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Introduction .

T
he main purpose of the investigations described in th e

present paper has been to study the influence of a

homogeneous magnetic field on the flow of a conductiv e

liquid - mercury	 in pipes of circular or rectangula r

section . In a previous paper' this influence was examined

theoretically on the assumption of a laminar flow in a fla t

channel of rectangular section, the field being perpendicular

to the channel-sides of largest extension and the two othe r

sides being formed by electrodes of highly conductiv e

material . The experiments to be considered in the followin g

were planned chiefly with a view to testing the main re -

sults of the theoretical discussion . They have, however, in

addition thrown light upon phenomena not readily ope n

to such discussion, in particular upon the influence of a

homogeneous magnetic field on a turbulent flow and th e

transition of the turbulent form of flow into the laminar.

In this respect the present work may be regarded as an

extension of an investigation performed several years ago

in the same laboratory and having as subject the com-

parison of the flow of water and mercury in pipes . The

x Theory of the laminar Flow of an electrically conductive Liqui d
in a homogeneous magnetic Field . Det kgl . Danske Vidensk . Selsk . math . -
fys . Medd . XV, 6, 1937 .

2 A Comparison between the Flow of Water and Mercury in Pipes
etc . Mémoires de l ' Académie Royale des Sciences de Danemark, Sectio n
des Sciences 8 me Série, t . X, n o 5 . 1926 .
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latter investigation showed that the REYNOLDS' Law of

Similarity holds good for mercury even in cases in whic h

the walls of the pipe are not wetted by this liquid . The

investigations here reported amply confirm this fundamen -

tal experience .

Professor HARTMANN desires in this place to expres s

his gratitude to the Trustees of the Carlsberg Foundatio n

and of The II . C . ørsteds Fund for having rendered pos-

sible by financial aid the completion of the present re -

search work .
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L The experimental Arrangements.

The general Arrangement .

In fig. 1 a diagram is given of the general experimenta l

arrangement . A hydrodynamic circuit is used in which the

flow is maintainedr; by an electromagnetic pump P.' R is

the duct - a glass tube or a rectangular channel in whic h

the flow is examined. It is arranged in a homogeneou s

magnetic field F between the polepieces of a special electro-

magnet . The pressure drop in a certain length of the duc t

is observed by means of two manometer tubes connecte d

to sockets on the duct . The volume of mercury passing

each section of the circuit pr. sec. is measured by a simple

flow meter of the calibrated nozzle pattern V1. For rapid

control of the. volume flow a special flow meler V2 was

1 The principle of this pump is described in the paper referred t o

in note 1, p . 3 .
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furnished . As the mercury was healed by the curren t

passed through the electromagnetic pump a cooling devic e

K had to be introduced, the temperature being controlle d

by the thermometer T and kept at 20°C. A photograph

showing part of the circuit and particularly the electro -

Fig. 2 . Photograph of experimental Arrangement .

magnetic pump (to the right) and the electromagnet (t o

the left) is reproduced in fig . 2 .

The various members of the experimental circuit wil l

be described in detail below . Here some words may be

said about the preparation of the ducts, especially the glas s

tubes. These were all comparatively narrow . Now, when a

capillary has not undergone a special cleaning process th e

results of the flow experiments are quite indeterminate .

This is due to a thin film of impurities adhering to th e

interior walls . In order to remove this film or layer th e

glass capillaries were for hours treated with concentrated
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sulphuric acid with potassium bi-chromate K,, Crz, 0,. Here -

after they were washed first with water and then with

absolute alcohol . If the capillaries were then dried by

drawing:a, flow of dry air through them the results, of .the

experiments were reproducible with an exactitude of a fe w

tenths of one p. c . and remained so for a very long time ,

provided the capillaries were not emptied and the mercury

was thoroughly cleaned and dried before being introduce d

into the circuit .

With the rectangular ducts the use of the cleanin g

method here indicated was practially precluded . Instead

the walls were treated with benzol in a way describe d

below .

Measurement of the Flow of Mercury .

The flow of mercury, i . e . the volume 17 passing each

section of the circuit per . sec ., was, as indicated, normall y

measured by means of a nozzle N through which the flo w

had to pass as indicated in fig. 1 . The nozzle was arrange d

in a vertical tube and could readily be interchanged . Seven

nozzles were used. In Tab . I the diameters of the bores

are stated in the first column .

Tab. I .

Constants of Nozzles used in Measurement of Flow .

Orifice Constan t

mm . k

2 .950 1 .96 0

2 .043 1 .00 0

1.551 0 .58 4

1 .106 0 .29 4

0 .832 0 .17 9

0 .651 0.11 1

0 .412

	

0 .0463
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In the second column the constant k of the apparatu s

defined by

(1)

	

V

	

k l/h cm . 3/sec .

is entered. In the formula (1) h is the pressure drop in th e

nozzle measured in cm . Hg.

For the observation of h the manometer tubes show n

in fig. 1 were employed . The tubes were mounted on a

transparent mm .-scale illuminated from be-

hind. During each of the original experiment s

the magnetic field intensity H was kept con -

stant and the flow adjusted for a series of

values of the Reynolds' number R . With each

experimental pipe or channel a set of ex -

periments corresponding to a certain numbe r

of II-values was performed. In order to facili -
Fig. 3. Card- Mate the work a card-board with notches a s
board with Not-

ches for rapid indicated in fig. 3 was produced correspondin g
Control of the to each experimental pipe or channel . When
Volume Fiow'

the pressure drop was equal to the distance

from the lower edge of the card-board to the horizonta l

edge of a certain notch the Reynolds' number of the flo w

in the experimental duct had the value written sideward s

to the notch in question . From this it will be gathered

how .the card-board was used for rapid setting of the flow

during an experiment.

It was found expedient to supplement the above described

flow meter by another apparatus intended particularly for

rapid control of the nozzle gauge . The apparatus referred

to is indicated by V2 in fig . 1 . In fig. 4 it is shown on a

larger scale. It consists mainly of a glass pipe BCD of

known calibre . Just in front of the entrance to this pipe

an air bubble may be pressed into the flow of mercury .
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This bubble is carried with the flow and what is no w

measured is the time of its passage over the known distanc e

between two marks C and D on the pipe. From this.

measurement and the calibre of the pipe the volume flo w

in the circuit is readily derived .

There are several precautions to be taken in the desig n

and use of the flow gauge here considered . The bubble

must fill out the whole section of the pipe . Therefore the

aperture of the pipe must not be too large ; in the apparatu s

in question it was 5 .25 mm . At the moment at which the

bubble is introduced slight fluctuations of the velocity wil l

occur. So the bubble has to pass a certain length (9 cm . )

of the pipe before entering the range CD which in the

apparatus in question was 37 cm . It is absolutely essential

that the walls of the pipe should be clean and dry ; they

were made so by the same method as was employed with

the experimental capillaries . The air introduced into th e

pipe must also be dry and was therefore led through the

tube T with a water absorbing material . In front of th e

inlet end of the apparatus a reservoir was arranged t o

stamp out the vibrations caused by the introduction of the

bubble. At the exit end of the pipe another reservoir
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was mounted, through which the bubble escaped afte r

having passed the stretch CD .

The apparatus here described was, as stated, mainly use d

for quick control of the nozzle meter . In such a check th e

manometers of the latter gauge were always read durin g

the passage of a bubble, because the bubble gave rise t o

a slight reduction of the velocity of the flow . The accuracy

2

3

4

5

G

7m m

1

	

2 Amp

r
Fig . 5 . Field-Intensity Curves at various Air Gaps .

of the measurement with the bubble apparatus was nor-

mally about 0.5 p. c .

The Magnet .

The construction of the magnet will appear from fig . 2 .

The length of the field was 36 cm ., the height of it 1 .67 cm .

Field intensity curves (with the exciting current as abscissa )

were plotted for the values 2, 3, 4, 5, 6, 7 mn] . of the width
å of the air gap . These curves are reproduced in fig . 5. I t

should be noted that with the air gap 2 mm . and a field

intensity H= 8000 Gauss the intensity at points 3 cm .

from the ends of the pole-pieces was but 1 .5 p. c. smaller
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than at the middlepoint of the field . This lack of homo-

geneity was eventually reduced to 0 .7 p . c . by an artificia l

straying applied to the centre of the field . Everything goe s

to show that this degree of homogeneity amply suffices

for the purpose in question . It is a well-known fact that

the field intensity is not a definite function of the excitin g

current unless certain precautions are taken . In the case

considered a definite value of the field intensity was obtaine d

1
Fig . 6 . Non-homogeneous magnetic Field produced by making one Se t

of Magnet Coils currentless .

by approaching the value of the magnetising current through

a series of slow periodic current variations with an am-

plitude gradually going down to zero . This method was also

used for demagnetising the magnet when the pressure dro p

was to be read corresponding to zero field intensity .

In connection with the magnet some observations on th e
effect of a non-homogeneous field on the pressure drop in the
flow should he mentioned . Of the three sets of magnet coil s
(fig . 2) the set next to the exit end of the experimental duct
was made currentless . In this way a field distribution curve lik e
that indicated in fig . 6, where MI and M2 are the positions of th e
manometer sockets, was obtained . The direction of the flow i n
the duct is indicated by the arrow . The flow thus first passe s
the stronger part of the field before entering the more feeble part .
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With a volume velocity or, which is the same, a Reynold's number
R well within the domain of laminar flow the observed pressur e
drop was not that corresponding to a homogeneous field of a n
intensity equal to the average value of the field - the average
intensity was 4800 Gauss - but that corresponding to the higher
field intensity 52(10 Gauss . (Compare curves 9-18 below) . On th e
other hand, if the set of coils at the inlet end was made current -
less so that the flow took place in the direction from a lowe r
field intensity to a higher one the observed pressure drop cor -
responded to a lower field-intensity - 5700 Gauss - than th e
average - 5900 Gauss. These observations find their explanatio n
in the well-known fact that it takes time to change the velocity
distribution -- on which the pressure drop depends . The distri-
bution corresponding to the field at the inlet end of the duct
persists in some degree after the flow has left this field .

It was concluded from the experiments here indicated that th e
additional pressure drop to which the non-homogeneity illustrate d
in fig . 6 gave rise was otherwise practically imperceptible - i n
spite of the extremely pronounced character of the non-homoge-
neity . Thus homogeneity is required less in order to avoid thi s
additional pressure drop than on account of the source of erro r
illustrated by the experiments referred to above .

The experimental Tubes and Channels .

Five cylindrical glass tubes, indicated in Tab. II below by

the numbers 11-15, were used in the experiments here

considered. They were selected from a large stock and wer e

carefully calibrated . In no tube did the diameter vary more

than about 0 .5 p . c. within the part in which the pressur e

drop was measured . This part has a length of 28 cm. It

was of course arranged entirely within the magnetic field .

The whole length of the tube was 43 cm . the extensions.

on either side of the stretch of observation being 7 .5 cm.

At the inlet end of the tube 6 cm. of the 7 .5 cm . were

inside the magnetic field, at the exit end 2 cm . As stated

elsewhere, the edge of the experimental tube or pipe was
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kept sharp in order to secure transition from laminar t o

turbulent flow at a definite value of the velocity or of th e

Reynolds' number. The thickness of the wall of the tube

was taken as small as possible, about 0 .8 mm., with a

view to reducing the air gap of the magnet, and so to b e

able to produce magnetic fields of the greatest possible

intensity.

Connections to the manometer tubes were obtained

through bores at either end of the 28 cm. stretch of obser-

vation. The production of the bores by means of a swiftly

rotating copper plug covered at the flat end with oil and

carborundum required some practice . Slight annealing o f

the tube by drawing it through a luminous gas flam e

would seem a wise precaution before the process of borin g

in order to render breaking of the tube less likely .

The way in which the tube is mounted will appea r

from fig . 7 a . B is a light bar of wood to which four woode n

blocks are fastened . The two extreme blocks C 3 C4 carry

two glass tubes or "shafts" 7'3 1'4, each with a rather wid e

socket, S3 S4 . Into these sockets the ends of the experimental
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tube R are "cemented" by means of "picein" . Above the

bores in the experimental tube are placed two shafts Tl

and T2 , carried by the blocks C 1 C 2 and cemented to th e

experimental tube likewise by picein . On T1 and T2 are

the two sockets S 1 S 2 for the rubber tubes to the mano-

meter. The flow of mercury is passed into and ou t

of the experimental pipe by the sockets S 5 S 6 . The shafts

7'1 T2 T3 7'4 serve as traps for dust particles and minute air

bubbles. They are closed above by stoppers made fro m

glass tubes .

We pass on to the rectangular ducts . Of these 18 wer e

produced. They are indicated as K 21-K 38 in Tab. II .

In K 21 the distance between the manometer sockets wa s

28 cm ., in all the other ducts 14 cm. The total length of

the ducts was in the latter cases 20 cm ., the whole duct

being mounted within the magnetic field . Fig. 7 b illustrate s

the mounting of a duct . The figure will be understoo d

from the explanation given in connection with fig . 7 a . I t

may just be noted that the distance between Tl and T3

was 4 cm ., that between T2 and T4 2 cm., finally that

the flow was in the direction from T 1 to T2 .

In fig. 8 a section of a duct is shown . The rectangula r

channel is formed between the plates BB and the pieces
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Tab . II .

List of experimental Ducts .

No .
r

cm .

L

cm .

w T •105

at 20° C .

v L • 10 '

at 20° C .

1 1

1 2
1 3
1 4
15

0 .034 5
0 .058 3
0 .0923
0 .1147
0 .1647

28 .0 2
27 .9 3
28 .0 0
28 .0 2
28 .00

11 3
12 1
11 4
12 3
117

11 5
12 1
12 7
-
-

No .
a

cm .

b

cm .

a
b

vL • 10 '

at 20° C .

K 21 0.030 0 .186 0 .161 13 7
K 22 0 .014 0 .0625 0 .224 9 9
K 23 0 .0145 0 .254 0 .057 11 2
K 24 0 .090 0 .060 1 .50 --
K 25 0 .090 0 .035 2 .57 13 0
K 26 0.091 0.1075 0 .846 16 7
K 27 0 .091 0 .081 1 .12 170
K 28 0.091 0 .0915 0 .995 16 4
K 29 0 .154 0 .0415 3 .71 14 5
K 30 0 .155 0 .060 2 .58 15 9
K 31 0 .155 0 .1345 1 .15 25 0
K 32 0 .056 0 .0935 0 .60 130
K 33 0 .057 0 .058 0 .99 13 0
K 34 1
K 35 J Cu

0 .155

	

0 .03 0
0 .155

	

0.0525
5 .1 6
2 .95

17 8
7 5

K 36 0 .157

	

0.0338 4 .65 9 5
K 37 0 .157

	

0.042 3 .75 13 5
K 38 0 .157

	

0.055 2 .88 158

AA . With the ducts K 34 and K 35, AA were made o f

copper, the surfaces forming the top and the floor of th e

channel being in these cases amalgamated . These duct s

were made to agree exactly with the duct for which th e

theory was developed . With the other ducts AA were mad e

of wood or "fiber" . In the ducts K 21 to 28 BB were made
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of glass, in the others of celluloid . C is the

cement between A and B ; generally "asphalt

lac" was employed . After the cementing

together of the pieces A and B, lac would

as a rule have entered the duct and had t o

be carefully removed by means of smal l

pieces of cotton, wetted with benzol, which

were pushed or drawn through the duct .

The dimension 2 b was measured by mean s

of a microscope, while 2 a was calculate d

from the total thickness of the duct and from the thick-

nesses of the B-sheets .

11 . The Results and their Discussion .

Review of the Results .

For each tube or channel the variation with the magne -

tic field intensity of the pressure drop between the two

sockets was determined for a number of values of th e

volume velocity V or of the REYNOLDS ' number R. The

latter is, in the case of a cylindrical pipe, defined b y

v•r

	

V

where v is the average velocity in cm ./sec . over the sectio n

of the pipe, r the radius of the circular section in cm . and

v = r the dynamical viscosity, i . e . the ratio of the visco -
Q

say and the density in c . g. s . units . In the case of a rect -

angular section, 2 a . 2 b, r means the hydraulic radius de -

fined as
2F 2ab

'

	

0

	

a + b

Pig . 8 . Cross-sec-

tion of experi-

mental Channel .
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where F is the area and 0 the circumference of the cross -

section .

The results of the experiments with each pipe or chan-

nel were represented in the shape of a series of curve s

having as abscissae the intensity H of the magnetic field ,

as ordinates the pressure drop h between the socket s

measured in cm . Hg . Complete, representative sets of ex-

periments are given in figs . 9-18 . In each figure the

dimensions of the pipe or channel are stated together wit h

the length 1 (L in Tab. II) in which the pressure dro p

was measured .

It is well known that the turbulent flow in a pipe i s

changed into a laminar flow if the velocity or the REYNOLDS '

number is reduced below a certain value . This value may

be taken to be R = 1160 (c . g . s .) . A laminar flow may, on

the other hand, be maintained even if the REYNOLDS ' num-

ber is raised considerably above the critical value, provid-

ed the inlet end of the pipe is smooth and all disturban -

ces of the flow are otherwise avoided . In the experiment s

here considered the edges of the pipe or channel were

deliberately kept sharp in order to secure in every case a

well defined transition from a laminar to a turbulent flow .

In the diagrams reproduced in figs . 9-18 this transi-

tion is clearly seen in all cases where a turbulent flow i s

observed. A curve is drawn through all the points o f

transition. Above and to the left of this curve, which i s

of a parabolic character, we have the domain of turbulen t

flow, below and to the right that of laminar flow . Within

the first region the pressure drop and so the apparen t

viscosity decreases with increasing intensity of the magne -

tic field . This is due to the damping effect of the field on

the vortices in the flow . Within the domain of laminar

Vidensk . Selsk . Math .-fys. Medd . XV, 7 .
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flow the pressure drop increases rapidly with the field

intensity . In cases where the flow is still laminar with n o

magnetic field on, the pressure drop may readily be raise d

to values twice the value corresponding to H = 0 by put-

ting on a field of quite moderate intensity. As a matter of

'fact the curves indicate that the pressure drop may b e

raised to any value by increasing the field since obviousl y

the drop increases approximately as the field intensity

when this is not too small . That is to say : the effect o f

the field on the laminar flow is to increase the apparent

viscosity approximately proportionally to the field intensity .

With rather small values of the field the apparent viscosit y

varies within the domain of laminar flow in a paraboli c

manner . The facts here stated may now be compared with

the predictions of the theory referred to in the introductio n

to the paper . - It should, however, be borne in min d

that the theory is based on certain simplifying assump-

tions and can only be expected to hold good in case s

where these assumptions are fulfilled .

Comparison with the Theory.

The main predictions of the theory may be thus stated .

In a narrow channel of rectangular section 2 a • 2 b cm . 2

(b » a) placed in a homogeneous magnetic field of in -

tensity H Gauss perpendicular to the side of the largest

extension (2 b) there will, when the channel is passed b y
cm . '

a laminar flow V
secof

an electrically conductive liquid ,sec .

be a pressure drop p dyne/'cm. determined by the formula :

(1)

where

3 VL , dyne
p _ 4 bai e cm.
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(2)

where, again ,

(3)

zo2 tanhz o
=

	

= '-f(z0)
3 zo - tanh zo

	

3

zo2
= 10-3

H2 a2
.

r~ x

Here L is the length of that part of the channel i n

which the pressure drop is measured, z the specific resis-

tivity of the liquid while is the apparent- or virtua l

viscosity Of the liquid in the magnetic field under th e

prevailing conditions. If zo is small compared to 1 th e

apparent viscosity ,17 may be expressed by

22 + li e =

	

15
10'

~ia 2

showing that and so the pressure drop is that corre-

sponding to zero field increased by an amount, the electro-

magnetic viscosity resp . the electro-magnetic pressure drop ,

which increases proportionally to the square of the fiel d

intensity. If zo is large compared to 1 (strong fields) we

derive the expression :

(2 b)

	

rj ,
= 3 V10-9 Ha l

from which it is seen that the a

D

pparent viscosity rjé and

so the pressure drop now increases linearly with H. The

description of the conditions with a laminar flow in a

homogeneous magnetic field thus given by the theory

obviously fits in qualitatively with the observations . Quan-

titatively the agreement can only be expected to be toler -

ably close with flat channels, i . e . with small values of a .

Fig. 11 corresponds to such a channel, and just in thi s

case a comparatively very close agreement was found, as

will be seen from the direct comparison between the ob -

(2 a)
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served and the theoretical curve made with the curve V =

0.4 cm 3 ./sec. It should be noted that the channel considered

was not closed above and below by walls of highly con-

ductive material as assumed in the theory . This, however ,

is obviously of small importance if only the channel i s

very high compared to its width, seeing that in this cas e

the electric current lines remain practically rectilinear over

most of the height of the section, while the conductiv e

walls are replaced by the layers of mercury close to th e

top and the bottom of the channel .

Now the experiments not only cover cases in which

the assumptions of the theory are fairly well fulfilled but

also such in which the duct differs very much from a fla t

channel placed with its largest side perpendicular to the

magnetic field . They even comprise investigations on the

flow in cylindrical pipes. Obviously in such cases th e

theory as given by the equations (1)	 (3) cannot be ex -

pected to hold good directly. It must be modified in som e

way or other and it is with this modification or adjust -

ment we are concerned in the following . We may divid e

our problem into two . The pressure drop in cm . Hg, the

quality directly observed, may according to (1) and (2) be

written
(4)

	

h _
3 VL f (z o) cm . Hg.

4 bai ~g 3

The coefficient to f(;''') is simply the expression for the

pressure drop h ° in a narrow channel when not placed i n

a magnetic field . If the channel is not narrow or if the duc t

is a cylindrical pipe the coefficient to f(3°) in (4) should

obviously be replaced by an appropriate expression corre-

sponding to the duct in question. The function f(3 °~ ex-
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presses the change of the pressure drop to which th e

magnetic field gives rise (in the case of a laminar flow) .

In accordance herewith it is 1 for H = 0 . It will be noted

that the general character of the h-H-curves is in all case s

much the same. This suggests that the function f	 (3°) , devel -

oped for the special case of a flat channel, may be made

to cover other cases by applying a suitable reduction facto r

to the variable z ° or H.

The points of view here set forth are tested in th e

following paragraphs .

The Flow at Zero Field-Intensity.

The expression to replace the coefficient to
f(

3
°) in

equation (4) of the preceding paragraph is with a cylindrica l

pipe of radius r
8 LVv 8Lv2

(1)

	

h 0

	

TT.- j.4 9.

	

l.3 g -R ,

v being the dynamical viscosity and R being the REYNOLDS '

number defined by

(2) R

	

a . i .

With channels of rectangular section - sides 2a and 2 b

- a method for the calculation of the pressure drop a t

zero field-intensity is arrived at in the following way .

The Poiseuille Law for the laminar flow in a cylindri-

cal pipe, i . e . (1), may be written in the form

(3)
2hrg v• r
L v 2

where both 'l,U and R are dimensionless qualities . In case

of a pipe of rectangular section 2a-2b one may use th e

same form for the law, writing

v
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(4)

	

p R = K

and replacing r by the "hydraulic radius" defined as th e
ratio of 2 times area of section and circumference . K, then,
is a function of the ratio

b
and for this function LEA and

TADROS have given a curve reproduced in fig . 19 1 . In case

24

2 2

20
K

1 8

1 6

14

120
0.1 0.2 0.3 0.4 0 .5

	

0.6
a

0.7 0.8 0.9 1. 0

Fig . 19 . Variation of K = i)R with
b

for rectangular Pipes .

(LEA and TADROS) .

of a very flat channel i . e . with b = oo the hydraulic
radius is 2 a and the formula (4) together with the valu e
K = 24 taken from fig . 19 leads to the formul a

(5)

	

It = 3 v	 g V (Flat channel, a « b) ,

which may be directly derived . With a channel of quadra-
tic section, a = b, the hydraulic radius is just equal to a .
In this case the curve fig . 19 gives K = 14.22 and (4) may
be written

' F . C . LEA and A. G. TADROS . Phil. Mag . (7), 11, 1235, 1931 .
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(6) h = 1 .78 . å	 v V (Quadratic channel, a = b) ,

an expression which is a consequence of a more general for-

mula derived by BoossINESQ and confirmed experimentally b y

SCHILLER 1 . In the general case, the formula for the pressur e

drop becomes :

(7) h

Now plotting the pressure drops, observed for H = 0

within the domain of laminar flow, figs . 9-18, against R

or V, straight lines are found from the slope of which th e

dynamical viscosity v may be calculated on the basis o f

expressions (1) and (7) . In Tab. II the values thus deter-

mined are stated under v L . With cylindrical pipes values

are found of much the same size, viz . 117 . 10-, the value

which is generally accepted for mercury at 20°C . With

the rectangular ducts the results are rather fluctuating .

This is thought to be due to difficulties in the productio n

of the ducts and in the cleaning of them .

Values for v may also be calculated from the observ-

ations of the pressure drop in cylindrical pipes, at H 0 ,

within the domain of turbulent flow, seeing that an em-

pirical formula has been derived by BLASivs for thi s

domain . The formula i s

(8) h = 0.06652 »~3 r-'"' v-i"' g- '

By means of (8) the values of v entered in Tab . II under

vT were found . As will be seen, they agree well with the

corresponding values from the laminar domain .

Fig. 20 illustrates the variation of the pressure drop h

I Comp . Handbuch der Experimentalphysik 1V . 4 Teil 1932, p . 146 .

K Lv (a -f- b)2

	

3

	

•v.
32 g

	

ba'
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with the REYNOLDS' number R . The curves are derived fro m

the diagram in fig. 9 corresponding to a cylindrical pipe .

It will be seen that h is, within the laminar domain, ex -

d = 0.689 m m

1 =280mm ~~~~/

nn w-
nn

12~.~~~~I

_ ~~ Al
Ar ~6~~ii ~ ,

e,

	

,,`e n

nn / Zr 2~

n •

MVF/ v
~

500

	

1000

	

1500

	

2000
R

Fig. 20 . Variation of Pressure Drop with REYNOLDS ' Number R .

actly proportional to R as predicted by POISEUILLE's ex-

pression (1) for H = O .

It is, however, not only so for H = 0 but for all value s

of H. In the diagram, fig. 20, the variation of h with R

is also given for the turbulent flow . The transition, with

H = 0, takes place at R = 1120, i . e . not too far from the

generally accepted value R = 1160 .

cm
25

2
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Adjustment of the Function f (zo ) to fit the Observations .

The theory of the pressure drop with a flat channe l

can now be given in the general form

(1)

	

h = ho(V) .f(zo)
3

where ho (V) is the pressure drop corresponding to zero

field-intensity. The latter is proportional to the volum e

flow (or to the REYNOLDS ' number) .

We shall make an attempt at adjusting this theory fo r

other ducts than a flat rectangular channel. In so doing

we shall first try whether the pressure drop cannot b e

represented by the formul a

h = ho(V) Î(ci zo )
3

where c1 is a number depending, with rectangular chan-

nels, on the value of b only.

The way in which this attempt was performed may b e

thus explained . We start with a set of observed curves o f

the type of figs . 9-18, fig . 21 a. From this set we may

derive another set, fig . 21 b, of the type of fig . 20. By mean s

of the latter diagram we may construct the h-H-curve

corresponding to ho (V) = 3 . The way it is done will be

understood from the figure . The curve found in this way

is h = f (c i zo) with H as abscissa instead of zo . Now

zo2 = 10-9 H afrom which with = 0.0159 c . g . s . and x =

10' Ohm • cm . (20° C.) we derive zo = 0 .0250 aH. By means

of the latter formula We transform the h-H-curve into the

h-zo-curve and thus have the curve which we try to ex -

press bÿ h = f(c 1 zo) . It is shown in fig . 21 c. In the same

(2)
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figure the theoretical curve h = f (z 0 ) is drawn . For a

number of values of h the ratio of the corresponding ab-

scissae of h

	

f (z0 ) and h = f(cl zo) is calculated. This

ratio cl is found to be tolerably constant independent o f

to

	 i
p

	

1

	

2

	

3

	

4

	

5

a
Fig. 22 . Variation of the Reduction Factor c 1 with b .

h or z 0 . So by multiplying the abscissae of the "observed "

h-z0-curve by a constant factor the curve is reduced t o

that corresponding to a flat channel (of which e1 = 1) .

Or we may, in general, express the pressure drop in a

0. 5

0. 4

0 .3

0 2

0.1

	Circular Pipe
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rectangular channel placed in a homogeneous magnetic

field by the formula (2) .

	

-

The value of c l of course depends on the ratio b of

the two sides of the channel cross-section (a parallel t o

the magnetic force) . In fig. 22 the variation of cl with

b is shown. Up to b = 3 the variation may, in the semi -

logarithmic system of coordinates, be represented by a straigh t

line corresponding to the dependency

«
C = 10-0 .3å

b
i

So, finally, the formula for the pressure drop in a rect-

angular channel may, with a laminar flow, be writte n

f `zo• 10 0 .
'6

is
l

	

a(4)

	

It = ho•

	

3

	

cm . Hg, Z~ < 3 ,

where the f-function is defined by

tanh x
x

1-
tanh x

With cylindrical pipes also the pressure drop with a

laminar flow may be expressed by formula (2) . The value

which must here be ascribed to c1 was found to be 0 .5 1

independently of the radius r of the pipe, at any rate

between r = 0.35 mm . and 0 .92 mm . Thus with cylindrica l

pipes the pressure drop with a laminar flow is determined b y

(6)

	

h = ho • f (0
.31z0)

cm. Hg ,

where it should be noted that z 0 is calculated from th e

field-intensity H by the expressio n

(3)

(5)
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(7) zo = 0 .0250 rH

r being the radius of the cross-section of the pipe .

In order to illustrate the agreement between the h-H-

curves calculated by means of expressions (4) and (6) and

the corresponding observed curves a calculated curve, th e

dot and dash curve, is plotted in each of the diagram s

figs . 9--18' . It will be seen that in most cases the agree -

ment is fairly good . It should be noted that the calculated

curve is drawn with the same h o as the observed curve .

No account has thus been taken of a possible error in th e

value of ho .

In connection with the discussion here given attentio n

may be called to a particular feature of the experimenta l

curves of figs . 9-18. If, as indicated in the diagrams, tan -

gents are drawn to the several curves of each set corre-

sponding to the sane abscissa (in the diagrams H = 8000

Gauss) it is found that all the tangents intersect in th e

same point of the axis of abscissae or nearly so . This

feature is a direct consequence of the theory, whether i n

the original or in the modified form. For the theory ma y

be written

(8) h = CV f (ci zo), zo = 0.0250 aH .

From this expression it follows that

(9)
dh

= d
h

dH

	

dzo
dzo

= CV • c 1 • 0 .0250 a f ' (cl zo) = C 1 V.
dH

The equation of the tangent to one of the H-h-curves at

the point (H1 , h l) is
h - hl
-Hl

=C1V.
H

In fig . 11 the test is made with V = 0 .45 cm . ' /sec .

Videask . Selsk . Math .-Pys . Medd . XV, 7.

	

3

(10)
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Hence the abscissa of the point of intersection with the

axis of abscissae is determined by

h1	 1	 f_(cl	
zo)

(11) H = Hl-

	

=G 1 V

	

Hi
0.0250 act f ' (c i zo)

i . e . H ' is independent of V. From the formula f (zo) =
zos tanh zo

the following expression for f '(zo) may readily
zo-tanh zo
be derived :

zo~ sech 2 zo + zoz tanh zo -- 2 zo tanh' z o
(12)

/,,
(z

°
) (zo - tanhzo) '

By means of (11), (12) and the expression for f (zo) the

experimental values found for H' could be checked . A

test of this description would, however, seem superfluou s

after the discussion given in the , first part of the presen t

paragraph .

The Boundary Curve between the Domains of laminar
and turbulent Flow.

In the experiments considered measures were taken to

secure transition from a laminar to a turbulent flow at a

definite value of the REYNOLDS' number R. The critica l

value may be denoted by Re . It is determined by

U e • 1'h
_

v

Here rh is the hydraulic radius which with a channel o f

rectangular section 2a 2 b is equal to
2 ab

	

Again v , ,a+b '

the critical velocity, is equal to the volume-velocity V
divided by 4ab . Introducing in (1) this formula may be

written
K . p,

(2 )

	

= 2(a+b)v 2(a+b) ~

(1)
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Now, if the flow takes place in a homogeneous magneti c

field the transition is displaced towards larger values of

the volume flow i . e . T increases . The explanation is most

likely to be found in the apparent increase of the visco-

sity i . On this assumption the variation of the critica l

volume-velocity V with H should b e

(3) V=
9

( a	 --v) Rc ' 71e = 3 aQ v R c f(zo) •

The corresponding value of the pressure drop h e in the

channel is determined by

3 TEL

	

1

	

a+b L
2T2(z0)

'(4)
=

4 bai' e
= 6

R	
ba i G

v2

Instead of the critical REYNOLDS' number we may her e

introduce the critical volume-velocity V corresponding to

H = 0 . The latter is determined by R
c

=
(a
	 + °l))v

giving

I ~ V L.å

	

2
h

c
=

12
~° 9 ' ba 3 ~f (zo)

ze tanh zo
where it will be remembered that f (z°) =	 and

z° - tank z°
z° = Ha x/10 9 z 1 . Equation (5) should represent th e

boundary curve between the domains of the laminar an d

the turbulent flow in the case of a flat channel a « b . In

figs . 9-18 the actual boundary curves are drawn in al l

cases where the observations include the turbulent domain .

The boundary curve is of a parabolic character . It is not ,

of course, to be expected that it can be represented, wit h

all ducts, by the formula (5) . In the first instance the pro-

duct with which fJ (z °) is multiplied will generally no t

coincide exactly with the ordinate to the boundary curv e

3*
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for H = 0 - owing to shortcomings in the measuremen t

of the dimensions of the ducts . We will therefore direct

our attention to the shape of the boundary curve only

and we shall make the natural assumption that f(zo) in

(5) must be replaced by f (e 1 zo) as found in the previou s

paragraph . That is to say we will assume that, with rect-

angular ducts, the boundary curve may be represented b y

l2 = Ï I ,

	

0 25B . [f lzo • 10 '

	

cm . Hg

and with cylindrical pipes b y

(7)

	

h = ho .B
9

[f(0.51 zo)12
cm . Hg.

These assumptions are put to the test in figs . 9-18 (ex-

cept fig. 11) where the full drawn curves are the observed

curves while the dot-and-dash curves are calculated fro m

(6) or (7) . With the cylindrical pipes the agreement between

the two curves is perfect so that only the observed curv e

is drawn. With the rectangular ducts it is still fairly goo d

as long as a < b . With a > b larger discrepancies occur ,

which was of course to be expected.

Appendix 1 .

Check on the Reynolds' Law of Similarity.

The material of observations of the present research

may be utilised for a control of the REYNOLDS' Law o f

Similarity in the case of a flow of mercury through cylin-

drical or rectangular pipes . For from each of the diagrams

of which samples are given in figs . 9-18 the variation -

at zero field-intensity - of the pressure drop with the

(6)
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flow, characterised either by the volume-velocity V or by

the REYNOLDS' number R, may be derived . We shall her e

confine ourselves to the observations from cylindrical pipes .

Ten years ago the flow of mercury in such pipes wa s

compared to that of water and it was found that th e

REYNOLDS ' Law of Similarity holds good for mercury also' .

The law was tested in the shape of a curve, having a s

abscissa the REYNOLDS' number defined by RI = vd , d
v

being the internal diameter of the pipe . The ordinate wa s

the quantity'/Ji =

L

~4U	 where h is the pressure drop i n

gd
the length L of the pipe. Now it has become customar y

or
to define R by R = -, where r is the radius of the pipe ,

v

hand to plot the quantity 'p =

		

2 = 4 t against R. This

L g

d
we shall do in the following . The earlier test with mercury

was performed mainly with wider pipes because it wa s

then found difficult to obtain reproduceable results wit h

narrower pipes. So in all essentials, the test was confined

to the part of the ipi-R, curve corresponding to value s

of RI above 10000 . With the new experiments the flow in

rather narrow pipes could be studied without any difficult y

owing to the introduction of an effective method of clean -

ing the pipes . The results of these experiments, therefore ,

supplement the older ones in a very happy way, renderin g

possible the checking of the law down to very low value s

of R .

The following pipes were used in the test :

K 11, d = 0.0689 cm .

K 12, d = 0 .1165 cm .

See note p . 3 of Introduction .
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Fig . 23 . Check on the REYNOLDS ' Law of Similarity .
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K 13, d = 0.1845 cm .

K 15, d = 0.3293 cm.

In all cases the pressure drop was measured over a

length of 28 cm. of the pipe . The value of i» was calcul -

ated from the formula :

,2T3g %1/l 1 )

	

Y

	

L v2'
R 2

a form obtained from the formula given above by intro -

ducing R instead of v. In Tab . III all the values for ifi are

Tab. III .

K 11 K 12 K 13 K 1 5
R•10-3 1og10 R

1.!•10 3 i/•10 3 1,1)•103
'q'' 103.

0 .30 2.477 51 . 8
0 .45 2.653 35 . 4
0 .50 2.699 32 .4 0
0 .60 2.778 26 . 3
0 .75 2.875 21 .2

	

22 .4 8
0 .90 2.954 17 .4 8
1 .00 3.000 16 .6 8
1 .05 3.021 15 .0 8
1 .15 3.061 18 .20

	

-
1 .25 3.097 21 .40

	

19 .4 0
1 .35
1 .50

3.13 0
3.176

21 .75

	

-
21 .30

	

21 .76 21 .36 22 .2 4
2.00 3.301 ` 20 .20 20 .12 21 .6 8
2 .50 3.398 -

	

18 .92 19 .00 20 .0 4
3.00 3.477 17 .92 18 .08 18 .7 6
3 .50 3.544 17 .20 17 .40 17 .8 8
4 .00 3 .602 16 .72 16 .7 6
4 .50 3 .653 16 .24 16 .3 2
5 .00 3 699 15 .68 15 .9 2
5 .50 3.740 15 .20 15 .40
6 .00 3 .778 14 .84 15 .1 6
6 .50 3.813 14 .56 14 .88

stated and in the diagram, fig . 23, they are plotted agains t

R. In the same diagram values of lp calculated from th e
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earlier test are entered, and so the V -R curve is extende d

up to values of R of about 70000, covering nearly the same

interval as the well-known investigations by STANTON and

PANNELL' . Points from the curve obtained in this latte r

investigation are shown in the diagram. Quite obviously

the same law holds good for mercury as for the fluid s

examined by STANTON and PANNELL. It may be noted tha t

the curve which may be drawn on the basis of the mer-

cury experiments exhibits the same faint upward bend a s

the STANTON-PANNELL curve. If this curvature is neglected

and a straight line drawn evenly among the points, th e

slope of this line is found to be almost exactly 4, in agree -

ment with the formula given by BLASLUS . Again, it is

found that the straight line representing the observations

within the laminar domain corresponds, as it should, t o

the equation ifi R = 16.

Appendix I1 .

The Influence of the magnetic Fiel d
on the turbulent Flow .

From the diagrams figs . 9-18 it is seen that within

the domain of turbulent flow the pressure drop decreases

when the intensity of the magnetic field increases . This of

course is due to a damping of the turbulence, but what i s

observed is not the sole effect of this damping . Together

with the smoothing out of the vortices which manifest s

itself in a smaller pressure drop there is undoubtedly als o

the other effect of the field known from a laminar flow ,

thus an effect which tends to increase the pressure drop .

The actual pressure drop is the resultant of these two

1 Phil . Trans. Royal Soc . A . 214 .
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effects counteracting each other. In the following the two

effects are termed the damping effect and the viscosity

effect respectively .

We may make an attempt to isolate the effect of th e

field on the turbulence i . e . the damping effect . The reasoning

on which this attempt is based may be stated as follows .

In fig. 24 h T b 2 c is the observed curve for the variatio n

of the pressure drop in a given length of the tube with a

Fig 24 . Diagram illustrating attempt at separating the viscosity effect an d

the damping effect within the domain of turbulent flow .

given flow or a given REYNOLDS ' number . Now it would

seem very likely that the damping effect i . e . the reduction

of the pressure drop due to the damping of the vortice s

is proportional to the square of the field-intensity . That

is to say, it may be anticipated that the curve for the

damping effect is a simple parabola. The question then

arises : How must the curve for the viscosity effect be in

order to make the curve for the damping effect a parabola .

Let us assume h,,a3 b 2 to be the curve for the viscosity

effect within the domain of turbulence . Then a point o f

the curve for the damping effect would be obtained by

lowering a corresponding point a 2 of the observed curve
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by the amount å 3 a 5 . In this way the point a 4 is arrived

at and the whole curve for the damping effect would b e

h7, a 4 b 4 . The problem is to choose hVa 3 b 3 in such a way

that h7a 4b 4 becomes a parabola . In drawing h'r a 3 b 3 we

know one thing for certain, namely that the curve is t o

pass the point b3 . But in addition we may reasonably mak e

the following assumptions : 1) that the curve in the poin t

ba has its tangent in common with the known curve branc h

b 3 c; 2) that the curve has a smooth more or less paraboli c

shape approximately as indicated ; 3) that close to H = 0
the tangent is horizontal ; and 4) that the curve is highe r

than the curve corresponding to a laminar flow, i . e . that

its ordinate at H = 0 is higher than the value of h

determined by

hti,=
l'3 9

	 . R .

The last assumption requires some explanation . With

laminar flow and no field the distribution of velocity acros s

the pipe is parabolic. With turbulent flow, i . e. with the

flow which actually obtains in the pipe, the distribution

is uniform across most of the diameter, dropping rathe r

abruptly to zero within a zone close to the wall . The latter

type of velocity distribution is just that produced by a

strong. magnetic field acting on a laminar flow and mani-

festing itself in an increased pressure drop .

This is the reason why we conclude that the curv e

representing the viscosity effect must at H = 0 be draw n

through a point hj, higher than that corresponding to h V
calculated from (1) .

The experiments with cylindrical pipes were now deal t

with in the way indicated . The most reliable of thes e

experiments with regard to the pressure drop within th e

(1) 8Lv 2
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turbulent domain were those performed with the wides t

pipes : K 13, 14, and 15, while the pressure drop with the

narrower pipes K 11 and K 12 was rather uncertain within

the said domain due to instability of the flow in th e

boundary region between the turbulent and the lamina r

domain. With the pipes K 13, 14, and 15, however, rather

characteristic results were arrived at. If the curve hÿa 3 b 3

was drawn in such a way that the ordinate at H = 0, hj ,

was twice the height Ii corresponding to a laminar flow

(hby = 8v2 R I then the curve for the damping effect becam e7.3 g

a parabola and this parabola was found to be independen t

of the intensity of the flow. In fig. 25 the construction of

curves for the damping effect with the pipe K13 is shown

and in fig. 26 the test of the parabolic character and o f

the independency of the intensity of the flow, i . e . of R ,

is illustrated. From the latter diagrams the values of dH2
entered in the following table were found .

Pipe
d dh . 10 8 cr .

	

10 6
cm . dH 2

K 12 0 .1165 0 .0960 0 .011 2

K 13 0 .1845 0 .0722 0 .0133

K 14 0 .2294 0 .0571 0 .0131

K 15 0 .3298 0 .0422 0 .0139

From the results with K 13, 14, and 15 we tentatively

draw the conclusion that the damping effect may be ex -

pressed by the simple formul a

h = 0.0134 .10-6
d

(Gauss, cm., cm . Hg)

independently of the intensity of the flow (volume-velocity) .

It should be borne in mind that h is the reduction of th e

pressure drop due to the damping effect of the field on th e
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turbulence. It is thus the difference between the ordinate s

of the curve for the damping effect at H = 0 and at the

field-intensity in question . In the table the values foun d

with K 12 are also given. They are, however, less reliable .

One may seek a confirmation of the simple relatio n

for the damping effect by a dimensional consideration . If

it is justifiable to assume that the change in the pressur e

drop pr . cm . due to this effect can depend only on 1) th e

field intensity H, 2) the diameter d of the pipe, and 3) th e

velocity v of the flow then we may write down the equatio n

hag = H' ds v g.
L

Introducing the dimensions for the various qualities we fin d

for the determination of r, s and

	

r

	

r
q : -2+s~q--2,2=1 ,

--r-q = -2 from which s = - 1, r = 2, q = 0 and so

hL g = c l . -- (independently of v, V or R)

or (with a constant L and with a given liquid )

H'h=c2 .

d

	

.
as found above .

It is quite obvious that the attempt at separating th e

viscosity effect and the damping effect just explained is t o

be considered only as a provisional step in the investigatio n

of this domain . So too much weight should not be attache d

to the results which may on a closer examination prove

more or less false . It is contemplated to make the influence

of the magnetic field on a turbulent flow the subject of a

subsequent investigation.

Provisional Laboratory of Technical Physics . Royal Technical College.

Copenhagen . May 1937 .

Færdig fra 'trykkeriet den 30 . December 193î .






