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INTRODUCTIO N

A
fter FERMI ' S discovery 1> of the possibility of producin g

slow neutrons by surrounding a source of fast neutrons b y

hydrogeneous substances such as paraffin wax, the proble m

of the mechanism of the collision between neutrons an d

protons has become important for the study of the proper -

ties of slow neutrons . The problem has already been treate d

by FERMI himself' ), who describes the slowing-down pro-

cess in the following way . Neglecting first the fact tha t

the protons in the paraffin are bound chemically, the fas t

neutrons which come from the source will make elastic col -

lisions with the protons giving up on the average half o f

their kinetic energy at every collision . In this way they wil l

soon reach thermal energies, where they will remain for a

relatively long time, because now the chance that a neu-

tron will get by a collision with a proton some of the ther-

mal energy of the latter is about the same as that it will

lose energy by the collision. The neutron will therefore

diffuse round in the paraffin until it is finally captured b y

a proton. So long as the neutron energy is large compare d

with the oscillation energy of the proton it is legitimate t o

consider the latter as free. As the highest oscillation fre-

quency of the proton in paraffin is of the order 3000 cm_
1

1) E . FERnu, and coll ., Proc . Roy . Soc. 149, 522 (1935) .

2) E . FERMI, Ric. scient . VII . II . 13 (1936) . See also H . A . BETHE, Rev.

of Mod . Phys ., 9, No . 2 1937 .
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corresponding to an energy of 0 .37 volt s) it will he correc t

to treat the protons as free for neutron energies down t o

about one volt .

Classically the total cross-section for the scattering shoul d

be the sanie above and below one volt, as the cross-section

is classically always the geometrical area of the proton . In

a quantum treatment, however, the binding of the proto n

has a large influence, as first pointed out by FERMI 2), who

showed that one may use the BORN approximation in cal-

culating cross-sections for the slow neutrons. In this appro-

ximation the cross-section is proportional to the square o f

the reduced mass ), and as this is equal to the neutro n

mass when the proton is bound strongly compared with th e

neutron energy but equal to half the neutron mass whe n

the proton is free, it is seen that the cross-section in th e

first extreme case will be four times as large as in the secon d

extreme case. For intermediate cases this chemical factor ,

as it is called, will lie between one and four . FERMI found

by his model for the binding the value 3 .3 in the case o f

the C-neutrons .

Because of this quantum effect we have therefore diffe-

rent stages in the slowing-down process . In the first stage ,

fast neutrons with energies of the order some million volts ,

the cross-section is experimentally found to be of the orde r

1 -2 X 10
24 cm 9 4) corresponding to a mean free path i n

paraffin of about 5 cm . Owing to the collisions the energ y

will soon decrease and the cross-section will therefore in -

t) (a(o)vo1C

	

12 (") cm 1 = 1 .233 .10-4 (U) em-1
1 .59 , 1oJ

2) Loc . cit.

3) cf. eq. (1) p . 12 .

4) J . CHAnwICK, Proc . Roy . Soc . 142, 1 (1933) and J . R . DUNNING an d

coll ., Phys . 11ev . 48, 265 (1935) .
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crease 1) until the energy is small compared with the energy

of the excited state of the deuteron . In this second stag e

the cross-section will be independent of the energy and it is

found' ) to be about 13 x 10
24

cm 2 corresponding to a mean

free path of 1 cm for neutron energies from about 10 00 0

volts down to resonance energies of the order of some volts .

In the third stage when the energy gets below one volt th e

chemical binding becomes noticeable and the cross-sectio n

increases to about 48 x 10- 24 cm 2 for [hernial energies'), s o

that the mean free path decreases to about 0 .3 cm .

For the two first stages FERbll has obtained the energ y

distribution of the neutrons' ) which in the second stage,

where the mean free path is a constant, turns out to b e

proportional to T . In the third stage, neutron energies

below one volt, the problem of the energy distribution ha s

neither as yet been solved theoretically, nor is it know n

accurately from experiments . 4 )

For this last problem and for further problems connected

with the slowing-down process, such as temperature effects ,

it is of interest to determine theoretically the effect of th e

chemical binding on the scattering cross-sections . Recently

attempts have been made to connect such calculations wit h

a still more extended range of problems : it has been pro -

posed' ) to adopt for the cross-section of free protons - whic h

is of considerable importance for the determination of th e

1 ) Cf. e. g . H . A . BETHE and R . F . BÂCHER, Rev . of Mod . Phys ., S, No . 2

(1936) eq. (62) .

"-) M . GOLDHABEP, and G . H . BRIGGS, Proc . Roy . Soc . 162, 127 (1937 )

and O . R . FRISCH, 1-1 . v . HALBAN jun . and J . Koces, Kgl . Danske Videusk .

Selsk. Skr . Mat .-fys . Med . XV, No . 10 (1938) .

3) Loc . cit .

4) cf . later p . 9 .

5) BETHE, IOC . Cit .
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neutron- and radiation width of excited nuclear levels 1) a s

well as for the theory of the deuteron and the discussio n

of the relation between proton-proton and proton-neutro n

forces' ) - instead of the direct experimental value whic h

is not very accurate, the quotient of the thermal cross-sec-

tion and a calculated chemical factor . It would, however ,

be much preferable for the above purposes to have a more

exact experimental determination of the free proton cross -

section as it is only possible to base such calculations o n

very rough models for the binding of the protons in pa-

raffin and similar hydrogeneous substances . In spite of thi s

fact it is, as we have seen, of interest to get some roug h

ideas about the influence of the binding, and we shall i n

this paper treat the problem by help of a model for th e

binding which we shall discuss in § 1 .

`3 1 . Discussion of a simplified model for the binding of

the protons .

The scattering cross-section and the energy loss can be

calculated exactly if the proper function for the nuclear mo-

tion in the molecules concerned is known . Theoretically i t

is possible from an analysis of the molecular spectra t o

obtain the frequencies of the vibrations and the norma l

coordinates which determine the form of the different norma l

vibrations. For the more complicated molecules, however ,

such as paraffin which is mostly used for the purpose o f

slowing down the neutrons, the resulting expressions woul d

indeed be very complicated and unmanageable, quite apar t

from the fact that for these complicated molecules not al l

1) H . A . BETHE and G . PLAGZEK, Phys . Rev . 51, 450 (1937) .

2) G . BREIT and J . R . STERN, Phys . Rev . 52, 396 (1937) .
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the data needed are accurately known. Simpler molecules ,

like water for instance, have on the other hand so far onl y

been used in the liquid state, and in this the interactio n

between the molecules which is of considerable importance

for our problem cannot easily be treated quantitatively . We

shall therefore in the present paper only discuss a very

schematic model for the binding .

I. Instead of the normal vibrations we assume each pro -

ton to oscillate independently in a harmonic potential, which

we shall assume to he anisotropic, since it can he deduce d

from molecular spectra that the protons oscillate with lar-

ger frequencies in the direction of the valency-bond tha n

in the perpendicular directions . For the frequencies w e

shall take v, = 3000 cm-l = 0.37 volts, vx = v,, = yv, with

r = 0.4 so that v x = v y = 1200 cm-1 = 0.148 volts .

II. As we have already mentioned the binding has n o

influence classically on the scattering . This is also true i f

we do not consider the motion as a whole but only th e

separate degrees of freedom. Now we know that the nuclea r

motions in the molecules have also in addition Co the large r

frequencies which we have accounted for by the assump-

tion I, a spectrum extending to quite small frequencies .

These small frequencies we will take into consideration b y

assuming that the protons and their potentials can mov e

freely like gas molecules with a MAXWELL velocity distribu-

tion, so that we substitute for the energy exchange between

the neutrons and the small frequencies the exchange o f

kinetic energy between the neutrons and these "molecules" .

So long as the neutron energy can be considered large com-

pared with the energies corresponding to these frequencie s

we can namely, as we have just seen, consider these sepa-

rate degrees of freedom as unbound, only the fact that
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they are connected with the other degrees of freedom wit h

the large frequencies must be accounted for . This we do

by ascribing an effective mass to the "molecules" consistin g

of proton and potential, and for this effective mass we choose

the value 14 times the neutron mass, which is the mass of a

CH2 group. This figure is rather arbitrary and correspond s

to the conception that the energy taken up in the neutro n

collision by a proton is transferred to a single carbon ato m

in the hydrocarbon chain rather than to several of them . l)

Our two assumptions are of course very arbitrary an d

certainly not fulfilled in nature . No account is taken of

interference effects, and apart from this it is known, for in -

stance, that the frequency of the G-C vibrations in }Etha n

(C 3 H 6) and other heavy carbon molecules is of the orde r

of 1000 cm -1 , which is about five times the energy of

thermal neutrons at room temperature' ), so that these vi-

brations cannot at all be considered small . The model de -

scribed is on the other hand the next simplest after tha t

chosen by FERMI 3) , the isotropic oscillator with infinite mass ,

and it is certainly a better approximation than his` l . Takin g

now our model for granted, we shall first see which con -

1) It must be emphasized that this model is in no way identical wit h

a gas of CH2 groups . Firstly, in a CH2 group the positions of the hydro -

gen atoms depend on each other ; this gives rise to important interferenc e

effects which we do not consider in our model ; secondly, the slowing -

down process by free CH 2 groups would - apart from the slowing-down

by elastic collisions - take place by energy transfer to the three prope r

vibrations of the group and the three rotations of the group as a whole ,

while in our case we have two times three vibrations and no rotation .

2) For T = 290° abs we have kT = 0 .025 volts = 203 cm- 1 .

3) Loc . cit.

4) After the conclusion of our calculations a discussion of the effec t

of the anharmonic binding on somewhat similar lines has been publishe d

by BETHE, loe . Cit ., where, however, the influence of the thermal motion s

are not considered (cf. the §§ 4-6 of the present paper) .



On the Scattering of Thermal Neutrons by Bound Protons .

elusions regarding the influence of the binding we can dra w

from the model, and next we shall use the results to esti-

mate the effect of temperature variation on the mean free path.

In order to obtain definite results regarding the las t

problem it is necessary to know the energy ranges of th e

neutrons with which we are dealing . We shall assume thes e

to be the so-called C-neutrons, that is the neutrons whic h

are strongly absorbed in ,cadmium . The range of strong

absorption in Cd extends from 0 to about 0 .3 volts . t) Furthe r

we must know the energy distribution of the C-neutrons .

This is not exactly known ; its theoretical determination is

just one of the aims of the theoretical study of the slowing -

down process with which we are dealing in the present paper .

Two methods of investigation have been used to determine .

the energy distribution of the C-neutrons experimentally .

First the method of the mechanical velocity selector '' ) . By

this method it is found that at room temperature the energy

distribution has a maximum for an energy of the order of

kT. Second the method of absorption in Boron 3). As the

capture cross-section in Boron is assumed to follow the - 1

1) Cf. e. g . J . G . HOFFMAN and H . A . BETHE, Phys . Bev . 51, 1021, (1937) .

2) J . R . DUNNING and coll. Phys . Rev . 48, 704 (1935) . Cf . also BETAS ,

loc . cit .

3) For a survey of the literature cf . FEiscn, HALBAN and Komi loc . cit .

t̀ ) R. FxiscH and G . PLACZEK, Nature 137, 357 (1936) . D . F . WEEKES ,

M . S . LIVINGSTON and H. A . BETHe, Phys . Bev . 49, 471 (1936) .

U

law s̀) it is possible by absorption experiments in this ele -

ment to compare the mean value of 1 for different kind s
v

of neutrons. If for instance the C-neutrons were in therma l

equilibrium with the slowing-down medium this mean valu e

and hence the Boron absorption should vary with the ab-

solute temperature of the medium as T-i . While between
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400° and room temperature no deviation from this T- j law

has been found the increase of the Boron absorption be-

tween room- and liquid air temperature, and still mor e

between liquid air and liquid hydrogen temperature, is muc h

less than would follow from a
T-i

law. This proves tha t

at least For temperatures of liquid air and downwards the

energy distribution of the C-neutrons cannot be represented b y
a MAXWELL distribution with the temperature of the slowing -

down medium . The question how far their energy distri-

bution can be represented by a MAXWELL distribution corre-

sponding to a higher temperature or by a mixture betwee n

a maxwellian and a non-maxwellian part shall not be dis -

cussed here . In view of these possibilities, however, it re -

mains interesting to investigate the energy dependence o f

the scattering cross-section for a MAXWELL beam of neutrons .

We shall therefore for the purpose of the following calcula-

tions assume the C-neutrons to obey the MAXWELL la w

throughout . A consequence or this assumption together wit h

the assumptions made about the binding mechanism is ,

however, that we cannot expect a direct comparison of th e

results of our calculations with experiment to give a quanti-

tative agreement .

2 . General theoretical remarks .

As first proved by FER 1E 1) it is possible to find a

"rectangular hole" potential V ' with radius Q ' « a, and depth

D', which substituted for the neutron-proton potential wil l

give correct cross-sections in the BORN approximation s o

long as the following conditions are satisfied :

1 ) Loc . cit . Cf. also BFTHE, 1oc . Cit . Part B p . 123 .
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I. The DE BROGUE wave-length, for the neutro n

relative to the proton must be large compared with the

range of the neutron-proton force, O :

i>> Q .

II. The total cross-section, Q, must be small compare d

with the square of the wave-length :

Q«,.'.

III. For I to be satisfied one can deduce 2) that the di-

mension of the proton wave function, a, must be large

compared with the range of the neutron-proton force :

a»

For slow neutrons and protons bound in paraffin all thes e

conditions are certainly satisfied, as for such neutrons ) ,

is of the order of 10 9 cm or more, Q is of the order o f

48 x 10
24 cm 2 and we further know that e and a are

respectively of the order of 10 13 cm and at least 10 9 cm .

For the differential cross-sections per unit solid angl e

dw, I11712 (8, p), where I. (8, (p) dw is defined as the numbe r

of neutrons which are scattered, after having excited the

proton from its m'th into ils n'th state, into the solid angl e

dw in the direction H, p per unit time and per scatterer, if

there in the incident beam is one neutron crossing uni t

area per unit time at the place of the scatterer, we hav e

now in the Bo RN approximation the well known expressions' )

1) 	 hThis is for non-relativistic energies given by (k)em =
(2 mn EN) 1-

= 2.85 X 10-9 ELF I'- when E N = 19 m N 4,,z is measured in volts, v, .,, f

being the velocity of the neutron relative to the proton .

2) For instance by Foun,n analyzing the wave function of the pro -

ton in respect to velocity .

3) Cf. e . g . MOTT and MASSEY, "Theory of Atomic Collisions " , p . 100 ,

krn
eq . (21) . (The equation is erroneous, the factor -

	

missing) . It will he
ko

seen that in this approximation I depends on fJ only, not on s .
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where z/j ,,, and 'tpn are the wave functions of the proton

before and after the collision, ko and kmn the initial and

final wave vectors 1) of the neutron, and MN , Eo the reduced

mass and energy of the neutron .

In this expression V ' only depends on the distance be-

tween the neutron and the proton, so taking rN - rp as a

new variable in the & IN integration we can at once perfor m

this and using that the exponential is equal to unity by

this integration due to » e' we get

21J
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IJ
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2
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(2 )

2
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Illln `B) - q

km n
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4 7r, 2 ft l
ÇV'dz

2

	

4 111 2v
=

	

(D , o , s) 2
(3 )

9 h4

Equation (3) we can write in the following way using th e

expression for the total cross-section for scattering between

a neutron and a free proton' ) which we shall denote by
Qfre e

2

~rq =
(MN)

~
(4)

We emphasize here that the expression (1) or (2) is calculated
in coordinates relative to the center of gravity of the system i n
which the proton is bound and as this fact sometimes give s

1) The wave vector is just the momentum vector divided by h .
2) Cf. Note 1, eq . (N 5) .
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rise to a little confusion we shall briefly give the definitions here ,
the transformation formulae being derived in Note 2 . In the theory
for two-body collisions three different coordinate systems are used . i )

First the system where the one particle is at rest before the col-
lision, which we shall call the rest system and denote by R . 2)
(All variables denoted by capital letters) . Next the system wher e
the center of gravity of the two particles is at rest both befor e
and after the collision, which we shall call the center of gravitg

system and denote by C . (All variables denoted by small letters with
an asterisk) . Finally the system which has its origin in the center
of gravity of the one particle both before and after the collision ,
which we shall call the relative system and denote by r. (All vari-
ables denoted by small letters) . Let the two particles have masse s
m l , 1112 and coordinate, vectors R1, R2 , then the center of gravity,
Rc , is defined by

m1 R1 + m 2 R2 = (ni l + m2) R( .

	

(5 )

The coordinates referred to the center of gravity are next defined by

rl* = R l - R e ,

	

r,* = R 2 - R e

	

(6 )

Putting (6) into (5) we ge t

m

	

m
1'1 * _

	

2 Y2* Or rl *
= 2

r2*, Br * _ :T - 82*, T1* = T2* + TL (7 )
qY1

	

m 1

if we introduce polar coordinates . Finally the relative coordinate s
are defined by

ra = R2 - Ri = r2* - rl*, ri = 0 (8)

the particle with index one being taken as the particle initially
resting in the R system. Using (5) we then have, introducing th e
reduced mas s

rrF l •m 2

M l + M 2

r2* =
M re

	

O rm,
Mrl*

	

rn
r2 or T1* =

1

M
r'a ,m 2

M
r 2, el * = 7E- (i2 i cp l * =

illi

r2 * = (9 )e 2* = 62 i (P2 * = m2

1) The following also applies to the case where one or both of the

two particles are complex, consisting of more parts . In this case the mass

is the total mass and the coordinatevector is the one of the center of gravity .

2) It should be noted that this system it not always identical with

the coordinatesystem in which we make the observations, cf § 4 . .
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We see from (9) the important fact that the angle of the colliding
particle is the same in the C system and in the r system, due t o

1 . 2

1 .1

1 .0

0 .9

0 .8

0 .7

0 .6

0 .5

0
.4 0°

	

20° .40°

	

60° 80° 100° 120° 140° 160° 180°

Q	 >

FiG . 1 . Angular distribution of scattered neutrons in the rest system cor -
responding to isotropic distribution in the center of gravity system, fo r

ms = 14 mn ,v .

which circumstance the formula (1) is often said to be derive d
in the C system in spite of the fact that it is really derived i n
the r system .

From the formulae (2) and (4) we can at once deduc e

that, as was already mentioned in the introduction, th e

total cross-section will be nearly four times as large as the
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one for a free proton when the proton is strongly bound ,

which means that the space in which the proper functio n

of the proton is different from zero is very small compared

with the wave-length of the neutron . We can then put th e

exponential equal to one, so that we get quite independent

of the form of the proper function of the proton

1t
f77 t2

I, (q) = q . k amn = q 6nui

	

(10)
0

which means that only elastic scattering can occur and

that this is spherical symmetric in the relative system jus t

as is the case for scattering by a free proton . l) In the res t

system, however, we will no longer get the cos O law 2 > due

to the mass of the scatterer being now larger than the neu-

tron mass. In Fia . 1 we have plotted in units of q the curv e

for (10) transformed to the rest system 3) for the mass of the

scatterer, Ins , equal to 14 m
v

For the total elastic cross-sections we get from (10 )

M
z

=

	

N
Qnn - 4 Ts q- 4

M N ,
fre e

using (4) . For the case MN = mN i. e . nis = oo the facto r

of Qfree in (11) reduces to the factor 4 first obtained b y

FEIuiI . 4) We have in this work taken ms = 14 nix throughout

so that

(MN2	 )

m N

_ 4

A~ 11 5

4
= 4 . 0 .871 = 3 .48 (12)

,

which makes a considerable difference .

1) Cf. Note 1 .

2) Cf. Note 2 eq. (N 19) .

3) Cf. Note 2 eq . (N 18) .

4) loc . cit .
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§ 3 . The anisotropic oscillator.

We now in (2) put. the wave functions for our ani-

sotropic oscillator and as these are products of three wav e

functions for a one-dimensional harmonic oscillator, th e

matrix element will be a product of the matrix element s

of the type given by eq. (N 24) in Note 3 . Using the for-

mulae (N 32) and (N 35) in Note 3 we have at once fo r

the 0->- 0 transition, which is the only one we shall treat

here

I00 = q . esp (- 2 a2 ~ ~ ( koöx -I- koô,
r
) +

k
g"o

2

az

	

\ M1 wz)'

	

,2 1. 00 az = E , ° 4 si a- 2 ,

MN

'
E

	

N , .~0

	

M N U2

	

re (1Vh,

Mp being the reduced mass of the proton, vi z = 27v,, v ,

the frequency of the oscillation in the direction of th e

z-axis and B the angle between k0 and k00 i . e . the scat-

tering angle of the neutron .

Further we must take the mean value of (13) over al l

directions of the oscillator. This we do by taking the axe s

of the oscillator as coordinate system and averaging over al l

directions of k' 0 in respect to this system, the length of k o o

being kept constant . In this way we get, denoting the

mean value by 1001
2

)

	

k0å	 a2 1
ose = q exp (-- ) exp ( -91 koaz (1- 1)

t2)
dt (14)

	

2y

	

n o

We introduce as new variable the dimensionless quantit y

1) Cf. eq . (N 36) .

2) A mean value we shall in this paper always denote by this symbol .

(13)
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EO

	

EN

	

6

W=

	

-

	

, E, = m,V2

	

(1.5)
IZ ß)z

	

~t ß7z

-♦

	

i.~In

	

A

	

9 iti N

1
Ins

where VN is the velocity of the neutrons in the rest system ,

and then we can write (14) in the following form, due t o

2 koô a
2 = 4 W sin2

	

(by (13))

i l 1

	

y,/2

-12 i~r sin 2
o

For y = 1 we get the cross-section for the isotropic oscillator' )

700 = g'exp(-4Wsin22) .

	

(17)

In Fia . 2 we have plotted in units of q the curve (16) 2>

transformed to the rest system 3) for two different values o f

W, W = 0 .0697 (full line) and W = 0.0156 (dotted line)

which correspond to him, = 0 .37 volts, y = 0.4, m s = 14 mN

and EN equal to the effective energy of neutrons at room

respectively at liquid air temperature, i . e . 90° abs . 4) It is

seen that even at liquid air temperature there is still a

considerable deviation from the spherical symmetry whic h

is always assumed in calculations about the diffusion o f

thermal neutrons . 5)

1) Cf. Fram, loc . cit., and Note 3 eq . (N 34) .

2) The function xi.) exp(12) dt is tabulated in JAHN7(E-EMDE "Tables o f

Functions", p . 106 .

3) Cf. Note 2 eq. (N 18 )

4) Cf. § 6 p . 38 .

5) Cf. Fraarm and BErHE, loc . cit .

Vidensla . Selsk . Math . fy°s . Medd. XVI, 7 .

	

2

/
1-1)11'2

llg
1

	

W ~ sin
exp --4 W sin2 - fa l~

exp (t2 ) dt

	

(y< 1) . (16)
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The curves in FIG. 2 can also be represented by the

function

-"o°

	

20° 40° 60°

	

80° 100° 120° 140° 160° 180 °
e	 >

FIG . 2 . Angular distribution in the rest system. of neutrons scattered by

anisotropic oscillator . Full line corresponds to 4V = 0 .0697, dotted lin e

to W = 0.0156, W given by (15) .

where Iöo is given by (17) and In stands for the sain e

function with yw substituted for co, which we can writ e

as in (18) with W given by (15) . The reason why th e

curves (16) and (18) are so like is easily seen analyticall y

by expanding in powers of VV. We then ge t

1 is

	

2 Is'

0 -
~

I00 +3 00 ,

is'loo =
\

tiTT ,

	

(18)
y

1. 1

1. 0

0. 9

0.8

0 .7

as

0 .5
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lm) !,,s e

-
T

oo

q exp (_-4 W sin 2
2
0

q exp
(-

1 4 W sin 2 2)
Y

[]- \

1-I-3[]+i
0

[]2+42[]3+ . .

1+3[]+ 6 []2+I8[]3-+- . . .

B
4Wsin2 -

2

( 1 9 )

so that the two curves have the same starting point an d

starting tangent and the difference comes first in the secon d

power of W .

From (14) we can now by integrating over B and op

get the mean value of the total cross-section . The result i s

-4W- [1 - (1 -y)t2]

W

	

-
(1 - Y) t2 ~

s7t_

` IT I00los e
0

	

0

Qoo

®1 1-exp
sin O dB= 71'9' .

o

ose

dt . (20)

For y = 1 we get the well-known formula for the iso-

tropic oscillator s)

18
=

	

-exp(-4W)
Qoo

	

Tr
q 	

W

	

(21 )

In FIG . 3 we have in the full curve plotted (20) in units o f

Qrree2) for y = 0.4 and m s = 14 Also we have in the

same figure in the dotted curve plotted the curve analog-

ous to (18) ,

Qoo - 3 Qoo + 3 Qoo '

As we know from (19) the two curves have the same startin g

point and starting tangent . This can also be seen by direc t

expanding in powers of W

1) Cf. FE:am, loc . cit . Cf . also Note 4 .

2) Cf. eqs . (4) and (12) .

~s_ hs (1

	

(2 ~ )
Qoo - ~, oô -AV),

	

~~

2*



FIG . 3 . Energy dependence of total elastic scattering cross-section for anisolropic oscillator with y = 0 .4 (ful l

line) . Dotted line corresponding mean value for isotropic oscillators (see teat) . (The unit on the ordinate axi s

is Q1,,e,, whereas the curves are plotted in units ( 50 mm) of nq = 0 .871 . Qtr, ee (cf. eq . (11)) so one ordi -

nate unit equals 50/0 .871 = 57 .4 mat)
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osr.Qoo

0' 4 W
rrq 4 )

(n+ 1) i
n=0

(s\ (

	

1) .s (1 s .
J

	

2s-P1

r)

(23)

;rg•4 ~ 1-2 yV~ ( 7+±w
2 y9

(

- 5 yJ - X y~-1~+
. . .

-~, ~4 W
11,I

	

'

Of' - srq•4 ~ AA(n+1)Jl ( -1)ri (-7"
3

=
n= o

[

	

1~

1

	

2~

	

S

	

(ïH--) +''q 4 1 -211'~

	

y+

•

Since y< 1 -(1 - ;') t < 1 (due toy - 0 .4 < 1) in the inte -

gration range of t in (20) we can for large W neglect the

exponential and we find then after elementary integratio n

' 1 + 1 -

	

t
Qoo ose = Trq
	 In	

(	
2(1-y)

	

\1-(1--y)1-

	

(W»1) (24)

Q

_ 2rq•(+
7)-w

t

For = 0.4 the two coefficients are respectively 0 .531 and

0 .6. That I ol'o and Qo o are very nearly equal to Ioolose and

OooPosc is also physically plausible . Ioô and Q '0'', we can namely

interprete as the average cross-sections for scattering in a

substance consisting to one third of oscillators with energ y

11 wz and to two thirds of oscillators with energy yJ w z ,

while we by
Ioolose

and
Qoolose

are averaging over all direction s

of one oscillator with one degree of freedom oscillating with

an energy ,im, and two degrees of freedom oscillating with

an energy yhwz , so that one would think that the two kind s

of averaging would . give nearly the same result, which is

l ) This series is, as is easily verified, identical with BETHE loc . cit .

PartB eq (463), if we put in 7 = Co, as then our nq-> 00, 11'-> 6 1 , TV-

by BE THE .
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in fact found to be the case as we have just seen . Due to

the expression (20) being far more complicated than th e

expression (22), we shall in the following use Qöo instead

of Qo0lose, the error being negligible especially as we shall

only be interested in that part of (20) which belongs t o

small values of W.

§ 4 . Influence of the temperature motion of the

scattering centers .

We must now take the second feature of our bindin g

model into consideration . At the same time we shall define

a new scattering cross-section which can be directly measured .

The cross-section is as a rule determined experimentall y

by measuring the absorption in varying thicknesses o f

paraffin . l) If now the scatterer does not rest but move s

with a velocity V s relative to ' the coordinate system in whic h

we are measuring, it is clear that another number per uni t

time of neutrons will be turned out of the beam and s o

we shall find another absorption coefficient. This number

of neutrons expelled from the beam we can easily get by

using the fact that the total cross-section is the same i n

all GALILEI systems 2) and so the total number scattered per

unit time and per scatterer or the probability for a scatter -

ing process is just

P - ~ U rel Q

where e is the density of the neutron beam, i . e . number

per unit volume, `Ural the velocity of the neutrons relativ e

to the scatterer and Q the total cross-section calculated in

the relative system. In an experiment, however, we can

1) Cf. e . g . E . AMALDI and E . FEnmu, Phys . Rev. 50, 899 (1936) .

2) Cf. Note 2 .
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only measure the velocity of the neutrons relative to our

observing system, VN, and not the one relative to the scatterer ,

Vret, and so we must define an experimental cross-sectio n

Q exp by the equation

P = o v. N Q ex p

so that the experimental cross-section is given in terms o f

the usual one by

Q = e Q
exp

	

U N

Now we can take our second assumption about th e

binding model into consideration, the velocity v s of the

scatterer not being constant, but distributed accordin g

to some probability law, F(v s), the probability for findin g

the scatterer with a velocity between v s and vs +dvs bein g

just equal to F(Vs) dvs . So on the average we shall fin d

the scattering probability, which we shall denote by 11s ,

equal to

_~

	

S
PF(vs) dvsP s =
F(vs) dvs

and so the average experimental cross-section, Qexpls, wil l

be given by
.

vrel
Q F(vs) dvs

e,U N

(
F(vs) dv s

For F (vs) dv s we have assumed the MAxwELL distribution

m
F(vs) dvs = (exp -,uvs) dvs , g, =

21cTs (28)!!!

(25)

(26)

(27)
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where ms is the mass of the scatterer (which we in thi s

paper' have chosen to be equal to 14 times the neutron mass) ,
k is the BOLTZMANN constant ly, Ts is the absolute temper -

ature, and the constant is chosen so that F (vs) dvs = 1 .

For Q we ought to take the expression (20), but as w e

are not interested in temperatures much higher than roo m

temperature, the main part of the integral in (27) wil l

come from that part of Q which belongs to values of th e

energy not much higher than 9 kT which means that ou r

variable W 2) will be of the order 0.1 due to the value of k w
having been chosen equal to 0 .37 volts . For small values

of W, however, we have seen that (20) can be approxim-

ated by Qöo defined in (22), so that we can safely put _
is "Qoo instead of the Q from (20) into (27) . We have there -

fore first to put (21) into (27) and we get then using (15 )

and (28)

(
is	 	 , 	 	 [1-exp(-4 1 r ' ! v5 vN 1 2 )

Qe~pS=

	

CGU~ I
v5

V I

	

(v

	

7J T-

	

X

S

	

N

	

(29)
1 M

X exp (-,cu u2s) dvs ,

	

,cc _ -

Taking vs -vN = V as new variable and choosing a polar

coordinate system with V N as polar axis the integration

can be worked out and we get 3 >

Q s

	

i -1 - 2
esp S

	

7r q ' ,Lb

	

U N X

FI	 ~

	

P'	
[0X (w UN) - exp (-	 n2N l 	 Ø	 z l

	

30 )44o+Fi

	

l \4,u'+Fo, = ~(4 +F~)1 /~
l

where (D (x) is the Gøuss error function defined in eq . (N 49) .

1) k = 1 .371 X 10-16 erg gl-ad-i = 8.623 X 10- 5 volts grad- 1 . Fo r
room temperature, 7' = 290° abs, we have kT = 0.0250 volts.

2) Cf. eq . (15) .

3) Cf. Notc. 5 .
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Fia . 4 . Energg dependence of scattering cross-section (in units of Qfrn.)
for scattering centers at room temperature, i . e . 290° abs (full line) . Dot -

ted line corresponds to resting scattering centers .
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We introduce now the new dimensionless variables W 1 )

and s defined by

9 MN VN

W= Fu ' vn, -
!! G?

E _
k Ts E

s
_

u,

	

~ w

	

ms
' 1-I-

niv

E

tnN
1-+-

m S

MN (cf. eq . (N 36) )
Ml,

(31)

Putting (31) into (30) we finally find, due to ,o v 2 = 1 W
s

Qexr s= 7r g 117-1 X

4i1~

	

j

s 11
- 1+4s

	

1 -	(

	

) 2ex~

	

1-+-4s Ø ~,1- ;-4sl

(32)

/ -
X

For Qexps we find the same formula only with - W and
Y

1--s substituted for W and s . b7 FIG . 4 we have in the ful l

curve plotted

is ,

(is "- e,xp

1
S 3 Q exp

2

	

is' '
S +

3 Q exp s
(33)

in units of Q rfCe2) as a function of W for m 5 = 14 mN ,

h w = 0.37 volts, y = 0 .4 and Ts = 290° abs which makes

= 1s 222Also we have plotted the curve for Q`s"3 ) and i t

is seen that for W > 0 .1 the two curves are identical . Th e

reason for this can easily he seen analytically from eq .

1) The W here is formally equal to W in (15) only the EN there i s

now the kinetic energy in the observation system and not in the res t
system as in (15) . Only for TS = 0°, i_ e . resting scattering centers, these

two systems are identical .

2) Cf. eqs . (4) and (12) .

3) Cf. eq. (22) .
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(32) . For x greater than 2.5 W (.x) = 1 and so we get, du e

to s« 1

Q'es,,ds n- q •

	

1 (1 - exp(- 4 Lh) ) = Q s ,
(-1-

s
IV

and so under the same conditio n

s

This result we also get if we take the temperature of

the scatterer TS = 0° which means that the scatterer is

resting, and we should therefore as cross-section find jus t
^ {S „
/å) which is in fact the case .

For neutrons of room temperature Ekln
= kT = 0.025

volts we have W = 0.063 and we see from the curve that

the corresponding QëYS is equal to 2.76- Qfree . If we tak e

Ekln = kT we get W = 0 .095 and Qe ,. p s = 2.46 • Qt,. eC•1 )

§ 5 . MAXWELL distribution of the incident neutrons .

From the formulae (32) and (33) we can already dra w

conclusions about the temperature effects . In order to be

able, however, to compare the results with experiments ,

we must take into consideration that the beams of therma l

neutrons which can be produced in praxis, e . g. by slowing

down fast neutrons in paraffin, are never homogeneou s

but have some energy distribution . As discussed in § 1

this is not known quite exactly, but we shall here ap-

proximate it by the MAXWELL distribution. If e(E) is the

MAXWELL distribution for the current, that means that th e

1) As will be seen later, the effective energy is 1 .103 kT at room

temperature, cf . § 6 especially p . 38 . The correct value is therefore

2 .69 . Q free (cf. also TABLE 1, Ts = TN = 290°) .

1r_

> 2 .5
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probability for the neutron which hits the scatterer havin g

an energy between E and E+ dE is e (E) dE, then the

cross-section which would be measured should just be th e

average value of Qexp , s

Qexpls e (E) dE

e (E) dE

In praxis, however, this is not the value measured due t o

the fact that the Boron detector which is mostly used to

measure the intensity of the neutron beam is not equall y

sensible for all neutron energies, but absorbs according to

the
I

law. If we then by I(E) denote the sensibility of the

detector, that means the fraction of the neutrons hittin g

the detector which it records, then what is really measured

is obviously the following average value of the cross-sectio n

Qexpis which we shall denote by Q exp IsI N

Qexp s e (E) I (E) dE

Qe'psN-

	

(34)
e (E) IRE) dE

and this we shall now calculate .

The MAXWELL distribution for the current, e (E), is pro-

portional to u1N,F(VN) dV N , F(V N dV N being given in (28 )

if we substitute N for S, or transformed from velocity t o

energy, proportional t o

IN 271- (kTN)_/2 ENexp (_)dEN .
I:

N

Due to the 1 law we have further that

I(E)=a E

u
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where a is some constant characteristic for the detecto r

used. So we get that

e (F.) I (E) dE = a F (E) dE,

	

~ F(E) dE - 1

and as the factor a drops out in (34), what we have to

calculate is in fact only the mean value in regard to th e

MAXWELL distribution for the density

N- S Qe,nsF(E) dE .

	

(35)

r
For Qexp s we have now to put Qep s given by

and (33), and we must therefore first calculate Q p s

we define a new dimensionless quantity, n, b y

k TN
E

	

1VIN

E _

	

(cf. eq. (N 36))

	

(36)
rn N

	

Alp
1+ ms

we can write

F(E) dE = G (W) dW = 27c

	

ezp (- 1 W
\

n

and putting this and (32) into (35), we get

IS

	

~IE _31 Q

QeY P 5~V =
Tr, q . 2 Tr-/' 77

	

x

sQesp

(32)

v . If

72 =

d W

'E

(('
i~7) )

-
(1+4s)-il exp

S

/ 4 W

\ 1+4s
x (37)

\
X T~rx1 , eYp (--1 VV dW .

n /

Both integrals are here of the same typ e

.

.W exp (- a' W) (ß

	

dW = 27r-'I'Tc xI' cci Arctg
o

	

a

which formula is proved in Note 6 .
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Putting in the correct values for u and ß we get afte r

an elementary calculatio n

X Arctg
()i 2

~-(1+4(n+ s)r '' Arctg
(1+4 (7i-}-s)

n

s
kTs

	

kTN &

77 =
ftw

	

ms_1+
_

m
N

hw
_	

In v
,

+_

In s

n

	

TN ins

	

VIN

	

mss--- 2- 2 (cf. eq . (N 36) )
s

	

Ts mN '

	

MI, nI S m N

For TS = 0° we have found') that (e`sxpS- Q is so that

we can obtain Q" ,N by putting s = 0 in (38)

Q n N

	

lim Q . SIN

	

Eq•2n I (1-(1+4n) 2 )
s

due to Arctg occ =

For Që, P ' SN we get the same formula with
1

s and
1

n
1'

	

1 '

substituted for s and n respectively, and so finally

(38)

lis"
exils

n is

N

	

3 '''ex P
2

	

t s
+ 3 Qexpis

NN

	

. exp N

	

(39)s s

In FIG . 5 we have plotted the curve (39) in units o f

(free) as a function of TN for various values of Ts with

ms = 14 mN, ha), = 0.37 volts, and y = 0 .4. The values

are also given in TABLE 1 . We see that for Ts = TN = 290°

the cross-section is 2 .7 times larger than the free cross -

section . AMALDI and FERMI S) find experimentally for th e

ratio of the two cross-sections the value 3 .7 . The experi -

1) Cf . p . 27 .
2) Cf . eqs . (4) and (12) .

3) loc . cit .
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mental value for the free proton cross-section measured

with resonance neutrons is, however, very inaccurate, a s

already mentioned in § 1 .

Z .y-->
'"°

	

200`

	

3 .0°

	

440 °

PIG . 5 . Scattering cross-sections (in units of Q J.t.eC) for neutron beams wit h
Yl,1swELL distribution as function of neutron temperature for differen t

values of the temperature of the scattering crnters .

We see further thai for liquid air temperature the cross -

section is 34 O ho higher than for room temperature, the scat-
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TABLE 1 . The total elastic scattering cross-section ill unit s

of Qfree as a function of' Ts and TN given by eq . (39) with

ni s = 11a- inN i . e . Tr q = O.871- Qfree (c f. p . 15) .

Ts
1

	

20° 90° 290° kT volt s

0° 3 .39 3 .11 2 .58 0
20° . 3 .59 3 .17 2 .58 0 .00172 liquid hydrogen temperature
90° 4 .26 3 .30 2 .61 0 .00776 liquid air

	

-
290° 5 .49 3 .61 2 .69 0 .0250 room

terer being kept at room temperature . The agreement with

the experimental value of 26 °/o found by FINK' ) is even better

than can be expected in view of the rough assumptions o f

our model e) . The values for liquid hydrogen temperatur e

(20° abs) are only given for the sake of illustration, as for

temperatures as low as these our model loses every justi-

fication. In this case, infinite effective mass would be th e

more appropriate approximation .

In order to see how much of the variation in our cur -

ves comes from the special form of the cross-section o f

the anisotropic oscillator and how much from the motio n

of the scattering centers the factor °relin (26) we have
UN

	

lJ
to compare the curves with the curve for T5 = 0, as the

latter contains only the first influence . We see that the

difference is negligible for room temperature but gets im -

portant for liquid air temperature . Another way of studying

the influence of the motion of the scattering centers con-

sists in calculating Q expls N for Q equal to a constant . Put -

ting this into (27) we find, proceeding exactly as in th e

1) G . A. Fiai., Phys . Rev. 50, 738 (1936) . A similar value was foun d

by Fauscx, HALEAN and Kocx, loc . cit .

2) Cf. § 1 .
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calculation of Q'aP s , the only new formula needed bein g

given in Note 7,

1 ~
2s17

)
~

7r
(	

s)
exp ~

	

s )1 (40)Q ex p
tons t

where W and s are given by eqs . (31) . It is seen tha t
r

(40) is only a function of

	

as it must be, since h co_ does
s

not enter into the problem considered here . Also it is see n
/W 112

that, due to fi (co) = 1, we get for s = 0 or for
C

) » 1
s

that, as is physically obvious ,

s
O .Q

tons t
t Y])

Putting further (40) into (35) we get, after elementary

calculations, the only new integral needed being given i n

Note 8,

sQ
c
e

~ons t
P

Q •2 ar l n

	

[(ns (n + s) Arctg
1 n

\s
(41 )

n being given by (36) . Also here h w . drops out, as it must ,

since (41) only depends on
n

. Further we get for Ts = 0 °
s

slm PeX P

s tton

s-+0 N Q

as we must get, since lim Co s`
s

= const, and constl =
s -- o

const. In FIG . 6 we have plotted the curves (41) as func -

tion of the two temperatures for m s = 14 m1, and Q being

taken equal to
QeYy s N for Ts = 0° and TN = 290°, that i s

Q = 2.58 •
Qfre

.
,e

1» , so that we can directly compare thes e

1 ) Cf. TABLE 1 .

Vidensi: . 5elsk . Math .-frs . Medd . XVI, 1,

	

3
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curves with the curves in FIG . 5 . It is seen that the genera l

character of the curves is the same, coming from the com-

mon integrations, but that the curves in FIG . 5 have another

asymptote coming from the special function chosen for Q

in (27) .

6 . Effective neutron energy .

With the help of the curves in FIG. 4 and FIG . 5 we can

now treat the problem of the effective neutron energy. By

TN

	

>

Fib . 6 . Same as Frc . . for a scattering cross-section which does not depen d

on neutron energy in the center of gravity system .
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this we mean that energy, E, which a homogeneous beam

of neutrons must have in order that the scattering cross -

section shall be equal to that of a MAXWELL beam of tem-

perature T v. For E we therefore have the equation

Q exp s (E) _ Q exp sN

	

(42)

Now our expressions for the Q's are not given directly a s

functions of the energies but of the variables W, n and s.

We have, however, l l

W = a E,

	

n = aEw ,

	

s = ßEs

~

	

P

	

-L

	

1
= 2.52 volts,

	

_	
t uJ

	

712 ,

	

fi

	

h !~J

	

l12 s
- 1

+ i~

	

z1+	
7I2 S I12,,,

for
i

	

= 0 .37 . volts and rn5 = 14 mh.

where E is the energy of the homogeneous neutron bea m

in the coordinate system of the observer and EN , Es are

equal to kTN and kT5 respectively . So we can solve the

equation (42) in ternis of IV, n and s . This can, however,

only be done analytically in a few special cases .

= 0 .180 volts-i (43)

I . case :
s

IJ2

« 1 .

As the highest temperature we are interested in is les s

than say 1000° = 0.0862 volts, we see that both n and s

are small compared to unity and so we can in this cas e

expand everything in (38) with the result tha t

1 ) Cf. eqs . (31) and (36) .

3*
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esp s
16 s

~'- ~

q .

TC n~
. (44)

/ fly,
From this formula we see that Q is large for (« 1

s
and from the curve for Qëa p s we can conclude that th e

uJ 1/2

corresponding value of	 I is also small . By expandings /
in eq. (32) we then find

8

	

s\ 11.
s

	

7q ' ~11z ~ÿV
Putting (44) and (45) into (42) we readily find that the

effective energy is given by

i1'-

F. _ ~ kTN (for S ) « 1, n « 1, s « 1) (46)

independent of the temperature of the scattering centers .

This value is also the effective energy of a MAXWELL beam

in regard to absorption in Boron l) (while we define the

effective energy in regard to scattering) because the cross -

sections in both cases vary as 1 (cf. eq. (45)) .
v

If we take also higher powers in the expansions into

consideration, we are able to get information about th e

starting tangent of the curve
~LT~

= f(kTN) . The calcula-

tions are however lengthy and we shall therefore onl y

give the result found, namely that for small values of E

esp (45)

E _ ~
kTN 4 (

-zz kTN,-)

	

(47)

t) Cf. e . g . H . H . GoLDsMiiri-r and F. RASETI, Phys . Rev . 50, 328 (1936) .
Cf. also BETHE, loc . Cit . Part B p . 136 .
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x being a numerical constant depending on TS , so that

the curve is seen to decrease at the beginning when kTN

is increased .

(n) '
II . case :

	

s
» 1 .

This we cannot fulfil for all values of s if we still want

both s and n to be small compared to unity . If, however ,

all three conditions are fulfilled, we can put Ø and Arctg

equal to 1 and
n

respectively and we get then from (32 )

and (38)

(1
c.s
esP sS = Tr q'4(1-2 u'),

	

sp N = 7cg •4 (1-3n) . (48)

1

	

1
For Q, l, we get the same expressions with - W and n

Y

	

r
substituted for lir and n respectively . From (42) we then

easily obtain

(fot= Ic7~ , « , s «

	

(49)
s

	

/

This is the classical relation that the mean energy of a

MAXWELL beam is equal to kT; which result we woul d

also expect to turn out under the conditions stated above .

III . case :

	

r
1, n » 1 .

In this extreme case we would and independently of s

n = Tc g• 2 n

	

(50)ss -()"
e>> >

and so from (42)

E

	

~ kT

	

(for I

	

1, n » 11 .

	

(51)
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This case is, however, not of much physical importance ,

as we cannot neglect the inelastic scattering for energie s

which make n » 1 .

.2

c 0

0.g

0.8

0 .7

0. 6

0.5

T o.µ

~w\

0°

	

100°

	

200'

	

300'

	

40a°

	

500°

T,,

	

,

FIG . 7 . Effective neutron eneregn as function of neutron temperature .

E

In Frc . 7 we give the curve for	 as a function of
Ir7

1v

kTN for Ts - 290° found numerically from the curves i n

Frcs . 4 and 5. This "pipe" like curve we have alr eady used

in § 2 1) to obtain that the effective neutron energy. at

room and at liquid air temperature is equal to 1 .103 O N

and 0.795 k TN respectively .

1 ) Cf. p . 17 .

600' eao °700 ' 900'
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Note 1 .

For our potential V' we have assumed 2.» e '1 ), so we know

that all the phases will be negligible except the first one, thi s

being given by 2)

k n
= arctg ( k , tg

	

o '

	

ko f) ' .

Further 3 )

(N 1 )

1

2i ko (ell
(2 i ~lo) --1)

I,n 2
k0 2

(N 2)

since ro « 1 . As in our case k' and ko o' are both small, we

can expand the tg and arctg in (N 1) with the resul t

rn ,D '

= 3 ko e' 3 (k' 2 ]co 2 ) = 3 ko e'3 •
~2

	

(N 3)

Putting (N 3) into (N 2) we find

2
M N

I=
9 r1

(D' 0'
3)

2

which shows that I is independent of both the angle and the

velocity of the neutrons so that the scattering is spherically

symmetric . 4)

Since Q = Ida) we finally get for the total cross-section for

scattering of slow neutrons by free protons, that this is a con -

stant given by

771 -

fl -
4 it

	

~~ (D , Q , ) s3
J t=

Note 2 .

As the transformation formulae between different coordinate

systems are often used but seldom given in full, we shall here

compile them for reference . Firstly let us consider two coordinate

systems K and K* so that K* has axes parallel to the axes of K an d

further moves along the positive x-axis of K with constant velo -

1) Ct p . 10 .

2) (Til e

Cf . c. g . Aiorr and MASSEY, "Theory of atomic collisions" eq. (30) ,

p . 29 .

	

mass there is equal to the reduced mass,
2 /

3) MOTT and MnssEY, loc . cit. eq . (17), p . 24 .

1 ) It should be remarked that this means that in the rest system th e

differential cross-section is proportional to cos e cf. Note 2, eq . (N 19) .

(N 4)

(N 5)
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city u . A particle is moving with velocity v* in the system K *
forming an angle b * with the x*-axis . In the non-relativistic cas e

which we are here considering, u « c, we have then that in th e

K system the particle moves with velocity v = u+ v*, the angl e

e between v and the x-axis being determined by

cos b* 1 .
I *

U

(1+ 112

	

II

	

-

U'

	

v * .,+~~~ cos (J~ )

6

	

sinr*

	

(N6 )

sin 6 =

	

--uü~'
(1 +

	

2 i7* cos H *

which formulae are at once deduced from FIG . S .

u

a

FIG . 8 .

For the K- and K*-system we now take the R and C systems 1 )

and shall obtain the transformation formulae (N G) for this case ,

when the particle with mass m, moves with constant velocity Vs

along the x-axis before the collision . From (5) we find, due t o

V1 = 0

tt = V

	

171,

177,

	

(N 7)

and as we assume that no outer forces arc acting, this velocity

is the same before and after the collision . To obtain vl '* and n,' *

(the dashes referring to the state after the collision) and so th e

transformation formulae for the two scattering angles, 0 1* and () ,i*,

we only need to use the conservation law for the energy

1771v1
*

2 + -9 1R 2 - (En - Ern) = -11-
m1U1~*~_~ 1

-1712U2 '"`-'- (N S)

where En-En , is the excitation energy given up by the particl e

2 in order to excite the particle 1 from its m ' th to its n'th state

1) Cf . p . 13 .

tg o =
b

	

sin b *

	

a
cos H= - _

a

	

Li '

	

v
cosh

I
f
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during the collision . This energy can be positive or negative ; fo r
m = 0 it is positive for all n . Using (7) and vl* _ -u, V2* = V•2 -u,
we get from (N 8) due to (N 7)

0 '
2*

=

	

(

	

\ _
nzl

	

u ' t Tn- En ,
Î 22

1,1711-{- m2 -~ nla (MI + In t)

(N 6) is now fully determined by (N 7) and (N 9), but only in the
case of elastic scattering, E11- E 7z , = 0, we get simple analytic ex-
pressions. In this case we get, using (7)

	

* J

	

1711

	

~

	

12 2 , *

	

U2 -

	

• I 2, v1 =

	

v2 - Li
m1 -i- 1112

	

m1

so that (N 6) becomes, independently of V2 , using (9)

(N 9 )

(N 10)

tg 0.,=
sin 02

1112 '
COS 02+ -1111

I711
cos 02 _

~1 + I7129 + 2
1n2

cos02
.m1.

	

ml

111 2
cos 0 2 +

sin 02 = (

	

m22

	

111 21- 2-}-2-cos02
1111'

	

ml

01 = ~ (7t- 0 2),

	

= P2 +

	

= 1P2

sin 02

so 0 < 02 < it when nil 1112 i but 0 < 02 < II- when ml = In t be-

cause we then simply get

which, combined with (N 11), gives the well-known relatio n

01+02 = 2 -

Solving (N 11) for 0 2 we find

m 2sin (0 - 02) =

	

Slnm l

which for in t » m 2 reduces t o

02 = 02+
112

Sill 02 .
m1

Purther we can, using the conservation laws, deduce the formula e
for the energies before and after the collision in the rest system .

02 (N 12)
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E2 = <7 1212 V22 ,

	

= 0

4m1 rlta

	

1
E1' = E. (1- --

	

-- ~ cos 2 @l I ,
,

	

(1121 -{- 111~~) '

	

/

4 nt l nr2
L1 ' = E~ --

	

~ eos 2 01. .
(m i + m 2 ) 2

By definition we have for the cross-sections tha t

Iron (e, Ø) dsd = I. (H*, rG *) dw* = Imn (H, p) dw

	

(N 14)

	

(dropping the index 2) which we can write, due to

	

= rp* _

stn

	

de
Iron (0, ) = I n+n (0 ,00 ) .sm 00 de

	

(N 15)

	

For the special case of elastic scattering, m

	

n, we get
from (N 11)

sin o _

	

H m22

+ 2
m

i'' cos e
)'''

sin O - ~ 1

	

r11

	

112

	

(N 16)
x

	

12

	

1

m 2

	

dO

	

1 +
rn

cos H

	

x

	

1=	 	 do .cos'' D

	

m p
(cos(i+	

~m1

Putting (N 16) and (N 17) into (N 15) we finally get using (N 11 )

(N 17)

n

Inn (o, I') = Inn ( e, ;0)
1 + m

m22
+ 2n

m
i
' cos H

	 12	 1

(
1

1 +
mJ

cos H)

= Inn (e, p)' g (e)
(N 18)

	

2

	

(1+

	

l
2

	

(i)

	

g(e)m
1 )

For m 1 » 121 2 we ge t

g (e) = 1H- 2
m2

cos o = 1+ 2 1122 cos e.
m i

	

rut

In the special case 1211 = rn 2 we find the well-known formul a

g (H) = 4 cos ~- = 4 cos C .

	

(N19)
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The function g (o) we can transform to 0 by (N 11) and we

find then

	

nz

	

In~ "
cos O + (1- 11'2 21 -	 sin2 )0

	

g( H )
= ~ml

	

y

Ir7 `'
(1-? sin 2 0)i

/ -
ni l-

which for m l » im just reduces to 1+ 2
Ir7

cos 0.

From (N 14) we can at once deduce that the total cross-sec-

tions in the two coordinate systems are identical . This is, how -

ever, only a special case of the more general theorem that th e

total cross-section is the same in all GALILEI systems. 0) This i s

readily seen from the definition . Calling the probability for the

scattering process P, that is the number per unit time and pe r

scatterer scattered out of the beam, the cross-section Q is define d

as the ratio between P and the number in the incident bea m

crossing unit area per unit time at the place of the scatterer, s o
that we have

(N 21 )

where o is the density of the beam, that is the number of par-

ticles per unit volume, and ti ro is the velocity of the beam rela -

tive to the scatterer. Since P, and Urel are the same in all GA-

LILEI systems, Q is at once seen to be invariant . 2 )

From (N 14) we can also deduce the transformation formula e

for the differential cross-sections from one GALILEI system K t o

another K* . The formulae for the angles arc, when u is the velo-

city of the system K*, measured in li
u

	

u

	

u ~
cos 0*+ 	 cos H1*+

	

cos H•3*+

cos 0 = --

	

-

	

* *
U

2

	

Ul

	

U1 Ug
°

} u,,2 6+ 2 % cos H*) 1 '''(1+ * ;

	

cos 0 2 *
UI

	

a1

	

Us-

	

U s

	

(N 22)

sin (cpl*-- T ,-2* ) sin 0 2*
sin =

1) By a GALILEI system is understood a coordinate system which

moves with constant velocity along a straight line .

2) We have only considered the non-relativistic case . In the relativ -

istic case Q is also invariant so long as the coordinate systems move i n

the direction of the current.

2

(N 20)

;' U re l

Q _ P

(1 - cos2 0)
1/2

(1 }	 { 2	
[t*

cos 02 * )	 ,
V 2

	

Ug
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(with the expression for cos O inserted from the above formula )

0 1, 2* = SY (v 1, 2* , u), W1*- Cpt* = < ([v l * X u], [v2* X ui)
=

	

(vt * , v2* ),

	

Ø* _ < ([ vt* X v 2 * ], [vi* X uJ )

(and analogous formulae for the quantities without stars) whic h
formulae are obtained from the general formulae of spherica l
trigonometry, using (N 6), the direction u being taken as the pola r
axis in a polar coordinate system . Theoretically we can fro m
(N 14) and (N 22) obtain the transformation formulae for th e
differential cross-sections, but in praxis the resulting expression s
are so complicated that they are quite unmanageable, with th e
exception of the special case where u has the same direction a s
one of the v*'s, in which case (N 22) reduces to (N 6) . Further ,
if u lies in the plane of vt* and v 2* we get 5 = ds* = O, the for-
mula for O being the same. .

Note 3 .1 )

For the eigenfunction of the one-dimensional oscillator w e
havet)

ih n (x) = a ~ l ° zt
1/,

2 2(n ! )

a =-
ti

	

\i/_

~Mp (a) ' 1'n . - (+ `) )h[U

~
exp (- ~ å=11 I

lt t (
a ,)

N 23 )

where Mp is the reduced mass of the proton, w the cyclical fre-
quency of the proton and Hrt the n'th HERMITE polynomial . With
these wave functions we shall now calculate the matrix element

(n exp (i lcmnl.x) in) _

tt	 11 1

~'tJn * • espet dx = 71- 12 2

	

2 (1 !m!)-'l,enm

Corn - elan = IIn(y) exp (tbI1 771(y) exp (- g2) dy

b = akn,n ,L , y _ a •

1) 'Pile matris elements given in this note have been given previously

by the author, cf. Nordiske Naturforskarmötet i Helsingfors 1936 . The

reports, p . 248 .

2) Cf. e . g . Ruair, and Until : "Atoms, Molecules and Quanta", p . 533 .

(N24)
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By definition we have l )

H n, (y) =
(-1)n,

exp (y'') (
dC1y

)
n,

exp (- (N 26)

If we put (N 26) into (N 25) and integrate by parts, we get due to

the fact that exp (- y2) and all its derivatives vanish in ± oo faster

than every power of y

= 2nen+iben,m-1

	

(N 27)

using H', = 2n

	

n 1. 2 ) Using this recurrence formula 1

times on itself, we can show by induction that the result i s

=

1

	

n !
21-s (s) (n-1+ s)! ( ib ) sen+s, ,n-1 (N 28)

Here l is restricted by the condition that n - l and in-1 mus t

both be positive or zero, that is 1 min (in, n) . Assuming ni n

we can therefore put I = in . By reducing e„_,,, + s o in the same

way, we get
1

C

	

t Or' -n,+•G
e

	

1ll n-n7+

	

9
s ~cA1? ex')

~-
J I N 29

n- 11i

	

= (

	

O o = ( )

	

IJ
`

(

	

)

due to

ero =
i

exp (i by) exp (- y2) dy =

s

	

o

	

ex

	

b'l

	

~̀

exl~

	

i b

	

= >>

	

~ 1 ~

b2 '
y = exp (

- 4
) n .

e lan

P -

Putting now (N 29) into (N 28) with 1 = n2, we get

m
--;

	

~

n, ( i
b)n-ne n!. m! exp (

	

b'	 ( 1
s

~
2` s! (ni-s) ! (n-m+ s)! 1 (N 30)

o

(m 4 n) .

For n < in we get the same formula with n and m interchanged .

(N 30) into (N 24) finally gives u s

1) Cf. COURANT-HILBE T : " Methoden der mathematischen Physik",

78 .

2) Cf. COURANT-HILBERT, loc . Cit . p . 78 .
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I exp (ilcn,n ti x ) I m,~ =

n+n2 Y

	

2 s

= 2 '~ (n! mQ'!° (ib)I "-n, I exp

	

b \ \	 	 (-1) s b ~	 	 (\ 31 )

4 - :, 2`s!(1-s)!(n-m~ ~-s) !- o

	

~

I= min (n, m), b= akmn 2 `

For the one state being just the groundstate we get

n

(n
I
exp (ikon x) 10) _ (n!)

	

2 2 (i b)n exp (- 4-) . (N 32)

For the 3-dimensional isotropic oscillator we can at once get
the cross-sections from (N 32) since the eigenfunctions are only the
products of three of the type (N 23) . Due to the states being de-

generate with the multiplicity gn = (~~	 +
1)9(n

+2) we must form

km,2

~

	

7

mn

	

I (n ti n~ R ~

~
g

gn kn .--J
m L +n1 u +1„-= f„ n t. -Fn u +n_= n

This is very complicated unless rn = 0 in which case we can a t
once perform the summations if we only choose the (arbitrary )
coordinate system so that kit,, is along one of the axes

jnn= q,

	

on

	

(n z, exp ( ikonx ) J0)(n 0 I 110)(n,11I0 )I 2 =l o
n i+ n y +n_= n

	

(N 34)
knit

	

1

	

b2 n

	

b°-q

	

ko n!

	

2 ) exp ~- 2

b J

	

1

	

„2

	

mv E~

	

0 -

	

I -Ea

	

'

	

En - Eo
_

2
_-

2~°na2

	

i1jp(n
" r -2t1 -2-

	

L

	

) cos H
E0

	

0

	

~
(N 35)

by (1) . This is the formula found by 1ERAZI 1 ) apart from the facto r
/t1jN2

	

MN
- )in q (cf. eq . (4)) and from the factor

M
-ineq .(N35)which

\ MN

	

P
by FERMI (and by BETI3E) are both put equal to unity :

1 ) loc. cit . Cf. also BETHE, loc . cit . Part B eq . (455) . It should he note d

that by the authors quoted ms it put equal to infinity throughout .

exp (7k m Y)
mxtnf Ri z) 1 2 (N 33)
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MN

	

/ n1 N ms (nlp+ In B)

	

Ins2

Mp

	

\ IItit;+ 1ns

	

nlplli B

	

Ins" n
	

1N, -

where mB is the mass of the binding center mB = ms-mp,

mp n1 N . For our value of ms = 14 m N , s has the value 1 .0051 ,
which can be safely replaced by unity, so that we apart fro m
the important factor in q are left with Fnxsu's formula .

It might be of interest to note that the formula (N 34) ca n
also be obtained by writing the wave functions in polar coordi -
nates . We only give the formulae for reference s )

~jelrn
0,, n) =

	

47r

	

(1-{- m )

	

(21+1)

	

exp (1 m ~) P1 (cos e) Y,

-2 n-{-1+1

	

%°

	

r s
p

Xr~

	

~	 2 -! ex p

	

I
)1-1 1+ ,1

	

l' 1,2
`

	

I

	

a

(112
1 ~r

	

(1+2

.117'1
,

	

2

	

2

<+ 1, 1=11, 71-2, R-4,•• .0, F.n = (n+ ~) il w

Pr is the ordinary associated LrGEND1IE polynomial e) and 1F1 the
confluent hypergeometric function . 2) We find

(N 36)

_ d'o ni rc

	

i bn

	

( Nexp (-

	

(N 38)

(nIm exp (ik~~11 r) 1 000) =

(21-1-1) (n+l+1 - ~L (n+ l\ t

(t . 1) !r

	

(n-j-1+1) !

b = o1rn n

Putting (N 38) into the formula analogous to (N 33) we just fin d
the expression in (N 34) for I, doe to the formula proved by th e
author`)

I,_ 2

1 =n,n-2i•>0

(21-{-1) (
n+

9
1+

(

n -

') 1)1

	

rn +1 l -
2 ! '

( I + 1 + 1 ) r
1= - (N 39)

~ n 11 4

71
~

-!'_ 22I+ 1

1) The author, loc . cit .

2) COURANT-HIr,BERT, loc . cit ., p . 282 .

s ) Cf. e . g . Mor'r and MASSEY, IOC . Cit ., p . 36 .

4 ) Sec Matematisk Tidsskrift, Copenhagen 1937 . "To Prof. H . Boar a

on his 50th birthday", p . 42 .
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In the calculation leading to formula (N 38) we also get the matri x
elements for the fixed rotator with two degrees of freedom whos e
eigenfunctions are just the first part of (N 37) multiplied by
ö (r- ro), ro being the dimension of the rotator . We find

(j in I exp (ir) 100) = dona (2) ~ (2 j+ 1)'"'' i~ (k ',:fro

	

(koj ro ) (N 40)

J. _,bein the Bessel function of order
.1 -I

r,

	

g

	

j

	

2

Note 4 .

It may be interesting to note that the formula for the tota l
elastic cross-section for the isotropic oscillator can also be dedu-
ced by direct calculation of the BORN phases and their summa-
tion which is indeed very seldom possible . We have, since th e
phases are all small, )

Q = 4 7rkp 2 ~ (212 + 1) ~n

	

(N 41 )

	

21VINk0 Sm

	

F

	

- 2
-

	

~

	

Vao 2r) J1111
_
(Icor) r2 dr

	

(N 42)
Yt~

	

0

Iôo =

	

iPo 1 2 V ' dz = I i»o(r":v) 1 2 (-D') 43'Q'3

	

(N 43)

due to o' « a. If we put (N 43) into (N 42) using (N 37), we get

MN D' 4
9

oa

3
1r

ll3 .
Q x

Now

r2
(kor) i-dr.

	

(N 44
)

~ exp (- p2 1 2) J„ (al) Jr, (bt) t dt = ~ ~ 2 exp
( a2 + b2~

j (	 ab
4p2

	

v ~p2
2)

(N 45)

Iw(x) = exp (- 2 iu) Jy(ix)
3)

	

(N 46)

1) Cf. Mort and MASSEY, loc . Cit . eq . (5), p .133 and eq. (12), p . 90 .

2) WATSON : "Bessel functions", eq . (1) . p . 395 .

3) WATSON, loc . Cit ., eq. (2) . p . 77 .
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-L2) In+ i l'-' ( x) = - t

	

(n-+- 2 ) (-1) " .lï-I pa( tx) =

n (N 47 )

.sin 2i x
=-z - _

e2x_ e-2x 1 )

47r

Putting (N 42) - (N 47) into (N 41) we get, using Ikos a2 = W 2 )

/111, 4; rnn D, a 1-exp( 4 W)
\ rnN 9 r4 (

	

)

	

w

which is just eq. (21) remembering eq . (4) .

Note 5 .

We first prove the formul a

SJex (- a (x -p) 2 ) - exp

	

p) 2) ~ dot : =

	

(a p) (N 48)

where q. (x) is the GAUSS error function given b y

(x) = 27cß'2 exp (- 12) dt .

	

(N 49 )
0

Taking in the first part y = x -p, in the second y = x -}- p a s
new variable we ge t

so (N 48) follows at once . We can now work out the integral in
(29) . The two angle integrations being performed, we are left with

q

	

)/,
exp (- iuv~)

	

~exp (- ~.v =̀) -exp (- (4~-~4u')vs)~ X
ct

	

n
0

X [exp (2uvn;v)-exp (-2 itv lvv)J dv .

The two integrals here are just of the type (N 48) . In the first w e

	 Divhave a 2 = u, p = 0N , in the second a 2 = (u + 4 u'), =

	

.u i- 4 , '
Putting in these values in (N 48) we easily find (30) .

1) WATSON, loc . Cit . eq . (3) . p . 152 .

2) Cf. eqs . (1) and (15).

1'idenslc . selsk . Math .-fys. Medd . XVI, I .

	

4

S - 2 S '3 exp

	

o (- y2 ) dy
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Note, G .

Wc prove here the formul a

tij'-i"
å exp (- a 2 W) ( tiV-' "') dYV = 2 ;r--- '' cc- 1 Arctg

	

(N 50)
6 6

where

	

(x) is defined in eq . (N 49) .
We put first i = ß YT'' V' as new variable and ge t

~

	

(
m

= 2~3 i exp (-„„~~(t)dt= 213 t f(x), x=
a

	

(N 5 1
' o

If we now differentiate the function f (x) we get

exp (- t~,~ t [t (t)] di .x x=

Integrating by parts we can get the inhomogeneous differentia l
equation for f(x)

f ' (x) = x ` f(x) + ;c

	

X

which by the ordinary methods can be solved t o

f(x) = n-' "= . x•Arctgx+(constant•x) .

The constant can be determined to be equal to zero by expandin g
1'(t) and integrating term by term . For x2 < 1 the resultant serie s
is convergent to just ;c

-lr' . x . Aretg x . This in (N 51) then prove s
(N 50 ).

Noie 7 .

We prove the formul a

x2 [exp (- a 2 (x- 3)2) - exp (- a2 (x + ß)2) dx =
'o

= (aß)
[1/ 9	

aß'+7'as~ +
exp (- a2 j32 )

where (x) is defined in eq . (N 49) .
Putting y = x ±,3 we get

)

1 + a: 2

(N 52)
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5 1

i ~

	

+ß

	

`
+ß

1 = ` y' exp (- a2 y 2)dy+ 2ß y exp (- a2y2) dy+,
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'-ß
.

	

J fi
f 4ß Ĥ u exp

ß

+ ß

- a2 y2) dy + ß2

d

exp (- cc2 y2) dy .

ß

The second integral is zero, the two last ones can be performe d
at once and the first one by integration by parts . The result i s

1/ç P

a2 exp (-a2 ß2 ) + 2as (aß) + ~ exp (- x 2 132 ) -{-
7

ß2 <I? (9 )

which immediately proves (N 52) .

Note 8 .

We prove the formul a

~exp (- a 2 W) (ß W'12) dW =

	

a-3
[oa13 13 + Arctg

	

(N 5't)
0

where q , (x) is defined in eq. (N 49) .
We take as new variable t = ß W '1' and get using (N 49) .

[['

	

9

=2ß` 3 27T-V' dt• t dut 2 exp(- ayt2lexp (-u 2) .
lo

	

JJJo

	

o

	

ß2 /

Now

S0ct

	

=

	

d t
0

	

n

	

. a

ø

and so we get, performing the dt by integrating by parts

.
= 2 /3- 3 2nr-j/z du esp (-u 2 ) X

0

Xå3 ~ ~
exp ('-	 /3 2 + 2(1- (a)]} .

Here all integrations can he performed, using eq . (N 50) . The re -
sult is

4*
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Nr . 1 . NIELS ARLEY :

~ o L
a~	- ~ h a -S F ~ß

	

rt

	

a

I [ + 2
2 -Arctg

fi

hich proves (N 53) because we have the elementary identity

2
-Arctg i = Arctg x .

Summary.

In the present paper we discuss the scattering of ther-

mal neutrons in hydrogeneous substances . In § 1 we dis-

cuss the binding model for the protons. We assume th e

protons to be bound independently in an anisotropic os-

cillator taking the largest oscillation energy equal to 0 .37

volts, and the others equal to 0 .4 times that. Further w e

take the lower frequencies into consideration by ascribin g

an effective mass, which we have chosen equal to four -

teen times the neutron mass, to the system consisting o f

proton plus potential and assuming these "molecules" to

move freely like gas molecules with a MAXWELL distribution .

In §§ 2 and 3 the cross-sections are calculated . In §§ 4

and 5 we discuss the temperature effects. Firstly it is foun d

that when both the neutrons and the scattering substanc e

have room temperatures, the ' cross-section is 2 .7 times

larger than the free cross-section . Secondly it is found that

the cross-section for neutrons at liquid air temperature i . e .

90° abs is 34 °/o higher than at room temperature . These

figures are compared with the experiments . Finally we in

§ 6 discuss which effective energy must be attributed to a

beam of MAXWELL neutrons in regard to the scattering cross -

section . It is found that for our model this effective energy

lies between 0.7 kT and 1 .1 kT depending on the tempera-
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ture . In the mathematical notes we have further compile d

various formulae for transformation of coordinate systems ,

matrix elements and integrals used . in the text .

In conclusion I wish to thank Prof. NIELS BOHR for

his kind interest in this work and to express my appre-

ciation to Prof. G . PLACZEK for suggesting the problem to

me and for many valuable and helpful discussions in th e

course of the calculations . Further I wish to thank Dr. F .

KALCKAR, Dr. G . MØLLER and Dr. V. WEISSKOPF for many

stimulating discussions .
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