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T
he concept of osmotic pressure has played a very

important role in the development of the classica l

theory of dilute solutions . However, the VAN'T HOFF law

that the osmotic pressure, as regards the effect of volum e

and temperature changes, follows the same formula as a

perfect gas has foreshadowed a similarity between solution s

and gases which actually is of a rather doubtful nature .

The distinction between gases and solutions becomes parti-

cularly marked in those phenomena which involve variatio n

of temperature . Disregarding the presence of a solvent, a s

one is tempted to do in view of the supposed parallelis m

in properties of gases and dilute solutions, in many suc h

cases leads to erroneous results .

The character and magnitude of such errors may b e

illustrated by considering the calculation of the temperature

coefficient of the solubility of a slightly soluble substance

on the basis of the second law of thermodynamics . This

calculation leads to the well known equation :

Q

	

R7'2
dln s
dT

where Q is the ordinary calorimetric heat of solution an d

s the solubility . The actual sense of this equation, how -

ever, is doubtful . The ambiguity arises from the fact that

1*

(1)
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s, according to the derivation, may designate either weight

or volume molality . While at constant temperature an d

pressure the difference between the two concentratio n

scales disappears at infinite dilution, the temperature gra-

dients of the solubilities retain a finite difference regard -

less of the absolute value of the solubility .

The first derivation of Equation (1) was given by LE

CHATELIER 1 . He utilized the vapour pressure curves of the

pure solvent and the saturated solution :

~o = RT2
dlriP o

dT

=RT2d
dT

p

respectively, from which :

din (P-1)\

R o -~ = xQ = R'l2	 11P'
/

where x is the solubility expressed as mol fraction. Intro-

ducing here the law of WÜLLNER-RAOULT :

InPo = Po- P = x
P

	

P o
one gets :

= RT2
d x

d T

Q
=

R7, 2 dln x

d'T

Since the solubility changes have been derived her e

for constant pressure the correct form of this equatio n

would be :

LE CHATELIER, Compt. rend . 100 50 (1885) .

and :

or :
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QP = RT2 r71nx
\ (2

)

aT ,p

Another derivation has been given by VAN'T HOFE S who

based his conclusions upon the similarity between solution s

and gases . Considering the process of dissolution as bein g

quite analogous to the process of evaporation, the formul a

for the evaporation of a liquid :

~ = RT2
dlrz p

dT

where 2., is the ordinary reversible heat of evaporation an d

p the vapour pressure, is directly applicable to the case o f

dissolution of a sparingly soluble substance, when for 2, i s

put the reversible heat of dissolution q, and for p the

osmotic pressure P. The formula is meant to apply under

ordinary conditions i . e . at constant pressure and should

be written therefore

= RT2
18lI1P

~aT p

Introducing here P = RTc, where c is volume concentra-

tion, Equation (3) easily changes into :

Qp =
RT21ab1c

	

(4)

\ aT ~p;

On much the same basis Iw . SCHRÖDFR 2 has used a

reversible cycle to deduce a solubility equation . This

author, however, identifies the heat absorption in th e

1 VAN 'T HOFF, Arch . Néerl . 20 239 (1886), Vorlesungen über theore-

tische und physikalische Chemie, 1 . 28 (1898) .

2 Iw . SCHRÖDER, Z. phys. Chem. 11 449 (1893) .
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reversible dissolution process with the heat of dissolutio n

of the solute in its saturated solution, and thus arrives a t

the equation :

QI' = RT 2 (am'
a T ,,

which is decidedly erroneous . Only on introduction of a

second error by putting :

din P din x_
dT

	

dT

does the formula (2) of LE CHATELIER follow .

In another paper by DEVENTER AND VAN DE STADT 1 , in

which the analogy between the vapour and solubility equi-

librium has been particularly emphasized, a general equat-

ion has been set up for the case of concentrated solutions ,

by means of which they adduce a formula for a dilut e

solution identical with the formula (4) of VAN'T HOFF .

Comparison of Equation (2) of LE CHATELIER and

Equation (4) of VAN'T HOFF, however, shows a distinct

disagreement between the two equations, since x and c

vary differently with varying temperature . The relation

between the two concentration terms at great dilution is :

x = V ,c

	

(5 )

where V22 is the molal volume of the pure solvent . The

difference calculated by means of (2) and (4) is therefore :

/IQ = RT2 (aUIV2 1

\\ a T ))u

DEVENTER AND VAN DE STADT. Z . pu yS . CheIn . 9 43 (1892) .
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which is determined merely by the coefficient of expansio n

of the solvent and does not vanish with vanishing con -

centration of the saturated solution .

The most direct way of determining the solubility

formula is on the basis of the thermodynamic functions .

For the change of thermodynamic potential F1 of one mole

of the solid one can write :

dF1 = (6F1)d+(8F1)

	

1 d T
p

	

p

and for one mole of the dissolved substance :

dF1 = (a,Fl) dp-}-(dT-{-(oF\ dx .
p Tx

	

aT/p,x

	

ax/T,p

For the state of saturation Fl = Fi and d F1 = d F1

Hence at constant pressure :

(aFl

	

aF1 + aF1

	

/ax _
oT)p , xaT)p

	

ax)T,p \aT)p^
or since :

(aF1) _ F1 - H1
Tp , x

	

T

where H is the heat function :

H1 -H1 = RT2
aln x
aT p

and

0

	

(6)
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Hl-H1 is the heat absorbed when one mole of the solid

dissolves in the solvent at constant pressure, and i s

identical with the quantity Qy in Equation (2).

In a quite analogous way using the HELMHOLTZ free

energy instead of the thermodynamic potential one obtains :

EI -E1 = RT2

(°Ina
)a'r U

where E means energy and EI -El equals the quantity Q,

in Equation (10) . It is shown below that (6) and (7) ar e

identical .

The strict method employing thermodynamical func-

tions thus leads to the same formula as derived by L E

CIIATELIER, and consequently the derivation of the VAN 'T

HOFF formula by means of the osmotic pressure must be

subject to some correction . Nevertheless this formula i s

the one generally adopted in text books of physical

chemistry and the customary proof presented is based o n

the same doubtful analogy between gases and solutions .

Various authors, mostly Americans, who have treated the

problem of equilibrium from the standpoint of the thermo-

dynamic functions give the correct formula and the cor-

rect derivation' . So far as the author is aware, however ,

the distinction between the two equations has never bee n

subject to any discussion, and the reasons . for their diver-

sity therefore still seem obscure .

In order to point out the kind of error involved in th e

application of osmotic pressure for deriving the solubility

1 E . W . WASHBURN . Principles of Physical Chemistry, p . 210 (1921) .

LEWIS AND RANDALL . Thermodynamics, p . 228 (1923). The derivation o f

the solubility formula (6) given above is essentially that of LEwis AN D

RANDALL .

(7)
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curve it is necessary to re-examine the fundamental applica-

tion of the second law. For that purpose we shall conside r

the following reversible cycle .

1. At constant external pressure p and constant tem-

perature T one mol ol the slightly soluble substance Kl i s

allowed to pass into solution into n 2 mols of the solvent

K2 , the reversibility of the process being secured by th e

application of a semipermeable piston . The heat absorbe d

in this isothermal process is q . If the molecular volum e

of K1 in the solution is V1 and P the osmotic pressure th e

work done is PV1 .

2. The system is heated from T to T+ dT at constant

external pressure p and constant volume of the solute V1 .

Due to rise in temperature and change in solubility th e

osmotic pressure increases to P+dP. The volume :

dV = n 2 ()dT

passes from solution through the semipermeable piston .

3. The piston is lowered through the volume V1 on

application of the work V1 (P+ dP) . One mol of the solid

solute falls out .

4. The temperature of the system is lowered to T .

Application of the second law to this reversible cycl e

gives :

q =

	

(
aP

)al l,

and introducing V1 = 1 and P = RTc Equation (4) im -
c

mediately follows .

In this derivation q has been taken as the ordinary

reversible heat solution at constant external pressure . This,
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however, is not permissible . When the solute goes int o
solution the corresponding amount of solvent of the initia l
pressure p of the surroundings is brought under the os-
motic pressure P, the total pressure of the solution formed
being p+P. While the work, necessary to compress th e
solution vanishes as the solubility converges towards zer o
.and therefore needs no consideration, the heat of com-
pression, just as the volume change, keeps a finite value
even at infinite dilution . The heat absorption due to the
compression of the volume V1 we shall call q 2 . This heat
is included in q .

To calculate its value we apply again the second la w
-vhich gives :

where :

.and :

Hence :

	

( l (a

Pdq2 -
T
\a T l „dp .

Introducing :

	

( 8P )
C ap/l T a v ~aU )p=

- 1

and :
U = l22 V2

and integrating we get :

T(,,)pzip
a

Uqa=-

ôaV2

dp = ()dT.

(8)
ur

q2 = - Tn2 aT)pP.
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Inserting Vi = n2 V, and PVi = RT this equation trans -
forms into :

From this equation we learn that for a molal volume
Vi of a dilute solution the heat of compression cau-
sed by the exposure of the solution to its ow n
osmotic pressure is constant, regardless of the con -
centration of the solution, depending merely upon th e
temperature expansion coefficient of the solvent .

The heat absorption q entering in Equation (3) there -
fore does not equal the ordinary reversible heat of solution ,
but is the sum of this heat and the heat absorption du e
to the compression of the solution . Retaining the symbol
.Qp for the ordinary heat of solution at constant pressure ,
Equation (4) should therefore be written as follows :

Qi,-RT2
(amV2)

P_
RT2 (881TITc)

p

Introducing here Equation (5), we finally obtain :

QI, = RT2
(aln x

a T )p

which obviously is in full conformity with the correct LE

CHATELIER Equation (2) .
The reversible cycle, fundamental to the solubilit y

equation, however, may be carried out in simpler ways
than in the above VAN ' T HOFF procedure, in which th e
system after formation of the solution on heating separate s
part of the solvent in a pure state . The method may b e
the one of constant pressure or constant volume of th e

q2 = -RT2
aln V2

a T y

(9)
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total system. For the simplification of these calculations

it should be noted that, without sacrificing any accuracy

in consideration of the reversible cycle, for small solubi-

lities one is permitted to disregard the work done by o r

against the constant pressure of the surroundings, as wel l

as the volume change on dissolution of the solute, the

work of compression of the solution when exposed to th e

osmotic pressure, and the effect of this pressure upon th e

solubility .

When all operations of the reversible cycle are carrie d

out in such a way that the initial and final pressure i n

all operations is constant = p the reversible heat absorp-

tion is qp. The work done by this cycle, however, in this

case does not equal V1 dP but is given by :

dA = (P+ dP) (V1 -I- dV1) - PV1
where :

(8apdT+RcdT
i~

`dP

	

T p

	

\
	 dT = RT åT~

and
/ ~ ~

dV1 = n 2, f TipdT .	 2

Hence :

qp = TPn 2 ( RT 2 (aablTc)p+ RT

or :

Qp = RT2
/aln x\

\ aT ! P

which is identical with (2) .

On the other hand performing all operations at constant

volume the reversible heat absorption is qv and the work

done by the cycle simply :

dA = V1 dP .
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Hence :

q„ = TV1 ( ,T'd

Q„ - RT
2

aln c
( aT ~

At constant volume, however, dine = d ln x and therefore :

Qv = RT2
dlnx\

	

(10)

a T

This is identical with Equation (7) . To show its iden-

tity with (2) we must find the relation between Q„ and

Qp and between :

and :

and
(a 1nx

aT p

(alnxl
a T JJv

The difference between Qp and Q„ equals the heat ab-

sorption which occurs when a solution of Kl in n 2 K2 ,

formed at constant volume from its components initially

of the pressure p, expands reversibly to reach the pressure p .

This heat of expansion in accordance with Equatio n

(8) is :
(av )q2 = - T

	

pdP

where zip is the increase in pressure accompanying the

increase in volume dv. This expansion is actually th e

volume increase of the dissolution process at constan t

pressure p .

Introduction of :

dV
= ( -. - ) 'P

gives :
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aU	 	 ll

T
~2=-T

ôT)p

(ap
1)l

° V

/

clz

	

p= 7' a T /1V .

Hence :

Qp = Qv +T
(aT)U~1

V .

	

(11 )

In order to determine the difference between
(61nx

T)
we use the thermodynamic equations :

(aInx/a In xl _ (aIn x} (a p l
T-- )p --= l aT J U

	

Op JT aTJ„
and

(alnx) _ -4 V

ap T

	

R T
We then obtain :

RT2 rnT Jp- RT? rlT
)v+T ()z/V.

	

(12)

When finally in Equation (10) we insert the value o f

Q„ from (11) and the value of RT2 (a~~T U from (12) the

identy of (10) and (2) becomes obvious .

The correctness of (10) also appears from its identit y

with Equation (7), since the difference E l -EI at constan t

volume equals the heat of solution Qv.

All the various methods by which the solubility coeffi-

cient is computable from the second law of thermodyna-

mics then unite in showing that the original formula of

LE CHATELIER is correct, whereas the formula of VAN ' T

HOFF is characterized by an inaccuracy due to lack o f

observance of the distinction between a liquid and a ga,_-

seous system. The difference between the two formulae i s

expressed by the member :

or :

, a T p

'a In x
and-
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RT 2 ( _°In v2_ 1
\ 8T JJj,

which merely depends upon the thermal coefficient of ex-

pansion of the solvent .

We realise from these results that the osmotic pressure, .

when used with circumspection, is applicable as a basis .

for thermodynamic calculations also in such cases where

the simple analogy between gases and solutions is no -

longer tenable. The method, however, is more cumbrous

and more open to errors than that of the thermodynami c

functions .

In solvents such as water, where at ordinary tempera -

ture the coefficient of expansion is small, the correction i s

insignificant. For many other solvents with a high coeffi-

cient of expansion the error on the other hand may as-

sume an appreciable value . For benzene, for instance, th e

value of the above member at ordinary temperature amounts -

to about 200 calories . In the neighbourhood of the critica l

point, where the solvent expands very steeply with tem-

perature Equation (4) is no longer even approximately true .

The correction holds similarly to solutions of solids an d

gases. Particularly for the last mentioned systems the cor

rection is of importance, since in many cases the solubi-

lities of gases in liquids vary but slightly with temperature, ,

and the determination of states in which the dissolution

takes place with no change in energy for such systems is -

of a special interest .

Forelagt paa Mødet den 5 . Maj 1933.
Færdig fra Trykkeriet den 23. Juni 1933 .






