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PREFACE

n previous papers and tireatises the properties of the
I socalled jet-wave have been discussed and a series of
its applications have been described’. In all the cases
referred to the jet-wave was produced from an electri-
cally ‘conductive liquid jet, preferably a mercury jet, and
the conductivity was not merely an essential condition
for the production of the wave but also' for the vari-
ous applications. (The jet-wave interruptor,‘ihe jet-wave
commutator, the jet-wave oscillograph). At a certain stage
it occurred to the author that a new application of
possibly far-reaching consequences might be made of 4
periodic jet-wave by using it for the production df a
vibratory motion synchronous with the wave.
And so the investigation dealt with in the present péber
was taken up after some preliminary observations on the

' 1. Nye Eunsrettere og periodiske Afbrydere. Kebenhavn 1918.

2. Development of the Jet-Wave Rectifier, “Engineering”. September
9. and 16. 1927. - : - :

3..Den konstruktive Udvikling af Straalebelgeensretteren. Elektro-
teknikeren Nr. 23. 1927.

4. Giintherschulze. Die konstruktive Durchbildung des Quecksilber-
Wellenstrahl-Gleichrichters. Elektrotechnische Zeitsehrift, 1928 pg. 1224,

5. The Jet-Wave and its Applications, “Engineering” Sept. 14. 1928.

6. Theory of the Jet-Wave. Vidensk. Selsk. math.-fys. Medd. IX, 2.
1919.
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4 Nr. 4. JurL. HARTMANKN :

said motion had been made. It proved impossible — as
usual — to solve the differential-equations involved in even
the simplest case of motion (the see-saw motion) in lerms
of available functions. With a view to orientation the wave
was therefore provisionally replaced by a simpler but similar
system, i. e. by that of the twin jet-chain. The latter is by
no means a purely abstract conceptlion, on the contrary it
may easily be produced and seems per se adaptable to a
good many practical applications. The investigations on
the motion produced by jet-chains are found in the first
chapter of the present paper. — It was, however, found
that a very characteristic observation pertaining to the
original system with an ordinary jet-wave did not find its
explanation by replacing the wave by the twin jel-chain.
The observation referred to consisted in the fact of a
simple see-saw, without external controlling or directive
moment, exhibiting a fictive directive moment keeping
the see-saw vlibra'ting, under the influence of the wave,
about a position perpendicular to the axis of the latter.
This observation was for some time found very puzz-
ling. It could be shown that with a regular periodic
wave of constant amplitude no such fictive directive mo-
ment would occur. Eventually it turned out that the ob-
served quality of the see-saw motion could be carried back
to that property of the ordinary jet-wave consisting in its
amplitude increasing steadily with the distance from the
starting-point of the wave. Especially could it be shown that
the fictive directive moment was particularly pronounced
with the electromagnetically produced wave. The second
chapter of the present paper deals with the relations here
referred to. It is believed that the contents of the two
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chapters will prove a suitable means for the discussion of
various practical applications of the motion considered.

I owe thanks to the Trustces of the Carlsberg Fund
for having enabled me to take the time required for the
work. -

Physical Laboratory 11, The Royal Technical College,

Copenhagen, October 1928,

JuL. HARTMANN.
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L
The Jet-Chain~Vibrator.
1. The damping Effect of a Liquid-Jet.

In fig. 1a D designates a disk which is hit by a liquid
Jet J with a mass per cm m and a velocity ». The liquid
of the jet will be reflecled in the shape of a nearly cir-
cular plane film fig. 2. Thus the
particles of the jet will, during
the collision with D, lose their
total forward velocity » and
consequently they will act on D

with. a force

RIS
N 'u—r"i K

1) F, = mv®,
Fig. 1a—bh. Oscillatory Systems
hit by Jets. . . .
that is to say, if D is at rest
: dx

relatively to the nozzle of J. If D has itself a volocity dt

in the direction of J, the force will be

(2) F=m (U_gc%c)z

. dr .
thus smaller or greater than F, according as q s po-

sitive or negative i. e. going in the direction of or against
the motion of J.



(3)

If

dx

dt
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is small compared to v, we may transform (2} into

dx
= 2_ P—
I mv 2 mu di

from which it is seen that the influence of J on the motion

of D is that of a driving force mo* combined with a

damping force 2 mv

Fig. 2. Mercury Jet-Film.

i[f If two jets JiJ; fig. 1b of the same

velocity and mass per cm hit the system D;D; from op-

posite sides the two driving forces compensate each other,

while the damping forces are added. This is not only tiue

. d. . . .
in case of d_:;: being small compared to.v, but it holds good

in any case. For the resultant force originating from the

two jets is obviously

2 2 N
1) F=m<u—@> —m<v—l—(;—f> =_—4ml)£c.

dt dt

The twin-jet system in fig. 1b thus constitutes a means

for the introduction of a damping of a definite and easily
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calculable size. If especially the twin-jet damper is applied
to an oscillatory system like that in fig. 1b the motion of
this latter system will be determined by

(h) modt2+(p+4 mv)——]—Ax—X

m, being the mass, p the damping factor and k the direc-
tive force of the system, while X stands for the driving
force. Provided '

(6) (p+4 mv)® < 4 km,

lhe motion will be that of damped vibrations with a period
approumalely equal to

) T — 27:1/”;0

and with an amplitude

_pb+4nw
8 A= Ay-e 2m = A e

In order to convey an idea of the effectiveness of the
damping device we may consider a system of which
my=1000 g, k= 10°. The period will be ]/ﬁ or ab T2— gec.
We will assume the system to be hit by two mercury-jets

with a velocity 700 cm/sec. and a diameter 0.5 cm. The

mass m per cm will then he j{ . i - 13.6 = 2.67 g/cm and

mv = 1.87-10° g/sec. If p is negligible the condition (6)
is fulfilled (4 mv)® being 56-10° while 4 km, = 4-10°.
2 mv

Furthermore o = — 3.74. Thus during one period

my
the amplitude is reduced to e— 3™ 02= 047 and in 6

periods to e~ 4% = (.01 of its original value.
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2. The Nature of the Jet-Damper.

An investigation carried out with mercury-jets hitting a
disk with a diameter somewhat greater than that of the
jet showed that the radial velocity of the reflected mercury
particles was very nearly equal to the velocity of the jet
if the disk was at rest relatively to the nozzle of the jet.
From this we conclude that if the disk

., dx . S
has a velocity d—a; in the sanie direction

as the jet, the radial velocity of the

4
|
|
reflected particles will be equal to the :

. . d. . . '
relative velocity v— 7;: This conclusion

is supported through the following con- %

sideration. |
If the disk D, fig. 3, is moving up 43, Oscillatory Sys-

against the jet with the velocity b, it tem hit by a Jet.

will be acted on by a force m(v + v))>.

During one sec. D will meet a quantity of lquid equal to

m(v-+vy) and it will supply a work

(1) W= m(v+uv)? v,

to the said mass of liquid. This work will have its equi-
valent in the excess of kinetic energy with which the liquid
leaves D. The said excess is obviously

(2 E:%m(u—i—vl)-(u2+v§)~%m(u+vl)vz

u indicating the radial 'velocity of the liquid leaving the
disk. To understand the second term v? in the brackets it
must be noted that the reflected liquid receives the velocity
of D during the collision. Equalizing E and m(v+0v,)* v,
we get

(3) u=v+up,.
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In just the same way it is found that u = v — v, if D is
moving in the same direction as the jet with the velocity
vy. Only in this case it is the jet which supplies work to
the disk, consequently losing kinetic energy.

Having thus derived the relation (3) we may examine
the shape and motion of the film in the case of the disk

performing a simple harmonic motion
4) x = x, sin wt.

We consider the film as consisting of particles which
move on independently of each other. The motion of such
a particle will, when it has left D, be determined by the

two sets of equations

- d’x dx

) . W:O’ = x = ct+c,.
d%r dr

(6) FZO, E:bl, I:b1t+b2

If the particle in question leaves D at the moment ¢
we have
€ = Tyw COS miy, by = v+x,w cos wiy,

Cy = Xy SIn wiy — x5m cos miy- 1y,

by = — (v+ 2ym cos wiy) ty.
Thus
(7 x = agsin wly+xpw cos wig ([—1,).
(8) r= (w+txym cos miy)-(t—1,).

The equation of the curve of intersection between the film
and a plane through the axis of the jet — and of D — at the mo-
ment { would be obtained if we could eliminate ¢, between (7)
and (8). The practical way to find the curve of profile is to fix
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2
a value for {, say 2T(w = _n), and then to calculate x and

T
r corresponding to a series of values of f;. The result of

such a determination has been reproduced in fig. 4. The
abscissae are herc the distances from the axis of the re-
£
i

| -')%=/L'[S'['Ib 27’/7% +?7Tcas?ﬁ%-(ﬁ7__‘,ﬁ’y

&

. .
- {:/}4-9'/7/3603977;1@]7%

= /,7=A£=0.I . -
e trplitudde of vibroding clisk. - » /,/"’i)
= /
A4
A 7
— ///" /// /
vl 4
i /i BRI A
vl palln 7
OFF 73 p i3 7 7 ki b
vaa / i l// i AV f‘
P /% f ’

A
, V4
A
; LA
L/

fo

Fig. 4. Profile Curve of Film.

flecting disk measured in terms of the wave-length 2 = vT,
while the ordinates are the ,,deflection” of the film also
measured in terms of 4. The curve may thus be taken to

represent the system of equations

x o b ‘ ‘ ty, 11
= Jlsin Qw2 4 95 s L R )
(7a) - 7 E {sm 2y 27 cos 27.5 T T ]
. r . 1 | ,.r ’ tO f [0
(8a). o {1 -+ 2mk cos 275—T} T y



12 Nr. 4. JurL. HARTMANN:

k designating 70 and being assumed in the case considered

to have the value 0.1. In the figure the two lines 9%0 mark

the extreme positions of the disk. In these positions the
disk will reflect the liquid along lines perpendicular to the
axis of the disk and with a velocity equal to ». We shall
therefore expect to find particles of the film in the said
lines with regular intervals of 4. In fig. 4 a,a,... byb,. ..
represent such particles.

The character of the jet-damper is now fairly clear.
The damping originates from a radiation of kinetic energy
and the carrier of this energy is the reflected jet. It is easy
to derive an expression for the energy radiated per period
or per second. The kinetic energy supplied to the reflected
liquid in the time df was

)  dE = —;—m (v—{—%) [(w —’f’x>2+<dx>2— u2] dt

dt dt
de\?* dx
= <U+ I) ‘ —CE - dt.
. . dx
Remembering that x = x, sin wf and = Fow cos wt=u,

cos wf and integrating over a period T we find

(10) E, = muxle®T = moulT

or the energy radiated per sec.
(11) E = mou}.

The same expression is obtained by considering the work
supplied by the oscillatory system. In the time di this

2
work is just represented by the last equation (9), m (U% %)

being the force with which the mercury jet is acted on and

dx

a dt the way through which the force is acting. Finally

we may derive (10) or (11) by remembering that the jet gives
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. . dx .
rise to a damping force mv - T The work done against

this force in the time df is obviously

N 2
(12) dE = mv - =+ — dt = mp (%) - dt.

Introducing % = u, cos w! and integrating over a period

we get the expression (10).

3. Motion of a Body hit by the Jet.

We may now consider certain simple types of motion
produced by the jet. We shall first think of a circular disk
hit by a jet passing along the axis of the disk, fig. 3. The
molion of the disk is determined by

d*x dx\?
€Y My g = I (U — —d?>

if we.assume that no frictional forces are acting. We solve

this equation by putting %Ut— = z, thus gelting

2

€ dz —
(2) my = m (v — 2)°.

The solution is

(3) p—— = mit+ ¢
from which
(1) dr mg

dat " YT mt+g

from which again by integrating we get

(5) x = vl — % log nat (mf +¢;) + ¢,
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dx
If x == and — - = u, at the moment { = 0 we find

dt ‘

6 = 0 and ¢, = xg+ -2 log nat —°— thus
- p—u, m v— 1,
) dx m
© @ ST

' mt + —2
and b1y

- m m

2 = @y + ot ——2log nat { 14+ — (v —uy) t).

(7)' x = ax,+0p — log na < —]—mo (v —uy) )

As an example we shall consider a projectile of mass
m, = 20 g flying with a velocity u, = 100000 cm/sec against
a mercury jet with a velocity 700 cm/sec and a diameler
0.5 cm. The mass per cm of this jet was found to be
2.67 g/em thus mv = 1.87-10°. From (6) we find the time

. N .od
it takes to stop the projectile. Putting 73; = (0 we get

myg 1,
mv u;—v

- (8) =

and in the case considered { = 10.8-10—3 sec or ab. —1%

sec. Introducing (8) in (7) we furthermore get the distance
through which the projectile will fly before losing ils

velocity:
® R e A (B
m a,—vp m v
which in our case gives x = 7.5 (1.007 — 4.969) = — 29.8 cm.

The projectile will thus be stopped within 30 c¢m and in

1
4 t —— C.
abou 100 sec

It is still possible to solve the problem if the motion of the
body hit by the jet is subject to a frictional force proportional
to its velocity. In this case the differential equation is

&x dx dx\2
10) mo—dﬂ—l—p-m_ m (U—?ﬁ).

\
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Again we put C% = z thus reducing (10) to
a1 mo 4 pz = m (v — 20
dit
which may be written.
(12) . dzp _ %.
z2—2<v+21n>z+v2
the integral of which is
e \
(13) h—_il-—: log nat l/(”’l“ﬁ) _*,lf—i— (U_I—ﬂ) _c

(14) % log nat f) “Z_ Bito
from which we get
cAEL+ Ac dx

15) ZZBA(D‘I“B)WZE

the solution of which is

D+ B
AE

(16) x = Bi— log mat (1 - gAFt+4a) ¢,

If x=0 and d?lac? = ( at the moment {= 0 we find

1 . B D+ B [ B
o=y log nat D and ¢ = “iE log -nat‘ (\1 +5>
and 3
1+ = eAE\t
17 x = Bt—D;I—FB log nat b

B
If pis small compared to 2 mv we get from (17)

pv m

1_(1+2 _.&),62 m Mg

mv
(18) = pt— 20 log nat —
m o/ P

muv
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For p = 0 the lasl factor above assumes the shape log nat o
Its actual value is found to be 1+ mv[ (18) being thus reduced to

19 x = Ut—% log nat (1 + Ht)

in agreement with (7) for ;=0 and xy = 0.

Finally we may think of the body as forming part of a com-
plete oscillatory system with a dircctive force kx. The equation
of the motion then becomes

dx
2 - _
(20) mo dt" —]—pdt—i—]u: m(v dt)

This equation will probably prove rather intricate unless it is

dx ..
assumed that &% is small compared to v. If this isthe case, we may

dt
write m (v——%)‘: muv ZmUL(ii and reduce (20) to
dix
(21) Mo~y - (p—l—2mv) —l—]x.’xl—an“‘ 0

thus to the well-known linear differential equation with constant
coefficients. The problem of the motion is then easily solved and
it may be solved not only in the case of no external
. forces acting on the oscillatory system but also for a
J| 1o good many cases of such forces.

4. The Jet-Chain-Vibrator, translatory Type.

_’% We may now imagine a disk D, fig. 5, hit
» ;’j centrally and perpendicularly by two series of
T jet-pieces J; and J,. We may term each of the

ix series a jet-chain. The one of them J,J," ...

i - is ‘moving downwards with the velocity v, the

_ZJI other J,J," upwards with the same velocity. In

i order to avoid confusion the two series have in

Fig. 5. The the figure been drawn sideways to the axis of
Translatory
Jet-Chain-
Vibrator. in the said axis.

D. Actually we shall think of them as travelling
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Each of the jet-pieces will, in colliding with D, give
rise to an impulse. Every second impulse is directed up-
wards, every second downwards. Thus D will assume a
vibratory motion. If the displacement x, the velocity % and
the forces are considered positive in the downward direction
the motion due to a jet-piece such as J, is determined by

d?x dx dx\? 2 dr
¢)) Inod—tg ‘HDWJrkm = m<v—-ﬁ> = mp (1—; ?Z?)

and that due to a piece such as J, by

d*x dx de\® g 2 dx
() moﬁ—kpﬁ—i—]m = ——m(v—i—ﬁ> =—my (1 ~&—; E)

dx
i being considered small compared to o.

Assuming k = 0 and furthermore assuming that x = x,,
dx

dt
motion due to a Jj-piece

w+2 ¢
xr—x, 1 /% N 4 1 y T2
@) A2 at2 (T/Z) a+2<U° a-+2><e 1)'

d 1 1 vrz g
- _er2
= | _ b4 Ti2
@ dt ”[a+2T<U° a+2)e }

and for a J, piéce
o+2 ¢
r—xy 1 L)_ v < 1 ><— > ].—/2_)
G =5 l+2<T/2 wrz Dot Tg)le 1.

d 1 o +2 i
ax 41 7 TTZ]
® = v{ a+2+( U, + +2> .

= u, at the moment of collision ¢ = 0 we find for the

Here U, = ul_;, and «, y and 1 are defined by p = « - my,
ng =y mz, while 4 is the chain-length, compare fig. 5,

Vidensk. Selsk. Math.-fys. Medd. IX, 4 2
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and T = & By means of (8)—(6) we may calculate the
o

motion of D. In so doing we must consider separately
each of the parts or phases of which the motion is built
up and we must carefully account for the position and
velocity with which each phase is concluded. In fig, 6a—d
a review of the [first four phases has been given. In fig. 6a

the start-moment is presented. D is in the zero-position

}
] 7
; -~ i
it 1 JT 7
AL ?
o D X £ X
31 L] b“v At 5
- - é] J;]r/a by
D
% )
y)
Y
Ta b ¢ d

Fig. 6. Review of Phases of the Motion.

and has just been reached by J;. It moves downwards and
after the lapse of the time ¢, collides with J, which,
coming from below, meets D. The latter is at that mo-
ment at a distance x; away from the starting-position. The

relation hetween x; and f; is given by the formula.

) , A—l—x = vt.

Fig. 6b gives the condition at the moment ;. J; has not
completely passed D or rather been reflected from it. Thus-

during the phase beginning at ¢, D is acted on both by

a downward and upward force. Its motion is determined by

d*x  dr dx\? dx\? dx
(8) My +Piﬁ = m<v~—cﬁ>~m <v—f— E) = —-4mvm

the solution of which is
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i _e+d t
S e e
a+4 1
(10) B v TR
if ==, _aa:? = 1, at the beginning ¢{= 0 of the phase.

The second phase ends at the moment ¢, and the posi-

tion x,. The relation between ¢, and x, is given by the

formulae
(11) I, =21F2x, —2
(12) vly =1, + (x5 —x)) = 21+ 2, +ax5— A

both referring to fig. 6b. The situation after this is that
indicated in fig. 6¢. J; has completely passed D which now
in the following third phase is exclusively acted on by J,.
The motion is thus determined by the equations (5) and
(6). It lasts till the moment #; corresponding to the posi-
tion x; indicated in fig. 6d. The relation between #, and

x, is given by

(13) b =nvtg+ (xg—x) =214+ 22,— 14,
(14) oly = l—lh+ay—x5 = 4 —1—xy— 2y

referring to fig. 6c¢. In fig. 6d it is assumed that D has not
yet reached J;" at the moment 4 at which J, has passed
D. If this assumption proves to hold good, a phase sets in,
the fourth phase, during which D is not acted on by any
piece of jet. Its motion will therefore be given by

_ d>x dx
(15) Mo~ —I—pm =0
the solution of which may be written
« i
i A P



20 Nr. 4. JuL. HARTMANN :

provided x = x, and %3% = n, at the beginning of the

phase = 0. In the way indicated the motion may be
built up from phase to phase. By way of illustration the

o NP’IR

™~

a~

a3 /s
4
p /
\ )4

2 | //// A e ]
f yAVat adll
| EERy/ZP=auA
y S \l/

0 .2 E & . g 2 “

""ﬂ[l‘f

Fig. 7. Motion of the Translatory Vibrator.

first phase has been reproduced in fig. 7 corresponding to
a series of values of «. It has been assumed that the
length of the jet-pieces is % and that y = 1. The straight
line which determines the end of the first phase is, ac-

cording to fig. 6a, given by

2 T T

7) 1
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Furthermore the second phase corresponding to e« = 5 is
indicated. It is seen that the velocity obtained by D during
the first phase is lost very soon due to the comparatively
heavy damping. The velocity is however not completely
reduced to naught at the moment 4 which is determined
by the point of intersection between the curve and a
straight line
x t
18) 2 T

—0.120.

After this the action of J, will turn the velocity and nearly,
but only nearly, carry D back to the starting-position.
From what has been set forth it may already be concluded
that the motion will consist of a series of vibrations dis-
placed laterally with regard to the starting-position. The
lateral displacement is of course due to the first impulse
giving D a downward deviation which cannot be com-
pensated by the following impulses.

5. The Jet-Chain See-Saw.

We shall now consider a jet hitting one end of a ba-
lance or see-saw with the moment of inertia J, fig. 8. The
jet has the velocity v and the mass m per cm. It meets
the see-saw at a moment at which the latter has an

a9 and is deflected
dt i,
¢ from the normal position perpendi-

angular velocity

cular to the jet. The velocity of @
the hitti int i o
e 11a ngdgpom 1s consequently \5&
v = -+ ——. During the time-inter- S~
cosf di e

&

val di the bar is hit by the mass
v

. . Fig. 8. Jet hitting on End
velocity perpendicular to the bar, of a See-Saw.

mdt (v—v cos 8) and the relative
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thus (v cos 6—1v"), is destroyed. This means thal the bhar
is acted on by a perpendicular force

1) F=m(v-—1v cos 8) (v cos 6§—0")

and by a turning moment

ma ] de
2 J— — —— — R —_— —_
( >_ M= Fcose c0529<v adt> <U cos* f-—a dt)

We shall assume 6 always to be small enough to justify
us in putting cos®# = 1. We then simply have

d6\?
(3) M= ma(v——aa?>
. db
or if a gy is small compared to v
a di
(4) M = mav® (1 "—2; E)

Obviously the problem of the motion of the bar is now
just the same as that of the motion of the disk above. Thus if

. . df
the see-saw is acted on by a damping moment —pmand

by a directive moment — h#, the differential equation of its
motion is

dz
(5) —I—(p¢2ma D) - +(h6—mau)=0.
Replacing here I by m,, 0 by =, « by 1 and k by h we
have come back to equation (21) on pg. 16.

We may now study the motion of the see-saw when
the latter is alternately hit by the jet-pieces J;J,J; of the
two jet-chains in fig. 9. Just as in the motion considered
above we have to build up the solution of the problem
from phase to phase. If we assume h to be zero, we might
simply use the equations from the problem above intro-
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ducing 8 instead of x, I instead of m; and so on. In the
following examples we shall, however, also put p = 0 and
then go back to the exact formulae based on (3). These
formulae have in part been developed above on p. 13—14.
A review of them corresponding to
the first five phases is given in
tab. I, the indications of which refer
to fig. 10. The figures of the latter
represent the same phases,
Bymeans of Tab. I in connection

with fig. 10 we may study the mo-

tion in the case of m = 1.70 g/cm
(diameter of jet 4 mm), v = 600

cm/fsec, [ = 5 cm, > = 6 cm,
a=3 cm, I= 460 g/cm® With
A
these constants ma to_ 0.2, and
I 2 . . Fig. 9. See-Saw hit by two
consequently the approximative for- Jet-Chains.
mulae in tab. I may be applied.
. C T /2
The result is reproduced in fig. 11 A where 5= {) . As

will be seen, the time elapsing from J, meets the bar to
Jy collides with it at the moment £, is only slightly greater
than a period T namely 1.06 T. But at the said moment
the bar still possesses most of the posilive deflection ob-
tained. The period ending with only a very small negative
angular velocity, it is obvious that the succeeding part of
the curve must nearly be identical with the part already
drawn. Furthermore in fig. 11 B a curve is drawn, which

shows what the motion would be if we simply neglected

. do .
_the velocily of the see-saw ar thus the damping force

due to the jet itself. The motion is then represen-
ted by
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(6)
thus by
dé  mav®
) =My,
1 2
(8) 6 = gﬂ%-zz+zot+eo

. df
8, and z, being the values of # and dal at the moment

t = 0. Obviously the motion has the same general character
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as the actual motion but the deflections are essentially

larger, showing the great damping effect of the jet.
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Fig. 11. Graphical Representation of the Motion for = 0.2.

Finally in fig. 11 ¢ the motion of the see-saw when

acted on by a purely periodical moment

. . 2
® M = mv*a, sin wt, (w = ;E>
is represented. It has been assumed that q, = ga, a being
the arm in fig. 9. The motion is thus given by

d*o

(10) I?”._Z

= mwla, sin of
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Tabel I.

[
Fhase Complete Expressions
vt I / ma?- vt
(1) 0 = ———slognat (14—4—)
s 4ma2-vf>
8 =8+ z—s—\1—e—~ 1
@ 1tz 4ma-p (1 e
vt I ma® v
(3) 6 — Bg—g"}—%log nat (1—%“*15(5—!—22)[)
(4 8 = 03 + =5l .
vt I ma® [ v
B o= Oy ———— z( — - )
(5) ot log nat {1477 (a Z4> t
]
Approximate Expressions
212 A 2 21
@ | o=1m¢ */2.£.<f_-) (1_2,"161 2 (_f))
2 I a T/2, 3 I Ti2
i 1 4ma®di2 | t))
2 o= B L.
@) s at(t— T )
1madfo A2 2ma3(u \ >
3 8= g mt———— | —F | 1l—F— |-z
3 o zat 21<;a+9)l( s 1 \a+2)(
(4) 6 — 33—{— ,’53i
1mad v \2 2 mad (v
5 0 = ;- z4t Tl I b e
(5) 4t 4i+2 7 (a 4)t (1 s 1 (a Z4)i>
de
dt
ma? {2 (L)
o v T \T2
) dt o« ma®if2 i)
I (T/Z
d pmaafz tmahf2 [ ¢
a — 4ma2df2
9 ar . I T2 — _smatijs b
@ ar -~ e / “ (1 I (;T/Q))
de v v 1
® E:—:;Jf(z“‘z)'“_*maa R
l—i——(—-{—zz)f
da I ia
(4 TR
~ de v v 1
2 ar ~ a (a z;) 1 mad(v \J




The Jet-Chain- and the Jet-Wave-Vibrator. 27

Tabel 1.
Phase igo !
1 tgy = (g~l7t1)% L = 2atg61—{—l—-—‘§—
2) 1g 0y = (Uf2+%—l>'%—igﬁl lg:g—2atg93
6] tg 8 = (%—013)'%—&1‘32
4) tgey = (ut4~—(%— l)) 1 —fgey

the integral of which is

o 1ma21/2~l/2< t 1. ( t
an =57 a \1/2 7" ”T/2>>‘

As will be seen, the C-curve nearly coincides with the
B-curve. From this we conclude that we might in the
actual problem get a similarly good approximation by
identifying the action of the two jet-chains with the action

of a moment (9) combined with a damping
(12) ‘ p = 2mad’v.

The equation of the motion would then be

%9 . do
(13) IW+2ma v =

mvta, sin @l = M, sin wf.

The solution of this equation is

( M [ To ~ Lo
§ = [i] _ | sin « falad 1— Iw T
] —w!/”—(lw)z—(—pz slg ¢+ » cos ¢ e

. ¢
"‘—Sln<2ﬂ?+ go)}

(1)

where Igg = £

Tw®
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By means of this formula the curve D was computed.
It shows a practically good agreement with A. Thus our
conclusion is justified for the case considered. We shall
preliminarily — as a hypothesis — assume that what has
been found true for the first transient part of the motion
will also hold good for the final stationary motion and that
the motion of the see-saw vibrator may on the whole in most
cases and also when an external damping p and a directive
moment h is acting, be solved as a continuous probhlem
by introducing the fictive moment (9) and the fictive
damping (12). The problem has in this way been reduced
to the ordinary problem of vibrations under the influence
of a harmonic external force or moment. It should be
noticed that the g, introduced in (9) is chosen in such

a way that the actunal arm a is the mean value of

. 2
Qg sin wt- a=a0-7—r.
In the example above the equation (14) becomes

0798 - - ¢
6 = 0.0630]7.92—7.79¢ T+ sin<27rT—l—7° 15') .

In order to put our hypothesis to further test a new and

rather extreme case was considered, namely

o =

m=170g, o= 600cm/sec, [=06cm,
a=3em, I=1836g/cm?

= 6 cm,

ma®/2
I
the former example. This change implies that the approxi-

thus a much lighter system, being 5 against 0.2 in
mate formulae in tab. I can no longer be used but recourse
must be had to the original formulae. It furthermore in-
volves that the moments limiting the various phases cannot
be found as the abscissae of the points of intersection
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between the 6-curve and certain straight lines. It is neces-
sary to replace the #-curve by the corresponding curve for
tg# in the way indicated in fig. 12 by the dotted curve-
branches. It appears from the latter figure, in which the
motion is represented by the A-curve that the damping due
to the jets very soon after the lapse of the first phase
checks the velocity and reduces it to naught. During the

éa
£

roat )
L7 vy
{4 - r"\\
/ E
- " ) 5
Al
4 N y
BN
. /
¥ 4
¥
// K/’
7 N
v 2 [ 8 a % 7 7] [i ¥ E
. . . . . ma2i/2 Z
Fig. 12. Graphical Representation of the Motion for -5 = 5.

rest of the second phase there is balance between the
forces with which the two jet-pieces act on the see-saw.
The third phase is very short but the jet-piece J, is never-
theless, duringl this phase, able to communicate a con-
siderable velocity to the see-saw. With this velocity the
latter moves on in the following fourth phase during which
no jet-pieces act on the see-saw elc,

Applying now our hypothesis indicated above to the
case of fig. 12, we find that the equation picturing the
motion should be

t
-—20.1 —
= 0.477-1.048 —0.094:¢ r-—sin<27r—7t,—!— 720 36’)}.

This relation is represented graphically in fig. 12 B. Obviously
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the discrepancy between the two curves is nmow much
more prominent than in the former case. The general
character of the two curves A and B is, however, in some
measure the same. We

shall therefore, not-

withstanding the di-
vergences in such ex-
treme cases as that

just considered, as-

sume that a fairly good

approximation to the

actual motion may

Fig. 13a—b. Nature of the Substitution.

generally be obtained
by our method of substitution. We shall see in a following
chapter that if the see-saw is hit by a jet-wave of sine-
shape like that indicated in fig. 13a and if this wave is
produced by a jet of velocity » and mass per em m then
the moment acting on
the see-saw will just be | A\ N\

V \] 1 nop?

(15) M= mvia,sin wl

provided the bar is

el

A
e s bl ]
kept in its normal posi- p D

tion perpendicular to

the axis of the wave. 1

Underthesamesupposi-
Fig. 14 a—b. Substitution in Case of Trans-

tion the moment origi- )
latory Vibrators.

nating from the jet-

-chains J,J; ... JyJ, ... will be that indicated in the upper-
most figure in fig. 13b. Our substitution is thus to the ef-
fect that we replace the jet-chain with the sine-wave when
considering the molive moment, while we keep the jet-chain

when considering the damping moment.
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Returning now for a moment to the jet-chain vibrator
of the translatory type, there can be but little doubt that
a substitution similar to that above may be applied in a
good many cases. Thus with the twin-jet vibrator in fig. 14a
the disk D is, if kept in its zero position, aeled on by a
motive force like that represented in fig. 14a. We may
probably substitute for this a harmonic force

(186) F= Inv?'-g sin wt

&

. . . dx .
combined with a damping force 2mvm. And in the case

fig. 14b where the motive force may be considered as

- mov
consisting ol a constant force 5

the latter may probably be

and a rectangular alter-

nating force of amplitude 5

replaced by

(17) F:mTU-:)z-sin ot .

6. General Formulae of Motion of an oscillatory System.

Having reduced the problem of motion under the action of
a jet-chain or a twin-jet-chain to the problem of an oscillatory sy-
stem acted on by a simple harmonic force or moment, it seems
appropriate to review the formulae governing the motion in the
latter case.

Accordingly we consider the well known equation
d2

(n I—

—|—p%—}~ ho = Mysin wt.

If (2) p? << 41Ih,
the complete solution is

— 1 /- — 2
p=c¢ 21 {al sin %Bt—}—agcos

M,
TVE TPt por

yilh—p?,
o7

{
3) i
1 sin (wt 4 ¢)

where
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4) | lgg = — 3 7.3

and where ¢ and a» are constants to be determined by the

values of ¢ and de ata given moment say { = 0. We shall, however

di
6
__.a 03# s =/
° V'(‘DF—I)%-/‘JE s
. B
Branck A: l‘g¢=,fz 1a=1 AGor

e
IS gy

s /// 7@\\ X
A RAN
/ 4 ~
2 / \
- ~
7 E: & ) Z4 & 16 £ é’?

Fig. 15. Resonance-Curves.

here confine ourselves to the stationary part of the motion re-
presented by the last term of (8) and characterized by the condi-
tion (2). Introducing the parameters

(5) h=ale?, C(6) pw=ple?, (7) My=y-Io?

we may write the expression for the amplitude ¢,
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8 = '——#__‘*
@ TV e—rr
and

_ B
© tgp = 1=

In fig. 15 the function (8) has been drawn for y =1 and for
four values of g, furthermore for the interval of « from 0—2
which thus includes the case of resonance « = 1. By means of
the set of curves the absolute value of ¢y may be determined for
any case within the ¢« — and g — intervals considered. One only
has to multiply the value of 6; taken from the set by the y-value
corresponding to the case in question. The hranch A very nearly
determines Iygp corresponding to =1 and so the value of fg¢p
for any value of g. Of considerable interest is the question about
the change of amplitude due to a change of frequency. In order
to find the relation we shall have to differentiate the expression

_ My
V (h—Iw%)2+ (pw)?

with regard to o. The result may be written.

(10) 8o

A0y _ 2(e—1)+82 dw

an o @ R e

In fig. 16 %}Q@/%ﬁ’ is represented in its relation to ¢ and 3. For
instance we find from the curves that the ratio has the value
— 2.8 corresponding to « = 0.3, g = 0.1. Thus an increase of 1 per
cent of the frequency gives rise to a drop 2.8 per cent in the ampli-
tude. The larger the damping the more independent of the fre-
quency is the amplitude. — Almost as important is the relation
between Algyp and Aw. It is determined by differentiating

w

2 Y e
(1—4) lgl/' h—Tw2
and is found to be
g — B L1te do
(13) Algp = l—e 1—e o

The dotted curve in fig. 16 represents z/tg;o/[—’(; corresponding
to g=1. If for instance « = 0.3, = 0.1 an increase of 1 per cent
in o will cause a decrease of igp equal to 0.1-2.7-% = 0.0027
while tgg itself is seen from fig. 15 to be 0.144.

Vidensk. Selsk. Math.-fys, Medd.1X, 4. 3
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7. Some special Relations characteristic to the Jet-Chain

See-Saw.

Returning to the .special case of the see-saw we shall
assume the latter, fig. 13a, to be acted on by a directive

daa

moment h6 and by a frictional moment — p, g Its diffe-

rential equation then is
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d%8 y 6 o T,
¢)) IW—}—(po—ﬂ—%na v)gt——I—hH:mv ag sin wt

and its motion, when it has become stationary, will be
expressed by

9 TT
mvea-;
2

l TV (h— T (p +2ma® 0)2
= 6, sin (wt +¢)

(2) = sin (wl -+ ¢)

where
(p+2ma*v)w

g = — h—1Iw®

We shall in particular examine the amplitude and may
by reason of the comparatively large effect of the damping
due to the jet itsell neglect the external damping. Then

mvta-2 -
(3) 9, = —- 2 -7, v
° V(h—Ie®?+4mPat?e® 2 A®

(mva)® ' +(2a w)

From this expression, in which A = h~—Tw?, it is seen that
with a given oscillatory system the amplitude 6, will vary
practically proportional to v when this latter quantity is
raised above a certain limit. Farthermore, that with an

increase of m, 6, approaches a definite limit, namely

_ 14
a

vT
(4) V f}0, m E—

@) -

§
and that finally there may be a certain value of «, which

makes 4, maximum. This value is in the ordinary way

found to be determined by

(5) am = E—;*_ .
[/2 0 mo

We may introduce the natural cyclic frequency o’ of
3*
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the oscillatory system. This quantity is determined by

l/ % We may thus write

® =7 M)

]/2 w mo

We may finally write (3) as

T 1

e AT

If we introduce here the value (6) for a we find the maxi-

(7 t, =

mum of 8,

T 1

(8) boow = 5 —FF———
- 2w 4Tw | [
l/mv3 [(E) o 1}

N2
where the numerical value of the quantity <ﬂ>~1] is to
{0

be used. From (7) we see that if o = w, 1. e. if there be
resonance,

w v 1 2
@ fon=3,"3a" 8 W
We thus get the same value of the amplitude as that to
which the latter approaches when m- or v-increases beyond
all measure, and what is highly interesting, a value quile
independent of all parameters except 2 and a.

In order to illustrate the conditions indicated above,
curves for the variation of the amplitude 6, with v, m
and a were calculated. They are reproduced in fig. 17—19
and as will be seen correspond to two rather different

. . 1
systems, one heavy with a frequency only 3 of that of

the turning moment acting on the system, and another

comparatively light and with a natural frequency equal to
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2
7 of w. In the first case #; is nearly proportional to v%, m

3 2

. 2 .
and to a. In the latter case the damping member (~UE> in
(7) plays a considerable part and we therefore see that the

B
% oy
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[ Brd100, =420, b=bnene, o= 3th, ¢<600%ee, wiw T ]
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Fig. 19. Bg—a-Curves.

H—v-curve for greater values of v approaches a straight

line, while the §,—d- and so the 6,—m-curve approaches

the constant value 0.5 and the 6—a-curve exhibils a very

pronounced maximum,
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II.
The Jet-Wave~Vibrator.
1. The Vibrator with a Je{-Wave of constant Amplitude.

We will consider the motion of a balance or see-saw
B, fig. 20, hit by a jet-wave .J of constant amplitude a,. We
assume the axis of the wave to pass through that of the
balance 0 and to be perpendicular to the latter. We shall first
derive an expression for the moment with which the jet-
wave acts on the see-saw, when the same is kept in its
normal position perpendicular to the axis of the wave.

The particle ds of the wave "contains the same mass
of liquid as the element dx of the jet from which the wave
is made, dx being the projection of ds on the axis of the
wave. The mass referred to is thus m-dx if m denotes the
mass per cm of the original jet. It moves down against
the bar of the see-saw with the velocity v of the original
jet, carrying with it the momentum mvdx. In the course

. dx . .
of the time i all the momentum perpendicular to B 1is

destrdyed. It means that the bar is acted on by a force

_ mv-dr -
~ (dx/v) )

1) F

The corresponding turning moment is

(2) M= mva.
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Now a varies with time according to

.2 .
(3) a = qg sin ?ﬂl‘Z ay 8in mt .,
Thus .
€)) M = mv*q, sin wt.

We will now suppose that the bar is kept in a position
forming the angle # with the normal position. Again the
component of the momentum perpendicular to the deflected
bar is destroyed during the collision, thus mv cos 8- dx.
But the time required for the destruction now greatly
depends on the element, as will be seen from fig. 20a. The

£

element ds will not have “passed” the bar completely until
the moment when a reaches b. It means that the collision
takes the time

_dﬂ’;@y'fg@M(_. @).E’E
(5) dt = p =T )

The force perpendicular to the bar thus becomes

1
7 e 2, .

(6) F = mv*: cos 6 . G.dU.
g dx

Now the equalion of the jet-wave at a given moment ¢
may be written

H x
7 = in 27| ——2
(D y=a, 51n24r<T A)
from which
dy _ _ .27 LA R E LY s
(8) de = % cos 27t<T l>_ 7 ]/ao e,

Introducing this in (6) we get
1

v = 2 .
9) F, = mv® cos 6 5

1+——2—199-]/a3Ay‘2
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Now the turning moment M is F_-a' = F_y/cos 6, thus
/4

1 ~I—T'tgf) VaZ—y2.

Finally we may take the zero-point of the system of co-

Fig. 20a

Fig.20b

Fig. 20c

Fig. 20. See-saw hit by a Jet-Wave of constant Amplitude,

ordinates to coincide with O, fig. 20. Then x = ylg# and
from (7) we get

. t f
(1 y = a, sin 2n<7~y%£>.

If we want to express M as a function of the time ¢, we must

solve (11) with regard to y and afterward introduce the
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result in (10). The practical way to produce a picture of
the relation between M and { is first to calculate, by means
of (11), t corresponding to a number of values of y. The
result may be represented in the shape of a curve showing

L . t
Y 45 a fanction of 7 Furthermore a curve must be pro-
g

yeaysioe 2T - AL’@G)
ael=t.

T,

I \e-d -

/L \ | A0 DNA /
ANV JARRVAND

\\
[
B
]
T~
|
—

5
Y
<
L_n)
<)

s

|

6

=

S

H

[N
2l

5
[l

[
-
I
™~
]
N
]

D

AT
\L I/

A A

4 T/
/
- v

3
,

N

7

" \
Fig. 21. Curves representing y == q¢ sin 2% (7 w% ig8 ) .

/

duced representing M as a function of y, thus the graphical
picture of (10). Now combining the two curves, a picture
of M as a funclion of ¢ is easily obtained.

We shall here confine ourselves to illustrating what has
been said above by means of the curves in fig. 21, re-
presenting the function (11) for three values of # and for
a, = A = 1. The curve corresponding to 8 = 0 is of course
the simple sine-curve. The curves for § = 20° and 6 = 40°
exhibit a number of values of y corresponding to the same
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value of 7. The explanation is very simple. For if the de-
flection of the balance B in fig. 20 is sufficiently great i. e.
greater than 4, then the bar is cat simultaneously in
several places by the wave. It may be noticed that ¢  is
determined by

A
2 q,

(12) g6, =

or if 2 = a,, 6, = 9°3".

The expression (6) may be obtained in a somewhat different
way as indicated in fig. 20b. The element of the jet-wave is here
confined between two planes parallel to the surface of B. The
momentum of the element is, with the indications of the figure,
vpS”z cos 6 (o the density of the liquid). The particle disappears
into B in the course of the time % Thus the force perpendicu-
lar to B is ¢S5 1% cos? 4. Now it appears from the figure that
S = §'/cos (u—6) if S’ is the area of the normal cut through
the wave-element. Furthermore S" = S, cos u, Sp being the cross-
section of the original jet. Thus

P GOS8 K 9oyl
[ ﬁll—gSocos ((u_e)v cos2 4
s . €0SH cos u
(13) J = muv? cos ¢ ——COS (/‘*‘9)
l = mvicos é- 1
- 1+ lgulge
which expression is identical with (6), g« being equal to —ZZ

It may be remarked that our method of calculating the force
and turning moment fails if '

dg _ ..
(14) g = cot o

for in that case the expression (6} gives F, — . The case re-
ferred to is that indicated in fig. 20c, i. e. the bar has become a
langent to the wave-element. Of course the force or moment is
not infinite. In order to obtain its actual value we only have to
employ another method of dividing the wave into elements, thus

for instance that indicated by the double hatching. We shall not,
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however, bother about the problem, it being practically of very
little interest, even though we shall meet with it in some of the

examples presented in the following.

In case of the deflection # being so small that we may

put cos 2m g l;qé? =1, the expression (11) may be replaced by
. t 2rylgh t
(15) y = a, sin 275?—a0--2—-cos 271,’?
from which we find
t
a, sin 271?
y —
2migh t
(16) 1+~ . @ cos 271:?
. t 2mitgb ¢
= a051n2n?<1— lg ao-cos27r—f).

Introducing in (10) after having replaced }aZ—gy® by
2

a, cos
0 T

t we get

t .2
A7) M = mv*q sin 2n?<1—4ni°tge-5111—ﬂt>.

T

If finally 47r%°tg9 is small compared to 1

an M = mv?a, sin %:E -
i. e.in the first approximation the moment is independent
of 6.

We may now write down the differential equation for
the motion of the see-saw in the latter case. In so doing
we shall replace v in (17) by the relative velocity v, which
is determined by

df

_ . df
==y T v--ag sin wts——

(18) v T
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Thus

2
M= mao<v——0¢0 sin wt~§tv> - sin wt

(19) d9

— 2 _ 2 gy 40

= muv~da, sin wf— 2 magy v sin® ol T

And the equation in question becomes

d?6 2 . df 2
(20) Iﬁ—r(p—{—2ma5 v sin® w i) E+ ho = mv*a, sin ot
provided the see-saw has the character of an oscillatory

system with a moment of inertia /, an external damping

P and a directive moment hf. If p =0 we may write
d*8 g d ' .
21) [Etg —I—maav~(1~cos2mt)-7£+h0 = mv*aq, sin wt.

. de . . .
The coefficient of 5 e the damping-factor, thus varies

with time. Its mean value is majv. Probably it will prove
difficult to solve the complete equations (20) or (21) but it
seems likely that we shall obtain a fairly good first ap-
proximation by simply neglecting thé variations of the
damping, i. e. by solving, in the case of p = 0, the equation

d?6

(22) I

+ ma} v%—{—h@ = mv®aq, sin wf.
The problem has thus been reduced to the ordinary pro-
blem of the motion of an oscillatory system under the
influence of a harmonic moment.

It is interesting to compare the present system with the
oscillatory system acted on by a twin jet-chain. In the
latter case we substituted for the jet-chain a jet-wave, the

. . T .
amplitude a, of which was é times the arm « on which

the chain acted. At the same time we kept the damping
factor 2ma®v, of the jet-chain action. Now, when the
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oscillatory system is actually acted on by a jet-wave we
keep its motive force, mv*qq sin wt, but replace its damping

by the damping of a twin jet-chain, the arm of which is

2 . .
a :;—% not ay s which might have been expected and
a
which is not very different from 79~’ . On the whole the

problems of the two kinds of motions have been reduced
to one. Thus it will not here be necessary to repeat the
discussion with respect to the amplitude which has already
been given in the treatment of the jet-chain-vibrator.

2. The Turning Moment in the Case of a Jet-Wave of the
circular Type.

We shall next consider the see-saw hit by a jet-wave
of the circular type i. e. the wave which may be produced by
the interaction of a constant magnetic field and an altern-
ating current passed through a conductive liquid-jet. The
characteristic property of this wave may be said to be that
an element ds, fig. 22, of the wave contains the same mass
of liguid as does its circular projection dr of the original
jet. The equatlion of the jet-wave at a given moment / may
with polar coordinates r, e« be written

. . . r
(1 © sin @ = sin e sin <mt—w—>.
v

On the basis of similar considerations as in the case of
the wave with constant amplitude we derive for the force
perpendicular to the deflected bar the expression

d
2) F_ = mv® cos (84 a) ﬁ—%{;

—dr+dz | . . S
—’U—I_— being the time which it takes for the element ds

to “pass” the bar. The turning moment corresponding to F_ is
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cos « . rysin o

(3) ZVIZFH(I :Fnam:}‘nm

thus
dr

4 M = mv®rysine- - .
4) I mo* rg sin e+ =

It is now seen from fig. 22 that

Fig. 22. See-Saw hit by a Jet-Wave of circular Type.

cos 6

®) "0 o8 (a4 )
from which

dr  dz sin (e 6)
(6) E—dwmrocosé) cos? (e+6)"
Introducing in (4) we get

1
2 i

(7 M= miPrysine L, cos 0 sin (@t f) da’

1

O cos?(a+86) »E

The value of% is found from (1):



) M= mvirysine
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. r
sin e, cos <a) [—w -~—> e e

(8) dee v/ w _ Vsinley—sine @
dr cos o v CoS & v’
Thus
1

149257250 005 g SiD (2 +6) V/sin® o, —sin® e«
cos?(a¢+6) cos «

If « and 6 are both so small that we may put cos e,

cos @, and cos(e¢-+6) = 1 and if%. 2 is nol too great,

the expression (9) may be written

. . r
M = mv®r, sin e, sin <w t—w _)
v

. [1—;—0-2/1 sin (& 4 6) sin ¢, cos (wt—cugﬂ

v \

. ) r
(10) = mv®r, sin ¢, sin <wt— w ;>

. [1—2nr—°si112a0 sin (wt—wi)cos <wt-—w£>
A Iy v

ry . . r
— 27 -2 sin 6 sin «, cos (wt—— ® —ﬂ
‘ ]

v

Now, if in the general case we want to find the moment
M as a function of the time 7, we should first introduce
the r taken from (5) in the expression (1), thus oblaining

the equation

. . . wr cos f
an sin @ = sin e, sin <w p——20. > .

v cos (et 8)

The latter equation should then be solved with regard
to @ and the result introduced in (9). Actually the problem
must of course be treated in the manner indicated above.
I. e. first we shall aseribe a number of values to « in (11)
and find the corresponding values of f, afterwards repre-
senting « graphically as a function of {. Next we shall by
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means of (9) produce a graph of M as a function of «.
Finally, combining the two graphs, we rhay draw the curve
representing the relation bhetween M and { corresponding to
the angle 6 of the deflection in question.

We shall now illustrate the production of the M—i-curve
by an example. We choose the case 6 = 20°, «, = 0.5,

Fig. 23. Jet-Wave in a Series of Positions.

o — 1 from which 2% = 27 =25 In fig. 23 the wave

2 1 A
has been drawn in a series of positions. In the picture,

the construction of which we shall not here explain?'), the
deflected bar of the see-saw is indicated as B B. Tab. I
first shows the numerical determination of the relation

t .
between « and f or rather T given by (11). The two solu-

tions of (11)

. [sin«
arc sin 7

t cos f sin o
12) | gu(ho 80 ) :
(12) \T cos («+8) l . (sin a>
76— are sin | —
) sin e

) Compare: The Jet-Wave. Vidensk. Selsk. Math.-fys. Medd. IX, 2. p. 85.
Vidensk. Selsk. Math,-fys, Medd. 1X, 4. 4
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obviously correspond to the two intervals 0—c, and «;—0.
Tab. I is represented graphically in fig. 24. The curve ex-
hibits up to three values of « corresponding to certain
values of f. This will be understood from fig. 28 which
shows that the bar with certain positions of the jet-wave

St = i aysin i (L - 1058

T CoSiE+&)
g=2";  g-05; p-2.; we S,
@ \
@
L
o Ria S
]
03 -
7
09 W
; /
ar / /
4 K %
7
-7
/
-9 \ N
\ /
a3
/
-0/ \ 4
/
-3
]

Fig. 24. o—-Curve, og= 0,5, 0 == 20° 170 = 1.

cuts the latter in three points. It may furthermore be noted
that the construction in fig. 23 may be used for a direct
determination of the curve in fig. 24. The waves drawn
correspond to positions equidistant with regard to time.
Thus if we draw the radii to the points of intersection
between BB and the wave-pictures and measure the «’s of
the radii, we have ¢ as a funclion of time. In this, not
very accurate, way the points in fig. 24 marked by crosses
are determined.
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The next part of our problem consists in the numerical
and graphical determination of the M—c-relation given by
(9) and originating from (4). In the calculation a certain
account must be kept of the sign of the members in the
denominator of (9). The simplest way to do this is probably

i

1

,
ety
G 5
/
. ¥
x
/———’
/
A z LT
A=
L1
-als | -d] a3 |- | -4 G 7 2 | @5 | 4% &,é_,
Ve
/ il
/| .
<
L 7 ) -
L
|
PAl
Fig. 25. M—a-Curve, &y = 0.5, 0 = 20°, % =1

to inspect a construction like fig. 23. In tab. II some of the
results of the numerical determination-have been recorded
and in fig. 25 the complete M—e«-curve is drawn. There is one
remarkable thing about the curve, namely thal, corres-
ponding to two values of «, it exhibits infinite values of
M. In order to understand this we shall again have to in-
spect fig. 23. From this figure it is seen that, corresponding

to two values of «, the jet-wave will touch B B. (The
4*
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points « and b). When this occurs we have seen that our
theory of the mechanical force and of the turning moment
fails. Thus the two points of the curve in fig. 256 are not
to be taken seriously. However, we shall not try to deter-
mine the curve-branches by which they ought to be re-

M
oy
]
L1 g-90"
[z T
O+ y ;
§ /b
4 7
2 /7
47|
 E— / 7. :
a 7] 2 2] ry a ara / Z ;i;
F03 B | 7
- f"\\
) 7
@ K / ’
il : !
: |
. o To
Fig. 26. M—i-Curve, oy = 0.5, 8 = 20°, 1= 1.

placed, these singularities playing only a small part in the
final result.

This is reproduced in fig. 26, which thus represents M
as a function of f. Obviously M may at the same time
exhibit up to three values, actually, however, the three
values combine to one which is obtained by simply ad-
ding the components. This has been dome and the re-
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Table 1.
o @ | ® <4) ®» | ®
. i t a
“ “ s :11:115% 27(T_Fsc((:xs+ s))
0 0° 0.0000 0.000 0° 0.000
0.1 5°447 0.0998 0.208 192° 37 0.210

0.2 11°27° 0.1985 0.414 24°277 0.427
0.3 17°12° 0.2957 0.616 38° 3/ 0.664
0.4 22°54° 0.3891 0.812 | 54°18’ 0.948

0.5 | 28°36" | 0.4787 | 1.000 | 90° | 1.571
|

a @ ® © a | an | a9
: cos @ 6° t 0.5 ¢

o cos (& [} _— —_
(o) cos (¢4 0) 27 T — (9 T

0| 0.940 1.000 0.0000 | 1.000 | 0.5000 | 1.500
01| 0900 1.048 0.0334| 1.081 | 0.4666 | 1.515
02| 0853 1.105 0.0680| 1.178 | 04320 | 1.537
0.3 0.797 1.181 0.1059 | 1.287 | 03941 | 1.575
0.4 0.733 1.285 01511 | 1.436 | 0.3489 | 1.634
05| 0661 1.422 0.2502 | 1.672 | 0.2498 | 1.672

0 0.940 1.000 0.0000! 1.000 | 0.5000 | 1.500
—0.1] 0.969 0971 | —0.0334| 0.938 | 05334 | 1.504
—02| 0989 0951 |—0.0680| 0883 | 03680 | 1.519
—03| 0999 0.940 | —0.1059! 0834 | 06059 | 1.546
—0.4| 0999 0.940 | —0.1511] 0.789 | 0.6511 | 1.391
—05 0989 0.950 |- 0.2502| 0.700 | 0.7502 | 1.700

|

sultant M—{-curve in fig. 26 is that which limits the
hatched area.

We shall now explain our reason for spending a good
deal of time on the problem of producing the M—i-curve.
It was done in order to find the cause of a characteristic
property of the see-saw hit by a circular jet wave. Prelimi-
nary observations showed that the see-saw without any



Table II.

27 cos 8 = 5,90

sin (e -+ 8) Vsin?ey — sin? rz

L = 590-
cos2 (e-}-8) cos e
o sin « cos sin (a-t+9) cos (e4+8) | [siney — sinZe L My = lsii My = _S;n ]ch
:
E 0 0.0000 1.6000 0.342 0.940 0.479 1.095 0.000 0.000
E 0.1 0.0998 0.9950 0.434 0.900 0.469 1.488 0.040 0.205
é 0.2 0.1985 0.9801 0.522 0.853 0.436 1.850 0.069 0.226
5 0.3 0.2957 0.9553 0.605 0.797 0.377 2.220 0.092 0.242
,2 0.4 0.3891 0.9212 0.681 0.733 0.280 2.270 0.119 0.306
- 0.5 0.4787 0.8780 0.750 0.661 0.000 0 0.479 0.000
ﬂ - sin & - sine
M= | My =
=1 =
0 0.0000 1.0000 0.342 0.940 0.479 1.095 0.000 0.000
— 0.1 — 0.0998 0.9950 0.246 0.969 0.469 0.730 — 0.058 — 0.370
— 0.2 —0.1985 0.9801 0.149 0.989 0.436 0.400 — 0.142 —0.331
— 0.3 —0.2957 0.9553 0.049 0.999 0.377 0.114 — 0.265 —0.333
— 0.4 —{0.3891 0.9212 — 0.051 0.999 0.280 — 0.092 — 0.429 — 0.356
- -— 0.5 — 0.4787 0.8780 — 0.150 0.989 0.000 ~— 0.000 — 0.479 — 0.479
¥ .
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directive moment will always oscillate about a position
perpendicular to the axis of the wave. Thus the system

has in"a way a directive moment of its own. Now the

i . .
hatched areas over the 7p axis in fig. 26 represent the time

~ dl‘/&dzdb‘bngbbfﬁﬁ%-fc%if—/
4**@-‘ 24 N
o|—1| 8- 90°
|
|
Eaes
/ |
a2 /' ‘
/ |
/ 1
/! |
i I - o
) | /7
. {
\
. \
\ /
i
\
g
3
. o TO
Fig. 27. e—f-Curve, o= (.25, 8 = 207, = 1.

pa

integral of the moment which will increase the deflection 6,
while the area under the axis corresponds to the moment
which will reduce the defleclion. The areas were measured
by means of a planimeter. The results are written on the
areas, and it js seen that a time-integral ol ab. 34.3 tends
to reduce 6 while only a total time integral of 23.5 tends
to increase 8. We thus understand the tendency of the bar
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to return from a posilion of deflection to the position
perpendicular to the axis of the jet-wave.

This tendency, however, is only pronounced if both «,
and the deflection 6 are not too small. Thus if «, = 0.25,

»
e
\ Q¢
| lg-2° e
&-025 7 \
—T.55. ¢ o
2 AN
JENL
[ 7
LA‘, I
s /
] e
7 »
o
-
= -d2 "gr/ a2 [7) 3
N | [21
o !
DAy
A A1
1
a3
Fig. 28. M—ou-Curve, o= 0.25, 0= 20°, - = 1.

6 = 20°, we find the three curves shown in figs. 27—29. The
o — l-curve is now single-valued, and the difference between
the two time-integrals is much smaller than in the case
o, = 0.5, 0 = 20°. However, it is interesting to note that
the mean values of the two integrals in the two cases only
differ very slightly, the mean value in the case ¢, = 0.50
being 28.9, while in the case «, = 0.25 it is 30.5.
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Investigations similar to those indicated above were
carried out for ¢ = 0, thus for the see-saw in its normal
position. Fig. 30 shows the M—t curves corresponding to

¢y = 0.5, 6 =10, and to % equal to 0.5, 1.0 and 1.5 re-

spectively. One of the curves has for obvious reasons been

M

"l

a3 &,=895 g=0 ™1

5—+%=09’ /
‘*°fﬂ:"0‘ fIL\\
) » Li-rs //’K\}
. /I A\
\
\
\

/ I
B e e b

0; //

4

[X3 az [7X] a%

SN

Fig. 31. M—t-Curves, e =0.25,8=10.

reproduced in two scales. Fig. 31 represents similar curves
corresponding to the case &, = 0.25, 8 = 0. Of course
there is no longer any difference between the moments
acling on the right-héud and left-hand side of the see-saw.
The curves afford a direct conception of the relation between
the time-integral and the parameters e, and ry. Thus from
fig. 31 it is obvious that in the case «; = 0.25 the time-

integral is nearly proportional to ry, the three curves re-
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presenting having about the same area. In the case

2
muv*ry
oy, = 0.5 things are different. Here the time integral seems

roughly independent of ry, as appears from the representation

. . . M M
in fig. 32 where the ordinate is ——— = ——— %0 Further-
mvtA  mviry A

more it is seen from a comparison between fig. 30 and

A
& =05 6=0

url +E =05

M_ x &=15
|
o5 l/ //
a /
L
o A
A
s =7 | |\
%P \
or i,&// i 3 ‘
y afl \

ar a2 a3 a¥ a3
Fig. 82. M—{-Curves, ep= 0.5, 8 =10. 7&’

fig. 31 that for % = 1 there is but a comparatively small

difference belween the time-integrals, the latter thus varying

only slightly with «.

3. Motion of the See-Saw under the Influence of a Jet-Wave
of circular Type.
It is evident from what has been stated above that it

would be practically impossible to develop an exact theory
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of the motion of the see-saw under the influence of the

circular wave. But we may try to solve the problem ap-

@ B

v

Fig. 33. Substitutes for the circular
Jet-Wave.

proximately by replacing
the actual system by
some other system. We
may suggest the follow-
ing. Firstly we shall
substitute for the wave
a pure sine -wave J,
fig. 33, travelling with a
velocity » in a direction -
under an angle % with

the axis of the actual jel-
wave. We shall ascribe
to the jet, from which
we may suppose J' 1o
originate, the mass m’ per

(14
em where m’ = mn cos 50

Now the problem of the
motive moment has been
reduced to that already
solved in the case of a
wave with constant am-
plitude hitting a bar de-

flected the angle ? If

? is sufficiently small

&

the motive moment may

be expressed by

. ; g .
1 M = m'v?q, sin wf = mvla, cos —° - sin wt.
0 0 2

This expression agrees with that which we may derive from
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(9), paragraph 2, on the assumption of § = 0 and «, being
sufficiently small. For then M = mv®r, sin &« = mv’r,
%o
5
Now again, when developing an expression for the

sin e, sin wf, where, compare fig. 33, ry sin e, = a; cos

damping, we shall replace the sine-wave by a jet-chain, a
link of which may be J7, fig. 33. We shall assume the

arm of the chain to be f/]% The mass per cm of J” shall
be m' = m cos %. If the see-saw is moving with the

P

., df
angular velocity T

to the hitting-point of the bar B of the see-saw is

the relative velocity of J” with respect

<u~a cos %-%), fig. 33, and the force perpendicular to

B originating from J is

a, dO\? o
9 T = — st U T 20 .
(2) F =m (v acos di> cos®

Thus the moment is

g dO\? o
M= m(v—a cos~—°-#> - cos?—Y

) 2 dt 2
— 2 2% __ 5 2 3 %o i@

mp-qa cos 9 AZImoa” cas 2 dt .

Replacing a by —G—O; we find
9. -0

/2 - cos 5 |
: 220 o5 B0 o 2040
4) M= mv Va COS 5> ——mp g COS 57~

We thus ascribe to the actunal wave the motive moment
2 Gy .
(5) M = mv®a, cos o sin wt

and the damping moment
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¢ = — mpa? cos 2. 49
(6) M = —mpag cos 5= —r.

If the see-saw has the moment of inertia I and the direc-
tive moment h, then the amplitude 6, of its stationary

motion should be

(24
mo® a, cos
by = B
< [£4
‘/(h—lmz)z%—(mvag cosé’-w)

and if h = Ie® (case of resonance)

(7

Lol _

1
® b =5 ag 27 ap
4. The Turning-Moment with a Jet-Wave of
rectangular Type.

Finally we shall consider a see-saw hit by a jel-wave
of rectangular type, fig. 34. Such a wave or a wave of
‘nearly that kind may be produced by oscillating the nozzle
of the jet in such a manner that the axis has always the
same direction. While in the case of the jet-wave of the
circular type the radial velocity is always the same and
equal to the velocity v of the original jet, then with the rect-
angular type it is the velocity-component in the direction
of the said jet which is equal to v. We proceed to develop
an expression for the moment with which the jet-wave -
acts on the see-saw.

The element ds of the wave now contains as much
liquid as its projection dx on the original jet, thus m-dx.
It carries with it a momentum mordx, v, being the velo-
city in the direction of the path of the element i. e. the
radius r. The component of the momentum perpendicular
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) v
to the deflected bar B is m- vy - dx cos (e+6). Now v, = ——
COS
. . cos (e +6) .
and thus the said momentum is movdx Toos This
o

momentum is destroyed in the course of the time

i /ﬁﬂ,dx P ey, ax
Moo i

Fig. 34. See-Saw hit by a Jet-Wave of rectangular Type.

—_ S >
) d[=$ulﬂ-c05a.

Thus the force perpendicular to B and originating from%the
impact of the jet-wave element is

o2 808 (e+6) ) dx

2 Fp=m .
) " cos®u -~ dr -+ dr,

From fig. 34 it is seen that

dx
) dry = cos «
and that
@) z a a

sinf cos(a+6) cose
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From the first equation (4) we get

. x, lge
5 — L
) z=-sin6 c0s (e 1 6)
from which
i 1 sin (z+6
— dp — T T SV bt S R
(6) dz=dr,=a,sinf (coszcz cos (a1 8) " g o cosz(cc+9)> dee.

Introducing in (2) we get

P o= m? S8 (e +6)

COS ¢
(N 1
o 1 sin e sin(z+60)| dea

1= sin 6 Los « cos (e + 6) cos®(«+6) | dx

and for the moment in question
f'— F. . —COS « .
(8) M= F,a Fp prevy a
thus
M= mv’zytge
©® ¢ L
. 1 sinesin(e+6)|de
1—x5sin 6 "

cos « cos (a+86) cos® (e« +6)

The value of %% must he derived from the equation of the

jet-wave which al the moment ¢ is

. t x
(10) tgae = lgog sin 27T<i,”—f)
from which
de 2m t =z
== —— ———— -d
o o P g o, cos 2n<T },> x

(1) 9 -
= —Tﬂ Vtg® ey —tgP e - da

Introducing in (9) we get
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(12) M= mvizolge
1

. Ty . 1 sin o sin («+ 6)
7L~ & H |
1427 2 7 eos « cos («+6) " cos?(ath)

} ]/l‘gzoto——tgzoc- cos®u.

From fig. 34 it is furthermore seen that

I _sine
(13) a2 =a,+a'sinb =g, <1 +s1m ¢ cos (o & 9)> :

If we introduce this in (10), we gel for the relation between

o and {:

itz sin «
1 — t ] 2 Lo _i, 1 —_—
(14)  lga = lgeysin E[T (1 sm@coS @ 9)”.

If 6 =0 we find from (14)

. 14 ]
(15) tge = tgogsin ZT<7—%>
and from (12)
(16) M = mv*z tge = mox, tgeysin 2 <LT_%> .

We may now carry out the same investigation as was
undertaken in the case of the circular wave-type in order
to learn whether in the present case we must expect the
same tendency of the deflected bar to return to the position
perpendicular to the axis of the jet-wave. We accordingly

. . t t
calculate graphs for the relations « — 7 M— ¢ and M~?.
. t
Fig. 35 represents the 111—7,—curve for the case «, = 0.25,

6 = 20° and Z;Q = 1. The time-integral of the moment which

will carry the bar back to its normal position is but slightly
greater than the time-integral which will increase the
deflection. Undoubtedly the tendency in question is less
pronounced than with the circular wave-type as will appear

Vidensk, Selsk, Math.-fys. Medd, I1¥X, 4. 5
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from a comparison hetween fig. 29 and fig. 35. The time-
integrals themselves are, however, very nearly of the same
size in the two cases. In fig. 36 the M—%— curve corres-
ponding to «, = 0.5, § = 20° and 30 = 1 is reproduced.
Now the time-integral which tends ito take the bar back
to its normal position is undoubtedly appreciably greater
than that — the area above the axis — which will increase
the deflection. -

With regard to the motion of the see-saw we shall in
all probability not be far wrong if, with small values of «,
we simply replace the actual jet-wave by a wave of con-
stant amplitude a, = z;1g «y and with a velocity », thus if

we substitute a motive moment
a7n M = mv?aq, sin ol

and a damping moment

- g db
(18) M =—moaj TR



68 Nr. 4. JuL.Harrmann: The Jet-Chain- and the Jet-Wave-Vibrator.

=1 O U o W

w o

CONTENTS

Preface . .. ...

The Jet-Chain-Vibrator.
The damping Effect of a Liquid-Jet.......... ... .. ... ......
The Nature of the Jet-Damper .......... ... ... ... ... ........
Motion of a Body hit by the Jet ... ... ... ... ... ... ... ..
The Jet-Chain-Vibrator, translatory Type ... ... ... ... ... . ...
The Jet-Chain See-Saw .......... .. ... .. .. ... .
General Formulae of Motion of an oscillatory System..........
Some special Relations characteristic to the Jet-Chain See-Saw..

II.
The Jet-Wave-Vibrator.
The Vibrator with a Jet-Wave of constant Amplitude . ........
The Turning-Moment in the Case of a Jet-Wave of the circular Type
Motion of the See-Saw under the Influence of a Jet-Wave of
circular Type ... ... ..
The Turning-Moment with a Jet-Wave of the rectangular Type.

Fmrdig fra Trykkeriet den 31. Maj 1929,

13
16
21
31
34

39
46

59
62



