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PREFAC E

I n previous papers and treatises the properties of the

socalled jet-wave have been discussed and a series o f

its applications have been described'. In all the case s

referred to the jet-wave was produced from an electri-

cally conductive liquid jet, preferably a mercury jet, an d

the conductivity was not merely an essential conditio n

for the production of the wave but also for the vari-

ous applications. (The jet-wave interruptor, the jet-wav e

commutator, the jet-wave oscillograph) . At a certain stag e

it occurred to the author that a new application o f

possibly far-reaching consequences might be made of a
periodic jet-wave by using it for the production Of a

vibratory motion synchronous with the wave .
And so the investigation dealt with in the present pape r

was taken up after some preliminary observations on th e
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said motion had been made . It proved , impossible - as

usual - to solve the differential-equations involved in eve n

the simplest case of motion (the see-saw motion) in term s

of available functions . With a view to orientation the wav e

was therefore provisionally replaced by a simpler but simila r

system, i . e . by that of the twin jet-chain . The latter is by

no means a purely . abstract conception, on the contrary i t

may easily be produced and seems per se adaptable to a

good many practical applications . The investigations on

the motion produced by jet-chains are found in the firs t

chapter of the present paper. - It was, however, found

that a very characteristic observation pertaining to th e

original system with an ordinary jet-wave did not find its

explanation by replacing the wave by the twin jet-chain .

The observation referred to consisted in the fact of a

simple see-saw, without external controlling or directiv e

moment, exhibiting a fictive directive moment keepin g

the see-saw vibrating, under the influence of the wave ,

about a position perpendicular to the axis of the latter .

This observation was for some time found very puzz-

ling. It could be shown that with a regular periodi c

wave of constant amplitude no such fictive directive mo-

ment would occur . Eventually it turned out that the ob -

served quality of the see-saw motion could be carried bac k

to that property of the ordinary jet-wave consisting in it s

amplitude increasing steadily with the distance from th e

starting-point of the wave . Especially could it be shown that

the fictive directive moment was particularly pronounce d

with the electromagnetically produced wave. The second

chapter of the present paper deals with the relations here

referred to. It is believed that the contents of the two
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chapters will prove a suitable means for the discussion o f

various practical applications of the motion considered .

I owe thanks to the Trustees of the Carlsberg Fun d

for having enabled me to take the time required for th e

work .

Physical Laboratory IT, The Royal Technical College ,

Copenhagen, October 1928,

JUL. HARTMANN .
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I .

The Jet-Chain-Vibrator.

1 . The damping Effect of a Liquid-Jet .

In fig. la I) designates a disk which is hit by a liqui d
jet J with a mass per cm m and a velocity v . The liqui d
of the jet will be reflected in the shape of a nearly cir-

cular plane film fig. 2. Thus the
particles of the jet will, durin g
the collision with D, lose their

s s -

	

s total forward velocity v and
consequently they will act on D

with a force

(I )

	

Fo = mu' ,

that is to say, if D is at res t

relatively to the nozzle of J. If D has itself a volocity df
in the direction of J, the force will b e

~

	

dx1 2
F = m \v-

dt)

thus smaller or greater than Fo according as ~~ is po-
sitive or negative i . e . going in the direction of or agains t
the motion of J.

! x

Fig . 1 a-b . Oscillatory System s

hit by Jets .

(2 )
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If ~~ is small compared to v, we may transform (2) int o

F= m v 2 -2 tnv • ~t
from which il is seen that the influence of J on the motion
of D is that of a driving force mv2 combined with a

damping force 2 m v d f . If two jets J1 J2 fig . 1 b of the same

velocity and mass per cm hit the system D 1 D2 from op-
posite sides the two driving forces compensate each other ,
while the damping forces are added . This is not only true

in case ofd being small compared to . v, but it holds goo d

in any case. For the resultant force originating from th e
two jets is obviously

/

	

\ 2

	

\ 2

(4)

	

F=mlv-dtl-m~v It) =-4mvd~ .

The twin-jet system in fig . lb thus constitutes a mean s
for the introduction of a damping of a definite and easil y

(3)



8

	

Nr . 4 . JUL . IIARTMANN :

calculable size . If especially the twin-jet damper is applie d

to an oscillatory system like that in fig. 1 b the motion o f

this latter system will be determined b y

d 2 x

	

dx
(5) ln °	 dt2 -}- (P -f- 4 mv)

dt + kx = x,

mo being the mass, p the damping factor and k the direc-

tive force of the system, while X stands for the drivin g

force. Provided

(6) (p + 4 mv)2 < 4 km o

the motion will be that of damped vibrations with a perio d

approximately equal t o

(7) . T= 2

and with an amplitude

P + 4m u_

	

t
A=Ao'e

	

2 'n o

	

=Ao e -at

In order to convey an idea of the effectiveness of th e

damping device we may consider a system of whic h

m ° = 1000 g, k = 10 6 . The period will be	 2
71	

or ab .	 2
sec .

101/10

	

1 0
We will assume the system to be hit by two mercury-jet s

with a velocity 700 cm/sec. and a diameter 0 .5 cm. The

mass in per cm will then be 4 - • 13.6 = 2.67 g/cm an d

my = 1 .87 • 10 6 g/sec. If p is negligible the condition (6)

is fulfilled (4 mv) a being 56 • 10 6 while 4 kmo = 4 . 10 9 .

Furthermore a = 21nv
= 3 .74. Thus during one perio dm o

the amplitude is reduced to e- 3 .74 '° .2 = 0.47 and in 6

periods to e- 4.45 = 0 .01 of its original value .

(8)
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2. The Nature of the Jet-Damper .

An investigation carried out with mercury-jets hitting a
disk with a diameter somewhat greater than that of th e
jet showed that the radial velocity of the reflected mercury
particles was very nearly equal to the velocity of the je t
if the disk was at rest relatively to the nozzle of the jet .
From this we conclude that if the dis k

has a velocity
d

in the sanie direction

as the jet, the radial velocity of the
reflected particles will be equal to the

	

f°
relative velocity v- df . This conclusion

is supported through the following con- xi TJ t~,
sideration .

	

" '

If the disk D, fig . 3, is moving up
Fig .3 . Oscillatory Sy s

against the jet with the velocity v l it

	

tem hit by a Jet .

will be acted on by a force m (v + vi) 2

During one sec . D will meet a quantity of liquid equal t o
in (v + v 1) and it will supply a work

(1) W = m (v + v 1) 2 • v 1 ,

to the said mass of liquid . This work will have its equi-
valent in the excess of kinetic energy with which the liqui d
leaves D. The said excess is obviousl y

(2) E = 2 m (v + vl ) (u 2 + vi) - 2 m (v + Ul) v2

u indicating the radial velocity of the liquid leaving th e
disk. To understand the second term 0 in the brackets it
must be noted that the reflected liquid receives the velocity
of D during the collision . Equalizing E and in (v + vl ) 2 . vl
we get
(3) u = v+v 1 .
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In just the same way it is found that u = v - u1 if D is

moving in the same direction as the jet with the velocity

v i . Only in this case it is the jet which supplies work t o

the disk, consequently losing kinetic energy.

Having thus derived the relation (3) we may examin e

the shape and motion of the film in the case of the dis k

performing a simple harmonic motio n

(4)

	

x = xo sin wt.

We consider the film as consisting of particles which

move on independently of each other. The motion of suc h

a particle will, when it has left D, be determined by th e

two sets of equation s

s

(o)
0 ,

dt2 = dt
=C. 1 , x=c1 t+c2 .

(6)
d2r
dt2

= 0,
dr

dt
= b1 , r= b 1 t-I-b2 .

If the particle in question leaves D at the moment to

we have

c l =xow cos w to,

	

b 1 = v -}- xo co cos co to ,

c 2 = x 0 sin w t0 - x 0 w cos w t 0 • t0 ,

b 2 = - (v+ xow cos w t 0) . to .

Thus

(7) x = xo sin w to + xo w cos w t0 . (t - to) .

(8) r = (v + x 0 w cos w to) (t - t0) .

The equation of the curve of intersection between the fil m

and a plane through the axis or the jet - and ofD - at the mo-

ment t would be obtained if we could eliminate to between (7 )

and (8) . The practical way to find the curve of profile is to fi x
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a value for t, say 2T (co = T J, and then to calculate x and

r corresponding to a series of values of to . The result of

such a determination has been reproduced in fig. 4. The

abscissae are here the distances from the axis of the re-

A
to

ô=~ uA

z-r+„~

Y 7;

Å=~~si~~~+2rer~s

~~_ ?
„dø

_~ 1

~s ;T~

+ ~faiårØ

uT

T°
cask .

Ttl~
nnnn®~n n
nnnnnnnnn

nnn~~•~n~pill ~innn

nnn~~nnnnnnnnnLdinn - ~nn nn nnn~nn
nnnn~nn~i

ØMI n nnnnn~:====:===~r~1nn►nn...Ø►.nnn ,nn
n~,f~/~	 S©~....
... ..n..n. .
n~. n nn • nn

JIPPV
`

Fig . 4 . Profile Curve of Film .

fleeting disk measured in terms of the wave-length 2 = vT,

while the ordinates are the ,,deflection" of the film als o

measured in terms of 2 . The curve may thus be taken t o

represent the system of equation s

o

.4

l

(7 a)
x .

7

	 to ]

T

(8a).
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k designating
R

and being assumed in the case considered

to have the value 0.1 . In the figure the two lines	 mark

the extreme positions of the disk . In these positions th e
disk will reflect the liquid along lines perpendicular to th e
axis of the disk and with a velocity equal to v . We shal l
therefore expect to find particles of the film in the sai d
lines with regular intervals of 2 . In fig. 4 a 1 a 2 . . . b 1 b 2 . . .

represent such particles .
The character of the jet-damper is now fairly clear .

The damping originates from a radiation of kinetic energ y
and the carrier of this energy is the reflected jet . It is easy
to derive an expression for the energy radiated per perio d
or per second. The kinetic energy supplied to the reflecte d
liquid in the time dt was

dx

[( + ( - j

dx (9)

	

dE=

	

+)

	

d t

=mw+dlj2 dt dt .

Remembering that x = xo sin w t and df = xo w cos wt- u p

cos wt and integrating over a period T we find

(10) EI. = mvxa(.6 2 T = rnvuô T

or the energy radiated per sec .

(11) E = mvuå .

The same expression is obtained by considering the work
supplied by the oscillatory system. In the time dl this

2

work is just represented by the last equation (9), m

`

v . dt )
being the force with which the mercury jet is acted on an d
dx
dt dt the way through which the force is acting . Finally

we may derive (10) or (11) by remembering that the jet gives
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rise to a damping force my dt . The work done against

this force in the time dl is obviously

/

	

\ 2

(12)

	

dE = mv •
df dt ' dt = mv I dt ) • dt .

Introducing dt = no cos cot and integrating over a perio d

we get the expression (10) .

3 . Motion of a Body hit by the Jet .

We may now consider certain simple types of motio n

produced by the jet . We shall first think of a circular disk

hit by a jet passing along the axis of the disk, fig . 3. The

motion of the disk is determined b y

	

d2 x

	

dx\ 2

	

ln°
dt'

	

in
-

dt /

if we assume that no frictional forces are acting . We solve

this equation by putting dt = z, thus getting

dz

m0 dt
= in (v - z) 2 .

m °
= in

U - z

dx_ _ m°

dt

	

v

	

mt -1- c1

from which again by integrating we ge t

(5)

	

x = Ut -
m°

log nat (mt -}- c 1) ~- c2 .
m

(1 )

from which

(4)
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If x = x° and dt = no at the moment t = 0 we find

ci == in °

	

and e2

	

x ° + -m° log nat	
rrt°

	

thus
v - uo

	

in

	

v- n o

l7 -

Int + --m°
U- t2°

	

\
x = xo -}- vt -n log nat / 1 -I- In- (v - uo) t ) .m

	

m °

	

/

As an example we shall consider a projectile of mass
m° = 20 g flying with a velocity uo = 100000 cm/sec agains t
a mercury jet with a velocity 700 cm/sec and a diameter
0.5 cm. The mass per cm of this jet was found to b e
2.67 g/em thus my = 1 .87 . 10 3 . From (6) we find the tim e

it takes to stop the projectile . Putting dt = 0 we ge t

t

	

mo

	

tt o	 -

11W u ° - U

1and in the case considered t = 10 .8 . 10-3 sec or ab . 10 0
sec. Introducing (8) in (7) we furthermore get the distanc e
through which the projectile will fly before losing it s
velocity :
(9)

	

x =
mo

	

no - in°
log nat (1 - u0 ~

m u ° -v in

	

v

which in our case gives x = 7 .5 (1 .007 - 4 .969) _ - 29 .8 cm .
The projectile will thus be stopped within 30 cm and i n

1
about

100
sec .

It is still possible to solve the problem if the motion of th e
body hit by the jet is subject to a frictional force proportiona l
to its velocity . In this case the differential equation i s

(6) dx
dt

in o

and

(7)

(8)

(10)

	

dzx

	

dx

	

m
°dt a

	

d1
dx s

n v -
d t
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Again we put dt = z thus reducing (10) t o

dz(11)

	

m0
dt ~ pz = in (v - z)~

which may be written .
d z

z2-2 (U +
2m)

z -}-U'
= 111 dt

111 0
(12 )

the integral of which is

) - v 2
og nat	1	 V(v+2m+ ( v

(13)

	

V	 	 °v-- 2
+

m ) J

	

~

	

-

	

fv2

	

I v

n1
t + cl .

We may introduce abbreviations and write (13) thus

1

	

B -
log nat	

z = Et+ cl
T z

from which we get
eAEt+Ac,

z = B-(D -I- B)1+
eAEt + Acr

~
dt

the solution of which i s

(16) x = Bt- D
EB

log nat 0 + e ftl:t+Acs) + c, .

If x = 0 and ~tf = 0 at the moment t= 0 we find

c1 =
Å

log nat
B and c2 = DIEB log nat (1 {

D B
}

D B

	

1+ ~ e AE7 t

(17)

	

x= Bt-	 9	 log nat	 B1+ D .

If p is small compared to 2 my we get . from . (17 )

1110

(14 )

(15)
dx

and

1-(1 +
(18)

	

x = vt- m0 log nat
m

2

	

m ty n

	 P'

	

c

	

711 o

mv)

122
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For p = 0 the last factor above assumes the shape log nat Ô
Its actual value is found to be 1 + mv 1, (18) being thus reduced t om°

(19) x = vt -
m° log nat (1+-mu

t)
nt

	

m.o

in agreement with (7) for uo = 0 and xo = O .
Finally we may think of the body as forming part of a coin-

plete oscillatory system with . a directive force kx . The equation
of the motion then becomes

d 2 x

	

dx

	

dx ~

(20) mo dte +p ~t +kx=m w -
dt) .

This equation will probably prove rather intricate unless it i s
assumed that dx is small compared to v . If this is the case, we may

write ni.Iv - dxI = mv 2 --2myt and reduce (20) t o

(21) mo
dtx -

;- (p+2 mv) d
x + kx - mv 2 = 0

thus to the well-known linear differential equation with constan t
coefficients . The problem of the motion is then easily solved an d

it may be solved not only in the case of no externa l

h

	

forces acting on' the oscillatory system but also for a
!~3'

	

good many cases of such forces .

- T

4. The Jet-Chain-Vibrator, translatory Type .

We may now imagine a disk D, fig. 5, hit
centrally and perpendicularly by two series of

jet-pieces J1 and J2 . We may term each of the
series a jet-chain . The one of them J1J1'
is moving downwards with the velocity v, th e
other J5J2 ' upwards with the same velocity . In
order to avoid confusion the two series have i n
the figure been drawn sideways to the axis of
D. Actually we shall think of them as travelling
in the said axis :

D	 9, -

tx
Jt~ -

1 1

Fig . 5 . The
Translator y
Jet - Chain-

Vibrator .
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Each of the jet-pieces will, in colliding with D, giv e

rise to an impulse. Every second impulse is directed up -

wards, every second downwards. Thus D will assume a

vibratory motion. If the displacement x, the velocity
dt

and

the forces are considered positive in the downward directio n

the motion due to a jet-piece such as J1 is determined by

d 2 x

	

dx

	

7

	

dx 2

	

2 dx
(1) 1n0 dt2 +p dl + kx = m v-

	

= mv 2

	

__dt

	

v dt j

and that due to a piece such as J2 by

d 2 x

	

dx

	

~ dx12_

	

(1

	

dx l
(2) m0 dt 2 + p dt +kx = - m v + d

dt

	

-mv2 -
v dt '

dt being considered small compared to v .

Assuming k = 0 and furthermore assuming that x = x ° ,
dx
dt = u

° at the moment of collision t = 0 we find for the

motion due to a J1-piece

a+2 t

	

~

(3)
x- x° _ 1

	

/ t

	

-	 	 Y

	

1
a-+ -2 T/2

	

-I-2
(u0

a+2 )

a,+ 2
dx

=

	

1

	

( _	 \

	

y T/ 2
(4) dt - v

a+2 +\U0
a+2l e

and for a J2 piece

x -x°

	

1

	

t
(5) 2,12

	

'1-I-2 T/2 i

	

a-I-2 ( U
°

+

a+2

	

i
\ -

a-{-2
+ (U

° + a+2 / e y Tf 2

Here U° = u0 and a, y and 2. are defined by p = a • mv,
v

m ° = y • m 2 , while 2, is the chain-length, compare fig . 5 ,

Vidensk. Selsk. Math .-fys. Medd . IX, 4

	

2

7' _ a+2 t
-

e

	

y T/2_1) .
a~

1 	
2 ~

v(6)
dx
dt
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and T =
),

. By means of (3)-(6) we may calculate the
v

motion of D. In so doing we must consider separatel y

each of the parts or phases of which the motion is buil t

up and we must carefully account for the position and

velocity with which each phase is concluded . In fig, 6a- d

a review of the first four phases has been given . In fig . 6 a

the start-moment is presented . D is in the zero-position

1
J,

D

4

o

Å

db

	

c

Fig . 6 . Review of Phases of the Motion .

and has just been reached by J1 . It moves downwards an d

after the lapse of the time t 1 collides with J2 which ,

coming from below, meets D . The latter is at that mo-

ment at a distance x1 away from the starting-position . The

relation between x 1 and t1 is given by the formula .

= vt1 .

Fig. 6b gives the condition at the moment t 1 . J1 has not

completely passed D or rather been reflected from it . Thus -

during the phase beginning at t 1 , D is acted on both b y

a downward and upward force . Its motion is determined b y

(7)

d2x

	

dx

m° dt 2 +~ dt
= m w- df ~~ m

2
iv+d ) = -- 4 mvdf(8 )

the solution of which is
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(9)

a+4 f
X

ti/2 °

	

- ° a 4
e y Tl'̀

(10)
dx

- U• e
dt

	

°

a+4 i

y

	

T/ 2 ,

if x = x°, dt = no at the beginning t = 0 of the phase .

The second phase ends at the moment t 2 and the posi-

tion x2 . The relation between t 2 and x2 is given by the

formulae

(11)

	

ll = 21+2x 1 -ti

(12)

	

Ut2 = i1 +(x2 -x 1 ) = 21+x 1 +x2 -7i

both referring to fig . 6b. The situation after this is that

indicated in fig . 6 c. J1 has completely passed D which now

in the following third phase is exclusively acted on by J 2 .

The motion is thus determined by the equations (5) and

(6) . It lasts till the moment t 3 corresponding to the posi-

tion x3 indicated in fig. 6 d. The relation between to and

x 3 is given by

(13)

	

1 2 = Uto + (x2 - x1 ) = 21 + 2 x 2 - ,

(14)

	

Ut3 = 1-12 +x2 -x3 ti -1-x3 -x3

referring to fig. 6c. In fig. 6d it is assumed that D has no t

yet reached J1 ' at the moment to at which J2 has passed

D. If this assumption proves to hold good, a phase sets in ,

the fourth phase, during which D is not acted on by any

piece of jet . Its motion will therefore be given by

	

d 2 x

(15)

	

m0 dt2
+p

dt

the solution of which may be writte n

x-x

	

l a tti/2

	

Uo-
\s

y T/2_ 1 )
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first phase has been reproduced in fig. 7 corresponding t o

a series of values of a . It has been assumed that th e

length of the jet-pieces is 2 and that y = 1 . The straight

line which determines the end of the first phase is, ac -

cording to fig. 6a, given by

xi

	

ti

1

	

_
7/2

	

T/2 '

xa and d = u o at the beginning of th e

In the way indicated the motion may b e

phase to phase. By way of illustration the

(17)
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Furthermore the second phase corresponding to a - 5 i s

indicated . It is seen that the velocity obtained by D during

the first phase is lost very soon due to the comparativel y

heavy damping . The velocity is however not completely

reduced to naught at the moment I2 which is determine d

by the point of intersection between the curve and a

straight line

X2

	

t2

V2

	

T/ 2
	 -0.120.

After this the action of J2 will turn the velocity and nearly ,

but only nearly, carry D back to the starting-position .

From what has been set forth it may already be conclude d

that the motion will consist of a series of vibrations dis -

placed laterally with regard to the starting-position . The

lateral displacement is of course due to the first impuls e

giving D a downward deviation which cannot be com-

pensated by the following impulses .

5 . The Jet-Chain See-Saw.

We shall now consider a jet hitting one end of a ba-

lance or see-saw with the moment of inertia J, fig . 8. The

jet has the velocity v and the mass m per cm . It meets

the see-saw at a moment at which the latter has an

angular velocity
0

and is deflected

0 from the normal position perpendi-

cular to the jet. The velocity of

the hitting point is consequentl y
v,

	

a

	

d
During the time-inter-

cos 0 dl
val dt the bar is hit by the mas s

mdt (v- v' cos 0) and the relativ e

velocity perpendicular to the bar,

(18)

Fig. 8 . Je t

of a

hitting on En d

See-Saw .



22 Nr . 4. JUL . I-IanTNiav N :

thus (v cos 0-v'), is destroyed. This means that the bar

is acted on by a perpendicular force

(1) F = rn(v-v cos 8) (v cosh-v ' )

and by a turning moment

i
(2) M = F- a = ma v-a

dO
v cost 8-a

d e
cos 8

	

cos'

	

dt

	

d t

We shall assume 8 always to be small enough to justify

us in putting cos' 0 = 1 . We then simply have

\ 2

(3) M = Ina
/

l v-a	 dt )
or if a

dt8
is small compared to v

\
(4) M=ma v' 1--2 a d
Obviously the problem of the motion of the har is now

just the same as that of the motion of the disk above. Thus if

the see-saw is acted on by a damping moment -p
d~

and

by a directive moment - he, the differential equation of it s

motion i s

I df -I- (p -1- 2 ma' v) •d8-{--(h B -mav') = O .

Replacing here I by m o , 8 by x, a by 1 and k by h we

have come back to equation (21) on pg. 16 .

We may now study the motion of the see-saw whe n

the latter is alternately hit by the jet-pieces Jl J2, J of the

two jet-chains in fig. 9. Just as in the motion considere d

above we have to build up the solution of the proble m

from phase to phase . If we assume h to be zero, we migh t

simply use the equations from the problem above intro -

(5)
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ducing B instead of x, I instead of mo and so on . In the

following examples we shall, however, also put p = 0 an d

then go back to the exact formulae based on (3) . Thes e

formulae have in part been developed above on p . 13-14 .

A review of them corresponding t o

the first five phases is given in

tab. I, the indications of which refer

to fig. 10. The figures of the latter

represent the same phases .

By means of Tab. I in connection

with fig. 10 we may study the mo-

tion in the case of in = 1 .70 g/cm

T

	

7,/ 2
The result is reproduced in fig . 11 A where

2 =
	 ~~ . A s

will be seen, the time elapsing from J l meets the bar to

J3 collides with it at the moment 1 4 is only slightly greate r

than a period T namely 1.06 T. But at the said momen t

the bar still possesses most of the positive deflection ob-

tained. The period ending with only a very small negativ e

angular velocity, it is obvious that the succeeding part o f

the curve must nearly be identical with the part alread y

drawn. Furthermore in fig . 11 B a curve is drawn, which

shows what the motion would be if we simply neglecte d

the velocity of the see-saw a	 dt, thus the damping forc e

due to the jet itself. The motion is then represen-

ted by

--------------- ------- -- --- ----------------(di.ameter of jet 4 mm), u = 600

	

___ . ._

cm/sec, 1 = 5 cm,

	

= 6 cm ,

a = 3 cm, I = 460 g/cm 2. With
mat

these constants I 2 = 0.2, and
Fig . 9 . See-Saw hit by two

consequently the approximative for-

	

Jet-Chains .

mulae in tab. I may be applied.
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Fig . 10 . Various Phases of the Motion of the See-Saw .

d2

t

o

dte = ma ve

d0 _
dt

mav2 t-~z°

2
mÎ v 2

12 +za t-- 0 o

OD and z0 being the values of 0 and dt0
at the moment

t = 0. Obviously the motion has the same general characte r

(6)

thus by

(7)

(8)
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as the actual motion but the deflections are essentially

larger, showing the great damping effect of the jet .

!nn

	

Nn N:..nn!nIC~:1nn.nnnnnnnnnnnI..nn n n nnN nnnnnn
~	!nN11 1 11	 IIN ~~NI
1NI	 IN	 111N1~1N11i	 1 1	 IINIINiII III
NInnnn..n. :~:: :	 u~ln1~11
~~Nnnnnn!nnn!..nn! nnnn ~..
11111

	

,..

N1i°`iNØEM11MINIIIiiiNIIi.11iIMI
1=nnn.Innn. .~/~~n.~~~nn.1.~.. nnnnnn nnn!nrminnn.ia~~-Ø~ni!nn i i
11111111	N~lNIINIIINIIIIIINII
1NIIN~i111N11NNIN11N11 1

~

n~i.~!nnn!nnnn I n nnnnnnnn

Fig . 11 . Graphical Representation of the Motion for = 0.2 .

nza2
2

I

Finally in fig. 11 C the motion of the see-saw when

acted on by a purely periodical momen t

M = mv2 ao sin cot, (co =
2

is represented . It has been assumed that ao = 2 a, a being

the arm in fig . 9. The motion is thus given b y

d 2 9
= my a 0 sin w t

cat

(9)

(10)
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Tabel I .

0Phase

	

Complete Expressions

vt

	

I log .11 at + mu2 vt )

	

~

	

4ma2 •vt )

- e ---4ma2 v 1
I

a
0 = 02-ll-f-manlognat(1+

	

~a + t

0 = O3+zgt

s
Ø = 04 +-

- 	 Ilog nat (1 -{- mav
-- z4 t

a man

	

I ( a

e
Approximate Expression s

_ 1 ma2 )/2 )/2

	

t

	

2 mas 1~ /2 t0

	

2

	

I

	

a ( T/2)
2 (

1

	

3

	

I

	

T/ 2

a = e 1

	

t ( 1

	

1 4ma2 )12 (	 t ~
z 1

	

~	 I	 Z,/ 2

9 = 82-f-z2t - 2 n3 ( a
+zg~~t2

( 1 3 	 7 3 ~a +

72 ) )

Ø = 03-i- z3 t
i

	

1 nza 3 / v

	

a

	

2 mai U

	

~

e = 04-r- z4 t + 2 	
I (at2 (1-3	 ( a -

z 4

de
d t

ma2 )./2

	

t ~
d

	

v	 I	 ~T/2,
dt

	

a 1 + rna 2 )/2	 i
(T/2 ,

	

4ma.-̀'I•)/2

	

z 1
d
dt

o
_ z e

	

_ (1
4ma2 )/2 ( t ) )TJ~ -

	

I

	

T~ 2

d0

	

v

	

v_
dt

	

(a +z2

	

+m~s(ä +ZO) t

z3

de

	

v

	

v

	

1
dt

	

a

	

a r4 1+ man v

	

ti4 ?1
t

( a

(1)

(2)

(3 )

(4 )

(5 )

(1 )

(2 )

(3 )

(4)

(5)

e= 0 1 + z l
I

(1 )

(2)

(3 )

(4)

(5)

de

dt
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Tabel I .

the integral of which i s

1 maq/2 À,/2(	 t

	

1

	

(	 	 t
(11)

	

=
2

	

I

	

a T/2 -
~ sin( ~T/2,) •

As will be seen, the C-curve nearly coincides with th e
B-curve . From this we conclude that we might in the
actual problem get a similarly good approximation b y
identifying the action of the two jet-chains with the actio n
of a moment (9) combined with a dampin g

(12)

	

p = 2 ina 2 u .

The equation of the motion would then b e

(13)

	

I ~t + 2 mat v •
d 8

= mut a ° sin () t = M° sin w t .

The solution of this equation is
r

	

À
•2n .

t

Ø = w`/(IM0Z+p2Lsin~y~
p

cos y( 1-e ico T

/

	

t

	

`̀
- sin( 2~7,-~y~ l

where tg cy =
Iw '

Phase tg 0

fg Øl

	

(L'
- vfl ) •

a

tg 02 = I vt2 -}--f1 å -tg8 1

f9 0s

	

(= 2Â
-v13) '

	

a 2

tg 04 = (Utg-( - )) -al- - tg03

Z l = 2 a tg e l -}- I-4,

1 3 = J-2atg®2

(1 )

(2)

(3)

(4 )

(14)
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By means of this formula the curve D was computed .
It shows a practically good agreement with A . Thus our
conclusion is justified for the case considered . We shal l
preliminarily	 as a hypothesis - assume that what ha s
been found true for the first transient part of the motio n
will also hold good for the final stationary motion and tha t
the motion of the see-saw vibrator may on the whole in mos t
cases and also when an external damping p and a directiv e
moment h is acting, be solved as a continuous proble m
by introducing the fictive moment (9) and the fictive
damping (12) . The problem has in this way been reduce d
to the ordinary problem of vibrations under the influenc e
of a harmonic external force or moment . It should be
noticed that the a ° introduced in (9) is chosen in suc h
a way that the actual arm a is the mean value o f

a ° sin w t (a = a° •
2

In the example above the equation (14) become s

-0 .798--

	

/
8 = 0.0630 7 .92-7 .79e + sin l 2

	

-f7c
t

7° 15
\

' I

	

.

In order to put our hypothesis to further test a new and
rather extreme case was considered, namely

ti
rn = 1 .70 g,

	

v = 600 cm/sec, I = 6 cm,

	

2 = 6 cm ,

a = 3 cm, I = 18.36 g/cm 2

ma2l/2thus a much lighter system,	 being 5 against 0 .2 in

the former example . This change implies that the approxi-
mate formulae in tab . I can no longer be used but recours e
must be had to the original formulae. It furthermore in -
volves that the moments limiting the various phases cannot
be found as the abscissae of the points of intersection
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between the 0-curve and certain straight lines . It is neces-
sary to replace the 0-curve by the corresponding curve fo r
tg0 in the way indicated in fig. 12 by the dotted curve-
branches. It appears from the latter figure, in which th e
motion is represented by the A-curve that the damping du e
to the jets very soon after the lapse of the first phas e
checks the velocity and reduces it to naught . During the

=MI

	

=ENEn~ i~~l n~~i111►.1n uNIII"9~-~211 n INn~i\~~~n

	

,
	 I111111W=IMMUNE.",

nnn►.~
Fig . 12 . Graphical Representation of the Motion for

ma9 A/ 2

l

	

= 5 .

rest of the second phase there is balance between th e
forces with which the two jet-pieces act on the see-saw .
The third phase is very short but the jet-piece J 5 is never-
theless, during this phase, able to communicate a con-
siderable velocity to the see-saw . With this velocity th e
latter moves on in the following fourth phase during whic h
no jet-pieces act on the see-saw etc .

Applying now our hypothesis indicated above to th e
case of fig. 12, we find that the equation picturing th e
motion should he

t

0 = 0.477• 1 .048-0 .094•e

	

r -sinl27rT+72°36 ' I .
This relation is represented graphically in `f̀ig . 12 B. Obviously

e
l4

!e

. 6

.2

-w,øA

r

.d IJ yA

	

iJ
t
T
Q
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the discrepancy between the two curves is now muc h

more prominent than in the former case . The general

character of the two curves A and B is, however, in som e

I

	

33

	

measure the same . We

shall therefore, not-
MV 01/

ok treroe cases as tha t

just considered, as-

sume that a fairly goo d

approximation to the
-o~

actual motion may
Fig. 13 a-b . Nature of the Substitution .

generally be obtaine d

by our method of substitution . We shall see in a following

chapter that if the see-saw is hit by a jet-wave of sine -

shape like that indicated in fig . 13a and if this wave i s

produced by a jet of velocity v and mass per cm m the n

the moment acting on

the see-saw will just b e

(15) M = rnv 2 ao sin w l
A

	

A

nating from the jet -

chains J1 J 3 . . . .I,J4 . . . will be that indicated in the upper-

most figure in fig . 13b. Our substitution is thus to the ef-

fect that we replace the jet-chain with the sine-wave whe n

considering the motive moment, while we keep the jet-chai n

when considering the damping moment .

provided the bar i s

kept in its normal posi- D .	 	 y_w
tion perpendicular to

the axis of the wave .

	

i fUnder the same supposi -

tion the moment Ol'lgl- Fig . 14 a-b . Substitution in Case of Trans-

latory Vibrators .
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Returning now for a moment to the jet-chain vibrato r

of the translatory type, there can be but little doubt that

a substitution similar to that above may be applied in a

good many cases. Thus with the twin-jet vibrator in fig . 14 a

the disk D is, if kept in its zero position, acted on by a

motive force like that represented in fig . 14a. We may

probably substitute for this a harmonic force

F= rnv 2 •
2
- sin w t

combined with a damping force 2 my - . And in the cas e

fig. 14b where the motive force may be considered a s
2

consisting of a constant force
17W

and a rectangular alter-

nating force of amplitude 11 2 , the latter may probably b e

replaced by
2

(17)

	

F = 2

	

• sin wt .

6. General Formulae of Motion of an oscillatory System .

Having reduced the problem of motion under the action o f
a jet-chain or a twin-jet-chain to the problem of an oscillatory sy -
stem acted on by a simple harmonic force or moment, it seem s
appropriate to review the formulae governing the motion in th e
latter case .

Accordingly we consider the well known equatio n

c12 ö

	

do
I dt p ~t +h = 11losin wt .

(16)

(1 )

If (2)

the complete solution is

p2 <4Ih ,

(3)
®=e 'Pit [ui sin y4l2

l
	 p- a

t+ a2 cosv17~~j 1) 2 1,1l
	 Mo	

+ ~(h -Iw2) 2 + (p
(02 Sin (wt+ P )

where
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	 P w
tg~F

	

h -Iw2

and where al and a2 are constants to be determined by the

values of 0 andf at a given moment say t = O . We shall, howeve r

eo

(4 )

/0

9

8

7

G

5

4

3

here confine ourselves to the stationary part of the motion re -
presented by the last term of (3) and characterized by the condi-
tion (2) . Introducing the parameters

(5) h = alw2 ,

	

(6) pw = ß 1w2 ,

	

(7 ) Mo = • Iw 2

we may write the expression for the amplitude Bo



The Jet-Chain- and the Jet-Wave-Vibrator.

	

33

eo =

	

y

V (a -1)2+ 13 2
(8 )

and

(9 )

	

tgo =
a .

In fig . 15 the function (8) has been drawn for y = 1 and for
four values of p, furthermore for the interval of cc from 0- 2
which thus includes the case of resonance a = 1. By means o f

the set of curves the absolute value of 00 may be determined fo r
any case within the cc - and is intervals considered. One only
has to multiply the value of 00 taken from the set by the y-value
corresponding to the case in question . The branch A very nearl y
determines ty rp corresponding to p = 1 and so the value of tg (p

for any value of ß. Of considerable interest is the question about
the change of amplitude due to a change of frequency . In order

to find the relation we shall have to differentiate the expressio n

00 =
1/ (h- 1 0 ) 2 + (A (0) 2

' (10) Mo

with. regard to w . The result may be written .

(11)

	

400 _ 2((x -1)+ß 2 4 w
0 0

	

(a-1)2 r-ß 2 w

In fig . 16
Bo - ! ww is represented in its relation to a and p. For

instance we find from the curves that the ratio has the valu e

- 2 .8 corresponding to a = 0 .3, p = 0 .1 . Thus an increase of 1 pe r

cent of the frequency gives rise to a drop 2 .8 per cent in the ampli -

tude. The larger the damping the more independent of the fre-

quency is the amplitude. - Almost as important is the relatio n

between rltgy, and 4w . It is determined by differentiatin g

	

~	 	 P(o	

	

(1~)

	

tgy, _ - h -Iw2
and is found to b e

	

(13)

	

4 t
__	 ß 1-~- a d w

gcP

	

1-a 1-a w

The dotted curve in fig . 16 represents 4 tgrp 1
"

correspondingw
to p = 1 . If for instance a = 0 .3, p = 0 .1 an increase of 1 per cen t

in w will cause a decrease of tg~ equal to 0 .1 .2 .7'100 = 0 .002 7

while tg (p itself is seen from fig . 15 to be 0 .144 .

VIdensk. Selsk . Math .-fys. Medd . IX, 4 . 3
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Fig . 16 . Curves representing ÿw

	

tg
~ 1 1 w

	

w

	

j co

7. Some special Relations characteristic to the Jet-Chai n

See-Saw .

Returning to the .special case of the see-saw we shall

assume the latter, fig . 13a, to be acted on by a directiv e

moment h 0 and by a frictional moment - po dt. Its diffe-

rential equation then i s

s

-h

d

d
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0

(1) I	 dtB+ (po + 2 ma 2 v)
~+

h B = rnv2 a
2

sin w t

and its motion, when it has become stationary, will b e

expressed by

l

rnv2 a
-

(2)
2

j/(h - I .')2 + (p + 2 rna 2 v) 2
w2 sin (co t Y )

= B 0 sin (wt+y)

(p-I-2ma 2 v) co
t tlP =

	

h-Iw 2

where

We shall in particular examine the amplitude and ma y

by reason of the comparatively large effect of the dampin g

due to the jet itself neglect the external damping . Then

Tr2nw a•2

	

v	
(3) e

	

j/(h-Iw 2) 2 +4ma a 4 v 2 w 2 2 V	 A 2
+ a w) 2V(mva) (2 22

From this expression, in which A = h-Iw2 , it is seen that

with a given oscillatory system the amplitude 6o will var y

practically proportional to v when this latter quantity i s

raised above a certain limit . Furthermore, that with a n

increase of in, Bo approaches a definite limit, namel y

1 vT

	

1 a .
00, " ?

	

8 a

	

8 a

and that finally there may be a certain value of a, which

makes Bo maximum. This value is in the ordinary way

found to be determined b y

an, =
V

A-
Y 2wrnv

We may introduce the natural cyclic frequency w ' of

3 '

(4)

(5)
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the oscillatory system . This quantity is determined by

1 . We mav thus write

V

1400_
w 2)

an

	

v2wmv

may finally write (3) a s

(6)

We

(7)

If we introduce here the value (6) for a we find the maxi -

mum of Ø o

(8)
1

=~o,"I

	

2 co
1 /4Iw

,

	

771i) 3

f \ 2

where the numerical value of the quantity
r /

I w
l -

11
is to

be used. From (7) we see that if w ' = w, i . e . if there be

resonance,

	

_ z v

	

1 ~
c,"t

	

2w 2a

	

8 a

We thus get the same value of the amplitude as that t o

which the latter approaches when in- or v-increases beyon d

all measure, and what is highly interesting, a value quit e

independent of all parameters except 2. and a .

In order to illustrate the conditions indicated above ,

curves for the variation of the amplitude 0 0 with v, m

and a were calculated . They are reproduced in fig . 17-1 9

and as will be seen correspond to two rather differen t

systems, one heavy with a frequency only
3

of that of

the turning moment acting on the system, and another

comparatively light and with a natural frequency equal t o

(9 )
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2
3 of w . In the first case Bo is nearly proportional to a 2 m

/

	

` 2

and to a . In the latter case the damping member 1 2 a I in
(7) plays a considerable part and wc therefore see that the

Bo
A : 3•460 , ,z .tra, d =4,rcnn, w314, o•Ga

o fJ~3=ioo, ,ro-tro, d =4amrct, w =3t4, u -6ao ~o~ ,
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Fig . 1 9 . Ø0-a-Cnrves .

	

Qå

0a v-curve for greater values of a approaches a straight
line, while the 0 0-d- and so the Bo m-curve approache s
the constant value 0 .5 and the 0-a-curve exhibits a ver y
pronounced maximum .
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II .

The Jet-Wave-Vibrator .

1 . The Vibrator with a Jet-Wave of constant Amplitude .

We will consider the motion of a balance or see-sa w

B, fig . 20, hit by a jet-wave J of constant amplitude a0 . We

assume the axis of the wave to pass through that of th e

balance 0 and to be perpendicular to the latter . We shall firs t

derive an expression for the moment with which the jet -

wave acts on the see-saw, when the same is kept in it s

normal position perpendicular to the axis of the wave .

The particle ds of the wave contains the same mas s

of liquid as the element dx of the jet from which the wav e

is made, dx being the projection of ds on the axis of th e

wave. The mass referred to is thus m • dx if ni denotes th e

mass per cm of the original jet . It moves down agains t

the bar of the see-saw with the velocity v of the origina l

jet, carrying with it the momentum my dx . In the course

of the time
dx

all the momentum perpendicular to B is
v

destroyed . It means that the bar is acted on by a forc e

(1) F _
nuz dx

	

nmv 2 .
(dx/v )

The corresponding turning moment i s

(2) M = mv2 a .
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Now a varies with time according to

27r
(3) a = ao sin T t = ao sin wt .

Thus

(4) M = mv2 ao sin wt .

We will now suppose that the bar is kept in a position

forming the angle B with the normal position . Again the

component of the momentum perpendicular to the deflecte d

bar is destroyed during the collision, thus my cos 0 • dx .

But the time required for the destruction now greatl y

depends on the element, as will be seen from fig . 20a. The
element ds will not have "passed" the bar completely unti l

the moment when a reaches b . It means that the collision
takes the time

(5) dt =
dx - dg tgØ

_ (1-t Bdg)
, dx .

v

	

g
dx v

The force perpendicular to the bar thus become s

(6) F
12

= 1120 2 'COS 9 .

Now the equation of the jet-wave at a given moment t

may he written

y =aosin2 ;r(7)

from which

(8)
dy

x

= - a
27r

cos 2 ;s T-~ I = ~~ • ,/a 2

	

2

o

	

/

	

y o- 9

Introducing this in (6) we get

(9) Ilt = mv2 cos 0 .	 1	
) 7

1+- tgB )/aô-u 2
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Now the turning moment M is Fn . a ' = Fn y/cos 0, thus

(10)

	

M = mvs 7, •

	

et/R

Finally we may take the zero-point of the system of co -

1 -I-
2a;

tg 0Vaå

Fig . 20 a

Fig . 20 b

Fig . 20 c

B

Fig . 20 . See-saw hit by a Jet-Wave of constant Amplitude .

ordinates to coincide with 0, fig . 20. Then x = ytg0 and
from (7) we get

~ t

	

too)(11)

	

y = ao sin 27z T - y	 J

If we want to express M as a function of the time t, we must
solve (11) with regard to y and afterward introduce the
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result in (10) . The practical way to produce a picture o f

the relation between M and t is first to calculate, by means

of (11), t corresponding to a number of values of y . The

result may be represented in the shape of a curve showing

a as a function of -
T[

. Furthermore a curve must be pro -
0

y .

	

zT/,; - å tgel
4,.,i .: .

nnnEIM%ITi nII.11.1 nG~lnn1,' ~
nn~'nM~nL':.:~~::_:n~;:Øi, ►.nnMn ►.n..nn r.nn.nn

	

~ ~~~n~~ v ►w~nn
n .~n,~ ►,a _ _a~ ►

a i
-~n.nnn

n~in rti~i

	

ninnnn1,►.=C.~, ~

	

. ,.nnn
nr sn ;

	

n ~ir.Ennnnn~nn~i~~~ -ï ~ n~iUinnEnn

:n? n::::::~:~:► ~~n' ir nnniMMirNnnrnriMnEMnnrn►11 nEI~nnnEnnnr.,nrin►r~nWiM.~nrinrin
n ,:n:":►'nC~ ' n ,®..å::n
nan/Itlnn1\n 111~ =MANN=

nnn11nI \~n~11"InMn11nI\In11nn
1InnMIn\nn'I_nnRMn\nnnn

Fig . 21 . Curves representing y = ap sin 2 rt
(T -

Å fg
Ø)

.

duced representing M as a function of g, thus the graphica l

picture of (10) . Now combining the two curves, a picture

of M as a function of t is easily obtained .

We shall here confine ourselves to illustrating what has

been said above by means of the curves in fig. 21, re-

presenting the function (11) for three values of 0 and fo r

oo = R, = 1 . The curve corresponding to 0 = 0 is of cours e

the simple sine-curve . The curves for B = 20° and 0 = 40 °

exhibit a number of values of q corresponding to the same
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value of t . The explanation is very simple . For if the de-

flection of the balance B in fig . 20 is sufficiently great i . e .

greater than then the bar is cut simultaneously i n

several places by the wave. It may be noticed that e m is

determined by

(12)

	

tg H

	

7'

711 = - 2za o

or if 11 = ao, H 711 = 9° 3' .

The expression (6) may be obtained in a somewhat different
way as indicated in fig . 20b . The element of the jet-wave is her e
confined between two planes parallel to the surface of B . The
momentum of the element is, with the indications of the figure ,
vS"z cos e (Q the density of the liquid) . The particle disappears

into B in the course of the time -7 . Thus the force perpendicu -
U

lar to B is 0" 2 cos`'- v . Now it appears from the figure tha t
S" = S'/cos (F -0) if S' is the area of the normal cut through
the wave-element . Furthermore S' = So cos u, So being the cross -
section of the original jet . Thus

cosu	 v2
cos

2
0F11 = ()So -

cos ((I,- d)

COS B COS F

cos (u-Ø)

= mv'cosd•1f
tgutg B

which expression is identical with (6), tgu being equal to -
y

dx
It may be remarked that our method of calculating the force

and turning moment fails if

dit
dx = cot e

for in that case the expression (6) gives Flt = oo . The case re-
ferred to is that indicated in fig . 20c, i . e . the bar has become a

tangent to the wave-element. Of course the force or moment i s
not infinite . In order to obtain its actual value we only have t o

employ another method of dividing the wave into elements, thu s
for instance that indicated by the double hatching . We shall not,

(13)

1

(14)
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however, bother about the problem, it being practically of very
little interest, even though we shall meet with it in some of th e
examples presented in the following .

In case of the deflection 8 being so small that we ma y

put cos 2Tr
it

~g
	 = 1, the expression (11) may be replaced b y

t

	

2TrytgB

	

t(15)

	

y=aosin2Tr
T
-a•

	

•cos2Tr T

from which we find

ao sin 2Tr

T
(16)

	

1+2
Tr lye

a cos 2Tr T

aosin2TrT (1 - 2r 'g0 aocos2 ;rT I .

Introducing in (10) after having replaced J/aô -
y2 by

2Trao cos T t we get

(17) M =mv2 a 0 sin 2TrT 1-4Tr
ti

tg0 • sin T t

If finally 4Tr tg B is small compared to 1

2Tr(17)

	

M = mv 2 a0 sin

	

•
T

i . e . in the first approximation the moment is independen t
of B .

We may now write down the differential equation fo r
the motion of the see-saw in the latter case . In so doin g
we shall replace v in (17) by the relative velocity u 1. which
is determined by

U]• =

	

y • titH = v --ao sin wt'
dt

.(18)
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Thus
//
	 	 )sin t

	

1V1 = ma° I v - a ° sin w t

= in v 2 a ° sin w t- 2 mag v sin' co l •

	

.
(19)

And the equation in question become

s (20)I d'' ±(p+2magvsin'cot)
dB=

, he = mv 0 a sin co tdt 2

	

°

	

dt

	

°

provided the see-saw has the character of an oscillator y

system with a moment of inertia I, an external dampin g

p e
and a directive moment he. If p = 0 we may write

(21) I t ±magv . (1-cos2wt)• d8+he=mv 2 a° sin wt.

The coefficient of dt
O

, i . e . the damping-factor, thus varie s

with time. Its mean value is mag v . Probably it will prov e

difficult to solve the complete equations (20) or (21) but i t

seems likely that we shall obtain a fairly good first ap-

proximation by simply neglecting the variations of th e

damping, i . e . by solving, in the case of p = 0, the equatio n

(22) dl +magv -+h0 = mv'a ° sin cot .

The problem has thus been reduced to the ordinary pro -

blem of the motion of an oscillatory system under the

influence of a harmonic moment .

It is interesting to compare the present system with th e

oscillatory system acted on by a twin jet-chain . In th e

latter case we substituted for the jet-chain a jet-wave, th e

amplitude a° of which was
2

times the arm a on whic h

the chain acted . At the same time -ve kept the dampin g

factor 2ma'v, of the jet-chain action . Now, when the
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oscillatory system is actually acted on by a jet-wave w e
keep its motive force, Inv' a, sin wt, but replace its damping
by the damping of a twin jet-chain, the arm of which i s

a =

	

flot ao • 9 , which might have been expected andl 2
2r

which is not very different from V 2 . On the whole th e

problems of the two kinds of motions have been reduced
to one. Thus it will not here be necessary to repeat th e
discussion with respect to the amplitude which has alread y
been given in the treatment of the jet-chain-vibrator .

2 . The Turning Moment in the Case of a Jet-Wave of the
circular Type .

We shall next consider the see-saw hit by a jet-wav e
of the circular type i . e . the wave which may be produced by
the interaction of a constant magnetic field and an altern-
ating current passed through a conductive liquid-jet . The
characteristic property of this wave may be said to be that
an element ds, fig . 22, of the wave contains the same mas s
of liquid as does its circular projection dr of the original
jet. The equation of the jet-wave at a given moment t may
with polar coordinates r, a be written

(ht_w
)sin a

	

sin ao sin

	

- .
/v

On the basis of similar considerations as in the case of
the wave with constant amplitude we derive for the forc e
perpendicular to the deflected bar the expression

(2)

	

F = mv2 cos (B -}- a)

	

d
r

dr- dz

dr + dz being the time which it takes for the element ds
U

to "pass" the bar. The turning moment corresponding to F i s

(1)
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M=F •a' =F
-a cosy -

	

rosincc
n

	

cos (a +e)

	

n cos (a + B)

M = 711v2rQSln a'-
dl

dr- d z

It is now seen from fig . 22 that

Fig. 22 . See-Saw hit by a Jet-Wave of circular Type .

cos B
r - ro -

	

_
coS(a -FØ)

dr _ dz

	

sin (a -H B )
da

	

da =
ro cos - cost (cc+F0)

.

Introducing in (4) we get

1
(7)

	

M = mv2 ro sin a
cos B sin (a+ 9) d a

	

+1o cos 2 (a+e)

	

dr

The value of
da

is found from (1) :

(3)

thus

(4)
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r
da

	

sin ao cos w t- w

	

co
ti sin

,
- a ° - sin 2 a w

(8) dr

	

cos a

	

v

	

cos a

	

U

Thus
1(9) M = mv 2 r ° sin a

1+2 ;r r0 cos B sin (a+B) vsinb a0-sin2 a
cos t (a+O) cos a

If a and 9 are both so small that we may put cos a ,

cos 9, and cos (a + B) = 1 and if - . 27r is not too great,
the expression (9) may be writte n

M = mv 2 r° sin a ° sin w
r
v

LL
I1-°•2 r sin(a -}- B) sina ° cos (Wt-W 1)

U /
/

	

1
(10) i

	

= 77tU 2 r° sin a ° sin Wt-W
U

I
j

11-27r sin' a, sin(wt- w -)coslwt- col 1

-27r,
7~ sin B sin a ° cos (wt- w )]

Now, if in the general case we want to find the momen t
M as a function of the time t, we should first introduc e
the r taken from (5) in the expression (1), thus obtainin g
the equation

(11)

	

sin a = sin a ° sin
w t - r~> t ° •	 cos B

	

l
U cos (a + 0) )

The latter equation should then be solved with regard
to a and the result introduced in (9) . Actually the proble m
must of course be treated in the manner indicated above .
I . e . first we shall ascribe a number of values to a in (11 )
and find the corresponding values of t, afterwards repre-
senting a graphically as a function of t . Next we shall by
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means of (9) produce a graph of M as a function of a .

Finally, combining the two graphs, we may draw the curv e
representing the relation between M and f corresponding to
the angle O of the deflection in question .

We shall now illustrate the production of the M	 t-curve
by an example . We choose the case 0 = 20°, ao = 0.5 ,

= 1 from which WÛ° = 22-r r-°-° = 2Tr . In fig. 23 the wave
2,

	

2,

has been drawn in a series of positions . In the picture ,
the construction of which we shall not here explain'), th e
deflected bar of the see-saw is indicated as B B . Tab. I
first shows the numerical determination of the relatio n

between a and t or rather t given by (11) . The two solu-

tions of (11)
a

/ t

	

COS 0

	

arc sin
(S

iSlnn	 )
a(12) 2~d--

	

°
T cos(a+0)/

	

/sing \
_r, - arc si n

ll

	

\sin ao /
1) Compare : The Jet-Wave . Vidensli . Selsk. Math.-fys . Medd . IX, 2 . p . 35 .

	

Vidensk . Selsk . Math .-fys . Medd . IX, 4.

	

4
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obviously correspond to the two intervals 0-an and ao 0 .

Tab . I is represented graphically in fig . 24. The curve ex-

hibits up to three values of a corresponding to certai n

of t . This will be understood from fig. 23 which

that the bar with certain positions of the jet-wave

Fig. 24 . c-t-Curve, ao = 0,5, 0 = 20°,

	

= 1 .

cuts the latter in three points . It may furthermore be noted

that the construction in fig. 23 may be used for a direc t

determination of the curve in fig . 24. The waves drawn

correspond to positions equidistant with regard to time .

Thus if we draw the radii to the points of intersectio n

between BB and the wave-pictures and measure the a's of

the radii, we have a as a function of time . In this, not

very accurate, way the points in fig . 24 marked by crosses

are determined .

a
Oa

o

Q3

02

0,

0

- 0

-09

-03

-os

values

shows
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The next part of our problem consists in the numerica l

and graphical determination of the M-a-relation given b y

(9) and originating from (4) . In the calculation a certain

account must be kept of the sign of the members in th e

denominator of (9) . The simplest way to do this is probabl y

1!11t°1ii1P111F.i
nnn nnnn.nnnn
nnnnnnnnnnn

	

iin~ innnnnnnnnn~:9nnnnnn_nn. . :s::
nnnnnn nnnnn_m:.nnnM
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:::~ n. nnn.n._.n:
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nnnn
nnn ~IMnnnn nn
nnn nnnØ ~~ , nnnnn nnn
nn

	

nnnnit~nnnnn:nnn~n:~~ nnnn Mnnnnnnnnn`_.r_.n .~Mnnn~nn. n
n~%nnnnnn. nnn nnnr nnnnnnr~~ ~nnnnnnn
~ ~nnnnnn ~ nnnnnn

::::::::8~~nnnn::9~::::::n.:~~~0~®IIÇ:::
Fig . 25 . H-a-Curve, ao = 0.5, 0 = 20°, l = 1 .

to inspect a construction like fig . 23 . In tab. II some of the

results of the numerical determination have been recorded

and in fig. 25 the complete M-a-curve is drawn. There is one

remarkable thing about the curve, namely that, corres-

ponding to two values of a, it exhibits infinite values o f

M. In order to . understand this we shall again have to in-

spect fig . 23. From this figure it is seen that, correspondin g

to two values of a, the jet-wave will touch B B . (The

a

4*
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points a and b) . When thi s occur s we have seen that our
theory of the mechanica l force and of the turnin g momen t
fails . Thu s the two point s of the curv e in fig 2 5 are not
to b e take n seriously . However , we shal l not try to deter -
mine the curve-branches by which they ought to he re -

n I nnnnnnnnn~~nnnn!c
n q~ s

=40° nnnnnnnn'~®~nnn

3nn.nnnnnnnnn'I~n.n n
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Fig . 26 . M-f-Curve, cao = 0 .5, 0 = 20°, Z = 1 .

placed, these singularities playing only a small part in th e
final result.

This is reproduced in fig . 26, which thus represents M
as a function of t . Obviously M may at the same tim e
exhibit up to three values, actually, however, the thre e
values combine to one which is obtained by simply ad -
ding the components . This has been done and the re -
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Table I .

(1 )

cc

(2 )

a

(3 )

sin a

(4)

sin a

(5 )

	

(6 )

t

	

0
sin Up

-

T

	

cos (

co s
a.-~Ø) ~~

0 °0 0° 0 .0000 0 .000 0 .00 0
0 .1 5°44 ' 0 .0998 0 .208 12° 3 ' 0 .21 0
0 .2 11°27 ' 0 .1985 0 .414 24°27 ' 0 .42 7
0 .3 17°12' 0 .2957 0 .616 38° 3 ' 0 .66 4
0 .4 22°54 ' 0 .3891 0 .812 54°18 ' 0 .94 8
0 .5 28°36' 0.4787 1 .000 90° 1 .571

(1) (7) (8) (9) (10) (11) (12)

a cos (cc + 8) cos 0 6° t 0 .5 t
cos(a,-1- 0) 2a T -(9) T

0 0 .940 1 .000 0 .0000 1 .000 0 .5000 1 .50 0
0 .1 0 .900 1 .048 0 .0334 1 .081 0 .4666 1 .51 5
0 .2 0 .853 1 .105 0 .0680 1 .173 0 .4320 1 .53 7
0 .3 0 .797 1 .181 0 .1059 1 .287 0 .3941 1 .57 5
0 .4 0 .733 1 .285 0 .1511 1 .436 0 .3489 1 .63 4
0 .5 0 .661 1 .422 0 .2502 1 .672 0 .2498 1 .67 2

0 0 .940 1 .000 0 .0000 1 .000 0 .5000 1 .50 0
- 0 .1 0 .969 0 .971 - 0 .0334 0 .938 0 .5334 1 .50 4
- 0.2 0 .989 0 .951 - 0.0680 0 .883 0 .5680 1 .51 9
- 0.3 0 .999 0 .940 - 0.1059 0 .834 0 .6059 1 .546
- 0.4 0 .999 0 .940 - 0.1511 0 .789 0 .6511 1 .59 1
- 0 .5 0 .989 0 .950 - 0.2502 0 .700 0 .7502 1 .70 0

suttant M-t-curve in fig. 26 is that which limits th e
hatched area .

We shall now explain our reason for spending a good

deal of time on the problem of producing the M-t-curve .

It was done in order to find the cause of a characteristi c

property of the see-saw hit by a circular jet wave. Prelimi-

nary observations showed that the see-saw without any



Table II .

27r cos 0 = 5 .9 0

L = 5 .90
sin(a + 0) j' sin s ao- sin tr er

•
cos2 (a.-}-Ø) cos a

a sin a cos a sin a i 8(

	

i

	

) cos a

	

B(

	

f

	

) L sin a
=

sin a11
1sin Z a -~ y

	

p

	

sins a DZi 1~-L
-

-1-~ L

0 0 .0000 1 .0000 0 .342 0 .940 0 .479 1 .095 0 .000 0 .00 0
0 .1 0 .0998 0 .9950 0.434 0 .900 0 .469 1 .488 0 .040 0 .20 5
0 .2 0 .1985 0 .9801 0 .522 0 .853 0 .436 1 .880 0 .069 0 .22 6
0 .3 0 .2957 0 .9553 0 .605 0 .797 0 .377 2 .220 0 .092 0 .242.
0 .4 0 .3891 0 .9212 0 .681 0 .733 0 .280 2 .270 0 .119 0 .30 6
0 .5 0 .4787 0 .8780 0 .750 11 .661 0 .000 0 0 .479 0 .00 0

sin a sin a
. . NI~ =

1 1
L t113 =

1- L

0 0 .0000 1 .0000 0 .342 0 .940 0 .479 1 .095 0 .000 0 .00 0
- 0 .1 - 0.0998 0 .9950 0 .246 0 .969 0 .469 0 .730 - 0 .058 - 0.37 0
- 0 .2 - 0.1985 0 .9801 0 .149 0 .989 0 .436 0 .400 - 0 .142 0 .33 1
-0 .3 - 0 .2957 0 .9553 0 .049 0 .999 0 .377

	

, 0 .114 -0 .205 - 0 .33 3
- 0 .4 - 0 .3891 0 .9212 - 0 .051 0 .999 0 .280 - 0 .092 - 0.429 - 0.35 6
- 0 .5 - 0.4787 0 .8780

	

. - 0.150 0 .989 0 .000 - 0 .000 - 0.479 - 0 .479
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directive moment will always oscillate about a positio n

perpendicular to the axis of the wave . Thus the system

has

	

a way a directive moment of its own . Now the

hatched areas over the
l

axis in fig. 26 represent the tim e

b

o Q

Fig . 27 . e-t-Curve, ao = 0.25, e = 20°,
),=

1 .

integral of the moment which will increase the deflection 0 ,

while the area under the axis corresponds to the momen t

which will reduce the deflection . The areas were measured

by means of a planimeter . The results are written on th e

areas, and it is seen that a lime-integral of ab . 34.3 tends

to reduce B while only a total time integral of 23 .5 tends

to increase Ø. We thus understand the tendency of the bar
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to return from a position of deflection to the positio n

perpendicular to the axis of the jet-wave .

This tendency, however, is only pronounced if both aa

and the deflection 0 are not too small. Thus if ao = 0.25 ,

	 11
/JL L'~ô

0 .3

r
Fig . 28 . M-a-Curve, ao = 0 .25, 0 = 20°,

	

= 1 .

B = 20°, we find the three curves shown in figs . 27-29 . The

a - t-curve is now single-valued, and the difference betwee n

the two time-integrals is much smaller than in the cas e

a, = 0 .5, 0 = 20° . However, it is interesting to note tha t

the mean values of the two integrals in the two cases only

differ very slightly, the mean value in the case ao = 0 .50

being 28 .9, while in the case ao = 0 .25 it is 30.5 .
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Investigations similar to those indicated above were

carried out for Ø = 0, thus for the see-saw in its norma l

position. Fig. 30 shows the M-t curves corresponding to

ao = 0 .5,

	

= 0, and to

	

equal to 0.5, 1.0 and 1 .5 re-

spectively. One of the curves has for obvious reasons bee n

M
1fø-v,
0.3

B

6

4

2

OI

B

6

Of

	

02

	

23

	

Q4

	

05

Fig . 31 . M-t-Curves,

	

= 0 .25, 0 = 0 .

reproduced in two scales . Fig. 31 represents similar curves

corresponding to the case as = 0 .25, Ø = 0 . Of course

there is rio longer any difference between the moment s

acting on the right-hand and left-hand side of the see-saw .

The curves afford a direct conception of the relation betwee n

the time-integral and the parameters ao and r 0 . Thus fro m

fig. 31 it is obvious that in the case ao = 0.25 the time -

integral is nearly proportional to ro, the three curves re-

O
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presenting	
M	 having about the same area . In the case

III V

a° = 0 .5 things are different. Here the time integral seem s

roughly independent of r ° , as appears from the representatio n

in fig . 32 where the ordinate ism2 _ A1Û 7

	

. Further -
a

more it is seen from a comparison between fig . 30 and

CL 7

0 5

03

07

o.. ;

	

0.1

	

03

	

0v

	

o 3

Fig . 32 . M -I-Curves, ao = 0 .5, 0 = O .

fig. 31 that for = 1 there is but a comparatively small

difference between the time-integrals, the latter thus varyin g

only slightly with a ° .

3. Motion of the See-Saw under the Influence of a Jet-Wav e

of circular Type .

It is evident from what has been stated above that it

would be practically impossible to develop an exact theory
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of the motion of the see-saw under the influence of th e
circular wave. But we may try to solve the problem ap -

proximately by replacin g

the actual system by

some other system. We

may suggest the follow-

ing . Firstly we shall

substitute for the wav e

a pure sine wave J' ,

fig . 33, travelling with a

velocity v in a direction

under an angle 2 with

the axis of the actual jet-

wave. We shall ascrib e

to the jet, from which

we may suppose J' to

originate, the mass m ' per
c

cm where ln' = rn cos
c

Now the problem of th e

motive moment has bee n

reduced to that already

solved in the case of a

wave with constant am-

plitude hitting a bar de -

flected the angle 9 . I f

9 is sufficiently smal l

Fig. 33 . Substitutes for the circular

	

the motive moment may
Jet-Wave .

	

be expressed by

(1)

	

M = m'v 2 ao sin rw t = mvz ao cos 2 • sin cot .

This expression agrees with that which we may derive from

v
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(9), paragraph 2, on the assumption of B = 0 and a ° being

sufficiently small . For then M = mv2 r ° sin a = mv0 r°

sin a ° sin w t, where, compare fig . 33, r ° sin a ° = a° cos 2 .
Now again, when developing an expression for th e

damping, we shall replace the sine-wave by a jet-chain, a

link of which may be J", fig. 33 . We shall assume the

arm of the chain to be . The mass per cm of J" shal l

be m ' = m cos 9 . If the see-saw is moving with the

angular velocity
dt

the relative velocity of J" with respec t

to the hitting-point of the bar B of the see-saw i s

a-
d B

	

fig . 33, and the force perpendicular t ov-acos
2 dt} '

`B originating from J" i

s =m (v -a cos
2
-1 2 . cost 2 .

Thus the moment i s

M=m
//
1v-acos2 dtt ) acos2

2

Inv' a cos2 2- 2 mv a 2 cos3

2

dt .

Replacing a by	 a0	 we fin d
a

°•cos 2

(4)

	

1l2 = mv 2 v-°° cos

2

-mvaa cos

	

2~2

We thus ascribe to the actual wave the motive momen t

(5)

	

NI = mv2 a° cos 2 • sin w t

and the damping moment

(2 )

(3 )
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a
M' = -mvao cos

	

d B

2 di

If the see-saw has the moment of inertia I and the direc-

tive moment h, then the amplitude 0° of its stationary

motion should be

mv2 a ° cos
e

/(h -I (0 `L)2 + I mvaå cos c2 co )

and if h = Iw2 (case of resonance)

1 v T

	

1 %

80

	

27c a°

	

7c a°

4 . The Turning-Moment with a Jet-Wave o f

rectangular Type .

Finally we shall consider a see-saw hit by a jet-wav e

of rectangular type, fig . 34. Such a wave or a wave o f

nearly that kind may be produced by oscillating the nozzl e

of the jet in such a manner that the axis has always th e

same direction. While in the case of the jet-wave of the

circular type the radial velocity is always the sane an d

equal to the velocity v of the original jet, then with the rect-

angular type it is the velocity-component in the directio n

of the said jet which is equal to v . We proceed to develo p

an expression for the moment with which the jet-wav e

acts on the see-saw .

The element ds of the wave now contains as much

liquid as its projection dx on the original jet, thus m•dx .

It carries with it a momentum mvr dx, v,- being the velo-

city in the direction of the path of the element i . e. the

radius r. The component of the momentum perpendicula r

(6 )

(8)
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v
to the deflected bar B is rn v i. . dx cos (a+ Ø) . Now Ur = -

cos a

and thus the said momentum is my dx
cos (a 9)

This
cos a

momentum is destroyed in the course of the time

Fig . 34 . See-Saw hit by a Jet-Wave of rectangular -Type .

dt = -dji+d12 . cos a .
U

Thus the force perpendicular to B and originatin g

impact of the jet-wave element i s

(2) F,:=mv 2 cos (a + B)

	

dx
cost a

	

dr i =, dr2

From fig. 34 it is seen that

(3) dr1

and that

(4)

(1)

from':t
li

e

dx

cos a

z

	

a

	

a '

sing

	

cos (a -- B)

	

cosa •
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From the first equation (4) we get

xo tg a(5) z = sin Ø - cos (a + Ø)

from which

(6) dz = drz, = xo sin
B cos'

	

~a cos

	

1

	

sin
(a =, Ø)

	

,
tg

a cos'(a } Ø)) d

Introducing in (2) we get

Fn = 122v 2 COS (a + Ø )
Cos a

1
1

	

sin a sin (a H- Ø) d a
cos a cos (a + Ø) + cos' (a B)

	

dx
1- xosin Ø

and for the moment in question

cos a
M = Fn a

= Fn= cos (a B) a

m = m v2 xo tg a

1
1

	

sin a sin (a+Ø) d a
1- xo sin Ø [cos a cos (a -I- Ø) + cos' (a B)

	

dx

The value of dx
must be derived from the equation of the

jet-wave which at the moment t is

x
(10)

	

tga = tgao sin 27r 7t,-
~

from which

	da

	

227

	

( t
cost a

	

2 tgao cos 27r \
(11) ;

	

27r
ytg2ao-tg 2 cc • dx

Introducing in (9) we get

(8)

thus

(9)
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(12)

	

M = inv 2 xotg a

1
xo

	

f

	

1

	

sin a sin (a+ 0)1	1 + 2Tr- sin H l	 +	 vtg 2 aatg 2 a . cos 9 u .
COS a cos (ce + H)

	

cos t (a + B)

From fig. 34 it is furthermore seen tha t

If we introduce this in (10), we get for the relation betwee n
a and t :

(14) tg a = tg ao sin 27c {

	

(1 + sin 0 cos (a+B)

If H = 0 we find from (14)

(15) tgce = tga 0 sin 2sr~f
1
- xo ~

and from (12 )

(16) M = mv2xotga = nn~2xotga,sin2rr t -~~ .

We may now carry out the same investigation as wa s
undertaken in the case of the circular wave-type in orde r
to learn whether in the present case we must expect th e
same tendency of the deflected bar to return to the positio n
perpendicular to the axis of the jet-wave . We accordingly

calculate graphs for the relations a- 1,, M- a and M-- ..

Fig. 35 represents the M- --curve for the case ao = 0.25 ,

B = 20° and 7 = 1 . The time-integral of the moment which
will carry the bar back to its normal position is but slightl y
greater than the time-integral which will increase th e
deflection . Undoubtedly the tendency in question is les s
pronounced than with the circular wave-type as will appear

Vidensle . Selsk. Math .-Fys . medd . IX, 4.

	

5

(13)

	

x = xo+ a ' sn1H = xo~1+sm H
sin a

cos (a+H)
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from a comparison between fig . 29 and fig . 35. The time -

integrals themselves are, however, very nearly of the same

size in the two cases. In fig. 36 the M --T-curve corres-

ponding to a ° = 0 .5, e = 20° and

	

= 1 is reproduced .

Now the time-integral which tends to take the bar back

to its normal position is undoubtedly appreciably greate r

than that - the area above the axis - which will increas e

the deflection .

With regard to the motion of the see-saw we shall i n

all probability not be far wrong if, with small values of a ,

we simply replace the actual ,jet-wave by a wave of con-

stant amplitude a ° = x° tg a ° and with a velocity v, thus if

we substitute a motive momen t

(17) M =

	

2 a ° sin oi t

and a damping momen t

(18) M

	

mva2
d O

° dt '
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