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CHAPTER I .

Introductory remarks .

W
e begin by recalling some of the fundamental notions an d

theorems in the theory of the almost periodic function s
of a real as well as of a complex variable . We wish, however ,

essentially to confine ourselves to what is indispensable in th e

following' .

A (complex) function F(t) of a real variable t, continuous in
- oo <t < oo, is called almost periodic, if to any given e> 0 there
exists a relatively dense set of translation numbers i = i (e) ,
i . e . of numbers T which satisfy the inequality

F(t+')-F(t) < e in - oo<t< oo .

Here, a set of real numbers is called relatively dense, if ther e
exists a length L such that any interval of length L contains a t
least one number of the set .

An almost periodic function F(t) is bounded and uniformly
continuous in - co < t< cc, and the sum (and product) of tw o
almost periodic functions proves again to be almost periodic .

In its main features, the theory of the almost periodic functions wa s
developed by the author in three papers in Acta Mathematica (vol .' 45, 46, 47 )
under the common title "Zur Theorie der fastperiodischen Funktionen" . Especi-
ally the last of these articles dealing with the functions of a complex variabl e
is of importance for the present paper. Furthermore, we shall also make use o f
some of BocnNen ' s results given in his important paper (Beiträge zur Theori e
der fastperiodischen Funktionen, I . Teil, Math . Ann . vol . 96) . However, it is no t
supposed that the papers are known to the reader and, therefore, the theorem s
applied will be directly formulated . For further information, cf. one of th e
monographs, A . S . BESTCOVJTCH : Almost periodic functions, Cambridge 1932 ;
J . FAVARD : Leçons sur les fonctions presque-périodiques, Paris 1933 ; H . Bolin :
Fastperiodische Funktionen, Berlin 1932 .

1*
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For an arbitrary fixed real T, let us consider the quantity

v(T) = u. b . ~F(t+T)-F(t)~ .
-00 <t<oo

This quantity, by the author originally denoted as the minimu m

error (corresponding to the given T) of the function, was studie d

in detail by BOCHNER as a function of z and, now, the functio n

v (0,- 00 <T < co, is usually called the translation function o f

the given function F(t) . The function v (T) is again an almost
periodic function and its own translation function . A set {F (t) }
of almost periodic functions can be "majorised", if there exists a n

almost periodic function Fo (t), which is denoted a majorant of
the set {F(t)), with the property that the translation functio n

v (T) = vF. (T) of any given function F (t) of the set satisfies for

all T the inequality

v (T) < vo (T) ,

where vo (T) denotes the translation function of Fo (t) . A neces-

sary and sufficient condition that the set of almost periodic func-

tions {F(t) } can he majorised is that the functions of the set

are "uniformly" uniformly continuous and uniformly almos t

periodic . Here, a set of almost periodic functions is said to b e

uniformly almost periodic, if to any e >0 there exists a rela-

tively dense set of numbers z which are translation numbers

corresponding to e for any function of the set . A finite set o f

almost periodic functions can always be majorised . From this

it becomes obvious that the sum of a finite number of almost

periodic functions is again almost periodic .
A principal theorem in the theory of almost periodic func-

tions of a real variable states that the class of all almost peri-

odic functions is identical with the class of functions which ,

uniformly for all t, can be approximated by finite sums of th e
N

form

	

an where the coefficients an are complex numbers ,
i

while the exponents 2n are real numbers. With any almost

periodic function F(t) there is associated a Fourier serie s

F(t) N
ZAne id n t ,

where the exponents yin form the countably infinite set of value s

of a, for which the mean value
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sT

a()) = D1~{F(t)é ti.t1
= lim	 F(t)e-tLtd t

T~~2T T

differs from zero, while the coefficients An are the correspondin g

values of a(An) . Starting from the Fourier series of an almos t

periodic function, by suitable summation methods finite sum s
N

of the form ZßneaAnt can be deduced (all exponents of whic h

are Fourier exponents of F(t)) which converge uniformly to F(t) .

If F(t) is almost periodic with the Fourier series 'An e i ` tnt,
and p is an arbitrary positive number, the (possibly empty)

series zAn e iAnt consisting of just the terms An e 'nt in the

original series with integral multipla of
2 r

as exponents, is the
P

Fourier series of a continuous, purely periodic function P(t) .
This function P(t), which was especially considered by BOCHNER ,

will be denoted as the "periodic component of F(1) belongin g

to the period p" . This component can also be determined fro m

the sequence of almost periodic function s

F (t) = F(t + p)+F(t + 2p) -f- . . . !, F(t + np)
n

	

n

as this sequence Fn (t) converges for n->- oc to P(t), uniformly ,
in the whole interval - oc <t< oo. From the limit equatio n

P (t) = lim Fl (t) it results immediately tha t

u. b . ~ P (t) ~ < u . h . (F (t) .

	

-o<t<co

	

co<t< ca

Let us now briefly recall some notions and theorems con-
cerning the almost periodic functions of a complex variable .

A function f (s) = f (a+ it), analytic in a vertical strip

c< a< fi (-co < a << oc), is called almost periodic in (a, fi) ,
if to any e> 0 there exists a relatively dense set of translatio n

numbers r = e (e) satisfying the inequalit y

	

f(s+ir)-f(s)I

	

e in the strip a<a<ß .

In other words, we require that for any fixed a in the interval
a <o < fi the function F~ (t) = [(a + it) is an almost periodic
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function of the real variable t, and that the functions of th e

set UV()) corresponding to a< a< ß are uniformly almos t

periodic . But, generally, this set cannot be majorised, since th e

functions (on account of the behaviour near the boundary o f
the strip) need not be "uniformly" uniformly continuous func-

tions of t .

A function f(s), analytic in a < <,8 (-oc < a <ß < co), i s
called almost periodic in [a, ß], if it is almost periodic in ever y

substrip (a 1 , ß 1 ) where a < a l < /31 < /3 . We also use mixed

brackets and thus speak of a function almost periodic in [a, ß) .

With each function f(s), almost periodic in [a, ß], is associ-
ated a Dirichlet series

f(S)
cv

	

A ne llns.

with real exponents 2-1,, which, for any fixed a in a < a<ß ,
gives the Fourier series of the almost periodic function Fa (t) =
f (a ± it) of the real variable t . The set of all functions, al -
most periodic in [a, ß], is identical with the set of the func-

tions which can be approximated uniformly in [a, ß] O . e . uni -

formly in every substrip a 1 <a<ß1 ) by finite sums of the for m

ane s , where the iln are real numbers . If ft (s) and h(s) are

two analytic functions which both are almost periodic in [a, in ,

their sum fi (s) + f2 (s) is again almost periodic in [a, ß] . A cor-

responding general theorem does not hold for functions almos t

periodic in (a, ß) . Thus, the functions es and
esy2

are both al -
most periodic (even purely periodic) in (- oe, oc), whereas thei r

sum f(s) is almost periodic in (- oc, oc], but not in (- oc, oo) ;

for any real z $ 0 it is even valid that f (s + i7) - f (s) - oc fo r

a> oc, uniformly in t . Another simple example is given by th e

two geometrical serie s

fi (s) _ yens
=

1
s and f2 (s)

	

°~

~ eV2 ns

	

1

~~=

	

1-es

	

o

	

1 -eV2 s

which both are almost periodic (even purely periodic) in (-co, 0) ,

while their sum is almost periodic in (- cc, 0], but not in (- cry, 0) ;

for, as the function As) = ft (s) + f2 (s) has poles in (and only in )

all points of the two arithmetic progressions 2 m2ri and V2 mini,
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there does not exist any number r $ 0 for which the difference
f (s + iT) - f(s) is bounded in the whole half plane - oo < a< 0
(as the set of poles is not transformed into itself by any trans-
lation) so that f(s) for no e has other translation numbers i n
(- oo, 0) than the trivial z = 0 .

It is the aim of this paper to investigate the behaviour of a
function f (s), almost periodic in a strip (a, /I) (and not only in
[a, ß]), in the immediate neighbourhood of one of the boundarie s

of the strip, for instance the right one . We shall assume the

strip cut off (if necessary) on the left in order to avoid any dif-
ficulties on the left boundary of the strip .

For our purpose it will be convenient also to introduce th e
notion of a function almost periodic in { a, ß } (and correspond-
ingly in { a, ß) etc .) . For - oc < a < < co, the function f (s) i s
called almost periodic in { a, /3 }, if f(s) is continuous in th e
closed strip a < a < ß and analytic and almost periodic in th e
open strip (a, ,8) . Besides, it is clear that every translation numbe r
e = T (e) corresponding to f(s) in the open strip (a, ß) as a
matter of course is a translation number r (e) for As) in th e
closed strip {cc, ß }, as the inequality

f(s±iz)-f(s)~ <e in a<a<f ,

on account of the continuity of f(s) in a < cr < f, involves the
inequality

(s+iv)-f(s)I

	

in a < a, < f .

By simple conclusions . (known from the theory of the almos t

periodic functions of a real variable) we realize immediately
that a function almost periodic in { a, f } is bounded and uni-
forrnly continuous in a < a < ,8 . Thus, if f (s) is almost peri-
odic in { a, fi }, the functions Fr (t) = f(a+ it) (a < < ß) are

not only uniformly almost periodic, but also "uniformly"
uniformly continuous, i . e. the set {F(t)} (a < < ß) can
be majorised. From this, it readily results that the sum of
two functions fl (s) and f2, (s), both almost periodic in { a, fi } ,
again is almost periodic in { a, f } . We add, without going int o
details, that it is easy to prove that, if f1 (s) is almost periodic
in { a, /8} and f1 (s) is almost periodic in { a, f ), the sum
f1 (s) + f2 (s) is almost periodic in {a, f) and not only in {a, f] .
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But it is important to call attention to the fact that the sum o f
two functions, almost periodic in {a, ß), generally is almos t
periodic only in { ce, fib , but not in {a, /3) ; thus, the two func -

tions mentioned above, 1

	

and

	

1

	

are both almost peri -
l -eS

	

1-eF2s

odic, for instance in {-1, 0), whereas the sum is not.

In the present paper, we shall study the functions, a l m o s t
periodic in a strip of the type {a, ß), especially the un -
bounded functions of this type .

Of special importance for our investigation of a functio n
almost periodic in {a, ß) is the set F of all translation numbers
; (where no r is prescribed), i . e . the set of all real numbers r
for which the difference f (s + it) - f(s) is bounded in a < a< ß .
While, for a function almost periodic in {a, ß}, this set F con-
sists of all real numbers, this is not necessarily the case for a

1
function almost periodic in {a, ß) ; thus for the function

1-
e s ,

purely periodic in {-1, 0), the set F consists of the numbers
2 mTC . It will be shown below that the set F consists of all rea l
numbers only in the trivial case, where the function f(s) itsel f
is bounded in {a, ß) . Let us call the functio n

v(7) = n . b . I f (s + ir) - f (s) I ,
s in {a,g )

which is defined in the set F, the translation function of f(s)
in {a, ß) . The set F contains together with r also -w, and we
have v (- r) = v (w) ; moreover F contains together with rl and
r2 also ri and the inequality v (ri + r2) < u(v 1)+v(v 2 ) i s
valid. The set F is a module, as it contains together with rl
and r2 also r l - r2 and it contains other numbers than 0 (as a

subset it contains for instance the relatively dense set of al l
numbers r = r (1)) ; we shall denote F the "translation module"
of the function f(s) in {a, ß) .

Moreover, the process mentioned above of separating th e

periodic component with a given period from an almost periodi c
function can be transferred from functions of a real variable t o
functions of a complex variable . For a function f(s), almos t
periodic in {a, /0, and an arbitrarily chosen p >0, we find tha t
the sequence of the functions (evidently almost periodic in {a, ß])
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fn (s) = f (s+ip) +J' (s+2ip) +	 . . .	 +f (s+nip)
n

converges for n--->- oc in the whole strip {a, fi) and even uni -

formly in each substrip {a, y}, where a< y <,d, to a function

p (s) purely periodic with the period ip in {a, fi) whose Dirichle t

series (Laurent series) ~Bm e
nt

p
s

consists just of those terms

A e gns in the Dirichlet series of the given function f(s) the ex -

ponents yin of which are integral multipla of
2

. The transi-
P

titin from the real to the complex case is immediate, if we only

observe that uniform convergence of the sequence fn (s) on the

two lines a = a and a = y involves that fn (s) converge s
uniformly in the whole strip a < < y, as, according to the
theorem of PHRAGMEIV-LINDELÖF, U . b . lfnr (s) - fna (s) 1 remain s
unchanged, whether s varies in the whole strip a < a < y or only

on the two boundaries a = a and o = y of the strip . Further -

more, if Rs) is bounded in {a, the component p (s) is als o

bounded, and the inequality

u . b .
I p (s) I

< u. b .
I f ( s)

sin{a., j3)

	

sin{a,ß3 )
is valid .

After this introducing Chapter I, the present paper is divide d
in three Chapters .

In Chapter II, the case ,3 = oc, i . e. the functions almost

periodic in {a, oc), is treated . If the function f(s) is bounded in

{a, oo), its behaviour for (7> oc is extremely simple in con -

sequence of well-known theorems on almost periodic analyti c
functions . But also for unbounded functions, almost periodic i n

{cc, cc), the situation is very perspicuous in view of the fac t

that the translation module F here always proves to be discrete,
i . e . forms an arithmetic progression ; in fact, a general "splittin g

theorem" holds which stales that every such function Rs) can

be written (and essentially only in one way) as a sum of a
function p (s), unbounded and periodic in {a, oc), and a func-
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tion b (s), bounded and almost periodic in {a, co) . Moreover ,
also the converse is valid, viz . that the sum of a function p (s) ,

unbounded and periodic in {a, oc), and a function b (s), bounded
and almost periodic in {a, oc), is always almost periodic i n
{ a, Oc) .

Chapter III deals with the case, where ß is finite ; here, we
may suppose that ß = 0 so that we have to do with function s
which are almost periodic in a strip {a, 0). The functions which

are hounded and almost periodic in {a, 0) are only shortl y

discussed, as the main object is the study of the function s
unbounded in {a, 0) . For such an unbounded function, w e
begin proving that its translation module F cannot contain

all real numbers . Subsequently, we distinguish between the

case where the set F is discrete and that where F is everywher e
dense. The first case, where F is an arithmetic progression ,

does not cause any difficulties ; a general splitting theorem is

valid here (completely analogous to that holding in the case o f

ß = oa), as f (s) can be splitted-and practically uniquely-into
a function p (s) purely periodic in {a, 0) and a function b (s )

bounded and almost periodic in {a, 0). Next, the other (essenti-
ally more difficult) case is considered, where the translation

module F is everywhere dense ; in this case, the line Û = 0
is always an essentially singular line for the analytic functio n

f(s) . The main question is, whether also here a general splittin g

theorem holds, analogous to that valid in the other cases . It i s

proved that this is not the case . In a decisive way we use a

"gap theorem" concerning Dirichlet series Zan e A'', convergen t

for a<0, where the exponents form an increasing sequence o f

positive numbers which increase "very strongly" to the infinite ;

this theorem states that the function f(s) represented by such a

series always is almost periodic in the whole strip (-cc, 0) ,
and not only in (- oo, 0] .

Finally, in Chapter IV, the proof of this gap theorem i s

given. Here, the treatment of Dirichlet series with strongl y

increasing exponents is extended somewhat further than neces-
sary for the proper purpose of this paper. Thus, in order to

throw light on the nature of the methods used, a new proo f

of a special case of the so-called HAD 1MARD gap theorem for

Dirichlet series 2an e~ n 's with the convergence half plane 6 < 0



Nr . 18

	

1 1

is given which states that the convergence line c = 0 always i s
an essentially singular line for the analytic function represented
by the series, if the exponents increase rapidly enough . In the
case where the A, are integers (and we are concerned with a
power series) this simple proof has already been communicate d
by the author in a paper' written in Danish .

1 Om den Hadamard'ske "Hulsætning", Matematisk Tidsskrift, B (1919) .
See also the paper : Om Potensrækker med Huller, Matematisk Tidsskrift,
B (1942) .



CHAPTER H.

Functions almost periodic in a strip {a, oo) .

We shall now investigate, how an analytic function f(s) which
is almost periodic in {a, oc) behaves for o--> oo .

We begin by recalling the following theorem which wa s
proved in the third paper in Acta Mathematica cited above . If
f (s) is almost periodic in { a, co ] , a necessary and sufficien t
condition that f(s) is bounded for o-- oc, i .e . hounded in {a, co) ,
is that all the Dirichlet exponents lln of the function are < 0 ;
if this condition is satisfied, the function is almost periodic not
only in {a, oo ] , but also in {a, oc), and for o---* oc uniformly
in t it approaches a definite limit (viz . the constant tern in th e
Dirichlet development of the function) ; in this case the func-
tion is called regular in the point a = oo . In view of a late r
application, we observe that the difference between two func-

tions, bounded and almost periodic in {a, 0o), again is almos t
periodic in {a, oo), and not only in {a, co ] .

Thus, the functions almost periodic in a strip {a, oc), which
are bounded for o'->- oc, are simply the almost periodic functions
regular in c = oc ; an investigation is therefore only demande d

in the case, where the function f(s), almost periodic in {a, oo) ,

is unbounded for o'->- oo (and, therefore, among its Dirichlet
exponents has positive ones) .

As the most simple type of such a function, we have ob-
viously a function unbounded and purely periodic in {a, co) .

Let us begin by proving the following theorem : If p (s) an d
b(s) are two functions, almost periodic in {a, co), o f
which p (s) is purely periodic, while b(s) is bounded i n
{a, oo), their sum
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f(s) = p(s)+b(s)

is again almost periodic in {a, oo) .

The theorem is not quite trivial, as it is not valid that the

sum of any two functions almost periodic in (a, oo) is again

almost periodic in {a, oo) (hut only in {a, oo]) ; however, i t
is easy enough to prove . It is the task to show that to any
arbitrarily given e > 0 a relatively dense set of real_ numbers r
exists for which

f (s + i r) - f (s) I < e in the whole strip a < o' < r .

As b (s) tends to a limit for a-›- oc (uniformly in f), to th e

given e we can first determine a number y = y (e) so that an y
real number r is a translation number r (e) for the function b(s)

in the half plane {y, oo) ; from this, it follows that the functio n

b (s) has quite the same translation numbers r (e), whether we

consider it in the half plane {a, oo) or in the strip {a, y} . In

consequence of the earlier cited majorising property of the almost

periodic functions b (o + it) (a< a< y) the set of translation
numbers -c(e) of b (s) in {a, y} has, however, a relatively dens e

intersection with any arithmetic progression-because, as is well -

known, this is the case for the translation numbers of a singl e
almost periodic function of a real variable. If. as difference i n

this arithmetic progression just p>0 is chosen, where ip is a
period of the given periodic function p (s), any number r in the

previously mentioned relatively dense intersection is a translatio n
number of the sum f(s) = p (s) + b (s) in {a, oo), a s

p(s±iv) = p(s) and Ib(s+ir)-b(s)I < e in a < a< oo .

As we shall see, we have thereby actually exhausted all

possibilities for a function almost periodic and unbounded i n
{a, oo), since the following inverse theorem is valid .

f(s) = p(s)+b(s) ,

where p(s) is periodic and unbounded in {a, co), while b(s) is
bounded and almost periodic in' {a, cc) .

Splitting theorem : Every function f(s) unbounded and almost
periodic in {a, oo) can-and essentially only in one way-be writte n
as a sum



14

	

Nr . 1 8

If we have a splitting of Rs) as that stated in the theorem ,
and if ip is a period of the periodic term p (s), the number p
must necessarily belong to the translation module F of the func-
tion f(s) in {a, coo), as in a < a< oo the inequalit y

~f(s+ip)-f(s)I <2 B

holds, where B means u . b . b (s) in a < (y< o o . It is, there-
fore, natural-and may also be interesting in itself-to stud y
primarily this translation module F, i . e . to try to determine th e
numbers z for which the difference f(s + ir) - f (s) is bounded
in {a, oc) . Since the Dirichlet development of this differenc e
is determined as the difference between the Dirichlet develop-
ments of f(s + ir) and Rs), i . e . given by

f (s + it) f (s) v ZAn(e d,tT_ 1) enaS
,

the theorem quoted in the beginning of this Chapter, however ,
involves immediately the following necessary and sufficient con-
dition for the (anyhow in {a, oo ]) almost periodic function
f(s + ir) - f (s) to be bounded in {a, co) : In the Dirichlet serie s
mentioned above must not occur any term with a positive ex-
ponent, i . e . for any positive Dirichlet exponent An of the given
function f (s) (necessarily occurring, because f(s) is unbounded
in {a, oo )) it must be valid that e `1 T-1 = 0, i . e .

0 (mod 27r) for any !In > O .

Thus, the numbers r in the translation module F of f(s) are

just the numbers r which are multipla of all the numbers
2

stn '
where 4, runs through the positive Dirichlet exponents of f(s) .
Hereby (only applying that any r has to be an integral multipl e

of one of these numbers 27r) the translation module appear s

to be discrete, i . e . consists of all the numbers of an arithmeti c
progression vq (q > 0, v = 0, +1, . • •) . After this, turning to th e
exponents An , we notice (as r = q satisfies all the congruence s
above) that all positive exponents An must be multipla of th e

2 yr.
number - and, further (as r = q is the smallest positive solution

q

-/Inr
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of the congruences) that 2
7c

is the greatest common divisor o f
q

the positive exponents lin .
It is now easy to accomplish the proof of the splittin g

theorem, since it can be demonstrated that, as a period of

the periodic term in a splitting of the desired kind, we ma y

even use the number of least absolute value which may b e
taken into consideration, viz . the number iq, where q is the

smallest positive number in the translation module F . As p (s)
we may use the periodic component (which was introduced i n
Chapter I) of Rs) in {a, co) belonging to the period iq . For ,

as the Dirichlet development of this function p (s), purely peri-
odic in {a, oo), consists of the terms Ane'Ans in the Dirichle t

2,7
development of f(s), for which Ån is a multiple of -, the Dirichle t

q
development of p (s) coïncides as regards the terms with positiv e

exponents (even with exponents > 0) with the Dirichlet develop -
ment of f(s) . Therefore, the Dirichlet development of the diffe-
rence b (s) = f (s) -p (s), almost periodic in {a, 0c], can only

contain terms with negative exponents ; it follows that the func-

tion b (s) actually is a function, bounded and almost periodi c
in {a, co) .

From the proof of the splitting theorem given above it is
furthermore easy to decide to what degree the splitting is unique .

Let us assume that

f (s} = p (s) Jr- b (s )

is the "standard splitting" stated in the above proof, the perio d

of p (s) being the number iq where q is the smallest positiv e

number in the translation module F, and p (s) just being th e

periodic component of f (s) belonging to that period iq ; more -

over, let us assume tha t

f ( s) = p* (s) + b* ( s)

is another arbitrary splitting of Rs) in {a, oc) of the kin d

stated in the theorem. As for the period ip of the periodi c

term p * (s) it holds that p is a number of the translation mo-

dule F, i . e. a number of the form vq, the difference 7r(s) =

p* (s) -p (s) = b (s) - b * (s) must be a function, bounded and
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periodic in {a, oc), with a period of the form ivq . Conversely ,

however, it is valid that, if m (s) is a function bounded an d

periodic in {a, oc) with a period of the form ivq, we can use

the function

p* (s) = p(s)+ rr (s)

as a periodic splitting term ; for, if we write f (s) in the form

f(s) = (p(s)+7r(s))+(b(s)-n( .s)) ,

the first term p(s)+7r(s) is periodic in {a, co), while the other

term b(s)-a(s) is almost periodic and bounded in {a, oo), a s

the difference of two functions, almost periodic and bounded

in {a, oc) .
Thus it is clear that the splitting is "essentially" unique .



CHAPTER III .

Functions almost periodic in a strip { a, ,e), where ,3 < cc .

Obviously it may be assumed, otherwise only applying th e
translation s = s ' +,3, that ,3 = 0 . In this chapter, the behaviour
of a function, almost periodic in {a, 0) (- oo < a <0), in the
immediate neighbourhood to the left of the imaginary axis a = 0
will be investigated .

Here, the situation is more complicated than in the case

,3 = oo, due to the fact that a function bounded and almos t
periodic in {a, 0) does not show a similar simple behaviour
for o->- 0 as a function bounded and almost periodic in {a, oo )
for o'-s- oo .

The functions, bounded and almost periodic in {a, 0), how-
ever, shall be treated briefly, since we are especially intereste d
in the unbounded functions . If f(s) is bounded and almos t
periodic in {a, 0) it has-already because it is bounded-accord-
ing to a theorem by FA'rou, for d-> 0 a limit function F(t) =-
NO in the sense that f (o + it) for ey 0 approaches a limit
F (O for any t in - oo < t < oo except in a set E of measure
zero' . Thus, if Î, = r(s) is an arbitrary translation number o f
f(s) in {a, 0), i . e .

f(s+it)-f(s) I
< e in to

	

a<0 ,

In its usual formulation FAIrou's theorem deals with a function f (z)
bounded and analytic in a circle ~ z < 1 , and it states that, for almost all
points zo on the boundary ~ z = 1 , f (z) approaches a limit f (zo), if z tend s
to zo along the radius vector. When transforming the circle ~ z < 1 by a linear
substitution into the half plane e < 0, we do not just arrive at the assertion
mentioned in the text, as the radii vectori of the circle are not transforme d
into horizontal straight lines in the half plane, but into certain arcs of circle s
orthogonal to the boundary e = O . It is, however, obvious that a function
f(s), bounded and analytic in e < 0, which approaches a limit g, if s approa -

D . Kgl. Danske Vidensk. Selskab, Ma L•fys . Medd . XX, 18 .
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we have for all t, except in a set of measure zero E ' = E' (7)
(namely the sum of the set E and the set obtained from E
by the translation -7), the inequality

F(t-I-7)-F(t) ~ < e .

From this it follows especially that the limit function F(t) = f (it)
is a function almost periodic in STEPANOFF ' S sense, as for an y
of the mentioned translation numbers 7(s) of f(s) in {a, 0) holds
the inequality

u. b .
-oo<t<rn

f+ 1

S ~ F(t-f- 7) - F(t) ~ dt < e .
r

However, we shall not study this limit function in detail, a s
such a study-analogous for instance to the study of a limi t
function of a function bounded and analytic in the unity circl e

I z <1-lies beyond the scope of this paper .
In order to obtain information on the different possibilities

and to have some conveniently simple examples at our disposa l
-before turning towards our proper problem, viz . the investig-
ation of the functions almost periodic and unbounded in {a, 0)-
we shall, however, mention some typical examples of functions
bounded and almost periodic in {a, 0) .

Example 1 . It may, of course, happen that a function ,
bounded and almost periodic in {a, 0), is almost periodic als o
in {a, (I}, although it cannot be continued analytically across
the line a = 0 . This is the case, for instance, with the purel y

periodic function 7
12

en
*

s as the unity circle is the natura l

boundary of the power series

	

12 el)n

Example 2 . The function

(s ) =
ees - 1

,

ches a point so = ito of the boundary along such an arc of a circle, also con -
verges to g, if s tends to so along the tangent t = to, simply because the

inequality ~ f(s) ~ < X for a< 0 involves that f ' (s) = 0 (711 ) for a->- 0, while th

e vertical segment between the tangent and the circle is 0(0.2) for e -} 0,.
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also bounded in the half plane a< 0 and periodic with th e
period 2 7r, i, is regular on the whole boundary û = 0 except
the points 2 Aim (ni = 0, 7E1, • • •) ; that the function p (s) i s
bounded for 6 < 0, viz . cp (s) ~ <1, follows from the fact tha t

es ~ < 1 for a< 0 and the exponent es + 1 'therefore has a nega -
e - 1

tive real part in a< 0 (as by the linear function u = w + 1 the
m- 1

unity circle ~ w <1 is transferred to the half plane R (u) < 0) .
If s ranges over the segment a= 0 (0 <t < 27u), the function es

ranges over the unity circle and therefore es +
1

over the whol e
e - 1

imaginary axis ; thus rp (s) will circulate an infinite number o f
times on the unity circle for t-*0 and t->- 27c . We have calle d
attention to this bounded function T (s), because, for any suf-
ficiently small s, in any case for s < 1, it has no other trans-
lation numbers z = v (e) in {a, 0) (a an arbitrary negative
number) than just the numbers (periods) 2 7c m . For, if v is an
arbitrary number $ 27rm, in the difference

(s + iv) -9) (s)

the first term p (s + iv) converges to p (iv) for s-> 0, while the
other term p(s) can be made to converge to an arbitrarily assigne d
value of the unity circle by letting s approach 0 in a convenien t
way from inside the half plane a<0 ; this implies, however; that

(s + iv) - (s) ~ obtains values greater than s in the half plan e
a< 0 (by the way in every half circle Is < d, a< 0) .

Example 3 . Already in the introductory Chapter we men-
tioned two functions, almost periodic in {a, 0), viz .

f1(s ) = 1 1 es and fa (s)

	

1-eV2s '

the sum of which is not almost periodic in {a, 0) ; however,
these functions are not bounded . It is of interest that the men-

tioned conditions can also occur for two functions fi (s) an d
fz (s) bounded and almost periodic in {a, 0) ; hereby we have
especially shown that there exist functions, for instance the sum
ft (s) + f2 (s), which are almost periodic in {a, 0] and bounded

2*
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in {a, 0), but not almost periodic in {a, 0), in contrast to the
case ,B = oc . As an example we may use the two functions

ft (s) _ (s) and f2 (s) _ (V2 s) ,

where p(s) is the function of example 2 . We realize that th e
sum f (s) = f~ (s) + f2 (s), considered for instance in {--1, 0), ha s
no translation number r $ 0 for any E <1 . Iu fact, if r $ 0
is an arbitrarily given number, we can obviously choose a

number to in such a way that one and only one of the four
numbers t0 , to +v, V2 to, y2 (to -I r) is a multiple of 2 7r (if r
itself is a multiple of 27r, we may, for instance, use to = 7r,V2 ;
otherwise, we may use either the number to = 22v or, i f
V2 (2 rc + r) just is a multiple of 21v, the number to = 470 .
Therefore, if we make s approach the boundary point it, fro m
the half plane u< 0, three of the four functions fl (s), ft (s + ir) ,
f2 (s), f2 (s + i r) will approach definite limits, while by makin g
s tend to it, in a suitable way from the half plane o' < 0 we
may arrive at any number on the unity circle as a limit of th e
fourth function ; hence it is excluded (just as in example 2) tha t
the modulus of the differenc e

f(s+ir) - l (s ) = f1 (s + it)+f2(s + ir) - f1 (s ) - l2(s)

remains smaller than a number E<1 in the whole half plane a< 0 .

Now we begin the investigation of the functions, almost peri-
odic and unbounded in {a, 0) . In order to demonstrate at
once that the situation here is essentially different from that o f
the functions almost periodic and unbounded in {a, co), it may
be emphasized that the sum of a function b(s), bounded an d
almost periodic in {a, 0), and a function p (s), unbounded an d
periodic in {a, 0), is not necessarily almost periodic in {a, 0) .
To this purpose, we need only consider the su m

f(s) =p(s)+b(s) ,

where b(s) is the function cp (s), bounded and almost periodi c
-even purely periodic-in {a, 0), given in example 2, which ha s

no other translation number for any r < 1 than the numbers
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12am, while p(s) is the periodic function 	 with the period

1 - e y2 s

V2 Tui and the poles V2 m7ci . For, if r . is a translation number of
f (s) in {a, 0) (belonging to some s or other), we must hav e
z = V2 ma and, therefore, p (s + ir) = p (s) ; but none of thes e
numbers r, except the trivial r = 0, is a translation number fo r
b (s) belonging to any s <1 .

It is one of our main problems to decide to what extent a
converse theorem would hold, i . e . to what degree we also her e
have a general splitting theorem analogous to that valid fo r

fi = co . As we shall see at the end of the Chapter, this is no t
always the case, although the theorem holds in an important
special case .

Let us begin with the remark that a function as), un-
bounded and almost periodic in {a, 0), actually assumes value s
with arbitrarily large modulus already in a bounded part of'
the plane, precisely speaking, that there exists a length L suc h

that the function is not bounded in any rectangle of the for m
a < a< 0, t ' <1 < t' -{- L . This is obviously valid for an L chosen
thus that, in every interval t ' < t < t ' -!- L, there exists at least
one translation number r of the function f(s) in {a, 0) belongin g
for instance to s = 1 ; for, if f (s) was hounded (say I as) I< K)
in only one of these rectangles, it would be bounded (viz .
I f(s) ~ < K+ 1) in the whole strip a < o'< O . Hence, denoting a
boundary point so = ito as an "infinity point" of f(s), if f(s)

is unbounded in every half circle a< 0, I s-so l < cl, we conclude ,
that f(s) certainly has infinity points on the boundary o' = 0
(as as) is bounded in every substrip a < a < ;,< 0), and that
these infinity points form a relatively dense set . That the ex-

istence of one infinity point so involves the existence of a rela-

tively dense set of infinity points, follows also from the fact that ,
together, with so, in any case all points so -r jr must be infinit y

points, where z runs through the (relatively dense) translation mo-
dule F of the function . The set of these infinity points of f (s) o n

the boundary a = 0 forms of course a closed set . This set can very
well consist of all the points of the boundary ; this is the case for
the function f(s) = sears, purely periodic in (-oc, 0), where
it holds for any fixed t = 2 Tur (r rational) that 1 f (o'+ 0 1-* oc

for a-- O .

For the more detailed study of a function, unbounded and
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almost periodic in {a, 0), an investigation of the translatio n
module F is of special importance . In the case fi = oc con -
sidered in the foregoing chapter, the translation module wa s
always discrete, i . e . it consisted of the numbers of an arithmeti c
progression . This may of course also happen when $ is finite ,

for instance for the function f(s) ='ens =	 1	 (purely peri -
0

	

1- e
odic in (- oo, 0)) with the poles 2 mmi, where F just con-
sists of the numbers 2 mic . However, it may here also occur ,
that F is everywhere dense on the line - 0 < t< 0o . This
is, for instance, the case for the above mentioned functio n

f(s) = Xen!s
(also purely periodic i n

tional multiple of 2n surely belongs to F, as for r
the whole half plane a< 0 the inequality

I f(S+ ir)-f(s) I =

	

(- oc, 0)), since any ra-
in

= -2 ic i n
q

en!(s iz) en!s
< 2 q

holds. In the case where the translation module F is everywher e
dense, the infinity points must also be everywhere dense, a s
follows from a previous remark ; therefore they must constitut e

the whole boundary (as the set is closed), and especially th e
boundary cr = 0 must always be an essentially singular lin e
for the function .

The investigation of the functions, unbounded and almost
periodic in {a, 0), naturally falls into two cases correspondin g
to a discrete translation module and to an everywhere dens e
translation module, respectively . Before starting this investigation ,
it will first be proved that the translation module cannot con-
sist of all real numbers . We observe that this is not a specia l

case of a general theorem concerning arbitrary unbounde d
analytic functions, but a typical theorem for unbounded almos t
periodic functions ; thus, the trivial not almost periodic analyti c
function f(s) = s is unbounded in an arbitrary strip (a, p) ,
while the difference f(s + ir) - f (s) is bounded (in fact constan t
= ir) for every fixed r.

Theorem. The translation module of a function f (s), unbounded
and almost periodic in {a, 0), cannot consist of all real numbers .
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It has to be proved that a function f(s), almost periodic i n

(a, 0), which has every number r as translation number (fo r

some or other e), must necessarily be bounded .

A decisive &lep in the proof is the demonstration that th e
translation function

v(r) = u.b. 1 f(s+ ir) -f(s)
s in

/

1 a, O )

here defined for all r, is a bounded function of r . To show this ,
it is obviously sufficient to prove that v (r) is bounded in the
interval 0 < r <L, where L is chosen in such a way that an y

interval of the length L contains a number r', which is a trans-

lation number of f(s) in (a, 0) corresponding to r = 1 ; for i f

v(r)<k in 0 <w < L, due to the inequality v (r1 r2) < v (r1) -{-

ver2), the function v (w) is obviously <k +1 for all r . Tha t
the translation function v (w) is bounded in a finite interval

0 <r <L can be demonstrated in the following way : We con-

sider v (r) in the interval -L <r <L and denote by En the
(measurable) set in -L < r < L in whose pointy u(r) < R . As
E 1 c E2 c E3 ç • • and as any ,c in -L <w < L belongs to

the set En for n sufficiently large, the measure m (En) of the

set En will converge to the length 2 L of the whole interval ,

for n->- oo . Therefore, we may determine N such that

rn (EN) > 2 L .

Then, for any r in 0 <w< L the inequality

v(r)<2 N

will be valid . This is evidently proved, if we have shown tha t

any given r in 0 < r <L can be written in the form r = rl - r2 ,
where both r1 and r2 belong to the set EN (and r1 lies in the
interval 0 <r < L) . This is possible, as a consequence of th e
fact that the set EN and the set Er, = Ems, (r) obtained from EN
by translating it by r must have a common point between 0 and
L (which point then is equal to r1 as well as to r+r2 , where r1
and r2 both belong to EN), the set EN as well as the set El'.
having an intersection with the interval 0 <w < L the measure

of which is greater than 2 .



24

	

Nr . 1 8

Now it is easy to finish the proof, viz . to show that g s)
must be bounded in {a, 0) . We have only to choose an arbi-
trary number A which is incommensurable with all the Dirichle t

exponents of f (s) different from zero (forming a countably in -

finite set) and to consider the periodic component p (s) of f(s)

27c .
in {a, 0) belonging to the period ip =

	

r . As no Dirichlet ex-

ponent of f(s) which is different from zero is a multiple of A,
this periodic component is simply a constant c, viz. the con-
stant term in the Dirichlet development of f(s) . On the othe r
hand, however, p (s) can be determined (in the whole stri p
a < (Jr< 0) by

P(•5) = lim as+iP)+ f(s + 2 ip)-{- . . . + f(s -l- nip )
R -> w

	

n

hence, it results that the difference p (s) - f (s) must be bounde d
in the whole strip {a, 0), viz . that its modulus must be < G =
u . b . v (r), as we hav e

where the modulus of each of the differences [(s+ ivp) - f (s) i s
G in {a, 0) . From p(s) = c and ~p(s)-f(s)I < G in {a, 0) ,

it finally results tha t

~f(s)~ <IcI+G in {a,0 )

and so we have proved that f (s) is bounded .

In the following we shall first treat the case where the trans-

lation module F is discrete, and then the case where F is every -

where dense on the line - oc < t< oc

The translation module is discrete .

In this case the situation proves to be highly analogous to

that for ,8 = oo (where the translation module always is dis-
crete), as the following splitting theorem is valid .

p (s) - f(s ) _

(f(s +iP) -f(s)) + (f(s + 2 ip)- f (s)) + . . . +(f(s -f- nip) -f(s))
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Splitting theorem : A . function f(s), unbounded and almos t

periodic in {a, 0), with a discrete translation module can always-

and practically in one way only-be written as a su m

f (s) = p (s) + b (s) ,

where p (s) is a function, unbounded and purely periodic in {a, 0) ,

while b (s) is a function, bounded and almost periodic in {a, 0) .

Let us denote the numbers in the translation module F which ,

in consequence of the assumption, form an arithmetic progres-

sion, by L- = vq (q> 0, v = 0, ± 1, . •) . It is obvious that, in any

splitting of f(s) of the kind mentioned in the theorem, eac h

period of the periodic term must necessarily have the form ivq .

It will be proved that, as a period ip of the periodic term, w e

may even use the number iq, where q is the smallest positiv e

number which might be taken into consideration, for we shal l

prove (in analogy to the case ß = oc) that the periodic componen t

of f(s) in { a, 0) belonging to the period iq is a possible p(s) .

When proving this, it would not be convenient (as in the cas e

ß = oc) to use the Dirichlet developments, because here (in con-

trast to the case ß = oc) we have no simple criterion, whethe r

a Dirichlet development just represents a function bounded i n

{ a, 0) . We have to operate with p (s), determined in {a, 0) as a

mean value, i . e . by the limit equatio n

p(s)

	

lim
f(s+ig)+ f(s -{-2ig)!, . . . + f(s~--niq)

n -->oo

	

n

We have to show that the function b (s)-obtained by subtract-

ing from f(s) this function p (s) of the period iq, purely peri-

odic in {a, 0)-is not only (of course) almost periodic in {a, O] ,

but actually almost periodic in {a, 0) and moreover is bounded

in {a, 0) .
However, it is plain that the difference b (s) = f(s)-p(s) is

almost periodic in the whole strip {a, 0) . For, as any trans-

lation number ,r of f(s) in {a, 0) lies in the translation module

F, i . e . has the form vq, the number iv is a period of p(s) ,

and therefore any translation number 'v (v) of f(s) in {a, 0) i s

also a translation number v (O of b (s) in {a, 0) .
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In order to prove that the function b (s) = f(s)-p(s) i s
bounded in {a, 0) we show primarily that the translatio n
function v (E.) of As) in {a, 0), which here is defined fo r

= v q (v = 0, + 1, • • •) only, is bounded, i . e . that

v(z) < K for all r

	

vq (v = 0, + 1, . . .) .

To this purpose we consider the set of translation numbers z o f
Rs) belonging, for instance, to s = 1 . As each of these number s
is a multiple of q, the relative density of the set formed b y
these numbers z (1) implies that there exists a positive intege r
M such that among M arbitrary consecutive multiples of q there
exists at least one which is a r (1) . If now k denotes the great -
est of the M numbers v (vq) (v = 1, 2, • • • M), for all z = v q
the inequality v (r) < k + 1 obviously holds . Having thus prove d
the inequality v(a) < K for all i = vq, it is plain that the
function b (s) is bounded in the whole strip {a, 0), since for
any point s in . {a, 0) the limit equation

b (s) = f ( s ) -p (s) =

lim (f(s)- f (s + iq)) + (f (s) - f(s + 2 iq)) + . . .	 +(f(s)-f(s+inq) )
n->-o.)

	

R

is valid, where the modulus of each occurring differenc e

f(s)- f(s+ivq)

is < K; hence also b (s) < K .

Subsequently, it is easy to decide to what degree the men-

tioned splitting is unique and, as we shall see, the result is quit e
analogous to that found for ß

	

oc . Let

f(s) = P (s) + b (s )

be the "standard splitting" given in the proof above, in whic h
p (s) is the periodic component of f(s) belonging to the perio d
iq, where q is the smallest positive number in the translatio n
module F, and let

f(s) = p* (s) + b* ( s )

be an arbitrary splitting of f(s) in {a, 0) of the kind mentione d
in the theorem . As the periodic term p* (s) certainly has a
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number of the form imq as a period (m a positive integer), th e
difference rr (s) = p* (s) - p (s) = b (s) - b * (s) must necessarily
be a function, bounded and periodic in {a, 0) with a period
of the form imq . Conversely, however, it also holds that fo r
any function 7r (s), bounded and periodic in {a, 0), with a
period of the form imq, we may use as a periodic splittin g
term the function

A * (s) = p (s) + Tr (s)

periodic in {a, 0), i . e . the function

b* (s) = b (s) - ;r (s)

is not only (of course) bounded in {a, 0) and almost periodi c
in {a, 0], but also almost periodic in the whole strip {a, 0) .
Evidently, this is proved, when we have shown that for an y
s> 0 the function b (s) has in {a, 0) a relatively dense set o f
translation numbers (not only, as we already know, of th e
form vq, but also) of the form vmq . To see this, we only

need to apply that b (s) has a relatively dense set of translatio n

numbers of the form vq belonging to
a
Tn,

and that these latte r

translation numbers multiplied by m are translation numbers
of b (s) belonging to e itself .

The translation module F is everywhere dense .

We have already mentioned that there exist functions, f (s) ,
unbounded and almost periodic in {a, 0), whose translation mo-
dule is everywhere dense on the line - oo < t < oc ; the periodic

function f (s)

	

'erns
considered in {-1, 0), for instance, is o f

this type. Furthermore, we have seen that any function As) o f
this type has the boundary a= 0 as an essentially singula r
line, and even that every point on the boundary is an infinit y
point. Our main result concerning these functions is comprise d
in the following (negative) theorem :
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Theorem. There exist functions f(s), almost periodic and un -
bounded in a strip {a, 0), which cannot be splitted into a sum

f(s) = p(s)+b(s) ,

where p(s) is purely periodic in {a, 0), while b(s) is bounded an d
almost periodic in {a, 0) .

Moreover, we shall prove the somewhat further going theore m
that such a splitting is not always possible, even if we onl y

demand that the function b (s) (which on account of the equality
b(s) = f(s)-p(s) automatically is almost periodic in {a, 01 )
be bounded in {a, 0), but not that it be almost periodic in th e
whole strip {a, 0) .

In order to construct a " counter-example" which is suite d
to prove the correctness of the assertion made in the theorem ,
we shall first look for a general type of examples concernin g
functions unbounded and almost periodic in a strip {a, 0 )
and having an everywhere dense translation module . Starting

from the simple example

	

s

	

n! s
f () -

	

(periodic and therefore

quite unadapted to our proper purpose), it is obvious to thin k
of almost periodic functions with Dirichlet exponents which
form a sequence strongly increasing to the infinity, i . e . ordinary
Dirichlet series

~ a s
f(s) =

	

an

	

(O < < < . . .

	

GO )

with so-called "gaps", i . e . with very large intervals between th e
exponents . Actually, the general theorem holds that every such

series represents a function f(s), unbounded and almost periodi c
in (- cc, 0) (and not only in (- cc, 0]), with an everywher e
dense translation module, if the series has the half plane a< 0
as convergence half plane and is divergent on the boundary lin e
u = O . We shall postpone the formulation of this "gap theorem "
and its proof to the next Chapter . Here, we shall confine our-
selves-as this is sufficient for our present purpose-to mentionin g
that it results from this gap theorem that every Dirichlet serie s

' e'as with coefficients an = 1 for which

0 <~ 1 <2, 2, < . . . -~ oo and 2,n+1> e
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represents a function f(s), unbounded and almost periodic i n

(-oa, 0), and, therefore, also for instance in {-1, 0), with a n

everywhere dense translation module .

Within this class of functions f(s) we shall attempt to

determine one which may be called highly "aperiodic" in th e

sense that by splitting off a function p (s) purely periodic i n

{-1, 0) we can never obtain a function b(s) bounded in{-1, 0) .
As we shall see, we have a function of this type in ever y

function f(s) of our class with rationally independent exponents
The task is to show that such a function f (s) cannot be

written in the form

f (s ) = P (s) + b ( s ) ,

where p (s) is purely periodic in {-1, 0) and b (s) bounded i n
{-1, 0) (and of course almost periodic in {-1, 0]) . We give

an indirect proof and, consequently, suppose that such a repre-

sentation exists . As the Dirichlet exponents of the function f(s)

are rationally independent, at the most one of them can hav e

the form 2
7r

v, where ip is a period of p (s) . In the following
P

we may assume that f(s) has no Dirichlet exponents of this form,

as, if _4 = 2	
7r

was such a Dirichlet exponent, we should onl y
P

subtract ens on both sides of the equation, exactly speakin g

we should replace f(s) by f(s) - ens , and b (s) by b (s) - ens ,

whereby f(s)-ens as f(s) is unbounded in {-1, 0), and b(s) -ens

as b(s) is bounded in {-1, 0) . We now write the equation
f (s) = p (s) + b (s) in the form

b (s ) = -P (s) + f(s )

and we consider this equation in the strip {-1, -s) where

0 < s < 1 . The periodic term -p (s) is obviously just the peri-

odic component of b (s) in {- 1,-e) belonging to the perio d

ip, because f(s) has no Dirichlet exponents of the form 2 v.
P

u. b . ~ P(s) ~< u . b . b (s) I .
s in {-1,-e)

	

s in {-1,-s)

Hence, we have the inequality
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Consequently, if B denotes upper bound of lb (s) ~ in the whol e
strip {-1, 0), the absolute value of p (s) is < B in the whole

strip {- 1, 0) . However, this contradicts the fact that f(s) is
unbounded in {-1, 0), as it would involve that in the whol e

strip {-1, 0) the inequality

f(s)I < Ip(s)I+Ib(s)~ < 2 B

was valid. Hereby, the proof of our theorem is fulfilled .



CHAPTER IV .

A gap theorem concerning the almost periodicit y
of Dirichlet series .

In this Chapter, we shall only deal with Dirichlet series in
the classical sense, i . e . with serie s

anet.ns,
where 0 <) <2.z <

We shall even consider such series only, whose exponents in -

crease strongly to the infinite, from which it follows in parti-
cular that the series is absolutely convergent in the whole con-
vergence half plane of the series, which may be supposed to b e
the half plane o<O . Then, for a<0, the series represents an

analytic function f(s) which is almost periodic in (- oc, 0] and

has the given series as its Dirichlet development .

The so-called HADAMARD ' S gap theorem for Dirichlet serie s
states, generally speaking, that the convergence line ri = 0 always
is an essentially singular line of the function f(s) represented

by the series, if the sequence of the exponents increases rapidl y
enough. In order to illustrate the kind of reflections made be-
low by an especially simple case, we shall begin this Chapte r

by proving HADAMARD'S gap theorem in a rather extreme case ,
viz . the case where the exponents increase so strongly that th e

ratio of an exponent and the foregoing one is greater than a
constant > 3 . As we shall see, the theorem can then be prove d
in a particularly simple way .

A special case of $adamard's gap theorem. A function f(s)
represented by a Dirichlet series anekns with the convergence half
plane a < 0 whose exponents satisfy the inequality
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,n+1 >k> 3 (for n> no )
,n

has the convergence line a = 0 as an essentially singular line. If
i an is divergent, all the points of the line . a = 0 are infinit y
points of As) .

The proof is based on the following well-known (and easil y
provable) theorem of VIVANTI and LANDAU : If for a Dirichlet
series Rs) = ' an e z 1 s with the convergence half plane a = 0 it
is valid that in a point so = ito of the boundary all the term s
ane `Â 'tt0 are positive from a certain step, the point so is alway s
a singular point of the function f (s)-whether the series is con-
vergent or divergent in the point. We shall use this theorem i n
the well-known, somewhat more comprehensive formulatio n
where the assumption that all the terms an e' '2to are positive
from a certain step is replaced by the weaker assumption that
all the terms an e ` 'Ì " t° from a certain step lie in a fixed angle <Tr ,

for instance in an angle - + d < v< 2 - d (where 0 < d < 2~
Moreover, we shall use the following simple remark : if on the
line -cc <i < oo there lie intervals of a fixed length /i< a ,
periodically with a period a> 0, then every interval with a length
> a +4 in its interior contains at least one of the mentioned
intervals of the length ,8 .

In order to prove that all points of the line a = 0 are sin -
gular points of the function Rs) it is, of course, sufficient t o
prove that the singular points lie everywhere dense on the line ,

that is to say that there exists a singular point in every inter -
val t 1 < t < t2 on the line a = O . In consequence of the theorem
mentioned above, this is certainly the case, if in the arbitraril y
given interval . t1 < t< t2 there exists a point to such that al l
the terms an e`„to from a certain step lie in the fixed angle

- - + d< v < 2 - d, where we assume d chosen so small (which

is possible because of the inequality ,+1 > k> 3 for n> no)
that

	

n

Tr. -2d 3Tr - 2
>

	

-

,n

	

,n-{-1

for n> no .
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Concerning the n-th term an e l )'12 t , the intervals In on the t-axis ,
in whose points the amplitude of the term lies in the angl e

- 2 + d< v< 2 - d, have the length
'r -

2 d , and they repea t
n

2 rr
themselves periodically with the period	 In consequence of

~t

2n -Jr,-2d _ 3rr-2 d

,n +

	

n

	

2, n

therefore certainly contains one of the mentioned intervals In .
By virtue of the inequality written above, for n> no each inter -
val In contains an interval In+1 . Now, we can immediately com-
plete the proof. We have only to choose N> no so great that
the given interval t1 < t < t2 contains an interval IN . Inside this
interval we have then to determine an interval Imo,+1, inside tha t
again an interval IN+2 etc. If to denotes the common point o f
the sequence of intervals thus determined, all the terms a n e tz,lto

for n > N are situated in the angle - 2 -H d < v < 9--d, and the

point so = it, is therefore a singular point of f(s) .
In the case where an 1 is divergent, it is moreover clear

that the point s = ito thus obtained is an infinity point off (s) (as the
above consideration shows that f(6+ ito) ~ - co for 6->- 0) ; thus ,
if an is divergent, in every interval ti < f < t 2 there exist in-
finity points of f(s), i . e. the boundary consists of nothing bu t
infinity points .

We shall now formulate and prove the main theorem of thi s
chapter .

An almost periodic gap theorem . If 21 < 2 < is a
sequence of positive numbers, which (for the sake of simplicity
we shall suppose to be > 1, and which are increasing so strongly
to the infinite that

n+1>e1czn for all n ,

where k is a positive constant, then every Dirichlet series

Z an e
n= 1

D . Kgl . Danske Vidensk Selskab, Mat. .fys . Medd . XX,18 .

n
a remark above, every interval of a length greater tha n

s

3
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belonging to this sequence of exponents and convergent for G.< 0
-and therefore also absolutely convergent for a< 0-represents a
function f(s) analytic in o< 0 which is almost periodic in th e
whole half plane (- oc, 0) and not only in (- oc, 0] .

Moreover, the translation module F of f(s) in (- oc, 0) is every -
where dense on the t-axis, i. e . in every interval ti < I < t2 exists a
number r such that the difference f(s + ir) - f(s) is bounded in
the whole half plane a< O .

If I an I is convergent, the theorem is trivial, and therefor e
we may suppose in the proof that Z I an I is divergent ; as a
consequence of a remark given above it is then valid-as th e
condition which is now imposed on the exponents ). n is much
stronger than the former one-that the boundary a- = 0 consist s
of nothing but infinity points of the function f(s) .

P r o o f : We choose a fixed positive e< k . As the series

Zany )"° e is convergent, there exists a constant K such tha t

I an I etin` < K for all n ; we may suppose K = 1 (otherwise we
only divide all the coefficients an by K), i . e .

an I< e ;` nc for all n .

Next, we choose a number c ' such that

c<c ' < k
and write

`•n = etingi for all U .

Especially it is valid that the series ~Fne~'ic and thereby a

fortiori the series 2' en I an 1 is convergent .

Let us consider the exponential factor elÂnt . Periodically wit h

a period ', on the t-axis there lie intervals In of the length
2en in whose points t the exponent Rnt differs from an integra l

multiple of 27r less than en ; in these points it is furthermore
valid that

e iti,it - 1I<an .

For large n, say for I> no, every one of our intervals In con -

tains one of our intervals In+ 1, as for large n the inequality
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is valid; this is evident, as the right side is <
large n (because c ' < k) we hav e

n+1>
~2m

~n = 27r;,r, " .
n

From this, one of the assertions made in the theorem follow s
at once, viz . that in every given interval t1 < t < t2 there exist s
a number i for which the difference f (s + iz) - f (s) is bounded
in the whole half plane a<0 . We have only to determin e
N> no so large that the interval ti < t< t 2 contains one of
our intervals IN ; then, we determine in it an interval IN+1 ;
in it again an interval 'N+2 etc. The common point of th e
sequence of intervals IN, IN+1, IN+2, is then a point in
ti < t < t2 for which f (s + iz) - f (s) is bounded in a< 0, as for
every s in a> 0 the inequality hold s

N-1

	

~
lf(s+iz)-f(s)I < 22'

an+~ lanl' Ie iÀ.,rT- 1
n=1

	

n = N
N- 1

< 2 2' l anl + 2'
I anl En < 3J .

n=1

	

n -1\r

However, we must proceed somewhat more cautiously whe n
proving our main assertion, viz. that f(s) is almost periodic i n
(-oc, 0), i . e . that to any arbitrarily given e, which we may
suppose to be < 1, there exists a length L = L (E) such that, i n
every interval of the length L, there exists a number z for whic h

f (s + ii) - f (s) l < e in the whole half plane a< 0 .

We determine a number N = N(e)> no such tha t

Li l an En< - and 2.N+1
> 167r, N~Nea,~, ~

We can fulfill the last condition, because c< k and ),n+1 > e1 .

Now we split the function f(s) in the half plane a< 0 into a
beginning BN (s) and a remainder RN (s), namely

and as for

3*
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N
BN (s) = 17 ane~{ns and RN (s) =

	

anea„ S

Here, the function BN (s) is of course almost periodic in (- oc, 0) ,
namely even almost periodic in (-cc, oo ] . We determine a
length L (> 1) such that every interval of the length L con-
tains a translation number 'r of BN (s) in (- oc, 0) belonging to

4 . Then, this length will be a usable length L (e) of f (s) in

(- oc, 0) . To prove this we primarily estimate the differentia l
coefficient BN (s) in a< 0 and find

1

	

N+ 1

N

I BN (s) I - 1 .Z a n ea"s
l

n=1

N

Z 2, n I an 1 < N,I,v e^
N c .

n= 1

If we set

N7N

it holds for every tQ in the interval
'r
-IN < t < a + IN around

one of our translation numbers z = z
(i-)

of BN (s) in (- cc, 0) ,
that in (-coo, 0 )

I
BN (s-}-ito)-BN (s+ 1 T)I < INN.I N e~` c = E

4 '

consequently the interval z - IN < t < z + 1N consists of nothin g
but translation numbers of BN (s) in (-cc, 0) belonging t o

+ 4 = . In particular, we find I as L > 1 and IN < 1) that
4

	

2
every interval y < t < y + L of the length L contains a whole
interval iN of the length IN whose points all are translatio n

numbers of BN (s) in (-cc, 0) belonging to 2 . However, w e
have

E

	

47r
=

	

>
4N2 NetiNc

	

+ 1

and our interval iN of the length IN contains therefore at least
one of the intervals IN+1 mentioned above . Now we proceed
as before ; we determine an interval IN+2 inside IN+1, in i t
again an interval IN+3 , and so on . The common point of th e

IN =

E

4
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sequence of intervals iN , IN+l , IN+ „ is called T . This

number r lies in' the interval y< t < y + L, and it is further a

translation number .of f (s) in (- oc, 0) belonging to E. In fact ,
the inequality Iei)'`nt -1I <en is valid for t lying in an interval

In ; hence for o< 0 we get

I / is + it) - f ( S) C ÏjN (S + it) - I3N (S) 1+1 RN (S + iT) - Î3 N (S )

2+±11a
n

I IetnaT
- l i

< E E
- 2 -E- 2 = E .

Thus, the theorem is established .

E

`L
+

Z I a l E n
N+ 1

Indleveret til Selskabet den 7. Juni 1943 .
Færdig fra Trykkeriet den 25 . November 1943 .






