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I
n the theory developed by YuxAwA, the short range

character of the nuclear forces is intimately connected

with the existence of a new type of particle, the so-called

meson, with a mass of about two hundred times the mas s

of the electron . According to this theory, the nuclear forc e

should be due to a virtual emission and absorption . of

mesons by the heavy nuclear constituents which in th e

following will be called nucleons * . The further assumptio n

of the possibility of processes in which mesons are simi-

larly absorbed and emitted by the light particles (electrons ,

neutrinos) leads to' a description, of the ß-decay as a com-

plex process in which a meson, virtually created by th e

transition of a neutron into a proton, is immediately an-

nihilated, emitting an electron and an antineutrino . Already

in his first papery , YUKAWA developed a theory on thes e

lines ; describing the meson field simply by a scalar wave -

function, he found for the energy distribution of the p-rays

essentially the same formula as given by the original

theory of Fi:RMi 2).

Since the scalar theory did not give the right type o f

nuclear forces, a new formalism, in which the meson fiel d

is described by a vector, has been developed by severa l

As regards this notation, compare reference 22 .

1 *
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authors 3> and the corresponding form of the theory of p -

decay has been given by YUKAWA and collaborators`I> . They

found that the most general form of this theory, in which

the expression for the interaction energy between the meso n

field and the light particles does not contain derivative s

of wave-functions of the light particles, leads again es-

sentially to the formula of FERMI . A distribution of the

type considered by KONOPINSKI and UHLENBECK S> could

only be obtained by introducing an interaction explicitly

involving derivatives of the neutrino wave-function . This

distribution formula leads, of course, to a lifetime-energy

relation for the p-radioactive elements of the same typ e

as the original KONOPINSKI-UHLENBECK theory, a result

which is incompatible with the experiments on 'Li ; these

experiments seem, in fact, to be in accordance with a

lifetime-energy relation of the type which follows fro m

the FERMI formula 6 > . As regards the energy distribution o f

the p-rays, however, the measurements on the ß-spectra o f

different radioactive elements do not agree even for th e

so-called "allowed transitions" with the ,simple FERM I

distribution, especially for the lower energies . Also the

formula of KONOPINSKI and UHLENBECK 1S in obvious

disagreement with recent more exact experiments .

BETHE, HoYLE . and PEIERLS 7> have tried to eliminate

this difficulty in the FERMI theory by the assumption tha t

the measured spectra are the result of a superposition of

different elementary processes of the FERMI type. Thei r

assumption is supported by the fact that the p-decay in

some cases has been found to be accompanied by a

y-radiation . According to this point of view, the shape of

the (3-spectrum should be connected with the frequency

and intensity of the y-rays . A real test of the assumption

in the case of 13N, where the positron spectrum is experi-

mentally well-known $>, is, however, impossible at th e

moment - since the experimental data as regards the y -

radiation obtained by different investigators 9) deviate es-

sentially from each other, the existence of the y-radiatio n

even being denied by one author 10 )

Apart from the discrepancies in the theory of 3-decay ,

the vector model of the meson field leads to anothe r

difficulty in connection with the forces between the heav y

nuclear particles, since the resulting expression for the

interaction potential also includes a term of dipole typ e

which is too strongly singular , for small distances . MOLLE R

and ROSENFELD ") have shown that it is possible to remedy

this defect by introducing besides the vector wave-functio n

a further pseudoscalar wave-function for the meson field .

As indicated by these authors, the introduction of a pseudo -

scalar wave-function leads also to a generalization of th e

p-theory . For the interaction between the mesons and th e

other particles we get then new expressions which contain ,

just as in the vector theory, derivatives of the wave -

function of the mesons . If a suitable canonical transform-

ation 12> which separates out the static interaction betwee n

the nucleons is performed, the transformed Hamiltonia n

will contain a direct interaction between the nucleons an d

the light particles, described by an expression which, i n

general, also contains derivatives of the wave-functions o f

the1ight particles . Since the interaction between the nucleon s

and the light particles is responsible for the (3-disintegratio n

processes, we find for the energy distribution of the ß-rays

a formula which may deviate from the FERMI formula

and, in some cases, is identical with the formula whic h

was found by FIERZ 13> in a FERMI theory starting from



the most general interaction between the nucleons and th e

light particles .

It should be mentioned that YUKAWA'S theory of p-decay

further supplies a connection between the lifetime of fre e

mesons in the cosmic radiation and the lifetimes of p-radio-

active elements . Taking for the universal p-decay constan t

of the FERMI theory the value given by FERMI 2 >, YUKAW A

found qualitative agreement between the lifetime of th e

mesons in cosmic radiation determined by EuLER 14> and

the lifetimes of the heavy p-radioactive elements . This

agreement was only obtained with that expression for th e

energy of interaction between the mesons and the ligh t

particles which does not contain derivatives of the neutrino

wave-function. In the case `where such derivatives ar e

introduced into the energy expression, the value for th e

lifetime of mesons turns out to be about ten thousan d

times too small, since it contains an extra factor of th e

order of the square of the ratio between the masses of th e

electron and the meson . It is known, however, that th e

value for the universal p-decay constant, as given by FERMI,

is too small to account for the lifetimes of light elements ,

especially of 'He . This means, as pointed out by NORn -

HEIM 15> , that the theory of YUKAWA would not give the right

relation between the lifetimes of the light radioactive ele-

ments and the lifetime of the cosmic ray mesons . It can

be shown is> that this difficulty is unavoidable in any theory

containing only one type of meson field and can, in principle ,

be removed by the introduction of a mixture of two type s

of meson fields. It should be noticed that recently FERMI 17 >

has drawn attention to the fact that the difference between

the absorption of cosmic ray mesons in air and in con-

densed materials is due not only to the instability of the
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mesons but also to a polarization of the material . In the

evaluation of the lifetime of cosmic ray mesons, the above

effect must therefore be taken into account .

2. Survey of the theory .

Before proceeding to the main problem, we shall first

give a survey of the generalized theory of the meson fiel d

including the pseudoscalar wave-function referred to above .

For the description of the neutral and the positivel y

and negatively charged mesons it is convenient to intro -

duce three (real) fields, the first two of which are con-

nected with the charged mesons while the third represent s

the neutral mesons") . Each of the three types of field wil l

be characterized by two vectors F and U and two furthe r

functions Ø __and T, the latter having the invariance pro-

perty of a pseudoscalar. The field quantities belonging t o

the three different kinds of field will be distinguished b y_

a heavy printed index, i . e . (F3 , U3 , Ø3 , `N3) represent the

neutral meson field while Øi , `Yi) and (F2 , U2 ,

(D2 , `'2) together describe the field of the charged mesons .

It is convenient to group three corresponding quantitie s

into a symbolic vector, viz .

~

	

-~

	

---->-

F = (Fi , F2 , F3)

--9-

	

-> -} -)-
U = (Ul , U2 , U3)

lb . = ((Di , Ø2 , Ø3)

ll° = (9'1 ,

	

, 9'3) .

The field quantities F and U as well as (I) and qe are

canonically conjugate, satisfying the usual commutatio n

relations, i . e .

6
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[
uk (x, t) , F; (x', t) ] _ h

i
c s (x- x') s uv s

k l

[Øk (x,, t), `YL (x ' , t)] =
~e s (x x ' ) 8k i

while all other pairs of field quantities commute .
We shall now write down the Hamiltonian for a syste m

of heavy particles (protons, neutrons), light particles (elec-
trons, neutrinos), and the meson field including the mos t
general interaction between particles and field .

All quantities referring to the light particles will through -
out be denoted by the same Ietters as the corresponding
quantities referring to the heavy particles but with the
symbol . . placed above. For instance, the " isotopic" spi n
of the nucleons is denoted by the letter T = (Ty , T2 , T3 ) ,

where T3 = -!- 1 characterizes the neutron state and T3 =

-1 the proton state of the heavy particle . Accordingly ,
we shall use the notation i = (il , T2 , T3) for the " isotopic "

spin of the light particle, where T3 = + 1 means the elec-
tron state andT3 = - 1 the neutrino state of the light particle .
Similarly, p, a and p, & are the usual DIRAC spin vari-
ables for the nucleons and the light particles, respectively .

For later reference, we shall now list the quantities which
appear in the Hamiltonian and refer to the light particles :

N= 6'1Y * 4)
171= 91Y'*p 1 6 Y )

T= x * TP2Y )

S= Y' 'p a y

	

(3)

P - K241* T 4)

Q = K2 Y) *T &o p

I~ = fi Y' * T p 2 y .

On the Theory of p-Decay .
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Here 'p denotes the wave-function of the light particle ;
the g's and f's are universal constants which have th e
dimensions of electric charge and determine the strength
of interaction between light particles and the meson field ,
x is the reciprocal of the range of the nuclear forces an d
is connected with the mass Mm of the meson by the relatio n

Mm e
=

h

Analogous quantities referring to the nucleons will appea r
in the Hamiltonian. It should be noticed that the quanti -

-4- -->-

ties ?P1, T, Q and .R are proportional to the ratio of th e
velocity of the nucleons to the velocity of light and are ,
therefore, small compared with the quantities N, S, P.

We have :
( i ) ~ ~ ( i)

T s (x-x )

(i)
(t)

(i)

	

-*CO
T P1 6 U (x x )

(i)
p

(
t)

	

~
-)-(i

)R = f T

	

)S (X- X
( i)

In these expressions, we represent the nucleons in th e
configuration space, all quantities belonging to the i-th

particle being denoted by the index (i) . The constant s

g2,

	

12, which have the dimensions of electric charge ,

determine the magnitude of the nuclear forces .

(2)

(4)

Z,g2
x ( i)

( i ) (i )-, ( i )

	

-->-->-( i)
T p.,, 6 s(x-x )

(i) (t)
(t) s (xx(i )T

	

)Ps 6

( i)->-( i )

	

--~ -)-( i)

(i) (i)

8 (xx(i)T

	

)P
i

= g2

K (i )

f2= ZT 6 s(x-x . )
}}K

(i)

Q = !2 -

K (i)

l
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As already mentioned, the vector model leads to a
singular term in the static interaction energy between th e
nucleons ; a similar term, with opposite sign, arises fro m
the pseudoscalar part of the field . These two terms cance l
each other if one puts

If2I = I g21 •

The expression for the Hamiltonian can then be writ-
ten as a sum

e.'l'=e7k+ @Xi+ H1 + H2

	

(7)

where e/'Ck and n2 are the kinetic energies of the nucleons
and the light particles, respectively, and is the energy o f
the meson field, while the interaction energy consists o f
two parts : H1 containing the constants g1, g2, f2, only, and
giving rise to the forces between the nuclear constituents ,
and H2 which also contains the constants f1, f2, 9i, 0 2 and
is responsible for the p-disintegration . If MN„ Mp and m
are the masses of the neutron, the proton and the electron ,
respectively, and if the mass of the neutrino is put equa l
to zero, the first four parts of the Hamiltonian are given
by the following formulae :

(i)->(i) ±( i )

	

0)( 1 	 +T(i)

	

1-T(')

	

ll~ c~{Pi

	

cP +P3

	

2
M~,c2+

2
	 s

MPC 2
-~ ~

	

1 + T3 22~ = s y'" (P1 6 cp + p 3	 mc y d V

f

	

2 5 {F2 +K2 (divl' Tl ) 2 + (rU) 2 + K2 v L) dV

+
2 - S {(02 + (grad 40 2 + K2 " 2j dV

On the Theory of (3-Decay .
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H 1 = 5{K_2(N2_Ndjv+52 +5rotUjçdv
(9)

- ~ P grad ya dV + 2~ Q2 dV .

The scalar products involving the symbolic isotopi c
vectors are analogous to products of ordinary vectors, e . g .

Q = ØkQk
k

F2 -

	

(Fk
) 2

k

The expression for H2 is not uniquely determined b y
the requirement of relativistic invariance of the whole
scheme. It is, of course, always possible to add to th e
Lagrangeian function invariant expressions a s

-} ~ -} ~

rl (TT-SS )

K- 2 (1fTDI-NN)

-»
T l "" ( Q Q - PP )

rlrrr
K-2

R
..1~

where i« and rl "" are arbitrary constants . The same
terms would also appear in the Hamiltonian and we hav e

then for the most general form of H2 the expression

(6)

P grad y► = L Pk: 6 x
µ

Ii a
µ, k
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H2 = S jx 2 I 2 N2 -I- N(-divF -{-- N)l +

r 1 ~ -.=->-

	

7_7? -~ :7> >
} I 2 S-+- S(rot U-}- S) [TF+ 11'I U] dV

- S (Pgrad tip +~ Q+ yeR-PP)dV

sSS)dV+rl'x (JIM-NN)dV

+11"(QQ-P1°)dV-}-r)"'x 2 ~RRdV.

The last integrals represent a direct coupling between

heavy and light particles of the same type as the couplin g

in the original FEumI theory . In a theory like that pro -

posed by YUKAWA, where the ß-process should be con-

nected with the instability of mesons, one would not expec t

such direct coupling to appear in the Hamiltonian . It is

seen, however, from (11), that it is impossible to choos e

the rl's in such a way that all terms of direct couplin g
-*~

	

--~~
disappear . It is true that the terms NN, S S- and PP

vanish if we choose ri = ri ' = rl " = 1, but instead we ge t-} -} >
terms containing 11l1TI, TT and Q Q, which are again

of the same type. We have, therefore, to retain the general

expression without ascribing beforehand definite values t o

the rl's . For the same reason, it is not allowed to neglect
> »

the terms containing 11'1111, TT, Q Q- and RR- although

they are of a smaller order of magnitude than the terms
-- *

NN, SS and PP.

3 . Derivation of the formula for the 3-decay .

Since the terms H1 and H2 contain an interaction be-

tween the meson field and the nucleons or the light part-

ides, the p-emission is, in this form of the theory, partl y

a second-order effect involving a meson in the intermediat e

state. It is possible, however, to perform a contact trans-

formation 12) leading to an expression for the . Hamiltonian

in which the static interaction between the nucleons appear s

explicitly. This new form of the Hamiltonian contains ,

furthermore,a term of direct interaction between the nucleon s

and the light particles, from which the P-process can be

obtained as a first-order effect in a perturbation calculation .

The unitary operator e$, which determines the contact

.transformation (defining any new variable A ' in terms of

the old variables A by the formula A ' = Q-1 A has

the form

with*

}
o7C= 91~ T(`) fUdV+ g2z_

(i)

	

K (i )
where

-xr i

f
±(j) .

x) = -grad 4 Tr rl (

Since the old variables do not appear again in the

--»

	

->-(i

)
r i

	

x - x

following, we shall from now on omit the prime in th e

symbols for the new variables .

Apart from the static interaction in the Hamiltonian

expressed as a function of the transformed variables w e

shall now only retain such interaction terms which are o f

importance for the p-disintegration, and we find in thi s

way the expressio n

" The symbol n between two vectors denotes their vector product .

(12)

~ (14)

T(1) 6 (t) ~ [( Pi ) A F) +'i")

	

dV (13)
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el=

	

+

	

+ @7(i
-I-Hstat +Hp

where tek, ejiÇ and

	

are given by (8), and*

(15)

1

	

(T
(i) (k)

Hstat_ k

	

T )

÷(i)

	

3(k)
r ik = X - x

±
(i) ±(k) e

-xri k

-g l + g2 (~ 6
)~ 4TCr ik

of a process in which a neutrino in a negative energ y

state disappears and an electron is created in a positiv e

energy state while a neutron in the nucleus changes into

a proton .

If the initial and final states of the nucleus are denote d

by the letters no and ii, and the states of the electron an d

neutrino involved are described by the eigenfunctions p s
and p0., the probability per unit time for such a proces s

f

	

-xri

x
T(1) °~-(2 4 Trr .

grad R dV
~

+fz rl,,, ( i ) () R (x ( i) )T
p 2

K

~ T( i ) T f(~ ) dV- g2 ~ T(')1Y1 (a' ) l\ f(`) ) dV-
K

~

- g2
~

T(l) S (0' (1) grad) f (1) dV -
K

-Kr i
-f2

~ T (t) Pgrad div 6-(t)
e

	

dV .
K

	

4 TTr i

As the p-disintegration consists of a transformation o f

a neutron into a proton with a simultaneous emission of an

electron and an antineutrino, we now ask for the probability

" We have, already at this point, put p ( ~ ) = 1 in Hstat .

to happen is equal t o

2Tr
S(Enp--En-}- E6 -Es) I (n , s l Hp I r1o, 6)

I2

	

( 1 8 )

where Eno , En , Ea. (< 0) and ES are the energies of the cor-

responding states.

Using (6), it is easily seen by partial integration that

the matrix elements of the four last integrals in (17) ar e

small compared with the matrix elements of the three first

integrals* since they will contain an extra factor of th e

order of the ratio between the momentum of the electron

(or the neutrino) and Kl-t, which again for ordinary p-pro -

cesses does not exceed the order of magnitude
FYI
	 N 10-2 .

Retaining the other integrals in (17), using the definition s

(3), and putting in the integrals approximately

F The partial integration of the last integral in (17) yields, furthermore ,

a double integral extended over a small surface around the point x (') .
The value of this integral i s

µ f2 ,r(0å,( 1) - j(x ( 1> )

x

	

S

where the constant µ depends on the shape of the surface chosen

(e . g . µ = 47r3 for a sphere 1 . Terms of this type occur already in th e

expression (17) and the appearance of (19) can be accounted for b y
changing the coefficient (1-rl") into (1 -li" -10 so that the genera l
character of the final result will not be affected by this change .

T
~

	

(i)N- e
Kri

dV+g 2 x .T S( i )
3p

(i) -( i)
6

e
xri

g 1

	

3

	

dV-
(i)

	

4TrT i

+

	

Tl
g2

T
0) ->(i) [ p2i) T (x(1> ) + ps) S (x(1))1 +

(i )

+ rl gå T(i) [Pil) 6(L) 11 (x(`> ) -N (x(1)) 1 +

+ K2 T (t) [II" p(,j )

	

(x (t) ) + (1 -

	

6(i) P ( x(L ))] +
~

(17)

-

(19)
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e
-KK ri

	

1

	

± ±
( i)	 - 2 g(x_ x )

4Tr ri

	

K

we get for (18 )

Z~
S(Ena -En + E6- ES)

I (n i Hß
I n o

where

S6

	

2 (i )

	

*

	

(0 4(0 * „ ~

	

f2f1 3(i )
Hp = ~KSQ {9191~s~6 + 9292 P 3 a- ~sP36~6-

	

6 grad ~s p 2 q) 6
(i)

( i )4( i ) * _

	

( i)-,-( i)
+ T19292 P2 6 T 5 P2 6~6- T19292P3 6 TsP3 6 To-

r

	

( i ) ±( i ) * -

	

*
+ T l 9191PI 6 (psP1 6 (p o' -11 919'1 q)s(p6

+ T1 ' ~ f2f2P (i ) (PsP1+( 1-T l ")faf2 6(i)cPs

(i )+fifiPa ~sP2 P6

and
(i)

	

(i)

(i )Q - Ti I T Q2

is an operator transforming the i'th nucleon from the neu-
tron state into the proton state. In formula (22), . the func-
tions cps and p6 are taken on the i 'th nucleon's place. We
shall now introduce the following abbrevations :

N

J

(i)
`P dx

(1)
• • • dx

(i-1)
dx

(i + 7 .)
• • dx

(N )

J =1
n QA =

	

T no

x
(i-1)

dx
(i +1)

• • dx
(N)

•

-)-

	

y

	

n
(i) (i)4(i)

	

(1)

	

(i-1)

	

(i+1)

	

(N)
C

= ~S TnQ P16 `Yn•dx • . .dx

	

dx

	

- dx
=1

->

	

N

	

(i) (i) ~(i)

	

(1)

	

(i-1)

	

(i+1)

	

(N)
D= i S`Yn Q P2 6`Yà dx

	

dx

	

dx

	

dx

	

(23)

N

	

(i) (i)3(i)

	

(1)

	

(i-1)

	

(i+1)

	

(N)

F. _ ~ S `Yn Q P3 `Nno dx

	

dx

	

dx

	

. dx

N

	

(i) (i)

	

(1)

	

(i-1)

	

(i
+1)

	

(N)
F = ~Sn

	

P1n• dx . x

	

dx

	

•••dx

N

	

(i) (i)

	

(1)

	

(i-1)

	

(i +l)

	

(N )

G = ~ S `~'R Q P2 o dx • • dx

	

dx

	

• • dx

where `' denotes the wave-function of the nucleons and N
is the number of nucleons in the nucleus . The operator s

() and p(
2

) are proportional to the ratioopi

	

between the velo-
c

city of the i'th nucleon and the velocity of light . This means
--)-

	

--)-
that C, D, F and G are small compared with B and A ,
respectively, while E = B, the operator p 3 differing from unity

only by terms of second order in u . This fact will be of im-
c

portance for the final discussion of the distribution formula .
With the above notations we get *

(n[Hß6 lno) =

- Tl ' )9191 A (x) ps (x) q)6(.x) dx+ Tl ' 9191 C(x) cPs (x) P1 61), (x) dx

+ (1- Tl) 92 92 S E (x) q)s (x) P3 (po' (x) dx + Tl g2 92 S D q)s (x) P2 6 p a. (x) dx

T)' ' f2 f2 S F(x) cPs (x) P1 T6 (x) dx-}-- ( 1-A. 1-2 S B (x) ~s (x)
6 T6 (x) dx

)"
fi fi •1 G (x) (x) P2 q)6 (x) dx

-> ~f2fi
S B (x) [grad 9) : (x) . P2 q), (x) + q): (x) Pa' grad pa_ (x)] dx .

K

* In the following, x and x' denote all the spacial coordinates o f

the respective points.

1) . Kgi . DanskeVidensk. Selskab, Matk . - fys . Medd . XVIII, 7 .

	

2

(20)

B~- Q
(04 (0

`I' dx(1 )i=1• n

	

no

N

(24)
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We have now to insert the expressions for the wave -

functions of the light particles . The neutrino can be repre-

sented by a plane wave of the form

-

x

~

p Gcp6 = a Q en

	

.

	

(25)

For q)s we have to insert the wave-function of an elec-

tron in a field which outside the nucleus is a Coulom b

field and inside the nucleus has a form suitably chose n

to represent a mean value of the electric potential of th e

protons. Just as in the theory of FERMI, we may the n

assume that the radial part of the wave-function cp s and it s

first derivatives do not vary appreciably inside a region of the

extension of the nucleus . We can, thus, in (24) replace th e

radial part of the function ps by a constant equal to it s

value on the boundary of the nucleus. This value again

does not differ very much from the corresponding value o f

the solution in a pure Coulomb field .

An examination of the exact wave-function of a DIRAI

electron in a Coulomb field shows then that, while we for

light elements may replace the exact wave-function b y

that of a free electron, such a procedure is not allowed

for the derivatives . Since the expression (24) also contains

derivatives of the wave-function ps we are obliged, eve n

for light elements, to use the exact solutions of the DIRA I

equation for an electron moving in a Coulomb field .

To get the probability of emission of an electron with

an energy between E and E+ dE, we have to sum (21)

over all neutrino states o and all those electron states fo r

which the energy lies in the interval (E, E+ dE) . In order

to sum over all neutrino states, we have first of all to tak e

the sum over the two different spin states (belonging to

the same - momentum and energy) of the neutrino . This

summation is easily performed by using the method o f

CASIMIR 19> . Second, we integrate over all directions of th e

momentum of the neutrino and, finally, over all energie s

of the neutrino . Due to the 5-function in (21), the result

of the last integration is that we have simply to pu t

-Ea. = E0 - E0-E 3 = W- Es

	

(26)

where W is the energy supplied by the nucleus in . the

ß-process .

We insert the wave-function (25) into (24) and take

into account that the wave-length of the neutrino is larg e

compared with the nuclear radius, so that the exponential

factor can be put equal to 1 inside the nucleus . We get thus

Q(n hisp Ito) =

h
- Fa•

J
-B (x) q) (x) P2 dx j a6 -= Sa

The first of the integrals in this formula is of just th e

same type as the matrix element appearing in the theor y

of FERMI .

2 *

2 f
') 9'I

	

A (x) ~s (x) dx

	

S C (x) ~s (x) PI ä• dx=

	

1(1

	

11

	

91

	

-I- rl 9i
ll

-I- (1- 11)92g2 E (x) c )s (x) P3 ädx + 119'2 92 D (x) q)s (x ) (> 2 6dx

+ n„
fa f2 ~ F (x) q)S (x) Pl dx + ( 1-

	

f2 f2 5(x)p(x)dx

f2fl
K

(27)
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- The neutrino wave-function is normalized in the usua l
way inside a large cube of the volume V by putting

u6
aa. - v-

V

with
uQ ua. = 1 . ,

Using the above expression for (n 1Hß6 I no) we find for
(21) a formula which contains products of an integra l
appearing in (27) with the complex conjugate of the sam e
or another of these integrals, e . g :

s A(x) p(x)dx . 5 p 5 =

= Ç5A X ')p;(X F ) P5 (X)A* X)dX/dX

= i SSC (x ' ) q)s (x ' ) P 3 q)s (x) D* (x) dx ' dx

	

(31 )

+SS [C(x') (1)s(x') A ßp 3 ~q)s (x)D* (x) dx ' dx .

The quantity obtained has now to be summed over al l
neutrino states belonging to the energy Ea. . According to
the method of CAsIMIR 19) , which makes use of the relation
(29), this sum is equal to

z s
T6

+H6 S*2E,

where H6 denotes the energy operator for the neutrino,
and the sum is extended over all directions of the neu-
trino momentum pQ . The performance of this rather

troublesome calculation leads to an expression U containin g
terms like

S` A(x') q)s (x') q)s (x) A*(x)dx'dx

S

	

(x ')p(x ' ) 8 p5 (x)E(x)dx'dx+c.c .

É (x') A q)s (x' ) p2 ' cps (x) C (x) dx' dx - c . c .

S J ~E (x') q)S (x' ) pi ä] [grad q)S (x) • B (x)] dx' dx - c. c .

S S [B (x ') grad q)s (x ')] [grad ~s (x) •B (x)] dx ' dx .

	

j

The probability of emission of an electron with energ y
between Es and Es + dEs is then, remembering (26), given by

2 IT	P(ES) dEs

	

}-t 113 c3 ( W- Es)2 dE s ~ U,

	

(33)

the summation being extended over all states of the elec-
tron belonging to. the same energy Es . In order to evaluate
this sum, it will be necessary to find sums of the typ e

f (I)s (x') O u, i, Ts (x)s

ou, , = 6 up U

	

(u = 0,1 ; v = 0, 1, 2, 3 ; p0 = 1) .

As already mentioned, we have to use the exact solutio n
of the DIRAC equation for the electron and to put the
radial part equal to its value on the boundary of th e
nucleus. We shall use the solution in the form given b y
RosE20), who denotes the radial part of the first and las t
two components of the four-component wave-function b y
fK and gK , respectively . The quantity x is intimately con -

(28)

(29)

(30)

C (x) cps (x) P1 6 (Ix • 6 p2 ~s (x) D* (x) dx =

(34)

with
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netted with the total angular momentum quantum number
j and it can take on all values except 0 . The angular part
of the wave-function depends upon x and, furthermore ,
upon a magnetic quantum number m K , which can take on
half-integral values depending on K. We can thus writ e
the sum (34) a s

Here, TK nz K denotes the four-component wave-function o f
the electron, and the inner sum is extended to all values
of m K which belong to a given K .

It is found that the quantities Xu , i, can be expressed
by help of the radial parts fK and g K of the wave-function s
and the unit radial vector

~ }
x x

For example, we get for K = - 1 the following expression s

X(0, o ) = 2 [n (x) • n (x ')]f 1 (r') f 1 (r) + 2

247,1) =

,Y(0]-21) =

0

0

Xo,
31)

= 2[n (x) n (x')] f 1 (r') f 1(r) - 2 g_ 1 (r ') g_ 1 (r)

.I.'
1,

å)= 2i[n(x)An(x')]fl(r')Î_1(r )

X1,1= 2in (x)g_ 1(r')f_ 1(r)-2in (x')f1(l'')g_1(r)
!Y1 2 1) _- 2 n (x) g_ 1(r' ) f 1 (r) - 2 n (x') f (r') g_ 1 (r )

Xi
31) = 2 i ~n (x) A

r
n (x')] f_1(r') f_1 ( r)•

Also the terms in U which contain derivatives of th e
electron wave-function can easily be calculated . As it will
be seen, the terms of the sum (35) with IK > 2 can b e
neglected in the evaluation of U, so that it will only b e
necessary to find besides the expressions (36) the corre-
sponding quantities with K = + 1, -2 and + 2 .

As already mentioned, we may put the functions fK (r)

and gK (r) equal to their values at the boundary of th e
nucleus, i . e . to their values, when r is given by

r _ F
und « 1 ,

h./mc

	

Pijmc

The functions fK and gK are given 20) by the formulae

_

	

aZEs

f

	

v1 Æ Es (2p sr)Y-1 vp s eT` ps
K

gK}

	

v 'rr ['(2y+1 )

X {eiPsT Y(-)
(

	

aZE)

	

(38)
+\y + i	

Ps

	

P s
aZE

F (y + 1 + i 	 s , 2y+1 ; 2 ip sr)T c.c . `
Ps

	

)

where c . c . denotes the complex conjugate, F- the con -
fluent hypergeometric function, and

y =
vK 2- a2 Z2 ,

all quantities being expressed in atomic units .
For light elements and for the whole p-spectrum except

the very lowest part of it, we can assume that

Za E
Za « 1 and	 s « 1 .

	

(39)
Ps

K (x') Q u, ~ ~K, m K (x)

IKI =1 mK

	

I

K~o

4-
n =

(36)

(37 )

aZEs
l(y+ i	

Ps l
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Expanding the expressions (38) into series in r, puttin g
ZaF.

Za =

	

s = 0 and neglecting terms of higher order i n
Ps

r, we find that for negative x the function fx is small of
the first order in r compared with gx , while for positive x it
is the function gx which is small compared with fx . Fur-
thermore, it is seen that the order of magnitude in r de -
creases with increasing x I . We have

	

fx ~̀ rgx

	

gx Nrfx

	

fx-1 Nj'fx

	

<0

	

gx +i rgx x>0.

	

(40)

	

gx-1 cv rgx

	

fx+i cv rfx

These relations show that the sum (35) can, in general ,
be restricted to the terms with x = -T 1, since the term s
with higher xi will be much smaller . Only in the quan -
tities like

	

X0 and

	

Xx 3 , where the first term with
x

	

x
K = 1 is expressed by the "small" radial functions only ,

it is necessary to add one second term with 1K = 2 which
may happen to he of the same order of magnitude . The
calculations show, in fact, tha t

Xl 0 2) = 6 i [n (x) • n (x ')] [n (x) A n (x')] f 2 (r') f 2 (r) -

-2i [n (x) A n (x)] g_2 (r) g_ 2 (r)

XL
,2)
- 6 Z

[n (x) • n (x')] [n `x) n n (x ) J f-2 (r~) !-2 (r) +

+2 i [n (x) n n (x')] g_2 (r') g-2(r) ,

the first part of these quantities being negligible and th e
second being of the same order of magnitude as X1 o and
~(-1 )X13 , respectively .

Also in all those terms in U which contain derivative s
of the electron wave-function and, consequently, the deriva -

tives d1K and dr, the radial functions corresponding to

x = 2 cannot be neglected . These derivatives satisfy the

differential equation s

x =

. (Es + Z_a) gK

	

K) _
dr

	

r

	

fK

dr

	

(Es+ +
Za

) - (1 + K)
gK

It is easily seen that the order of magnitude of thes e
derivatives decreases with increasing I K l, with the only
exception of the step from x ~ = 1 to xi = 2, since th e

coefficients (1-x) and (1 + K) ,just vanish for x = + 1 an d
x = -1, respectively .

All necessary quantities XûK,, being calculated, we insert
them into the formula for U and put the different radia l
functions equal to their values at the boundary of th e
nucleus. These constant values can be taken out of th e
integrals (32) . Under the integral sign, there will remai n

two of the functions A, B, • • •, G, and some combination s

of the vectors n (x) and n (x ') .
In the course of the calculation, we have to introduc e

no less than 28 different types of such integrals, each o f
them being a functional depending on two of the function s
A, B, • • •, G, but the summation makes most of them .
disappear from the formulae . The remaining integrals are
the following :

co l (W, V) = W (x ' ) V* (x) dx ' dx

W 2 (Y, Z)

	

SS Y (x') Z* (x) dx' dx
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co 4 (W, Y) _

	

W (x ') n (x) Y * (x) dx' dx

w, (Y Z) °

	

Y (x ' ) A [n(x) -n (x')] Z*(x) dx'dx

co, (Y, Z)

	

[Y (x') (x) ] Ln (x) Z* (x)] dx' dx

co, (Y, Z)

	

.l 1 (x') (n (x) f1 n (x')] L n (x) Z * (x)] dx' dx

where W and V denote the scalar functions A, F, G, whil e
Y and Z stand for the vectorial functions B, C D, E.

In the final formula, ternis appearing with the same
constants can be compared as regards the order of mag -
nitude. In order to eliminate those expressions which ar e
small, we notice tha t

rnua lNine ~, a Z'1' cv 10-2

while Es and ps are of the order of magnitude 1 . Further-
more, the functions F and G are small of the order of
magnitude

c c‘.) 10-1 (see p . 17) compared with A, and s o

are C and D compared with B, while, as already mentioned,

(e) .
apart from terms of the order c

Two of the matrix elements which appear in the dis-
tribution formula are known from earlier theories, viz .

col (A , A) -
I J A (x) dx I 2

	

(45)

and
2~

ca 2 (B, B)

	

B (x) dx .

	

(46)

The quantity (45) is just the matrix element appearin g
in the FERMI theory and its absolute value cannot excee d
the order of magnitude 1 :

W l (A,A) Ç [wl (A, A)] max C.‘3 1 .

The quantity (46) which also appears in the vector

theory given by YUKAWA is of the type introduced alread y
before by GAMOW and TELLER 21) in order to account fo r
the experimental 'selection rules . Since

~ Bx (x) dx, ÇBxdx, ~ BZ (x) dx

S A (x) dx

only by the appearance of the spin components ax , ay , 6z ,

respectively, whose squares are equal to 1, the quantitie s

IS Bx (x)dx

do not exceed the order of magnitude 1, i . e .

co, (B, B) < [CO2 (B, B)] max CV 3.

W8 (Y, Z)

	

S CY(x')n(x')~ [n(x')n(x)] [n(x)Z*(x)] dx' dx

Ws (W, Y) = S S W (x ') [t(x ') n (x)] [n (x) Y(x)] dx' dx,
J

Kh

	

liÎm
mc m

N 10-2

and that for the light nuclei considered here

(43)

(44)

differ from

S B
y (x) dx

2

(42)

On the Theory of p-Decay.
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(VII)

(VIII)

Nr. 7 . STEFAN ROZENTAL :

We shall confine ourselves to the consideration of th e

so-called allowed transitions, which means that the quan-

tities (45) and (46) do not vanish but nearly attain thei r

maximal values . In some cases, which will be discusse d

later, the same assumption has to be made as regards th e

matrix elements

W2(C, C), W2(D,D) , Wl(F,F), Wl(G,G),

	

(47)
too .

The summation over all electron states being performed ,

we get with the significations indicated above the following

expression for P(Es ) dEs , where Es , W, ps , p6 and r are

expressed in atomic units mc2 , me and - , respectively,
me

and the value

ps = Vg- 1
is inserted :

P (E S ) d Es =

_ 2 ~mc \ 4 (mc 2\
-rr' K~2

	

h ~

x {1 ~~ )2
,6 ,,, 2 Wt (G, G)

+f2
(~c)

f2 LW ' 2W1(F, F) +(1 - 11„)2W2(B , B)]

	

( II)

2 2
r

+
(~ 12 L rl , 2 W2 (G, C) + (1 -11') 2 W 1 (A , EI)]

	

( III)
\ 2 Jv 2

+ (0c)2 F2 W2 (D, D) + (1- 'q) 2 co, (E, E)]

	

(IV)

	 f	 	 1

	

1 1)

	

(E,--l

	

1
+f2(~
	 ~ 2g2 (M C	 K~f (1- Tl) c.WS (E, ~B / B~

J
ZO(

+~~ \2~ ~) W8 (B ~ , 7. B)(Za) 2 ~

On the Theory of p-Decay .

J flf2 , ,(hc)1 ,6 ,6
[co l (,F, G) - co l* (F, G) ]

sl

	 f2	 	
r

+f2g~	 g2(1- Îl)
(1-,6„ ) L

W2(B, E)+ W 2(B , E ) ]

+gtg2
(~cg)
	 2g2166~

[W2(C,D) - Wå(C, D ) ]

~~
2 `

+ (he) '
	 (

~) (1 -,6r,)
[CO6 1

B> T 13/ + Wg
(
B, r

B)J ZO C

+ 9 AÉPs

Î2iz
)2g2

~ ~z)
irl [W 5 (B , D) - W: (B, D) rnuc t

s ,

4 Po- 2 f.
3 E f(c) 22 (x h) (I -Il

„
) W 2 (B , B)

s

+ 3 ES {
f
(iC) 2 2

(n)c
~t)

I ~„
[W3 (F, B) - W3 (F , B)] l'nua l

-f2 ~~zC] 2g2 (K~2)
z [co

(

+f2 g
(hC

2f
)
l
2	

(Kni)	 g2 /.mc`
l l-TI )

+ (~C)2
(K   n

) [Wß (B, B) + co*, (B,
r B)J Z

+ PS

	

al
2 2

~

f1 9
(h

2
c

f

f) 2
i9'2

r l
,,,

( 1 - 1 1) [co, (G, E) + co',' (G, E)] z'nuc t

f2g~2gi ' ( 1 -,6~~) L W5 (B , c) + W 5 (B , C)J I' nuc l

+ 1 f1f

c
2f

2
i !mc\

i)

	

[co, (G, B) + co 3 (G, B)] j' nuc t

28

(48)

Es -1 (W- Es ) 2 dEs x

(I)

(V)

(X)

(XII )

(XIII )

(XIV)

(XV)

(XVI)

(XVII)

(XVIII)

(XIX)

(XX)

(XXI)

)_o(D, 1 B) ~ z'ut Zoc

B, .E)+W2(B,F.) ]

I'
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3 1

+ i p6
f22'22 ]22c

2

2( , )3

	

(~c) ~x h
)

WB B

+ 3 Po- (h~2
(Inc

	

[C0 6 (B,
i

B) -- w~ (B,
r

B)i Za

	

(XXIII )

	

- 1 Ps fif2 fi

	

(G, B) + co : (G, B) -

	

(XXIV)
3 Es (I-zc)

a

~ ~

- co y (G, 1 B
/

I Tauoff o.)s (G, 1 B) 1-nu 61 Za
T

		

I '

~

	

+
9

PÉPs

{ f(~2)
2	 1

\K

~) 0.,,
[03, (G, B ) + W 3 (G, B)] rnucl (XXV)

s

	

2 V2 i

	

2

	

+
~~
	 j2 \K } ' 2 co, (B, B)} .

	

(XXVI)

The distribution formula is supposed to hold for th e

emission of electrons . To get the corresponding formul a

for the emission of positrons, the quantities ES and E6 in
the preceding calculations have to be replaced by -ES

and -Ea., respectively . This means, according to (26) ,

that the final distribution formula follows from (48) i n

changing W into - W and E s into - Es .

4. Discussion of the disintegration formula .

The first six terms of the expression (48) are of the

FERMT type and it is seen that no set of the constants

p, ri ' , rl" , rl"' can make them disappear . The terms (V)

and (VI) depend besides on the matrix elements of th e

element in question also on its nuclear charge . This depend-

ence is a consequence of the fact that the Hamiltonian

also contains derivatives of the electron wave-function .

In the formula (48) appear a number of universal con-

stants as well as the constants rl, ri', rl" , rim . MØLLER 22)

has recently pointed out that the theory may be brough t

into an especially symmetric form in which the universal

constants hitherto arbitrary are connected by certain rela-

tions. In this way, the number of constants will be de -

creased. In section 5, the distribution formula will be dis -

cussed under the assumption that the constants are fixe d

in this definite way . In the present section, the discussion

is carried out for the case where no assumptions are made

as to the relative magnitude of the universal constants

involved . It will be seen, however, that we get the sam e

types of energy distribution formulae as in the case dis -

cussed in section 5 .

In order to compare the different terms in (48) we

notice that the constants g l and q2 are determined from

the binding energy of the deuteron and the range of nu -

clear forces to b e

	 9i

	

1	 92

	

1
4Tr c

	

35

	

4Trhe

	

15 *

They are of the same order of magnitude and so is, ac -

cording to (6), also the constant f2 . We have, furthermore ,

the relations (43) and (44) so that, for example ,

@ 8 (E,
1

B)

	

Z a
r

	

Z cc c" cos (E, B) I ,	 "' ws (E, B)
nucl

for the light elements considered here. In comparing the

different terms with the terms (II), (III) and (IV) we have,

in general, to compare them with their second parts, sinc e

the quantities F, C, D are smaller than A and B, respect-

ively. But in the case when the corresponding constant rl

is equal to 1, only the first parts of (II), (III), and (IV) are

different from 0, and it will thus be necessary to assum e

(XXII)

(49)
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that, in' these cases, one or more of the integrals (47 )
obtain, for allowed transitions, their respective maximu m
values .

As nothing is known about the relative magnitude o f
the constants fI , gi , f2 , g2 , it is convenient to distinguish
two cases :

a) fi does not exceed the order of magnitude of the con-
stants f2 and g 2 ,

ß) it is much greater than fs and g 2 .

An examination shows that, in the case (a), the term s
(V), (X) - (XIII), (XV) - (XVII) and (XIX) - (XXVI) are
small compared with the terms (I)-(IV) and (VI) . The
terms (VI), (XIV) and (XVIII) are also small, except in
one case, viz . i f

fI "' does not greatly exceed the order of f2 (50)

and, at the same time,

The formula (52) is just the same as that found by FIERZ l3)

in the most general FERMI theory .
In the case indicated by (50) and (51) and still unde r

the assumption (a), we get, because of the supplementar y
terms (VI), (XIV), and (XVIII), the following formula :

Here, a, b, c and d are constants depending on the
universal constants and certain matrix elements . The order
,of magnitude of the constants a and d cannot exceed that
of c, which again is < 1 . Furthermore ,

c>0, and IbI<1.

If, on the contrary, fi is so great that the relation (P)
holds, two cases are to be distinguished .

I f

P

	

,

	

f

	

4,

	

1

	

E2- 1
(E) = Ic • F (E) j L 1 + a2°~ + b E

+ 3 c (E 2- 1) + 3
d E
	 Z~r, . (53)

_ ,n"=1 fI
,n" , »

f2 (54)

and (51)
n' - 1 or fi » gi .

Under the assumption (a) and excepting the above case ,
we obtain the following disintegration formula :

P (E) = k • F (E) {1 1 + 1]

	

(52)

where k is a constant, E is the energy of the electron, F (E)
is the FERMI function

F (E) = E ß/E2 - 1 (W- E) 2

and X is a constant which is seen to be of absolute valu e
smaller than 1

~A~<1 .

we are again led to formula (52) . If (54) is not true, w e
obtain a formula containing two further terms with the

constants f and q :

P (E) = k" . F (E) j [1-{- aZ4l' + f7sl '] -I-

l

1 E2

	

(
55

)

+ É[b + 9'21'1 + 3 c (E 2-1) -{- 3 d E

The p-spectrum described by this formula is of quite the

saine type as that given by (53) .
2

The terms proportional to É and E	
E

1 change thei r

sign for positron emission but, since the correspondin g
D . Kgl . Danske V idensk . Selskab, Math .-fys. Medd. XVI] I, 7 .
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constant factors b and d can be of both signs, there is no

asymmetry between the emission of electrons and that of

positrons .

The [3-ray spectrum for 13 N (W = 3,4) as given by formul a

(52) is shown in Fig . 1, where curve I represents the pure

Fig . 1 .

FERMI distribution (A = 0), and the curves II and II I

correspond to the extreme values A = -1 and A = + 1 ,

respectively. The curves are normalized in such a way as

to have the same height at the maximum .

The supplementary terms appearing in the expression s

(53) and (55), i . e .

2
-

G (E) _ . 3 F (E) (E2-1) and H (E) = 3 F(E) E~	 . (56)

are plotted in Fig. 2 together with a pure FERMI distri-

bution, for reference .

Since it is impossible, at the present moment, to cal-

culate the matrix elements involved and, consequently, to

estimate the values of the constants a, b, • • •, g, nothing

definitive can be said about the shape of the distribution

curves in the different cases considered here. The formula

can lead to distribution curves with a maximum lyin g

either at higher . or at lower energies than that for a

FERMI curve .

Among the four light elements which lie at the uppe r

boundary of the SARGENT area,

6He, 17F , 150 , 13N
,

11G

	

(57)

and which, therefore, may be considered as those wit h

allowed transitions, 13 N is the only element for which

the (3-spectrum was measured with sufficient accuracy .

RICHARDSON 9> and LYMAN 9> found a nuclear y-radiation of

about 280 kV energy ; their measurements of the relativ e

intensity of this radiation differ, however, considerably

from each other . VALLEY 10), on the other hand, could no t

find any radiation of this energy at all. As long as no
3 *

P(E)

Fig. 2 .

i~ .
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more exact measurements are available the question of
the shape of the elementary components of which the [3 -
spectrum of 13N is built up still remains open .

The decay constant of the radioactive elements is given
by the expression

w
A = ~ P (E) dE.

	

(58)
i

Performing such an integration for the various term s
involved, we get, puttin g

K (E) = É F (E) ,

S wF (E)dE= 4Wlog(W +

	

1) +

1+ 60 (2 W4 -9 W 2 -8) 1/W2-

power of W, respectively . Thus, if the formula (51) i s
valid, the decay constant is given mostly by the fifth powe r
of W. In case the formulae (53 .) or (55) are valid, the life-
time-energy connection depends essentially on the coeffi-
cients which may vary from element to element . Thes e
two formulae would, thus, not be in contradiction with th e
measurements on 'Li which seem to indicate that, in thi s
case, the decay constant is proportional to W . On the
other hand, the relatively short lifetime of such an element
as 'He could possibly be explained by assuming that th e
coefficients multiplied with the functions G and H are
greater for 'He, than for other elements .

For the comparison of the lifetimes of radioactive element s
with that of mesons it is important to notice the followin g
fact . The decay constant of a free meson at rest describe d
by the vector wave-function -is, according to YUKAWA ,

given by the expression *
w

S G(E)dE

	

24
Wlog(W+yW2-1) +

+ 2520 (8 W s - 38 W 4 + 87 w 2 + 48) VW- 1
m es

Mrnc2 2 01 + 192
4-rrh {3 hc

	

3 tic}' (60)

w
ÇH(E) d E

	

24 (6 W 2 -f-1)log(W-+ -j/W 2 -1 ) --+-
1

~-3G0 (
4 W5-+-52 W 3-161 W) W'- 1

(K (E) dE =-g(4W2 -1-1)log(W+W2-1)-1-

+24(2 W 3 -1-13 W) j/w2 -1 .

These expressions show that, for increasing W, th e
different integrals increase as the 5th, 7th, 6th, and 4th

Besides the mesons given by the vector wave-function th e
present theory implies the existence of other mesons origin-
ating from the pseudoscalar wave-function . Since the pro-
bability for the disintegration of these mesons 23> is propor-
tional, with nearly the same coefficient, to

tic (i+'

)itis seen that, in the case (ß), they will bemuch les s
stable than those described by a vector . The lifetime found

2

* In the present formulation,
gr

and
gi

are equivalent to g? and
4 rr

	

4 -rr
(g 'Ai) 2 , respectively, used in YCEAWA 's paper, in analogy to the chang e

of units in electrodynamics from HEAVISIDE units to absolute units .

(59)
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If
(62)

from an analysis of the cosmic radiation refers to the "vector" -
mesons only, since the "pseudoscalar" ones disintegrate
almost at once . For the lifetimes of radioactive elements ,

however, both kinds of mesons are of importance .

Finally, it should be emphasized that the variation of

the atomic number for the elements (57) is so small tha t
the influence of the coefficients Z'/ . and in the formula e

(53) and (55) is far less important than that of the chang e

of the matrix elements which determine the magnitude o f
the coefficients a, d, f and g.

5 . Discussion of the disintegration formula with fixe d

universal constants .

MOLLER 22 has shown that it is possible to unite both
kinds of meson fields, i . e . the vector and the pseudo-

scalar field into one consistent five-dimensional tensor
scheme. This description leads to an interdependence be-

tween the universal constants involved, namel y

Is is, furthermore, necessary that the new scheme is in -

variant with respect to rotations in the five-dimensiona l
space. The quantities (10) are invariant to LORENTZ trans-
formations only, i . e . to a certain subgroup of the group o f
rotations just mentioned . In the general case, the quantitie s

(10) will be transformed into each other and the require -

ment of invariance leads to the relations

Tl = I-1
„

_

We introduce the values (61) and (62) into the dis-

tribution formula (48) and get, thus, an expression con-

taining the constants fl , f2, fi, f2, rl and rl ', only .

The discussion performed in the preceding section hold s

also for this special case . It will, however, be convenient

to repeat the discussion in order to get more detaile d

informations about the coefficients appearing in the distribut -

ion formula and to show that we really obtain all th e

expressions for the decay probability as in the most genera l

case . We have to distinguish three cases as regards th e

relative magnitude of the constants fl and f2 , the con-

stants f1 and f2 being determined by (49) :

(a)

	

fi« f
{

2

(P)

	

fl CV ! 2

(Y)

	

fl » f2 •

In case (a) we get a simple FERMI distribution

P (E) = ko . F (E) .

	

(63)

In case (E3) we have to retain in (48) the terms (I) ,

(II), (III), (IV), (VII), (VIII) and (IX) . We get, thus ,

(

	

1)
P (E) = ki .F(E) {a +

	

.

In the special case, only, where

=

we have also fo take the terms (VI), (XIV) and (XVIII)

into consideration and we obtain the formul a

(61)

(64)
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2
P (E) = k 2, F(E) {aa+ É+ 3 c 2 (E2- 1 ) + 3 d2 EE1 } (65)
where

a2 =

	

f f [co l (G, G) + co, (C, C) ]

+ n f å [ w 1 (F, F) + w 2 (D , D) ]

1+

	

f2 f1 CK ~ w$ (B I" T
B I (Za) 2

/

b 2 = - fi f2 fi f2 z [ w1(F, G) - Wi (F, G) + ws (C, D) -wz (C, D) ]

c s =

	

fzfi
(K~.}

w2
(B,B)

Fig. 3 demonstrates the influence of these additional terms .

Besides a pure FERMI distribution (F) with

the expression (65) is plotted for the following sets o f

constants :

2 2	 lI1 C
d2 -_ nn

K h
~ BI-+- ws(B,

i
B)

J
Za.w G

It is seen that
b

cannot exceed 1, that c 2 and d2 are
a2

of the same order of magnitude and that c2 > 0 .

In case (y), finally, we get again the same expressio n

(64) except if

Tl ' = 1 .

In this case, we obtain the formula (65) with the sam e

values for c 2 and d2 and with

=

	

f [col (G, G) +w2(C, C)]

	

//
+ f2 få [11

2 (co t (F,F)+w2(D,D)) 4- (1 -rl) 2
(
wB,B) w 2 E,E)]

+ f 2 f (Klic) cos (B , 1 B) (Z a) 2 (67 i

b 2 = - f1 fs fi fs i rl [w t (F, G) -wi (F, G) + w2 (C, D) -- co;' (C, D) ]

-
f2f 2(1- rl) 2 [ w2(B , E) + w 2 (B , E)]•

1

E

fig . 1 . The other terms with (E2- 1) and

change the distribution curve essentially .E do not

The influence of the asymmetrical term containin g

was shown in
E2 --1

which seem to be reasonable values for these constants i f

we assume that all the terms in a2 are of the same orde r

of magnitude as are the expressions c 2 and d2 .

It is thus seen that the types of the distribution formula

in the case considered in this section, where the constant s

are fixed in accordance to MØLLER'S considerations, are

just the same as in the case where the constants ar e

assumed to be independent of each other .
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However, attention should be drawn to the fact that ,

if we assume the relations (61) to be valid, the lifetime

of the mesons described, by the vector wave-function i s

essentially the same as that of mesons given by the pseudo -

scalar wave-function so that an introduction of the pseudo -

scalar meson field would not remove the difficulty pointe d

out by NORDHEIM (see p. 6) .

Summary .

A theory of [3-disintegration, on the lines proposed by

YUKAWA, is developed in which the meson field is describe d

by a four-vector and a pseudoscalar wave-function . In

section 3, the general formula for the probability of ß-decay

of light elements is derived. In the following sections, it i s

shown that-in spite of the necessity of introducing severa l

new universal constants-the general formula can, for al-

lowed transitions, be reduced to one of two simple types ,

only. This result follows regardless of whether the ne w

universal constants are considered to be independent o f

each other (section 4) or they are fixed in a way proposed

by MØLLER (section 5) .

A comparison of the theoretical distribution with th e

results of the experiments is difficult at the present tim e

because the measurements on the ß-spectra for allowed

transitions and light elements are, except for 13N, not

sufficiently accurate for this purpose . Furthermore, the

shape of the (3-curve will be essentially changed if the

nucleus formed after the j3-process can be left in an excited

state. Only in cases where the emitted y-radiation is in-

vestigated, it becomes possible to build up the spectru m

from its elementary components . The only element the

[3-spectrum of which is measured with sufficient accuracy

is "N, the results of the measurements on the y-radiatio n

emitted are, however, very divergent .

As regards the lifetime-energy connection, neither of th e

two types of disintegration probability is in disagreemen t

with the experiments .
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