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CHAPTER 1.

Introductory remarks.

We begin by recalling some of the fundamental notions and
theorems in the theory of the almost periodic [unctions
of a real as well as of a complex variable. We wish, however,
essentially to confine ourselves to what is indispensable in the
following'.

A (complex) {unction F() of a veal variable f, continuous in
— 00 <t <00, is called almost periodic, if o any given >0 there
exists a relatively dense set of franslation numbers ¢ = 7 (e),
i.e. of numbers = which satisfy the inequality

|F(t+o)—F(H)| <& in —oo<i< oo,

Here, a set of real numbers is called relatively dense, if there
exists a length L such that any interval of length L contains at
least one number of the set.

An almost periodic function F'(f) is bounded and uniformly
continuous in — oo <{<C co, and the sum (and product) of two
almost periodic functions proves again to be almost periodie.

' In its main features, the theory of the almost periodic functions was
developed by the author in three papers in Acta Mathematica (vol. 45, 46, 47)
under the common title “Zur Theorie der fastperiodischen Funktionen”. Especi-
ally the last of these articles dealing with the functions of a complex variable
is of importance for the present paper. Furthermore, we shall also make use of
some of Bocmner’s results given in his important paper (Beitrige zur Theorie
der fastperiodischen Funktionen, I. Teil, Math. Ann. vol. 96). However, it is not
supposed that the papers are known to the reader and, therefore, the theorcms
applicd will be directly formulated. For further information, cf. one of the
monographs, A.S8. BrsicoviTca: Almost periodic functions, Cambridge 1932;
J.Favarp: Legons sur les fonctions presque-périodiques, Paris 1933; H. Bonn:
Fastperiodische Funktionen, Berlin 1932.

1%
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For an arbitrary fixed real =, let us consider the quantity

v(r) =uwb. |[F@+o)—F(@]|.
— Lt <@

This quantity, by the author originally denoted as the minimum
error (corresponding to the given #) of the function, was studied
in detail by BocsneER as a function of = and, now, the function
v (z),— co <g<C 0o, is usually called the translation function of
the given function F(#). The function v(z) is again an almost
periodic function and its own translation function. A set { F(f)}
of almost periodic functions can be “majorised”, if there exists an
almost periodic function F,(#), which is denoted a majorant of
the set { F(#)}, with the property that the translation function
v(z) = v, () of any given funclion F(1) of the set satisfies for
all z the inequality

v (x) < vy (v),

where v, (¢) denotes the translation function of F;(#). A neces-
sary and sufficient condition that the set of almost periodic func-
tions { F(#) } can be majorised is that the funclions of the set
are “uniformly” uniformly continuous and uniformly almost
periodic. Here, a set of almost periodic functions is said to be
uniformly almost periodic, if to any &£>>0 there exists a rela-
tively dense set of numbers ¢ which are translation numbers
corresponding to & for any function of the set. A finite set of
almost periodic [unctions can always be majorised. From this
it becomes obvious that the sum of a finite number of almost
periodic functions is again almost periodic.

A principal theorem in the theory of almost periodic func-
tions of a real variable states that the class of all almost peri-
odic functions is identical with the class of functions which,
.uniformly for all {, can be approximated by finite sums of the

Torm Zanel}"”’, where the coefficients a, are complex numbers,
. .

while the exponents 1, are recal numbers. With any almost
periodic function F(f) there is associated a Fourier series
iAnt
F(f oo D4 e et
where the exponents .4, form the countably infinite set of values
of 2 for which the mean value
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a(l) = M{F(t) e = lim - SF(t) el

T o 2 T —T

differs from zero, while the coefficients A are the corresponding
values of a(A4,). Starting from the Fourier series of an almost
periodic function, by suitable summation methods finite sums

N .
of the form ZBnelA”l can be deduced (all exponents of which
1

are Fourier exponents of F(¢)) which converge uniformly to (9.
If F(f) is almost periodic with the Fourier series ZAneiA“t,
and p is an arbitrary positive number, the (possibly empty)

iApt

series'Z’AnelA“t consisting of just the terms A e in the

. . . s . . 27 )
original series with integral multipla of ? as exponents, is the

Fourier series of a continuous, purely periodic function P(1).
This function P (t), which was especially considered by BoCHNER,
will be denoted as the “periodic component of F({) belonging
to the period p”. This component can also be determined from
the sequence of almost periodic functions

F@+p+F({+2p)+--- +F(+np)

F = n

as this sequence F, () converges for n— % to P(#), uniformly
in the whole interval — oo <<{< %. From the limit equation
P(#) = lim F_(#) it results immediately that

w.b, |[P@|Zu.b [FOI.

—o< < —w< < w

Let us now briefly recall some notions and theorems con-
cerning the almost periodic functions of a complex variable.

"A function f(s) = f(o+1il), analytic in a vertical strip
a<o<<B (—oo < a<< g < 00),is called almost periodic in («, 8),
if to any >0 there exists a relatively dense set of translation
numbers 7 = z (&) satisfying the inequality

[f(s+ie)—[(s)| < ¢ in the strip o <o<<B.

In other words, we require that for any fixed ¢ in the interval
o« <o<g the function F,(f) = f(s—+if) is an almost periodic



6 Nr. 18

function of the real variable #, and that the functions of the
set {F; (1)} corresponding to «<<¢<<# ave uniformly almost
periodic. But, generally, this set cannol be majorised, since the
functions (on account of the behaviour near the boundary of
the strip) need not be “uniformly” uniformly continuous fune-
tions of 1.

A fanction f(s), analytic in e<<e¢<B (—o0 < << g < 00), is
called almost periodic in [e, 8], if it is almost periodic in every
substrip (e, 8;) where o <oy <<y <<8. We also use mixed
brackets and thus speak of a funclion almost periodic in [e, 8).

With each function f(s), almost periodic in [e, 8], is associ-
ated a Dirichlet series ‘

f(s) oo >4 gAns

with real exponenis A, which, for any fixed o in a<<o<<g,
gives the Fourier series of the almost periodic function F, () =
flo+1if) of the real variable f, The set of all funclions, al-
most periodic in [e, 8], is identical with the set of the funec-
tions which can be approximated uniformly in [e«, 2] (i. e. uni-
formly in every substrip «; <o<{48;) by finite sums of the form
Zanek“s, where the 2
two analytic functions which bolh are almost periodic in [, 8],
their sum f,(s) +f; (s) is again almost periodic in [e&, 8]. A cor-
responding general theorem does not hold for functions almost
periodic in (&, 8). Thus, the functions ¢ and e’ are both al-
most periodic (even purely periodic) in (— oo, c0), whereas their
sum f(s) is almost periodic in (— o, o], but not in (—co, ©);
for any real = &= 0 it is even valid that | f(s + iz) — f(s)| = o= for
g— oo, uniformly in 7. Another simple example is given by the
two geometrical series

., ave real numbers. If f;(s) and f;(s) are

1

fry L ons 1 £l o N Vans _
fi(s) = Dle = and f(s) = D'e =

n=4{ - n=20

which both are almost periodic (even purely periodic) in (— oo, 0),
while their sum is almost periodic in (— o, 0], but not in (— o, 0);
for, as the function f(s) = f{(s) + f, (s) has poles in (and only in)
all points of the two arithmetic progressions 2 msmi and }/2 mi,
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there does not exist any number v &£ 0 for which the difference
f(s+1i%) —f(s) is bounded in the whole half plane — co < ¢<<0
(as the set of poles is not transformed into ilself by any trans-
lation) so that f(s) for no ¢ has other {ranslation numbers in
(— 00,0) than the trivial ¢ = 0.

It is the aim of this paper to investigate the behaviour of a
function f(s), almost periodic in a strip («, 8) (and not only in
[«, 8]), in the immediate neighbourhood of one of the houndaries
of the strip, for instance the right one. We shall assume the
strip cut off (if necessary) on the left in order to avoid any dif-
ficulties on the left boundary of the strip.

For our purpose it will be convenient also to introduce the
notion of a function almost periodic in {e, 8} (and correspond-
ingly in {«, ) etc.). For — oo < a <8< oo, the function f(s) is
called almost periodic in {«&, 8}, if f(s) is conlinuous in the
closed strip ¢ < ¢ < 8 and analytic and almost periodic in the
open strip (e, 8). Besides, it is clear that every translation number
7 = 7(¢) corresponding to f(s) in the open strip («, 8) as a
matter of course is a translation number 7z (&) for f(s) in the
closed strip {«, 8}, as the inequality

| fGs+iD)—f()| <& in a<ao<8B,

on account of the continuity of f(s) in e < ¢ < 8, involves lhe
inequality

]I(S—I—ir)—f(s)l e in e<ao<4.

By simple conclusions. (known from the theory of the almost
periodic functions of a real variable) we realize immediately
that a function almost periodic in {«,8} is bounded and uni-
formly continuous in « = ¢ < 8. Thus, if f(s) is almost peri-
odic in {«, 8}, the functions F; (1) = f(o+it) (« < ¢ < B) are
not only uniformly almost periodic, but also ‘‘uniformly”
uniformly continuous, i.e. the set {F, ()} (¢ < ¢ < B) can
be majorised. From this, it readily results that the sum of
two functions f; (s) and f,(s), both almost periodic in {«, 8},
again is almost periodic in {«, 8}. We add, without going into
details, that it is easy to prove that, if f, (s) is almost periodic
in {e,8} and f,(s) is almost periodic in {«, #), the sum
fi(s) + o (s) is almost periodic in {&, 8) and not only in {e«, A].
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But it is important to call attention to the fact that the sum of
two functions, almost periodic in {e, 8), generally is almost
periodic only in {«, 8], but not in {«, 8); thus, the two func-

tions mentioned above, 1 S and 1 —, are both almost peri-
1—e 1—eb2s '
odic, for instance in {—1, 0), whereas the sum is not.

In the present paper, we shall study the functions, almost
periodic in a strip of the type {e, 8), especially the un-
bounded functions of this type.

Of special importance for our investigation of a function
almost periodic in {a, 8) is the set F of all translation numbers
% (where no ¢ is prescribed), i. e. the set of all real numbers =
for which the difference f(s+iz) —f(s) is bounded in « < o< 4.
While, for a function almost periodic in {«, ,6’}, this set F con-
sists of all real numbers, this is not necessarily the case for a

function almost periodic in {e«, 8); thus for the function

1—¢"
purely periodic in {—1, 0), the set F consists of the numbers
2ms. It will be shown below that the set F consists of all real
numbers only in the trivial case, where the function f(s) itself

is bounded in {«, 8). Let us call the function

v(r) =a.b. |[fGs+in)—f()],

sin{e, )
which is defined in the set F, the translation function of f(s)
in {a, 8). The set F contains together with = also —, and we
have v(—+) = v(z); morcover F contains together with z; and
7y also #; +1,, and the inequality v (z; +15) < v (%)) + v (z,) is
valid. The set F'is a module, as it conlains together with ¢,
and 7, also z;—7, and it contains other numbers than 0 (as a
subset it contains for instance the relatively dense set of all
numbers ¢ = ¢ (1)); we shall denote F the “translation module”
of the function f(s) in {e, 8).

Moreover, the process mentioned above of separating the
periodic component with a given period from an almost periodic
function can be transferred from functions of a real variable to
functions of a complex variable. For a function f(s), almost
periodic in {e, #), and an arbitrarily chosen p>0, we find that
the sequence of the functions (evidently almost periodic in {«, 8])
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_[GH+ip)+f(s+2ip)+ -+ +f(s+nip)

n

fu (8)

converges for n— oo in the whole strip {«, 8) and even uni-

formly in each substrip {«, y}, where a <y < g, to a function

p (s) purely periodic with the period ip in {«, 8) whose Dirichlet
2

27T
series (Laurent series) ZBmem?s consists just of those terms
AneA“s in the Dirichlet series of the given function f(s) the ex-

. . . 2 .
ponents .4, of which are integral multipla of =™ The transi-

tion from the real to the complex case is immediate, if we only
observe that uniform convergence of the sequence f,(s) on the
two lines ¢ = « and ¢ = y involves that f,(s) converges
uniformly in the whole strip o« < ¢ < y, as, according to the
theorem of PHRAGMEN-LINDELOF, u. b. |fnl(s)—fn2(s)’ remains
unchanged, whether s varies in the whole strip & < ¢ < y or only
on the two houndaries ¢ = ¢ and o = y of the strip. Further-
more, if f(s) is bounded in {«, ), the component p (s) is also
bounded, and the inequality

wb. [p(s)| = ub. [f(9)]
sin{e,p sin{a,B)
is valid.

After this introducing Chapter I, the present paper is divided
in three Chapters.

In Chapter II, the case 8 = oo, 1. e. the lunctions almost
periodic in {«, ), is treated. If the function f(s) is bounded in
{a, ), its behaviour for ¢-> oo is extremely simple in con-
sequence of well-known theorems on almost periodic analytic
functions. But also for unbounded functions, almost periodic in
{@, oc), the situation is very perspicnous in view of the fact
that the translation module F here always proves to be discrete,
i. e. forms an arithmetic progression; in fact, a general “splitting
theorem™ holds which states that every such function f(s) can
be written (and essentially only in one way) as a sum of a
function p(s), unbounded and periodic in {e, %), and a func-
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tion b(s), bounded and almost periodic in {e, ). Moreover,
also the converse is valid, viz. that the sum of a function p (s),
unbounded and periodic in {«, ), and a function b (s), bounded
and almost periodic in {&, o), is always almost periodic in
{oc, o).

Chapter IIT deals with the case, where £ is finite; here, we
may suppose that 8 = 0 so that we have to do with functions
which are almost periodic in a sirip {«, 0). The functions which
are bounded and almost periodic in {&,0) are only shortly
discussed, as the main object is the study of the functions
unhounded in {, 0). For such an unbounded function, we
begin proving that its translation module F cannot contain
all real numbers, Subsequently, we dislinguish between the
case where the set Fis discrete and that where F is everywhere
dense. The first case, where F is an arithmetic progression,
does not cause any difficulties; a general splitting theorem is
valid here (completely analogous to that holding in the case of
B8 = ), as f(s) can be splitted—and practically uniquely—into
a function p(s) purely periodic in {«, 0) and a function b (s)
bounded and almost periodic in {a, 0). Next, the other (essenti-
ally more difficult) case is considered, where the translation
module F is everywhere dense; in this case, the line ¢ =0
is always an essentially singular line for the analytic function
f(s). The main question is, whether also here a general splilling
theorem holds, analogous lo that valid in the other cases. It is
proved that this is not the case. In a decisive way we use a
“gap theorem” concerning Dirichlet series Zane“s, convergent
for ¢<C0, where the exponents form an increasing sequence of
positive numbers which increase “very strongly” to the infinite;
this theorem states that the function f(s) represented by such a
series always is almost periodic in the whole strip (— oo, 0),
and not only in (— oo, 0].

Finally, in Chapter IV, the proof of this gap theorem is
given. Here, the treatment of Dirichlet series with strongly
increasing exponents is extended somewhat further than neces-
sary for the proper purpose of this paper. Thus, in order to
throw light on the nature of the methods used, a new proof
of a special case of the so-called Hapamarp gap theorem for
Dirichlet series Zanelns with the convergence half plane ¢ << 0
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is given which states that the convergence line ¢ = 0 always is
an essentially singular line for the analytic function represented
by the series, il the exponents increase rapidly enough. In the
case where the A are integers (and we are concerned with a
power series) this simple proof has already been communicated
by the author in a paper! written in Danish.

! Om den Hadamard'ske “Hulseetning”, Matemalisk Tidsskrift, B (1919).
See also the paper: Om Potensrakker med Huller, Matematisk Tidsskrift,
B (1942).



CHAPTER II.

Functions almost periodic in a strip {«, o).

We shall now investigate, how an analylic function f(s) which
is almost periodic in {e, o) behaves for ¢— oo,

We begin by recalling the following theorem which was
proved in the third paper in Acta” Mathematica cited above. If
f(s) is almost periodic in {a, 0], a necessary and sufficient
condition that f(s) is bounded for ¢— <o, i.e. bounded in {«, ),
is that all the Dirichlet exponents ., of the function are < 0;
if this condition is satisfied, the funclion is almost periodic not
only in {«, @], but also in {&, o), and for 6— oo uniformly
in t it approaches a definite limit (viz. the constant term in the
-Dirichlet development of the function); in this case the func-
tion is called regular in the point ¢ = oo. In view of a later
application, we observe that the difference between two func-
tions, bounded and almost periodic in {«, c0), again is almost
periodic in {«, c0), and not only in {«, oo].

Thus, the functions almost periodic in a strip {e, %), which .
are bounded for ¢— co, are simply the almost periodic functions
regular in ¢ = ¢o; an investigation is therefore only demanded
in the case, where the function f(s), almost periodic in {«, c0),
is unbounded for ¢— co (and, therefore, among its Dirichlet
exponents has positive ones).

As the most simple type of such a function, we have ob-
viously a fanction unbounded and purely periodie in {«, o).

Let us begin by proving the following theorem: If p(s) and
b(s) are two funclions, almost periodic in {&, ), of
which p(s) is purely periodic, while b(s) is bounded in
{@, o), their sum
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f(s) =p(s)+b(s)

is again almost periodic in {«, o).

The theorem is not quite trivial, as it is not valid that the
sum of any two funclions almost periodic in (e, ®) is again
almost periodic in {«, ®) (but only in {«, %]); however, it
is easy enough to prove. It is the task to show that to any
arbitrarily given £>0 a relatively dense set of real numbers ¢
exists for which

|f(s+ie)—f(s)| < & in the whole strip « < o< .

As b(s) tends to a limit for ¢— oo (uniformly in #), to the
given ¢ we can first determine a number y = y (&) so that any
rcal number 7 is a translation number »(e) for the function b(s)
in the half plane {y, c0); from this, it follows that the function
b (s) has quite the same translation numbers 7 (¢), whether we
consider it in the half plane {«, ) or in the strip {«,y}. In
consequence of the earlier cited majorising property of the almost
periodic functions b(o-+if) (¢< ¢<y) the set of translation
numbers 7 (¢) of b(s) in {«, y} has, however, a relatively dense
intersection with any arithmetic progression—because, as is well-
known, this is the case for the translation numbers of a single
almost periodic function of a real variable. If, as difference in
this arithmetic progression just p>>0 is chosen, where ip is a
period of the given periodic funclion p(s), any number ¢ in the
previously mentioned relatively dense intersection is a translation
number of the sum f(s) = p(s) +b(s) in {a, ®), as

ps+izr) =p(s) and |b(s+iz)—Db(s)|<e¢ In « < o< 0.

As we shall see, we have thereby actually exhausted all
possibilities for a function almost periodic and unbounded in
{ e, o), since the following inverse theorem is wvalid.

Splitting theorem: Every function f(s) unbounded and almost
periodic in {«, ) can—and essentially only in one way—be written

as a sum f(s) = p(s)+b(s),

where p(s) is periodic and unbounded in {¢, ), while b(s) is
bounded and almost periodic in {«, 0).
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If we have a splitting of f(s) as that stated in the theorem,
and il ip is a period of the periodic term p(s), the number p
must necessarily belong lo the translation module F of the func-
tion f(s) in {e, o), as in « < ¢< % the inequalily

[f(s+ip)—f()| < 2B

holds, where B means u.b. [0(s)| in e < o< co. It is, there-
fore, natural—and may also be inleresling in itself—to study
primarily this translation module F, i.e. to try to determine the
numbers ¢ for which the difference f(s-+iz)— f(s) is bounded
in {&, ). Since the Dirichlet development of this difference
is determined as the difference between the Dirichlet develop-
ments of f(s+iz) and f(s), i.e. given by

f(s+ie)—f(s) oo DA (Anr 1) edns,

the theorem quoted in the beginning of this Chapter, however,
involves immediately the following necessary and sufficient con-
dition for the (anyhow in {«, c©]) almost periodic function
[(s+ir) —f(s) to be bounded in {«, c0): In the Dirichlet series
mentioned above must not occur any term with a positive ex-
ponent, i.e. for any positive Dirichlet exponent ., of the given
function f(s) (necessarily occurring, because f(s) is unbounded
in {e, ©0)) it must be valid that ¢4*"—1 = 0, i.e.

A,z =0 (mod 27) for any 4, >0.

Thus, the numbers 7z in the translation module F of f(s) are

. . 2
just the numbers = which are multipla of all the numbers = -

3
n

where .7, runs through the positive Dirichlel exponents of f(s).
Hereby (only applying that any ¢ has to be an integral multiple

2 .
of one of these numbers /T[E) the translation module appears

Y
to be discrete, i.e. consists of all the numbers of an arithmetic
progression »q(q >0, » = 0,41, ---). After this, turning to the
exponents .4,, we notice (as ¢ = ¢ satisfies all the congruences

above) that all positive exponents .4, must be multipla of the

number 27 and, further (as z = ¢ is the smallest positive solution
q
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27 . .
of the congruences) that —— is (he greatest common divisor of

the positive exponents .7,.

It is now easy to accomplish the prool of the splitting
theorem, since it can be demonstrated that, as a period of
the periodic ferm in a splitting of the desired kind, we may
even use the number of least absolute value which may be
taken into consideration, viz. the number ig, where ¢ is the
smallest positive number in the translation module F. As p(s)
we may use the periodic component (which was introduced in
Chapter I) of f(s) in {«, c0) belonging to the period ig. For,
as the Dirichlet development of this function p(s), purely peri-
odic in {a, o), consisls of the terms AneiA”S in the Dirichlet

2 .
development of f(s), for which .7, is a multiple of “™  the Dirichlet

development of p(s) coincides as regards the terms with positive
exponents (even with exponents > 0) with the Dirichlet develop-
ment of f(s). Therefore, the Dirichlet development of the diffe-
rence b(s) = f(s)—p(s), almost periodic in {&, co], can only
contain terms with negative exponents; it follows that the fune-
tion b(s) aclually is a funclion, bounded and almost periodic
in {&, o).

From the proot of the splitting theorem given above il is
furthermore easy fo decide to what degree the splilting is unique.
Let us assume that ‘

[(s) = p(s)+b(s)

is the “standard splitting” stated in the above proof, the period
of p(s) being the number ig where ¢q is the smallest posilive
number in the translation module F, and p(s) just being the
periodic component of f(s) belonging to that period ig; more-
over, let us assume that

f(s) = p* () +b7(s)

is another arbitrary splitting of f(s) in {e&, co) of the kind
stated in the theorem. As for  the period ip of the periodic
term p*(s) it holds that p is a number of the translation mo-
dule F, i. e- a number of the form »q, the difference 7 (s) =
p*(s)—p(s) = b(s)—b*(s) must be a function, bounded and



16 Nr. 18

periodic in {e, c0), with a period of the form irq. Conversely,
however, it is valid that, if ={(s) is a function bounded and
periodic in {«, o) with a period of the form ivq, we can use
the function

p(s) = p(s) +7a(s)

as a periodic splitting term; for, if we write f(s) in the form

f() = (p)+m())+ (b ()—n(s),

the first term p(s) + = (s) is periodic in {e&, o), while the other
term b (s) —m(s) is almost periodic and bounded in {e, c0), as
the difference of two functions, almost periodic and bounded
in {e, ).

Thus it is clear that the splitting is “essentially” unique.




CHAPTER IIL

Functions almost periodic in a strip {«, 8), where g <oo.

Obviously it may be assumed, otherwise only applying the
translation s = 5"+ 8, that 8 = 0. In this chapter, the behaviour
of a function, almost periodic in {«,0) (—co<a <0), in the
immediate neighbourhood to the left of the imaginary axis ¢ = 0
will be investigated.

Here, the situation is more complicated than in the case
A = oo, due to the fact that a function bounded and almost
periodic in {e,0) does not show a similar simple behaviour
for ¢—>0 as a function bounded and almost periodic in {e, o0)
for ¢—o00. v

The functions, bounded and almost periodic in {«, 0), how-
ever, shall be treated briefly, since we are especially interested
in the unbounded functions. If f(s) is bounded and almost
periodic in {«, 0) it has—already because it is bounded—accord-
ing to a theorem by Farou, for 06— 0 a limit function F({) =
f(iH) in the sense that f(s-+if) for ¢— 0 approaches a limit
F(#) for any t in —oo<{f< o except in a set E of measure
zero®. Thus, if v = ¢(¢) is an arbitrary translation number of

f(s) in {&,0), i.e.
fG+i)—f)] <e in e < 6<0,

! In its usual formulation Farou’s theorem deals with a function (2
bounded and analytic in a circle |z| <1, and it states that, for almost all
points zg on the boundary |z] = 1, f(z) approaches a limit f(zy), if z tends
to zp along the radius vector. When transforming the circle |z| <1 by a linear
substitution into the half plane 0 <0, we do not just arrive at the assertion
mentioned in the text, as the radii vectori of the circle are not transformed
into horizontal straight lines in the half plane, but into eertain arcs of circles
orthogonal to the boundary ¢ = 0. It is, however, obvious that a function
f{s), bounded and analytic in ¢ < 0, which approaches a limit g, if s approa-

D. Kgl. Danske Vidensk. Selskaly, Mal.-fys, Medd. XX, 18. 2
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we have for all £, except in a set of measure zero E' = E’ (¢)
(namely the sum of the set £ and the set obtained from E
by the translation —), the inequality

|[FU+D—F @] < e

From this it follows especially that the limit function F(¢) = f(it)
is a function almost periodic in STEPANOFF’s sense, as for any
of the mentioned translation numbers z () of f(s) in {«, 0) holds
the inequality
1
u. b. S[F(t+’£)-F(l)|dt§s.

— << w t .
However, we shall not study this limit function in detail, as
such a study—analogous for instance to the study of a limit
function of a function bounded and analytic in the unity circle
| z| << 1—lies beyond the scope of this paper.

In order to obtain information on the different possibilities
and to have some conveniently simple examples at our disposal
—Dbefore turning towards our proper problem, viz. the investig-
ation of the functions almost periodic and unbounded in {e, 0)—
we shall, however, mention some typical examples of functions
bounded and almost periodic in {«, 0).

Example 1. It may, of course, happen that a function,
bounded and almost periodic in {e, 0), is almost periodic also
in {«, 0}, although it cannot be continued analytically across
the line ¢ = 0. This is the case, for instance, with the purely

ST . ®1 . . .
periodic function gﬁe’”s <as the unity circle is the natural
T

boundary of the power series Z#z’”).

Example 2. The function
eS 1

p(s) = "1,

ches a poiht so == ifp of the boundary along such an arc¢ of a circle, also con-
verges to g, if s tends to sy along the tangent t = fy, simply because the

1
inequality | f(s)| < K for & < 0 involves that f'(s) = O (;) for ¢ —> 0, while the

vertical segment between the tangent and the circle is 0(62) for ¢ — 0.
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also bounded in the half plane ¢<<C0 and periodic with the
period 2mi, is regular on the whole boundary ¢ =0 except
the points 2mim(m = 0,41, ---); that the function ¢(s) is
bounded for o<<0, viz. [¢(s)|<1, follows from the fact that

S

. e
|e| <1 for ¢<<0 and the exponent ‘therefore has a nega-

. e—1 w1
live real part in ¢<C0 (as by the linear function u = o—1 the
unity circle |w|< 1 is transferred to the half plane N (a)<0).

If s ranges over the segment o= 0 (0 <<{<2mx), the function &’
S

ranges over the unity circle and therefore es .

& —
imaginary axis; thus ¢ (s) will circulate an infinite number of
times on the unity circle for t— 0 and {— 2 7. We have called
attention to this bounded Function ¢ (s), because, for any suf-
ficiently small ¢, in any case for <1, it has no other trans-
lation numbers ¢ = z(¢) in {&, 0) (e an arbitrary negative
number) than just the numbers (periods) 27#m. For, if z is an
arbitrary number &= 27m, in the difference

over the whole

p(s+ie) — g (s)

the first term ¢ (s +iz) converges to ¢ (iz) for s— 0, while the
other term ¢(s) can be made to converge to an arbitrarily assigned
value of the unily circle by letting s approach 0 in a convenient
way [rom inside the half plane o< 0; this implies, however, that
| ¢ (s +ir) —¢ (s)| obtains values greater than ¢ in the half plane
o< 0 (by the way in every half circle |s|<<d, ¢<<0).

Example 3. Already in the introductory Chapter we men-

tioned two functions, almost periodic in {e, 0), viz.

1 1
and f(s) = ———,
1——63 fz( ) 1-—-@‘/23

fi(s) =

the sum of which is not almost periodic in {&, 0); however,
these functions are not bounded. It is of interest that the men-
tioned conditions can also occur for two functions f;(s) and
f2(s) bounded and almost periodic in {«, 0); hereby we have
especially shown that there exist functions, for instance the sum
fi(s) + £, (s), which are almost periodic in {«, 0] and bounded
2*
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in {&, 0), but not almost periodic in {«,0), in contrast to the
case § = Co. As an example we may use the two functions

() = g(s) and £ () = ¢ ()29,

where ¢ (s) is the function of example 2. We realize that the
sam f(s) = f;(s) + f; (s), considered for instance in {—1, 0), has
no translation number z &= 0 for any ¢<<1. In fact, if z 3= 0
is an arbitrarily given number, we can obviously choose a
number {; in such a way that one and only one of the four
numbers t,, f,+7z, V24, V2(t,+7) is a multiple of 2z (if ¢
itself is a mulliple of 27, we may, for instance, use ¢, = nVﬁ;
otherwise, we may use either the number f# = 2 or, if
V227 +7) just is a multiple of 27, the number ¢, = 4).
Therefore, if we make s approach the boundary point i, from
the half plane o<C0, three of the four functions f, (s), f; (s + i),
f2(s), fo(s-+ir) will approach definite limits, while by making
s tend to ify in a suitable way from the half plane ¢<<0 we
may arrive at any number on the unity circle as a limit of the
fourth function; hence it is excluded (just as in example 2) that
the modulus of the difference

fGs+in)—f(s) = fils+io)+ fs+i)—fi()—f(5)

remains smaller than a number ¢<C1 in the whole half plane <0,

Now we begin the investigation of the functions, almost peri-
odic and unbounded in {«, 0). In order to demonstrate at
once that the situation here is essentially different from that of
the functions almost periodic and unbounded in {«, o), it may
be emphasized that the sum of a function b(s), bounded and
almost periodic in {, 0), and a function p(s), unhounded and
periodic in {«, 0), is not necessarily almost periodic in {«, 0).
To this purpose, we need only consider the sum

f(s) =p(s)+b(s),

where b(s) is the function ¢(s), bounded and almost periodic
—even purely periodic—in {&, 0), given in example 2, which has
no other translation number for any s<1 than the numbers
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2 m, while p(s) is the periodic function T 1eV§$ with the period
]/5 wi and the poles |2 msmi. For, if 7 is a translation number of
f(s) in {@, 0) (belonging to some s or other), we must have
t = /2 mm and, therefore, p(s+ir) = p(s); but none of these
numbers #, except the trivial # = 0, is a translation number for
b (s) belonging to any e<1.

It is one of our main problems to decide to what extent a
converse theorem would hold, i.e. to what degree we also here
have a general splitting theorem analogous to that valid for
B = oo. As we shall see at the end of the Chapter, this is not
always the case, although the theorem holds in an important
special case.

Let us begin with the remark lhat a function f(s), un-
bounded and almost periodic in {, 0), actually assumes values
with arbitrarily large modulus already in a bounded part of
the plane, precisely speaking, that there exists a length L such
that the function is not bounded in any rectangle of the form
o < 0<<0, t'<{<<l'+ L. This is obviously valid for an L chosen
thus that, in every interval t'<{<(t'+ L, there exists at least
one translation number ¢ of the function f(s) in {«, 0) belonging
for instance to ¢ = 1; for, if f(s) was bounded (say |f(s)|<K)
in only one of these rectangles, it would be bounded (viz.
| f(s)]<<K+1) in the whole strip « < ¢< 0. Hence, denoting a
boundary point s, = it, as an “infinity point” of f(s), if f(s)
is unbounded in every halif circle ¢<<0, |s—s,| < J, we conclude,
that f(s) certainly has infinity points on the boundary ¢ = 0
(as f(s) is bounded in every subsirip ¢ < ¢ < y<0), and that
these infinity points form a relatively dense set. That the ex-
istence of one infinity point s, involves the existence of a rvela-
tively dense set of infinity points, follows also from the fact that,
together with s,, in any case all points s, iz must be infinity
points, where ¢ runs through the (relatively dense) translation mo-
dule F of the function. The set of these infinity points of f(s) on
the boundary o = 0 forms of course a closed set. This set can very
well consist of all the points of the boundary; this is the case for
the function f(s) = Zcms, purely periodic in (— co, 0), where
it holds for any fixed ¢ = 27r (r rational) that |f(o+il)|—> oo
for o—0. '

For the more detailed study of a funclion, unbounded and
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almost periodic in {e, 0), an investigation of the translation
module F is of special importance. In the case 8 = & con-
sidered in the foregoing chapter, the translation module was
always discrete, i. e. it consisted of the numbers of an arithmetic
progression, This may of course also happen when g is finite,
1

._es
odic in (—o0, 0)) with the poles 2mmi, where F just con-
sists of the numbers 2mn. However, it may here also occur,
that I" is everywhere dense on the line —co<{f< o0, This
is, for instance, the case for the above mentioned function

for instance for the function f(s) = Zens = (purely peri-
0

fls) = Ze"!s (also purely periodic in (— o0, 0)), since any ra-
T

tional multiple of 2 surely belongs to F, as for v = B9 in
the whole half plane ¢<C0 the inequality

lf(s"f“l'[)_/‘(?)‘ — ->q:v en!(s—l«ir)_en!s

1

< 2¢q

holds. In the case where the translation module F is everywhere
dense, the infinity points must also be everywhere dense, as
follows from a previous remark; therefore they must constitute
the whole boundary (as the set is closed), and especially the
boundary o = 0 must always be an essentially singular line
for the function.

The .investigation of the functions, unbounded and almost
periodic in {«, 0), naturally falls into two cases corresponding
to a discrete translation module and to an everywhere dense
translation module, respectively. Before starting this investigation,
it will first be proved that the translation module cannot con-
sist of all real numbers. We observe that this is not a special
case of a general theorem concerning arbitrary unbounded
analytic functions, but a typical theorem for unbounded almost
periodic fanctions; thus, the trivial not almost periodic analytic
function f(s) = s is unbounded in an arbitrary strip (e, 8),
while the difference f(s-iz) —f(s) is bounded (in fact constant
= iz) for every fixed =.

Theorem. The translation module of a function f(s), unbounded
and almost periodic in {a,0), cannot consist of all real numbers.
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It has to be proved that a function f(s), almost periodic in
{@, 0), which has every number z as translation number (for
some or other £), must necessarily be bounded.

A decisive siep in the proof is the demonstration that the
translation function .

v(z) = w.b. |f(s+iv)—[f(s)],
sin {e, 0)

here defined for all #, is a bounded function of «. To show this,
it is obviously sufficient to prove that v(z) is bounded in the
interval 0 <<7z<CL, where L is chosen in such a way that any
interval of the length L contains a number #/, which is a trans-
lation number of f(s) in {«, 0) corresponding to ¢ = 1; for if
v(r) <k in 0<<z <L, due to the inequality v(z, + %) < v(vr) +
v(r,), the function v(z) is obviously <k -1 for all z. That
the translation function v(z) is bounded in a finite interval
0 <z<<L can be demounstrated in the following way: We con-
sider v(z) in the interval —L <v <L and denote by E, the
(measurable) set in —L<z<CL in whose points v{(s)<<n. As
E, cE,cE;c--- and as any ¢ in —L<z< L belongs to
the set E, for n sufficiently large, the measure m(k,) of the
set £ will converge to the length 2L of the whole interval,
for n— . Therefore, we may determine N such that

. 3
m (]LN)>§L. _

Then, for any ¢ in 0 <#<CL the inequality
v(e)<<2N

will be valid. This is evidently proved, if we have shown that
any given 7 in 0 <#-<<L can be writlen in the form v = z; —r,,
where both z; and 7, belong to the set E, (and 7 lies in the
interval 0 <<z<(L). This is possible, as a consequence of the
fact that the set Ey and the set Ey = E (z) obtained from E,
by translating it by = must have a common point between 0 and
L (which point then is equal to z; as well as to =+ 7,, where 7,
and , both belong to Ey), the set E, as well as the set E
having an intersection with the interval 0 <z <{L the measure

of which is greater than %
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Now it is easy to finish the proof, viz. to show that f(s)
must be bounded in {oc,()). We have only to choose an arbi-
trary number 4 which is incommensurable with all the Dirichlet
exponents of f(s) different from zero (forming a countably in-
finite set) and to consider the periodic component p(s) of f(s)

in {e0) belonging to the period ip = %l As no Dirichlet ex-

ponent of f(s) which is different from zero is a multiple of .,
this periodic component is simply a constant ¢, viz. the con-
stant term in the Dirichlet development of f(s). On the other
hand, however, p(s) can be delermined (in the whole strip
e < ¢<<0) by

p(s) = lil’l‘lf(s—f_ip)J'_f(s"l‘Q‘ip)‘i“ < +f(s+nip).

n->w n

hence, it results that the difference p (s)—f(s) must be bounded
in the whole strip {«, 0), viz. that its modulus must be < G =
u.b. v(¢), as we have

p—f(s) =
i LG =[O T (G 2ip) = f ) + - + F s+ nip) —f(5)

n—> n

where the modulus of each of the differences f(s+ivp) —f(s) is
< Gin{e0). From p(s) =c and |p(s)—f(s)| < G in {«, 0),
it finally results that

[f@l=lel+6 in {e0)

and so we have proved that f(s) is bounded. :

In the following we shall first treat the case where the trans-
lation module F is discrete, and then the case where F is every-
where dense on the line — oo <C{<C 0o,

The translation module is discrete.

In this case the silualion proves to be highly analogous to
that for 8 = co (where the translation module always is dis-
crete), as the following splitting theorem is valid.
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Splitting theorcm: A .function f(s), unbounded and almost
periodic in {e,0), with a discrete translation module can always—
and practically in one way only—be written as a sum

f(s) =p(s)+b(s),

where p(s) is a function, unbounded and purely periodic in {«,0),
while b(s) is a function, bounded and alinost periodic in {e, 0).

Let us denote the numbers in the translation module F which,
in consequence of the assumption, form an arithmetic progres-
sion, by v = vq(g>0, » =0, = 1,---). Itis obvious that, in any
splitting of f(s) of the kind mentioned in the theorem, each
period of the periodic lerm must necessarily have the form ivgq.
It will be proved thal, as a period ip of the periodic term, we
may even use the number ig, where ¢ is the smallest positive
number which might be taken into consideration, for we shall
prove (in analogy to the case 8 = oc) that the periodic component
of f(s) in {&,0) belonging to the period ig is a possible p(s).
When proving this, it would not be convenient (as in the case
8 = ) to use the Dirichlet developments, because here (in con-
trast to the case 8 = o) we have no simple criterion, whether
a Dirichlet developmen!l just represents a function bounded in
{«, 0). We have to operate with p(s), determined in {«, 0) as a
mean value, i.e. by the limit equation

p(s) — lim fGs+ig)+f(s+2ig)+ -+ f(s+ niq).

n-»> o n
We have to show that the function b (s)—obtained by subtract-
ing from f(s) this function p(s) of the period ig, purely peri-
odic in {e, 0)—is not only (of course) almost periodic in {e, 0],
but actually almost periodic in {«, 0) and moreover is bounded
in {«,0).

However, it is plain that the difference b (s) = f(s)—p(s) is
almost periodic in the whole strip {«, 0). For, as any trans-
lation number = of f(s) in {«, 0) lies in the translation module
F, i.e. has the form »¢q, the number iz is a period of p(s),
and therefore any translation number 7 () of f(s) in {«,0) is
also a translation number z(¢) of b(s) in {a, 0).
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In order to prove- thalt the function b(s) = f(s)—p(s) is
bounded in {e,0) we show primarily that the translation
funetion v(z) of f(s) in {«, 0), which here is defined for
=g (» =20, £1,---) only, is bounded, i.e. that

v(r) <K foral ¢=vq(w=0, L1, --).

To this purpose we consider the set of translation numbers # of
f(s) belonging, for instance, to ¢ = 1. As each of these numbers
is a multiple of ¢, the relative density of the set formed by
these numbers ¢ (1) implies that there exists a positive integer
M such that among M arbitrary consecutive multiples of ¢ there
exists at least one which is a z(1). If now k denoles the great-
est of the M numbers v(yq) (v = 1,2,--- M), for all v = »q
the inequality v(z) =< k- 1 obviously holds. Having thus proved
the inequalilty »(z) < K for all v = »q, it is plain that the
function b(s) is bounded in the whole strip {«, 0), since for
any point s in.{e, 0) the limit equation

b(s) = f(s)—p(s) =
i (O 1+ + (FO = F(+2i9) + - + ([ () [ (s +ing))

n-—> o n

is wvalid, where the modulus of each occurring difference

f(&)—f(s+ivg)

is < K; hence also |b(s)| < K.

Subsequently, it is easy to decide to what degree the men-
tioned splitting is unique and, as we shall see, the result is quite
analogous to that found for g = oo, Let

(o) =pE)+b(s

be the “standard splitting” given in the proof above, in which
p(s) is the periodic component of f(s) belonging to the period
ig, where g is the smallest positive number in the translation
module F, and let

[(s) = p*(s)+b"(s)
be an arbitrary splitting of f(s) in {«,0) of the kind mentioned
in the theorem. As the periodic term p”"(s) certainly has a
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number of the form img as a period (m a positive integer), the
difference 7 (s) = p*(s)—p(s) = b(s)—b"(s) must necessarily
be a function, bounded and periodic in {«, 0) with a period
of the form img. Conversely, however, it also holds that for
any function = (s), bounded and periodic in {e, 0), with a
period of the form img, we may use as a periodic splitting
. lerm the function '

pr(s)=p)+m(s

periodic in {«, 0), i.e. the function
0" (s) = b(s)—m (s)

is not only (of course) bounded in {«,0) and almost periodic
in {«, 0], but also almost periodic in the whole strip {e, 0).
Evidently, this is proved, when we have shown that for any
&>0 the function b(s) has in {e, 0) a relatively dense set of
translation numbers (not only, as we already know, of the
form »g, but also) of the form »mg. To see this, we only
need to apply that b (s) has a relatively dense set of translation

numbers of the form »q belonging to %, and that these latter

translation numbers multiplied by m are translation numbers
of b(s) belonging to ¢ itself.

The translation module F is everywhere dense.

We have already mentioned that there exist functions, f(s),
unbounded and almost periodic in {a, 0), whose translation mo-
dule is everywhere dense on the line — oo <({ <C ¢o; the periodic

function f(s) = ch!s considered in {—1, 0), for instance, is of
T

this type. Furthermore, we have seen that any function f(s) of
this type has the boundary ¢ = 0 as an essentially singular
line, and even that every point on the boundary is an infinity
point. Our main result concerning these functions is comprised
in the following (negative) theorem:
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Theorem. There exist functions f(s), almost periodic and un-
bounded in a strip {«,0), which cannot be splitted inlo a sum

[(s) =p(s)+b(s),

where p(s) is purely periodic in {e,0), while b(s) is bounded and
almost periodic in {e,0).

Moreover, we shall prove the somewhat further going theorem
that such a splitting is not always possible, even if we only
demand that the function b (s) (which on account of the equality
b(s) = f(s)—p(s) automatically is almost periodic in {e, 0])
be bounded in {«, 0), but not that it be almost periodic in the
whole strip {e, 0).

In order to construct a ‘“‘counter-example” which is suited
to prove the correctness of the assertion made in the theorem,
we shall first look for a general type of examples concerning
functions unbounded and almost periodic in a strip {«, 0)
and having an everywhere dense translation module. Starting

from the simple example f(s) = Zems (periodic and therefore
1

quite unadapted to our proper purpose), it is obvious to think
of almost periodic functions with Dirichlet exponents which
form a sequence strongly increasing to the infinity, i.e. ordinary
Dirichlet series

f(s) = Zanekns O <l <hy<:--—>00)
1

with so-called “gaps”, i.e. with very large intervals between the
exponents. Actually, the general theorem holds that every such
series represents a function f(s), unbounded and almost periodic
in (—,0) (and not only in (—o2,0]), with an everywhere
dense transiation module, if the series has the half plane ¢<C0
as convergence half plane and is divergent on the boundary line
¢ = 0. We shall postpone the formulation of this “gap theorem”
and its proof to the next Chapter. Here, we shall confine our-
selves—as this is sufficient for our present purpose—to mentioning
that it results from this gap theorem thal every Dirichlet series
D¢ with coefficients a, = 1 for which

0<ly<y<---—>00 and i, _ , > etn
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represents a function f(s), unbounded and almost periodic in
(—c0, 0), and, therefore, also for instance in {—1, 0), with an
everywhere dense translation module.

Within this class of functions f(s) we shall attempt to
determine one which may be called highly “aperiodic” in the
sense that by splitting off a function p(s) purely periodic in
{—1,0) we can never obtain a function b (s) bounded in{— 1, 0).

As we shall see, we have a function of this type in every
function f(s) of our class with rationally independent exponents
i,. The task is to show that such a function f(s) cannot be
written in the form

[() = p(s)+b(s),

where p(s) is purely periodic in {—1,0) and b(s) bounded in
{—1,0) (and of course almost periodic in {—1,0]). We give
an indirect proof and, consequently, suppose that such a repre-
sentation exists. As the Dirichlet exponents of the function f(s)
are rationally independent, at the most one of them can have

2 . . .
the form ly, where ip is a period of p(s). In the following
we may assume that f(s) has no Dirichlet exponents of this form,

. 27 ..
as, il 4 = —» was such a Dirichlet exponent, we should only

subtract ¢1* on both sides of the equation, exactly speaking
we should replace f(s) by f(s)—ed®, and b(s) by b(s)—ed®,
whereby f(s)—e/ls as f(s) is unbounded in {—1, 0), and b(s)MeAs
as b(s) is bounded in {—1,0). We now write the equation
f(s) = p(s)+b(s) in the form :

b(s) = —p () + /(s

and we consider this equation in the strip {—1, —¢) where

0 <e<<1l. The periodic term —p(s) is obviously just the peri-

odic component of b{s) in {—1, —&) belonging to the period
2

ip, because f(s) has no Dirichlet exponents of the form 2y,

Hence, we have the inequality

wb. [p(s)| < u.b. |b(s)|.

sin {—1,—¢ sin {—1,—¢)
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- Consequently, if B denotes upper bound of [b(s)| in the whole
strip {—1, 0), the absolute value of p(s) is < B in the whole
strip {—1, 0). However, this contradicts the fact that f(s) is
unbounded in {—1, 0); as it would involve that in the whole
strip {—1, 0) the inequality

lf@OZp@[+]b()]| <2B

was valid. Hereby, the proofl of our theorem is fulfilled.




CHAPTER 1V.

A gap theorem concerning the almost periodicity
of Dirichlet series.

In this Chapter, we shall only deal with Dirichlet series in
the classical sense, 1. e. with series

o

Zane)””s, where 0 <A, <(dy<< -+ —>00,

T
We shall even consider such series only, whose exponents in-
crease strongly to the infinite, from which it follows in parti-
cular that the series is absolutely convergent in the whole con-
vergence half plane of the series, which may be supposed to be
the half plane o0<<0. Then, for ¢<C0, the series represents an
analytic function f(s) which is almost periodic in (— o9, 0] and
bhas the given series as its Dirichlet development.

The so-called Hapamarp’s gap theorem for Dirichlet series
states, generally speaking, that the convergence line o = 0 always
is an essentially singular line of the funclion f(s) represented
by the series, if the sequence of the exponents increases rapidly
enough. In order to illustrate the kind of reflections made be-
low by an especially simple case, we shall begin this Chapter
by proving Hapamarp’s gap theorem in a rather extreme case,
viz. the case where the exponents increase so strongly that the
ratio of an exponent and the foregoing one is greater than a
constant > 3. As we shall see, the theorem can then be proved
in a particularly simple way.

A special case of Hadamard’s gap theorem. A function [(s)
represenled by a Dirichlet series Z'ane“S with the convergence half
plane 0<C0 whose exponents salisfy the inequality
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A
%—H >k>3 (for n>ny)

n

has the convergence line o = 0 as an essentially singular line. If
>/ la,| is divergent, all the points of the line. ¢ = 0 are infinity
points of f(s).

The proof is based on the following well-known (and easily
provable) theorem of Vivantr and Lanpauv: If for a Dirichlet
series f(s) = Zane"\“s with the convergence half plane ¢ =0 it
is valid that in a point s, = if, of the boundary ali the terms
ane"l“lv are positive from a certain step, the point s, is always
a singular point of the function f(s)—whether the series is con-
vergent or divergent in the point. We shall use this theorem in
the well-known, somewhat more comprehensive formulation
where the assumption that all the terms anei’l”t" are positive
from a certain slep is replaced by the weaker assumption that
all the terms aneii“t" from a certain step lie in a fixed angle <,

for instance in an angle _ZT‘); +d<v <% —d <Where 0<d=< %)

Moreover, we shall use the following simple remark: if on the
line —oo<f<Coo there lie intervals of a fixed length 8< «,
periodically with a period « > 0, then every interval with a length
>ea-+ A in its interior contains at least one of the mentioned
intervals of the length 8.

In order to prove that all points of the line ¢ = 0 are sin-
gular points of the function f(s) it is, of course, sufficient to
prove that the singular points lie everywhere dense on the line,
that is lo say that there exists a singular point in every inter-
val t; <<t<{{, on the line ¢ = 0. In consequence of the theorem
mentioned ahove, this is certainly the case, if in the arbitrarily
given interval f; <t<(t, there exists a point f{, such that all
the terms ane”"t0 from a certain step lie in the fixed angle

~T(—f +d<v< g —d, where we assume d chosen so small (which
= y)
is possible because of the inequality '1+1'> k>3 for n>ny)

that n

7r—2d>37r~2q
A, A

for n>n,.
n+1



Nr. 18 ‘ 33

Concerning the n-th term aneik”t, the intervals I, on the f-axis,

in whose points the amplitude of the term lies in the angle

2
— g +d<ov< % —d, have the length Z__d’ and they repeat

A

n
.o . . 2
themselves periodically with the period l[' In consequence of

n
a remark above, every interval of a length grealer than

27r+75—2d: 37r~"2‘d

2 y) y)

n n n

therefore certainly contains one of the mentioned intervals I .
By virtue of the inequality written above, for n> n, each inler-
val I, contains an interval I, . ;. Now, we can immediately com-
plete the proof. We have only to choose N> n, so great that
the ‘given interval { <<t <{, contains an interval L. Inside this
interval we have then to determine an interval IN+1, inside that
again an interval I , ete. If {, denotes the common point of
the sequence of intervals thus delermined, all the terms ane“”to

for n = N are situated in the angle —%+ d< v<%—d, and the

point s, = il; is therefore a singular point of f(s).

In the case where >'|a,| is divergent, it is moreover clear
that the point s = if, thus obtained is an infinity point of f(s) (as the
above consideration shows that | f(¢+ il)) | — oo for ¢— 0); thus,
if Z[anl is divergent, in every interval {, <<{<(t, there exist in-
finily points of f(s), i.e. the boundary consists of nothing but
infinity points.

We shall now formulate and prove the main theorem of this
chapter.

An almost periodic gap theorem. If i, <i,< - - is a
sequence of positive numbers, which (for the sake of simplicily)
we shall suppose to be > 1, and which are increasing so strongly
o the infinite that %l
>e "™ for all n,

n+1

where k is a positive constant, then every Dirichlel series

ad .
An S
2 e
n=1

D. Kgl. Danske Vidensk Selskal;, Mat.-fys. Medd. XX, 18. 3
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belonging io this sequence of exponenls and convergent for <0
—and therefore also absolulely convergent for o< 0O—represents a
function f(s) analytic in ¢<<0 which is almos! periodic in the
whole half plane (— o, 0) and not only in (—oe, 0].
' Moreover, the Iranslation module F of f(s) in (— 0, 0) is every-
where dense on the t-axis, i e. in every interval [ <1<{1, exists a
number v such that the difference f(s+ir)—f(s) is bounded in
the whole half plane o< 0.

If Zlanl is convergent, the theorem is trivial, and therefore
we may suppose in the proof that >'|a,| is divergent; as a
consequence of a remark given above it is then valid—as the
condition which is now imposed on the exponents 1, is much
stronger than the former one—that the boundary ¢ = 0 consists
of nothing but infinity points of the function f(s).

Proof: We choose a fixed positive c¢<<k. As the series
Zane‘}“"c is convergent, there exists a constant K such that

la,| e=*¢< K for all n; we may suppose K = 1 (otherwise we
~only divide all the coefficients a, by K), i.e.
Ant

|a,|<e*® for all n.

Next, we choose a number ¢ such that

c<c <k
and write
—inc’

e = ¢ for all n.

Especially it is valid that the series Zene;“'c and thereby a
fortiori the series >'e,|a,| is convergent.

Let us consider the exponential factor e'*:f

. Periodically with

. 2 . ..
a period Tﬂ, on the f-axis there lie intervals I of the length
2¢ n

715 in whose points { the exponent 4 f differs from an integral

n
multiple of 27 less than ¢,; in these points it is furthermore

valid that

Elﬂnt———]_ I <é‘n-

For large n, say for n>ng, every one of our intervals I, con-

tains one of our intervals I, ,, as for large n the inequality
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3&>,2ﬂ.+gﬁﬁl

A A1
is valid; this is evident, as the right side is < 7 7 and as for
large n (because ¢’ < k) we have n+1

1n+1>?1n = 27, M
n

From this, one of the assertions made in the theorem follows
at once, viz. that in every given interval # <<{<{, there exists
a number ¢ for which the difference f(s+iz) —f(s) is bounded
in the whole half plane ¢<(0. We have only to determine
N>n; so large that the interval # <t<{, contains one of
our intervals I,; then, we determine in it an inlerval I

N+12
in it again an interval Iy, etc. The common point of the
sequence of intervals Iy, IN+1, IN+2, -+ is then a point in

ty <t<fy for which f(s+iz)—f(s) is bounded in ¢<0, as for
every s in ¢>> 0 the inequality holds

N—1 % _
FGHin =& <2 3 a [+ 3 Ja |- [¢hr—1]

N1 w
§22|an]+Z]an|sn<w.
n=1 n=N

However, we must proceed somewhat more cautiously when
proving our main assertion, viz. that f(s) is almost periodic in
(—o0, 0), i.e. thal to any arbitrarily given ¢, which we may
suppose to be <1, there exists a length- . = L (¢) such that, in
every interval of the length L, there exists a number = for -which

|f(s+ir)—f(s)| < ¢ in the whole half plane ¢<<0.
We determine a number N = N (&) > n, such that

= 167

> Ian|en<% and Ay, 4 > »ﬂNlNelNc.
NT1 & B 4
We can fulfill the last condition, because ¢ <k and ln+1 > efidn,
Now we split the ‘function f(s) in the half plane ¢<<0 into a
beginning By (s) and a remainder Ry (s), namely

3*
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N . 0
By(s) = > ayet® and Ry(s) = > a et
T NT1

Here, the function By, (s) is of course almost periodic in (— oo, 0),
namely even almost periodic in (—oo, c0]. We determine a
length L (>>1) such that every interval of the length L con-
tains a translation number z of By (s) in (— oo, 0) belonging to

2. Then, this length will be a usable length L (&) of f(s) in

(—©o0, 0). To prove this we primarily estimate the dlﬁ'elentlal
coefficient By, (s) in ¢<0 and find

N N
[By@| =12, ad, | = 32, |a,] < Niyehe,
n= e

If we set ‘

4

L, = ——
N Ine’
NZNe

it holds for every ¢, in the interval +—Iy <t <z-+I, around

one of our translation numbers z = fr<£> of By (s) in (—o0,0),
that in (— o0, 0)

| By (s+it) =By (s +iv) | < Ly Niyeh® = 7
consequenily the interval z'—IN<i<i+lN consists of nothing
but translation numbers of B, (s) in (—oo, 0) belonging to

2

-~

g ¢ £ . : 1
Z_I_Z = o . In parlicular, we find |as L>1 and [ < 5) that

every interval y<f<<y-L of the length L contains a whole
interval iy of the length I,, whose points all are translation
numbers of By, (s) in (—oe, 0) belonging to % However, we
have

& 47

4NLyeNe

3

Iy =
N+1

and our interval iy of the length I, contains therefore at least
one of the intervals IN+1 mentioned above. Now we proceed
as before; we delermine an interval IN+2 inside IN+1, in it
again an interval Iy 5, and so on. The common point of the



Nr. 18 37

sequence of intervals iy, Iy, Iy, o, -+ is called z. This
number z lies in’ the interval y <<t <y -+ L, and it is farther a
translation number of f(s) in (— o, 0) belonging to & In fact,
the inequality ]ei7*”t—1]<en is valid for ¢ lying in an interval
I; hence for ¢<<0 we get

|75+ i0)— f(5) | < | By s+ i2) = By ()| +| Ry (s+i0) — Ry (5)|

& 2 y R
S5t 2 el e =1l =S+ D a,]e,
N+1 N+1
& £
<f4f o,
Sty =e

Thus, the theorem is established.

Indleveret til Selskabet den 7, Juni 1943,
Feerdig fra Trykkeriet den 23. November 1943.








