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INTRODUCTION

he present papér has arisen from the author’s consider-
Tations'vin connection with the writing of a textbook of
prok;abili.ty and the theory of errors!.

In the practical apkplications of the theory of errors,
one meets with two important problems. The first problem
is how to test whether or not a given sample of measure-
ments has come from a normal population. Such a test is
necessary if one wants to apply with reasonable safety the
usunal theory of errors based on the assumption of the
validity of the normal distribution law. If the sample is
large, we have only to draw the frequency, or the total
frequency, .piolygon, and compare it with the corresponding
normal frequency, or total frequency, curve, possibly by
means of the Xz-test' of goodness of fit. A specially elegant

and efficient method of comparison is the method of prob-

its?, whereby the total frequency curve is transformed into
a straight line. However, in practice; these methods can

seldom be applied, since the samples are as a rule too

- small containing only few measurements—of the order 10

or less. The question is, therefore, how to test for normality

small samples consisting perhaps of only 4 measurements?
The next problem is how to test whether or not an

unusually large error has to be rejected as being due to

1) N. ArLey and K. R. Buch: Caleulus of Probability with Applica-
tions on. Statistics, Theory of Errors and Theory of Adjustment. Copen-
hagen 1940. (In Danish).

2) Cf.e. g. B. A. Frsuer and F. YaTes: Statistical Tables. London 1938.
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some false measurements. It is, of course, very important
that the false observations should be rejected, since one
false observation can completely vitiate the results of the
measurements. This problem is, however, a far more deli-
cate one than the first problem. On the one hand, assuming
the population of errors considered to be normal means,
in fact, allowing arbitrarily large errors to occur, though
with extremely small probabilities. The only safe and
legitimate procedure in rejecting unusually outlyingv ob-
servations is, therefore, fo reject them during the ob-
servalions themselves, because some peculiarities arouse
suspicions as to the constancy of the conditions of the
measurements or the like. On the other hand, if e. g. five
measurements of the starting velocity of a projectile gave
the results 398.6, 442.1, 442.3, 441.8 and 442.4 m/sec.,
nobody would hesitate, even without any knowledge of
the method of measurement used, to suspect the first
figure to be obtained under different conditions from the
other four figures. A closer investigation of the conditions
would, therefore, be advisable before the figure could be
admitted as true. In fact, it does turn out that the first
shot gives a smaller velocity than the following ones, be-
cause the gun is heated up during this first shot (“An-
wirmeschuss”). In praclice one would, consequently, be
inclined to cut off artificially the tails of the distribution
curve by discarding errors exceeding certain limits. The
question is, therefore, how lo oblain such limils? We already
stress here, however, that whatever criterion for false
observations we may establish has to be applied with the
utmost critique and caution. Otherwise we shall run the
risk of discarding many true observations and obtaining a

false impression of the accuracy of the measurements.
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It is the purpose of this paper to discuss these two
problems by deducing the distribution of the relativé errors.
Thus, we first obtain a method for testing even very small
samples €or normality and, next an objective criterion for
false observations giving us complete control of the risk
we run of discarding tI;l]e, but fortuitously large errors.

I. Deduction of the distribution law for direct and
equally good observations.

§ 1. Let o be a normally distributed statistical variable,
i. e. with the frequency function

(1.1}

F) = V%r ~exp| - 2]

2>

where f(x)dx is the probability of finding o in the range
between x and x4 dr, § the mean value, and ¢ the stan-
dard deviationV. If x,x,, -+-, a2, is a sainple consisting
of n (>2) independent and equally good observations of

-2, then, as is well-known, their average value

rytay+ - tx,
- (1.2)

an =

i1s normally distributed with mean value € and standard
sy o - . .

deviation —=, «x being the best estimate of the parameter
, n :

& T he n quantities

D In this paper the mean value of a statistical varnble with fre-
quency function f(x) is denoted by

m{xy = Sxf(a:)d:x:

and the standard deviation by

2{x}y = m {('c — m(m})g} = Sfx — mi{x))? flz) dw.
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n

— 1
vizwl.ﬁw:) <8ik——l>wk, i=1,2,--+,n (1.3)
k=1

which are called the residuals in contrast to the true
errors g = wi—§, are also, being sums of normally dis-
tributed variables, themselves normally distributed with the
mean value

m{v) = m{xy—mixy =0, i=12 ,n (14
and the standard deviation

e

— 2 /
—1 .
G{vi} = } (81.,\.—]—11) o?| = n—n— o, i=1,2, -+, n (1.5)

k=1

The n quantities

v, X, —

o

P; , 1=1,2,---,n (1.6)

O VEZIG

n
are consequently normally distributed with mean value 0
and standard deviation 1. The probability, P(p), of |p| = p
is then given by

! 2
P(p)=2 Vor exp <—‘j> dt. (1.7)

P

It is conventional to regard an observed value x; as false
if the corresponding p, is greater than the value p corres-
ponding to some small arbitrarily chosen probability P. If
we choose for this probébility e. g. the wvalue 0.001 we
must reject x; if |p;|=p (0.001) = 3.29 (¢f. Table I with
[=n—2 = o).

Now the exact value of the parameter o is not known,
but can only he estimated from observations. In the usual
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case where the n observations :ri, X3, * -+, x, constitute all
our information, the mean square error

1 q
S = — (1.8)
]/n —1

where
n A n s

9=+ Sj | =+ Z(mi*g)g (1.9)

i=1 i=1

is the best estimate of o. Substituting this value for o in
(1.6) we obtain the n quantities '

ax;, — Y= .
’)"i:—::'EVI?, l=1,2,"',n‘ (1.10)

‘/n—~1
I— )
n

which are called the relative errors. From (1.9) and (1.10)

it follows that

7
§ r?= n. (1.12)

i=1

and

From (1.11) and (1.12) it follows that
Ir|<Vn, i=1,2,---,n (1.13)

which shows that the relative errors are not normally
disiributed. Taking the mean value on both sides of (1.11)
and (1.12) we have, because of the symmetry between

'r]_:r25 .'.:rn)

m{r} =0 (1.14)
and i 1,2, --+,n
m{rf} = o*{r} =1 (1.15)

f
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Thus, each relative error has mean value 0 and standard
deviation 1. Squaring and taking the mean value on both
sides of eq. (1.11) gives us

ZZ m{r;ry = m{r2}+ Sﬁ 5—’ m{r,r;} =

i=1 j=1 l=l

= n+nn—1) m{r,r} = 0. (l * ).

Thus, the correlation coefficient between each two of the
relative errors is equal to

m {11 ri}

n

\ 1 ’
rr =———70. (@{=j). (.16
P{, i) = 0{,} {,} 1 @=+). (1.16)

We shall now deduce the distribution of these relative
errors.

§ 2. Since »V and q are correlated their correlation
function is not simply the product of the frequency func-
tions of @ and . In order to deduce the frequency func-
tion of 2 we then first write down the probability
S (@, a9, * -+, x,) dry dxy - - - dx, of the sample ay, x5, - -+, x
which from (1.1) is given by

S(xy, g, -+, ) dey dy -+ - dx, =
n
1\ 1 (2.1)
= [————) exp|—=—5 x,—E)2 duxyday - - - dx
(Vﬂc) p[ 202'2 (e, —§ } 1552 n
i=1
We next introduce in (2.1) instead of xy, a, - - -, x, the

n-+ 2 new variables ,
x (defined in (1.2))
qg ( — - Q9

1) We shall in the following drop the index i.
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and m,, i=1,2 ---

defined by the equations -
1

xi=;+qui, i=1,2,---,n. (2.2)

{
From (1.2) and (1.9) it follows that

n

u, =0 2.3
i=1 '
and
n
E ut=1 e |g|<1, i=12 - n(24)
i=1

so that only n—2 of the n-variables are free, the two re-
maining being functions of the n—2 others. For n = 2

1
m; and w, are consequently constants (= il/—a) and we

shall therefore assume that n > 3. Further we shall choose

uy, Uy, ---, U, , as the free variables. Using the identity
_n -
2 EZ—S (x,—&) = uf—l—n(;—E)Z:
i=1 1=1 ) 1—>1 (25)
= q’+n (x—§6)?

wethen obtain from (2.1) thatthe probability S (x;, x,, - - -, 2, )X
X dx, dx, - -+ dx,, expressed in the new variables, of the

sample x;, x,, - -+, x, is given by

S(xy, xp, ¢ -, x,)dxy dxy - -+ dx, =

=S(x,qu,u,, -, u Mz)d;dq duy duy, - -+ du, _, =

- (ﬁlﬁ)n“ixp[ g2 (@@ —9?|x (2.6)
a(xb Lay """ xn)

de dg du, du, - -+ du

n—2"*

=
O, gty Uy, = v oyu,
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Here the Jaconran functional determinant is given by and ¢ are uncorrelated variables, and that the 2¢'s are
dx, Oz, O, O, . uncorrelated to a¢c and ¢. Further it is seen; that the last
= T T e factor does not contain either the parameter § og o, which
_3(331, Ty, + 0, X,) _ dx 0q Juy Juy AR _ shows that x and g are what Frsaer calls “sufficient
0(x, q,uy,uy, -+, Hn_z) Sx.n. an é.x.n. é.x.n ----- 8xn statisties™ ). -
e 52’— 6711 Eu_g P To obtain the frequency function f(u) of one of vthe
n—2 w/s, say uj, we now have lo integrate (2.8) over all pos-
Loy q 0 0 (2.7) sible values of x, q, uy, g, -+, u,_,. Having deduced f(u)
lun_z T O """ 0 ) """" q o the distribution of the relative errors is immediately given,
. du, autg 3_”5:1 Dt e i) since from (1.10) and (2.2)
A TR A PR bt T e B
du, 8lln aun r, =, ]/Il, i1=1,2,---,n. (2.9)
lu, 9%, 98a, fu_, ‘

The factors in (2.8) containing x and ¢ integrate im-

Introducing this in (2.6) we finally obtain mediately to 1 and we next have to evaluate

S(x,q,uy, 0y, - u, ) dedgduyduy -+ - du,_, =
| v G—o | a2 la =
n n{x— — e —! ) o - '
ZIVﬂcexp[— 20 }dx (’1—3>,2";3<%> exp {_Qq_ﬁz}}?q . (2.8) ’—“Sduzsdua"'\dunwz'lT__n—leré(n;?’)! D(uy,uy, ~--,u,_4). (2.10)
2 /) » over all possihle.’ values
_n1 _1/pn—-3
X{'IT 2 n 2( 5 >l D(uy,uy, -, u, o n)dulduz---dun_z}

§ 3. We first have, however, to work out the n-dimen-

00 < < OO sional determinant D which from (2.7) is given by

0=g<oo
1.y 1 0 0
_1<lli<1’ i:1’2’---’n_—2 ........................
P 1 un—Z 0 0 e 1
where the coefficients have been so chosen that the in- D(uy, uy, -, n, n) = - 8an_1 8‘1“_1 N alln_l . (3.1)
tegrals taken over all possible values of the variables give o duy dug Sty
unity for each of the three factorsV. (2.8) shows that ac du, du, du,
1 u = r——— . s
1) We note that since g can take on both positive and negative " ot 8,“2 6un_2

values and since we have chosen g positive, the last factor has been

taken with an extra factor 2. 1) R. A. FisuEr: Statistical Methods for Research Workers. Chap. 1.
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If we here add to the first row all the n—1 other rows
we obtain with the help of (2.3)

0 0 0 0
u, 0 1 0 u, 0 1 0
, 5 O 0 --- 1 Un_zao 50 '”3 1
aun—l aunwl aun—l =n u, 4 ;lﬂ—1 Jnt e r\un—
u, 7u, o, 9., ) u,  duy oua, ,
o on du du
du, du, du, . d“n n e
u, Fa, 5;2 . T uy  dn, u,
Solving the equations (2.3) and (2.4) for u, and u, , we
obtain
n—2 n—2 n—2 2Ys
n 1 2
=—=|— § u, 21— § us | — § u; (3.3)
1 2 . . .
i=1 i=1 i=1
where
n—32 A n—2 2
0<2|1— g u? | — § u, (3.4)
=1 im1
Obviously
n—2 n—2 279y
u,—u, =21~ § u? |— _S_ u; (3.5)
=1 )
Differentiating (8.3) with respect to u,,i=1,2,---,n—2,
gives, using (3.5),
du, u,  —u;
du, Uy lp_y
i=12--,n—2 (3.6
ou, _om—a,
8ui un_— 0,4

which introduced in (3.2) gives

, u, —u
D=——1" 2 n_ .
S, u 2 — (”1_11,1) .-
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uy 0 1 0
u, , 0 0 1

(lln_2 — un)
u,— un——l un U,y
24

( . ) n—1_ Uz . b, ,—4, 5
un un—l iy n —

n un—l un - un—-l

If we here add the l.ast row to the next last row, we obtain

u, 0 1 0
n Up_» 0 0 1
u, —u, 4 (un—l + un) (un—l - un) —1 —1

= ———£&,_ ,, where p=2.
n n—1

Developing the (n—p+ 1)-dimensional determinant En_p

according to the first row we obtain the recurrence formula

(un—l + un) (un—l— un)
ua, _.—u a . —u _.
u, (u,_,—u;) (uﬂ} . (Jl__"__ﬁ)

un - un —1

= u, (g, —uy) + B oy

u —u u —u
n—i P n—I1 n—2
u, (u, 1*111)( )( )

(3.8)

(3.9)




fa) =
nl
T 2 l/ﬁ (L_‘Dl)1
. 2\ 2 ) (4.1)
= \du, \duy - -- dn, _, n—2 n—e 97Y»
over all poésihle values 1— 57 2 _l E a.
N . 1 p 1
i=1 2 i=1
We now have the identity, for each p = 2,3, ---,n— 1,
n—p n—p 2
2 __ ’ —_
a, = |1— S uf ) —-= u, | =
i=1 i=1
n—(p+1) n—{(p+1)"\ 2 n—{(p+1) 2 (4
1 § a <p+1) - E T
i Y i T, o1 il
i=1 + i=1 _ p p+1 i=1
— 2 2
- p+1_bp+1(un——p p+1) >0

14
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Repeatingly using this we obtain, using (2.3) and (2.4)

E,_,=uy(uy—u)tuy(uz—u)+---+u,(u,—a)=1 (3.10)

and thus from (3.5)

D(uy,uy, -+, 1, _,in) =
o n n 1
= ———————— = /T“ -
Uy = Uy 4 l/ 2

n—2

— 1 =
— 2] =
1 > u, 2( 5

i=1 i=1

§ 4. Inserting (3.11) in (2.10) the integral becomes

n—a 27/ (3.11)
ul) ’

which last fact follows by induction from (3.4) if we

put p = 2. Thus u, can vary,

— for fixed values of

uy, Uy, * ¢, W4y between the limits
a a
p+1 p+1
— g =u, = cp+1+b_- (4.3)
p+1 p+i

because

over all possible values

! — ! p—3
S(l——xz) ? dx

a(p+1)—3
<(p—|—1)~—~3>' p+1
2
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Setting now
fn_p (uy, Uy, =+ un_p) =
_n= e n—
™ 2 /— !
/5 (5
= Sdun_pﬂg du,_ .ot Sdun_2 n—2 n—2 2 2
over all possible values 1— ‘ n2 _l i".
, Z o2 &
i=1 i=1
' » ' n—1 -
. ——1/n {n—3 1
= Sd”n—p+18d“n~p+2 cee Sd”n~2 ™ 2 I/E ( 5 ! a,
over all possible values
we can prove by induction that
n—3 '
w[l—p . ; 9 . o N
fo_p(ay g, ~oo,u,  y=mw *? l/~*—d a (4.5)
p n—p p <p43>' P
5 /!
In fact we have from (4.4), (4.2) and (4.3) that
oy @i sy ) = Sdun_p fo—p @i, -- - )

» +ap+1
n—3 “lp+1Ty
LN p+1 _3 .
2Py /n\ 2 2 2 p——z
2 _
l - P“‘3 [ap+1 p+1(un—p+ cp-i—L)] dun-p
'Y ! .
2 e _Tp+1
1
: PHL bpyy

4.4)

(4.6)
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: 1 f :
Sl_(i—xz)?fdx =Sot_%(1—t)%df = B(%, £+1) = Vﬂ(f_glt—)! 4.7)

where B(p, ¢) is the so-called complete Beta-Function. This
proves (4.5) since the integrand in (44) is just f,_ as
given in (4.5) with p = 2. For p = n—1 we then finally
obtain from (4.1) and (4.5), dropping the index 1.

e T
F@ = fogen = an—ll (fE?). (h"{_l uz) (4.8)
2/ '

n>3 ‘IZ\S‘/H—I.
= =V n

§ 5. From (4.8) and (2.9) the probability of a relative
‘error lying between r and r+dr is given by

]/1—1' l/n——l <n—4)‘ 1 (5.1)
2
nz=3 |r|<Vn—1.
From (4.7) it is easily seen, that
Vn—1
Sf(r) dr =1 (56.2)
—Vn—1

as it should be. Furthermore we have in accordance with
(1.14)

On the Distribution of Relative Errors. _ 17
Yn—1
S rf(r)dr =0, (5.3)
—Vn—1

because the integrand is an odd function, and in accor-
dance with (1.15) )

Va1 (11—3), 1 .-
S I"2f(r) dr = Tll/_“:—_]. 7%71— S xz(l—xz)de =
SV T <T>' 1

n— B B n*. -
g b 2
N

This distribution (5.1) turns out to be a familiar one,

. r .o . .
for r' = Vi 1s distributed in the same way as the estimate
n—

D @G-

i=1 -
T, = = = o (5.5)
( } (0, — ) § (.uj—&ﬁ)
i=1 ji=1

of the correlation coefficient, p, when (xy, y1), (x5, ys), * : -,

(x,,y,) is a sample of n drawn from a normal population
of a two-dimensional statistical variable (oe, %) for which
p=02"

It is to be noticed that for n = 3 {ae relative errors are
the more probable the larger they are, and that for n = 4
every relative error is equally probable. For n=5 the curve
looks more like a usual error curve with a maximum for
r = 0 and approaching the r-axis for increasing values of

1)’ R. A. FismER, Biometrika, 10 (1915), 507.
P. R. RipER, Annals of Math. 81 (1930), 577.
D. Kgl. Danske Vidensk. Selskab, Math.-fys. Medd. XVIIL, 8. 2
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r. In figs. 1—5 are shown the curve for n = 3, 4, 5, 6 and

7, and in the last fig. the normal error curve (1.1) with

L

-30
1 F16. 5.
T L T S normally distributed as we should expect, since in that
Fie. 1 case the difference between p, (1.6) and r, (1.10) should
T be negligible. For any fixed value of r we have, using
H0.5 n=4 Stirling’s formula for the factorials
i . ,
(Il—"S " n—4
!
I Hm 1 2 (1—— 1‘2 > -
| ‘nsw Jm)n—1 <n~4>' n—I1 -
[ I T N SN R S N IS N TN SN TN TS WY B -
-3 -10 0 10 V3 n—s ,
) Fig. 2 -—[n—3 = : _ n—4
| e, s
= im — 1— =
L 0.5 n=25% > I/ —1 n—3 ( n~1>
§ Var i/ Vers n—4)\ 2 ~ n—4
2 exp 2 ). ‘ (5.6)
] n—2
i 1_§ 2 - n—l-n—4 r?
1 1 n e  |n—1 2
1 [ S NS NN TSR N BN N lim s pryma (1__ > —

F1a. 3.

€ =0 and c =1 is plolted for comparison. In fact it is

easily proved that for 1a>1‘ge values of nn r is approximately

2*
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The probability P(r) of a relative error numerically ex-
ceeding some value r is given by

yn—i (11—3), n—t
1 2 /) "

’2 2
= ] —_ — dr. (5.7
Pr) =2 yTyn—1 (n=4), (1 11*1> k. 67
r 2 ’
1‘2
Introducing the new variable x by i 1—x (5.7) can
be written
r2
T—— 2
n—a3 n—i : n—2 1 . r
VA RS u e

. T2 (1 — ) 2 _
= Ve (i I x?(l—x) 2dx B(“_2 1)

2 0 2 72
where the B’s are the so-called incomplete and the complete

Beta-function respeclively. From a table of the incomplete
Beta-function? one can tabulate P as a function of r or.r

P(r)

as a function of P. We can, however, also introduce a new

2 1 ..
variable y by 1~1111 = W thus obtaining
11“3 @
9 <_ 9 )l _n—t
P(r) = —=—7 \ U+ g * dy (5.9
& (";), ,
2 Ve

which is just the function tabulated by Fisuer® as the
so-called t-distribution. In fact his table IV gives t as a
function of P and n,, where

n,—1 »
9 9 I _Ht'f-l
P = Ve —n-fz— (A+1» 2 di (5.10)
T Zhy )
k 2 ) vy

1) KarL Prarson: Tables of the incomplete Beta-function. London 1934.
2) FisHer: Statistical Methods for Research Workers.

) oo |
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Comparing (5.9) and (5.10) we have simply

I/n— 1

r=-—=———-—-tfor n—2=n,, (n>3). (5.11
Vn—2+ ¢ v )
For certain values of P we can also use the fact mentioned
above, that r = *:I-:I is distributed as the estimate I'py of

a correlation coefficient. In fact FisuEr’s table VAY gives r,,
as a function of P and f= n—2. We thus simply have

r=Vn—1r,. (5.12)

In table 1 we give r as a function of P and f=n—2>1
obtained in these ways, where f is the number of degreés
of freedom because of the two equations (1.11) and (1.12).
Since |r| < [/IT-—I = l/m we have also listed l/m The
last row with /;: oo gives simply r for the normal distri-
bution (5.6). From this table one can at once decide
whether or not a given relative error is more or less prob-
able than any given value P, e. g. P = 0.001.

It will be noted that whereas ¢ is a monotonic decreas-
ing function of n,, r is a monotonic increasing 'function,
for small values of P, monotonic decreasing for larger

values of P and non-monotonic for medium values of P.

Il. Deduction of the distribution law for indirect and
: unequally good observations.
§ 6. We shall now show that the same distribution law
(5.1) also holds for the relative errors in case the observ-

ations are indirect and unequally good, as is e. g. the case
in triangulation.

1) Frsuer: Statistical Methods for Research Workers.
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We shall first recall the theory of adjustment written in a
matrixformD. Let2

4

‘|

L. = : 6.1)
ol

be a sample of n(=2) independent observations of n normally
distributed statistical variables with true values (i. e. mean values)

M

AL =100 (6.2)

Connecting these true values we have m (< n) linear equations
called the equations of condition

Anl = A0n1+ Aanm.zml (63)
where
31
S
ml = (64)
Em

are the true values (i. e. the mean values) of m free variables
called the elements, which completely determine the system
considered. '

‘We denote by

PlO e 0
Pnn: Lo : (6.5)

1) Cf. H. Jensen: Herleitung einiger Ergebnisse der Ausgleichungs-
rechnung mit Hilfe von Matrizen. Publications of the Geodetic Institute,
No. 13. Copenhagen 1939.

N. ArLey and K. R. Bucs loc. cit. chap. 12.

2) We shall in the following denote matrices by capital clarendon
types, true values by greek letters and the best estimates for these by
the corresponding latin letters with a bar. The transposed matrix we
denote by an asterisk.
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the weight matrixz, the p/s being n arbitrary constants—the
weights—satisfying the relations

D102 = prog? = - = Pn °-r21 = g2 (6.6)

Here oy, 02, .-+, o, are the standard deviations of the observations
li,ls, --+, I, and o is called the standard deviation of the wezght
anit. As is well known, the best estimates

A
L = bl _ L vV 7
n1 . - n1+ ni (6 )
[A
and 3
g1
¥ = 6.8
ml ’ ( )
x

m

for the true values A and Z are those values, which, satisfying
the equations of condition

L] — — .
L=L+V=Ay+A4-X, (6.9)

make the weighted sum of the squares of the errors ¥

D! pvE = [por] = V=PV’ (6.10)
i=1

as small -as possible. The condition for this to be satlshed is that

all the partial derivatives of [pop) with respect to xy, @, :- -, &

m
shall vanish, which gives us the m equations

Amn Pnn .an - Oml' (6.11)
Eliminating ¥ between (6.9) and (6.11) gives us the normal
equations

B X=A*PN (6.12)

where B and N are abbreviations for
1) Comparing (6.9) with (1.3) it is seen that the errors, or residuals,
used here have the opposite sign. It would, therefore, be more correct

to call them corrections, but the notation “errors” is now commonly
accepted in the theory of adjustment.
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B = A* . P -4
mn " nn T nm

mm

and (6.13)
N =L -—A, -
nl

nl nl

respectively. Since the elements are assumed to be free variables
the (symimelric) matrix B has an inverse, and the solution of
the normal equations is, therefore, uniquely given by

X=CN (6.14)
where € is an abbreviation for

=8B 1.4 .P . (6.15)
mm mn nn

mn
We note that €, because of (6.13) satisfies the important equation

¢C A4 =B 'A*~PA=FE . (6.16)
mn nm mim
From (6.14) and (6.9) we have

L=(E—40C) 4+ A-C-L
and B 6.17)
=L—L=(4C—E)-(L— A)

where K is a unit matrix. It is easily shown that the ¥ so ob-
tained actually makes [ pvv] as small as possible. Let ¥’ be another
set of errors corresponding to a set of elements X7, i. e.

V =—N+ A4-X". (6.18)
Subtracting (6.9) from (6.18) we have
V—¥V=A4 (X —X) (6.19)

and, -therefore, using (6.11)

o] =F* PV =V P-V+(V -V P(V —¥F)

V2P A (X - X)X -Xp-A*P- V= (620
[poel+[p (@ — vy
This shows immediately that [pv’v’] is as small as possible for
V' =V.

(6.17) shows that ¥ is a linear function of L. ¥is, therefore,

normally distributed, having mean value 0 because from (6.3)
and (6.16),
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AV = (A-C— E)-(A— Ag) — (4-C-A — A)-Z —
, BAPR } 6:21)

To obtain the standard deviation of ¥ we first evaluate the mo-

-mentmatricx of V. Quite generally, if we have k statistical vari-

ables y;, 2, -+, y,, which are linear functions of the observ-
ations I,

Y = Fokl—{—lf’kn L (6.22)

\ k1 nl

we denote by the momentmatrix M) of ¥ the matrix

MO = (0 = (m{@, u) @— )y = mmmnmwwﬁ}m@

== {m{(yr_f;)r) (ys‘fos} “m{yr“forj m{yS_fOSj}

where p; = m{yi} is the mean value of y;. The elements of this
matrix give the standard deviations and correlation coefficients
of 1, Yo, =+, Us

Oz{yr = 0'1‘% = W

1) (6.24)
P{yr’ ys} = Prs = = (r+s)
$

C,.0

(In case JII&) is a diagonal matrix, ¥ is said to be free functions.)
Introducing (6.22) into (6.23) we obtain, because the observalions
L are mutually independent,

wf=ﬁZmMZﬂ% {Zm}{Z&}

\i=1 i=1

= yfnfm = o? Zf”f‘gl == UQ(F'P—I'F*)N_

i=1 i=1
MY = 2 . P~ P>, (6.25)

As spécial cases we obtain at once from (6.14) and (6.17)

M,‘f,i = - P L.¢* =2 B (6.26)
M,(f,) = 2A4-C P 1LCA* =24 B A (6.27)

M = (4 C—E) P (C*A*— E) = T, . (628

(We note that (6.26) and (6.27) show that in general X and I are
not free functions).
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The n quantities, analogous to (1.6)

v. -1,

Pl Yo

where ¢, is the i'th diagonalelement of ' given in (6.28),
are consequently normally distributed with mean value 0

i=1,2 ---,n (6.29)

and standard deviation 1. Now the exact value of the
parameter ¢ is not known, but can only be estimated from
the ohservations Iy, I, - - -, . In the usual case where these
quantities’ constitute all our information, the mean square
error, analogous to (1.8)

s = (6.30)

q
]/n —m

where, analogously to (1.9)

n Yy n s
N 7
— . Ha 7 2
q= —f—(_/ Pi U?) =+ [pov]|" = —l—( _S_ p, (L, —1) ) (6.31)

i=1 i=1

is the best estimate of o. Substituting this value for o in
(6.26) and (6.27) gives us the expressions for the mean
errors of the best estimates X and I for the true values
Z and A. We note that as a control of the computations

one can use the relation

o2} = o®Spur P-A-B - A% =
gplc {1} = o®Spur (6.32)

= o?Spur B A*. P A = o? Spur B = ma®.

Substituting (6.30) for ¢ in (6.29) we obiain the n
quantities, analogous to (1.10)

1.1 v, _
RN S S l/" m. (6.33)
Vtii s q tii
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which are called the relative errors. From (6.11) it follows
that they satisfy the m linear equations, analogous to
(1.11)

A:H-PM- T;;/’-Rnl = QO (6.34)

nt

where " is given by
(T)r.s - rr 6rs (635)

Because of (6.31) we have furthermore the equation,
analogous to (1.12)

g pltur? = [ptr’] = R*-T"-P-R = n—m. (6.36)
i=1 '
The number of degrees of freedom of the relative errors
is thus given by

f=n—m—1. (6.37)
r

§7 As in §2 we first write down the probability
Sy, b, -+, L) dlydly -+~ dl, of the sample I,l, -, 1,
which, analogously to (2.1), is given by

S(ll,lg, "',In) dll dlg ce d[n =

‘.‘ ) 17 n-_! ’ .
“(V2 ) e p")IZEXp{'ﬁ > pi@r’i)a} diydly - di,,

i=1

Taking in (6.19) and (6.20) X' = Z we have, using (6.31)
and denoting by g; the i'th frue error, g, = A

1

D, pO 1) = [ped) = P+ (XD

i=1

B (X—-3%2). (1.2)

We next introduce, as in § 2, in (7.1) instead of 1;, 15, - - -, I

the n new variables

(1.1)
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X (given in (6.14)) -
g (— - (631)

and
u; 1=1,2, -, n

defined by the equations, analogous to (2.2)

li = I:.—i_ui.

Comparing with (6.33) we see that

R=VYn—mT P U,

(71.3)

(7.4)

From (6.34) and (6.36) respectively we have, analogously

to (2.3) and (2.4)
AP U =0

Us. U = E uf =1

i=1

and

(7.5)

Taking as free variables the first n—m—1 = f u;’s we have,
using (7.2), that the probability S(I, ---, 1)) dl --- dl, of

the sample l;, - - -, [ expressed in the new variables is given

by the expression, analogous to (2.8),

Sy, e L ydly e dl, =
= S(;l, ..
{ VIB]
(Vﬂc)fﬂ

2
{ n—m

x 'IH_TIBI"’”U—;)! 1Dy, - -

-,_a—cm; q; g, ---,uf) dgl d;mdq day -+ -

1 — — —
€Xp [_EOE(X—“E)*"B‘(X‘E)} da:l e
1 a\' TN g% dg
X (/’—2>! R (E) exp [_ 534 T X

sun) | doyg -

(7.6)
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Here —oo<_9:—i<oo i=1,2 -+, m
0<q <0
—1l<u;<1 =12 ---,f
f=f+1v
and
. . (9(11, ................. ’1)
(Pl -"pn)ll — — I =
Gy, =+ @ @3 Uy, -0, 1)
: I
£ 1 M M if 7.7
=gt |pra o T (7.7)
nn nm ° ni -
: LW
: n—f.f
= qf(— 1)f+1D(llI, e, Uy )
with
w du, r=f+1,---,n 78
n——f,f—{aus} s=1,---,f (7.8)

The coefficients in (7.6) have been so chosen that the
integrals takén over all possible values of the variables
give unity for each of the three factors.? (7.6) shows that
X and g are uncprrelated variables, and that ¥ is un-
correlated to X and g. Further it is seen that the last
factor does not contain either the parameter € or o, which
shows that X and q are what Fisuer calls “sufficient.
statistics”’.® (We now also see that the three notions “free
functions”, “uncorrela‘ted variables” and “mutually inde-
pendent variables” are identical for normally distributed
variables since if B ' is diagonal, B is also and vice
versa).

Squaring the determinant D in (7.7) we have, using (7.5),

1) £’ has been introduced here, because ¢ has f-+ 1 degrees of free-
dom.

2) Regarding the coefficient in the first factor see e.g. Cramir:
Random Variables 1937, p. 109.

3_) FisuER: Statistical Methods for Research Workers.
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To evaluate the second determinant in (7.9) would, how-
ever, be rather unpleasant. We therefore proceed in another
way, generalizing a method due to CramEBgr.?D

§ 8. Let us for the sake of simplicity assume that
Li, Ly, -+, 1, each have mean value 0 and standard deviation
1, i.e. that o =1 and P = K. This assumption leaves
the relative errors and their distribution unchanged, since
it only means changing the zero-point and the unit of length
for each of the observations. From (6.20) we then obtain,
if we put v; = 0—1,

¢ =T =[—[lll]=L*L—L*L (8.1

and each r; can, therefore, be written in the form

1 -
72 . ¢G—1n*

n—m = rL—IL* I’

- (8.2)

Since I is a function of I, the expression on the right
side is a function of the n mutually independent variables
. We shall now show that the expression is, in fact,
ohly a function of n—im mutually independent variables.

Let us choose the m elements in such a way, that in (6.9)
Ay = O i e.

1) Private communication. I wish to thank prof. CRAMER very much
for kindly indicating his method to me.

s Do IL-4X 8.3
A5 P . B 0 o , (8.3)
= U* F L B I 0 E .............. Since m{L} = @ we have from (6.14)
--------- S (4 PR O AU _
E. w# ofm Ofl : 'Eﬁ+ WE- W mi{X} =% = 0. (8.4)
= |Bmm' lEﬁ—I—I/Vf*n_f- ]/Vn_'f f‘_ Introducing (8.3) into (8.2) we have

1 —_
—(l.—1)2
r} tii(l )

(8.5)

As a consequence of our assumption ¢ = 1 and of the
definition of #; the variable

vi 71._11 (8 6) :
Imi1 = Vt: = VE :

is normally distributed with mean value 0 and standard
deviatiof 1. The linear form expressing Ym4q 28 a function
of L.'is, therefore, a normalized linear form. From (7.6)
it is seen, that v; and thus Yy 18 independel)t‘ of X. The
linear form Ut is, therefore, orthogonal to each of the
linear forms expressing x; as a function of L. Now
A*- A = B is symmelric, and consequently we can bring
the bilinear form X*-B-X on diagonalform by an ortho-
gonal substitution. Furthermore, since it is a positive definite
form, we can, by suitably choosing the scale for each of
the new variables, bring it on unity form. Consequenily
there exist m new variables

Y =D X (8.7)

mt mm m1l

with the property, that

X+ A 4-X =

— — ) (8.3)
- X*B X=Y*"D*"RB.D- V=YY,
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From (8.4), (8.7), (8.8) and (7.6) with o = 1, we see, that
these m variables are mutually independent, normally dis-
tributed with mean values 0 and standard deviations 1.
Y is therefore given by m normalized and mutually er-
thogonal linear forms in &, which are orthogonal to the
linear form y,. .. We can now construct n—m-—1 other
normalized and orthogonal linear forms, which are or-
thogonal to the m-+1 first ones, and we thus obtain n
new variables

n
Im
Ifnl Bl ym-[-l ) (89)
y_m+2
Yn

which are mutually independent and normally distributed
with mean values 0 and standard deviations 1, and which,
therefore, have the property that

AL =Y¢ Y — E Y. (8.10)

i=1

Introducing ¥ in (8.5) we now have, using (8.8) and
dropping the index i,

r’ yo1 Y1
n
K N (8.11)
y] y! ¥;
=1 i=1 j=m+1 '

which shows that r? depends only on n-—m variables, and
that 0<r*<n—m '

‘Let us quite generally have a statistical variable of
the form
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fl
v .
. I=1 X
z =
f‘ifvz X1 +x3
UK C L (8.12)
=1
flez
2 !], X5 = 2
i=1 j=fi+1

where y,,ys, - -, Ys+s, are fi+f, mutually independent,
normally distributed statistical variables with mean values

0 and standard deviations 1. As is easily proved?, x; and
Xs have both the same distribition as %, given by the
second factor in (7.6), with f’ equal to f; and f,, respec-

tively. From (7.6) we find, since ¥} and ¥5 are mutuaally

independent, that their correlation function is given by
’

1

EET |,

[ 1
><(x) E (x )2 exp {—-E(X?ﬂ‘Xg ]dx‘f‘dxi-

h (XL X3 dxidxs =

Introducing z from (8.12) instead of X7 we hav

Xi = 7%
ax3 5x?
2 y (8.14)
oxi 6| T
and thus 0z X5

1) For f/ =1 the statement is clear. It has then only to be proved
that the sum of two variables with this distribution, corresponding to
the degrees of freedom fi and /s respectively, has the same distribution

with f = fij+ fo. This lemma is, however, easily proved by a method

analogous to that used later in the text.

D. Kgl. Danske Vidensk. Selskab, Math.-fys. Medd. XVIII, 3. 3
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1
h(z,x®) dzdx3 = 7 <
(=3 ,(ﬁﬂ)@fﬁw:
2 2 (8.15)
H—2 2 f1+fz_2 1 2
2 (1= 2 (x8) eXP[ §~2Jl dz dx3.

Integrating over x> from 0 to oo we obtain the distribu-

tion of =z

[==3

f(z)dz = dz Soh (z,X3) dXz =

(/‘— 2)1 . .
1

f=hth

1‘2

In our case, we have fy = 1, fy=n—m—1and z=

n—m’
Taking into account that the distribution of r is symmetric

in positive and negative values, we finally obtain from
(8.16) that r has the distribution

1 (f_‘)1>' re f:z_g
f(!')dr—VT”rV:UAz) <l_f+1> dr
|r[ZVf+1
f=n—m—1=1

which is just the distribution (5.1). For in the case of
direct and equally good observalions we have that the

number of elements m is equal to one.

(8.17)
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It should be noted, that the distribution of the relative

errors is independent of the equations of condition, i. e. of
the matrices A4, and A.

III. Application as a test for normality.

§ 9. The most characteristic feature of the distribution
of the relative errors, (5.1) or (8.17), is that it is independent
of both the parameters € and o of the normal distribufion,
depending only on the number of degrees of freedom. As
already mentioned in the introduction the samples with
which one works in practice are as a rule small, containing
only few measurements. The usual methods of testing for
normality cannot, therefore, be applied. On the other hand,
one has often to do with a large number .of small samples
yith different values of the parameters & and o, but with
the same number of degrees of freedom. We therefore only
have to compute all the relative errors and compare their
frequency polygon with the theoretical frequency curve
given by (5.1) or i8.17). The only neéessary condition is
that the number,v n, of measurements in the sample is
greater than or equal to 3. A more detailed comparison is

obtained by comparing the total frequency polygon with
the total frequency curve given by

r l—éP(r) for r=>0
F() = S f(r)dr = ) (9.1
' ~VF¥i EP(F) - r=<0 '

where P(r) is given in (5.7) and tabulated in table 1.
As a numerical example we shall consider 100 samples,

"each consisting of 4 measurements of the posilions of

3%
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spectral lines, measured by E. Rasmussen.? In tables 2—5,
figs. 6—9 and figs. 11—14 we give the results for r,, r,,

ry and r, respectively. The figures in the second columns

>

T 1

Figs. 6—9.

p;» give the number of relative errors in the intervals
t—%—t<t<l +—~t with At = 0.4. (For the two endinter-
vals —]/3__<_1‘§—1.4 and 1.4 <t <}/3 since |r|<)4—1 =
1/5,) The figures in the third columns, ,, give the num-
bers expected from the distribution (5.1), which in our
case, n = 4, reduces to

dr

fr)ydr = S5 (9.2)

1) 1 wish to thank Dr. Rasmussex very much for kindly placing his
measurements at my disposal.
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The sum of the figures in the fourth columns is the quantity
¥® which measures the goodness of ﬁt b In figs. 6—9 we

have plotted the frequency polygon At and the theoretical
frequency curve

100 : ‘
100 f(r) = — = 28.87. 9.3
f NE (9-3)
7200 h,oB, o,
4
L i 1 1 1 1 1 i 1 1 vl i 1 1 1 i i3 I
13 T -10 0 1.0 3
Fic. 10.

In figs. 11—14 we have plotted the total frequency polygon,

giving the number of errors <t and the theoretical total

frequency curve

100 F(r) = 1‘(}9( r+)/3) (9.4)

which is here a straight line.

If is seen both from the tables and from the figs., that
the agreement is satisfactory for r, and ry, less satisfactory
for r; and not satisfactory for r;. This is also seen from
ihe values of x* and their probabilities given in table 6.
It will, however, be seen that this discrepancy is due to

1) Cf. e. g. FIsHER: Statistical Methods for Research Workers. chap. [V.
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100 100

Sl

Fre. 11. Fre. 12.

the fact, that the first measurement gives far too many systematic error, which is easy to explain. The measure-

ments were, namely, performed so that all the firsf figures,

ry, from each sample were obtained consecutively, then

posilive errors, and the fourth one too many negalive errors.

This circumstance indicates that we have to do with a
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100

r3

- |
-V3 -10 0 10 3
Fic. 13.
all the second omes, r,, and so on. It is quite plausible
that the temperature of the measuring apparatus may have

changed during this process by an amount which would

—1.6
—1.2
— 0.8
—04

0.4
0.8
1.2
1.6

—1.6
—1.2
—038
— 04

0.4
- 0.8
1.2
16

— 1.6
—12
— 038
—04

0.4
0.8
1.2
1.6
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Table 2. (r)

(p;—m)?

P; T B
13 9.586 1.216
6 11.547 2.665
6 11.547 2.665
3 11.547 6.326
11 11.547 0.026
8 11.547 1.090
16 11.547 1.718
14 11.547 0.521

23 9.586 18.771 .
100 100.001 34.998

Table 3. (ry)

(p;— 2

b; ™, B
8 9.586 0.262
14 11.547 0.521
12 11.5647 0.018
13 11.547 0.183
17 11.547 2575
15 11.547 1.032
12 11.547 0.018
. 4 11.547 4933
5 9.586 02194
100 100.001 11.736

Table 4. (ry)

(p,—)?

P; Gt B
10 9.586 0.018
6 11.547 2.665
10 11.547 0.207
13 11.547 0.183
10 11.547 0.207
14 11.547 0.521
12 11.547 0.018
17 11.547 2575
8 9.586 0.262
100 100.001 6.656
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Is
ry

—1.6
—12
— 0.8
— 04

0.4
0.8
1.2
1.6

Iry,ry, I3, Ty

—1.6
—1.4
—12
—1.0
— 038
—0.6
—04
—0.2

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
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Table 5. (ry

8
»

16

(Pif“i):z

p; T, "”{TL_’
12 9.586 0.608
13 11.547 0.183
11 11.547 0.026
19 11.547 4.811
12 11.547 0.018
10 11.547 0.207
17 11.547 2.575
2 11.547 7.893
4 9.586 3.255
100 100.001 19.576

Table 6. .
\

X P(x) Ao ey
34.998 P < 0.001 .
11.736 01 <P<02 91 —
6.656 06 <P<<07
19.576 0.01 << P<C0.02
16.662 03 <P<05 17—1 =

Table 7.  (r{,rs, ry,1y)
(p,—)?
Py T e
35 26.795 2.512
21 23.094 0.190
15 23.094 2.836
31 23.094 2.706
13 23.094 4412
21 23.094 0.190
22 23.094 0.052
21 23.094 0.190
29 23.094 1.510
2 23.094 0.365
20 23.094 0.414
24 23.094 0.035
26 23.094 0.365
27 23.094 0.661
22 23.094 0.052
22 23.094 0.052
25 26.795 0.120
400 400.000 16.662
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T 100

Fic. 14.

just account for the systematic error found. We conclude
therefore, that the disagreement regarding r, is not signi-

ficant. This fact is also shown if we consider all the 400
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r,r2,rs,rsq
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relative errors together. In table 7, fig. 10 and.ﬁg. 15 we
give the result (for At = 0.2), and it is seen, that the ex-
cess of positive errors in r; compensates the deficiency of
negative errors in r,. The agreement is now excellent. In
the last line of table 6 we give the value of ¥* and its
probability which is seen to be very .satisfactory.

We can thus.conclude, that the measurements considered can
safely be assumed to have been drawn from normal populations.

§ 10. In the preceding paragraph we considered all the
400 errors together. The legitimacy of this procedure might
be doubted, because, as we have seen, the four measure-
ments in each sample are mutually dependent, their values
being restricted by the two relations (1.11) and (1.12). We
shall now show that if only the number of samples v is
very large, we can neglect this dependence and, as usual,
expect the experimental frequency—or total frequency—
polygon to agree with the theoretical frequency—or total
frequency—curve. )

Quite generally, let us consider one observation of each
of N mutuallg dependent statistical variables Xy, W, 0, Hy,
which are equivalent, i. e. which have the same distribution
function F(?). Let p be the absolute frequency among the
N observations of a certain event A with probability S. In
case we consider the frequency polygbn, A denotes the
évent that ac takes on a value in the interval

At At .
fi‘——2‘<GU§ii+? (10.1)
and we have, therefore,
4 B1
g
S=\dF(). (10.2)
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In case we consider the total frequency polygon, A denotes
the event that a¢ takes on a value

x=<t (10.3)
and we have, therefore,
i
= S dF (D). (10.4)
e

The statistical variable p can be written as
N
p= E 5., (10.5)
i=1

where &, 8;, - -+, 85y are N equivalent statistical variables,

8, being 1 if the event A happens at the i’th observation,

0 if A does not happen. Irrespectively of whether our

variables @y, &y, - - -, &, are mutually independent or not,
we have
N N
mip} = m 2 8;( = 2 m{8; =
{i =1 i=1 (10.6)

= N(1:§5+0-(1—9)) =

In both cases, independence or dependence, we thus have,
that the mean value of the relative frequency is

m{]z:r} =S, (10.7)

S being given by (10.2) or (10.4). On the other hand, the
standard deviation of the relative frequency will not be the
same in the two cases. We have

m{Bf} =8 ‘(10.8)
and

m{5,5,) = S8, (10.9)

N}:m{%f}%ﬁ{x}ﬁm{(ﬁsﬁf}%
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where §;; is the conditioned probability of &, = 1 under

the condition that 3, = 1. From (10.7)—(10.9) it follows,
that

=1
— Nt 2 Sa
In case aey, 2y, - - -, @y are independent, we have 5, = S
and (10.10) thus reduces to the wellknown formula
2 [P S(1—39)
= = . A1
R
(10.11) shows, using TscHEBYSCHEFFS inequality, that
y i e
N e S (10.12)
N-—> >

the convergence being ““in probability”.? For large values
of N we can, thgrefore, expect agreement between ex-
perimental and theoretical curves. In case a¢,, 9y, - -, 3y
are dependent, the necessary and sufficient condition for
(10.12) still to hold is, from (10.10), that

Nz SIS > S. (10.13)

ik N—> =

This condition is, however, fulfilled in our case. We have

here v samples, each containing n observations, so that
N = nv. (10.14)

Since each two errors from two different samples are inde-
pendent, we have in these cases §; = S. Only in case we

1) Cf. e. g. Cramir: Random Variables. chap. V.

(10.10)
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have two different errors from’the same sample, we have
S;. = 8+ S. Of these last cases we have in all n(n—1)v
and thus, using (10.14)

(n viv—1)S+n(n—1)vs’ )

N2 ZZ S
ks (10.15)

—1
=12 S’ > S.
(1 N> N vl

(10.15) shows, that (10.12) is valid also in our case, as
we wanted to show.

§ 11. Theoretically the distribution of the relative errors
can be used as a test for normality also in those cases,
where we consider dnly one sample, containing, however,
many measurements, i. e.

N = n is large. (11.1)

We calculate the n relative errors and expect their fre-
quency—or total frequency—polygon to agree with the
theoretical frequency—or total frequency—curve. We have,
namely, again the equation (10.7). In (10.10) we have
now, that S, is constant for all i [k, 1. e.

S =8 ' (11.2)
(10.10) thus reduces to

1—8
02{-22} = ’S_i_wss'
n

n n

= S(S’—S+ > (11.3)

The necessary and sufficient condition for ¢® — 0 is then
n—»o

S — S. (11.4)

1) For a numerical example cf. e. g. Cramgr: Sannolikhetskalkylen
p. 132.

; h(r, ry) = L % [1—1 n—1 ( 2-{_
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This is, however, fulfilled in our case. From (4.5) (with
p = n—2) and (2.9) we have, that the correlation function
of two arbitrary relative errors, say r; and r,, is given by

n—~5

2
r1r2+1 )J

21 Vn(n—2) nn—

l (11.5)
—~ Loexp [*é(r%-ﬁ'i)]

n—> o 2'1T

(11.5) shows, that each two relative errors will be more
and more independent for n — oo and thus (11.4) follows.

Since a two-dimensional normal distribution is given by

1 1 1 ry _2pmr ’2)]
— e X + dr, dr. 11.6
2 C)'lo'zl/l—p2 p{ 2(1— 2)(0'1 oy Oy o2 1dry (11.6)

(11.5) shows fur'ther, together with (1.15) and (1.16), that
for large values of n, we have approximately

2
R(ry, ry) 22 nl [—1 (n—1) (2+ 2, -+v2ﬂ'. 11.7
1) 22 2T1' l/_(n—‘)) P 2 n(n—2) g 11——11112 T2 ( )

IV. Application ‘as a test for outlying observations.

§ 12. As already discussed in the introduction it is very
important in any application of the theory of errors that
false observations be rejected. Admitting the normal law to
be appropriate means, however, that the only legilimate pro-
cedure in rejecting cerlain observalions as false is lo reject
them during the observations themselves, because some pecu-
liarities arouse suspicions as to the constancy of the con-
ditions of the measurements or the like. A closer investi-
gation of the conditions is, therefore, n‘ecessziry in order to

decide whether the figure obtained can be admitted as true
D. Kgl. Danske Vidensk. Selskab, Math.-fys. Medd. XVIII, 3. 4
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or not. In cases where the observation material is schema-
ticly treated by non-scientifically trained persons, as e. g.
is often the case in ordnance, such an analysis may be
difficult or even impossible to carry out in practice. Since
the peculiarities mentioned will, as a rule, consist in the
observations being ontlying, 1. e. that the corresponding
residuals (1.3) are larger than those corresponding to the
other observations, it is, thus, in practice tempting to take
the magnilude of the residual as the only criterion for
whether the observation has to be rejected or not. This
procedure means, of course, artificially cutting off the tails
of the distribulion curve.

The question of how to obtain the limits which the errors
are not allowed to exceed has, because of the arbitrariness
of the whole problem, puzzled many investigators through
the times, e. g. BERTRAND, PEIRCE, CHAUVENET, STONE,
VALLIER, HEYDENREICH, MAzzuoLI, RoHNE and many others.D
Such schematic rules are especially employed in ordnance,?
though their problematic nature is sometimes recognised.
For instance CraNz writes:?

“Da das Gauss$che Gesetz erst unendlich grosse Abweich-
ungen ausschliesst, so ist von vornherein zu erwarten, dass es
auf dem Standpunkt dieses Gesetzes bei der Aufstellung einer
Ausschliessungsregel nicht ohne eine gewisse Willkir abgehen
wird. Manche Forscher wollen auch von der Annahme jeder
Regel zur nachtriglichen Ausscheidung einer Beobachtung ab-
gesehen wissen, z. B. Airy, BEsseL, FayE. Manche wollen nur
dann eine Beobachtung ausschliessen, wenn schon wihrend des
Versuches Verdachtsgriinde sich zeigten. Indessen scheint es, dass

1) For the history, cf. e. g. E: CzuBER: Jahresber. d. deutschen Math.
Ver. 7, 1899, 212 and f.

2) “Ausreisserregeln”. Cf. e. g. KRITZINGER-STUHLMANN: Artillerie und
Ballistik in Stichworten, p.20 and C. Cranz: Lehrbuch der Ballistik
Bd. I 5. Aufl. p.420 and f.
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speziel fur die schiesstechnischen Fragen Ausreisserregeln nicht
entbehrt werden kdénnen”.

And KRITZINGER-STUHLMANNY writes:

“Man spricht von echten Ausreissern, bei denen offenbar ein
Fehler wihrend des Bestimmungsvorganges der betr. Grosse
(z. B. Schussweite) gemacht wurde, und unechten Ausreissern,
die nur durch eine allzustrenge Ausreisserrégel von einer Ver-
wendung bei der Bildung des Mittelwertes ansgeschlossen wurden.
Viele Treffbilder sind seit Jahrzehnten auf diese Weise verfdlscht
worden”. — — — “Dadurch werden eine Menge von Werten als
Ausreisser-—zu Unrecht—gebrandmarkt.”

We can only agree with these remarks and again stress,
as already done in the introduction, that any schematic
rules have to be applied with the utmost critique and
caution. Otherwise they involve the risk of discarding
actually true observations and thereby giving a more or
less false impression of the accuracy of the measurements.

That this falsification may be dangerous, especially in small

“samples, is obvious.

§13. We shafl now discuss some of the rules most
often used for discarding outlying observations.?

From (1.1) we have that the probab‘ility S(p) of an
observation < falling in the interval

E;pcéw§'§+ po (13.1)

is given by
: p .
v N e e\ o
S(p)—VE exp( 2>di e(!/2> 1—P(p) - (13.2)
—p

where © (¥) is the probability integral

1) KRITZINGER-STUHLMANN loc. cit.
2) Cf. CzuBer loc. cit. and Cranz loc. cit.

4*
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o
no

5 [t
o) = I;—_ § exp (—?) dt (13.3)

Lo

and P(p) is given by (1.7). The simplest rule for discard-
ing outlying observations is the following which is already
mentioned in § 1.

I. An observed value is regarded as false if the corres-
ponding p is greater than the value p corresponding lo some
small arbitrarily chosen probability, e. g.

S =0999 i.e. P=00011ie p=329 (13.4)

(cf. table 1 with f= oc).

The -probability of an observation falling outside the
interval (13.1) is 1 —S(p) = P(p). Among n observations,
the average number of such observations is given by

m{p} = n(1—-S(p)) = nP(p). (13.5)

CrauveNET starts from the principle that for true observ-
ations

IA
b | -

m{p; (13.6)

leading to the rule: _ ‘
II. An observed value is regarded as false if the corres-
ponding p is grealer than the value p given by the equation

(CHAUVENET)

1. . 1. 1
m{p; = i.e. b(p)zl—ﬁl.e. P(P):Q_n (13.7)

2

VALLIER starts from the principle that for true observations

mi{ph=- (13.8)

leading to the rule:
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II. An observed value is regarded as false if the corres-

ponding p is grealer than the value p given by the equation

_ 1. IR _ 1  (VaLLIER)
m{p; = e Sk =1 e le P(p)—nz. (13.9)
(Only for n =4 and n =5 VaLLIER uses the rule of
CHAUVENET.) HEYDENREICH starts from the principle that

for n true observations the average value belonging to
2 (n—1) observations

My n—) {p} =1 (13.10)

leading to the rule:
IV. An observed value is regarded as false if the corres-
ponding ¢ is greater than the value p given by the equation
1

) 1 .
mz@_-_l)_{p} =1he S =1-gr—5ie PlO)= 2(n—1)°

(HevypengEICH) (13.11)

MazzuoLr starts from the principle that for true observ-
ations’ ‘

m{p} =1 (13.12)

leading to the rule:
V. An observed value is regarded as false if the corres-
ponding p is greater than the value p given by the equation
: L . 1. 1 (MazzuoLy)
m{p; =1ie S(p) =1 nl.e.P(p)~ e (13.13)
RoHNE starts from the principle that an observed value
must be regarded as false if its omission changes the

average value by an amount greater than the probable
error of the average value. If
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_ x1+'...+xn Ugl)—’{— "'+U$11) _
B= et =g
n n _
and (U(U = mi“mx)
= __331+“'+93n_1¥v(11)+ T"g)—1_‘_5
' 1 n—1 1

are the average values before and after the omission of x,,
we have, using the fact that

oD e o) =

(1) (1)
- - 1 1 v o4
— = (oD 4 .. D Bl 4+ = =
T = (0P vl ) (n 11—1) n n—1"

Since the probable error of the average value is equal to

0.67449- —
1/n
Rounes principle leads to the rule: ’
VI. An observed value is regarded as false if the corres-

ponding p is grealer than the value p giuen by the equation

b _ po_ 067490, o _ o g7agg "ot (RomNE)
n—1 n—1 V n 1/n (13.14)
TorsgE-JENSEND starts from the principle that for true
observations the probability of either the smallest or the
greatest observation falling outside the interval (13.1) shall
be smaller than é Since this probability is equal to the

probability that at least one observation falls outside the
interval (13.1), which probability, because of (13.2),

iven b
& Y 1—5"(p), (13.15)

this principle leads to the rule:

1) A. G. Torser-Jensen: Textbook in ordnance (in Danish) § 34 d.
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VIL. An observed value is regarded as false if the corres-

ponding p is grealter than the value p given by the equation

1 ® /1 (Topsoe-JENSEN)
I“Sn = - -_ - S — — .
| ) =5 ie Sk 2 (13.16)

§ 14. We shall now criticize the rules [—VII described

~in the preceding paragraph. Apart from the smaller or

greater arbitrariness, which as pointed out above is inherent
in all such schematic rules, the most serious objection is,
that they all assume the true values of the parameters § and
o of the normal distribution to be known. In practice, how-
ever, we only know some estimates, given in (1.2) and

(1.8) respectively, of these parameters, and this fact has
three consequences:

1. We do not know the errors, but only the residuals, and
these quantities have not the standard deviation o, but

‘the standard deviation l/—o* (1.5).

2. The residuals are not mutually independent, since their
sum is equal to 0.

3. The estimate s of o is itself a statistical variable, and
the relative errors are, therefore, not normally distri-
buted, but have the distribution (5.1).

Especially it follows that the numerical value of a rela- .
tive error can never exceed /'n—1. In table 8 we give the
limits of the relative errors

r—x n

r= l—/——— = ‘/n__l o (14.1)

n—1

n

givén by the rules I—VII (under the assumption -that x = £

and s = o). Comparing with the second column giving the
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maximum values it is seen, that in certain cases—set off
in clarendon types——the rules even give limits exceeding
these values!

Table 8.
I1 111 v v VI VII
n  Jn—1 I  (Chauve- (Val- (Heyden- (Maz- (Rohne) (Topsee-
net) lier) reich) zuoli) Jensen)

3 141 3.29 1.69 1.69 1.41 121 096 1.54
4 1.73 3.29 1.77 1.97 1.60 1.35 1.17 1.63
5 2.00 3.29 1.84 1.84 2.08 1.44 1.35 1.70
6 2.24 3.29 1.90 2.40 215 1.51 1.51 1.75
7 245 3.29 1.94 2.52 221 1.59 1.65 181
8 2.65 3.29 2.00 2.60 225 1.64 1.79 1.85
9 2.83 3.29 203 2.64 2.28 1.69 1.91 1.89
10 3.00 3.29 2.08 273 233 1.74 2.02 1.93
12 3.32 3.29 2.13 2.82 2.37 1.82 2.24 1.99
20 4.36 3.29 231 331 2.52 2.01 2.94 2.17

It is now clear that any reasonable and to some degree
theoretically justifiable rule must take its starting point in
the relative errors (1.10) and their correlation function
given by (2.9), (8.11) and the last factor in (2.8). But of
course one can still deduce many different rules. We think,
however, that since any such rule actually means cutlting off
the tails of the normal distribution it is reasonable fo impose
the condition that the critical limits which the rules give shall
for large samples converge fowards the limits given by {he
rale I for some value of P. In fact, the larger the sample,
the better is our knowledge about the true values of the
parameters & and o and the less do the residuals differ
from the true errors for which the rule I is deduced. Next
we think it reasonable to impose the condition that the
rules shall give us as complele a control as possible of the
risk of discarding actually true observations having only
Jortuitously large errors. The simplest rule fulfilling these
conditions is the rule analogous to I:
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An observed valite is regarded as false if the corresponding
relative error is grealer than the value r corresponding to
some small arbilrarily chosen probability, e. g.

S = 0.999 i.e. P = 0.001.

These values of r are given in the last column of table 1
for various values of f, the number of degrees of freedom.

Comparing with the second column giving the maximum
values of the relative errors, we see that this rule does
not work for the two smallest numbers of degrees of
freedom, 1 and 2, since in these cases the critical limits
are too near the maximum ones. We think that this feature
is just a sign of the soundness of the rule. For we think
it impossible -to draw any conclusions from such small
samples whether an observation is true or false unless we
have some further knowledge from previous samples of the
same nature about the values of the measurements to be
expected. For such small samples it is even not improb-
able from time to time to find relative errors equal to the
maximum values. For instance we have 3 such values
among the 400 relative errors treated in part III. We have
e. g. in one case the four measurements 21790, 21789, 21789
and 21789, and certainly nobody would reject the first mea-
‘surement though its relative error is equal to the maximum
value }/3. This fact reminds us, as already stressed in the
introduction, that any schematic rule must be applied
with the utmost critique and caution.

It is of course also possible to deduce rules analogous
to the rules described in"§ 13, especially rule V and VII.
In both these cases the first condition would, however,
not be fulfilled, and we therefore think that the rule
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suggested is both the most simple and the most reason-
able rule.V

Summary.

In the present paper we discuss two problems in the
theory of errors. The first problem is how to test whether
or not a given sample of measurements has come from a
normal population. The second problem is how 1o test
whether or not an unusually large error has to be rejected
as being due to some false measurements. It is pointed
out that especially for small samples the distribution of
the relative errors—the ratios between the deviations from
the average value and the mean squére error of the
deviations—furnishes such tests.

In part T we first treat the case of direct and equally
good observations, and next in part II the case of indirect
and nnequally good observations. In part] we deduce the
correlation function for the free relative errors. From this
function we then evaluate the frequency function of one
relative error. In part II we first recall the theory of ad-
justment written in a matrixform. We next deduce the
correlation function of the free relative errors in a way

analogous to part I. Because of the complexity of the ex-

pression obtained, we deduce the frequency function of.

one relative error in a different way than in part 1. It is
shown that independently of the form of the equations of

1) After the completion of this paper my attention has been drawn
to a paper by E.S. Pearson and C. CH. SERar: Biometrika, 28 (1936),
308 discussing this rule. They prefer a rule analogous to VII, but it
seems that the conditions stated above are so reasonable as to be neces-
sarily fulfilled. From the paper quoted it appears that the distribution
(5.1) has already been deduced by W. R. Tnompson: Ann. of Math. Sta-
tistics VI (1935), 214. Since this periodical is not found in any Danish
libraries, we have not, however, been able to see how it is deduced there.

On the Distribution of Relative Errors. 59

condition, the relative errors have the same frequency
function in the two cases. This distribution deviates con-
siderably from the normal distribution for small samples,
but approaches the normal one for larger samples. The
distribution is shown graphically in figs. 1—5 and is tabul-
ated in table 1. This table gives r = r (P, f). Here P is
the probability of a relative error—shown always to be
numerically smaller than ]/m —numerically exceeding
the value r. Further f = n—m-—1 is the number of degrees
of freedom of the relative errors, n and m being the num-
ber of observations and free elements, respectively.

In part IIT the distribution obtained is applied as a
test for normality. As a numerical example we treat 100
samples, each consisting of 4 measurements of the positions
of spectral lines. The result is given in tables 2-—7 and
figs. 6—15. The agreement with the theoretical distribution
—being in this case uniform—is shown, by means of the
¥2-test of goodness of fit, to be excellent apart from a
small discrepancy, interpreted in terms of a certain system-
atic error. In connection with this example we deduce the
conditions for the legitimacy of using observations which
are mutually dependent. It is shown that if the number
of the samples considered is large, the dependency is ir-
relevant in our case. Furthermore it is shown in this con-
nection that the correlation function of each two relative
errors approaches for large samples the normal correlation
function with correlation coefficient equal to zero.

Finally in part IV we discuss the second problem, that
of rejecting outlying observations. It is pointed out that .
admitting the normal law to be appropriate means that
the only legitimate procedure in rejecting certain observ-

ations as false is to reject them during the observations
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themselves, on the basis of an analysis of the constancy : ' 2
of the conditions of . the measurements. It is, h0>Wever f= n—m-—1. n: No. of observations, m: No. of free elements (= 1 for direct observations).
agreed that in certain cases, as e, g. in ordnance, such an =1 vr+1 P=0.9\ 08| 07| 06| 05| 04 k 03] 02| 0.1 i 0.05‘ 0.02‘ 0.01 | 0.001
analysis may be impossible in practice and that, conse- 1 |
quently, recourse must be had to schematic rules usin 1 1] 1.4142]0.221 [0.437 |0.643 [0.832 [1.000 |1.144 | 1.260] 1.345| 1.397| 1.409) 1.414] 1.414] 1.414
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90 | 4.5826| 130 | .263| .399| 542 696 .865|1.061| 1.302} 1.649|1.937| 2.255| 2.460| 2.990
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842621 ... oo o) )L 1.646] 1,954 2,306 2.542) 3.201
9.0000} ... ol e o] - | 1,646 1.955) 2.309 2.547, 3.211
95394 ... oo o s oo 11646 1.956] 2.310] 2,550 3.220
10.0498 | .. oo oo | 1.646(1.956) 2.312, 2.553] 3.227
11.0000 | 126 | 255 .387| 528 | 679 .846 | 1.041| 1.285| 1.646|1.957| 2.315( 2.556| 3.237
o | 126 | .253| 385| 524| 674 | 842|1.036|1.282| 16451960 2.326| 2.576| 3.291
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