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INTRODUCTIO N

T
he present paper is intended as a sequel to the authors '
previous work "On the field theory of nuclear forces" [1] .

In the latter, the question was discussed, whether it would b e
possible in a well-defined way to delimit a domain in which th e
meson field theory, in spite of the fundamental difficulties of it s
quantization, would still yield consistent results . For this pur-

pose, a point of view analogous to the "correspondence" treat-

ment of quantum electrodynamics was adopted and a genera l

prescription could be formulated according to which a consisten t
interpretation of the formalism -fay be obtained. For the ap-

plication of this prescription to the problem of nuclear forces ,

a first requirement is to separate the "static" part of these forces ,
for the same reason as the Coulomb forces in electrodynamic s
must be separated from the radiation field before a correspond-

ence treatment of the latter can be arrived at . It was then

shown that 'such a _separation of the static forces could simpl y
be effected by a canonical transformation, and the applicatio n

of the general criterium mentioned above to the expression ob-

tained in this way for the static forces led to the adoption o f

the so-called "mixed" meson theory, i . e . a mixture of vector

and pseudoscalar meson fields with properly chosen intensitie s

of the corresponding nuclear sources [2] . While the consequence s

of the point of view just sketched for the theory of ß-disin-
tegration and meson life-time have been fully discussed [3], it s

bearing on the electromagnetic properties of nuclear system s
remained to be examined : this is the program of the presen t
paper .

The completion of this work, however, has been much de-

layed, partly due to fortuitous circumstances, but partly also o n

account. of the development of the subject itself. In fact, it was

1*
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pointed out in the meantime by one of us [4] that the mixed
theory appeared as an elementary (i . e . not mixed) form of meso n
theory in a five-dimensional representation . A subsequent surve y
of the formal possibilities for five-dimensional meson field theo-

ries even showed that the mixed theory was the only combinatio n

of four-dimensional types of meson fields possessing the property
just mentioned of coinciding with an irreducible five-dimens-
ional type of field [5] . Two possible interpretations of such a
five-dimensional representation were discussed ; of these, it ap-

peared that the projective interpretation was especially well -
suited for the incorporation of the interaction with the electro-

magnetic field [6] . In this connexion, the main formulae con-

cerning this interaction have already been published [6] and
applied to the problem of the photo-effect of the deuteron [7] .
On the other hand, this and other problems involving electro-

magnetic interactions have also been treated by several author s
on the basis of different assumptions about meson fields an d
nuclear forces . It is, therefore, not likely that the present paper

will contain any concrete result not already known to th e

physicists acquainted with the problems concerned. The interest

it may nevertheless offer would rather lie in the more methodic -
al aspects of the question, as viewed according to the genera l
lines recalled above. By reason of this circumstance, we hav e

decided also to include, when necessary, already well-known

developments in an endeavour to present a rounded-off account
of the questions treated .

Special care has been devoted to the more formal side o f

the= theory, such as the systematic use and extension of th e

"symbolical space" algorithm already introduced in our firs t
paper [1] . Since this system of representation might at first sigh t

appear rather cumbrous when applied to charged meson fields ,
-in contrast to the more common representation of these field s
by complex operators,-a few words on this subject will per -

haps not be out of place here. An examination of the calcul-

ations developed in the Appendix with the help of this form-
alism will indeed show that they are not any lengthier or mor e

intricate than those in which complex field variables are used .

In most cases, we have even applied, for the sake of a more

direct expression of the physical meaning of the quantities
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considered, a three-dimensional vector notation in preference t o
a four- or a five-dimensional tensor notation . This requires, i t
is true, some practice of vector analysis which otherwise woul d
not be needed and is, of course, not so appropriate to question s
involving space and time variables in a symmetrical way (an
example of such a case is afforded by the calculation of th e
magnetic moment of free mesons ; cf. p. 42) ; still, the symboli c
space representation of the charged fields proves very con-

venient even then .

In the first part of the paper, we recall the general method ,
applicable to any field theory, of taking into account the in-
teraction with the electromagnetic field ; on this occasion, we
adapt the general formulae to the symbolical space represent-

ation, using Hermitian field variables . In the last section of thi s
part, the interaction with a slowly varying external field i s
more especially considered and the multipole moments suite d
to the treatment of such a case-in fact, only the first few
ones : electric dipole, and quadrupole, and magnetic dipole mo-
ments are introduced . The second part of the paper is chiefl y
concerned with the application of the canonical transformation
separating the static meson fields to the interaction of a syste m
of nucleons and mesons with the electromagnetic field. This
amounts to deriving the expression of the charge and curren t
density operators in terms of the transformed variables ; from
these, the expressions of the multipole moments just mentione d
are then easily obtained . The resulting formulae for all such
electromagnetic quantities contain, besides the usual terms corre-

sponding to free nucleons and free mesons, and others depending
on both nucleon and meson variables, also terms of the so-calle d
"exchange" type, i . e . terms which depend only on the nucleon
variables in the form of a sum of expressions involving exchang e
of proton and neutron state between pairs of nucleons ; the oc-
currence of such exchange terms is a typical feature of field
theory. There appear also, of course, further contributions of a
singular character, which have to be rejected according to th e

above-mentioned general criterium ; it is noteworthy, however,

that a singular contribution corresponding to the anomalou s
magnetic moment of the nucleon may still be retained as bein g
of a different origin, viz . due to the fact that a material point
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model is adopted for the nucleons* . It is clear that the metho d
of canonical transformation here followed is superior to th e
usual perturbation method, above all in that it just permit s
easily to trace, so to say, the origin of the different terms oc-

curring in any formula and so to facilitate their physical inter-

pretation, especially in connexion with our general criterium .
Furthermore, it also offers the practical advantage of requirin g
calculations much simpler and easier to survey than the per-
turbation theory .

As regards the application of the general scheme so obtaine d
to special problems, we confine ourselves to some brief indi-
cations, since a more detailed treatment will be found in other
publications. In this respect, we have already mentioned th e
investigation of the photo-effect of the deuteron by A . PAIS [7] ;
we wish also to call attention to a forthcoming paper by J . SERPE
which, among others, will contain a detailed comparison of th e
canonical transformation and perturbation methods and a dis-

cussion of two singular effects (spreading of electric charg e
around a nucleon and anomalous magnetic moment of nucleons )
providing appropriate examples of the application of our criterium .
We should like here to mention that results of calculations b y
these authors, kindly put by them at our disposal, have bee n
very valuable for the final redaction of this paper .

Empirical evidence, especially the latest information on cos-
mic-ray mesons, may be considered on the whole to suppor t
the mixed theory [2] . Still, in conclusion, we wish to emphasiz e
once more its very 'serious limitations, already explicitly state d
in our previous paper ([1], especially pp . 51-52). In particular ,
it is out of question that such problems as the scattering o f
fast mesons [8] could fall within the scope of this . or any other

form of meson theory as long as the deep-lying problems con-

nected with the universal limiting length (denoted by ro in [11)

are not brought nearer to their solution .

* In an analogous way, the static self-energy of a point nucleon may be
considered a contribution to its mass .



PART I .

Electromagnetic properties of arbitrary fields .
§ 1 . Gauge-invariance of Lagrangian.

Let us consider any field representing "charged" particles ,
i. e. particles capable of interaction with the electromagneti c
field. If we assume that the force on such a charged particl e
due to the electromagnetic field is given by the familiar Lorent z
expression, we may, according to an interesting theorem pointed
out by RACAH [9], conclude that there exists a Lagrangian from
which this force can he derived . In fact, to be derivable from
a Lagrangian, the expressions of the force components hav e
to satisfy a set of necessary and sufficient conditions establishe d
by HELMHOLTZ [10] ; and RACAH has shown that, if we also as-
sume the force to be independent of the acceleration of th e
particle, these conditions just reduce to stating that it takes the
form of the Lorentz expression .

We may thus start from a Lagrangian densit y

-' (Q., Qrui ; Qcti, , Qw1i ; Al, A 11i )

depending on the variables Qw, Qtw , A l and their derivative s
8F

Fl i	
ô
	 8F (x i = x, y, z, et) ; while the A l denote the components

of the electromagnetic potential (vector potential A = Al , A 2 , A 3
= A', A E , A 3 ; scalar potential B - A 4 = - A 4), the (L represent
the quantized variables defining the various types of charged
particles considered, Q4„ their Hermitian conjugates, numbere d
in an arbitrary way by the index co . As is well-known [11]* ,

* It will be noticed that the following analysis is entirely analogous t o
that used for the derivation of the energy-momentum tensor from the invarianc e
of the Lagrangian for arbitrary coordinate transformations [12] . The possibilit y
of extending this method to any group, and in particular to the gauge-trans-
formation group, has been pointed out to us by Dr . J . PODOLANSKI .



8

	

Nr. 1 2

the form of this Lagrangian giving rise to the required express -

ion of the Lorentz force may simply be obtained by postu-
lating the invariance of the Lagrangian for the so-called gauge -

transformations of the form

ie,, a

~ e
w - e

	

Q.

Aj = A i +al t ,

in which a is an arbitrary c-number function and the constant s

ew, referring to the different kinds of particles considered, ar e

to be identified with the charges of these particles . In fact, the

gauge-invariance of any functional, such as v' , may be expressed

in the form *

d

	

a	
cl Q + conj .{dQw+aiaQwli

	

/

+ ~Ai ôAi F

ax'
(ô
ti aA i ) = 0 ,

where

	

represents the "variational derivative"
a Û

	

a
(8	d û

~Q

	

aQ axi aQl i

_
2.,,

ew a
/~v~

	

a û
Si

	

[aL~wliQw-QwaQwli
1 ,

	

(2)

we then get, for an infinitesimal value of the parameter a ,

J

	

C w

he

„j

	

ia vim-
a

l i C Qw Qw +
conj . -- axi

ava a a v l it

	

a~ja
+alil dAi +axi~aAilil-S 1+alil7aAilj -

o .

In connexion with the possible non-commutability of Qw and Qw ,
it has here been assumed that in all terms of e, any factor

Qw or Qw 1 i is written on the left of any Q w or Qw I i ; if Q,, 14 i s

not commutable with Qw , further restrictions must be impose d

* The abbreviation "conj ." denotes the Hermitian conjugate of the express-
ion preceding it .

(1 )

Putting

(3)



Nr . 12

	

9

on the form of the Lagrangian if we wish to write down a

general expression such as (3) for d e . We will make the as-

sumption, fulfilled in all cases of actual interest, that the ex -

pression (3) is valid in terms of q-number variables also . We

then derive from it the three following conditions for th e

Lagrangian density v1 , viz . :

1° depends on the Aili only through the field components

Fii = A i l i - A : l i ;

	

(4)

2° we have therefore

d
v = s`

+~

dA i

	

axi(aFii
)

'
3° we have

(5)

as` _
a x`

d .>e

hc d Qw Qw
+ Conj .

to

fo
(6 )

Now, the total Lagrangian density of a system of charge d

particles and electromagnetic field includes, besides the ter m

hitherto considered which refers to the particles and their inter-

action with the electromagnetic field, a term

"f - - 4 FtJ Fii

describing the field itself. We may then write the field equation s

for the material variables Qw, Qt in the form

(7 )

dv~ =0 ,
d Q.

d .~~
- 0

dQw
(8)

or

and the electromagnetic field equations in the for m

d ;

	

d-e

dA i

	

dA i

aF`J

	

e,
axa

	

dA i
(9)
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From the latter it follows that åA is to be interpreted as th e

total charge-current density of the system, the general express -
ion of which is thus given by (5) . In this formula, s ` , given
by (2), is the usual charge-current density, whereas the las t
term represents a polarization current density, as would aris e
from an electric and magnetic moment of the particles throug h
which they would directly interact with the electromagneti c
field ; such direct interaction we shall, however, disregard and
we shall, thus, in the following assume that only depends o n
the electromagnetic potential . In any case, since the divergence
of the polarization current density automatically vanishes, th e
conservation law

	

_/J

	

n i

	

ô x ` ô Ai

	

0 or ~~i = 0

	

(10)

follows from (6) in virtue of the field equations (8) .
In order to derive the expression of -e in terms of the A i ,

we start from the condition (5) which may be written mord simply

ô .~

a A i

and we further require LP(Q .„ Q.1i ; Qw ' Qøli ; A l) to reduce for
A i -* 0 to the form e of the Lagrangian density for the part -
icles concerned in the absence of electromagnetic field . It is now
easy to show that these two requirements fix the form of v4' to *

e

	

e
- e° (Q., Qceli - e A iQ. ; Q., Q.1i+ihCAiQw) . (11)

This expresses, of course, the well-known result that the Lagran-

gian density for charged particles in interaction with the electro -
magnetic field is obtained from the Lagrangian for no field b y

e
replacing the operator

ai
by a 	xi - i

he
A i .

* In the first place, the function (11) satisfies the two conditions . On the
other hand, if a function of Qw, Q,„ I i ; Qw, Qw I i ; Ad satisfies (5 ' ) and reduces
to zero for Al -~ 0, it is readily seen that it must be identically zero .

(5 ' )= Si
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§ 2 . Transition to Hamiltonian and separation o f
Coulomb field [13] .

Let P. _-v be the momentum canonically conjugate to
t Qw1 4

Q,, ; if -LP is Hermitian (which we will assume), the momentu m
canonically conjugate to Qt. is then P . From the gauge-invariance
of e it follows immediately that a gauge-transformation (1 )
transforms the variables P. according to the equation

e w

P. =

	

l tc a Pw .

Let further m (Q w , grad Q w , P,, ; Qt., grad Qt., be the
Hamiltonian function with no electromagnetic field present, de -
fined in the usual way by the equatio n

arm = PwQwl4+conj . -
(U

from which the variables Qw14 are understood to be eliminate d
by means of the equation s

a
P:,

= ~ Qwl4 eo (Qw , Qw1 i ; Q t., Qwl i )

The Hamiltonian with the field present, as derived from th e
Lagrangian (11), is then easily seen to be *

03l'm .+5ßedv ,~
where

4

	

\\~ e w

	

t t
P -- s4 = Z G e [PwQw - Qw P

w

is the charge density and

ie 3
m = e'm (Q., (grad - ` A) Qw , Pr,, ; 	 )

	

(12)

the gauge-invariant part of the Hamiltonian . Similarly, the

Hamiltonian of the pure electromagnetic field (electric field E ,
3

magnetic field H) derived from the Lagrangian (7) i s

* S • • • • . • do denotes a volume integration over the whole space .
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e./''C - SB div dv ,

QX'
= 2 ~ (E2 + H2) dU ;

	

(12')
the momentum canonically conjugate to A is - E, while tha t
canonically conjugate to B is identically zero . The Hamiltonian
of the total system may therefore be written

e.7-e-= @I-C --i- Q7-Cm -S B d v ,

	

(13)

-)-
C~ = div E - e .

The Hamiltonian formalism must be completed, in the usua l
way, by the fundamental commutation rules and the accessor y
condition

with

with
(13 ' )

= 0 (14)

to be imposed on the wave-function describing the state of th e

system . While the variables A and -E satisfy the ordinary
canonical commutation rules, the variable B commutes with all
other electromagnetic field quantities .

Let us now apply to the Hamiltonian ell the canonica l
transformation corresponding to an arbitrary change of phas e
of the variables Q,,, Pw :

	

ew

	

e w

	

Q ' = el t,c

	

P = e-l he Pw ,to

	

w ,

whereby a may be any operator independent of Q w , Pw and E

(but eventually containing the electromagnetic potentials) ; such
a transformation may, in fact, be put into the form *

Qw = 0
-1

Q. a, Pti, = a-1 P. a,

	

(15)
with

Pu du
~ = e~ec 5

	

(16)

* This may readily be verified for tensor variables (satisfying canonical
commutation rules) as well as for spinor variables (which obey commutatio n
rules corresponding to the exclusion principle) .

(15)
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Expressed in the new (primed) variables, the part ro of the

Hamiltonian is given by

eKm
(new var .)

	

e7 mCr ,

where fim, in accordance with a general convention made i n

this paper, denotes the same function of the new variables a s

the function m of the old variables . Now, the gauge-invariance

of 2m may be stated in the for m

@Irm (Å

	

) = 0 -1e7i-,n CA. +grad a,	 ) ~

from which it follows, according to (12), tha t

cam
(new var.)

1

	

1

	

ç (17)
ern (Qw,

(gradi e 0

~ A ' - i0grad a) (L, Pr ;	 ) .

As to the other terms of the Hamiltonian (13), they may b e
written, if we put

eE er -1 - E + Eo

7 ~

2
Eo du

	

(19)

in the form

@i; (new var .) - 07(7 + 2

s
( E', + E r, E' ) do + 22 '

and

- Ĥ B

	

dv , with c~

	

= divE ' +divE '

	

2 1(new var)

	

(new var .)

	

0

	

( )

4-
Now, we can choose a in such a way that the field Eo

separated from the total field by the canonical transformation ei

be just the Coulomb field

4-

	

1
Eo = - grad o p o du, ~Po = 4 7r r '4-
divEo=n.

We have only to take

(18)
and

(20)

(22)
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-)-
a = div A• yodv ,

	

(23)

whence
J

eenc
É •Adv

.

The new field variable E' then represents the transverse par t
of the electric field ; since, according to (23) ,

rot (- grad a) = 0, div (-grad a) = - S div A • L po dv = div ,

we also see that -grad a may be interpreted as the longitudina l

part of the vector-potential A, so that in the new Hamiltonia n
(17) only the transverse par t

Al = A+ grad a

±

	

->
(or rather AI) occurs, and this variable Al also defines th e

±

	

~
magnetic field by H' = rot Al. On account of the condition (14) ,

the value of B in the Hamiltonian (13) may be chosen arbi-

trarily ; taking for it the Coulomb potential ()To dv, one cause s
the terms

2 S('+ E, E ') du = E' E'o dv

-)-

- B L

	

dv = - B div E' dv
(new var . )

to cancel each other. Finally, the term V' simply represent s

(in the primed variables) the Coulomb energ y

V=
2 P`x-YP`x') sool~x-x ' dvdv' ,

from which the longitudinal parts of electric field and vecto r

potential are entirely eliminated . Also the accessory conditio n

so that we get a Hamiltonian

(new var .)

ie~„ ~
_ ~m ((k, (grad - h e Al Qw~ Pa, ;	 -}- ~'-{- ~',

(24)

and
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~,
(new var.)
	 div E = 0

does no more contain the longitudinal field ; but it must not b e

forgotten that A ', and not Al, is canonically conjugate to -F.' .

§ 3 . Hermitian variables .

Chiefly when dealing with meson fields it may be advant-

ageous to use Hermitian variables for the description of the
charged particles . As such, we may conveniently tak e

Q1 =
1/2

(Q+Qt), Qz =
iv2

(Q - Qt%,

so that

Q = ,j2(Q 1 + 1 Q2) •

Considering these formally as "components" of a "vector" Q
along the directions of orthogonal axes 1 and 2, we may inter-
pret the phase transformation Q ' = el" Q as a "rotation" of
angle a about the symbolical axis 3, perpendicular to 1 and 2 .
Any (Hermitian) "component" Q3 in the direction of the axis 3
can be assumed to represent a neutral particle of the sam e
kind . Taking the vector potential (and all electromagnetic fiel d
components) along the axis 3 :

we may then express the gauge-invariant derivatives

Q.I1-~xc A 1Q,

	

QÎ
1+ c A1Qt ,

through which the interaction with the electromagnetic field i s
introduced into the Hamiltonian, in the form

e
QII ~1C ALA Q '

the sign A denoting a vector product in symbolical space . Call-
ing finally P the momenta canonically conjugate to Q, we have

(26)

(27)
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P = 1 (P1 -iP2) ,

and, since the Lagrangian density

	

has been assumed to b e
Hermitian, P1 and P2 are also Hermitian .

For the electric charge density, we have, according to (2) ,
the general formula *

_

	

e w r
N

	

hc `
Qw - Qw Pß1 )

e w 1

hc 2 [PwAQw QwA Pwi3 +

+ 2 i L~Pw1+
Qwl]_+ [Pw2, Q0,2]_] 1 ;

Ô ~v

replaced by	 (i = 1, 2, 3) . In order further to discuss thes e
U Qw I

expressions, we must specify the commutation rules assume d
for the Pw and Q . Let us first consider a field, describing part-
icles of charge e, which obeys the canonical commutation rules

Pw ;, (x) , Qw , (x')

	

c (x - x' ) àwwy d i .i„

	

(29)

the index of referring to the different components of the field .
The last terns in which occurs for every given state of th e

field, then would represent an infinite additional charge densit y

of this state ; such a term, however, can easily be avoided by a

slight modification of the Lagrangian density ; we have onl y
to replace

	

by half the sum of - itself and the expression

	

'

obtained from it by reversing the order of all factors** Q ,

Qt, Q . We may, therefore, disregard the infinite "zero-point "

charge density altogether and write, in this case ,

* We use the notation A, B]_ = AB ± BA .
** In fact, if we repeat for e' the considerations of § 1, we find for cl

and, consequently, for the charge-current density expressions in which the orde r
ö /0 '

of factors is automatically reversed . We may further assume that

	

=
a wn ô 4!w 1 4

Qw14a
condition which is fulfilled in all cases of actual interest. We then get

(28)

for the current density I, analogous formulae hold,

	

being
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e
e }~iC

~ (pw A Qw)3

llC

	

(

_

a Qw~i
^Ow

/ 3}~I

As an example of a field of this type, we may of course mentio n

the meson field to be extensively treated in the following .

For the sake of completeness, we shall still briefly examin e

the case of Dirac particles (electrons or nucleons) described b y

four component wave-functions satisfying the commutation rule s
which correspond to the exclusion principle . The decomposition

(27) of such variables into Hermitian constituents has been

especially discussed, in connexion with the theory of electron

pairs, by MAJORANA [14] ; it will thus suffice here to write dow n
the main formulae of this theory without entering into details

as to their interpretation. The commutation rules may be state d

as follows :

[Qw1 ( x), Qw'1 (x') ]+

	

_Q.t (x), Qw'2 (x')]+
= d ( x÷ - x±') a ww ' ,

all Qw1 anticommute with all QwQ ;

the indices w, w ' (= 1, 2, 3, 4) refer to the components of th e

(spinor) wave-function ; we may in the usual way consider th e

complex wave-function Q or its Hermitian constituents Q as
matrices, with respect to w, of 4 rows and 1 column. For any

Hermitian operator 0, we may then write *

e	 r/

	

t fi

	

t t

c lPmQw - Q P )+(Qw Pw -PwQw) ,

which eliminates the zero-point charge density .
In this special case, it would also be possible (cf. [151) to define the charg e

density by the expression

1

	

e w (

	

t Q t )
P= t'

/,
Rc

Poi Qw - P w w ,
w

which does not contain a zero-point density either ; this form, however, ha s
the disadvantage of not being Hermitian by itself, but only on account of th e
commutation rules.

* A denotes the transposed of A, and A* its complex conjugate ; one ha s
A r = A* .

D . Kgl . Danske Vidensk . Selskab, Mat.-fys . Medd. XX,12 .

	

2

(30)
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S
QT Qdv =

= I S O
2I

Qi dv+2~Q2 Q2 dv+ i SQ1 (&+d *)Q2 dv ;

in particular, for a purely imaginary operator, the last ter m
disappears . Choosing for instance, with MAJORANA, a represent-

ation of the Dirac matrices for which the Hamiltonian m i s

purely imaginary, we get for the total energy of a system o f
charged (and eventually neutral) Dirac particles the expressio n

2
QeIrm Qdv

used by MAJORANA . Since

1
P1 = 2-hcQ2 ,

we may now write

4

P2 =-2 hcQ1 ,

\ r

	

1
Pw1 , Qw1]_

	

Qw2]_ = - 2 hc (Q A Q)3 ;
w = i

the last term of (28) now gives

= ie(QA Q)3 ,

while the first would, on account of the commutation rules ,

contribute an infinite "zero-point charge density" ; but this ma y
again be avoided by taking instead of -g half the differenc e
of Pand -&'. For the current density, we find

I = ie(QaAQ)3 ,

a denoting the well-known velocity matrices of the Dirac elec-

tron theory . All these formulae coincide, of course, with thos e
of MAJORANA .

§ 4 . System in slowly varying external field .
An important class of problems is concerned with the be-

haviour of a system of charged particles under the action o f

w®1
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an external electromagnetic field . We have then to introduce

into the Hamiltonian of the system additional terms expressin g

the energy of interaction between this field and the particle s
4-

	

4. 4-
considered. Let us in this section denote by A, B ; E, H the

variables of the external field . On account of (5 ') we may write ,
4-

for the part of the interaction energy depending linearly on A ,

-SAIdU-}-SBpdu,
3

where we must take for the charge and current densities I ,

their expressions in absence of any electromagnetic field (fo r
4-

A = 0) : we shall neglect any contribution of higher order in A .

The expression (31) is not modified by the canonical trans -

formation e$ effecting the separation of the Coulomb field, s o

that, after this separation has been performed, it keeps the sam e

form in terms of the new variables ; we may here without danger

of confusion omit the primes indicating functions of the new

variables . More particularly, we shall consider a "slowly varying "

field, i . e . assume that the relative variations of the field com-

ponents over distances of the order of the dimensions of th e

system and times of the order of the proper periods connecte d

with the system are small compared with unity . In such a case,

we may put the expression of the interaction of the syste m

with the external field into a more convenient form dependin g

on the values of the electromagnetic field and its derivatives at

some arbitrarily chosen point O and on the successive 2 n -pole

moments of the system with respect to this point . The pro-

perties of the system to any desired approximation are the n

easily derived from the expressions of such 2n-pole moments ,

so that the problem is essentially reduced to the calculation o f

these operators .
We shall now carry out the transformation of the inter -

action operator up to the second order of approximation . If we

further assume that the velocities of the particles are smal l

compared with the velocity of light, i . e . that the dimensions of

the system are small compared with the proper wave-lengths ,

this approximation involves

(31 )

2*
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the total charge

	

e = 1 o dv ,

the electric dipole moment

	

P = \ oxdv ,

the magnetic dipole moment

	

M

the electric quadrupole moment *

and
Qik

(32)

of the system, the vector x being taken from 0 as origin . For
this purpose, we start from the expansion s

1 B = Bo -{- x grado Bo -+- ~ x ~grado) grad o Bo + R

A = Ao--(xgrado)A o -f-I ' ,

1

113Be dv = eB o + grad o Bo + (Q grado) grado Bo + R"

the residuals R, R ' containing higher derivatives of the potential s
with respect to the point 0. Remembering further that' *

Idv =P ,
we therefore get***

->

	

4-~//
dv = PAo --~I`x~ grado ) Aodv~--R"' ,

.

the residuals R", R"' being of higher order of approximatio n
than the second . Now;

->.

	

~

~x grad o) A o = - (Ao grado) + grado (A o x} - x A roto A o

= Ao-I-grado (A o x) - xAHo ;
and

* See the footnote on p . 21 .

	

/
** We use the notation A = ôA I or

dA 1
ôx4 `

	

dx4 J .

If Q is a tensor and u a vector, Q u represents the vector with compo -
Q ik u

knents
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~
(x~ grado ;1)-o~o =

	

-
x
~

(I
3

grado)A 0

	

~grad o ) x±- (-PAX)
~

I

	

I A o +

	

+ Ao (I

	

Ho

= x ~Igrad O ) A 0 + (xAÎ ) Ho ;

on the other hand ,

~~

	

~

	

~ ~

	

3

	

~
I (x grado ) ;1 o +; (I grado ) A o = I grad { x (x grado) Ao } .

We may therefore write

I (x grad o) Ao = 2 (x
AI )) Ro +

2
grad {x ( grado Ao} ,

whence

4-

	

4-

	

~

	

->
I (x grado

)
Ao dv = MH0 -2 S div 7

~•~
x (x grad 0 ) A o dv

)-

	

.

	

-»
= M Ho -I- (Q grado) A o .

With this result, we thus ge t

-S Aldv = -PAo -MH o -(Qgrado)Ao -R"'

4- 4-

	

~ 4-

= P A 0 -M Ho -I- (Q grado) Ao
d

[PAo + (Q grado)cdt
and, finally,

-SAIdv-I-SBedv =

->

	

~ ~

	

4-

= e Bo- PE0 -M Ho- (Q grad o) E0

	

(33)

-	 ddt
[±÷ +

(Q grad0) Ao +	c

It should be pointed out that the usual (and, from a systematic poin t
of view, more rational) definition of the quadrupole moment would be expresse d

in our notation by Qik _ 3 dik

	

Q 11 . This makes, however, no difference fo r

±

	

3
the interaction term - (Q grad o) Eo since, for an external field, div0 Eo = O.
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the residual terms being of higher order . All terms but the last
in formula (33) are familiar expressions, the interpretation o f
which it is superfluous to recall* . As regards, the last term, it

follows from its being the time derivative of an operator that it
does not give any contribution either to the mean value of th e
interaction energy in stationary states of the system or to th e
matrix elements corresponding to transitions between states o f
the total system with the same energy .

* See the footnote on p . 21 .



PART II .

Electromagnetic properties of a system of nucleon s

and mesons .

In our previous paper [1]*, arguments have been develope d
for assuming that nucleons produce two independent kinds of
meson fields, viz . vector and pseudoscalar fields, each consistin g
of both (positively and negatively) charged and neutral mesons .
From the standpoint of this "mixed" theory, we shall no w
investigate the interaction of a system of nucleons and of suc h
meson fields with the electromagnetic field. In the first place,
we shall derive, by a direct application of the general consider-

ations of Part I of the present paper, the expression of th e
Hamiltonian function of the total system . To this Hamiltonian
we shall then apply the canonical transformation effecting, a s
explained in NF, the separation of the static meson fields pro-

duced by the nucleons and we shall briefly discuss the differen t
electromagnetic interaction terms obtained in this way ; we shal l
especially fix our attention on the interaction with an externa l
electromagnetic field .

§ 1 . Hamiltonian of the total system .

The expression of the total Hamiltonian, after separation o f
the Coulomb field, may immediately be obtained from formul a
(25) of Part I (in which we may, from now on, omit the prime s
denoting the "new" variables) . For the description of the nu-

cleons and meson fields, we shall use the notations of NF, t o
which we beg the reader to refer for the explanation of their
meaning ; to begin with, we have to do with the variable s

* In the following, this paper will be referred to as NF, its formula (n)
as NF(n) .
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originally introduced there before the separation of the stati c
parts of the meson fields. Treating the nucleons as Dirac part-
icles, i. e . attributing to them the Hamiltonian € defined by
formula NF (6), we get, according to formulae (25) and (31) o f
Part I, an additional term of electromagnetic interaction

- ~ Inuc1' A dv ,

where A represents the sum of the transversal vector-potentia l

Al of the field considered a part of the system and of th e

vector-potential Aex of any "external" field eventually acting o n

it . The current-density Innc1 of the nucleons may be expressed ,
with our choice of variables, by

1-'I'. ) ~(i)

	

~

	

~( i )2	 a

	

(-x ) .

If there is also an external scalar potential Be., a further term

S e nucl Bex du

arises, in which the charge density onnc1 is given by

1. - z3 (± ~( i) l
nucl = e 7 2 (~ - x / .

	

(2 )

As regards the meson fields, let us start from the Lagran-
gian density with no electromagnetic field present (which ha d
not been stated explicitly in NF) :

,e o = -
2

{K2 (U 2-V 2 )
+

2 }+17I L'-N V

2
{K 2 F2

in which the variables Q W are V and P, while G, V, (D
are defined by the second formula NF (2), the first NF (1), N F
(22), and the first NF (21), respectively . Following the procedur e

of Part I, we first see that -I' and (1) are canonically conjugat e

->

-"nucl (1)

4)2 }+R 4'

3
)

.
l

+ 2 (p2 02/ , 1
(

(



Nr. 12

	

2 5

to U and respectively, while the variable V, the conjugate
momentum of which identically vanishes, must in this case b e
regarded as defined in terms of the other variables by the access-

ory Lagrangian equation, generalizing the first NF (2) ,

x2 V = -div F+N+ c AAF . (3')

Let us now introduce the notations *

V = V+K- 2 ~c ÅA F
4-

	

~
G = G-

4.
I` = I` +

cA A U
~i

	

A

e

nc AAw,

(4)

4- 4-

the quantities V, G, 1' being defined by NF (2) and NF (22) ;
4-

denote further by A the function A of' V, G,

	

in which thes e

quantities have been replaced by V, G, F, respectively. Since
the accessory equation (3') amounts to saying that the variabl e

V has to be replaced by the quantity V just introduced by th e

first formula (4), we may with this notation, according to th e
general results of Part I, write the Hamiltonian of the meso n
fields, including the interaction with the electromagnetic field ,
in the form

-k + 7̀C$ + emes . Be. dv ;

in this formula, @Y(F and @ICI, are defined by NF (7) and NF
(26), respectively, while ()mes denotes the meson charge density

Qmes = ~ c {-FA U--(UA'P) 3

as given by formula (30) of Part I . For the meson curren t
density we get

e . ' '= > - 4- 4-
Imes = I1C GA U=FAV+I` A'P 3 .

	

(6)

* The sign Å denotes a vector product in ordinary as well as in symbol-
ical space .

(5)
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9-

	

9-
This expression thus depends on the vector potential A ; for A

= 0, it goes over into

mes= : l 6^U- .~AIF+111'''' A4'I3. (7)

Accordingly, the part of the above Hamiltonian representing th e
interaction energy between meson fields and electromagnetic
field consists of a linear term

- Imes 'Ado
and a quadratic ter m

J

	

` 2

2 (ßc
)

do

	

(IA ') + K2 (IA "4 ) 2 } . (8 )

The latter we will in the following neglect altogether ; we shall,

therefore, only be concerned with the expression Inncl + Imes ,
keeping in mind, however, that it does not represent the total

current density when an electromagnetic field is present .

Summing up, we thus get for the total Hamiltonia n

1° the energy of the system of nucleons and mesons withou t

electromagnetic field, denoted, as in NF (56), by @Irk +

07CF +chiØ ,

2° the energy of the electromagnetic field Jrf (formula (13)
of Part I) ,

3° the total Coulomb energy of protons and charged mesons ,

4° the interaction energy approximately given b y

( lnucl +Imes) (A,+ le.) du

(9)

+ (9nucl + emesJ Z3ex dv ,

the exact expression being obtained by adding to (9) th e

quadratic term (8) .

Now in NF, Part II, § 5, arguments of principle have bee n

developed for applying to the nucleon and meson variables a

canonical transformation separating the static part of the meso n

fields . In fact, the situation in meson theory has been compared
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with that in electrodynamics and it has been pointed out that
only the transformed variables provide a suitable starting poin t

for a "correspondence" interpretation of the formalism . It further

turns out that the transformation in question also brings abou t

an appreciable simplification in the treatment of the electro-

magnetic properties of nuclear systems .
We have, thus, now to calculate the expression of the above

Hamiltonian function in terms of the transformed variables .

For the first part, this has been done in NF ; the second par t

is unaffected by the canonical transformation ; as regards th e

two last parts, we have simply to insert for the quantities N =

Q nucl + Qmes and I = Inml + Ines their expressions in terms of

the new variables . In the following calculations, all symbol s

will be taken to denote the new variables and functions of th e

new variables ; the old variables and the functions of thos e
vari-ables will then he distinguished by a -- (e. g. A). Thus,

calling ef the canonical transformation operator, we writ e

and, according to NF (57, 20, 36) ,

t a,

ey

	

er` c

e7i' _ du {F° U- ZT° F+

	

;

we may therefore write, with the notation introduced in NF (68) ,

(

	

i
A= A-{

	

Î S ~ c

	

A} .

It is just this formula we have to apply in order to expres s

the quantities
~

9,

	

Pnucl + 9mes' I - Inucl + Imes'

	

(12)

occurring in the interaction terms of the Hamiltonian, in term s
of the new variables . In the following sections, we shall trea t

the charge density and the current density separately, since the
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former has some peculiar properties not exhibited by the latter ;

we begin with the somewhat simpler case of the charge density .

§ 2. Expression of the charge density in terms of th e

transformed variables .

The first term in the expansion of type (11) of ee, viz .

he [ e7C, e], we shall denote by em . In the first place, .we have* ,

from (10) and (5) ,

1
ex

	

12C

	

~ [ @

7C,n
mes

]

iz c
{- F° A e+

The dependence of e7C on the variables pertaining to the different
nucleons of the system may be expressed by

~7C=

	

T(' ) Ç30) dv ;

	

(14)

comparing then the expressions (13) and (10) of e x and e7C ,

we may also writ e

ex = - e ~ {7`L) A 3( t'}3 = ~ e x̀) .i

Passing now on to enucl, we get from (2)

(13)

(15)

h c [

	

enucl11

	

2 i

and from (14)

- x( ~~) ' ~ c

	

i~ ) ]

	 [ ~7C z (J) [ _ -
2{T(i) A

	

du}
he

	

, 3

	

h
e

	

g ,

whence, on account of (15) ,

i

K [ e7(, enucl[ = -

	

å ( x Pi )) em~ dv .

	

(16)

From (13) and (16), the terni em is thus found to b e

* We write [A, B] for [A, B]_ = AB-BA .
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e(1)

	

e x

	

- x(`))

	

e (xi) dv

-

	

- x i1Qx

	

>)

	

(÷,)

	

Jdd~ ,

	

=~

	

(x

	

ex x

giving by integration

e(1) du = 0 ,

in agreement with the invariance property of the total charge
of the system. The expression of e (l) may be put into a mor e

symmetrical shape by introducing the function of two sets o f

space variables

ex (x, x)

	

(
x) (x ) ô (x' -x(i) ) ;

	

(18)

we then get

e(l)(;) =
dv' [e x (x, x') - e x (x', x)

	

(19)

Using (15) and the expressions NF (14) and NF (30) of th e

static meson fields, we may write for ex (x, x')

f

	

ex(x , x )

~ec lN(x') A U(x)-S(x')
A F(x)+p(x')

A
(
t
)

(x)J 3

	

(20)

J

	

~•grad' p( x'-x ) .

We see that e(1) is linear in the free meson variables, so that i t
does not give any contribution to the charge density of a nuclea r
system in the absence of free mesons ; it only gives rise to a
peculiar interaction between nucleons and free mesons when a n
external electrostatic field (e . g . the field of atomic electrons) i s
present .

The next contribution to the expansion ofe-e is
2c

[

	

e( 1)] .

It consists of two terms of which the one,

(17)

{Q? x
-a

(x-x( `) ) ~x) x (x') dÛ },

	

(21)
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is obtained by disregarding the non-commutability of the meso n
field variables and is thus quadratic in these variables, whil e
the other* ,

eexch
2 he 4)-0 A .F° .F° A Ü°}3 = h   c { Ü° A F°}3

2h
c div{ Û°A V° - V°A Û°}a = - c div{ Û°A V°

is independent of the meson field variables. The value (22) of

eexch is readily obtained from (13) ; in fact, the field-independent

part of 2c [ eV, ex ] is just the expression (22) and, since i t

may be written as a sum of terms . relative to the single nu-
cleons, and of which the space integrals vanish, it also repre-

sents, according to (15) and (17), the field-independent part o f

21ïc [ @71, Q(1)]' While, as indicated in formula (21), the quadratic

term Q(2) is obviously a sum of contributions from the singl e

nucleons, the field-independent term is, according to (22), o f
the form

tZ
{T (l) A T

(
k)}3 w(i,

k)
and does, therefore, not contai n

any such contribution, but presents an "exchange" character with
regard to the proton and neutron states of the nucleons ; we shal l
call it the "exchange charge density" . For a pair of nucleons ,
exchange operators of the type just considered, {T(1)AT(2)}3 0(1,2)

,

have non-vanishing matrix elements only if the system is a

deuteron, and these matrix elements refer to states in which th e
two particles have exchanged their proton or neutron character ;
in particular, the mean value of such an operator in any station-

ary state of the system is zero .
For the e (j) ,, entering into the expression (21) of the quadrati c

term o(2) , we may write, according to (14) and (15) ,

()x
(xl = _ e

	

l

	

`

	

f T(I)
a(L)

(x
)> 1T(i) A ~il) (x)}3 ] -J

	

~ic 2 ~ic
(~U

L

The commutator in this formula has the following value (th e
index (i) having been dropped) :

* We denote by AB the symmetrical combination
2

(AB + BA) .
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Y]_TI21
L

	

~1J +
+ZZ2 [ @73" e;] +

i,3{[ -71' -71i+ + [

	

-72]+) '

~(~)
= a(i) +±ofe) b(i >

a (`) = g i f(1) Û

b(`) = K2 p3`~~f`) A .F-} K2 f(o fi

f- ( ~) = grad (I) y ( x- x (`) I) ,
we get, a (') and b- ( L) being commutable,

[ a ' ail_ = 2i(lb ; Abi

[ e2i ' ,

	

1 + = 2[di ai +b,'i bi+cr ai +bi ai1 '

so that finally

	

1(X) x = (no, du' {÷u(i) (i(i)' A L (') 1

+ T (') [a3 ) a (i) b3~) h (`) + :(i) (a30b( `) + b 3 ) a(`))~

	

(24)

- T3') [a(')' a (') +

	

tyl () -}- ;(i) ( a(Ü 'l (') -}- co '

	

ba(`)) 1 .
Owing to the existence of the fluctuating zero-point meso n

field, this expression gives a contribution to the charge density

operator of a nuclear system in the absence of free mesons ,

namely the mean value of e(2) with respect to the meson vari-
ables for the state corresponding to the zero-point meson field .

Denoting such a mean value by 3 o {••••} and taking accoun t

of the formulae (A 7) and (A 8) of the Appendix, we directly
get from (24)

a
0

{O(xi)x)

	

-
(~c)2

z3`) du' vo {a (i) a (i) + -'b- ( i) ' b ì ) }

(~~)2 23)
do' gl ~0 {( f-(`) Ul)x(±f(t) U )1 x'

+(g2~ s
K

	

{( f(`)AF)~ ( f(i)AF1 ) z}

+
~~2~~(

	

no {Ø Ø ' }
K

	

1 1

putting

(23)
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according to (23) . By means of the formulae (A 12), (A 13), and

(A 14) of the Appendix, this takes the form

a ° Xle
\t)

X /

i(`) gi+2g2+f2•e-K,.()
+

1

	

1	
K

/Kr(l) 1
3

	

47r h c

	

x
r~ i> l(

	

(`)) 2 ~2 r(i) 2

	

/ ~_ - e

where r (1) = x - x(`) , and K2 is the Bessel function defined in
the Appendix (of course, we have in our theory the relatio n

fs = 92, but we have not made use of it in writing this formul a
in order to distinguish the contribution from pseudoscalar mesons) .
Owing to the singularity of K2 (z) for z = 0, however, th e

integral S dv SJJ2° {e (x)x } diverges, so that B° {e(2)) is not well -
defined . According to the general criterium proposed in NF ,
Part II, § 5, no significance can therefore be attributed to an y
effect depending on this term or similar effects arising from a
perturbation calculation, and it is a fortiori useless to conside r
further terms in the expansion of e - e .

In particular, one might think that an additional interaction
energy between a nucleon and an electron would be obtaine d

by. taking for Bex in dvBex ~2° {e (2) } the Coulomb potential

B e. -
e

0
47r -x( )

of an electron at x(° ) , since it is possible in this case to carry
out the integration in such a way as to get a finite result . In

fact, taking the position of the nucleon as the origin of pola r
coordinates and observing that 0 ° {o (X)X } is a spherically sym-
metrical charge distribution, we may write, according to potent-

ial theory,

->-,

°)

no {e(X ) X } r 2 dr d
S 47r Ix- x

R

	

OD

~
° {e (X)x}r2 dr {

SR

	

Rr
SJJ2° {e (X) x }r2 dr ,

1

where R = I x~ `)-x (° ) ;therefore
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BexT?O {0
2 CÎD = -e 1 m l -1

J(>}

	

R r R

To this should then be added a term of the same order o f
magnitude, derived as a second order perturbation from the othe r
couplings between nucleons and mesons ; we need not consider
it here, however, but refer the reader to the forthcoming pape r
by J . SERPE mentioned in the Introduction . The total effect ha s
been first pointed out by H . FRÖHLICH, W . HEITLER and B. KAH N
[16], but its reality was contested by W. LAMB [17] . From our
point of view, it should he clear that the whole effect must be
discarded ; a more detailed discussion will be found in SERPE ' S
paper.

The conclusions of this section may thus be summarized i n
the formula

Q

	

Qnucl + Qmes + Q(l) + Q(2) + p exch °

the various terms being defined by (2), (5), (17) [with (13), (15)] ,
or (19) [with (20)], (21) [with (24), (23)], and (22), respectively .

§ 3 . Electric dipole and quadrupole moments .

With the help of (26), the expressions of the electric dipole
and quadrupole moments, defined by formulae (32) of Part I ,
may be written down immediately in the same form . They

comprise 1° terms independent of the meson fields (which w e
often call, for the sake of brevity, "field-independent terms") ,
viz . a term due to the elementary charges of the protons

(Qnuel)
and an exchange term arising from the coupling through th e
meson field (as embodied in Qexeh) ; 2° a coupling term between
nucleons and free mesons, linear in the meson field component s
(from Q(1)) ; 3° terms quadratic in the meson variables, viz . the
contribution from the free mesons (Omes) and a quadratic coup-
ling term (from Q( 2) ) .

It will be noticed that the spreading of the charge of a nucleon ,
which would be due to the interaction with the zero-poin t
meson field, a part of which would be given by TN,

l0(2)},
would

possess spherical symmetry and would thus not give rise t o
any multipole moments (as usually defined ; cf. footnote on p. 21) ;

D. Kg] . Danske Vidensk . Selskab, MM .-fys . Medd . XX, 12.

	

3

i
~~ x )x }

t.2 dr .

(26)
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in fact, it would act only at large distances from the nucleon

and the analysis of Part I, § 4 would not be applicable to it* .
The most notable terms characteristic of meson theory ar e

the exchange terms which, using (22), NF (14, 3, 4, 89), an d
the relation

S

	

~

	

~(k)

	

±x

	

~ I yre)_xcr~ I x(`)+	 ~( k)
p( x -x ) ~(Ix -xI)dv =

	

81r I<

	

2

may be written

Pexch

	

~°
A V°}3 du = 1 2

	

9i
Kg2 i$~k {T

(j)

A T
(k)

}
i~2C~

l U

	

3 (27 )

[±cr (i) A Cx(j)- x(k) ) ] 99 ( x(i)-x(k) )

Qexch =
1 e~ L

{ Û° AV°}3 xm + Ü° A V°}3 xi ] d u

e
~
	 g2

2cc

f

L

=
8~1C~

	

lT(~ )AT(k)J1 3' [(x(i)+x(k))1 (~(~) A (x(~)-x(k))~ m

+ (x(i) +x (k) ) m CU iO A (x(l)-x(k)))t]

	

( x( ~ )-x(k) I ) .

Owing to their exchange character, these terms do not give an y

contribution to the energy of stationary states of nuclear systems,

but they may play a role in the calculation of the transitio n
probabilities between such states under the influence of a n
external electric field . Since the mean value of the charge
density enuci in any stationary state is invariant with respect to

reflections about the centre of the nucleus, there is no electric
dipole moment at all in these states . The interaction energy
with an external electric field is thus determined, apart fro m

the total charge, by the quadrupole moment Qnucl• A most im-

portant example of such an interaction is met with in the theor y
of hyperfine structure, the external field in that case being th e
field of the atomic electrons . It may be shown** that the

* The effect of a (finite) spreading of the nuclear charge on the atomi c
levels (owing to the electrostatic interaction with the atomic electrons) is dis -
cussed by H . CASIMIR, ]oc . Cit . [18], § 5 .

** See H . CASIMIR, loc . cit. [18], § 4 . The expression (d) which forms th e
starting point of CASIMIR ' S investigation is identical with our interaction ter m

4-

	

4-
-(Q grado) CO, where Co is the field due to the atomic electrons at the centr e
of the nucleus .
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quadrupole charge distribution of the nucleus enters into th e
expression of the interaction energy only through one parameter ,
called the "quadrupole moment" of the nucleus (in the spectro-

scopic sense), and conveniently defined as 6 times the mea n

value of our Q 33 - 3

	

Q
" for the state with the maximu m

value of the magnetic quantum number * .

For the calculation of transition probabilities between state s

of the same total energy, it is equivalent, as noticed at the en d
of § 4 of Part I, as operator of electric dipole interaction to use

-Ao P instead of - Eo P. At an early stage of the developmen t
of nuclear theory, it was pointed out by SIEGERT [19] that the
choice of the former operator might be advantageous because

of a remarkable connexion between the operator** P or , I du)

and the exchange potential of the nuclear forces ; the exchange

part of P could then directly be written down when this potent-
ial was given. We shall now derive "SIEGERT ' S theorem" fro m
the more general point of view of our theory which also involves
"velocity-dependent " couplings between the nucleons (i . e . terms

depending on the velocities of the nucleons) . For this purpos e
(since SIEGERT ' S theorem is only concerned with processes in-
volving no free mesons), we have only to consider the field -

independent part of P ; neglecting accordingly all terms in P whic h
are quadratic in the meson field variables, we have only to cal -

culate (cf. (26)) the field-independent part of
Pnael+ P(I)+ Pesch .

We begin with Pnuel ; from

Pnucl -

we get

* This quantity has been calculated for the ground state of the deutero n
in NF, Part III, § 3 (no restriction being made on the nuclear source constants ;
cf. [4]) . It should be observed, however, that, since relative coordinates wer e
used, the quantity Q there computed (formula (123)) should be divided by 4
to yield the quadrupole moment in the spectroscopic sense .

e-
** In conformity with our previous notations, I represents the total cur -

rent density of the system, including the dependence on the vector-potential .

3*
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4
Pnucl

Z(i) X r(t)
3

(i )-'c3

	

e
IX - -

2

	

Z J

the field-independent part of which to a sufficient approximatio n

reduces to
~

{ Pnucl}

e
uc1dU

-
tlc

vn + wn, z(3i) ] x(`) . (29 )

In this formula, n is the static potential of the nuclear force s

given by NF (65), and W. the velocity-dependent potential give n

by NF (84)* or NF (85) :

2 (N'N+K2 S'S) dv dv '

_
Ç

(N'T+S'A1fl-{-R)grad 99dudu'.
n

All their terms are of the form 5 A ( ;')13 (x) dv dv' with

A (x) =

	

T(i) a(i) d (x - x(`))

and an analogous expression for B. We have

[A (x')

	

(x), z(; ) ] x- (`) _ {A (x') AR (x)}3 (x

and, therefore,

	

-)-j

	

e

	

1 _

	

(i)

	

(i )

_-~ici 2_ n' zs) x
(31 )

hc

	

2 ~ ~, z3 ) ~ x(`)e

	

_I

_
~l
e

c S l
{N'AT+S'^M+AR}3 • grad ~p ) (x-x')dvdv', (32

)

ao IPnucl~ = 5 ~nucl dv + J + J' .

	

(33 )

Looking apart from the relatively small term J', formula

(33) already embodies the primitive form of SIEGERT ' S theorem ;

* The second formula (30) is equivalent with NF (84), though slightl y
modified in form .

2

e
~ - -

c
{lY' AN + K 2 S'AS}3 ( ±X- X±' ) 99 dvdv',
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the comparison of (31) and (30) shows how the exchange par t

of Ji 0 {PRllei} (or of TZ, { S I du} I may be built up from the stati c

potential Wn . We may, however, obtain a more rigorous formul -

ation by taking account of the other terms of i'No{P}, namel y

o {' ) + Pxch} . We have from (19)

F

	

-> i -> -

whence, by (20) ,

The contribution from Pexch may be put into a quite analogous
form by writing, from (22) and NF (9, 14) ,

Pexch tc .l
dv{Û AF°}3 x

	 e

	

± A ~

	

->

	

-> ->-
=

	

dv dv' ({S F° -N' A U°}3 • grad' T) (x-x') ,
2 h c

	

A

the replacement of the factor x by (x-x') in the last formula

being allowed on account of rot F° = 0, div U° = 0. Thence ,

0

o {Pexch} _ h
c du du' 11 ' A U° - S' A F°}3 grad' (3)) ( - x') , (35)

with the notation (slightly extending NF (79) )

A= c [

	

+W,A] .

Now, the meson field equations* yield to our approximation ,

5J)2a {17T}+ Û° = T

~J72a {Î'}

	

-111

53J2a {46}

	

= R.

* Cf. the equations NF (87) which must be completed, however, by th e
contributions from the term

	

in NF (86),

	

being given by NF (67) .,620

6'92o {P(1)}

e

	

n

	

(34)
=

_

hc
dvdv' s)Jio{(AT 'A U-S'AF+P A(10)3grad' p}(x-x') .

(36)
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Inserting the values (36) in the sum of (34) and (35), an d

comparing with (32), we get jus t

{I' i( ) + I'e,ch } =no

Addition of (33) and (37) then gives the generalized form o f

SIEGERT 'S theorem

~no{P} = InuctdU ;-,I .

	

(38)

It is remarkable that the exchange part of TSAR} is com-

pletely determined by the static potential, even when due ac -

count is taken of the effects of the first order in the velocitie s
of the nucleons . From the primitive form (33) of the theorem ,

4-
with the term .I' omitted, it had been concluded [20] that it wa s

justified to take as electric dipole interaction the operator

- Eo Pnuel without any exchange moment . Although this argu-

mentation is not rigorous, we see that the conclusion is never-
theless correct even to the first order of approximation with

respect to the nuclear velocities . From the preceding analysi s

it appears, more precisely, that (since the relevant matrix ele -

ments of -Eo P(I) or - Ao P(i) vanish) the contribution from

- E0 Pexch can only be of a higher order in the velocities of the

nucleons *- at first sight a somewhat surprising result, sinc e
the operator itself is velocity-independent-and that this con -

tribution just cancels the term J' of the saine order of magnitud e

from -Eo Pnuc1 . Summarizing, we may say that the transitio n

probabilities between states of the same energy, insofar as electri c

dipole interaction is concerned, may, to the first order in nuclea r

velocities, indifferently be computed from the operator -Eo Pnuc l

or from the operator -A0 )1o {Pf , given by (38) and (31) . In

the next section, we shall verify by a direct calculation that, a s
3

results from the way it has been introduced, .I is just the

"exchange" part of the integral current operator .

* In connexion with the problem of the photo-disintegration of the deuteron ,
treated from the point of view of the present paper, this point has been dis -
cussed in detail by A . PAIR, loc . cit . [7], Appendix .

(37)



Nr . 12

	

39

We may finally remark that SIEGERT ' S theorem also holds i n

any meson theory using only one kind of meson field, such a s

a pure vector or a pure pseudoscalar theory . In these cases ,

the expression of J would involve a term arising from the dipole
interaction ; in the mixed theory, such terms automatically cance l

each other, yielding a simpler form for J (cf. the Appendix) . It
may therefore be said that the simplification of the electrica l
quantities in the mixed theory has its origin in SIEGERT'S theorem

on account of the simpler determination of the static potential .

§ 4. The current density .

The expression of the current density in terms of the ne w
variables may again. be obtained as an expansion of the typ e

(11) . We shall not here carry out a complete calculation, bu t

confine ourselves to the terms which are of practical interest ;
thus, we shall, in this expansion, neglect all terms which ,
besides involving some power of the source constants g and f
also contain a factor of the order of magnitude of the ratio of

the nucleon velocities to the velocity of light . This implies, i n

the first place, that in all terms of the for m

l I
C c̀ ~i{, Inucl + I

	

l̀
me s

we shall neglect the contributions arising from I.ci . We may
then write to a sufficient approximatio n

÷ ->

	

3	 	 fI =

	

+1' +-)-
x +2lic L

c~i, x ] '

with Ix =
~c L ~~~, ImesJ •

As regards the dependence on the meson variables, the situatio n

is here slightly complicated by the fact that Imes itself, apart
from the current density for a system of entirely free mesons ,

(39)

Ifreemes -c
{rot U^ U FK2 I+'Adivl+' -grad 4'/~Y'{s , (40)
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also contains a term, linear in the meson variables, which
depends on the nuclear source densities :

Imes ='free mes+ C {Sn U-K
2
FAN+PAwf3 . (41)

Therefore, Ix as well as 2 h c [ @7.C, x ] will contain terms of

degrees 0,1 and 2 in the meson variables ; for those of degre e
zero* we readily get, from (40) and (41) ,

eI(o) _
c

{4° ^

	

V° l'° A`P°}3 .

	

(42)

We may thus write, instead of (39) ,

~

	

~

	

~

	

-->-

I - Inucl + Ifree mes + I(1) + I(2) + I(o) '

I(1) and I(2) denoting expressions linear and quadratic, respect-
ively, in the meson variables, which need not be written dow n
explicitly .

The field-independent term I(s) is not entirely analogous to
the term eexch of formula (26), for the expression on the righ t
in formula (42) gives rise not only to an "exchange" current
density Iexeh (involving a sum over all pairs of nucleons), bu t

also to a "proper" current density, p rop , consisting of a su m
of terms pertaining to the single nucleons . Since we have as-
sumed for the nucleons a theory corresponding to the idealiza-

tion of material points, the proper current density I prop will con -
tain divergent contributions. Such divergences, however, have a
quite different origin from those arising from the field-independen t

part 9N, I(2) of I(2) on account of the existence of the fluctuatin g
zero-field. While, according to our general criterium, we must
entirely discard the latter, we may therefore treat the forme r
quite independently and, for instance, prevent their occurrence

* It should be noticed that the separation of the terms of degrees 0 and 2

is not unambiguous, since a commutation of the variables F and U in th e
latter would, on account of the commutation rules, give rise to a contributio n
of order zero . An unambiguous definition is first obtained if one adds th e
condition that the terms in question be Hermitian . Such an Hermitization has
been performed in formula (42), as indicated by the symmetrization bars .

(43)
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by replacing the point distribution of the nuclear sources b y

some extended distribution . To this question we shall come

back in the next section, in connexion with the problem of th e

proper magnetic moment of nucleons . Here, we shall only point

out that the expression of the integral field-independent curren t

S

	

dv turns out to be identical with the quantity J defined b y

(31) ; the details of the calculation ~e reported in the Appendix .

Owing to the factor (x - x') in J, no " proper" contribution

obviously arises in this case, so that we actually hav e

.Ç Ito) d -- SiXChdv = J .

	

(44)

§ 5 . Magnetic dipole moment.

The last point we have to discuss is the transformation o f

the magnetic dipole moment of a system of mesons and nucleons

to the new variables . For the sake of completeness, we begi n

by briefly recalling the well-known situation as regards Dira c

particles and free mesons. Consider a Dirac particle of charg e

e and mass M; let

u(0)

	

Mc (p(o) - e A (x(
°

)
)

x (0) , pbeing the canonical position and momentum coordinate s

of the particle (the latter multiplied by c) . The evaluation of

	

d

	

->

	

->"	 	 j

	

to)

	

cdt

	

6ax
x )}=

Ilic
[Q2 a~S~x- x ), el-Ck ]

with the help of the Hamiltonia n

~ = Mc (a v ( o) + Qs c )

leads, after some easy reductions, to the formula

x~°) )

	

~ ~ v t° )
d ((o))

-~ d (x - ;0)) v(°) I
c

o

	

d
I- µ0 rot {O3 ~ d ~x- xt ))} f ,wo

c dt {P2 d ~x xt0))
I f

->-
I=
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for the current density operator ; hv o = 2 Mc
denotes the "Bohr

magneton" relative to the mass-value M . Hence, the magnetic

moment M = 2 S xAÎdv takes the form *

M 2 c
e

P3 x(0) v(o) Fro P3 + d

d

t
( 1±(o ) A ±)Ito

	

•

	

(45)

The first term represents the magnetic moment arising from th e
motion of the charge ( "orbital" moment), the second is th e
intrinsic magnetic moment connected with the spin . The third
term is in any case negligible for particles in a nucleus sinc e
it is of higher order in the velocities .

For "free" vector mesons in an electromagnetic field (th e
word "free" indicating the absence of nuclear sources), a quite
analogous decomposition of the current density and magneti c
moment is possible. This has been shown by PROLA [21], and
somewhat more elaborately by KEMMER [22] from the point of .
view of the "particle aspect" of meson theory . We repeat KEM-
MER ' s derivation by means of the formalism of meson fiel d
theory. It will. here be convenient to make use of a four -
dimensional notation, puttin g

a =

	

cA . A
8x 1 h e

and
Gfk=airTk - a k Ui ;

thus, we have

(Ul, U2, U3) = iJ, u4 = - U 4 = - V,
((48)

( G23, G31 , G12) = G, (G14 , G24 , G34) - (G14 , G24, G34) = P. 1

The part of the current density (6) corresponding to the vecto r
mesons takes the form

Îvect
= - e {G A Uk

ti c

	

}s

or, according to** (47),

(46)

(47)

+* Use is here made of the formula x A rota dv = 2 Ç a dv + surface integral .

* Use is also made of the relation, easily derived from (46),
ai (a A b) _ ( a I a) A b + a A (a L b) .
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vect_ _ _
{(

	

l

jl

	

~lC a
i Uk - a k Uif A Uk}3

=
he

{UkAa i Uk}; + h C{ak ( Ui A Uk)}3

-
~C

{UiAak U k}3 .

From the field equations

K 2 Ui = - ok
G i k

we deduce
K2 a l Ui _

^ aiak
Gyik_

	

91 ( a i ak a k a i) CG ik .

now, by (46),
åA a Ai )

=
	 x _

a i a k - ak a i = -~ICrikA' (Pik

	

axi

	

ôxx

so that

K2
di

Ui 2~I C
Fik A Gik

	

(52)

and formula (49) becomes *

Ïivect =

h

C {
Uk

A a i Uk}3+ K
axk

{Ui A U k }3

e
2 (K~iC)2{UiA (FkI A GkI )}3 .

The first term represents the ordinary convection current dens-

ity, including the dependency on the vector potential ; the second

term, according to its form, is connected with an intrinsic

(magnetic and electric) polarization of the vector mesons, whil e

the third arises from a peculiar polarizability of these mesons

in an electromagnetic field . It is noteworthy that the intrinsi c

current density by itself has a vanishing four-divergence . The

current density of the pseudoscalar mesons contains . of course ,

only a convection term which may be written* *

a
* We notice that

	

{ a l K }3 =

	

.
K 3 .

a z

** We have, according to formula (27) of Part I ,

2

	

1

	

2

	

2

(49)

(50)

(51)
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eÎps-scal

	

{yr A grad }3 -
2(h c) A I zIf ( 2 .

	

(54)

According to (48), we may write more explicitly for the tota l
current density* (53) and (54)

I =
c

~ U ` A grad U .* - VA grad .V+~A grad 9r} 3

- 2 (h c)2`4
[

I
tn2-I I2

+I
lp

I2
l

+2hcrot{UÅU}3 +~2C ea
~UAV}3

r
	 0J

12
[U~i (Tit,-PP, )- 2 ing e +U2 (HG2 -EF2)] .

m

The magnetic moment is, therefore, (with Jr-_- x A grad)

3

- 2c J A ~~U l -VA V+'+' A ~Yr}3 dv

- 2(- UI 2 -I VI2+I
wI2] dv

+ 2 ~ c S~UnU}3dv+2~c
cdt SxA{UAV} 3 dv

-
4(Mec)2~

[(x A Ui
)
J1-EFi )

m

+(xAU2)(HG2 -EF2) dv .

The two first lines constitute the "orbital" moment, the third
line contains the "intrinsic" momen t

M intr - 2 h
e

e ~ {
U Å UJ3 dv

and a term involving the commutator of a certain expressio n

with the energy of the free meson field ; the last term corresponds

* A still more compendious derivation of this expression in a form similar
to (49), but directly embodying also the contribution from the pseudoscala r
field, is of course possible with the help of the five-dimensional projectiv r
formalism of meson theory.

(55)

Mfree mes

(57)
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to an "induced" polarization which we henceforth shall neglect .

Comparing the expression (57) of the intrinsic magnetic moment

with that of the spin angular momentum (cf. NF (60) )

-1
s UnFdv ,

c

a glance at the formula (A 4) of the Appendix will show that ,

for a transverse* vector meson of given wave-number k an d

given electric charge, the expectation value of the magneti c

moment is
e

	

1
+ 2>z vk 2	 +K2

e
times that of the spin ; for slow mesons, this becomes -L2

h K

2 M c, i
. e . the normal value with a "Landé factor" unity [23] .

m
Turning now to the expression (43) of the current density

of our system of nucleons and mesons, we shall - leaving asid e

the contributions from the field-dependent parts 1(1)+1(2)-- set

up the expression of the magnetic dipole moment of the system .

In the first place, we see that the term Inuci contributes to thi s

moment a sum of terms of the form (45) each multiplied b y

	

1 -	 z3

	

±
the corresponding factor

	

2

	

, while It.reemes gives rise to th e

contribution (56) . Here, the symbol
c
	 dt should, strictly speaking ,

be understood as indicating (ih) 1 times the commutator with

the total energy of free nucleons and mesons ; but we may with

a negligible error replace this by the total energy of the system ,

including the couplings (of which the most important is th e

static interaction between the nucleons), since the modifications

so introduced involve both the source constants and the nuclea r

velocities . The terms of the magnetic moment involving c dt wil l

then not give any contribution either to the expectation valu e

of the moment in a stationary state of the system or to th e

* For a longitudinal meson, the expectation value of spin and magneti c
moment is zero . This is also the case for a linearly polarized transverse meson .
A well-defined value of the spin (+10 is obtained for circularly polarized mesons.
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matrix elements pertaining to processes in which the total energ y
is conserved .

From the last term I(o) = Iexch + Iprop of (43) we derive an

"exchange magnetic moment" Mexch and a further contribution

IÎlprop to the magnetic moments of the single nucleons, whic h
we shall call "proper magnetic moment" [24] . The evaluation of

M(o) =
2

x A I(o) dv

	

(58)

is carried out in the Appendix, the contributions from the vector
and from the pseudoscalar meson fields being calculated separ -

ately; it again appears that the resulting expression of M
exch

is considerably simpler in the mixed theory than in any other* .
Using the notation

r -(ik) =± (i) ± (k)

	

~(ik)

	

x(I)- x(k)
- X X

	

X 0

	

r (ik
)

(59)

it may be written
2

Mexch

	

4 2 Z

e

C i*
k{

T (i) A T(k))3 1(K2) (d(o A eP(k)) (1 2 K r (ik) )

+
(g2)2[

(
~(

i ) A ;(k))

	

~(ik) /1 + r(ik)
)x

	

(60)o J

	

o

	

l

- ~ g 1 + g 2
:,(i)

o,(k))
( x(z)

A x(k))}
(
l r(ik)

)
.

The proper magnetic moment is simply the sum of the con-

tributions from the vector and the pseudoscalar meson fields :

M

	

-
vect

	

/ ps -sta l
prop

	

prop + Mprop
the latter are

m -

	

±vect

	

e ~ S
-"c o

{ti `
(x') S (` ) (x") } (1 - K x' ^ x

	

prop

	

,. ) ~ dv' dv„
4 h e

	

^

	

3
i

	

1

Mprop al

	

4 he

	

{{j(i)
` x) A p(i) ` x ;) J 3 K x x"

	

(62)

[{ (i)(x )A (t)`x")}3
xo, xo(1+xl x'-x") yp dv'dv",

* It should he noted that the simplification occurs in the part of M
exch

which is not translation invariant (cf. the Appendix), i . e. directly results from

the simpler form of J on mixed theory .

(61)
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x'-x"
with xo =

	

. In these formulae, Sand P(`) are the

contributions of the i-th nucleon to the source densities S an d
3
P (cf. NF, p. 10) .

According to NF (4, 24) we may writ e

S (L) (x) = g8 T(1) Q
3

1) a (t) D(x-x(') )
K

p(i)

(x)
= f2 T (i) a (`) D(x x (') ) ,

K

the delta-function being replaced by a continuous distributio n

function D (x-x") (with SD (x) dv = 1)

	

The formulae (62 )

and (63) then take the simpler form

->- (i) ÷ (i )
Mprop = - Po µ

	

i3 a (65)

where µo denotes (as above) the nuclear magneton, whil e

9z M 2 .µvect =

hc M m
D (x') D (x") (1 -xQ) cy (Q) dv' dv"

K

2
D(x ) D(x ) (1- 2

	

(Q) dv' dv" ,xe) 9)

(66)

(67)ps-sca ► _
h C

M

mt4Î 3K
s

with Q = x'-x" ; the last formula is valid on the assumption

that the distribution function D (x) is spherically symmetrical .

The value of p, on the mixed theory is therefore (putting f2 gD

= µvect + t,ps-scal

9z	 2

	

(4 - 5 KQ)

	

) dv' dv" .-

	

5D(')D(")

According to (65), we should expect the total magnetic moment s

of proton (at rest) and neutron to be aµo and a µN , re-

spectively, with

µp = 1 +P'

	

µN

(64)
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For a closer discussion of the expressions (66), (67), and (68 )

for fib, the reader is referred to the forthcoming paper by SERPE :

it appears that the mixed theory will under reasonable assumpt-

ions for the distribution function D yield a value of ,a of the

right sign and the right order of magnitude . From the lates t
experimental determinations of the magnetic moments of proto n

[25] and neutron [26] ,

PP - 2,7896 ~ 0,000 8

,w N = - 1,935 f 0,02 ,

it would seem, however, that there is a slight difference between

the "proper" magnetic moments of the two particles . Such a

dissymmetry cannot be accounted for by the present theory ,
since it only arises in a higher approximation which should b e
discarded according to our general prescription . The manner i n

which the dissymmetry appears has been explained by FRÖHLICH ,

HEITLER and KEMMER [24] : in the expression of the self-energ y

of a nucleon in an external magnetic field, the second approxim-

ation terms consist of quotients of matrix elements independen t
of the magnetic field by differences of energy values for the

initial and the intermediate states considered ; now, such differ -

ences will contain a terns proportional to the magnetic fiel d

which, when due account is taken of the magnetic energy ±,a0 H

of the free proton states, turns out to be different for the alter -

native cases of a proton or a neutron . This effect clearly fall s

outside the scope of our theory's and can only be expected t o

present itself in a theory yielding a correct treatment of self-

energy problems ; we may provisorily allow for it by replacin g

the above expression (65) of Mprop by

* It may be pointed out that an asymmetry of the kind here discusse d
could not be derived from the assumption of a small deviation from the sym -
metrical KEMMER combination of charged and neutral meson fields . In fact, the
most general combination of such fields would be obtained by replacing in th e
expressions of the source densities each T i by a linear combination of the for m
~ a ,ik tk + b i with c-number coefficients a *k , b . . Then, the same combination

would also appear in the expressions of the static potentials and fields, and i t
is immediately apparent from formula (42) that this would not give rise to
any term independent of z3 in the expression of the proper moment, such a s
would be required for the asymmetry effect in question .
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1- z(I)

	

1 +z~ 1)

	

I -N o
2	 3 (,up - 1 ) -F-

	

2
3

,wN °

	

(71)

where ,up and ,uN have their empirical values (70) .

§ 6. Electromagnetic properties of the deuteron .

A few remarks may still be added concerning the applica-

tion of the preceding formulae to the simplest nuclear system ,

the deuteron. Comparing the treatment in meson theory wit h

that in the previous theories, in which the proton was treate d

as a point charge in some arbitrarily assumed short range nuclear

field, we see that, as regards the electric properties, there is no

other difference than that arising from the influence of the latte r

field on the form of the wave functions . In fact, as stated in

section 3 above, the exchange dipole moment gives only a

negligible contribution, while the exchange quadrupole momen t

with respect to the centre of gravity of the deuteron vanishe s

according to formula (28) . The exchange magnetic moment, o n

the other hand, does play an appreciable part which, in som e

cases, may even be quite considerable ; examples of this are

provided by PA's' investigation of the photomagnetic effect of the

deuteron and the inverse process of neutron capture by protons [7] .

Since the exchange terms do not contribute anything to th e

expectation values of the corresponding quantities in stationar y

states of the system, no new element is introduced by ou r

theory into the situation with regard to the magnetic momen t

of the deuteron in relation to its quadrupole moment . The

existence of the latter, with a valtie estimated [27] to h e

Q = 2,73-10 -2'7 cm2

	

(72)

with an uncertainty of about 2 °/o, implies that the ground stat e

of the deuteron must be a mixture of a 3S state with a smal l

amount of 3D 1 state. The magnetic moment of the groun d

state can then easily be calculated in terms of d . The exact

expression of the z-component of the magnetic moment i s

(i)

	

(i )1 -z3

	

1-z3

	

( i )
lYlz = ,'zo i ~2 (

2 wp +

	

2 P,rr °'z

t i)

	

(i)
1-z3

(i)
1 z3+

	

_

	

1
z

	

~ _P(3

i)

) (l lz(i)
+

U(z1) ) 1 ,2

	

2

	

i

D .t gi . Danske Vidensk . Selskab, Mat.-fys . Medd . XX, 12 .

	

4

m exp
=prop

	

Io

(73)
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1
Z

`) denoting the z-component of the orbital angular momentu m

of the i-th nucleon . For its expectation value* in a stationary
state of the nucleus, we get, since the mean value of z-.T is zero

and that of e(:) is approximately unity**,

~ {M
x
} N yo [(pp+ pN)

	

L s.}+ 2 IIJZÎ ] ,

where Sz , Lz represent the z-components of the total spin an d

total orbital momentum, respectively . Characterizing the stationar y

state in the usual way by the quantum numbers L, S, J, m,

this may be written
(LSJ )a {MZ} 1LU mp,D

with the Landé factor

(LSJ)

	

J(J + 1) + S(S -{- 1)-L(L -f-1)
l~D = (~P + P'N)

	

241+ 1 )

1 J(J+1)+L(L-}-1)-S(S-I-1 )
+ 2

	

2J(J+ 1)

For the ground state we thus get

F,D
= (1-d) (pp pN) +d [-I (lip+PST) + 4 ]

- I1-2 clj (pp + pN)+4d .

The direct determination of '1'D [25] ,

w D = 0,8565+0,0004,

	

(75)

lies very close to p,N + p,p , which, according to (70), is 0,85+0,02 ;

on the other hand, the amount d of D-state necessary to accoun t

for the quadrupole moment (72), while depending on the for m

of meson theory adopted, is of the order of magnitude of a few

percent***. So far, there is thus no certain discrepancy betwee n

* The expectation value of A will be denoted by 9 {4
** The relativistic correction arising from the factors (1 - (31) ) was discusse d

by H . MARGENAU [281 .
*** This is also the case, as a rough estimate shows, with the derivation of

the quadrupole moment based on the non-static directional coupling of th e

(74)
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formula (74) and the empirical results (70), (75) and (72), thoug h
the margin of error appears rather strained . A decision on thi s
point can only be arrived at by more precise measurements ,
especially of the neutron moment . It should also be remembere d
that a future theory; taking a correct account of the universa l
limiting length, might, analogously to the dissymmetry effec t

discussed in section 5, yield a small correction to the purel y
additive expression (73) of M arising from the nuclear fiel d
interaction between the neutron and the proton .

mixed theory, as developed in NF, Part III, if the nuclear source constants ar e
chosen so as to give the right order of magnitude for the quadrupole moment .
(If, however, the relations between these constants suggested by the five -
dimensional formalism [4] are adopted, the quadrupole moment vanishes i n
that approximation).



Appendix .

Mean values for the zero-point meson field .

Let us take as usual progressive plane wave s

~ ~

	

i lcxn (k; x) = I. '!, e

	

,

	

(A 1 )

satisfying a cyclic condition within a cube of side L :

k = L (ni , n 2 , n3 ) ; (n's integers)

	

(A 2)

the wave-vector k is connected with the momentum p an d
energy E of a meson b y

±

	

}
p=k k

E=i`tes k

	

(A 3) .

with ek = Vk 2 + K2 .

We introduce quantized amplitudes a (k ; j) referring to mesons

of a given wave-vector (momentum and energy) ; the index j

will be given the value 0 for pseudoscalar mesons and the

values 1, 2, 3 for vector mesons, 1 and 2 referring to two inde -

pendent kinds of transversal (linear) polarization of the vecto r

meson field, 3 to the longitudinal polarization . The direction s

of polarization will be characterized by three mutually ortho -

(gonal unit vectors ei k) .
The meson fields may then be expressed as a superpositio n

of such plane waves in the following way :
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~

	

he

	

1 3 ) f~ F k ~jg

	

3

	

~ ll

	

-~
U=

	

2

	

k~

	

} ~ a~k ;j)u(k) --~at (k ;j) u* \ k )1 I
~

Y e i- 1k

2c ~ yEk ~ e (k ~'( E
)
613

[
a

(
k ;j~ u lk l- at

(
k ;j~ u*

(k )] ,

k

	

i-1

	

k

~ = ~/

2c ~~k

[a (k ; 0) u (k) -I-- a t (k ; 0) u* (k~ ~
l

	

k

<I) = - i V-tf S VEk [a (k ; 0) u ( k )- at (;;o) a* (k ) ]
k

N. (k ; j) = an (k ; j)

	

(k ; j)

	

(A 6)

represent the numbers of mesons of kind j, wave-vector k and

character n with respect to the electric charge : Na is the num-

ber of neutral mesons, Ni + N2 the total number of positivel y

and negatively charged mesons . We get the numbers of positiv e

or negative mesons, separately, when replacing the amplitudes

a1 , a2 by

b1 = V2
(a1 -f-ia2), be =

V2
(a1 -ia2 ) ,

which obey similar commutation rules ; then

Ni=bib1 , N2 = b2 be

are the numbers of positive and negative mesons, respectively ,
the total charge of the meson field taking the for m

s ernes dU = e

	

±
L N1 (k ; j)

	

j)] .
k j - o

For the state corresponding to no meson, the above formula e
yield, with

~
I{ ` = i

(A 4)

The commutation rules for the amplitudes are

an (k ;,i), a;,, (k' ;j')]_= an»: a (k, k' )

all other pairs commuting ;

the operators

} (A 5)
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-)- 3
v (k ; x -x') = u (k ; x) tr* (k ; x') = L3 e` k(x-x

the following mean values :

n o jr, ;, (x) Fi, (x,)I = he

k

h e
2 L

k

tii a (K

	

+ > ~ •
k ~ ej e l I

)2d"
v ~k ; x-x ' )

1

	

Ek

k [a+
k2

(-f_ 1)] v (k ;

h c

ao{~~z(x) Un(x)}

	

2

~

÷
Ic ; x -x') ,

"
k

atav +	 k
2 ) U

fk

ku k''

	

~
-k2

( c I2,

K2 -. )~ v
(
k ; x -

k

~
k

u y

= Zc ~
tfF`v- K2 ~ v (k ;(4-

k k

~JJ?o {~~~ (x) Øn ~x'JI = 2c

	

v (i.->r ; x-x') ;

from the canonical commutation rules for U
-

and F, it may
further be deduced without calculation :

o { U:
(x)Fn

(~

)} =

-
~o {Fn \x/ U;,

~x')} = 2 i ô" v d (-') ; (A 8 )

all other mean values of products of two field component s

vanish. The summations (or, in the limit L -- oo, integrations )

over the wave-vector components occurring in the precedin g

formulae may all be derived from the relatio n

Ko (xr) = 2 rr2 lim Z s v ~k ; x+x' ) > (r = x-x'

where Ko (z) is a Bessel function of the second kind with

imaginary argument, connected with Hankel's functions by th e

general formula *

* For the definition and properties of Kn (z), see G . WATSON, A treatis e
on the theory of Bessel functions (1922), 3'7 (p . 77), 3'71 (p . 79), 6'16
(p . 172) . In E . WHITTAKER and G . WATSON, A course of modern analysis ,
17'71 (4th Ed ., p . 373), a function called Kn (z), but differing from the on e
here used by a factor (-1)n , is considered .

x
-

-x') ,

~
k

L~ao k E k
) (A9)

(A 7)
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KR (z)
= 2

e n Hnl) (iz) .

In fact, since
(K2 - J) U = Ek U ,

we get
~ }

	

/

2 ~ ~ v(l x-x~') =
47c2

\K2- J) Ko(Kl ')

he K
-

4)C 2 P
Kl (Kr) -= (r), I (A 10)

,÷
v (k ; x--x ' ) _ (0- J) (r)

	

(r) ;

the formulae (A 7) may then be written as follows :

~ 2

~o {Fn (x) Fn (x' ) f = Cffcv
(r) + U - C~ (r)

d x"åxv

SJJio { U'n (x) Un (x )! = apcv

	

(r) -
12 a_x~ôJaxv

d(r) (A 11)

	

1

	

K

no {On (x) Øn(x')
f =

	

(r) .

We are interested in

/
~l = dv'~za{(f``)~~)x (f``)U>IÎ~f

~
.~) A F

~
1)x (P i) P?2 = dv' S3J2o (f~~F1)xf

	

(A12)

	

a3 =

	

f(j) ft l) ~to {Ø 9L (D ."tl } ,

where

1(o (x) = grad `) p ( 1 x - x(`) ) = - grad so .

From (A 11) we ge t

Formula (A 9), after the summation over k on the right has been replace d

in the limit byg
3

330 • • dkx dk y dkZ , or $ J • • • • k 2 dk dn, and the angl e

integration performed, takes the form

1 5 o0 sin kr•kdk
Ko (x r) = r o (k2 +. ,2)3a ;

this last relation is in its turn readily derived from Basset's formula (se e
G . WATSON, loc . cit . 6'16 (p . 172))

Ko (x r)

	

" cos k dk _ `' cos kr dk
=

.!o l/k2 + (K r) 2

	

Jo vk2 + K2
by a partial integration .
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I =~

	

~ t(=) f(i)'

	

K2
dv
.~ f(i)Fi (x±)

f(i)i ~(x-)-, )

JJ2

	

dv

	

~ --

	

a
-6

.

u, v

	

8x,'' ax v

5JJi2 = dv'f(`)f(`)' (2

	

+ d 6 ) - dv' >' f (j)`u (x÷ ) f (j)'' (x ' )	 6

P, v

	

xY 6 xv

SJJ23 =

	

do ' f(` ) f'(`)' ~ .

By partial integrations, the last integral in 0 1 and ON2 is easily
transformed into

S dv'f(`)f(`)'46 ,

so that, taking account of (A 10), we ge t

= K 2 3 ,

	

2 = 2 TI3 .

	

(A 13)

Further, since p ( x-x(`~) satisfies the equatio n

(K2 -d) p = Cf - x ( 0) ,
we may write

= f (`) • grad (` dv' p ( x' - x(° I) (K2
- /I') 6

= f • grace ( X-x(0 )

d(j) (r (`) ) d 6 (r(0 )

d r (`)

	

d r (°

with r (0 ±x - x
±(i

) . From (A 10) and a recurrence formula for

the Kn , we finally obtain

dy)(/°) he x2

	

- -	 	 (
(i) 1

~3

	

-	
dr(i )
	 •

4n2 •
I(I~Ii2 xr l

K r( )

	

C	

(K+

	 1
11
	 1	 	

(I) )
(`)

	

r(`) 4
~2 '

	

(r(i) K x r

The exchange and proper current density and related quantities .

We shall here be concerned with the calculation of

s-*
I(o) dv and

	

( o~ = - x AI(o) dv,

(A 14)
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h od being given by (42) . For the evaluation of the first integral ,
we need formula NF (89), which we re-write in the for m

(IX-x ) =T(x-x'") T( (A 15)
BTG K

from this, we deduce

grad (x-x ' ) = -2 (x-x ' ) ( I x-x ' )

	

(A 16)

z/0-K2 V = - 99 (x

-X'
-xi dv " = e

x l x- x

and (since

	

= - å (x- x ' ) )

± (A 17 )) •

On account of the symmetrization bars in formula (42), we may
in all following calculations freely interchange the order o f
factors, even though they are not commutable ; for simplicity ,
we shall omit the bars from now on. From NF (9, 14) we get ,
in the first place,

I+' ° AY° _ ~

	

' rp( x->--x±') ( x-x" ) dv ' dv" , (A 18)

whence, by (A 15) ,

A 1%° dv = N' AN" grad ' zß ( x ' -x" ) du' dv"

) dv dv ' ,
A 19)

by (A 16) . The 3-component of this quantity, multiplied by

the expression J give n

NF (14)

G° Å U° _ -G° Å (S' A grad' p) dv '

_- S (s' A G°) grad' cp du' +

	

A ( G° grad' p) dv' ;

inserting in the first term the value NF (37) of G° and in th e
second its value NF (10), we have

e
- c , coincides with

by (31) .
Similarly, we get fro m

the first term of
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- [(S" grad") A (S' grad ") ~

grad' p( x-x' I) 99 (1 x-x" I) dv' dv"

+ S 'A(S grad' rp ) dv' - SS'Adiv(grad' pnU°) dv' ,

since rot U° • grad' p = - div (grad' p n U° ) . Again using A (15)

and A (16), we obtain immediately

dv = - x 2 (' A ) (-') p ( I -S OA U°

	

2

	

x-»' I) dv dv '

+ {[ (S' grad') A (,S grad) ] grad 'tp

- S'A (S grad p)} dv dv' ,

the integral over the last term of (A 20) reducing to a vanishin g

surface integral . The first term of (A 21), by taking the 3-com -

ponent and multiplying by hc , gives just the remaining term

of the expression (31) of J. The last term of (A 21) would subsist

in the integral exchange current on a pure vector meson theory ;

in the mixed theory, however, it is compensated by the con-

tribution from the pseudoscalar field .

In fact, from NF (30, 40) we hav e

I'°A 4'° =PA (Pgrad'p) dti
(A 22)

+ S ~ ~P"grad")A (P' grad') ~ grad" p (Ix -x' I) p (I-") dv' dv" ,

whence, by (A 15) ,

S r°Aw°dv =
S-[(P grad') A (Pgrad)] grad zfi) dv dv' .

In such an expression we may indeed, on the mixed theory ,

substitute S for P, apart from terms of higher order in th e

~ ° n t °

	

- x2 5 (S' . c,;) grad' ri ~ -~, n

	

~„ I) _,, __ „
99

	

(A 20)

(A 21)
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nuclear velocities . Summing up, we have thus established
formula (44) .

We now turn to the calculation of M(0) , which runs entirely

parallel to the preceding derivation of (44) . Only, the role of th e
auxiliary relations (A 15), (A 16) is in this case played b y

÷

	

~ ~
( x

-)-
-x)

	

~( x- x"I)~ x' -x~~l)xdU

e_x I ~ ~I
x± + -x>.

	

~
',I) '

	

x+x'
x-xJ . ~x-x') A 2

1 (1->

	

± ~
=-2cpx~ - x'I)•xAx' .

To begin with, we get from (A 18) and (A 24), (A 25) ,

SXA(F O AV O )du =

_ ~-SN'AN'rot' {xp(x-x')p( x-x')}dvdu'du "

= -S N'.AN" rot' 2fi x'-x") du' dv"

=

	

SN'" 9) (I x' -x" I) (x'Ax')du'do" .

Further, from (A 20), we get by the same procedur e

S xA (G° iT°) da =

-~K2 (S'4") (x'x")y x'-x" )dddu"

-1 S [(4" grad") A (S' grad")] (x' Ax")p(x'-x"I)dv du"

-S (æ" A S') A (S" grad" p) du' du"

- S (x A S') A div (grad' cp A U°) dv du ' ;

the second and third terms together giv e

-~ ~

	

1
(rot ; (

	

I) = -

A 26)



	

1(x'-x" ) A S'] A (S" grad" p) dv' dv" +

	

(x' A

	

( g" grad") A (S' grad') p dv' dv' ,

while the last become s

	

-}

	

ix

	

-> }
-~ S'n (grad'pAl T~°) du du' = S'Å grad'rp ( -x' ) A(S"A grad" p (x-x" ))]dvdv'dv"

_ `(S'^S") grad'p ( lx-x,'I)) grad" p~Ix' -x" )dvdvdv„

	

>

	

}

	

~
- [S'Agrad" p(

x->
-xi"I)]A[S"•grad' ( x->-- .x' ) dvdv ' dv„

-S Si' A S" -
Ip dv ' dv" - (S ' A grad ' ) A (S" grad" ) yi dv' do" ,

_ - 5 Å4" (x2

	

p) dv' dv' -- 2 ` ( ti7 ' A grad')
A [ g-" (xi'-xi")] dv' dv ' ,

~SS ' ^S"(x2y~-2)dvdv" -

2
.S ( S'Agrad'p)A[s„ . (x , -x„) -

- Ç (S' A S") / - K2 ~) IdvdU"~I ~ 5[S'Ax'-_x")]AS"gradCi(

	

" p) dvdv'T

	

dv dv "

since grad' y (lx -x
)" is proportional to x' -x" ; altogether, we thus get

2

xA ( G°ALr~)dv= (g , A s-",) (_ 2 'y~l dv'dv'
2 (S'AS") (x'Ax") pdv'dv "

+
2

(xi' A x" ) (S" grad" ) A (S' grad ' ) 99 du' do".

(A 27)

by (A 15 )

by (A 17) and (A 16)
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From (A 26), (A 27), and taking account of (A 15), we obtai n

for the contribution of the vector meson field alone to M(o )

M
~~vect

=o~

	

~

"} 3 (1 ;,
~
n S -x I - x" l) pdv ' dv"

4~c1

	

r
e4 ~c ~{N' A N" + x 2 S ' A S"}s (x ' A x" ) p du' dv" (A 28)

_e

	

(x,

	

„

	

„

	

„) A (S ,

	

,
dv

„
+

4hc

	

A x)}
(
~S grad

	

grad)}3 p dv

	

;

->

	

->
owing to the factors x ' A x" , the last two terms are of the ex -
change type only, while the first also involves a proper magneti c
moment given by (62) .

Finally, we derive from (A 22), for the pseudoscalar field ,

c
xA~Ì ° A4l °) dv

= ~ (x„
Ap") A (P grad' p) dv ' dc~ „

~

- ~ Ç
(P" grad") A (P' grad ' ) (x ' A x") p dv' dv"

// x ' -x" AP" ] A //P rad ' ) dv' du" 1 ~' A ~

	

' "=

	

l

	

)

	

l g p

	

+~P A P pdv dv"

(x ' A x") (P" grad " ) A (P' grad ' ) p dv ' dv" .
- 2

With the notation xo - - 	 ~ ± I
, the first term may be writte n

x ' -x"

2
[(x0 AP") A (P ' x 0 ) + (x'-,) A

P') A (i->-Y ' x0) ` 1 + x x ' - x " I ) dv ' dv
„

-~'~

	

~

	

~
'= ~ [Ci -P' A(P" x 0 ) ]A x0 (1+ x x ' - x " ) pdv ' dv" ;

with the help of the vector relation (a A b) A c = ( c) b - a (b c ) ,
which holds when b and c are commutable, this transforms int o

1 I }A ~ } ~

	

~

2 .
[ I~A P"~Axo]Axo(1+xlx ' - x" I)cpdv ' dv" ,

or, using again the same relation,
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-- 2Ç{.P' Al '-[(P'AP„)x0]xo}(l+K

	

)C~Jdv ' dÜ" .

Hence

~ps-scal - - e j {P' A "} K x ' -x"
(0)

	

4tc 1111

	

A

	

s

[1pÅP„j3x0 x0 ( 1-{-K x ' - x" I)fdU ' dd
,

	

(A 29)

e

	

±

	

f
4h c ~x ' A x l~P" grad " ) A (P ' gradt P du ' du " ;

here also the first integral only contributes to the proper mag-
netic moment, viz . the moment (63) .

It now again appears that, to the first order in the nuclear
velocities, the last term in (A 29) just compensates the corre-
sponding term of (A 28), so that, using NF (3, 4, 24) and th e
notation (59), and taking into account that f2 = g2, we find for
the exchange moment in the mixed theory the expression (60) .
It will be noticed that the exchange moment is not translation

invariant ; if the origin is displaced by a, the exchange moment
1--> ±

changes by
2

a A J.

Expression of the 'proper magnetic moments of nucleon s

for special source distributions .

We shall here briefly indicate how the formulae (66), (67) ,
(68) for the "Landé factor" pr, of the proper magnetic moment
may be evaluated under simple assumptions over the sourc e
density function D(r) . The integrals occurring in these formulae
are of the form

~= 5pF'U' 5D(r")dv" 4(~~)

e = Ve t' + r"2 - 2r' r" u ,

-)-
u denoting the cosine of the angle between x ' and x" . Introducing
suitable polar coordinates, we obtain

x (r '+r')
y

~D 2x

rdU D(r„)r„dr„
~ F(y)dg .

	

(A30)
K r'-r"

with
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For the contributions from the vector and pseudoscalar meso n

field, respectively, we have

F
vect

(y) = (1 -y) e g ,
Fps-scat (y) `

(1 -2y)é Y. (A31)

Consider a uniform source distribution on the surface of a
sphere of radius ro ; the corresponding density function may be
expressed by

D (r) -	 (r-r o )
47rr a

and (A 30) then reduces to

2tcr a

5
sup =

	

1

	

~ F(y)dy
.87rr

o
x a Q

In this way, putting e = kro , we obtain

vect

	

g2

	

M 2 -2 e
jr

_
47rhcMm r e

ps-scal _ f

	

M 1

	

-2 e
~

	

47thc M 3
▪

r2 [e

	

(1+4e)-' ]m

=	 g' M 1 r
4a-he Mm 3

•
e2

1 e
2e (1-{-lOr)-1i .

For small values of r, the functions of e occurring in (A 34)
approximately becom e

2
-4'

	

3 r2

	

8
-2'

	

3
r -6 '

respectively .

In the case of a uniform volume distribution of the source s

within a sphere of radius ro, we get from (A 30), (A 31), by a
straightforward calculation ,

2

	

1

	

vect

= 4~~ c M	 ' eg [ 33

	

2jr

		

- 2 ~ é2e (r I 1) (r2 I 2 r~ 2)
Jm

ps-scal _	 f 2	 M 3
µ

		

47rhc tlim
.

rs [- 2r3+5r2-9 +é 2e (r+1) (4 r 2+ 9 r+9)]

M 3 rr
µ

	

47rtcM

	

ro
I 4r 3+11r 2-21--e 2£ (r--1)(10r2--21r+21) ]m

(A 32)

(A 33)

(A 34)
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For small values of e, the approximate values of the function s
of e occurring in (A 35) are

36

	

22

	

5 8

5e '

	

5e '

	

5e '

respectively .

The formulae (A 34), (A 35) have been obtained by SERP E

in another way ; for a numerical discussion, the reader may b e
referred to SERPE' S paper.

Correction :

p. 6, 29th line, `it is out of question' read `it is excluded' .
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