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1 . The number of general theorems concerning divide d

differences is so small that any addition to the list may ,

perhaps, be welcome. The unexpectedly simple theore m

which forms the object of this Note seems, as far as I have

been able to ascertain, to be new ; it may be regarded as

a generalization of LEIBNIZ ' formula for the rt} ' derivate of

a product of two functions .

The notation will be that of the author's book "Inter-

polation" . Thus, for instance, (xo x 1 . . . x,) will be the r ''

divided difference of p (x), formed with the arguments xo ,

x 1 , . . . xr . In order to save space we shall, as a- rule, only

write the first and the last of the arguments, where n o

confusion is likely to arise .

Let, then,
(x) = f(x) g (x) ;

	

( 1 )

we propose to prove, by induction, that

r

F (xo . . . xr)

	

f (xo . . . x„) g (xv . . . x,.) •

	

( 2)

It is readily ascertained that the formula is true fo r

r = 1, that is ,

p (x o x1) = f(xo) 9(x o xi) + f(x o x1) g (x1) •

We proceed to show that, if the formula is true for on e

value of r, it also holds for the following value .

1*
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In order to prove this, we employ the identity

y (x0 - . . xr) - (x1 . . . xr +I)
(x0 . . . xr+1) =

x0-xr+ 1

Applying this, we find, assuming (2) to be true for som e
particular value of r ,

`x0-xr+1) (x0 . . xr+ 1) _

r

l (x0 . . . x) g (xv . . . x)

	

f(x1 . . . xv + 1) g (xv + 1 . . . xr+ ) .
=o

	

- o
Inserting, in this,

	

{f(x1 . . . x y + = f(x0 . . . x) -(x0- xy-I -1)! (x 0 . . . xy +1) ,

we find
. (x0 -xr +i) y (x0 . . . xr +1)

. x) g (xy . . . x) -

	

f (x0 . . . x) g (xv + 1 . . . xr +
v= 0

- xy+1) f(x0 . . . xy+i)g(xy+l . . . xr +1) .

In the second sum on the right we introduc e

g(x9+ . . .xr+1) = g(xy . . .x) -(xv-xr+g(xi, . . .xr-1-1) ,

and in the third sum we write v-1 instead of v. Thus,
we obtain

x0 -xr +l) ~(x0 . . . xr +1) _
r

f . . . x„) g (xy . . . x) - ~ f (xo . . . x) g (x,, . . . x)

`x z -xr+1)f(xo . . . x) g(xv . . . xr+l)

- x,.,) f (x o . . . x„) g (xv . . . xr + 1 )

f
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which reduces to
r+ 1

(xo - xt, +1 )

	

f(xo . . . xv) g(xi, . . . xl, + i) ,
_ o

so that
r+1

/
~ (xo . . . xr+1) - ~ flxo . . . x,,) g(x„ . . . xr+ .

But this is (2) with r + 1 instead of r, so that (2) is

true for all values of r.

2. Formula (2) contains several well-known formula s

as particular cases . Thus, if we make all the arguments xz,

tend to the same point x, we obtain, if the derivates exist ,

	 r

	

' f(v)	 (x) g	 (r
-v) (x)90 (0 (X)

rt

	

vl

	

(r - v) 1v= o

which may also be writte n

Dr f (x) g (x) _

	

` v
)

Dv f (x) . Dr-v g (x) •

	

( 3 )

This is the theorem of LEIBNIZ referred to above.

Putting next, in succession, xv = x -}- v, x, = x - v and

x,, = x- 2 + v and making use of the relation s

f(x , x+1, . . , x+ n)

	

12 t

L n f(x)

f(x, x-1, . . ., x-n)
v n f(x)

l2 :

- 2 -F 1, . . . , x +
2

	

ån h(x)

we obtain, in analogy with (3), the three well-known

relations
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A r f(x) g(x)
_(1)

	

f(x ) • ~ r y
g (x + v),

	

(4)
v= o

O r f(x) g (x) _ ,) , f ( Iv' ) o' f(x} o r ' g(xv) ,
v

(x- r	
2

")
år-vg

(
x+

v

)
(6)

f(x) = F(t)-F(x),

	

g(x) =	 ,x

so that

g(xy . . . xr)

	

(t-xv) . . . (t-x,.)

(5)

3 . We now put

1

and
F(t)- F(x)

t- x

Inserting in (2), we obtain, keeping the first term on th e

right apart,

F(t)-F(xo)

	

\ '

	

F(xo . . . xv)
(xo . . . x r) _

(t-xo ) . . . (t-xr)	 (t-xv) . . . (t-xr)

or, solving for F(t),

(7 )

(8 )

F(t) = t -xo) . . . (t-xv i )F(.xo . . . x v)+R, (9 )

R = (t-xo) . . . (t - xr) P (xo . . . xr),

	

(10)

where the factorial (t-xo) . . . (t-xv_i) for v = 0 is inter-

preted as 1 .

This is NEWTON 'S interpolation formula with divide d

differences and a remainder term differing slightly fro m

the usual form . The latter is obtained by observing that ,

if we put
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~p f(xo) = f(xo xp) ;

	

Of(xo) = f(xo 0,

	

(11)

8 p and 6 being symbols acting on xo alone, then, sinc e

(xo) = Ø F (xo) ,

(xo . . . xr ) = Br Or

	

. . . Bt P (xo) = BrBr_ i . . . 9 1 B F(x o )

or
T(xo . . . x i.) = F(txo . . . xr), (12)

so that
R = (t-xo) . . . (t-x r .) F(txo . . . xe) . (13)

But from (10) we obtain in particular cases forms o f

the remainder which are worth noting . Thus, for instance ,

if all the arguments tend to the same point x, we fin d

TAYLOR ' S formula

\ ' (f - x)v
F(Y)

	

R (14)F(t) _

	

(x) +
v= 0

with the remainder

R _
(t-x)r-1-

	

Dr F(t) - F(x)
(15

)r!

	

t- x

the operator D acting on x.

Further, putting xi, = x+ v, (9) and (10) yiel d

r

F(t)

	

(t-x) (")
G v F(x)-I-R, (16)

(t -x) (r+ ~ )
G rF(t)-F(x)

R =
r!

	

t-x

	

'
(17)

where G acts on x. This is the interpolation formula wit h

descending differences and a remainder term which ha s

already been given by BooLE' .

1 Finite Differences, 3 rd ed ., p . 146 .
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Finally, putting x„ = x - v, we find the interpolation

formula with ascending differences

r

F(t) _'(t- x)(-")
v!

	

VyF(x)-I-R, (18)

R = (t-x) v r F ( t)-F (x) (19)
r!

	

t-x

acting on x.

It is evidently easy to transform the preceding remain -

der terms to the usual forms.

4. It is easy to extend the formula (2) to a product o f

any number of functions . Thus, i f

f (x) = fY (x) f2 (x) ,

	

g (x) = f3 (x) ,
we have

v

f' (xo . . . x„) =

	

fi (xo . . . xd fs (xu . . . x,,) ,
=

(x) - f1 (x ) f2 (x)f3(x)

9) (xo . xr ) =-

h. (xo .

	

x io) f2 (x~~ . . . xv) f3 (xv . . . x r) .

rP (x) = A. (x) f2 (x) . . . fn (x) ,

	

(2 0)

cp (xo . . . xr) _

fl

	

x,,) f2 (xa . . . xf? ) fj (xß . . . xy) . . . fn (xP . . . xr) , (2 1)

the summation extending to all values of a, 48, y, . . . Q for

which

and

0 <a<,g <y< ••• <e<r,

	

(22)
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Thus, for instance, if n = 3 we may at once write down

~ (x0 x 1 x2) = 11(x0) 1.2 (x0) f3 (x0 xl x 2)

+ ft (x0) f2 (x0 x1) f3 (xt x2)

- I+
f1 (x0) f2 (x0 xl x2) f3 (x2)

+ f1 (xo xl) f2 (xi) f3 (x i x2)

+ fl (x o xl) f2 (x 1 x2) f3 (x2)

+ fl (x0 xi x2) f2 (x2) f3 (x2) •

If, in (21), we let all the arguments tend to the sam e

point x, we ge t

T (r) (x)

	

' f1 (a) (x) f2 (ß -a ) (x)
. . . fn	

r P)
(x)

r!

	

a!

	

(d--a)!

	

(r-~O) I

and from this, putting a = v1 , fi-a = v2 , . . ., r-~O = v n ,

cy (r) (x) =
r !

v l ! v2 ! . . . vn ! fi(vl) (x) f2(vd(x) . . . fn("n) (x) , (23)

the summation extending to all values of vl , v2 , . ., vn fo r

which
yl +

y2
+ . . . + vn = r .

	

(24)

This is the theorem of Leibniz for a product of n func-

tions. It may he written symbolically in the for m

rP(7) - ( fl + f2
+ . . . + fn) r

	

(25)

with the convention that, after expanding, r should be

replaced by fw) . It should be noted that the zero powers

of f cannot be omitted, since f(0) does not mean 1 but f.

If, in (21), we choose x,, = x + v, we find

,Cso(x)

	

L afl(x) ,L ß-a f2(x + a )

	

L r-`ofn(x+ P)

r!

	

cc!

	

(,6-a)!

	

(r -Q) !

or, in the notation (24),
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Î
~rp(x) -

	

r

	

X
v 1 I Y 2 L . . . Yn l

Q Ylfi (x) G v2 f2 (x +

Similarly, putting x, = x - v, we obtain

V rp(x)
=t

	

I r

	

X
Y l Iv2 ! . .v,t ~

7 '1f1(x)V "2 f2 (x.-Yl) . . . D"nfn(x-vl - . . . yn

and finally, making x,, = x- 2 -f- v ,

~//

	

lv

	

l'Y11

!~ 2 fYl

J

- ~

. ~", f„ x +vl+ . . .+ vn
-I'

2

7n
) .

It is easy to put also (26), (27) and (28) into symbolic

forms ; but as these are more complicated than (25) and ,

therefore, not so useful, they seem hardly worth recording .

5 . As an application of (21) we put

f„(x) = 1

	

p(x) =

	

1	 	 (29 )
t-x

	

(t-x)

and obtain without difficulty

(xo . . .xr) =

1

	

1

. (t-xr)

	

(t-xa) (t-xp) . (t-xv )

the summation extending to the values of a, ,ß, . . . e satis-

fying (22) .

(26)

(27)
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But since the degree of the produc t

(t-x,) (t-xß) . . . (t-xo)

is the same as the number of the quantities a, ß, . . .

which is n-1, (30) may also he written

9) (xo . . . xr) _

	

i
_	 1	 \JJ	 1	 }(31)

(t - x 0) . . . (t - xi .)

	

(t x0 ) NCO . . . (t - xr) No r

	

JI

the summation extending to all values of tto,

	

.

	

p,r for
which

(32)

Instead of (31) and (32) we may evidently writ e

1

	

P(xo . . . xr) =

	

(33)
(t-x0 ) Z0 . . . (t-xr) r

tio -I- + . . . +fir = n±r,

	

> 1 .

	

(34)

It thus appears that y (x 0 . . xr ) is the coefficient o f
nz

-Fr in the development o f

	

z

	

z

	

z
t-x0 t x i

	

t -

\ 1 t zxol (1 -
z	 )

	

(1- t	
zx,

	 )

or the coefficient of z1 L in the development o f

(t-x0 -z) (t-xl -z) . . . (t-xr-z) .

The number of terms in (33) is obtained by puttin g
t = 1, x„ = 0 for all v, and is therefore, according to (36) ,
the coefficient of zn

	

in the development of (1-z) -i. 1,
that is, (r+n-

1
n-1 ) '

po+tt1 + . . . + P,r = n-1 .

where

1

(35)

(36)
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6. Lastly, we consider the cas e

f
(x) = 1 x

	

! (x)
=

(-4 x) 1 ( ttt -x) , (37)

assuming all tv different . Here, an abbreviation of the nota-

tion becomes necessary, and we shall writ e

to = (t-x e ) (t-xn+i) . . . (t-xd .

	

(38)

We obtain, then, from (21)

1
(x0 . . . xr) =

	

t0a t2

	

. . tn r s

	

(39
)

.

the summation extending as before to (22) .

But we have also, fo r

potation formula,

instance by LAGRANGE ' S inter -

(x) =	 1	 _

	

1
(tl -x) . . . ( tn -x)

	

(t„ -x)

	

(40)

where

K = ( tom i ) (t2-ty)

	

(t„ +1 -t„) . . . (tn-ç), (41)

so that

P (x 0 . . . xr) _ (42)

We ' therefore obtain, by comparison of (42) and (39), th e

identity

(43)

In the particular case where n = 2 this become s

r
	 1	 _	 1

	

1

	

1
>

	

)t Ov tvr

	

t -t t° i

	

tO r1 2

	

2

	

1

	

1

	

2

Indleveret til Selskabet den 31 . Marts 1939 .
Færdig fra Trykkeriet den 22. Juni 1939 .
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