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INTRODUCTIO N

I
n order to obtain a consistent theory of nuclear forces

by means of intermediary meson fields according to th e

idea of YuKAwA 1), it has been necessary to introduce a

considerable number of independent field variables for th e

description of the meson field 2 ) . As was shown in a recent

paper in these Proceedings by L . ROSENFELD and the present

author *, the meson field variables are to be taken as a

combination of the field quantities of the "vector" theor y

with those of the "pseudoscalar" theory . These two types

of field variables are so far completely independent an d

satisfy equations which are separately covariant unde r

arbitrary changes of the frame of reference . Each of the

two types of field equations contains a set of two universal

constants, g2, and fl , f2 , which determine the strength

of the couplings between the nucleons ** and the "vector "

and "pseudoscalar" meson fields respectively . In order to

avoid the occurrence of strongly singular terms already i n

the static interaction energy, the absolute value of g2 must

C . MØLLER and L . ROSENFELD, D . Kgl . Danske Videask . Selskab ,
Math .-fys . Medd . XVII, 8 (1940), later referred to as M: R .

** In a recent note on the theory of nuclear forces), the word nu-
don originally proposed by BELINFANTE, has been used as a commo n

notation for the heavy nuclear constituents, neutrons and protons . In

the meantime, howewer, it has been pointed out to me that, since the
root of the word nucleus is "nusle", the notation "nucleon" would fro m

a philological point of view be more appropriate for this purpose .

1*
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be chosen equal to the absolute value of f2 but, otherwise ,

the constants are completely independent . Although the

theory has all the defects inherent in any quantum fiel d

theory, it was shown that all processes in which distance s

larger than a given critical "universal" distance are o f

importance only, can be treated unambiguously by a "cor -

respondence" method .

Quite apart from the fundamental difficulties of quantu m

field theory, which probably can only be removed by a n

appropriate incorporation of the "universal" length into th e

theory3), the occurrence of two independent types of fields

and four universal constants in the theory is an unsatis-

factory feature which arouses the suspicion that the form-

alism developed in M .R. is only part of a more compre-

hensive formalism in which the vector and pseudoscalar

meson fields are more intimately connected and, conse-

quently, the number of independent constants is reduced .

In the first section of the present paper, it is shown tha t

the vector and pseudoscalar field equations may be com-

prised in a five-dimensional representation which is in -

variant under all rotations in a five-dimensional space, i f

the constants fi and f2' are fixed by the equations

fl = g1• f2 - g2 •

These equations are in accordance with the condition

f 2 2 = g2 2 mentioned above . Since the LORENTZ transform-

ations form a subgroup of the group of rotations in five-

dimensional space, the invariance properties of the fiel d

equations are in this way extended to a wider group o f

transformations in which the field variables of the "vector "

and "pseudoscalar" theories are transformed into each
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other. In the new formulation of the meson theory, we are ,

thus, left with only two independent constants which ma y

be fixed empirically, for instance by a comparison of th e

theoretically and experimentally determined energy levels

of the deuteron .

In section 2 of the present paper, the physical inter-

pretation of the formalism developed in section 1 is dis -

cussed. Since the group of five-dimensional rotations is equi-

valent to the group of space-time rotations and translation s

in de-SITTER space, it is possible to interpret the equation s

of section 1 as the field equations of the meson theory in de -

SITTER space . In the approximation where the curvature o f

this space is neglected, all consequences of the theory are th e

same as in the old formulation, apart from the differenc e

arising from the fixation of the constants f 'L and f2 which ,

of course, makes the predictions of the new theory mor e

precise .

In the last two sections, the equations of motion are writ -

ten in Hamiltonian form, the expression for the static inter-

action potential is derived, and the bearing of the theory

on the problem of the electric quadrupole moment of th e

deuteron is briefly discussed . It is shown that the value

of this .quantity, on the present theory, is of the same

order of magnitude as the value derived from the measure-

ments of RABI and his collaborators 4 ) . An exact determin-

ation of the value and sign of the quadrupole momen t

will, however, require a closer examination* .

* The definite tatement on the sign made in a recent note 9) was

premature .
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1 . Mathematical formalism of the meson theory .

Before proceeding to the main subject of this section, w e

shall give a brief account of the formalisms of the vecto r

and pseudoscalar theories . In either case, the assumptio n

of both charged and neutral mesons necessitates the intro-

duction of three independent sets of real wave functions

F1 , Fe , and F3 , where the index 3 refers to the neutral

field, while the two other sets of quantities, F1 and F2 ,

together describe the charged mesons . The differential equa -

tions of these fields may be compactly written as symbolical

vector equations if, following the procedure in M .R ., cor-

responding components of the three sets of field variable s

are grouped into symbolical vectors denoted by

F = (F1 , F2 , F3 ) .

If, similarly, the corresponding source densities S1 , Se ,

S3 , giving rise to the real fields in question are considere d

as the components of a symbolical vecto r

S = (S1 , S2 , S3)

the field equations of the three kinds of fields simply appear

as different components of symbolical vector equations . We

shall now write down the field equations of the vector an d

pseudoscalar theory in a form which shows their covariance

against LORENTZ transformations .

Let x 4 = ict be the usual imaginary time variable, while

xi , x2 , x 3 are the ordinary Cartesian space coordinates . In

the vector meson theory, the field is now described by a

four-vector Uk and an antisymmetrical tensor Gki = - Gik .
Similarly, the source densities giving rise to these fields are

described by a four-vector lrlk and an antisymmetrical
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tensor Ski = - S1k' both of which are functions of the

variables of the nucleons alone . The' field equations may

then be written

BU 5 U	 1	 k
GkI

axk a
x1 + Sk i

4

z

a Gkl +

axi
I= 1

Uk = Mk (k,1) _ (1,2,3,4)

(1)

where K is the constant determining the range of the nuclea r

forces . In the pseudoscalar meson theory, the field and the

sources are described by pseudoscalars 'y and R and

pseudovectors I'k and Pk , the source densities R and Pk

being again functions of the variables of the nucleons, an d

the corresponding field equations ar e

aIfIk

	

axkk

4	 	
( I )

.) Ô+
4K2 = R .

xkk= 1

In order to express the source quantities as functions of

the dynamical variables of the nucleons, it is convenient

to introduce five quantities y v (µ = 0, 1, 2, 3, 4,) defined by

Y k = - i ßak - p2 6k (k = 1, 2, 3 )

Y4 -ß - p 3

, yo = Yl Y2 Y 3 Y4

	

p l

where ß and (ak , pk , °k) (k = 1, 2, 3) are the ordinary

DIRAC matrices .

The variables yµ obviously satisfy the commutation rules

(2)

(p, v = 0,1,2, 3, 4) . (3)Yµ Yv + Yv Yµ = 2 sµv
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Let ' be the wave function of the heavy particles, and

`Yt = i `Y* ß

where y is the conjugate complex of up .

If, furthermore, T = (T1 , Ta, -r 3) is the "isotopic spin -

vector" chosen in such a way that the eigenvalues +1 and

- 1 of T3 refer to the neutron and proton states, respectively ,

the source densities occurring in (1) and (1 ') are simply

given by

Mk = 'Ft T Yk`Y (k = 1,2,3,
4)

R = fl 'F t T yo 'Y

Ski

	

2 Kt T [Yk] Yl] Y'

yk - 2 Kt T [Yo , Yk[ `r

(k,l) = (1,2,3,4)

where [yu , yv ] = yv -yti,yµ is the commutator of yp and y, .

The quantities (5) and (6) are real, apart from the four -

components which are purely imaginary, and this conditio n

is not altered by LORENTZ transformations .

As emphasized by KLEIN 5), the quantities occurring in

(5) and (6) are covariant for a wider group of trans -

formations than LORENTZ transformations . If we formally

introduce a new real variable xo, the five quantities (xµ )

= 0, 1, 2, 3, 4 may be interpreted as coordinates of a

point in a Euclidian space {R5} of five dimensions. Con-

sidering now an orthogonal transformatio n

* While the constants gl, fl, and f! are the same as those used i n

M . R ., the constant g! differs from the corresponding quantity in M . R .

by a factor of - 1, i . e . f =

	

fS = f', g
1

= g
l
', but g

e
= -g'.]

	

!

	

!

(4)

(5)

(6)
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4

	

4

	

4
x µ

	

aµv xv

	

aµP
=

	

= X app apv = sµv
vo

	

p = o

	

p= 0

A5 = I aµvI = + 1

in {R 5}, the quantities

tµ = i'tyµ i'
lnµv = - mvµ = ~t [Yu, Yvf

	

(8)

(µ, v) = (0, 1 , 2, 3, 4 )

will transform like the components of a five-vector and o f

an antisymmetrical tensor in {R,} .
a

For instance, the transformed variables tû will be connecte d
with the old variables by the equatio n

4

=

	

v tv
v= 0

and the transformed wave function `Y ' will be connected with `Y
by the relation

T'

	

SI'

S being a unitary operator which, for an infinitesimal trans -
formation

xµ =x xV, E41v = -Ev il (9)
u = o

is given by
1 ~

S = 1 + 8-

	

E µv [Yµ, Yv~

µ,v= 0

On account of (2) and (3) we have, therefore, S* $ pS -tp,where
S* is the Hermitian conjugate of S, and thus for the transforme d
variable `''t we get

Y''t = Y' t S- 1 .

This important relation only holds for such transformation s
which preserve the reality of the variables , xo, x2 s x3 i and the
imaginary character of x4 . The determinant of any transformation
defined by (9) and (9') is positive .

(9' )



10 Nr. 6 . C. MOLLER :

It is tempting now to comprise the five quantities (5) in

one quantity (Mµ) with five components defined by

J R

	

=0

	

(10)
'Mk µ=k= 1,2,3,4 .

According to (8), (21µ) will be a five-vector if fl = g 1 .

Similarly, the quantity defined b y

Pk

	

= 0,v = k = 1,2,3, 4
Sµv =- Svµ -

Ski v= 1
} -(1,2,3,4)

	

(10' )

will be a tensor in {R 5) if f2

	

g 2 .
Putting now

= 0
Uµ

	

Uk µ = k = 1,2,3, 4

and

G IN ° - Gvµ =
{GkI v = 1 l = 1,2,3,4 } (1 1 ' )

the equations (1) and (1 ') may be compactly written

aUv auµ

Gµ° ax - x + suv
v

8	
axvv+x2Uµ=1 I

(µ, v) = (0, 1, 2, 3,4)

if we assume that the field variables in (1) and (1 ') do not

depend. on the coordinate xo . Here we have made the con-

vention that Greek indices which appear twice, like v i n

the last equation (12)°, have to be summed over all values

from 0 to 4 .

The field equations are, thus, brought into a form in

µ = 0,v = k = 1,2,3,4

(12
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which their invariance against all rotations in {R 5} is ap-

parent, provided the field variables and source densities i n

(12) transform like tensors . As mentioned above, the source

quantities will be tensors if (and only if )

fi
-

91

	

fa -g 2

and the field variables Go and Uµ may by definition b e

taken to be tensors .

To obtain a real covariance of (12) of the kind men-

tioned above we must, of course, admit that the fiel d

variables and source densities in general may be functions

of all "coordinates" (xµ) including xo. We are, thus, led to

the view that the meson theory developed in M.R . represents

only a special case of a more general theory in which th e

field variables are characterized by five parameters (xµ)

= 0, 1, 2, 3, 4, instead of the ordinary four space and

time coordinates . A physical interpretation of this formal -

ism and especially of the variables x µ will be given in

the next section, and we shall here let the question ope n

whether the values of (xµ) are confined to a finite domai n

CO in {R 5 } or cover the whole five-dimensional space . We

only remark that the region CJ, if finite, must have a

form which is invariant under all rotations in {R5 }, i . e .

the boundary of CO must consist of concentric "spheres" .

The general field equations are, then, given by (12) wit h

= g 1 `Nt TY µ i'

Sµv

	

2x `YtT LYµ,Yvi T .

	

(14)

To be consistent, we have now also to generalize the

equations of motion of the nucleons to make them in -

(13)
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variant against all rotations in 0 5) . This is easily done ,

and we get for the wave equation of these particle s

{Yµâ a
	 +c

is UT Yµ +4c Gµv T [Yu,Yv]} `Y=0 (15)

and the adjoint équation

Y
a-M o e + 19~ UµTYµ- i92_ GT]Y Yv]_0 (15')âxµ

	

h

	

he

	

4xt c

the differentiation in the last equation operating backward s
on the function ye t. Here, Mo is an abbreviation fo r

Mo -
1-+-TgMo + 1-T3 M o

2

	

N

	

2

	

P

where MN and MP are the ordinary rest masses of neutro n
and proton. The equations (15) and (15 ') are obviously

covariant under all rotations in {R_} and, if y does not

depend upon xo, they become identical with the wav e

equations of the heavy particles following from the vecto r
and pseudoscalar meson theory .

Multiplying (15) by yet on the left, and (15 ') by y on
the right, and adding we get

`)tyu `N

	

0

	

(16 )

Multiplying (15) by `P t T3 on the left and (15') by
2

T3

on the right and adding gives *

	

-axµ`rtT.Yµ`) = [(uAt)

	

(GR ASµv )3 ] (17)

The symbol A indicates a symbolical vector product, i . e . (A AB)3
= A1 B 2 -A2 Bl .
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In this derivation we have used the relations

[T3 ,T 1 ] = 2ÎT2 and [T3 , T2] = - 2iT1

characteristic for any spin vector. Using the field equations

(12), we get further

a xµ~C\Gµv AU„13 =~tC[(UµAMµ)i-~(Gµ„ASµ„)3 1 . (18)

From (16), (17) and (18) it follows at once that the five -

vector

1-T

	

1r

	

lsµ

	

~	
2

3 yµ -
~t 1 G

A Uy
/s

	

(19)

satisfies the divergence relation

(20)

The vector y t yµ y in (16) and the vector s µ may be inter-

preted as the particle-current and charge-current densit y

vectors in 05) .

The equations of motion (12), (15) and (15 ') may b e

derived from the variational principl e

ôL= 0

	

(21 )

with the total Lagrangeia n

1

	

x2

	

TL = -4GGµ„ -
2

Uµ G µ } Uµ Mµ

(22)

~~
Tt [yµ

ax
	 +

Mh c,`['
} dxo dxl dx 2 dx3 dx 4 .

u

	

I



14

	

Nr . 6 . C . MØLLER :

Here, CO denotes the region in {R 5 } covered by the possibl e

(xµ)-values, Gµ„ is defined by the first equations (12), an d

y, yet and Uµ are supposed to be varied independently i n

such a way that the variation of these quantities is zer o

everywhere on the boundary of the region (Å) . The cor -

responding EULER equations are then identical with th e

equations of motion (12), (15) and (15 '), if the wave func-

tions tN and yet provisorily are treated as c-numbers .

2 . Physical interpretation of the formalism .

We shall begin this section with a brief survey of th e

properties of the de-SITTER world which, as we shall see, i s

of importance for the discussion of the physical inter-

pretation of the formalism developed in section 1 . As

emphasized by DIRAc 6), the de-SITTER space (with no local

gravitational fields) represents the only solution of the

equations of general relativity which has a non-trivial

group of operations carrying the space over into itself . The

group of operations in question is just the group of orthogon -

al transformations in a five-dimensional space considere d

in section 1 . This follows at once from the remark made b y

ROBERTSON 7 ) that the de-SITTER space can be interpreted

as the surface of a four-dimensional "sphere" (of hyperboli c

character in one direction) embedded in a five-dimensional

space {R5} . It may, thus, be described by five coordinates

xo , x I , x2 , x3 , x4 connected by the relatio n

xµ x~ = R 2

	

(23)

where four of the coordinates are real and one, x 4 say, i s

purely imaginary . The radius of the sphere R is connected

with EINSTEIN'S cosmological constant A by the equation
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R
= J

	

and is of the order of magnitude of 10 27 cm .

Any rotation in {R J.} represented by

x u, ' = aµ„ x,, , aµp avp = apµ apv
= SNv

	

(24)

= aµv I = + 1

obviously leaves (23) invariant .

Further, it may be shown* that the group of rotation s

(24) induces a group of transformations in the de-SITTE R

world which is closely analogous to the group of LORENT Z

transformations (including spatial reflections) and trans-

lations in the MINROwsKI world of special relativity . An

årbitrary point P on the sphere (23) corresponds to a

certain " event" in the de-SITTER world . In a small four-

dimensional region on the sphere around the point P, w e

may introduce the ordinary space and time coordinate s

x, y, z, t of special relativity . To see the connection between

these variables and the coordinates in {TO, we introduc

e that system of coordinates(x i ) in which the point P has

the coordinates (R, 0, 0, 0, 0) . For the small region in

question, we have then simply

(xµ) = (R, x, y, z, ict)

	

(25)

X
neglecting terms of higher order in

R
(k = 1, 2, 3, 4), and

infinitesimal rotations (24) in {R 5 } will correspond to ordinar y

LORENTZ rotations and translations in space and tim e

inside the small region .

A vector in the de-SITTER space will be a quantity

having five components A µ which by rotations transform

like the coordinates, I . e .

A µ ' = aµv A v .

* See the appendix and ROBERTSON, 10c . cit .') .
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If (A µ) represents a vector which has a correspondenc e

in classical physics like the electromagnetic potentials o r

the ordinary electric charge-current density, its direction wil l

lie in the de-SITTER space and, thus, we hav e

xv

	

= 0.

	

(26)

In the system of coordinates (25) for a small region a t

the point P, this condition reduces to Ao = 0, and the

four components A l , A 2 , A 3 , A 4 may be identified with th e

ordinary space-time components of the vector in specia l

relativity .

Any physical law in the de-SITTER space must be invarian t

against all rotations (24) and so be expressible as tensor o r

spinor equations in {R5 } . Since all equations in section 1

are of that type, they may naturally be regarded as the

equations of meson theory in the de-SITTER space * . But here

we meet with the difficulty that the differentiation processe s

in (12), (15) and (1 5 ') are going outside the de-SITTER spher e

and a priori the field functions are only defined on thi s

sphere which represents the physical space . In his paper

quoted above 6 ), DIRAC avoided the corresponding difficulty

in the formulation of the electromagnetic theory in de-SITTER

space by assuming all field functions to be homogeneous

functions of x u of some definite degree . In our case, it seems

more natural to use the following procedure. We extend th e

definition of physical space to a five-dimensional region CO

between two "spheres" represented by the equation s

'
This is one possible interpretation of the formalism in section 1 .

An alternative interpretation may perhaps be provided by the ,,projec-

tive" point of view according to which the variables (xp) are regarded

as homogeneous coordinates of a four-dimensional projective space . (See ,

for instance, W. PAULI, Ann. d . Phys . 18, 306, 1933) . Such interpret-

ation would also establish a connection with KLEINS unified theory
of gravitation and electricity . (O . KLEIN, Zs . f. Phys . 46, 188 (1927) .)
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2

p2 = xµ x. µ = (R-2)

	

i (27)

dl
2

p2 = xµxµ = lR
+ 2/ i

where d is a small but finite length, and the homogeneity

condition for the field quantities is replaced by certai n

conditions at the boundary of this space . This procedure i s

natural for two reasons : 1° the field vector Uµ describin g

the meson field does not satisfy a condition of the type (26 )

but has a finite component in a direction perpendicular t o

the de-SITTER space, i . e . the direction of increasing p ;

2° although the variable p itself has no classical analogue ,

the canonically conjugate momentum to p is, as we shal l

see, intimately connected with a familiar classical quantity ,

viz. the rest mass of the particles associated with the

field considered . For decreasing d the space defined by (27 )

goes over into the ordinary de-SITTER space, but also fo r

finite d the theory has a simple physical interpretation .

The boundary conditions for the field quantities ar e

obtained by expressing that the total electric charge in th e

world has to be constant . If Pi and P2 are two points on

the same arbitrary five-dimensional radius vector and with

p = R-
d

and p R+ 2 , respectively, we must have

=

l sµ p/
p4

P ,

where s µ is given by (19). Any field quantity like y, yi t ,

U, or Gµ „ , therefore, must satisfy boundary conditions o f

the form

D . Kgl . Danske Vidensk . Selskab, Math .-fys . Medd . XV]II, 6 .

	

2
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(P1) j R - 2 I 2= (Pÿ)

\

R +
2)

2

	

(28)

which are invariant against all rotations in
I R 5} .

Only such solutions of (12), (15) and (15 ') which satisfy

the boundary conditions (28) can have any physical

meaning. Solutions which do not satisfy (28) would represent

a state in which the total charge is not conserved .

Let us now consider a certain region around the poin t

(R, 0, 0, 0, 0) with an extension 1 small compared with R .

Since R N 10 27 cm this region may be very large (practically

infinite) compared with the dimensions in atomic physics .

In the following, we shall often neglect all terms of th e

order

R

since they will be of no importance . This procedure

is effectively the same as going to the limit R -->- c.o . In thi s

limit, the physical space UJ defined by (27) becomes an

infinite plane parallel region of thickness d . Introducing a

new coordinate = x0 -R instead of x o , this region i s

defined by

2~<2' oc<xk <oc, (k = 1,2,3,4) (25' )

where the four variables xk are the usual space and time

variables of special relativity . A rotation in {R_} with con-

stant xo then corresponds to an ordinary LORENTZ trans-

formation while an infinitesimal rotation in the (x o xk)-plane

corresponds to a parallel displacement along the xk-axis .

In this approximation, the boundary conditions (28) simply

become

d

	

/d
ll2 xk/ _ `f' `` 2 , x k
l

where xk stands for the variables x l ,
2'

x 3

(28 ' )
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Integration of (20) over all values of shows, by use o f

(28 '), that the four-dimensional divergence of the four-vecto r
d
2

1-73

	

t
d

	

2 Yk

	

he (GkvA ()v)
31

d

	

(29)

vanishes, i . e .

= 0 .
k xk

(29), which is the mean value of sk over all values o f

multiplied by e, may thus be interpreted as the charge -

current density vector in ordinary space-time . If the wave

functions do not depend on (29) becomes identical with

the charge-current density vector of the theory develope d

in M .R .

Consider a small three-dimensional volume in space-time de -
fined by three infinitesimal four-vectors ak , bk , ch . The charge
intersecting this volume will then b e

d
2

(k = 1,2,3,4)

(29 ' )

a l b i c i J1

C1 2 b 2 C 2 .1 2

a 3 b 3 e 3 J 3

a 4 b 4 04 .14

a l b 1 c l s l

a 2 b2C 2 S 2
a 3 bg C3 S 3

a4 b4 04 S4

d

	

(30)

which is invariant against all LORENTZ rotations and translations .
This quantity can easily be expressed in a way which shows it s
invariance against all rotations in (R 5 ) in the case of finite R .
The three vectors a, b and c lying on the de-SITTER sphere no w
have five components aµ, b µ , cµ satisfying the equation s

av

	

= b~, xµ = cv xµ = 0 .

To these vectors corresponds a certain four-dimensional volum e
containing points with a radius vector between p , and p + d p .
This volume may be represented by a five-vector dvµ with com-
ponents of the type)

2*
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a l

	

Dl

	

C 1

a2

	

b 2

	

C 2

a3

	

b 3

	

c 3

C 4a 4 b4

P 3
Ro d P

xl
P

X 2

P
x 3

P
X4

P

dop =

and the total charge intersecting the volume (a, b, c) will thus b e
d

	

R+d

	

R+2 x0 a 0 b0 co s0

(((( x1 a l b L c l s l
e

s dv

	

= d

	

x2 a 2 b 2 c 2 S 2 PRIP •

	

(30 ' )

	

d

	

x3a3b3c 3 s 3
R- -

R _ 2
x4, a 4 b 4 C4 s 4

(30 ' ) is obviously invariant against all rotations in {R 5} and be-

comes identical with (30) in the limit of very large R .

Let us now consider the wave equation (15) of the heavy

particles neglecting the interaction with the meson fields .

Putting

=0,1,2,3,4)

this equation may be written *

1y, pll
37 2 c l `Y=0 .

	

(31 )

The five-vector pu will now, in general, not satisfy equations

of the type (26) . Besides the four components in the direction

of the de-SITTER space, which may be interpreted as com-

ponents of the ordinary energy-momentum vector, (p1.) wil l

ordinarily have a component in the direction of the "radiu s

vector" p . To see the physical meaning of this component ,

In his paper cited above, DIItAC has set up a wave equation for

electrons in de-SITTER space which in form differs considerably fro m

equation (31) . In the limit of large R and small d the consequences of

the two equations are, however, practically identical .
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we may for a region small compared with R introduce th e

coordinates and xk defined by (25 ' ) . pk (k = 1, 2, 3, 4 )

will then be the ordinary energy-momentum vector and

po =

	

represents the component in the direction p .

Multiplication of (31) by the operato r

gives, on account of (3) ,

1

	

4

Zp~~--p-~D12 c 2 }`Y = O
tic- 1

	

)

which shows that a plane wave of the form

h (- Et+Px-I-Po )
`Y =a e

represents a state in which the particle has the momentu m

p, the energy E, and a rest mass

(32)

M = Mo
(33)

Since y in (32) has to satisfy the boundary conditions (28 ') ,
the variable p o can have only discrete values given b y

(34)

n being an integer .

The possible values of the rest mass are, thus ,

(oc
» M = Mo+

n2 h'

	

(33' )
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or

In the limit of very small d, the distance between th e

possible M-values will be so large that practically the lowes t

value Mo is attainable, only .

Similarly, if we consider the field equations of free

mesons, we get from (12) by cancelling the source quantitie s

aUv a(7u
Gµv

	

axµ axe

ti

vv+K2 Uu = o

and from these equation s

	

a Irv

	

a2 Uu

	

2

ax -
0 and

ax ax -K
Uu = 0

	

v

	

v v

a
2

	

10 2
2

+ a~ 2 C 2 dt2
-K

	

= O .

The solutions of this equation, satisfying the boundary

conditions (28 '), are of the form

->~

	

\
11Uu =ccµ cos ~t-~	 h p0 +8 )

where E, p and p o are constants connected by the equation

E2 = I p 1 2 + p
0

2 + K2
.h 2

and po again is given by (34) .

The equation (35) represents the energy-momentu m

relation for a particle with rest mass

(35)
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= 7 -V1+ (hPx0 ) '

Thus, the mesons may exist with different rest masse s

given by

M,,, = M,n l ,/1 ~- n 2	 	 2

	

(36)
	 h

o V

	

(119 cd,n )

where the minimum value

	

Kh
is the mass of the

c

meson in YUKAWA ' S theory. While the variable itself ha s

no classical analogue it is seen that the corresponding

"momentum" p o is closely connected with the rest mass .

It would, therefore, seem more natural to introduce the

variable po instead of or x o into the field equations . For

instance, if we expand the wave function y of the heav y

particles into a FOURIER series

(xk,

	

TPo (xk)

	

(37)

Po

where the summation is extended over all values (34) o f

p o , the boundary conditions (28') will be satisfied for arbi-

trary functions yP (xk) of the four variables x i , x2 , x3 , x4 .

Neglecting again the interaction with the meson fields, th e

differential equation for y po(x k ) has the form

1
x
	 -I- yo p o -I- M.c

	

Po
(x i) - 0

	

(38)

k=1

	

lc

which, by a simple canonical transformation, may b e

brought into the form of an ordinary DIRAC equation with

a rest mass given by (33) . If the meson field quantities are

2

Mm
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also written as FOURIER series of the type (37) with FOURIE R

coefficients Guv and Uv°, we get for the charge- and current -

density (29)

Jk =

	

e
.
i TP ° 1 2

T3

Yk P. he (Gkv w U
v

°)a } (39)

P o

showing that the total charge- and current density is the

sum of the corresponding quantities for particles with

different values of the rest mass . Each of the terms in this

sum has the same form as the charge- and current densitie s

of the theory in M.R. The "FouRIER coefficients" yP° , Uv°

etc. may, thus, be interpreted as wave functions of th e

particles with rest masses (33) and (36) . Since, however ,

the use of the variable p o instead of or xo spoils some

of the symmetry in the field equations we shall, in th e

following, use the original form of these equations given i n

section 1 .

3. Hamiltonian form and quantization of th e

equations of motion .

Following the general method developed by BELINFANT E

and ROSENFELD 8 ), it is easy to construct the "energy -

momentum" tensor and the Hamiltonian corresponding to

the Lagrangeian (22) of a system of heavy particles and

meson fields .

Putting now

i Gro = Fi•, l Sr4 = Tr

U4 = iTT,1►l4 =iN

(r=0,1,2,3)
(40)

the equations (12) may be written x

*) The notation A represents the time derivative of A divided b y

the velocity of light .
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L r = -F-
a

V + r

r

a G
I+Î. = x2Ur+

axrs
- lI

S

aF
x2V=-

ax s+ N
S

airs a u
G . =

	

-~

	

r +SrsIS

	

dxr

	

Ox s

where indices like r, s . . . are running from 0 to 3 .

We shall, in the following, use a representation of th e

nuclear particles in configuration space, the i'th particl e

being then described by the variable s

( i)

	

(i)

	

(i)

	

±(i)
,(i) )

q - ~T , p ' 6 ,x ,

-d<xo`) < 2

Since the variable xo = R+ will not occur any mor e

we shall for the sake of greater symmetry in the formula e

often write x o instead of In the approximation, where R

is treated as very large compared with the dimensions o f

atomic physics, the variables xoi) = s (`) are confined to the

intervals

(i )

	

( i)

	

( i)\

	

-(O
while the quantities (x i , x2 , x 3 ) = x may have practic-

all all values from - oo to + oo .

If we simply extend the ordinary quantization rules t o

this configuration space, we get

[p(ri)'

x(k)
s

]1 _

	

Srs

(r, s) = (0, 1, 2, 3)

(41)

(42)

(43)



26

	

Nr. 6 . C . MØLLER :

where pr(j) (r = 1, 2, 3) are the components of the ordinar y

momentum operator of the i'th particle and poi) is the

operator connected with the rest mass of the particle .

Similarly, the meson field variables Fr and Ur (r = 0, 1, 2, 3 )

are canonically conjugate variables satisfying the commu-

tation rules

~ l
[Fin, r(x , t), Un, s(x , f)] = i~icd 5. Srs ä(x0 - x0') (

~

x .-x') (44 )
all other pairs of variables commuting .

Using (43) and (44), the field equations (41) as well as

the equations of motion of the heavy particles may be

derived from the usual relation

A
~ic[

~, A l

with the Hamiltonia n

2d
lFr + x J V2 -{-

2
G r5 + x 2 Ur

-

d
1
{Lr11'I ~-Fr Tr}df~J

+ ~{ca(`)p(') + P
(2)M(i)c2

1
J

r

	

3

	

0

d

where

	

l d(.0 = d S dx o S. du

and the indices r and s are running from 0 to 3 . In (45) ,

V and G, are to be regarded as functions of the dynamical

variables defined by the equations (42) and the four

variables ar = ißyr are given by

(45)

dCil -

2
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_(p
2

	

r= 0
a

	

jl
l

r

	

p l 6r, r = 1,2,3 .

Due to the boundary conditions (28 '), which hold fo r

all field variables, partial integrations may be performed

freely in any integral expression without taking care of th e

contributions from the boundary.

The second integral in the Hamiltonian is an invarian t

which could have been omitted without disturbing the

invariance of the scheme . Also from the point of view o f

the derivation of the meson field equations (41) this term

remains arbitrary. As will be seen later, the inclusion o f

this term is, however, necessary in order to avoid the appear -

ance of singular terms in the static interaction of the typ e

of a 6-function .

In terms of the variables in configuration space the

source densities (14) ar e

11Iµ = g l d

	

T(i) iß(i)Yû̀ ) 5(x-x") )

Sµv = 22 d

	

T(i) iß(i) Lyµ)'
y,")] s (x-x(t)l

	

(47 )

with

	

s (x - x(i) / = ô(xo-xo(i)18( x-'-- x;(7) )

Eight of these fifteen quantities contain a factor of th e

same order of magnitude as the ratio between the velocitie s

of the nuclear particles and the velocity of light while th e

seven other quantities remain finite in the "non-relativistic "

approximation . The last mentioned quantities ar e

N = 111'I4 =g l d

	

T(`) 8 (x - x(`) )

(46)

S = (S32 , S13 , S21)

	

dg ' ( i) ( i ) -> ( q

	

i
T 0 3 6 s (x - x ( (48)

(i)-*(i )
T

	

8

	

( i )
P = (Sol, +so2, ~03) = x

d~l

	

~x - x~ .
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The expression for the Hamiltonian (45) shows that th e

energy of free mesons is always positive . The new formalism

thus constitutes a consistent scheme satisfying all theoretica l

requirements .

4. Derivation of the static interaction potential . Electri c
quadrupole moment of the deuteron .

By the method developed in M .R . it is easy to derive th e

expressions for the "static" interaction between the nuclear

particles . For this purpose, let us consider the equations

determining the "static" parts of the meson fields, i . e .

aG°

	

K"
~

	

rs _
0

ro+	
-a tx

G0 =
aU° - ati° + S

	

rs

	

ax

	

a x

	

r.s
r

	

s

obtained from (41) and (42) by cancelling the time-deri-

vatives Ur , I{;. and the source densities Tr and Mr which

are proportional to the velocities of the heavy particles .

From (49) we get

x°r
-K2 V° _ - 1~.axr Ox,

Using the relation

(49)

(50)

(51)

(52)
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which follows from the first equation (50), we get furthe r

from (50)

UO
_

K2 U°
_ a S r s

axsaxs

	

urO

r and s running from 0 to 3 .

We shall now find a solution V° of (51) satisfying the

boundary conditions (2 8 ' ) . Such a. solution may be writte n

as a FOURIER series

	

rI/

	

l

	

V° (x) _ vPo

	

Paxo

`x) e ' '
Po

(x) = (xo, x

where the sum is extended over all values (34) of p ° and

VP o (I' ) is a function of x = (x1 , x 2 , x 3 ), only .

Expanding N in a similar way

AT(x) =. ZNP ( e~ Pox o

Po

	

J

(53)

(54)

d

1

	

- Po x=

	

1

N(x) e ~
a

dxod d
2

~Po `x)

(55)

we get by introduction of (54) and (55) into (51) the dif-

ferential equation s

y Po - (K2+ (h) 2 ) vPo

	

1r Po

for the functions VP°a x) .

Equation (56) is of the same type as equation (11) in

M.R . Thus, we have the solution

(56)
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-*
VPa (x)

= NPo

_I/K2 + / Po) a

)

	

V

	

l Ae	
- dv

4Tr r

r = x - x
- ,~

(57)

analogous to the equation (14) in M .R .

Hence, with the help of (55), the function V° (x) in

(54) may be written

V° (x) =

	

(x - x ' ) d GJ'

	

(58)

where

= cp (r ) .+ 2

(59)

with
-K r

~ (r) =
e

4Tr r

and x' = d

The fact that (58) is the solution of (51) may be expressed

by the equation

å2Ø(x-x') x2

åxrô

	

- I (x x') _ -d 6(x-x)

	

(61 )
xr

where

b(x --x' ) = (x° -x'o ) 5

(60)



On the Theory of Mesons .

	

3 1

Similarly, we get a solution of (53) of the form

ur'

	

d S
Ô

ôrx

x') 0(x-x' ) d to '
s

an expression which by partial integration is seen to satisfy

the condition (52) .

We now separate the field variables into a static and a

non-static part by the equations *

..t'', =

	

+ F; , Ur = U° + Ur .

	

(63)

If we introduce these expressions into the Hamiltonian

(45) the first integral in @YC separates exactly into a "static "

and a non-static part, all cross terms vanishing on accoun t

of (49) and (50) . For the "static part" of the two firs t

integrals in (45) we ge t

.7(F

	

2d S I(Pr)2+K2(v0r) 2 +2 (~°S)2-f-1C2(U°)2}diJ )

- d SsdG~) .

By partial integrations and with the help of (49), (50) ,

(58) and (62) this expression may be writte n

* As in M . R . it is easy to find a canonical transformation effectin g

a separation of the type (63) . The corresponding unitary operator er
is simply

(62)

	 i	 S
(F° L%_II° F)dG.)

ca

	

hcd ,
= C
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F =
2d 1

}V°N+~ G° Srs}d(x)-8dS S
rs

dG)

= 9~2 { T (x) T (x" ) cD (x - x ' ) + (Srs (x) Srt (x' )

	

(6 4

2

	

_

+ Srt(x) Srs(x'))
a xxxx)

} dW dCJ'+ 8d

	

s dGJ .
s

	

t

We have now to introduce the expressions (48) for N
and Srs . Since we are at the moment interested in th e

static interaction potential only we may everywhere put

p 3 = 1, p 3 - 1 being of second order in the velocities o f

the heavy particles . In this approximations is equal t o

P and

2 ( S rs (x) Srt (x') + Sri (x) Srs (x')) = P(x) P(x') sst' (65)

Using (65) and (61), we thus get from (64)

~ 2d 2 ! { N(x)N(x)~+P(x)P(~)ax exss

	

s

+IS(P)2 d

12 d2J
{N.(x)N(x')+x2 P(x)P(x')}NdWdGJ '

1 \

	

(0 ( k ) rI

	

±(i)±(k)

	

( i )

	

(k)
2

	

(T T
)

L
gl -{- g 2 ~6 o' )~ Ø (x -x ) . (66)

i, k

This expression for the static nuclear potential differs

from the corresponding expression in M .R . only by the

function Ø (x(`)-x(k)) which here replaces the function

or
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e Kr(ik)

=	
(ik) in the earlier paper . In the limit of very small

4 Tr r

d, however, the quantity x' in (60) and (59) becomes very

large and for any finite value of r we may neglect all term s

in the expression (59) except the first . In this approximation ,

the functions CI) and ç are equal and the expression (66 )

for the static potential is identical with the expression derive d

in M.R. and does not depend on the variable

s The quantitiespoi) connected with the rest masses of th e

nuclear particles will then (approximately) be constants o f

the motion and (in the lowest states) have the value zero .

In the limit of very small d we, thus, get the same result s

regarding the stationary states of nuclei as in M .R. The

same holds for any effect derivable from the theory, the

only difference between the two formulations of the meso n

theory being contained in the relations (13) which reduce the

number of undetermined constants from four to two and i n

this way make the predictions of the new theory more precise .

This fact is of importance for the calculation of the quadrupol e

moment of the deuteron in the ground state . As shown in

M .R ., the quadrupole moment of the deuteron is due to th e

occurrence of given non-static directional terms in th e

expression for the Hamiltonian . If these terms are treate d

as a small perturbation the perturbed eigenfunction of the

ground state will be a superposition of S- and D-states, th e

coefficients of the D-states being proportional to the matrix

element of the perturbation energy corresponding to a

transition from the unperturbed S-state to the D-states . The

charge-density corresponding to the perturbed eigenfunctio n

of the ground state will then contain cross-terms betwee n

the S- and D-states giving rise to a quadrupole moment

proportional to the matrix element in question .

D . Kgl . Danske Vidensk . Selskab, Math.-fys . Medd . XVIII, 6 .
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The expression for the non-static interaction energy n

of first order in the velocities is obtained by introducing th e

static fields into the third integral in the Hamiltonian (45) .

Thus we get, with the help of (49), (58), (62), and by partia l

integration s

9.,rn - d t U°11Ir + .F° 1; }d(1J

=
d2

Ç { N(x') Tr (x) + SS, (x') MS (x) a	 0 dW dxi.

the indices r and s running from 0 to 3 .

In the limit of very small d, where

	

is equal to p and

is zero, we get by introduction of the expressions (40 )
0

and (47) for the source densitie s

L) T(k) ) (x (ik) grad
(k)

+ X(k"grad(t)) ~ (r(ik)

i, k

with

	

(68)

X(ik) _ - ~ 1 g2 [pß) (6(t) +
6(k))

+
Pi

t) Pak) ((1) A 6(k)/~ •
K

This expression is identical with the formula (85) in

M .R. if the undetermined constants occurring there ar e

chosen in accordance with the relations (.13) and the foot -

note on page 8 .

Now, it was shown in part III of the earlier paper tha t

the matrix element of the operator (85) in M . R . cor-

responding to a transition from a 3 S-state to a 3D-state is

proportional to fi f2 -g i g2
to the first order in the velo-

cities. Since the value of the constant fi and the signs o f

all the constants could be chosen arbitrarily in the previous

theory the value for the quadrupole moment arising from
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these terms could be brought into accordance with the

empirical result both as regards the sign and magnitude o f

this quantity. On account of the relations (13), which

represent an essential feature of the present theory, it now

follows that the matrix element of the operator (68) for any

3 S -* BD transition is zero to the first order in the velocitie s

and, thus, does not give rise to any quadrupole moment

of the deuteron in this approximation .

According to the prescription formulated in M .R . (p. 45)

we have, therefore, to go one step further in the approx-

imation treatment, i . e . we have in the Hamiltonian (86) i n

M .R. to retain the terms - ~{' and O which depend linearly

on the meson field variables . While the operator O is of

v 1
the second order in the parameters [3 and y (p =

c xr

_Tr =
2 \K2~

1
( r(i),r (k)) r (i) p(k)

- 1) (Q (`) grad") )
` J i, k

	

/ lp s

	

a

	

(69)

(Q( k) grad(k) ) (p (r(')) •

v = velocity of the nucleons, y = 4
Tt he x r G

cv q
l ' q2 '

or gi q2 ), these terms will give rise to operators of inter -

action between the nucleons which are of the third orde r

in the parameters i~, ß and y, and some of these oper-
c

ators will have non-vanishing matrix elements for 3S 3D

transitions . Besides the field-dependent interactions - @_,7r'

and .>, we have also to retain certain direct interaction s

of the order ß 2 y, which have been omitted in the express -

ion for the Hamiltonian (86) in M .R. The most import -

ant term of this kind is that which was neglected in (64 )

by putting p 3 = 1 . In the limit of very small d, this ter m

becomes simply

3 #
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The result of a calculation of the quadrupole momen t

due to the mentioned -terms in the Hamiltonian can, o f

course, only be considered reliable if all integrals in this

calculation are convergent or, at least, if the result doe s

not depend essentially on the exact value of the "cutting -

off" radius . In order to show that this condition is satis-

fied and that we may expect a quadrupole moment of th e

deuteron of the right order of magnitude we shall no w

briefly estimate* the contribution to this quantity arising

from the typical term n given by (69) . If the two particle s

of the deuteron are distinguished by the letters N and P

and relative coordinates x = xN - xP are introduced, th e

operator (69) may be writte n

22n = _
g2 (TN TP ) (pN pP - 1) (6N grad) (6P grad) q) (r) (70)
K

where the undefined contributions which correspond to th e

self-energies have been omitted . Using the representation s

(110), (111), and (112) in M .R . for the wave functions we get

for the matrix element of (70), corresponding to a transitio n

from the (unperturbed) ground state, "0" (1 = 0 , energy E° )

to a 3D-state with I = 2 and energy E

(E, 1= 2 I ~n
I ~> _- 1	 K~2 ~ z(2)* (aP

Ô) (° ~ o) dr~ z
(0) dv

where xå = x and z(° ) and
z(2)

are given by (113) and (114)
r

in M .R. The introduction of these expressions and integrat-

ions over the angles give s

I am greatly indebted to Mr. I . NØRLUND for valuable assistance i n

these calculations . A complete treatment of the problem is being per -

formed by Dr. L. HULTBEN .
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0 0

g2 ( 	 ) 2 d

	

)

	

-

(71 )= 2

	

0) _ - 2 y

	

dr F r) 2

	

dr r JJ R0 dr dr
0

where M0 is the mass of the nuclear particles and R0 and

R
2
E) are the radial wave functions for the unperturbe d

ground state and a D-state with energy E, respectively . For

R 0 we may use the approximate expression (109) in M .R ., i . e .

aK r
3 3

	

a x

	

2

	

R 0 = 1	 2	 e

	

r

	

r

	

Mo

	

1

a = 2,13 for M0 = 1 00

with
- (72 )

From (72) it follows that

( - f) Ro =- Rdr

	

2 0

and by partial integration (71) may be writte n

N7

,1= 2I nI0) = 2 1/2
4irtc(M ) Moc2K '(E,1= 2~ 63 I 0)

0

th

I

	

I )

	

4 •rr

	

(E)* d3 q)

	

1 d2 q)

	

d 2 cp d _ 1 r d _ 1
1= 2 GJ 0=

x3
R2

[ dr 3 r dr2 + dr2 (dr r), 1dr
R 0 dr

i . e .

4 •rr R(E)* ax
K.

t. 2

	

2
0

~1 ~ 2 { 1 J - ~ ~ Ro dr

4Traxfd2 cp ~ax + 11_d3 ~

x 2 dr 2

	

r

	

dr

Now by (125) and (126) in M.R . the correspondin g

quadrupole moment Q is given by the formula

(73)
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Q_ 21/2Ç(0lr 2 IE,1 = 2)(E,1 = 2I";II0) dE
5 t

	

Eo-E

8	 9 2 (Mm~3
MocE (0 11.2 1E, 1 = 2) (E ' 1- 216310)

dE .
5 4Tr lic Mo J

	

2

	

IEo ~ -I- E

On account of the completeness of the eigenfunction s

R (2) we get a fair estimation of the order of magnitude o f

Q by writing

g 2

	 )(m y 	 ii~1 c2Q=_8_
( 5 4-rr ~ZC

Mo
I E o I I Ent (O

I r 2 (~ ( O) x
2

where Em is the value of E corresponding to the maxi -

mum of the numerator of the integrant in (74) and

(0Ir 2 WI0) = 4 Çe-(a+1)x[(a+1)x3+(a+ 4)x2 +(a+8)x+ 8L
3a4 3a3 +12a2 +18a+1 0

4

	

(a+ 1) 4

by help of (72), (73), and (60) .

According to (108) and (109) in M .R. we have

	 9 2

	

Mm c 1
4Trc - 0,065, a = 2,13, and x =

	

=
2

10 13 cm'
h

for wlm
10

Mo. The value of Em may be estimated

k = - 1/M
0

E ] . In this way, it was found that the maximu m

of the numerator in (74) lies at about

E,ri N 0,025 Mo c 2 .

Since, further, E 0 = 0,0023 Tvl o c 2 we get for Q the ap-

proximate value

(75)

dx

by taking for R
2
E) the BESSEL function v'kr J,, (kr) (with
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Q cv - 3 . 10- 27 cm 2 (77)

Thus, the contribution of the operator to the qua-

drupole moment of the deuteron is of the same order o f

magnitude as the empirical valu e s) 2,73 • 10
2'

cm 2 , but of

opposite sign . All integrals involved in these calculation s

are convergent, which is due to the circumstance that th e

matrix elements corresponding to S-D transitions, only,

enter into the expression for the quadrupole moment . Al -

though the corresponding corrections to the energy value s

will depend essentially on the "cutting-off" radius it seems ,

thus, that the calculation of the quadrupole moment ori-

ginating from the interactions of third order in the para-

meters v, 3 and y will lead to an unambiguous result .
c

In the preceding discussion, we have only considered th e

limit of very small d in which the space defined by (27 )

becomes practically identical with the de-SITTER space . The

theory is, however, as we have seen, capable of a simpl e

physical interpretation for any value of d, and for all pro -

cesses depending essentially only on distances larger tha n

the universal distance ro (see formula (97) in M.R.) the

quantity d may be chosen as large as 2 •rr ro without chang-

ing the probability for such processes. For a finite value

of d the theory implies the existence of particles with

different values of the rest mass which perhaps opens the

possibility for a unified theory of all known elementary

particles with the same spin . In this connection, it should

be noticed that the form of the theory is not uniquely

determined by the form of the nuclear forces in distance s

of the order of magnitude x-1 . In fact, we could in th e

equations of motion (12) and the Lagrangeian (22) replac e

the source densities lilµ and So by certain mean values
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11"lµ and S µ„ over the variable p without spoiling the in -

variance of the scheme under rotations in {R,, .

For instance, we may put

Pa

	

P,

flu-~Mµ dp and Sµ„-SSµ„d p
P,

where PI and P2 are two points on the same five-dimensiona l

radius vector with p equal to R -
2 and R+

2
, respect-

ively. As regards phenomena which take place in distances

larger than
2

the theory in this form will give the sam e

results as in the form chosen in the present paper, but th e

probability for a transition between two states correspond -

ing to different values for the rest mass will be zero, at leas t

in the approximation where R is treated as large compared

with the dimensions of nuclear physics .

Finally, it should be remarked that the theory develope d

in this paper of course contains all divergence difficulties

inherent in any field theory since we have used the ordinar y

method of quantization of fields . Consequently, the ex-

pression (66) for the static potential, for instance, contain s

infinite terms corresponding to i = k which have to be

discarded .

Appendix .

By introducing suitable space and time coordinate s

(x, y, z, t) the line element of the de-SITTER world take s

the simple form of
2 cl

ds2 = e R (dx 2 -+- dy 2 + (Iz2) - c2 dt2

	

(78)

where R is a constant . The variable t may be interprete d

as the proper time of any observer with "coordinate velo-
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city" zero, i . e. an observer at a point (x, y, z) = constant .

Such observers, who by ROBERTSON 7 ) are called equi-

valent, are in many respects in a similar situation as th e

observers of a system of inertia in special relativity . The

geometry of space is Euclidian and the velocity of light i s

independent of its direction. The mutual distance of tw o

equivalent observers is, however, not constant in time, th e

distance measured at time t with a rigid scale of two

such observers at the points ( .x 1 , y 1 , z 1 ) and (x 2 , y 2 , z 2 ) being
et

1 = re R with

r = 4 ,
/
(xt -x2) 2 +(yi y2) 2 +(z 1 - 22) 2 -

The relative measured velocity is, thus, t = R 1, i . e .

proportional to the distance I .

If we introduce five variables (x 11) by the equation s

ct

	

et

	

et
= xeR , x2 = ye', x3 = ze R

((

	

r2

	

ct

xo = R l cosh- -
2R2

eR l

2

	

et \
x 4 = iR~sinhR+ 2R2 e R J

i . =
1/x211+y2+z2

	

///

(78) may be written
4

ds 2 = Zdxû.
µ

Further, we have from (79)

~ x2µ = R 2
P

which shows that the variables (xµ) may be interpreted as

the Cartesian coordinates of a point on a four-dimensional

(80)
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sphere embedded in a Euclidian five-space . The equation s

(79) may easily be solved with respect to the variables (x ,

y, z, t) . From the last two equations (79) we ge t

e t

xa - ix4 = Rex .

Putting for simplicity

y z =x , Y2-Y, Y3 = z

the inverse relations may then be writte n

x R
=

	

r -, (1• = 1,2,3)
x 0

	

ix 4

t =
R

hi
R

x° rx4

Now, ROBERTSON remarked that a rotation in {R,) de-

fined by (24) generates a transformation of the (yr , t)-vari-

ables which leaves the expression for the line element (78)
entirely unchanged, if the transformed variables (yr' , t ' ) are

defined by the transformed coordinates (xû) by the same

relations (79) and (82) as the original variables . Th e

transformation (yr , t)--(y;, t'), thus, connects the space-tim e

coordinates of two sets of equivalent observers in analog y

to the LORENTZ transformations in the MVIINKowsrl world .

A strict accomplishment of ROBERTSON ' S idea requires ,

however, a slight modification in the relations (79), (81) ,

and (82) . Since t is real we have, according to (81) ,

x 0 - ix 4 > 0, which shows that the points (xv) on the sphere

(80) representing the events in the de-SITTER world only

cover that hemisphere which lies on the "positive" side o f

the plane
xo - ix4 = 0 .

	

(83)

This plane is, however, not invariant under all rotation s

in {R;,} . The transformed quantity xi) - ix. may, there -

(81 )

(82)
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fore, occasionally be negative, which by (82) would mak e

the corresponding t' complex .

Thus, we have to set up a correspondence between th e

events (gr' t) and the points on the "negative " hemisphere ,

too . This may be done by letting two points (xu) and (- x 1 )

on the same diameter of the sphere correspond to th e

same event (ge , t) . While the equations (79), (81), and (82 )

are still valid for points on the positive hemisphere, w e

get then for all points on the sphere (80) the following

relations

x rR
r xo - ix4

(84)

t R in ~ x o R ix 4 l

c

instead of (82) .

The general orthogonal transfoi mation (24) with posi-

tive determinant can be compounded from special rotation s

of the following types :

I .

	

X . = xr ,

	

(r = 1, 2 , 3)

x~ - ix', = X (xo - ix4)

	

(85)

xo ix 4 = (x 0 + ix4)

	

J
where A is an arbitrary real number .

This transformation leaves the expression

	

and
N

the equation (83) invariant and has a determinant A ; = + 1 .

By (84) we get for the corresponding transformation i n

the de-SITTER world

' =
y r

Ur

	

(r- = 1,2,3 )

t' = f+-1n A l
c
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i . e. a change of time origin with a corresponding chang e

of scale in space . For X = -1 (84) reduces to

yr=-yr,(r=1,2,3)
(87)

t' = t

which represents a spatial reflexion at the origin .

x'o - ix4 = xo - ix 4

ar
2

r= 1
ar a rs xs - R2 (xo - Ix4)

3 f

	

ar
I I . xr = ~ ars xs + R (xo - ix4) , ( r

	

1 , 2 , 3)

where a r and a rs are real numbers satisfying the relations

3

a rt a st =

	

a tr a is = s rs
t=1

	

= 1

A 3 = Iarsl = + 1 .

This transformation leaves the expressions

	

xû and
u

xo - i.x4 invariant, it has a determinant A 5 = + 1 and

generates, according to (84), a spatial rotation and trans-

lation in the de-SITTER space

t' = t .

xa, x2 = x 2 , x3 = x 3

x1 cose-I-x4 sin e

xi sin e +x4 cos e

i
v
- or with O= i E
c

tghE = ° .

rsys +ar, (r = 1, 2 ;3)

-
y r

X 0

,
x i

x 4

tg O

(89)

(90)
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(90) leads, by (84), to the transformatio n

2

	

_2ct

2Rcothfi-1-R2+e R

2

	

2ct

coth 2 2- 2 R coth 2-I-- R2 - e R

et'

	

et

	

ct'

	

ct
y ' eR = yeR, z ' eR = zeR ,

which gives the relation between the space and time vari-

ables of two freely moving systems of equivalent observers

analogous to that afforded by a special LORENTZ transform-

ation. The transversely measured distances are the same for

both systems and the motion of the origin x' = y' = z' = 0

of one system with respect to the other system is that

of a freely moving particle which for t = 0 has a co -

ordinate velocity v in the direction of the x-axis . (Ro -

BERTSON, loc. cit .')) . For events with large negative values

of t, the second equation (91) shows clearly the necessity

of replacing the equations (82) used by ROBERTSON by

the equations (84) .

In a small region on the de-SITTER sphere around the

point (R, 0, 0, 0, 0) the equations (79) reduce to th e

equations (25) if we neglect all terms of higher order i n

9 z
R' R' R' R

than the first .
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x' = R coth
2

	

2

	

_ 2 e t

coth2 2- 2 R coth 2~- R2 - e R

I' = t+ R In { sinh2 2
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