(21 .1) . So S' consists of one region c only. Let

(xi9a n -
02q

+s - 2

(xß mai-1) . . .

e the characteristic polynomial of c for the transformation
class z. The 9 geodesics (21 .1) yield a boundary curves of c .

If S is bounded, we may- take the curves

	

, a

	

"a-1 ,-a ,-al , . . ., -a ~

	

2

	

2

is members of a homology base of S' . As they are interchange d
cyclically by r, we get, x"- 1 as the factor in Pe(x) derived from
these a boundary curves . IT' S is closed, the sum of the element s
121 .2) is zero . We then get -

i
as the corresponding factor .

Taking both cases together, we ge t

pe a-

(x-

P,

	

) w

the factor of PP (x) derived from the boundaries (21.1). Com-
pare the corresponding more elaborate proof in section 18 .

Now joining the boundary curves in turn, the a "-elements
cancel and we retain the a '-elements, which we may denot e
as a-elements. Then, by r, a is replaced by a 1 ,

	

a "

	

by
2-2

and this by -a. No homology relation exists between them .

['he corresponding polynomial is easily computed to b e

(20 .9)
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So the effect of joining the boundary curves of S ' is to mul-

tiply Pe (x) by

(21 .3 )

To introduce a homology base of connection we choose a

point {c} in c and denote by 1)12 (µ = 0, 1, ' ', a -1) a cycl e

which starts from {c}, crosses ea once from left to right, an d

returns to {c} . Since

u+
2 = -ea ,

-we may choose the cycles b t, so that

b a.,_2 =- b
u. +

	

(, '

It is seen from intersection numbers that b ,u has the coeffi-

cient zero in the transforms of all basic elements derived fro
m

S' and in the transforms of all b-cycles except bu_1 ; in the

transform of bt,_ 1 the coefficient of is 1 . So the contributio n

of the b-elements to the polynomial is that of a elements which

are interchanged cyclically by z and which satisfy the conditio
n

bud- b
11+ 2

=O .

It then follows (e . g . by a transformati on analogous to (19 .11)) .

xa- 1

that the corresponding factor in the polynomial is a

x2- 1

So the polynomial P(x) of S is found by multiplying Pe

by this factor and (21 .3) :

P(x)_ (xa 1) w x' --
(x-1)

x2 -l x2- 1

The part -r x~ - 1 2
has to be taken into the sign I I, since it 1 -

Ix2_ 1 )
the factor \corresponding to the amphidrome bands arising from.

a

	

resalt '
the axes (21 .1) ; cf . (16.5) with the notation ,8i = 2 . The

8 1

then obviously is in accordance with (16 .3) and the explanation
attached to that formula .

Secondly we assume that S is decomposed by the syste m
(21 .1). Let c be the region to the left and c I the region to the
right of a . These two regions are not identical, otherwise an y
two adjacent regions would be identical and S would not b e

decomposed. Under' the transformation class z 2 all geodesic s

(21.1) are inverted, hence z 2 c = cr . Thus all those geodesics of
the set (21. .1) which bound c must bound cl too, and vice
versa . If these were not all geodesics (21 .1), S would not be
coherent. So we infer that there are exactly two regions ; c and

; the number r of regions in the equivalence class of c is 2 ,
and we have ac = c i .., a2c = c . Thus 2 must be an odd number .

Let the above ,polynomial Pc (x) belong to c . Then, as
pointed out in section 17, the polynomia l

Ps,(x) = Pc,(x2) = .(x2-1)I	 	 1 )~x?ßn '	 1 1 	 .. . -

(x2ßlmai- 1 )

belongs to the decomposed surface S ' .
The curves (21 .2) are on the boundary of S ' and are inter -

changed cyclically by If S is bounded, both c and cl have
boundaries not belonging to (21 .2). So these a curves may b e
taken as members of a homology base of S ' and yield the facto r
r"-1 as before. If S is closed, we remember that all eve n
powers of z transform c into itself and c i into itself. S o

,ince these curves constitute the complete boundary of c, an d

(21 .5) ai+a +a5-ß- . . .+a~_2_a"-a -- . . - aß

	

= 0
2

	

2

since these curves constitute the complete boundary of c l . Then

using a transformation analogous to (19 .11) we see that	 sxa - 1
Is the factor in Ps. (x) derived from the boundaries. Taking
both cases together

D. Kgl . Danske Vidensk. Selskab, Mat:fys . Medd. XXI, 2 . 6
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xa - 1
(x2 _ 1 ) w

is the factor of PS, (x) derived from the boundaries (21 .2) .

We now join the boundaries by putting

a
a'u = a ' ,

	

= 0, 1, . . ~ -,

and denoting it simply by a t, . In the sequence (21 .1) each

element is by w replaced by the following and the last element ,

as, is replaced by-a . If S is bounded, no homology relation

2
has to be observed, and the corresponding factor in the polyno -

mial is as in the first case equal to

If S is closed, we get from (21 .4)

a-2

	

a
3

	

a

) x2 -x2 + x2 . . . +x-1]
a

2 -1

	

2-2

	

a
- 3

= X - x + x2

	

_._ X + 1
a

-
x 2 -}-1

	

(xa - (x-
x++ 1 T

-1) (x2 -1 )

(xa- 1) (x- 1) w
( a

	

\
1 ) (x2 -1)w

is the factor corresponding to the
2
--co basic geodesics after

joining the boundåry curves .
From a comparison of (21 .6) and (21 .7) we find that mul-

tiplication of PS, (x) by

(x-1)w

(21 .6)

a
X 2 +- 1

xa - 1
a

x2-1

_( 1

Taking both cases together, we find tha t

a
a -ai-+-a2-a3+ .

.+aa-1 = 0 ,
2

X
2- 1

2

0 1 0 0 0

0 o 1 0 0

0 o 0 1 0
• • • 1

~- 1 1 -1 1 1J

	

with a - 1 rows and columns . Subtracting xEa

	

and then add-
2

	

2

ing the second, third, etc . columns with coefficients x, x2 , etc .

to the first, one finds the corresponding polynomial equal to

is the effect of joining the boundary curves (21 .2) of S ' .
Finally we have to introduce a homology base of connection .

We choose a point {c} in c and a point {cl} in c1 and connect
them by a segments, the segment b12 crossing ea from left to
right. Since a~ + 2 = - a, we take blu+ 2 - bu . So we have

two points and
2 segments in a coherent complex, thus

2
-a - 1

independent cycles . (For a = 2 there is only one common bound-
ary of c and cl and no new cycle has to be introduced .) We
form the cycles

=0,1 . . . ,a-1 .

This system of a cycles evidently contains a homology base o f
connection. Relations are obvious : We have

and the same relation is derived from (21 .5). From this we ma y

express c 1 . The matrix corresponding to the transformation
2

of the set a, a l , • • , as

	

then becomes

b, +1 ,P _

6*



a

1a+ lµ+ 2 = 0

lu-1a+1+1a +2- . . . + 1,r+2 = O .

2 of the relations (21 .9) together with one of the relations

(21 .10) form an independent set of relations, and we are left

with
2
-1 independent cycles .

If we introduce
2ir i

and set up the transformation analogous to (19 .11), we would

get all a powers of e as multipliers, if the a cycles l a were in -

dependent. Because of (21 .9) all even powers of e cancel, an d

because of (21 .10) e2 = -1 cancels too. So we get

x"-1

	

(x" - 1)(x-1)

(x2-
1) (x + 1)

	

(x2--1 ) (x2-1)

as the contribution of the homology base of connections . (For

a = 2 this factor is equal to 1 . )

We thus get the following result : In passing from S ' to S w e

get the polynomial P (x) corresponding to the transformation class

r of S by multiplying Ps, (x) by (21 .8) on account of joining

the boundary curves and by (21 .11) on account of the new

connections thereby established. So we get

P(x) = (x-1)1

	

x"- 1

The second factor has to be taken under the sign

the contribution of the amphidrome bands corresponding to th e

amphidrome geodesics (21 .1) ; cf . (16 .5). So the result is clearl y

seen to be in accordance with (16 .3) and the explanation at-

tached to it.
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This completes the proof of the main homology theorem
stated by formula (16.3) .

22. Final remarks . In section 14 we have constructed a
transformation of S, belonging to a prescribed transformatio n
class r of algebraically finite type, such that classes of fixe d
points with index j = 0 are completely avoided . We may there -
1'ore term such classes unessential . Classes with index j* 0 ,
which we term essential classes, cannot, of course, be avoided ,
but are by s "satisfied" by one point each .

The function (16 .1)

P(x) = (-1)61J-xE & I

is a polynomial ,. in x. So if we write it in the fractional for m
(16.3), the denominator divides the numerator . It will now b e
pointed out .that ',one of the advantages of writing P(x) in the
fractional form (16 .3) is to put all essential classes of fixe d
points, together with the indices of these classes, into evidence .
For this purpose we examine the factors corresponding to the
different values of I, which, it will be remembered, ranges ove r
all equivalence classes of kernels, i . e . regions or amphidrome
geodesics, of S. - The statement as to the fixed points of a t
the end of section 14 should be compared .

If )1 1 > 1, the ,BI kernels of the equivalence class in question
are interchanged cyclically by r, so they do not give rise t o
any fixed point of the special transformation of section 1 4
and hence not to any essential class .

If . )61 = 1 and the kernel is an amphidrome geodesic, it i s

seen from (16.5) that the corresponding factor is
x - 1

(x-1)2' W
e

then associate the two factors x--1 of the denominator wit h
the two essential classes of fixed points, each of index j = 1 ,
which are known to arise in the amphidrome band in the con-
struction of

	

each class being represented by one point .
If ,8 1 = 1 and the kernel is a region, we may first hav e

i > 1 . The region is then mapped into itself by 5` in such a
way that SR` is the identical transformation, thus is periodi c
in the region with nl as its order . (The region is then kerne l
of rn1 .) Fixed points of

	

are such ramification points of the
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region over its modular surface 11 1 for which all n sheets han g

together, thus for which the corresponding number ni in . the set

(22 .1)

	

In 11 , m12,

	

n1 l u

has the value 1 . Hence we get as many essential classes a

the number 1 occurs in the set (22 .1), and the index of each

class is j = 1 .

If ß1 = 1 and n 1 = 1 the region is a kernel of r itself and so

is identical 'with its modular surface M I = MI . The minimu m

number d 1 of generators of its Poincaré group is given by (16 .4) .

Putting p, = 0 and a1 instead of v in (5.1), we get the inde x

.h = 2-s1 -2q 1 <O.

Since there are no ramification points, the set (22 .1) is empty ,

and the factor in (16.3) corresponding to a region with ß1n1 = 1i s

(x- 1)-i' .

To sum up, we have the following theorem :

The number of classes of fixed points with index ,j = 1 is equal

to the number of factors with ,81 m1 . = 1 in the denominator. o f

P(x) written in the fractional form (16.3) . The number of classes

with negative index is equal to the number of values of 1 with

ß I n 1 = 1, and the corresponding indices are the exponents wit h

the opposite sign 2 - si - 2 q1 .
It is seen that this result is due to a close combination o f

methods of homotopy with methods of homology . It is easy t o

deduce from our theorem a well known theorem of pure homo-

logy theory concerning the algebraic sum of all indices . Thi s

theorem makes use of the trace of the transformation matrix ,4 .

This trace does not depend on the choice of the homology bas e

used and is equal to the sum of the roots of the characteristi c

polynomial P(x) . So we have to determine this sum of roc '

from (16.3). The initial factor (x-1)1+'̀ yields 1 + w as its cm' -

tribution. In I a factor of the numerator with ß 1 n 1 > 1 . or o f

the denominator with ß 1 m 11 > 1 has the sum of its roots equi p

to zero . A factor of the numerator with ß 1 n 1 = 1 yield s

2g 1 -l-- sI - 2 = -j1

8 7

as its contribution, a factor of the denominator with
ßIm1I = 1

-,Melds 1 and counts for -1, since it is placed in the deno-
minator . So if we denote by E- the sum of all negative indices
and by + the sum of all positive indices, we ge t

trace d= 1-ßw-, --+,

+ :+ = 1+w-traced .

This formula is due to J . W. ALEXANDER [I] in its first form
concerning surface transformations . It has received a- far-reachin g
generalization by the investigations of S . LEFSCHETZ [10,11] and
these have been treated in a modified form by H . HOPF [7] . It
is seen from the present paper how it is possible for trans -
formation classes of algebraically finite type to split the alge-

braic sum Z given by the trace formula into its different terms ,
positive or negative, due to the single essential classes of fixe d
points . To do this requires not only taking into consideration
the sum of roots of the characteristic polynomial of the trans -
formation class, but this polynomial itself .

It is seen from (16 .3) that all roots of P(x) are roots of
unity . Now the roots of the polynomial belonging to zn are the
a-th powers of the roots of P(x) . Owing to this the polynomia l
of En- is easily deduced from the polynomial of z. Hence trace
Jn is limited for all values of n,. and so is ,E (z12). This justifie s
the notation "algebraically finite type" for the transformatio n
classes in question . But the full justification lies in a conjecture ,
v,rhich I have so far not been able to prove : It will be
h-membered that in section 8 classes of algebraically finite
tpe were defined by the character that no principal regio n

possesses cuspidal points . In all cases known to the author the
,'cistence of cuspidal points involves the existence of multiplier s
he numerical value of which is greater than 1, and then
not limited for the powers of E . If this were proved to be

true in general, then the transformation classes of algebraically
finite type would be capable of a purely algebraic definition :
They would be the only transformation classes for which al l
n, ultipliers are roots of unity .
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