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INTRODUCTION
3 fter FermI's discovery? of the possibility of producing

slow neutrons by surrounding a source of fast neutrons by
hydrogeneous substances such as paraffin wax, the problem
of the mechanism of the collision between neutrons and
protons has become important for the study of the proper-
ties of slow neutrons. The problem has already been treated
by Ferm1 himself®, who describes the slowing-down pro-
cess in the following way. Neglecting first the fact that
the protons in the paraffin are bound chemically, the fast
neutrons which come from the source will make elastic col-
lisions with the protons giving up on the average half of
their kinetic energy at every collision. In this way they will
soon reach thermal energies, where they will remain for a
relatively long time, because now the chance that a neu-
tron will get by a collision with a proton some of the ther-
mal energy of the latter is about the same as that it will
lose energy by the collision. The neutron will therefore
diffuse round in the paraffin until it is finally captured by
a proton. So long as the neutroun energy is large compared
with the oscillation energy of the proton it is legitimate to
consider the latter as free. As the highest oscillation fre-

quency of the proton in paraffin is of the order 3000 cm ™!

1) E. Fermi, and coll., Proe. Roy. Soc. 149, 522 (1935).
2) E. FErMi1, Ric. scient. VII. 11. 13 (1936). See also H. A. BerhE, Rev.
of Mod. Phys., 9, No. 2 1937.
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corresponding to an energy of 0.37 volt") it will be correct
to treat the protons as free for neutron energies down to
about one volt.

Classically the total cross-section for the scattering should
be the same above and below one volt, as the cross-seclion
is classically always the geomelrical area of the proton. In
a quantum treatment, however, the binding of the proton
has a large influence, as first pointed out by Fermi?, who
showed that one may use the Born approximation in cal-
culating cross-sections for the slow neutrons. In this appro-
ximation the cross-section is proportional to the square of
the reduced mass®, and as this is equal to the neutron
mass when the proton is bound strongly compared with the
neutron energy but equal te half the neuiron mass when
the proton is free, it is seen that the cross-section in the
first extreme case will be four times as large as in the second
extreme case. For intermediate cases this chemical faclor,
as it is called, will lie between one and four. Ferum1 found
by his model for the binding the value 3.3 in the case of
the C-neutrons.

Because of this quantum effect we have therefore diffe-
rent stages in the slowing-down process. In the first stage,
fast neutrons with energies of the order some million volts,
the cross-section is experimentally found to be of the order
1—2x10"*cm? 9 corresponding to a mean free path in
paraffin of about 5 cm. Owing to the collisions the energy
will soon decrease and the cross-section will therefore in-

he

— 12

1) (hw) 17—9
©1.69-10

-1,

volt == em”

Fom—1 = 1.233:10—% ()
2) Loe. cit. '
3 ef. eq. (1) p. 12.
1) J. Cuapwick, Proc. Roy. Soc. 142, 1 (1933) and J. R. Dun~Ning and
coll., Phiys. Rev. 48, 265 (1935). :
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crease!) until the energy is small compared with the energy
of the excited state of the deuteron. In this second stage
the cross-seclion will be independent of 1he energy and it is
found? to be about 13x 10~ * ¢m? corresponding to a mean
[ree path of 1 em for neutron energies from about 10000
volts down to resonance energies ol the order of some volts.
In the third stage when the energy gets below one volt the
chemical binding hecomes noticeable and the cross-section
increases to about 48 X 107 %' ¢m? for lhermal energies?, so
that the mean free path decreases {o about 0.3 cm.

For the two first stages I'ErMI has obtained the energy
distribution of the neutrons® which in the second stage,

where the mean free path is a constant, turns out to be

E
below one volt, the problem of the energy dislribution has

proportional to . In the third stage, neuiron energies

neither as yet been solved theoretically, nor is it known
accurately from experiments.®

For this last problem and for further problems connected
with the slowing-down process, such as temperature effecis,
it is of interest to determine theoretically the effect of the
chemical binding on the scattering cross-sections. Recently
attempts have been made to connect such calculations with
a still more extended range of problems: it has been pro-
posed® lo adopt for the cross-section of free protons — which

is of considerable importance for the determination of the

1) Cf. c. g. H. A. Betre and R. F. Bacuer, Rev. of Mod. Phys., 8, No. 2
(1936) eq. (62).

2} M. GorpHseer and G. H. Brices, Proc. Roy. Soc. 162, 127 (1937)
and O. R. Friscy, H. v. HaLeax jun. and J. KocH, Kgl. Danske Vidensk.
Selsk. Skr. Mat.-fys. Med. XV, No. 10 (1938).

3 Loc. cit.

4) cf. later p. 9.

5) BrTHE, loc. cit.
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neutron- and radiation width of excited nuclear levels! as
well as for the theory of the deuteron and the discussion
of the relation between proton-proton and proton-neutron
forces? — instead of the direct experimental value which
is not very accurate, the quotient of the thermal cross-sec-
tion and a calculated chemical factor. It would, however,
be much preferable for the above purposes to have a more
exaclt experimental determination of the free proton cross-
section as it is only possible to base such calenlations on
very rough models for the binding of the protons in pa-
raffin and similar hydrogeneous substances. In spite of this
lact it is, as we have seen, of interest to get some rough
ideas about the influence of the binding, and we shall in
this paper treat the problem by help of a model for the
hinding which we shall discuss in § 1.

§ 1. Discussion oi a simplified model for the binding of
the protons.

The scatltering cross-section and the energy loss can be
calculated exactly if the proper function for the nuclear mo-
lion in the molecules concerned is known.4The0retically it
is possible from an analysis of the molecular spectra to
obtain the frequencies of the vibrations and the normal
coordinates which determine the form of the differenl normal
vibrations. For the more complicated molecules, however,
such as paraffin which is mostly used Tor the purpose of
slowing down the neutrons, the resulting expressions would
indeed be very complicated and unmanageable, quite apart
from the fact that for these complicated molecules not all

1} H. A. Betae and G. PLaczek, Phys. Rev. 51, 450 (1937).
2) G. Brerr and J. R. SteuN, Phys. Rev. 52, 396 (1937).



On the Scattering of Thermal Neutrons by Bound Protons. 7

the data needed are accurately known. Simpler molecules,
like water for instance, have on the other hand so far only
been used in the liquid state, and in this the interaction
between the molecules which is of considerable importance
for our problem cannot easily be treated quantitatively. We
shall therefore in the present paper only discuss a very
schematic model for the binding. '

I. Instead of the normal vibrations we assume each pro-
ton to oscillate independently in a harmonic potential, which
we shall assume to be anisotropic, since it can be deduced
from molecular spectra that the protons oscillate with lar-
ger frequencies in the direction of the valency-bond than
in the perpendicular directions. For the frequencies we
shall take » = 3000 em™' = 0.37 vols, v, = v, = yv, With
y = 0.4 so that », = », = 1200 cm™ ' = 0.148 volts.

II. As we have already mentioned the binding has no
influence classically on the scattering. This is also true if
we do not consider the motion as a whole but only the
separate degrees of freedom. Now we know that the nuclear
motions in the molecules have also in addition to the larger
frequencies -which we have accounted for by the assump-
tion I, a spectrum extending to quite small frequencies.
These small frequencies we will take into consideration by
assuming that the protons and their potentials can move
freely like gas molecules with a MAXwELL velocity distribu-
tion, so that we substitute for the energy exchange between
the neutrons and the small frequencies the exchange of
kinetic energy between the neutrons and these “molecules”.
So long as the neutron energy can be considered large com-
pared with the energies corresponding to these frequencies
we can namely, as we have just seen, consider these sepa-

rate degrees of freedom as unbound, only the fact that
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they are connected with the other degrees of freedom with
the large frequencies must be accounted for. This we do
by ascribing an effective mass to the “molecules” consisling
of proton and potential, and for this effective mass we choose
the value 14 times the neutron mass, which is the mass of a
CH, group. This figure is rather arbitrary and corresponds
to the conception that the energy taken up in the neutron
collision by a proton is fransferred to a single carbon atom
in the hydrocarbon chain rather than to several of them.?

Our two assumptions are of course very arbitrary and
certainly not fulfilled in nature., No account is taken of
inlerference effects, and apart from this it is known, for in-
stance, that the frequency of the C-C vibrations in Athan
(C,Hy) and other heavy carbon molecules is of the order
of 1000 ¢m—!, which is about five times the energy of
thermal neutrons at room temperature®, so that these vi-
brations cannot at all be considered small. The model de-
scribed is on the other hand the next simplest after that
chosen by Ferm1?), the isotropic oscillator with infinite mass,
and it is certainly a belter approximation than his®. Taking
now our model for granted, we shall first see which con-

1) It must be emphasized that this model is in no way identical with
a gas of CHg groups. Firstly, in a CHg group the positions of the hydro-
gen atoms depend on each other; this gives risc to important interference
effects which we do not consider in our model; secondly, the slowing-
down process by free CHa groups would — apart from the slowing-down
by elastic collisions — take place by energy transfer to the three proper
vibrations of the group and the three rotations of the group as a whole,
while in our case we have two times three vibrations and no rotation.

2) For T == 290° abs we have kT = 0.025 volts = 208 cm—1.

3) Loc. cit. :

4) After the conclusion of our calculations a discussion of the effect
of the anharmonic binding on somewhat similar lines has heen published
by BETHE, loc. cit., where, however, the influence of the thermal motions
are not considered (cf. the 8§ 4—6 of the present paper).
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clusions regarding the influence of the binding we can draw
from the model, and next we shall use the resulis lo esti-
mate the effect of temperature variation on the mean free path.

In order to obtain definite results regarding the last
problem it is necessary to know the energy ranges of the
neutrons with which we are dealing. We shall assume these
to be the so-called C-neuirouns, that is the neutrons which
are slrongly absorbed in ,cadmium. The range of strong
absorption in Cd extends from 0 to about 0.3 volts." Further
we must know the energy distribution of the C-neutrons.
This is nol exactly known; its theoretical determination is
just one of the aims of the theoretical study of the slowing-
down process with which we are dealing in the present paper.
Two methods of investigation have been used to determine
the energy distribution of the C-neutrons experimentally.
“First the method of the mechanical velocity selector®. By
this method it is found that at room temperature the energy
distribution has a maximum for an energy of the order of

kT. Second the method of absorption in Boron®. As the
capture cross-section in Boron is assumed to follow the 1
law® it is possible by absorption experiments in this ele-
ment to compare the mean value Of% for different kinds

of nentrons. If for instance the C-neutrons were in thermal
equilibrium with the slowing-down medium this mean value
and hence the Boron absorption should vary with the ab-

solute temperature of the medium as T%. While between

1) Cf. e.g. J. G. HorrMan and H. A. Berur, Phys. Rev. 51, 1021, (1937).

2} J. R. Dunning and coll. Phys. Rev. 48, 704 (1935). Cf. also BeTHE,
loc. cit.

%) For a survey of the literature cf. Frisca, Harsan and KocH loc. cit.

4) R. Faiscu and G. Praczek, Nature 187, 357 (1936). D. F. WEEKEs,
M. S. Livixgston and H. A. BETHE, Phys. Rev. 49, 471 (1936).
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400° and room temperature no deviation from this 7% law
has been found the increase of the Boron absorption be-
tween room- and liquid air temperature, and still more
between liquid air and liquid hydrogen temperature, is much
less than would follow from a T7% law. This proves that
at least for temperatures of liquid air and downwards the
energy distribution of the C-neutrons cannot be represented by
a MaxweLL distribution with the temperature of the slowing-
down medium. The question how far their energy distri-
bution can be represented by a Maxwerr distribution corre-
sponding to a higher temperature or by a mixture between
a maxwellian and a non-maxwellian part shall not be dis-
cussed here. In view of these possibilities, however, it re-
mains interesling to investigate the energy dependence of
the scattering cross-section for a MAxwELL beam of neutrons.
We shall therefore for the purpose of the lollowing calcula-
tions assume the C-neutrons to obey the MaxweLL law
throughout. A consequence of this assumption together wilh
the assumplions made about the binding mechanism is,
however, that we cannot expect a direct comparison of the
resulls of our calculations with experiment to give a quanti-

tative agreement.

§ 2. (General theoretical remarks.

As first proved by FermtY it is possible to find a
“rectangularhole” potential V' with radius ¢’ <<<4 and deplh
D', which substituted for the neutron-proton polential will
give correct cross-sections in the BorN approximation so

long as the following conditions are satisfied:

1) Loec. cit. CI. also BETHE, loe. cit. Part B p. 123.
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I. The pe BroGgLIE wave-length, 1,9 for the neutron
relative to the proton must be large compared with the
range of the neutron-proton force, g:

LA>>9.

II. The total cross-section, ), must be small compared
with the square of the wave-length:

Q<< A®
111. For I to be satisfied one can deduce® that the di-

mension of the proton wave funcltion, a, must be large
compared with the range of the neutron-proton force:

a>>g.

For slow neutrons and protons bound in paraffin all these
conditions are certainly satisfied, as for such neutrons 2
is of the order of 10~ cm or more, Q is of the order of
48 x 10" *em® and we further know that o and q« are
respectively of the order of 10 ®em and at least 107" em.

For the differential cross-seclions per unit solid angle
dw, I, (8,¢), where I

of neutrons which are scattered, after having excited the

(8,9)dw is defined as the number

proton from its m’th into ils n’th state, into the solid angle
dw in the direction #.¢ per unit time and per scatterer, if
there in the incident beam is one neutron crossing unit
area per unit time at the place of the scatterer, we have

now inthe Born approximation the well known expressions®

) h
1) This is for non-relativistic energies given by (), = ———- e
e 1 (2mp Ey)
= 285X 107 " Ey " when Ey = 2 my v;?‘d is measured in volts, v,

being the velocity of the neutron relative to the proton.
2) For instance by Fourier analyzing the wave function of the pro-
ton in respect to velocity.
3 Cf. ¢. g. MoTr and Massey, “Theory of Atomic Collisions”, p. 100,
k
eq. (21). (The equation is erroneous, the factor % missing). It will he
o

seen that in this approximation | depends on ¢ only, not on ¢.
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IHIII (9) -
2My ¢ ¢ e . :
Eﬁ S dTN 5 d,L-P exp (lkmn r) v ( ! rN‘rPl)’l?Un (rP) wm (rP)
2 ~
L . 2 2M E,
kmn = kﬂ;kmn’ kg - (l—o) = B ’
LMy ’
kmn = —1'—72‘ (EO o (En——Em))’ § = <L (ko’ knm)

where vy, and v, are the wave functions of the proton
before and after the collision, 2, and %, the initial and
final wave vectors ! of the neutron, and My, E, the reduced
mass and energy of the neutron.

In this expression V' only depends on the distance be-
tween the neutron and the proton, so- taking’.rN—rP as a
new variable in the d¢y integration we can at once perform
this and using that the exponential is equal to unity by
this integration due to A >>¢" we get

2

S lp: <rP) exp (I k;;mrP) wm (rP) dTP (2)

-

k..
Lin @ = g7 5.

M| ¢ By M .
T J — N t 13
1= 4ot SV de) =g 7 (D¢ ®)

Equation (3) we can wrile in the following way using the
expression for the total cross-section for scattering between

a neutron and a free proton® which we shall denote by Q..

M 2

Tg = ( ) " Cree- 4

N
my,

We emphasize here that the expression (1) or (2) is calculated
in coordinates relative to the center of gravity of the system in
which the proton is bound and as this fact sometimes gives

1) The wave vector is just the momentum vector divided by &
2) Cf. Note 1, eq. (N 5).

(1)
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rise to a little confusion we shall briefly give the definitions here,
the transformation formulae being derived in Note 2. In the theory
for two-body collisions three different coordinate systems are used. )
First the system where the one particle is at rest before the col-
lision, which we shall call the rest system and denote by R.2
(All variables denoted by capital letters). Next the system where
the center of gravity of the two particles is at rest both before
and after the collision, which we shall call the cenler of gravity
system and denote by €. (All variables denoted by small letters with
an asterisk). Finally the sysiem which has its origin in the center
of gravity of the one particle both hefore and after the collision,
which we shall call the relative system and denote by r. (All vari-
ables denoted by small letters). Let the two particles have masses
my, my and coordinate vectors Ry, Ry, then the center of gravity,
R,, is defined by

my Ry + myRy = (m+ mg) R, 5

The coordinates referred to the center of gravity are next defined by
n'= Ri—R, 7t = Re—R, ©)

Putting (6) into (5) we get

=R O = E"‘Z*: 6% == 1 — 8%, 91" = ga*+ 7 (7)
if we introduce polar coordinates. Finally the relative coordinates
are defined by

o= Re— Ry = 1" —n, rn=10 3

the particle with index one being taken as the particle initially
resting in the R system. Using (5) we then have, introducing the
reduced mass

Ty Ma
M=
my—+ mj
M M
e —= — f or rof = - 1. 9»3* = By, (pa¥ = @a
2 my ® 2 my > 2, P2 P2 (9)
M M
nY= ——1fy or n*= —ry, 6" = a—08, ¢ = gt
1y my

1) The following also applies to the case where one or both of the
two particles are complex, consisting of more parts. In this case the mass
is the total mass and the coordinatevector is the one of the center of gravity.

2) It should be noted that this system it not always identical with
the coordinatesystem in which we make the observations, cf § 4. .
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We see from (9) the important fact that the angle of the colliding
particle is the same in the C system and in the r system, due to

L2

T

10F

0.8 -

0.7+

06

051

L . L " L 1 L .
0'40" 20° 40° 60° 80° 100° 120° 140° 160° 180°

g —>

Fie. 1. Angular distribution of scatlered neutrons in the rest system cor-
responding to isolropic distribution in the center of gravity system, for
mg = 14 m,,.

which circumstance the formula (1) is often said to he derived
in the C system in spite of the fact that it is really derived in
the r system.

From the formulae (2) and (4) we can at once deduce
that, as was already mentioned in the introduction, the
total cross-section will be nearly four times as large as the
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one for a free proton when the proton is strongly bound,
which means that the space in which the proper function
of the proton is different from zero is very small compared
with the wave-length of the neutron. We can then put the
exponential equal to one, so that we get quite independent
of the form of the proper function of the proton

1.6 = q-]flg?ﬂ O = 9" O (10)
0
which means thal only elastic scatiering can occur and
that this is spherical symmetric in the relative systefn just
as is the case for scattering by a free proton.! In the rest
system, however, we will no longer get the cos ® law? due
to the mass of the scatterer being now larger than the neu-
tron mass. In F1a. 1 we have plotted in units of g the curve
for (10) transformed to the rest system® for the mass of the
scatterer, mgy, equal to 14 m.

For the total elastic cross-sections we get from (10)

My\?
inl = 476q = 4 P QI‘ree (11>

my,
using (4). For the case My = my i.e. mg = oo the factor
of Q.. in (11) reduces to the factor 4 first obtained by
Fermr.¥ We have in this work taken mg= 14 m, throughout
so that '

M \2 2
4( N) _ 4/1‘}> — 4-0.871 = 3.48 (12)
my \15

which makes a considerable difference.

1) Cf. Note 1.

2) Cf. Note 2 eq. (N 19).
3) Cf. Note 2 eq. (N 18).
4 loc. cit.
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§ 3. The anisotropic oscillator.

We now in (2) pul the wave functions for our ani-
sotropic oscillator and as these are products of three wave
functions for a one-dimensional harmonic oscillator, the
matrix element will be a product of the matrix elements
of the type given by eq. (N 24) in Note 3. Using the for-
mulae (N 32) and (N 35) in Note 3 we have al once for
the 00 transition, which is the only one we shall treat
here

—

1 ) - ! r j
Ioo = qexp (—2 < [; (k‘)(’;: + k°02y) v k(’oin

AR L L, E, R
a, = (Mpwz)’ 9 kg a = 5m4 sin® (13)

MY

g == —--
A[P’ N "rel

1
Ey =5 Mo

Mp being the reduced mass of the profon, w, = 2w, »,
the frequency of the oscillation in the direction of the
z-axis and 6 the angle hetween k, and kg, i. e. the scat-
tering angle of the neutron.

Further we must take the mean value of (13) over all
directions of the oscillator. This we do by taking the axes
of the oscillator as coordinate system and averaging over all
directions of kg, in respect to this system, the length of kj,
being kept constant. In this way we get, denoting the

mean value by I 2

]('”2612 Wl 1 1
T 00 'z o 9
Inolose = 9 €Xp (— Ky ) & exp (2 k2o (;— 1) 1‘“) df (14)

vo

We introduce as new variable the dimensionless quantity

1) Cf. eq. (N 36).
2) A mean value we shall in this paper always denote by this symbol.
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EO EN &
&—— = - —_—,
ﬁmz h o, . my

W =

1
myV3%  (15)

Ey =

mg

where V,, is the velocity of the neutrons in the rest sysiem,
and then we can write (14) in the following form, due to

Lprege — 4w sin? g (by (13))

2002

1L ifs 14 . 0
a(;—«l) 2 W' sin

exp <—l4 W sin®
exp (@)l (r=<1). (16)

— v
ose = 9" 1 ife 1y 6
<——~1> 2 W' sin —
v 2

ol

Iog

For y =1 we get the cross-section for the isotropic oscillator?

Iy, = grexp (~4Wsinzg>. (17)
In Fie. 2 we have plotted in units of ¢ the curve (16)%
transformed to the rest system® for two different values of
W, W = 0.0697 (full line) and W = 0.0156 (dotled line)
which correspond to Aw, = 0.37 volts, y = 0.4, mg = 14 m,,
and E, equal to the effective energy of neulrons at room
respectively at liquid air temperature, i. e. 90° abs.® It is
seen that even at liquid air temperature there is still a
considerable deviation from the spherical symmetry which
is always assumed in calculations about the diffusion of
thermal neutrons.

1) Ctf. FErM1, loe. cit., and Note 3 eq. (N 34).

2) The function Yg exp (f2) di is tabulated in JaHNKE-Empr “Tables of
Functions”, p. 106.

3) Cf. Note 2 eq. {N 18)

9 Cr. §6 p. 38

5) Cf. FremI and BeruEe, loc. cit.

Vidensk. Selsk. Math. fys. Medd. XVI, 1. 2
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The curves in Fi6. 2 can also be represenled by the

function
5"
I 00 T

1

, 9 ., i . . 1
48 _i_‘i]ls i IS =r° <~-VV), (1‘%)
5700 T g4 00 00 00 P ©

A

1. 1 1 1 I 1 L
0°  20° 40° 60° 80° 100° 120° 140° 160° 180°
e —

Fic. 2. Angular distribution in the rest system of neutrons scattered by
anisotropic oscillalor. IFull line corresponds to W == 0.0697, dotted line
to W = 0.0156, W given by (15).
where Iy, is given by (17) and Ij, stands for the same
function with yw subsiituted for », which we can wrile
as in (18) with W given by (15). The reason why the
curves (16) and (18) are so like is easily seen analytically

by expanding in powers of W. We then get
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foolise = Q- exp(—%4Wsin- 6) {14- []+i[]2+i[13+...]

2 3110 42
i 1 1 P
Foo = g-exp —74Wsm 5 1+ []—I—F[] +f§“ 4

[]= <%—1> 4W sinzg
so that the two corves have the same starling point and
starting tangent and the difference comes first in the second
power of W.

From (14) we can now by integrating over # and ¢
get the mean value of the total cross-section. The result is

QOOoscm
D e "11—0Xp( AW [1~(1—y)t2}>
:“‘ d(ps Ioglpse SIR O = g+ 1 dt.
Tt . W= [1—(1—») ]
e

For y = 1 we gel the well-known formula for the iso-
tropic oscillator?

. —exp(— 7
Q?O:'tq'l exp( 4“).

1%

(21)

In F16. 3 we have in the full curve plotted (20) in units of
er-eez) for y = 0.4 and myg = 14 m,. Also we have in the
same figure in the dotted curve plotted the curve analog-
ous to (18),

is” 1 is 2 i P
Qogo - ‘3’Qoo+§Qoso: 00 = Q(%( “/> (22)

As we know from (19) the two curves have the same starting
point and starting tangent. This can also be seen by direct
expanding in powers of W

1) Cf. Ferwmi, loe. eit. Cf. also Note 4.

2) Cf. eqs. (4) and (12).
2*

(19)
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-
B
e
"] ; : 12413 I-l—-l : :

0w 1.0 2.0 3.0

Fia. 8. Energy dependence of tolal elastic scallering cross-seclion for anisolropic oscillalor with y = 0.4 (full
= line). Dotted line corresponding mean value for isofropic oscillalors (see text). (The unit on the ordinale axis
N is Q. whereas the curves are plotied in anits (== 50 mm) of nqg = 0.871-Q,,,, (ef. eq. (11)) so one ordi-

nate unit equals 50/0.871 = 57.4 mm.)
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Since y<1—(1—) <1 (due to y = 0.4< 1) in the inle-
gration range of ¢ in (20) we can for large W neglect the
exponential and we find then after elementary integration

g ” = in (1+(1—~}’)7’;;)'W"L
20— = —p*
o 12N

Qoo = 7@ (3Jr 37 > W

For y = 0.4 the two coefficients are respectively 0.531 and

Qoolose =

(W>>1) (24)

0.6. That IOO and Qoo are very nearly equal o Ioolosc nd
‘,00|OSC is also physically plausible. I00 and QOO we can namely
interprete as the average cross-sections for scattering in a
substance consisting to one third of oscillators with energy
hw, and lo two thirds of oscillators with energy yhw,
while we by I, losc and Oootosc are averaging over all directions
of one oscillator with one degree of freedom oscillating with
an energy fim, and lwo degrees of freedom oscillating with
an energy ;/hwz, so that one would think that the two kinds
of averaging would give nearly the same resull, which is
1) This series is, as is easily verified, identical with BrTHE loc. cit.
PartBeq (463), if we put mg= o0, as then our 7 g — 0y, '|_Y~> &1s W}l—/->- go

by BETHE.

(23)
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in fact found to be the case as we have just seen. Due to
the expression (20) being far more complicated than the
expression (22), we shall in the following use fo; instead
of Q—oolosc’ the error being negligible especially as we shall
only be interested in that part of (20) which belongs to

small values of W.

$ 4. Influence of the temperature motion of the
scattering centers.

We must now take the second feature of our binding
model into consideration. At the same time we siiall define
a new scattering cross-section which can be directly measured.
The cross-section is as a rule determined experimentally
by measuring the absorption in varying thicknesses of
paraffin.? If now the scatterer does not rest but moves
with a velocity ¥4 relative to'the coordinate system in which
we are measuring, it is clear thal another number per unit
time of neutrons will be turned out of the beam and so
we shall find another absorption coefficient. This number
of neutrons expelled from the beam we can easily get by
using the fact that the total cross-section is the same in
all GALILET systémsg) and so the total number scattered per
unit time and per scatterer or the probability for a scatter-

ing process is just
P = erelQ

where ¢ is the density of the neutron beam, i. e. number
per unit volume, @, the velocity of the neutrons relative
to the scatterer and  the total cross-section calculated in

the relative system. In an experiment, however, we can

1) Cf. e. g. E. AmaLpr and E. Fenwmi, Phys. Rev. 50, 899 (1936).
2) Cf. Note 2.
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only measure the velocity of the neutrons relative to our
observing system, ¥, and not the onerelative to the scatterer,

v, and so we must define an experimental cross-section

rel

Qexp Dy the equation

P =ony, Qexp : (25)

so that the experimental cross-section is given in terms of

the usual one by

Quxp = frel g, (26)

I)N

Now we can take our second assumption about the
binding model into consideration, the velocity ©g of the
scatterer not being constant, but distributed according
to some probability law, F(?), the probability for finding
the scatterer with a velocity between ¥ and vg - d’()s being
just equal to F(9y) dvs. So on the average we shall find
the scattering probability, which we shall denote by 13l5,
equal to
\ PP(vg) do,

5 _ir

S F(vy)dog

and so the average experimental cross-section, Qexp'S’ will
be given by
) 0.
\7‘)91 QF(vg) dv,
=t (27)
{ F(vg) dvg

Q

~exp

S

For F () dvy we have assumed the MaxweLL distribution

myg
2kT

3o
F(vy) dvg = (%) exp (—uod) dvg,  u = (28)
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where myg is the mass of the scatterer (which we in this
paper have chosen to be equal to 14 times the neutron mass),
k is the Borrzmann constant?, T is the absolute temper-
ature, and the constant is chosen so that SF(‘Z)S) d‘vs = 1.

For Q we ought to take the expression (20), but as we
are not interested in temperatures much higher than room
temperature, the main part of the integral in (27) will
come from that part of Q which belongs to values of the

. 3 .
energy not much higher than ;]{T which means that our

A

variable W 2 will be of the order 0.1 due to the value of hwm,
having been chosen equal to 0.37 volts. For small values
of W, however, we have seen that (20) ecan be approxim-
ated by Qb defined in (22), so thal we can safely put.
Q‘;f;’ instead of the @ from (20) into (27). We have there-
fore first to put (21) into (27) and we get then using (15)

and (28)
Bx
Vi3

is
Qexp

1—exp(—4u v ~20,|
= q- v —v, P |2 ‘\>><
s q ’ s Yy P AF:
W UI\T. [ S N| (29)
, 1 M,e
X exp (—,u/l)g)d‘()s, o =3h
2 Aw_

Taking 93— v, = ¥ as new variable and choosing a polar
coordinate system with 2, as polar axis the integration
can be worked out and we get®

is —1 —2
Qexple— TG 0 Uy X

S

1 4-‘w' W, w e Uy
X 1D v ,)—eXJ<~ — v?)( ; >¢D( 1)} (30)
! N ! du'p N\ b+ (4p' + ) fe

where @ () is the Gauss error function defined in eq. (N 49).

1) &k = 1.371 X 1016 erg grad—1 = 8.623 X 10-2 volts grad—!. For
room temperature, 7' = 290° abs, we have kT = (.0250 volts.

2) Cf. eq. (15).

3) Cf. Note 5.
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o2 .0k .06 .08 g2 .‘f 6 43 220 .2 26 L S32 .34 36 3%

; 01 0.2 0.3 0
W — *
Fre. 4. Energy dependence of scattering cross-section (in units of Qp../
for scatfering cenfers al room temperalure, i. e. 290° abs (full line). Dol-
ted line corresponds to resting scallering cenlers.
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We introduce now the new dimensionless variables WY

and s defined by

1 2
\ 3HINUN
F— S —
W=woy i, my,’
Ms (31)
! kT M
e I XN . 3
s = p o, 1 my £ M, (ef. eq. (N 3(3))

Putting (31) into (30) we finally find, due to po} = %VV

is 1
Qexpsz g W "X
1 iy (32)
1y - W RE
X | @ ((1 W) L)~(1 +as) Pex J<~ AW gl
RV TR P T ) U\ N1+ 4s

is’
For Qexp

o8 substituled for W and s. In Fie. 4 we have in the full

. o1
s we find the same formula only with — W and
v

curve plotted

0 (33)

N axp)

1 is 2 iy
s —5 Qexps g Qexp

in units of Q.2 as a function of W for mg = 14 my,
liw, = 0.37 volts, y = 0.4 and T = 290° abs which makes

s Also we have plolted the curve for 0% and it

292
is seen that for W > 0.1 the two curves are identical. The

reason for this can easily be seen analytically from eq.

1) The W here is formally equal to W in (15) only the Ey there is
now the kinetic energy in the observafion system and not in the resi
system as in (15).. Only for Ts = 0% i. e. resting scattering centers, thesc
two systems are identical.

2) Cf. egs. (4) and (12).

3 Cf. eq. (22).
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(32). For « greater than 2.5 @(x) = 1 and so we get, due
to s <1

o

) i
= mqg W (1 —exp(—4W)) = Q°, e W> > 25

is
Qexp

and so under the same condition

—r
Qexp

— l‘S”
S Q.

This result we also get if we take the temperature of
the scatterer T = 0° which means that the scatterer is
resting, and we should therefore as cross-section find just
0" which is in fact the case.

For neutrons of room temperature E, = kT = 0.025

volts we have W = 0.063 and we see from the curve that

lhe corresponding Q| is equal to 2.76- Q... If we take
E, = zkl we get W = 0.095 and fo;,s = 2.46-Q, .

§ 5. MaxwerLL distribution of the incident neutrons.

From the formulae (32) and (33) we can already draw
conclusions about the temperature effects. In order to-be
able, however, to compare the results with experiments,
we must take into consideration that the beams of thermal
neutrons which can be produced in praxis, e. g. by slowing
down fast neutrons in paraffin, are never homogeneous
but have some energy distribution. As discussed in §1
this is not known quite exactly, but we shall here ap-
proximate it by the MaxwgLL distribution. If e(E) is the
MaxweLL distribution for the current, that means that the

1) As will be seen later, the effective energy is 1.103 kT at room

temperature, cf. § 6 especially p. 38. The correct value is therefore
2.69'eree (ef. also TanLe 1, Tg = Ty = 290°).
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probability for the neutron which hits the scatterer having
an energy between E and E+4dE is e(E)dE, then the
cross-section which would be measured should just be the

average value of Qe\p

In praxis, however, this is not the value measured due lo
the fact that the Boron detector which is mostly used to
measure the intensity of the neutron beam is not equally

sensible for all neutron energies, but absorbs according to

the % law. If we then by I'(E) denote the sensibilily of the

detector, that means the fraction of the neutrons hitting
the detector which it records, then what is really measured
is obviously the following average value of the cross-section
5“ which we shall denote by Q

~exp|S
5 Dexpls ¢ (E) [(E) dE

. - (34)
\ e(r) 1(E) dE

xp‘S N

Qex bs]

SIN

and this we shall now calculate.

The MaxwgLL distribution for the current, e(E), is pro-
portional to vy F(9,)dv,, F(v,)dv, being given in (28)
if we substilute N for S, or transformed from velocity to
energy, proportional to

41/2 . —1/s - 1o ]wN
Ey-2n (k[N) E exp kT dE,.

1
Due to the - law we have [arther that
L

I(E) = a k"
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where « is some constant characteristic for the detector

used. So we get that
e(E)I(EYdE = «F(E)dE, . \F(E)dE =

and as the factor &« drops out in (34), what we have to
calculate is in fact only the mean value in regard to the

MaxwerLL distribution for the densify

0

:S|N: STWLF(E) dE. (35)

““CAP;

For ()ﬂpls we have now to put Qe*{lJ given by (32)
and (33), and we must therefore first calculate Qﬂp s I
we define a new dimensionless quantity, n, by

kT & My
n =— H)‘: 1 ’;I;N, £ ‘T (Cf eq (1\ 5())) (36)
ITIS

we can wrile

F(EYdE = G(W)dW = 2 e exp <~ 11; VV) dwW

and putting this and (32) into (35), we get

1Yy By

y— g 2w T T X

is
Qev D)

SIN

7 1 1.

o s - 7

Ded S “7_1‘ (D(( l “7> /2\) (1—|—4s) <* EJ/V ) I71) ( S“A> % (‘37)
o LW fexp 144s 1+4s) /|70

X W"exp (—1—11 W) dw.

Both integrals are here of the same type

S W 2exp (—e* W) D(BW ™) dW = 27 "o~ " Arctg ’f;
Q

which formula is proved in Note 6.
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Putting in the correct values for « and g we get after

an elementary calculation

i —1 =1
Q:xl’fszv:?rq%h‘v n X
n\"* i, i n\”
Arctg [2) (14 “ Aretg [-—r — 2
Arctg <s> (14+4(n+s)) " Arctg (1—{—4(n+s) s> }
I )
 hw, my’ e o, . my’
ny ‘
Ty m M m?
B NS o N T8 (ef eq. (N 36))
] Ty my My, mg—my

is
exp|

~ by putting s = 0 in (38)

= Q¥ so that

«

For Ty = 0° we have found? that Q

we can obtain Q"

P I is g —ife —p
0 N—sh;—nO explsly = ¥q°2n (1 (1+4n)"")
Vs
due to Arctg oo = o
" = . 1 1
For Qg |sywe gel the same formula with — s and  »n
2 4 4 ;/

substituted for s and n respectively, and so finally

N

L.
oo
k=]

iS”
Qexp

s L (39)

o=

In Fig. 5 we have plotted the curve (39) in units of
(\)ﬁ_eez) as a function of T for various values of T with
mg = 1ldmy, he, = 0.37 volts, and y = 0.4. The wvalues
are also given in TasLe 1. We see that for Ty = Ty = 290°
the cross-section is 2.7 times larger than the free cross-
section. AmMaLpr and FeErm1® find experimentally for the
ratio of the two cross-sections the value 3.7. The experi-

D Cf. p. 27.

2) Cf. eqs. (4) and (12).
3 loc. cit.

(38)
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mental value for the free prolon cross-section measuared
with resonance neulrons is, however, very inaccurate, as

already mentioned in § 1.

[ 1e0° , 200° Joo® ' #a0°

Ty—> .
Fra. 5. Scaltering cross-sections (in units of Qﬁ,ee) for neuiron beams with
MAaxweLL distribution as function of neuiron temperature for different
values of Lhe temperature of the scattering cenfers.

We see further that for liquid air temperature the cross-

section is 34 %o higher than for room tewperature, the scat-
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TasLe 1. The lotal elastic scatlering cross-section in unils
of Qp,. as a function of Tg and Ty given by eq. (39) with
mg = 14 my ie wq = 0.871-Q,,, (¢f. p. 15).

e ’[‘\' a | o
SN 200 | 90° | 290° || KT volts
Ty e
‘\
0° ... 33913112581 0
20° .. ... 3.591 3.17 1 2.58| 0.00172 liquid hydrogen temperature
90° . ... 426 3.30| 2.61] 0.00776 liguid air —
290° ... .. 5491 3.61] 269| 0.0250 room —

terer being kept at room lemperature. The agreement with
the experimental value of 26 °/ found by Fink! is even better
than can be expected in view of the rough assumptions of
our model®. The values for liquid hydrogen temperature
(20° abs) are only given for the sake of illustration, as for
temperatures as low as these our model loses every justi-
fication. In this case, infinite effective mass would be the
more appropriate approximation. .

In order to see how much of the variation in our cur-
ves comes from the special form of the cross-section of

the anisotropic oscillator and how much from the motion

of the scaltering centers (the factor Ul’;—el in (26)| we have
to compare the curves with the curveNfor T, =10, as tile
latter contains only the first influence. We see that the
difference is negligible for room temperature but gets im-
portant for liquid air temperature. Another way of studying
the influence of the motion ol the scattering centers con-

s,\ for ) equal to a constant. Put-

sists in calculating Q,,

ting this into (27) we find, proceeding exactly as in the

D G. A. Fink, Phys. Rev. 80, 738 (1936). A similar value was found
by FriscH, HarLsax and KocH, loec. cit.

2) Gf. § 1.
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- S
calculation of Q'Cxp

5> the only new formula needed being

given in Note 7,

s oW ) 2 W) i(‘_‘f) ' E”
Si(‘) 2W[(D(<S>,<1+ s)+7r'/f s exp( 5 (40)

where W and s are given by eqgs. (31). It is seen that
7

Qconst
exp

(40) is only a function of 5as it must be, since Aw_ does
not enter into the problem considered here. Also it1ius seen
that, due to @(oc) = 1, we get for s = 0 or for <—V:7> /_>> 1
that, as is physically obvious, (

const
Qexp s Q-

Putting further (40) into (35) we gel, after elementary
calculations, the only new integral needed being given in
Note 8§,

Q‘;::E“S y= 02 7 tnt [(ns)"l2 “+ (n+s) Arctg <g> } (41)

n being given by (36). Also here he_ drops out, as it must,

since (41) only depends on : Further we get for T, = 0°

- const
lim QCXD <
s§—>0

. . - const
as we must get, since lim Qo
s—> P

¢ = const, and const| =
const. In F16. 6 we have plotted the curves (41) as func-
tion of the two temperatures for mg = 14 my and Q being
S'N for Tg = 0° and T, = 290°, that is
Q = 2.58-Q,. Y. so that we can directly compare thesc

’

taken equal to O;:(p

1) Gf. Tasre 1.
Vidensk. Selsk. Math.-fvs. Medd, XVI, 1, 3
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curves with the curves in Fra. 5. It is seen that the general
character of the curves is the same, coming from the com-
mon integrations, but that the curves in F16. 5 have another

o° tao® 200° Joo® . lrc‘:o'

Ty——>

F1a. 6. S8ame as FiG. 5 for a scaftering cross-section which does not depend
on neutron energy in the center of gravity sysiem.

asymptote coming from the special function chosen for
in- (27).

¢ 6. Eflective neutron energy.

With the help of the curves in Fre. 4 and Fic. 5 we can
now treat the problem of the effective neutron energy. By
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this we mean that energy, E, which a homogeneous beam

of neutrons must have in order that the scaftering cross-
section shall be equal to that of a MaxwrLL beam of tem-

perature T,. For E we therefore have the equation

(kT 42

Qexp S (E) = QexpS
Now our expressions for the ('s are not given directly as
functions of the energies but of the variables W,n and s.
We have, however,?

W =k, n=e«al, s =pBE,

O

1 — 1 , —
= — = 259 volts Y 8= - ; = 0.180 volts
R, my, ho, mg
T1+ T14—
m my,

for

ﬁ.a): = 0.37 volts and mg = 14 my,

where E is the energy of the homogeneous neuniron heam
in the coordinate system of the observer and E,, E, are
equal to kTy and kT, respectively. So we can solve the
equation (42) in terms of W, n and s. This can, however,
only be done analytically in a few special cases.

1/2
n\’
I. case: <—> << 1.
s

As the highest temperature we are interested in is less
than say 1000° = 0.0862 volts, we see that both n and s
are small compared to unity and so we can in this case
expand everything in (38) with the result that

1 Cf. egs. (31) and (36).

(43)
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16 /)"
o =g (2. (19)

~is!’
chp N

1/3
~ - . n
From this formula we see that @ is large for <;> <=1

. ref!
and from the curve for Q:xp

‘ . W™, .
corresponding value of <?) i1s also small. By expanding

s we can conclude that the

in eq. (32) we then find

S 1
<= g % <€7> ) (45)
T

Putting (44) and (45) into (42) we readily find that the
effective energy is given by
T

= KTy

o

(for (?) << 1, n<<C1, s << 1) (46)

independent of the temperature of the scallering centers.
This value is also the effective energy of a MaxweLL beam
in regard to absorplion in Boron (while we define the

effective energy in regard to scattering) because the cross-
. . 1 .
sections in both cases vary as > (cf. eq. (45)).

If we take also higher powers in the expansions into

consideralion, we are able to _get information about the

starting tangent of the curve 5 f(kTy). The calcula-
‘ Iy

tions are however lengthy and we shall therefore only

give the result found, namely that for small values of E

E
KTy

- % (1—#kTy) 47

1) Cf. e. g. H. H. Gorpsmitu and F. RaseTI, Phys. Rev. 50, 328 (1936).
Cf. also BrreE, loc. cit. Part B p. 136.
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# being a numerical constanl depending on T, so that
the curve is seen to decrease at the beginning when k7T,

is increased.
y

I1. case: <§> >> 1.

This we cannot fulfil for all values of s if we still want
both s and n to be small compared to unity. If, however,

all three conditions are fulfilled, we can put @ and Arctg
equal to 1 and % respectively and we get then from (32)
and (38)

QF lo=mg4(1—2W), QF

~rexp) s ~exp S|

= g 4(1—3n). (48)

s . N 1
For Q;xp we get the same expressions with e W and —n
substituted for W and n respectively. From (42) we then
easily obtain

~ 3 /n\"
E = kTy (for (5) S>> 1, n << 1, s<<1]. (49)

A

This is the classical relation that the mean energy of a
MAXWELL beam is equal to -‘5kT, which result we would
also expect to turn cut under the conditions stated above.

1a

1II. case: <§> >>1, n>> 1.

In this extreme case we would find independenlly of s

. . — L is
s=mqg W -, Qc_\,p

is
0 s

~exp|

N = 7[(1'211_L (60)

and so from (42)

kT, (for (1:> >3 1, n>> 1). (51)

el

«
-

1
)
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This case is, however, not of much physical importance,
as we cannol neglect the inelastic scattering for energies

which make n >> 1.

Fre. 7. Effeclive neutron energy as function of nentron femperature.

o

In Fic. 7 we give the curve for Fpoas a function of
tiN

kTy for Ty = 290° found numerically from the curves in
Fres. 4 and 5. This “pipe” like curve we have already used
in §2Y to obtain that the eflective neutron energy at
room and at liquid air temperature is equal to 1.103 kT,
and 0.795 kT, respectively. .

1) Cf p. 17
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Note 1.

For our potential ¥’ we have assumed % >>> ¢’1), so we know
that all the phases will he negligible except the first one, this
being given by 2

k | .
np = arctg ( _O tg & Q’) — koo’ (N1)
Further® \ /
1
21 1{0

7]02
]{'02

10, 0) = , (exp (2ing) —1) ‘: (N 2)

13

since ry <<C1. As in our case k"¢’ and kyg¢’ are both small, we
ean expand the tg and arctg in (N 1) with the result

1 NN e AL o 1 . ra InND’ N
o= g kgt (kK —ked) = 3 Ke'St g (N3
Putting (N 3) into (N 2) we find
1 m?\r — _
=9 (D g8y (N 4)

which shows that I is independent of both the angle and the
velocity of the neutrons so that the scattering is spherically
symmetric.®

Since ¢ = Sldcu we finally get for the total cross-section for
scattering of slow neutrons by free protens, that this is a con-
stant given by

47 m?‘\r ) e
Q="5 5 D¢ (N 5)

Note 2.

As the transformation formulae between different coordinate
systems are often used but seldom given in full, we shall here
compile them for veference. Firstly let us consider two coordinate
systems K and K* so that K* has axes parallel to the axes of K and
further moves along the positive x-axis of K with constant velo-

1) Cf p. 10.
2) Cf. e. g. Morr and Massey, “Theory of atomic collisions” eq. (30),

. my
p- 29. [ The mass there is equal to the reduced mass, r;);\).

3) Morr and Massey, loc. eit. eq. (17), p. 24.
4) It should be remarked that this means that in the rest system the
differential cross-section is proportional to cos @& cf. Note 2, eq. (N 19).
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city u. A particle is moving with velocity o* in lhe system K*
forming an angle ¢* with the x*axis. In the non-relativistic case
which we are here considering, u << ¢, we have then that in the
K system the particle moves with velocily v = u -+ 2*, the angle
6 between v and the wx-axis being determined by

u
) cos 6% - ]
) b sin o* a bt
go=—=—"- COS = = - . _
§ a e, u’ v u? u L\
cos 6% -F (l—%m—{ﬁzf—*coso ]
v vt T / }(N 6)
sin 6 — b sin 6* I
) o w2, u ] *‘)H’;
1+5*‘§+_25*C056 ) ]

which formulae are at once deduced from Fig. §.

u

3 X, X*

Fia. 8.

For the K- and K*system we now take the R and € systemsD
and shall obtain the transformation formulac (N 6) for this case,
when the particle with mass nm» moves with constant velocity Vq
along the x-axis before the collision. From (3) we find, due to
Vi=0

ma

= Vo ——
my - mso

2 N
and as we assume that no ouler forces are acting, this velocity
is the same before and after the collision. To obtain vy'* and vy'*
(the dashes referring to the state after the collision) and so the
transformation formulae for the two scaltering angles, 4,* and #»*
we only need to use the conservation law for the energy

3

1 1 1 e
— my o *2 CRLE v — (B, —E,) = 5 myvy*2 2 mevy*2 (N 8)

where I, — I, is the excitation energy given up by the particle

2 in order to excite the particle 1 from ilts m’th to its r’th state

1 Cf. p. 13,
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during the collision. This energy can be positive or negative; for
m == 0 it is positive for all n. Using (7) and o1* = —u, " = Vy—u,
we get from (N 8) due to (N 7)

( my )2 my (L Em)

e me (my + my)

= V52
N+ Mo

(N9

(N 6) is now fully determined by (N 7) and (N 9), but only in the
case ol elastic scattering, E,— E,, = 0, we get simple analytic ex-
pressions. In this case we gel, using (7)

ms
V. vt = o't = n (N 10)

. mo oy
my-me 77 nmy

2

so that (N 6) becomes, independently of Vs, uéing €))

sin 6 cos b+ T e
tg®g_%, cos O3 = m ms - s’
c0s eo—!-H (1—{« V‘L—l—‘> —3— cos 197>
1
. sin 6s (N 1
sin 03 = mg? 1127 iE T
1 2 2 13
(1 + e - P~ cos 07)
1
O =5 (r—ba), Pr= gtz Pr= g0

T
s0 0 £ @ <7 when nmy + me, but 0 = & < when m; = ms he-
cause we then simply get

@;z: 1 G2

(]

which, combined with (N 11), gives the well-known relation

O+ Oz =
Solving (N 11) for 69 we find
y— o 3 V12
sin (62— Bg) = m, sm @3 (N 12)

which for m; >>> mg reduces to

ms .
by == B3 — sin @,
my

Further we can, using the conservation laws, deduce the formulae
for the energies before and after the collision in the rest system:
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E2 = %I?lg Vgg, E1 =90
;. 4my my
B/ = Ep(1— R cost @1) (N 13)
we o Amgmy
B = E 2 oy - 1) cos? &y

By definition we have for the cross-sections that

(B, B)d2 = I, 6*eNde* = 1,,6,p0)do (N 14)

IIln
(dropping the index 2) which we can write, due to & = ¢* = p

sine de

[mn (@’ riEn) = ]IIIH (0’ {]7) éll] @ d@ (N 15)
For the special case of elastic scattering, m = n, we get
from (N t1)
sing LN mz iz \
sin @ ( my 2+ “my €08 0) (N 16)
4@ 1+ e - cos 0
T = . (N 17)
cos? G (cos bt 19 2
l ml)

Putting (N 16) and (N 17) into (N 15) we finally get using (N 11)

mg? ms S
Hig™ o 152 N
] (1 m2 " “my cos ﬂ)

n (@ E)= 1 (6,p) —— - o = L, (6, 0) g {8)

(1 + 72 cos o) (N 18)

(1—’1)) <g@® < {1+’“’).

n m

For my; >> ms we get

iy 0_1_|_

gt) = 1-4-2

ITIl

In the special case my; = my we find the well-known formula

g(6) = = 4 cos @. (N19)

ol =
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The function g(#) we can transform to @ by (N 11) and we

find then
9 [ETAN:
(%, cos ® -4 ( Zﬁ, sin? ®>/ )
: o (N 20)

g(s) =

which for my >> my just reduces to 142 Hg cos &,

From (N 14) we can at once deduce that the tolal cross-sec-
tions in the two coordinate systems are identical. This is, how-
ever, only a special case of the more general theorem that the
fotal cross-section is the same in all GavriLer systems.1) This is
readily seen from the definition. Calling the probability for the
scattering process P, that is the number per unit time and per
scatterer scattered out of the beam, the cross-section @ is defined
as the ratio between P and the number in the incident beam
crossing unit area per unit time at the place of the scatierer, so

that we have
0= -2 (N 21)

9 Urel

where ¢ is the density of the beam, that is the number of par-
ticles per unit volume, and v, is the velocity of the beam Trela-
tive to the scatterer. Since P, ¢ and v, are the same in all Ga-
LILET systems, () is-at once seen to be invariant.?

From (N 14) we can also deduce the transformation formulae
for the differential cross-sections from one GaLILEr system K to
another K* The formulae for the angles arc, when #z is the velo-
city of the system K*, measured in K

cos @ —l-— cos 6* + — COS ﬁ>*—[— o
o ®
cos @ = ——- = 7
1 ‘)40030 ) ( 2 - cos b )
(14 st 2, L, *)+ 5 COS B2 N2
sin b — sin (p*— o) sin 6.
) - by . 12 u Vi
(1 — cos? @)™ (1 + U—*—d—l— 2 poi COS (’}g*)
g~ 2 2 /

1) By a GauiLer system is understood a coordinate system which
moves with constant velocity along a straight line.

2) We have only considered the non-relativistic case. In the relativ-
istic case  is also invariant so long as the coordinate systems move in
the direction of the curremnt.
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(with the expression for cos @ inserted from the above formula)

o,e% = < (v,9*,0), of — gt = <L ([o* xu), [92* X u)
@ = < (v, 9.%), P* = L ([Wl*xﬂz*}, [‘Ul*X”D

{(and analogous formulae for the quantities without stars) which
formulae are obtained from the general formulae of spherical
trigonometry, using (N 6), the direction # being taken as the polar
axis in a polar coordinate system. Theoretically we can from
(N 14) and (N 22) obtain the transformation formulae for the
differential cross-sections, but in praxis the resulting expressions
are so complicated that they are (uite unmanageable, with the
exception of the special case where u# has the same direction as
one of the #*’s, in which case (N 22) reduces to (N 6). Further,
if @ lies in the plane of #,* and v* we get & = $H* = {, the for-
mula for ® heing the same.

Note- 3.1

For the eigenfunction of the one-dimensional oscillator we

have?
n

Yo (@) = a P "2 3T exp (“ 5 ) Ha ("\
B (N 23)

ho\e \ 1
a = (m) s Lk, = (11—{— 9>hm

where Mp is the reduced mass of the proton, o the cyclical fre-
quency of the proton and H, the n’th Hermrte polynomial. With
these wave functions we shall now calculate the matrix element

(n|exp (z'lc]';mx:c) | m) =
4 (N 24)

77 T2 (nimy e

S ¥R expry, dt = i
Cam = Cpn = \ T (y) exp (iby) H, () exp (— g9 dy -
M N 25

” x
b= akp, ., y= o

1) The malrix elements given in this note have been given previously
by the author, cl. Nordiska Naturforskarmétet i Helsingfors 1936. The
reports, p. 248.

2) Cf. e. g. Ruank and Uney: “Atoms, Molecules and Quanta”, p. 533.
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By definition we have®
. . [ dyn N X
H, () = (=" exp () g oo (— 9. (N20)
If we put (N 26) into (N 25) and inlegrate by parts, we get due to
the fact thal exp (—y?) and all its derivatives vanish in 4 oo faster
than every power of y

Com = 2n Cn—i, m—L +ib €n, m—1 (N 27)

using H, = 2nH, ,, n > 1.2 Using this recurrence formula I

times on itself, we can show by induction that the result is
!
\N ! n!
N . I—s I A A
Cnm = > 2 (3) (n—14 9! (tb) Crn—i+s, m—I (N 28)
§=0

Here [ is restricted by the condition that n—1{ and m—/ must
botly be positive or zero, that is [ = min (m, n). Assuming m =< n
we can therefore put [ = m. By reducing e, . o in the same
way, we get A

en~m +5,0

= (YT ey = (BT exp <~bT) (N 29)
due to »

LRl
ey = \ exp (iby) cxp (—yH dy =

N C Ry P 2

Putting now (N 29) into (N 28) with [ = m, we get

s i oz pn— [ b2 ’ ([[))2s
eym = 2" (b) M nim!exp (———:{ 2 - : ,' N30
\ ) — 2 st(m—s)! (n—m-s)! (N30)
{(m < n).

For n < m we get the same formula with n and m interchanged.
(N 30) into (N 24) finally gives us

1) Cf. Courast-HiLeerT: “Methoden der mathematischen Physik”,
p- 78.
2) Cf. Couraxt-HiLgerT, loc. cit. p. 78.
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L

('11 [exp (iky,, *)[m ) =
I
n+m ) ‘ 2 < 7 1y 28
=2 2 (ntm)E@Ebp T exp L—i> S k) AL A (N 31)
-4y — 2% s1(l—$)! (| n—m |- s)!
5=
! = min(n,m), b= ak

mn_l. :

For the one state being just the groundstate we get

n 94
nlexp (ik!, 2y[0) = (ny " #2 2(i{p) exp b . (N32)
( 1O) 4

Olll.

For the 3-dimensional isotropic oscillator we can at once det
the cross-sections from (N 32) since the eigenfunctions are only the
products of three of the type (N 23). Due to the states being de-

2 .
generate with the multiplicity g, = M)g(ﬁ—t—) we must form
1k ! N L .
mn =4 7}:0'3 ; /\ | (1, n | exp (k) 7y | mymy) 2 (N 83)
“Jn pramtie; paa—

lzr_r‘{-rny—klzz:: m “a”””y*‘“:"—‘ n

This is very complicated unless m = 0 in which case we can at
once perform the summations if we only choose the (arbitrary)

) oo .
coordinate system so that %, is along one of the axes

k /—7 - 24
I,=qg 2 >, | (nglexp (ik,,)[0) (1,]11]0) (n,[1]0) 2=

1\"0 Py

T, tn.=n (N 3_1)

— .A‘on 1 (1‘)2>11CXJ (“ b-z)
1" ntia) P79

b2 1

I - Pt e}

= gk Jat= 2
2 2 on ﬂ:[l;. A7)

LI T k) “cos 9} (N 35)
/

My By [, E,—E  (  E,—E
EO \ EO

by (1). This is the formula found by FErwvi1) apart from the factor

AIN 2 N ‘Mi
in ¢ (¢f. eq. (4)) and from the faclor

N . . .
i ZVE ineq. (N 35)which

by Fery1 (and by Berge) are both put equal to unity:

1) loe. cit. Cf. also BrrTug, loc. cit. Part B eq. (455). It should he noted
that by the authors ¢uoted mg it put equal to infinity throughout.
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M my-me mp-+m mge?
N ( N 5><P B>: S 1 (N

MP T \my -+ mg mpmy mg? — my2

where mp is the mass of the binding center my = mg—mp,
mp 5 my. For our value of mg = 14 mny;, ¢ has the value 1.0051,
which can be safely replaced by unity, so that we apart from
the important factor in ¢ are left with Fermr’s formula.

It might be of interest to note that the formula (N 34) can
also he obtained by writing the wave functions in polar coordi-
nates. We only give the formulae for reference

) QI+ —{m)!
P im (r,6,q) = 1: 47 (l+ {m})‘

» (11+f+1) mu\p (_ 1:_)
| e

—l<m=<+41I, l=nn—2 n—4,.--- 20, L = (114—%))‘1}0

} exp (img) Pz (LOS 4) X

(N 37)

—t
m
\_/

P is the ordinary associated LeGExPRE polynomial2 and  F, the
1 y 11
confluent hypergeometric function.® We find

alm|exp (ik r)|000) =
on
I4+1\ 2 D
[ (TN ]
o s - 2 /! \ / [ v N
Jomn 122 ) CESESy I e-‘“’( T
=
b= ak),

Putting (N 38) into the formula analogous to (N 33) we just find
the expression in (N 34) for 7, duc to the formula proved by the
author#®

11+l+1 n--0L, 2
S e T
N kg e = e (N 39)
11~l)1 . (n+141D! o 51 ’
l=nn—=2%...>0 2 ) _

1) The author, loc. cit.

2) CouranT-HILRERT, loc. cit, p. 282.

3 Cf. e. g Morr and Massey, loc. cit., p. 36.

1) See Matematisk Tidsskrift, Copenhagen 1937. “To Prof. H. Bonr
on his 50th birthday”, p. 42.
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In the calculation leading to formula (N 38) we also get the matrix

elements for the fixed rotator with two degrees of freedom whose
- eigenfunctions are just the first part of (N 37) multiplied by

d(rr—ry), 1o being the dimension of the rotator. We find

(jm

f ..IJ':Z / T 44 Qe 77
exp (il ) |00) = d,, (5) @7-F 0™ ¥ (K] r, T, () (N40)
17 2 7 Jh

TSN

J; 4 being the Bessel function of order j+--

Note 4.

It may be interesting to note that the formula for the total
clastic cross-section for the isotrapic oscillator can also be dedu-
ced by direct calculation of the Born phases and their summa-
tion which is indeed very seldom possible. We have, since the
phases are all small,D

[~

T/
0= dniky? 2 (2n+1)¢2 (N 41)

n =0
[ T 1'/2'] Jeo 1 Ead. N 492
8kegr) Tuesss Gon) | e (N42)

T T

oo
2Myko (7
D a0

Vi = S]worz Vide = |wo(ry) P (— D) 1*317? 0 (N43)

due to o' << a. If we put (N 43) into (N 42) using (N 37), we get

MyD 4 .. 08 ” fop2
= A e g exp (~i7,) J2 o, Goryirdr. (N 44)
Yo

n §its 3 ad n4if
Now
© 1 @b ab\ ®
g exp (—p B, (@) J, (b tdt = 55 exp (— ;;2 )I,, (2p2) (N 45)
!AG N i /
Cow ) . 3) .
I, (x) = exp (—glu) J,(ix) (N 46)

1 Cf. Morr and MassEy, loc. cit. eq. (5), p. 138 and eq. (12), p. 90.
2) Warsox: “Bessel functions”, eq. (1). p. 395.

3) Warsox, loe. cit, eq. (2). p. 77.
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=] o

Y 3 1
-S_ <11+___> I;'zl—]—l/e (117) = —] S (Il—}—-.—) (* 1)'1'(/12.,_]_”2 (ZZ‘(,)—_—
2, PraS A 2 /
- ot (N 47)
_;sin 2i@ Q2% 2 1)
N 2z 47
Putting (N 42) — (N47) into (N 41) we gel, using %koz @ = W2

1
(D '3)

o M2 4m m%v
- (3

my) 9
which is just eq. (21) remembering eq. (4).
Note 5.

We first prove the formula

w@

g [exp (—a2(@—9")
Yo

exp(—@+p7) | de = 2o Blep) (N48)

where $(x) is the Gauss error function given by
1/ (=
B () — 2 5 exp (— £2) dt. (N 49
0

Taking in the first part y = x —§, in the second y = x -} 5 as
new variable we get

S 3

\ = S —5 =2 S exp (—ea*y?) dy

Yoo Y—g Y+ Yo
so (N 48) follows at once. We can now work out the integral in
(29). The two angle integrations being performed, we are left with

i o -
»532 (E> exp (— uvg S {cxp (—pvY)—exp (—(u+4u) 02)J x
h N

7L
0
X [exp Qu Dy v)—exp (—2pu Dy v)J dv.

The two integrals here are just of the type (N 48). In the first we
uUn

. o o . 9 1.7 _—
have a2 = u, § = vy, in the second o= (u+4u"), g= e

Putting in these values in (N 48) we easily find (30).

1) Warsoy, loc. cit. eq. (3). p. 152.
2) Cf. eqgs. (1) and (15).
Vidensk. Selsk. Math.-fys. Medd, XVI, 1. 4
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Note 6.
We prove here the formula

]

\ W exp (—a2W) B WM dW = 27 %« L Arctg © (N 50)
vy 24
where £ (x) is defined in eq. (N 49).
We put first { = W' as new variable and gel
- — - ~ t‘_l | —1 /3 -
=05\ exp (—5) ear= 25 ), =" (D)
L) Yo N =/ “«

If we now differentiate the function f(x) we get

21

ﬂ [tE D) di.

[@ =\

Y

Integrating by parts we can get the inhomogeneous differential
equalion for f(x)

4 1 . s X
F@ =T @
which by the ordinary methods can be solved to
f(x) = ﬂ—l/*x-Arctg x -+ (constant-x).

The constant can be determined to be equal to zero by expanding
£ (t) and integrating term by term. For 22 < 1 the resultant series
is convergent to just n“l‘/'z-x'Arctg x. This in (N 51) then proves
(N 50).

Nole 7.

We prove the formula

-

\ x? [exp (—e?{(x—p)?) —exp (—® (x+ p)a)] dr =
Yo e " (N 52)
' = P (af) [ﬂTﬁ + '7;&3} -+ (7/3_,— exp (—a23?)

where & (x) is defined in eq. (N 49).
Putting y = v L 7 we get



o

4]

X
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o B
\ = \ yrexp (—eyd dy+ 28 S yexp (—a2yd)dy+
Yo =g —#
@w .'Jr‘ﬂ
+ 48 g y exp (—a2y?) dy + p? S exp (—ay?)dy.
g —

‘The second integral is zero, the two last ones can be performed
at once and the first one by integration by parts. The result is

©

0

W e 9 L
\ = [— 53 exp (— a2+ 5 Sl’(a/3)j| + 28 exp (a2 T

Jq [t [+

P ()

which immediately proves (N 52).

Note 8.

We prove the formula

- " — 3 |_ap e Bl o s
V' exp (—a2W) (8 WA AW = 7 ¢ [c¢2+ﬁg+ Ar ctg;J (N 53)
where ¢ (x) is defined in eq. (N 49).

We take as new variable = g W™ and get using (N 49).

[2e3 oo
q ot T3
\ :25_3275_1’35 dt\ dui? exp(——i‘ﬁ—;)exp (— u?).
Yo o v0 )

Now
Ll o oo

ot . .
gdtSdu=SduSdt
'0 0 On 'u

=]

and so we get, performing the S dt by integrating by parts
23

w0 {>+]

g = 2(5‘_3271“1/2 S du exp (—u?) x
0

A |t e () J"‘uﬂ}
X{ﬁ‘z‘[? e (=0 )+ 5 (1—2(51) ||

Here all integrations can be performed, using eq. (N 50). The re-
sult is :

4*
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S. = Pg? @

Y Lo+ g#

]

7 o
+ 2«~Arctg ZJ
which proves (N 53) because we have the elementary identity

7 1
5 Arctg = Arctg a.

Summary.

In the present paper we discuss the scattering of ther-
mal neutrons in hydrogeneous substances. In § 1 we dis-
cuss the binding model for the protons. We assume the
protons to be bound independently in an anisotropic os-
cillator taking the largest oscillation energy equal to 0.37
volts, and the others equal to 0.4 times that. Further we
take the lower frequencies into consideration by ascribing
an effective mass, which we have chosen equal to four-
teen times the neutron mass, to the system consisting of
proton plus potential and assuming these “molecules” to
move freely like gas molecules with a MAxwELL distribution.
In §§2 and 3 the cross-sections are calculated. In §§ 4
and 5 we discuss the temperature effects. Firstly it is found
that when both the neutrons and the scattering substance
have room temperatures, the' cross-section is 2.7 times
larger than the free cross-section. Secondly it is found that
the cross-section for neutrons at liquid air temperature i. e.
90° abs is 34 %o higher than at room temperature. These
figures are compared with the experiments. Finally we in
3 6 discuss which effective energy must be attributed to a
beam of MaxwELL neutrons in regard to the scattering cross-
section. It is found that for our model this effective energy
lies between 0.7 kT and 1.1 kT depending on the tempera-
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ture. In the mathematical notes we have further compiled
various formulae for transformation of coordinate systeins,
matrix elements and integrals used-in the text.

In conclusion I wish to thank Prof. NieLs Bour for
his kind interest in this work and to express my appre-
ciation to Prof. G. Praczex for suggesting the problem to
me and for many valuable and helpful discussions in the
course of the calculations. Further I wish to thank Dr. F.

KarLckar, Dr. C. MeLLER and Dr. V. WeisskoprF for many
stimulating discussions.
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