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The real and imaginary parts of the kernel for the fourth order vacuum polar-
ization are calculated for all values of the four-dimensional energy momentum
vector. If an expansion in powers of the square of this quantity is used, the
first coefficient agrees with a result previously obtained by BARANGER el. al.

I. Introduction.

I n a previous paper, one of us' has developed a formulation
of renormalized quantum electrodynamics that is slightly

different from the standard techniques used by most authors.
This modification was introduced because of its convenience in
discussions of general principles. It has been applied, for example,
to a discussion, avoiding perturbation theory, of the magnitude
of the renormalization constants.' In the present paper, we wish
to show that the new method can also be used with advantage
in practical calculations in which perturbation theory is applied,
and, as an illustration, the fourth order vacuum polarization
has been chosen. BARANGER, DYSON and SALPETER 3 have com-
puted those terms in this effect which are important in the Lamb
shift. They present, however, only the result and very few inter-
mediary steps of the calculation. On the other hand, we attempt
to give a fairly detailed account of our calculations, and compute
not only the ternis of immediate experimental interest, but also
the complete vacuum polarization kernel as a function of the
four-dimensional momentum. As will be seen later, our calculation
is simplified to a certain extent by the fact that we can use the
result of an earlier calculation of the lowest-order radiative
corrections to the current operator 4 and thereby avoid some

I G. KALLEN, Hely. Phys. Acta 25, 417 (1952), in the following quoted as I.
2 G. KALL)N, Dan. Mat. Fys. Medd. 27, no. 12 (1953).
3 M. BARANGER, F. J. DYSON, and E. E. SALPETER, Phys. Rev. 88, 680 (1952).
4 J. SCHWINGER, Phys. Rev. 76, 790 (1949).
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4	 Nr. 17

integrations. Since the main work involved in the calculation of
a high-order effect is connected with the integrations over the
so-called "Feynman auxiliary variables", a simplification at this
point is not without interest. A further advantage of our method
is that the questions of regularization s and of the so-called "over-
lapping divergences" 2 are completely avoided. Finally, due to the
application of the known expression for the current operator, we
need not carry out any explicit mass renormalization in our
calculations.

II. General Outline of the Method.

We start from the following formulae given in I:

<	
tt	 7L	

exi

	

O IJfn(x) I O\	 t 
4 ^Ipe t^'x (-17(p2)++T1(0)— in (p2))J^l(p),	 (1,

	

/	
(2 n) 

17 (p 2) - 17(0) =- -p2 ^^d
a 

^+ p2)
 )

	 (2)

V
n(p 2) =	 3 9 ^^<01j,,Izi<z^.i1^10%•	 (3)

— p-^	
p

The notation is the same as in I and will be used here without
further explanation. If the matrix elements of the current opera-
tor are expanded in powers of e,

= J lel + 2J +e3 (2) + • 	 4e ^	 e µ(f)	 Jµ	 • 	 ( )

the first non-vanishing contribution to the function 17 (p 2) will
be

H(0)(p 2) _ _ - Ve2 2 ^ < ^ 1.lft l l '°^>< z lJµ l l Oi•	 (5)
— 3 p pm = p

' W. PAULI and F. VILLARS, Rev. Mod. Phys. 21, 434 (1949). The regularization
of flic fourth order vacuum polarization has been discussed by E. KARLSON,
Arkiv f. Fysik 7, 221 (1954).

2 A. SALAM, Phys. Rev. 82, 217 (1951). For the special problem of fourth
order vacuum polarization, the overlapping divergences have been discussed by
R. Jost and J. M. LUTTINGER, Helv. Phys. Acta 23, 201 (1949).
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This expression can be computed easily and gives

e 2 	
2m2)P^

H(0) (p2)	
12 7L2 

(1 4 m2	 	 1 + p$ 9(— p 2 -4 m 2),	 (6)

B (x) = 21 [1 +1x, (6a)

f( f)) (p2) — H(o) (0)

1+
m2 	4 2 -log

P

4 m2
1 + 2

4 m21 +

P2   

The subsequent terni in the expansion of the function H (p 2) is
of order e 4 , and contains the following terras:

II(t) (P 2) _ Ilål> (P 2) + 
.Mbt) 

(P2),

Ve4 
in) (P2) — p2 ^^O j ^

`)
	 j^^^^zi<z

1," U ,	 (9)
3 

4
17bt) (p 2) = 

Ve 
2 ^<0^)E^ lzi<z^j^	 +^^^0^complexconjugate. (10)

--- 3 P p (=^ = P

The expansion of the current operator has been computed ear-
lier. 1 From these results it can be seen that the term (9) gets
contributions from states with one in-coming pair and one in-
coming photon. 2 These matrix elements are

e2 1 	 ( ) 
(— l

)11Y
Y 	 (q +k)—my

< O1jµ > ^q ,q^,k> 
=	 v2

0)5
	 c	 F	 e

2 qk —,u2

_ y e Y 

2qq, k k)^ 

!n 
Y^^] u(+> (q)J

The notation in the last expression is self-explanatory, except
possibly for the quantities u(±) (q). These are the normalized

' Cf., e. g., G. KÄLLN, Arkiv f. Fysik ", 371 (1950).
z For the definition of particle numbers for these physical states, cf., e. g.,

G. KÄLLÉN, Physica 19, 850 (1953).

(8)
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plane-wave solutions of the free-particle Dirac equation. The
index (+) refers to solutions with positive energy and the index
(—) to solutions with negative energy. The vector e is the po-
larization vector of the photon; V is the volume of periodicity
and ,u a small photon mass introduced to handle infrared diver-
gences. In the computation of the function H» (p 2), we must
"square" the expression (11) and sum over all states where
k + q + q' = p. Using well-known properties of the functions u,
and taking the limit V-te oc, we can write this sum as an integral

(2 n	

.1^.Ie4 VZ< O ^ (pi) q,q',k><k,q',q	 ^)10>=
4 +q' +k=p

e
4 

s
s

dkdgdg' (p—g q'—k)b(q2+m2)0(g)b(q'2+m2)8(q')

xS (k2 ^-,u2) e (k) Sp [( z Y q' + m) (a)^ ZY(g +k) 21n Y7
2 gk—,u

iy (q'+k) +miy (q'+k) + m
Y7	 ^ q , k ^^ 2 Yµ^ ( i Y q—ni) Yµ 2 q,k_p2 Y^

_ iy(q+k)—m ^)1•
YR 2 qic —,u 2 Y J

The evaluation of this integral, which is the main task in our
computation, is given in a later paragraph.

The first approximation to the current, jO, has matrix ele-

ments which connect the vacuum only to states with one in-
coming pair. Hence, the expression (10) will reduce to a sum
over states with one in-coining pair

7 4
l7bi) (p 2) - 

tie	 	 ^	 < 	 q, q ' > < g', q1/013>  + complex conjugate.	 (1^
i 

p- q+ q, = p

As has been mentioned in the introduction, the matrix elements

< 0 I j ) q, q' > have been computed by SCHWINGE R. 1 We write

his result as

e2 < 0
1

j µ'

1

q , q '> 	 [—IZ<0>(p2) +iz(°'(0) + R(p2)-R(0) +S(0) —in 00'(p2) 
^ (14

—R (p2))] <01  j`^' I q , q'>	 ^	 (q —g 4 ) [S (p2) + i^ S (p 2)] <O 1w`°'^we"' 1 g, g'>,
^	 2 m 	 ^

Footnote 4, p. 3.

)
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l p1+

/ 4 m21 4----2-19(— p 2 -4 m 2), (15)
e 2

«p2)
8 :7

,/	 2
2 V1+4m

•log	 P

P2
1+ 1+4m

2

3+

1+ 2	
m 2 	

-}1+ 1-4m
2

l/1 +
^ ;210ß	

4	 z

V 	 P

1
i
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V1+

4m2 	 1+ l/1 +4m2
/

P" 	 P

,/	 ° 	 4m2
1	 1+V1+ 4p 	1+1/1 ^ 

13-s
- 

4 
log2	

Vi
 4 m2 ^ log	 4 mz

	

1-- 4- 9	 1—l/ 1+ p2
P

^ 4m2	
1+1/1

+4m2

1 + 2 log	 V 	 p 2	 2
1 / P	 1

-1
/1 +4m

P"

n
2	 j

4+ 	 9 (—P2/

(16)

_	 e 2 m 2 Ø(—p2 -4 m2)
S (p2)	

4/ 
	 2

2 P2 	4 m
V 1+ P

,^ 2 	l + 1 + 4 _m2

S(p 2) = e2 ^ 	
P _^ log 	  	̂  

P22
	 (18)

8ac'/1+
4 m 	 1 - V 

1{ 4 m
P ^^//	

P

The connection between the functions R (p2) and R (p2), and be-
tween S (p2) and S (p2), is the same as the connection between
11 (p2) and II (p2), which is given in Eq. (2). This is a conse-
uence of the "causal" structure of the theory which says that

the value of the current in one point x can depend only on the
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previous history of the system inside the retarded light-cone be-
longing to x. If Eq. (14) is written in x-space, we get a relation
of the form

< 0 I jµ)(x)1q,q'i = ^ dx'F(x-- x')< 0I jµ)(x') I g,g'>

+G(x—x')<OI a 8xx') V(°'(x')--17`°'(x') a a (x^) I(J 
(1'> .1µ	 f^

Causality requires F (x) and G (x) to vanish if x0 < 0 and this
gives, in a well-known way, the relations involving the Hilbert
transformations. This offers a new possibility of computing the
matrix element under discussion by first computing the "imag-
inary parts" R (p 2) and S (p 2), which can be obtained by inte-
grating over finite domains in momentum space and, subse-
quently, computing the "real parts" with the aid of Hilbert
transformations. Actually, a calculation of this kind has been
performed. However, it has not been found to be much simpler
than the standard methods for this problem. On the other hand,
arranging the computation in this way is certainly not a more
complicated procedure. We will not insist on this point here,
but accept the results (14) — (18) as they stand. Consequently,
the computation of the function 11 (b1) (p 2) will be reduced to
simple algebraic manipulations of these expressions. The function
Ø (x) in (16) is defined by the integral

Ø (x) = log l 1 + t .	 (19)

Hereby it is supposed that the argument x is real, i. e. that
4 m 2

1 + 	 2- > O. This will be sufficient at this stage. The integralp 

Ø (x) has many interesting properties which will be of some
use in our calculation and that are discussed in the Appendix.

We now write the function H' (p 2) as

(14a)

17 b1) (p2) = 2 11" (p2) [—rl"(p2) + Iz<<,> (o ) + R (n2)
— R (0 ) + S (0 )] + 2 S (p2) X (p2) ,

I(20)
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where

4e 2 
X(p2)	 p2 (2

1703 dq dg S(p—q—q')	
(21)

X 6 (q2 + 111 2) 0 (q) 6 (q'2 + m2) 0 (q') (q'q' + ni z) . I

The last expression is easily computed

e 2	 4 m2 s^s

X (p2)	 247r2( 
	  1 + 	 2 ) 0 (— p 2 — 4 m2). (22)

P

Collecting all these results, we have

	

^bt^(P2)	 4 4
[(3 - 5 2)(- 1 	 23 +S 2)+ a (7	 L	

4
— 3 S +

3 S)log 1 ± S

	

II-1
	 1+52	 1+5^	 1	 1 S'

^- log S (3-52)^l—  
2 5 

logï-
6

^
2
(3- 52)(1 +52)(Ø^- 1+ S )It

	

n2 1	 1 + 5	 1+ 5 	1 +S')1

4 
+ 4 1og 2 1S — log l—S'log 9

5 
0 (1 —5),

where

S = ^ / 1 +^-m 2 i0.
Y	 P

III. Discussion of the Part 17Q1)(p2).

The remaining part of the function 11 (p 2), the integral (12),
can be treated in the following way. We first compute the trace
of the y-matrices. This is a straightforward calculation and the
necessary work can be considerably reduced by performing first
the summations over the indices ,u and A. This can be done with
the aid of the well-known formulae

Ya. Yv, Yv, - • • • Yv,,, +, Y,, =	 2 Yv= „+, . . . . Yv, Yv,

YA Yv, Yv, Y; = 4 Sv, v, .

(24)

(25)

(26)

(23)
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'l'hc complete trace can then be written

Sp [•	 • Ï
S(i) (q, q')	

S(i) 
(q ', q)	

S(2) ( q , q') + S(2) ( q ', q)

( 2 qk— ,u2)2 + (2 q' k — ,u -' )2 + (2 qk—,u2) (2q' k —,u2),
(27

S(1)(q, q ') = — 32 [kg • kg' + 2 m 2 qk + m 2 q'k + m2 (qq' — 2 rn 2)] ,	 (2 F

S(2) ( q , q') = — 16 [2 ( gg') 2 — 4 m 2. qq' + 2 (kg + kg') qq' — m 2 (kg + kq')]. (29

Terms containing /2 2 have been dropped in (28) and (29), as
they will obviously vanish in the limit ,u	 0.

Our next task is to compute an integral of the form

J =
 dk dg dg' b (p—k—q—q') S ( g2 + int) å ( q ' 2 + m 2) 6(k2 + ,u2)

	
(30

X 0 (q) O (q') O (k) F (qk, q'k, qq').

This can conveniently be done in two steps. We first consider

^ (p'2, Lp') _ dg a q2 
+ m2) 0 (q) b ((p ' q)2 + m2) 0 (p ' — q)

X F (gk, p'k — qk, p'q — q2).

This is a finite integral and we compute it in the special coordinate
system where the space-like components of the vector p' vanish.

We then obtain

1(—pot, —kop,) =a 	 x F(x,— kop',—x,in2- 1 p,2) 0(po--- 4 m2), (32d 

2p, Iid 	 2
^ x,

I
x1,2 = 	 kopo + IkI1. 1 Dn 2 — m2. (32 a)

We now write this result in an invariant way, as

p (112 , kp1) — 2vucp)2 +p2p2 ^ dxF(x, kp' —x, m2 +-9p'2)B( p' 2 -4m 2), (33
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2 	 2 kp + 2 V(kP )2	
+ 112p' 2 ' l 1

4 m-
± ^2 ^ (33 a)

and treat the next integration similarly. The result is

J —.  ,u. 8 (k2 + ,16 2) e (k) 1 ((p — k) 2 , kp + /4,2) =

S4-$
-^ 	 dy	 dzFl z— Z+µ2-z-2y +µ2, 9+m2+ p 2 

2 u2),p-
	 1

(34)

Applying this technique to the integral (12), we get

171(11)(p2)

—4(p2 +4m 2)	 +E

e2	
1 (A + B) B (— p 2 — 4 m 2),

12 7,c
4 p4

A = dy	 dz l +m2— y +y 	 2 	 n1 2 )1 ,
2	 z—y	 y2 —

—1;

1t-	 É (p' -	 1 ne') 7+ E

B = dy 2	 2dz (p —2n1 )
n12	

+ 1	 2+ 2 m2lp	
^ •(z	 y)2	 2	 y2 	 z2	 J! Nt	 -P' —E

(36)

(37 

To obtain these expressions, we have introduced the quantities
y and z into (27), which becomes

i_ 1 2  y m2 (p2 2 m2)
Sp^ ... - 32 2 f 

z— y +	 (z —y)^

+ 1  
z2 (y(p2 —m2) +^(p4- 4 n14))I

y2	
.

I (38)

The quantity A will stay finite in the limit µ — 0 and can be ex-
pressed in elementary functions. After some straight forward
calculations we get the result
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A =	 p4 12b (5 — 3 b Z) - (o + b2 — 3 b4) log  +-  .	 (39)
64

The quantity B is a little more tricky to handle and the limit
—k 0 cannot be performed in all terms. We write (37) as

B = g p4 (3 —b2)	
ti

^ — (1	 62) Bo.)	 (1 ± 6 2) Bt2t],	 (4U )

where
/3(1)t ^^ = 2 I (1),	 (41)

B t21 = S@) dz, 
I 	 (42)

,— å a"	 a=	 -y2-62 .
dy	

=I (z)	 — 2	 dy -y2	 z2

 1— 62
1— i ---	 -y	 (43)

o	 g	 _ 2
f^ VI p` 	 E	 y-- z

 (y2
	 E)I1— _ 	rr	 1

-52 1,

lllL 	 1 — ,y

2 ,u
(43 a)E _	 -- 2 •

The term containing the logarithmic dependence on ,z in I(z)
can be split off in the following way:

I (Z) =

02
6,

dy
y

1 —b2
1 —  1 -_ 

y b

1 — 
6

2 ZZ
.	 (44).	 (44)Vy2 —E2• b dy

2 — 1
u2 ^2 (y2

 y y	 E2)Yt E
1 — b 2 1

1 Z2—	 1 —
\	 1— y

/I

2
In the first integral, we make the transformation 1 —

8
2 = t`

and rewrite it as	 y

,a'	 V1-8'162
d y	 b • V 1— 62 Y2  	 å	 dt 
y 1 —z262 (1 —e2/y2)	 1 —z262 1-1

.1.
dt	 2 t 2	 1

b 1 _ t [(1 + t) (1 — z2 62 12 ) 1 	 62   z2]

(45)

t 11
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The remaining integrations can now be performed without
difficulty, and I (z) is found to be

(z)	 1	 zlo 
1+ b?

-lo 
1+S	

1+ 	
3 62z
	  l0 1+

Sz

()	 1z2( g l-Sz	 g1- 5/ - (2 z 2 (1 - S2 z2) g l—S-

S
	  l0	 8 52

+ 1-62 z2 g e(1-52)

The last integration in (42) introduces again the function 0(x).
With the aid of the formulae given in the Appendix we can write
the result as

=- 3 Ø (_ 1-S	 ^ Ø 1 - 5 
32+1or1+-

5 [log in
1 1 + S ) - ^	 1+S	 4	 g1-S g((

'log 
1+ S 

log 
(1 + 5)2

+4 g	 +l -S 	 g 4S

The remaining part of the calculation is purely algebraic in
nature. Collecting previous results, we get

4
7a(ß (p2) 	

e

48 7r4

3 -52 lo 
(

^(	 )	 g 1-523

(3 52) (1+ 52)

5 (39	 17 6 2 ) + i
8	 16

64 
S4 ) 	

S (3 	 6 2 )
(	

)

(33

I 1-

Ø 1S

- 10 6 2 + 6 4) 1og

1+ 62 
log 	

j

2 S	 g 1 -S

3 n 2_1
+ 5 ) + 4	 4g

1 ±
1 -

g
	 	 • lo	 f̂^

lo 

21+ 5

1 - S

(48)
6)	 2 3 Ø e1 + 5 + ^12

-- 4)( 1og 1 + b 
log ( 1 -1- 

6)2/1 (1 - S).
1- S 	 4S

Adding (48) and (23), we find that the terms depending on ,u

cancel. In this way we obtain

7(1)(132)
  	 a2	 -19+5562-54_.3	 62 log 6454

 - 3 7c 2 I	 24 7 9 	3	 2 

log 
(1-62A  ,

1+- S [33 23	 23	 1	 3	
54^	

(1 + (5)31
^log1 -S 16 + 8 

S 2 1654^--6Ss+^-9+52- 
9 

log -  8 b2

- (+ 52
 2	 +54

) 
[4 Ø^, 1S + 2 Ø( 1 + ^ ^3^0(1 - S),2 

(46)

(47)

(49)
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(49 a)

This is our expression for the imaginary part of the kernel (1).
According to (2), the real part is obtained after a Hilbert trans-
formation of this expression. This kill be discussed in the next
paragraph.

IV. The Real Part of the Vacuum Polarization Kernel.

So far, all our results are given as functions of the quantity 6
defined in (24). It is therefore convenient to introduce a new
variable of integration instead of a in (2). If we put

4 m2 = z 2
a

we get

11(»(p2)—T7(1)(0)   = 2	
zdz

62

 
Ht

r t (6 = z) .	
(51)

Not all the integrations in (51) can be carried out explicitly, with
the result expressed by elementary functions or by the function

(x). The new integrals which appear can be written in the
standard form

F(x,y)=	 •
t

logI 1 + xt I . log Il + yt I.	 (52)

0

All the necessary integrals over the function Ø (x) can be ex-
pressed in terms of this F(x, y)

(50)

0

,«
dz

P 
z +b Ø(z) = Ø (a) log

0

1	
a

+ b
— F (a, b).	 (53)

In our final result, one of the variables in F (x, y) has only a
very small number (three) of different values. We therefore
introduce the following three integrals, each of which depends
on only one variable:
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.+ I

F (x) =	 ft log (1 -}- t) log 1— t^
x

(54)

•+1
dt	

1	 tG (x)	 log • log
t2

1 — -- (55)
1+ t	 2 x

I	 I.

r
dt

 log I t1 1og
H (x)	 i

1	 ^
x

(56)

—1

The remaining integrations are then straightforward, and not
too time consuming. The result can be written as

1-1(1) 	 17^1) 0 _ a 2	13 + 11 
62	

1 b4 + b (19 — 55 a s
(P2)  —	 ( )	 3 n2 1 108 72	 3	 24 72

1 d4 I lo^  1^- 
ô	 (33 + 23 62 	 23 64 + bs	

°
lo^r2  1 + 

b	 n20 (1 
b))-

3 / b ^1— b ^	 1 . 32	 16	 32	 121	 ^1— S^

+
2

(1 } 
b	 +1
	 6))+ 2Ø( 1
	 ô	

4 4
n20(1—b)
	 (57)

1 

— 3 1og 2  1+ b } 1 log 1+ 
b log 64 64

4	 I1— S I	 2	 I 1— b I 	 11—b2
13

+ (3 + 2 6 2 — 6 4) [F (62) +  G (6 2) — H 
(62)

1
 1

If this expression is expanded in powers of 6 -1, the first non-
vanishing term will be of order 6-2 . The same conclusion can
also be obtained from a study of Eq. (51). If this expression is
expanded in powers of b-1 , we get immediately

+ L
H(1) (p2) — 1/ (1)tt) (0) =	 2 - Ç z dz H(1) (b = z) + .. • . 	 (58)

62 .._1

The numerical coefficient of the first power of b-2 has been
computed from Eq. (57) and with the aid of the integration
indicated in Eq. (58). The agreement of the results serves as
a check on the calculations. In either way we obtain
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n(u(p2) HO) (0)
l a 2 82	 p2 a 2 41

bz ^ 2 81 + • • = —	 (59)
• •

n-1 2 n2162 

This also agrees with the result obtained by BARANGER, DYSON,
and SALPETER.1

In Eq. (57) it is supposed that b is real, that is, p 2 is either
positive or less than — 4 nt 2. For 0 < — p 2 < 4 m 2, b will be
purely imaginary. In this case we have to substitute arctangent
functions for logarithms, according to the following rules:

b log 1 ^ -^ 6 1 -4- 27] arctang -1, ( )) = i b > 0),	 ( 60 a)

log 2 ^ 1+ —^c 2 0 (1— b) -^^ -4arc#ang 2 ^,	 (60 b)

b 
+ 2 Ø(- 1 - b ^-^2 - 3 n2 0(1 — b) - 3 1og 2 1 + bb Ø

(1 { (5)	 1-^ b )	 4	 4	 4	 11—b^

2
1og I i±

—61
  log  64 d4

2I31 	 y^I2 a retang  — 2 lp (2 arctang o (60 e

i4
arctg 1 log  64 rn	 (1 +n2)3112)'j'

(x) _ V^ 
sinnnx)

	(60 d)

At the point p 2 = — 4 m 2, or = 0, the expression (57) has a
logarithmic singularity. If, (luring the calculation, the photon mass
u had been kept different from zero in all places, our result would
have shown a finite peak at this point. For practical applications,
the weak logarithmic infinity will not be very harmful, as one is
in general interested in convolution integrals involving the function
II(p2)-17(0). In such expressions, the result (57) will be suf-
ficient. For large values of I p2 /m 2 I, our function behaves as
log e I p2/m 2 I. Fig. 1 gives a qualitative idea of the behaviour
of the fourth approximation of the vacuum polarization kernel
as a function of —p 2/m 2. A figure of the corresponding behaviour
of the functions 17 (°) (p 2) and 17t°)(p2)-17(0)(0) would be rather

Footnote 3, page 3.



Nr.17	 17

Fig. 1. Qualitative behaviour of the e 4 approximation of the real and of the imag-
inary parts of the vacuum polarization kernel.

similar to Fig. 1. The only qualitative difference would be that
the function II(° ) (p 2) vanishes at the point —p 2 = 4 m 2 and that
11w function II(0) (p2) — II (° ) (0) has a finite peak at Ibis point_

Appendix.

In the following are given some formulae involving the
function Ø(x), defined in Eq. (19). Although practically all
these expressions can be found in the literature,' we add this-
summary for the reader's convenience.

If x is real, our function is defined by

If we consider

Ø (x) = S —dz 
log 11 + z I.

z

1 /x
Ø(x) = 

^ —dz log l l +zl,

(A. 1)

(A. 2)

I Cf., e.g., K. MITCHELL, Phil. Mag. 40, 351 (1949) and W. GRÖBNER, N. Hor• -
REITER, Integraltafeln, Wien and Innsbruck, 1950.

Dan. Mat. rys. Medd. 29, no 17.	 2



nx

Ø (x)=lloglzllogll+zl	 1+^loglzl
.J i

1+ x

= loglxl •logl 1 +xl— 
z 

logl 1 — zl,
d

(A. 5)

■■- 2
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and make the variable transformation t = z `, we get the funda-
mental relation

1 +
.+i

?B (—x) 
dz logl

i +4l
A. 3)

_ —Ø (x)+2–logtilx^	
2

^ 	 B(— x)

or
2

Ø (x) -{- Ø (-
1) 

= -1 log e I x I — 2 Ø (— x) .	 (A. 4)

An integration by parts in the definition (A. 1) will give another
useful formula

or
2

Ø(x)^-Ø( 1—.x) = — 3 + log l xl• log ll+xl.	 (A.6)

Besides (A. 4) and (A. 6), we also mention the formula

..r	 +1

0(x)±0(—	 dz 
log ll--z2 l+ 

dz
logll— z 

(A. 7)
2

= ^	 8Ø(— x2)— .

Another relation which has been of some use in the calculations
can be obtained in the following way:

Ç 1og

x

Ø (x) Ø (x) 	 1 + z 
?ç2

	

-.	 (A. 8)
z	 1— z 4i



2	 _
Ø (x)—Ø(—.x)= 	 2 1

ØI

Ø(
x)

- -1+ogI x I-log
1 + 

1 + x
1—x

(A. 10)
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The transformation 1 + t — 1 Z transfers this integral to+ 

2x

	

1+x r 	 ll

Ø(x) — ( L)	 4 — dt 
L f 2

+ t l logll+tl
 S	

1

L	 11

	s
0(-1 	 x) t(l t̂ t) logl 1+t^ = 4 —^2e(-1— x)

—Ø ( 1 
+ x/ + Ø (1 2+ x/.

Using (A. 6), we can write (A. 9) as

_ 07

For complex values of x we can still define the function Ø (x)
as the integral (A. 1), making this definition unique with the aid
of a cut along the real axis below the point —1. This function
fulfils an equation similar to (A. 4),

(x) + Ø l l =  log' x,	 (A. 11)
x	 2

where the definition of the logarithm is made unique by the
prescription just mentioned. From (A. 11), we conclude that

ReØ(e`^) = — 4̂ 2.

For I x I < 1, we have the power series expansion

n2 ) I(— 1)n + 1 ,xn
Ø (x) _ 

— 12 + _^ \ n2

(A. 12)

—

(A. 13)
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From (A. 13), it follows that

i^	 ^sin(n a^
ImØ(— e ) _ — ^u n2

—v(i9).	 (A. 14)

Numerical values of Ø(x) for real x can be obtained from the
paper by MITCHELL. The function tV (t) in (A. 14) has been
tabulated by CLAUSEN1.

T. CLAUSEN, Jour. f. Math. (Crone) 8, 298 (1832).

GERN (European Organization for Nuclear Research),
Theoretical Study Division, Copenhagen, Denmark

and
Institute for Theoretical Physics, University of Copenhagen.

Indleveret til selskabet den 18. februar 1955.
F:erdig fra trykkeriet den 20. august 1955.
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