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1. Introduetion. The difference calculus has led to the
introduction into analysis of new classes of functions
defined as solutions of equations of the type

A4FE = ¢()

or of difference equations of higher order. Among the
simplest and most important of the functions defined in
this manner is ¥ (z), the logarithmic derivative of the
gamma function.

The central role played by ¥ (z) in the difference cal-
culus, as well as its importance for analysis in general,
“would secem to justify a detailed study of the properties of
this function. Most of these have been known a long time,
but there are still some problems outstanding. In the pre-
sent paper we undertake an investigation of the disiribu-
tion of the values taken on by % (z) and of the corre-
sponding conformal mapping. This problem requires a
detailed study of the properties of ¢/ (z) and in particular
of the zeros of this function. In Part I of the paper we
are chiefly concerned with a determination of regions in
the plane where the real part of w(z) is positive. The
study of 1'(z) follows in Part II; the main problem is
attacked in Part ITL*

! The present illvcétigzttiou was undertaken at the suggestion of
Professor N.E. Nérlund. I should like to use this opportunity to express
my gratitude te Professor Nérlund and to all the Copenhagen mathema-
ticians for their friendly interest and for the cordial reception which
they have given me.
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Part I.

A Preliminary Study of v (z).

2. Formal properties of w (z). The function w(z) is
defined as that principal solution of the equation

AF(z) =

W=

which assumes the value —C for z = +1, where C =

0.57721566649 ... is Kuler’s constant. We have
D o Nt
M w2 = C+}éﬂ/ n+1 nt+z]’
Of the many relations satisfied by 1w (z) we notice the
following
1

@) weEHD = P+,
(3) Wl —z) = Y+ mwceotmz,

m—1
® m (mz) = g WY <z + %) + m log m,

n=20
(3) lim [w(z)—logz] = 0.

o0—>

Here m is a positive integer and log z denotes the principal
determination of the logarithm; ¢ is the least distance of

z from the negative real axis. Let us write

(6) W(x+iy) = Rx,y) +il(x, g),

where

o

S k 1 n--x
7 —_ I
™ R, ) ¢ P {n—kl (n+x)P+ g?)’

n=~4
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1
® R s

In view of formulas (2)—(4) these functions salisly the

following relations:

) , X .
) Rx+1,y) = R(x, U)+‘;:§—"yg,
(10) I+l y) = (e, g)——1—
I s U X, J (1:2 yz,

Rl—x,—y) = RQ—a,y) =
coth®> wy—1
cot? mx + coth® gy’

[
l
I Il—a,—y) = —10—=x,y) =
l

= R{x,y)+ncotmwx

(12) _ ) cot? wa + 1
= (@ y)—mcoth ry cot? wax + coth® wy’
jn—_]’.
(13) mR(mx, my) = § R <:c+;%, y> -+ mlog m,
n=0>0

m—1

\ n
(14 mI(mz, my) :2_/ I<x+a, y>,

n=1{
(15) lim [R(x,y)—log|z]] = 0,
o— ®
(16) Him [I(x, y)-——arg ;/} = {).
o—>

For particular values of x we can express I(x,y) in

terms of elementary functions. Thus

T

(an 10.y) =3

1
coth mwy + 2y

1 T
(18) I<§, y) =3 th wy.
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The former relation is obtainable from (10) and (12) by

. . 1
letting x— 0, the latter from (12) by putling x = 5.1

For purposes of numerical calculation we shall use the

following relation ®

B “ B, (O dt

19 7) = ooz—~—~ § : o

( ) T;D() 2?/_ (ZL*;‘— )2m+1
0

Here B,, B,, ... are lhe Bernoullian numbers; Ezm ) is
that periodic function of period unity which on the inter-

val (0, 1) coincides with B, (#), the Bernoullian polynomial

2m

of order 2m. We shall use this formula for purely imagi-

nary values of z. Seiting z = iy we get
21/ 9 (t) di
(20) R(0,y) = lo + 2 —m—¥,
) J glyl < 92/.]2,, <t+1y)2111+1
0

where the absolute value of the remainder is less than

B0
. (2171*2) . |B2m’
. 2m—1) pPm

dt 2-4-6 ..
(21) J-\/IaleZ/m (t)l |l‘l‘ l'y|2m+1 - 1-3:5 ..

0

Finally we shall have some use for the following fac-

torial series

N e T(—1)" h(h—1) ... (h—n)
@2 YyGethH—yE) _; n+1 ’(Z~L 1) ... (z+n)’

oy
which converges when R(z) >0 and R(z-+ h) >0.?

' I am indebted to Professor N. E. Norlund for formula (18) which
will be found useful helow.

? See N. E. Norlund: Vorlesungen iiher Differenzenrechnung, Berlin,
J. Springer, 1924, p. 106. All the fundamental formulas for % (z) which
we use in the preseuf paper are to be found in this book, chiefly in
Chapter Five.

¥ See Norlund, 1. e. p. 251.
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3. Properties of R(x, y) and I(x, y). It follows from (7)
that ’
= gy >
(23) I(x, y) = 0 according as y = 0.

Hence all the zeros of 1/ (z) are real. As

PN § 1
Q/D(a’)‘_n=0 (11+m)2>0

for all real values of x, we conclude that ¢ (z) vanishes
once and only once on each of the intervals (—n—1, —n),
n=0,1,2, ... and in addition once on the positive real
axis. The positive zero x, lies between 1 and 2; it was
computed by Gauss and Legendre who found x, = 1.46163 . . .

s . 1.
Substituting z = —n-—- in (3) we find that

24) w(—n—%> = 1p<n—‘rg>>0 for n =0,1,2, ...

It follows that the zero x, of ¥ (z) on the interval (—n,
—n-+1) les on the left half of this interval. With the aid
of (3) in conjunction with (5) we conclude that

(25) xn oo —n+

logn’

All these facts are of course well known. We shall
now take up a detailed discussion of R(x,y). It follows
from (7) that

(26) R(x, 7)) > R(x, y,) when x>0 and |y, |>[y,].
Hence in particular
@7 R(x,y) >0 when x> x, 77

Using formula (9) we conclude that
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(28) Rz, p) % R{x+1,y) according as x % 0.
Further, formula (11) implies that
> R(l—x,y) when n+%<x<n~f—1,
(29 R(x,y) {= R(1—x,y) when x = n —&——; or n+1,
< R(1—u=x,79) wheﬁ n<x<n+*1-‘

2

Here n is an arbitrary integer including zero. Suppose that
n<—2, then (29) together with (27) implies that

oy

s=x=—n,n=123. .

(30) R(x, ) >0 when —n—
If we set n = —1 in (29) we merely get that R(x, y) >0
when —é Lax=<1—ax,

The result stated in formula (30) can bhe improved
upon; in fact we have
(31) R(x,y) >0 when xpr1<z<—n, n=1,2,3, ..,
where, as above, xn11 denotes lhe zero of ¥(z) on the
interval (—n—1, —n). It is evidently sufficient to prove

. ‘s . 1

that R(x, y) is positive for xn41 <x=—n—7, as the

a

remainder of the interval is already taken care of. But
this follows from formula (11). We have

coth? my—1
coth? wy 4 cot? ma’

R(x,y) = R(1—=x,y)—mcot wx

Let x be fixed on the interval <—n—1, ~n——é>. The
first term on the right hand side is always positive and
increases with |y|. The second term is also positive, but
decreases when |y| increases. Consequently
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R(x, y,) > R(x, yy) when —n—1 éxé—n——;

(32)J
| and |y| > |g,].
If we sel y, = 0 in (32) and assume x,.q ;/xé—nwé,
then the right hand side is positive; this suffices to
prove (31).
Next we proceed to prove that

(33) R{x, y) >0 when xS—%, ly|>

o | —

For this purpose we again use formula (11). Lelt us give
y a fixed positive value and vary x, then

7 coth®? my—1 7
< t o :
(34) s112ﬂg:7rco /Tmcothzny—l— cot? x =sh2my
If |y i% , (34) implies that R(x, y) differs from R(1—x, y)
- 7T 3 ’ 1
- T 0.9704. if o< >
by at most .~ = 0.2704. But if o< i and |y|> 5

R(1—x,y) =R <£ , é) In fact, the least value of R(1—x, 1)
in the region in question must be reached on the boundary.
In view of (26) the least value on the vertical boundary

is to be found at the Jowest point. The horizontal boundary

remains. Comnsider . formula (7) with xi% and y = —;
All the terms
n+x

(n+ )+

(n =10,1,2,...)

] |

will then be decreasing functions of x when « increases.

Hence the least value of R(l—a:, % for x§—-—2 will be

&

reached at & = —%. It is difficult to estimate the size of

71 . .
R(Z’ 3> without computation so we use the computed
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value 0.3136 (> 0.2704), to be found in Table I on p. 53.
Hence (33) is true. The same lype of argument can be
used in order to show that R(x,y)>0 when x=<0,
|y| > 1. There is some doubt whether or not R (x, y) will
take 0]n negative values on the line segment from —%‘F ;
i
to —E‘i‘E

1 .
Now let us assume that x <-—n-—- where n is an

]

inleger >3, and that |y|=y,>0. In view of (11) and
(34) we have that

3 ' T
R(x, y) 2R<n+§’ y(’)_s]TZJﬂL]O
3 7T
/R<n+§: 0>—S]T2777y0
1 1 i
=—C—2log2+2[1+3+ -+ -
¢ 210g 24 [1 Fg—l |2n+1} sh2my,
>-—C—log 2+ log <”+g>\_sh‘§;y ’
Z sS85 40

. ‘o _ 1
Thus, in order that R (x, y) be positive when x ;—n~5,
ly| = y,, it is sufficient that

) —1
sh 2nyogﬁ{10g<n—i—§>—c—log2} .
Hence, a fortiori,

R(x,y) > 0 when

. —1
(35) xS~n—~iand|y12-‘i—{10g<n+g>—0—10g2} :

Formula (385) gives a belter estimate than (34) when
n=9. Thus we see that the region in the neighborhood

of z = —n where R (x, y) <0, contracts indefinitely when

n — <. Its maximum diameter is

o(L).
logn
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The arcs on which R = 0 contract steadily to zero in
the following sense. Consider the arc of R = 0 on which
—n<x<x,(n>1) which arc we denote by R, Let us
imagine that R, be moved parallel to the real axis a
distance of one unit to the left. The transferred curve will
then completely enclose Ry i1, the two curves having omnly
the point z = —n-—1 in common. This follows from (9).
In fact, if z+1 is on Ry then R{x+1,y) = 0 and

xr

Rz, y) = >0,

m.a 7|* UZ

i. e. the point z lies outside of R, 41 provided z = —n—1.

Part II.
Investigation of vy’ (2).

4. Formal properties of ¢’ (z). In order to continue the
discussion profitably we shall need to investigate the
derivative of 4 (z) in some detail and especially the
location of the points where ' (z) = 0, i.e. the non-

singular points where the mapping ceases to be conformal.
We have

e N
(36) Y () T GE
The most important relations salisfied by ' (z) are the
following:
. / 1
(37) WD =Y @) = — g,
' . , m®
(38) W@+ =2 = sin® wz’
, 1
(39) lim [UJ (z)——j} = 0,
Q—> @ “
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et
(40) m? Y (mz) = 'l/)' (z -+ %) .
We set net
- W) = r(x, g +ij(xp),
Wil .
D Gy = > OV
7 [+ m2+p?)

n

I

(42) JGe,y) = —2y 2 -

Of the relations satisfied by r(x, y) and j(x, y) which are
a consequence of (37)—(40) we notice the following:

ngl‘z

(43) r{x+1,y) = r(x, U)—(xzq_"jzjg,
: . N 2x1

(40 Jx+1,p = j, _l,)+(x‘2+ﬁ,

28in® wa ch®wy — cos? mxshny

(45) r(e,p) = —r(l—a,p)+n [sin® ;v -+ sh® mwy)?

3

. . m® sin 2mwa sh 2y
x =—j(1l—a,5)—=— :
(46) j(x, p) jl—z 2 [sin® 7 shEmylt’

m—1

- 2, - N n
47) m* r (mx, my) 1 <ﬂc+ g l>,

n=_0

m—1

(48) m? j (mx, my) = E, j (a, 4 ;Inl’ y> i

=0

For certain special purposes we shall need the factorial
series

) B = n!
(49) w(z)—; +DzGE+1D) . G+’

prat
n=490
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which converges when % (z) > 0. This series is easily
obtainable from the corresponding series for v (z--h)— 1 (z)
in formula (22) by dividing by h and then letting h tend
to zero.! V

It is trivial to notice but useful to remember that

_ 0 ]
(0) rlx,y) = ppe R(x,y) = e I(x, )

] N g
(1) J@y) == R y) = 5y L @)

5. ' (z) in the right half-plane. It is obvious that
(52) sgn j(x,y) = —sgny when x>0,

It is further clear that v’(x) is real positive when x is
real. From these two observations we conclude that
W' (z) # 0 when R (z) > 0. In the expression

4%
sin® wz ' (z+ n)?
n=—o

we set z = ig. The result can be written in the form

_ ,_7l¢2 ; n—y*
shimy  y* < (n® -+ g»H?’
n =
Hence we have
(53) (0 ) *__Lﬁiﬂﬂ < 0
* rv g = 2¢° 2shPmy

Thus w = /' (z) maps the line x = 0 in the z-plane

upon a curve J in the w-plane
u=r0y, v=j0mn,

1 See also Norlund, 1. c. p. 243.
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which curve lies entirely in the half-plane u << 0 except for

-the point (0, 0), where J is langent to the v-axis. J does
not intersect itsell for r(0,y) increases steadily with |y]|;
it consists of two branches symmetric with respect to the
negative nm-axis, which is the asymptote of both. Let the
region outside of J be denoted by .. It will be proved in
§ 11 that " (2) # 0 in #4-J. Thus w = ¢’ (z) maps the
half-plane $(z) >0 conformally upon .#. Thus every value
in o« is taken on once and only once by v’ (z) in the right
half-plane. A simple calculation shows that

/
|U|<l1§7r2 = 1.069

on J; hence the values nol taken on in R (2) > 0 have
negative real part and a numerically small imaginary part.?

In the half-plane R (z) > 1, r(x, y) > 0. To see this we
notice first that

1
r(l,y) = l'(O,y)—I-F =

1 ?

oy ashing C

in view of formulas (43) and (53). Thus the curve r () =0
does not intersect the line x = + 1. On the other hand,
there are two branches of this curve in the right half-
plane which pass through the origin, where they have the
slopeé 41 and —1 respectively, and which admit of the
imaginary axis as their asymplote. Hence the branches of
r(x,y) = 0 which lie in the right half-plane must be en-
closed in the strip 0 < a << 4+ 1. It follows from formula
(39) that there are no other branches of the curve
r{x,y) = 0 in the right half-plane. Hence r(x, y) > 0
when x = + 1.

! To obtain the estimate given for | »| we replace each term in the
series (42) by its maximum value for &« =— 0 and sum thesec maximum
values. The estimate is rather crude; | v| probably does not exceed 0.8.
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6. ' (z) in the left half-plane. We now turn our atten-
tion to the left half-plane. Let k be a positive integer; then

k »
TPy 1 7 p—y?
E - (— ] — LA - Y

(04') 1 ( K, y) < (112 T y2)2 yz + P 1, (nz T yZ)Z ’

or

k

_ 7 1"12 yZ
. ) - — )
(535) r(—ky = > W +r (0, ).

n=1

In view of (53) we can conclude that r (—k, y) << 0 when
|yl > k. When |y| < k we have

oo7 112_‘[]2
r (M I‘", y) <n:;] (n2+92)2+r(05 -l])

.7'[2

1
_;24— 2r(0,y) = sy

Hence )
(56) r{(—k,y) <0, L=20,1,2, ..

for all values of y. Further

= n
57 T G L
(57) J—k,;p yn':z»a(”z"'"yz)z’
1
P n—+-—=
. 1 ! 2
(58) J<~k~§,y>=——2y > e P

Consequently ¥ (z) # 0 on all the lines » = —7
(n=0,1,2,...) and

sgn N [¢'(~n+iyﬂ = —1,

(59) sgn 3 [1;/ <— 1—21 + iyﬂ = —sgn y.

o
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7. Introduction of the cells. The lines x = -I; (n =0,

1,2, ...) and y = 0 divide the left half-plane into an

infinite number of cells

: n n—1

Cn: §<x< 2 » y>05
and

-~ n n—1

Coi—g<a<—=y—, g<0

Theorem: Each of the cells Car—1 and Cox 1
contains one and only one complex zero of ¥ (2).
The cells Car and Csp do not contain any zeros
(k=1,2,3 ...

In order lo prove this theorem we trace the image of
the boundary of a cell C, by the transformation w = ¥/ (z)
avoiding the vertices of the cell at the singular points in
the usual manner. For the following discussion consult
Fig. 1 which gives a schematic representation of the situa-
tion. The line drawn in full corresponds to the case when
n is odd and the dotted line to the case when n is even.

Let the image of the line segment x = Mg, 0=y be
denoted by J, In view of (57) and (58) thﬂe carve Jay
lies entirely in the third quadrant of the w-plane; it is
asymptotic to the negative real axis and tangent to the v-
axis at the origin. According to (59) Jox—i lies in the
lower half-plane; starting from a point on the positive real
axis, it ends in the third quadrant at the origin and tan-
gent to the v-axis. Jor_2 and Jojp_1 intersect at least once
in the third gqnadrant forming a loop together; it is prob-
able that Joz_—y and Jor do not intersect each other, also
that the curves J, do not intersect themselves, but this is

immaterial for our present purpose.
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The lower boundary of the cell is mapped upon a seg-
ment of the -positive real axis which is in parts covered
twice when n is odd. Finally a small circular arc|z+k-+ 1]

=0e® 09 é;, is mapped upon a large contour in the

~ -
- -
-~ - -

Fig. 1.

. s .
lower half-plane, and an arc |z+ k| = o¢'®, 5 <6 =m, is

mapped upon a contour in the upper half-plane. Keeping
these facts in mind or consulting the figure the reader will
see that the argument of ' (z) remains unchanged when
we trace the boundary of Cs; but increases by 2m along
the boundary of Csr—1, a result which suffices to prove
our theorem.

Vidensk. Selsk. Math.-fys. Medd. VIII, 1. ! 2
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We shall prove in § 11 that ¥ (2) # 0 in Czx for all
values of k. It follows that ¥" (z) maps the interior of
Coy conformally upon a region in the lower hall of the
w-plane a region which, however, may partly overlap itself.
The map of Car—q is neither conformal in the interior nor
on the boundary. Since ¢" (—k—1+¢) <0, ¢ (—k—%) <0,
W' (—k—e¢ >0 and " (x) > 0, where k is a positive in-
teger or zero, ¢ > 0 and « is real, we conclude that 3"’ (z)
vanishes once and only once in the interval (—k—1, —k)
and, in fact, on the right half of this interval. We have
also noticed that the curves Jsp—1 and Jajp—s intersect
in the third quadrant where they form a loop. This indi-
cates that 1 (z) vanishes at least once in the interior of
C2r—1. Thus we have at least 3 zeros of ¢" () in the strip
—k—% < x < —k for every integral k = 0. We shall see
later that there are exactly 3 zeros of v (z) in this strip.

8. The curves r = 0 and J = 0. In order to gain
additional information regarding the map corresponding to
w = ' (z) we consider the curves r(z, y) = 0 and j(x, y)
= 0. The points z = —n (n = 0) are double poles of ¥ (2);
hence they are double points of the curves r = 0 and j = 0.
The r-curves have the slopes +1 and —1 at z = —n, the
J-curves have the slopes 0 and e at this point.

One of the j-curves through z = —n is the real axis.
Let the other j-curve through this point be denoted by jn.
We have already seen that j(x, ) <0 in C2, and > 0 in
Egn (n=1,2,3, ...). This follows also directly from formula
(46) which shows that j(x,y) <0 if —n <2 < —n—i—é,
y > 0. Consequently j, lies entirely in Con—i -+ Con_y. It is
a closed curve which intersects the real axis at z=—n-+1
and at the point where ¥"” (x) = 0. The curve j, grows
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steadily with n in the following sense. Let us imagine that
Jn be moved parallel to the real axis a distance of one
unit to the left. It will then have a contact with j, 1 at
z = —n; with the exception of this point, the transferred
curve lies entirely within j, +1. This follows from formula
(44); indeed, if z+ 1 lies on j, then j(x+1,y) = 0 and

] o 2xy _
Jlx, y) = (® + y2)z> 0, (y=>0)),

i. e., the point z lies inside of jn 1 1.
It is possible to find upper limits for |y| on j» with
the aid of formulas (44), (46) and (48). If y is fixed positive

w? sin2mash 27y , chy
2 (sin® wax+sh®ay)? = shiay

The latter expression is less than 0.075 when y = 1. On
the other hand, we can show by a simple but tedious
calculation that j (3.5, 1) << —0.075. Further,

dj 0 \ | 3(x+n)?—y?

dx 3

= [y

This expression is certainly positive when 0 <y < V3.
1

Hence j(x, 1) increases with x when = g—g. Thus

JGe, 1) <j(8.5,1) when 1 < x <35 We conclude, with

the aid of (46), that

I
Jx 1) < j(8.5, 1)+t 2

sh® =

when — 2.5 < x < 0, and we can obviously draw the same
conclasion for the larger interval —3 < x < 0. Hence,

ly| < 1 on ji, j, and j,. We now use (48) with m = 2, viz.

. , . 1
4j2x, 2y) = j (=, y)+J<x+§, y)

2’5
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and set —3 <x <0 and y = 1. It follows that |y|< 2
on j, j; and j,. Repeating the argument we conclude suc-
cessively that |y| <4 on j,—j., |y| << 8 on ji3—js, and
so on. These limits for |y| on j. are probably not very
good for large values of n; they could be improved upon,
but the task is rather laborious.

We now turn our attention to the curves r = 0. We
have already discussed in § 5 the branches of this curve
in the right half-plane. Two arcs of r = 0 startalt z = —n
in the interior of j,. These arcs cannot remain inside of
Jns if they did so, they would have to infersect on the real
axis forming a closed curve which, however, is impossible
since ¥ (z) does not have any real zeros. Hence these two
arcs have to intersecl jn and obviously at z =z, and z, where
W' (z) = 0. These two arcs must pass through z = —n—1
since there is no other place where they can intersect the
line x = —n—1, in view of (56), and they cannot wander
off to the point at infinity.

We refer the reader to Fig. 2, which gives a schematic
representation of the curves r = 0 (drawn in full lines)
and j = 0 (drawn in dotted lines).

It is possible to find limils for the curves r = 0 which
are somewhat more satisfactory than those found for the
J-curves, Let r, denote that arc of r=0 on which
—n<x<—n+1 (n=1) and y > 0. We notice first that
rnp expands with n just as j, does. If z-+1 lies on ry,, then
r{x+1,y) = 0 and

2 P
r(x, y) : (;2—_‘_—2]%)—2 >0
provided |y| < —a. That this proviso is verified follows
from formulas (62) below. Hence, we are justified in con-
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cluding that the point z lies inside of ry.1, if z does not
coincide with one of the poles.

It follows from (41) that r(x, y) > 0 if all the following
inequalities are simultaneously fulfilled:

(60) (x+n)P—py*>0, n=0,1,2, ..
y/\

[P

- - e e
=-==11

Fig. 2.

These inequalities determine a sector of opening % in the
right half-plane, and, in addition, a set of squares in the
left half-plane each square having a line segment (—n—1,
—n) as one of its diagonals. Thus rp ‘lies above the polygo-
nal line joining z = —n, ~11+%+L2 and —n+ 1.

A partial limitation of r, from above can be found
with the aid of (45). If & <0, r(1—x, y) > 0. Hence,
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r(x, y) will be negative when = < 0 and sin®wax ch? wy—
cos® mxsh? wy < 0, or

(61) r(x,y) <0 when x <0 and tan’nxe < th®my.

This inequalily implies that r, lies below the corresponding
arcs of the curve
tan? ra = th? Ty or y = ;}; log tan n(iia:).

This curve consists of infinitely many arcs, passing in pairs
through the points z = —n where they have slopes equal
to =1, and having the lihes x = **Il:kz as asymptotes.
This method of course does not give any upper bound for
rnp in the interval —n-- i La<-—n+ ;

In order to fill this gap we use the same method as
above for j,. We have ' '

2 o sin® wx ch? my—cos® max sh? my - 7

sh? g =" [sin? wa + sh? w y]? =ch®nay’

2

when y is fixed. Let us set y = +1 and vary x on the
interval (—k, —1) where k is a positive integer which will

be chosen helow. Then
7T2
r(x, D << —minr(l—a, 1)+ P

We have

ar N 3y?—(x+n)?
Fya 2.> (x+n)—t—"—"——2

— < ()
e P (e n)?)

if 0 ]/E_i y =z Thus r(1—=, ) Zr(1+k, 1) when
—k <a <—1. Now
1 e 3 8 k2—1

rAFk D = 9o e 2% 00 RGE S

whence
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5 -
4 el 1

. ‘< DL
re = Jer P 2

The expression on the right hand side is negative for
k < 12. Thus.
(62a) r(z, 1) <0 for —12 <2 <0.

Using (47) with m = 2 we conclude that
(62b) r{x,2) <0 for —24 <ax<—12,
(62 c) r{x, ) <0 for —48 <x < —24

"and so on. These estimates are probably rather crude, but
they seem to justify the conclusion that the maximum
ordinate on r, grows considerably slower with n than the
maximum ordinate on ju.

The curves r = 0 and j = 0 divide the z-plane into an
infinity of regions. Four of these are infinite in extent, all
the others are finite. All the finite regions and the infinite
ones in the right hallf-plane are mapped conformally and
without overlapping upon a complete quadrant of the w-
plane by the transformation w = ' (z). The numbers plot-
ted in the different regions of the ligure indicate which
quadranl corresponds to the region in question. The other
infinite regions are mapped, the upper one upon the third
and the lower one upon the second quadrant, but the map
is not conformal and overlaps itself infinitely often since
the regions under consideration contain all the complex
zeros of ¢ (2).

In order to build up the corresponding Riemann surface
we can proceed as in § 17 below. To carry through the
discussion properly would, however, require rather elabo-
rate considerations so we restrict ourselves to these

indications.
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9. Lower limitation of the zeros of v’ (z). We shall now
proceed to a further delimitation of the zeros of o' (2).
The inequalities obtained for r(x, y) and j(x,y) in the
preceding paragraph give upper limits for gy, the ordinate
of the zero z, of ¥ (z) in the cell C,. In particular, for-
mulas (62) imply that

n—1

63) o < [12

}—}—1, n=123,.

where as usual [u] denotes the largest integer less than or
equal to u. This estimate is of course rather unsatisfactory
for large values of n, but shows nevertheless that y, grows
rather slowly.

A lower limit for y, can be obtained with the aid of
formulas (38) and (49). It follows from (49) that, when
Nz > 1,

: 9 n! = 1 2
'w(z)[énzo (+1)[z+1] .. |z+11]<gm—ﬁzﬁ’
or _

(64) [A—2) ¢ (1—2)] < %2 when R (z) < 0.
Similarly

L
2 - / 1 3
(65) }w (1‘5)—1_Z|}<|1_;|[2-~z|'

In virtue of (38) we have that @' (z) = 0 if

Lo

or
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(66) lsin?wz| < 61—z
Thus the two branches of the curve C
(67) sinf e+ sh?zy = 6 (e—1)2 +

for « < 0, together with a connecting segment on the
imaginary axis, bound a simply-connected region R such
that ¥ (z) 7 0 on R4 C. A fairly simple reckoning shows

that %<0 on the upper half of C, i e, y decreases

when x increases.

We can now obtain a lower limit for y, as follows.
Evidently y, exceeds the ordinate of the point on € whose
abscissa 1s —n-+1; this ordinate is determined as the

real positive root of the equation

shory = V6 Vni+ 2.
This equation implies that

shwy > [/f?l,

or
y > 71T log [[/6n+|/6n+1] > _15 log 2 /6n.
» 7
Hence
1 —_—
(68) Un > — log 2 ]/611.
T

In particular, y; > 0.5. For small values of n, formulas

(63) and (68) give comparatively narrow limits for yn.
10. The asymptotic distribution of the zeros of v/ (z). We

shall now take up the asymptotic distribution of the zeros.

We introduce the function

(69) 0@ =2 ’

sinzz 1—z’

and proceed to prove the following
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Theorem: @(z) has exactly one zero in each of
the cells Can—1 and Can—1 and no zeros in the cells
C2n and Can If we denote the zero in Can—1 by &n

. 1 3
and set {, = &, +iyn, then —11—]—3<§n<——n—l—1, and

1 log27rl/n+~;
{n = —n —%——2~-|~ —

2 72 <n -+ l)
(70) 2
. . 1 "
—I—L Iongr]/11+ —;1 +O<lo;g;2n>'
i 47° <11 + 3>

Let {, be.the center of a circle I, of radius

1
2

n+1’
Then each circle I'; with n > 11 contains one and
only one zero of ¥ (z).
We postpone the proof of formula (70) until the rest of
the theorem has been proved. We readily verify that
3

m<arg ®(—n+ig) < o5

S(D<~n—%+iy)< 0,

when y >0 and n= 0,1, 2, ... Further @ (x) > 0 for x
real and negative. These relations are exactly the same as
those satisfied by %' (z) on the lines in question; they
permit us to repeat the proof given in §7 with ¥ (2)
replaced by @(z); this suffices to prove the statement

about the cells.

. 1 3 .
To verify that —n +5 <& <—n+ 1 e notice that

«

. . 1
9%[51112n(x+1y)} = 5(1—%:05 27x ch 27y) < -

A
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€

if cos 2max >0, i. e, if —n+
other hand,

5
' émé—n%—z. On the

e | o

R[22 (1—2)] =21 —2x) = a°

when a < 0. Hence &, must be limited in the way just
mentioned.

Let { = &--ig (§<0, 4 > 0) be an arbitrary zero of
@ (z). We shall study @ ({+ w) = 6’(1)(5) when |o|=r,
a fixed number. We have

_ psin?al—sin® n({+w) w
OCtw) = sin? 7lsin? n((+w) ' (A—00—(—w)
o [sinmwe Sinﬁ(QC—]—w)_ 1
1= e sinPalte) 1—(—we]’
We now assume r g%. Then
. >| o 5 shor (2g—r) 1 }
|@(€+w)|~|1_§‘{2v B a(g—r) |[1—¢|—1)

The f[raction involving the hyperbolic functions increases
steadily with 4 when r is fixed, and decreases when r

increases if % is fixed > ]5 Thus the fraction will be made

as small as possible if we give ¢ its least value and take

In order to obtain a suitable lower limit for the bracket
we set { = [, with' n > 11. This implies |1—{|—r > 11,

. 1 o
and, since gn > —log 27 Vn,
7T

7> >;110g 27})/11 > 0.96.1

' In order to obtain this estimate, use the same type of argument
as in the proof of formula (68).
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With these restrictions upon { and « we find that

where K > 0.445.1

(71) o (+w)| =

In view of formulas (38) and (65) we have

2
— 2
3

(1—22—2)]|

when R (z) < 0. With each of the points ,, n> 11, as
center we lay a circle I', of radius r,. We shall determine

(72) ¥ (2) = @ (2) + P(z) where |P(2)| <

rn in such a manner that

(73) @@ |>|P(z)| on In,
and impose in advance the condition r, < 1 Setting
z = {n+ on (i wnl =ry) on [n we have from (65) and
(71)
Krn
n > S
|CD(C ‘f—(ﬂll)l:‘ l—gnl
Ty
3

|P(§n + wn) I <

|(1—‘Cn_wn) (2ﬁgll_wn)l‘

Thus (73) will be fulfilled if

<?_“2 |1—gnl 1
3% Il_Cnl_l'nlgt_“Cnl—rn'

. 1 .
We now use the assumptions n > 11, r, < 1 together with

the fact that K > 0.445. These premises imply that
|1—8e]| > 11.25, [2—Lu|—rn > n+1, and

" By imposing more severe restrictions upon £ and @ we can get K
as near to 27 as we please.
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2
%ﬁ2 =6l 99723
K !1_§nl_rn ’ '
Consequently (73) will hold for n > 11 when r, = E£~1.

But then it follows from the theorem of Rouché that each
circle I', contains one and only one zero of ' (2).
It remains to prove formula (70). We begin by deter-

mining a set of numbers {4 . satisfying the following

conditions
Sinﬂ§n1+1,n:ﬂl/l““Cm,n, Cl,n:_n+l;
(74) : 2
' *n<m(5m,n)<‘—n+1’ S(Cm,n)>0-
Here m,n=1,2,3, ... and ]/l—z means that determina-

tion of the square root which equals to 41 when z = 0.
We have

. 1, i /1 -/F‘AE 1
o p = —11+§+7—Tlog I:ﬂf i/]l‘f‘aﬁ‘ﬁ‘ Il+§—;:2:|’

log n]/n+ -
Ean = —n + 2 :
(75) 7 n+§
+—|log 27‘1’1/114—;4 r L0 <101gl2 11)}
4 7® <n+ 7>
2
We easily verify that
Sin%(gn_czll n) = — G L” . 5”1—1 11] 3

2 cos %(Cn + Zm, n) [l/] —Ln T 1//1_ ‘gm—l, IJ

For m = 2 we have
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|En—G1,n| < ¢, log n, |cos %(C,,~§g,n)| > ¢,/ n,

“/1”“@11+ l/l_CI,nl| >y VH,

where the ¢'s are positive constants independent of n.

Hence

¢y log n
2¢,c5 n

2

sin g (Cn—102,n) I <

and

. , log 1
|Qn—g2,n|<c1 fll.

Repeating the argument with m = 3 we see that

log
(76) 1a—Con| < €, 251

n

Combining formulas (75) and (76) we get formula (70).

11. The zeros of /"' (z). In §§ 5 and 7 we made certain
statements regarding the zeros of ' (z). We shall now
prove the following

Theorem: " (z) has exactly three zeros ineach
of the strips ~11+%§x§~11—§—1 (n=1,2,3 ...) of
which one and only one is real. There are no
other zeros.

We begin by proving that

(77) sgn 3 [11[)” (—n-+ zy)J = —sgny

for n =10,1,2, ... We have from (53) and (55)

Sly' il ==L renp

n

—gy > Smiept 1 achay
T @ty P iy
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where the finite sum is to be suppressed when n = 0. This

expression clearly has opposite sign to that of y when

|yl = n|/3. 1f |y] < n)/3 we have

1ag ., . 3mi—y? 11 ,chmy
S5y (— <2 il MY BN R ]
Sy Ent i) = @y gl shiay
_ _2n" chmy
y sh®nay

This completes the proof.

We shall now prove that the variation of the argument
of ¥ (z) is zero when z describes the perimeter of a large
square with vertices at the points n(d14+1) avoiding the
point z = —n by a small semi-circle to the right of this
point. This contour contains n triple poles of ¥ (z), fur-
ther atleast 3n zeros, namely, at least three in each of the
strips —m + ; <ax<—m-+1, m=1,2,3, ..., n, as we
have seen in § 7. If we can prove the statement about the
variation of the argument then the theorem follows
immediately.

In the neighborhood of z = <« in the sector |argz| <

7 —¢ we have

rr 2 1
Y'(zn) = —?+O<;>

Now let us start with z at +n and describe the contour
in the positive sense. Then w = ¥ (z) starts with a small
negative value, and its argument decreases from 7 to ap-
proximately —% when z goes from 4+n to n(—1-41i).
When z goes f;om n(—14+1) to —n+e¢i, w remains in
the lower half-plane in view of (77), and when z = —n+1i&

. . T,
|w]| is large and arg w is nearly —7 since
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2
v = T GEny? + B2+ n). |
When z describes the circular arc|z+n| =¢, 0<arg

(z-+n) é%, |w| remains large and arg w increases from
—%E to + 7. Consequently arg w is back to its initial value
aftgr we have described the upper half of the contour, and.
by reasons of symmetry, arg w will return to the initial
value after we have described the lower half of the con-

tour. This completes the proof of the theorem.

Part III.
The conformal correspondence w = v (2).

12. The R, I-net. We shall now return to the psi-func-
tion itself, and consider the question of how its values are
distributed in the plane. We shall attack this problem from
two different angles. Iirst, we have obtained in Parts I
and II of the present paper a variety of results which

permit us to give a rather detailed discussion of the curves
R [1,0 (2)] = const., and & [-1/; ()] = const.

We shall give this discussion in §§ 12—15. Secondly, we
try to complete the information so obtained by numerical
computation of the psi-function for some values of =z
Finally, in § 17 we discuss the Riemann surface corre-
sponding to w = ¥ (z) in the light of the results obtained
in §§ 12—16.

For the whole discussion the reader should consult
Fig. 3, which gives a representation of the curves in question.
In the upper half-plane the curves
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R, y) =¢, withe=—2, —1.5,—1,...,+1.5and + 2,
are traced ; in the lower half-plane we have marked the curves

x

I(x,y) = y with y = —4, —3.5, —38, ..., —05and 0.
In addition we have plotted in dotted lines the curves of

the two systems which pass through the four zeros of ¥’ (z)

Vidensk. Selsk, Math.-fys. Medd. VIII, 1. 3

Fig. 3.
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which are nearest to the origin. The diagram is hased
upon the results of §§ 12—16, and is believed to give a
fairly accurate picture of the situation, but, naturally, it
must not be trusted too far.

In the sector |arg z| < w—& we have
1
¥ (z) = log z—6—0<7>.

It follows that within this sector and sufficiently far
from the origin, the curves R = ¢ correspond to large posi-
tive values of ¢ and each curve lies between two circles
|z| = e*—¢ and |z| = e*-++d. The curves I =y on the
other hand, correspond to values of y between — 7 4 ¢ and
w—e¢ and are asymptotic to the lines arg z = y.

In the remaining sector we have

Y (z) = log (1—2z)— = cot rvz—}—O(%).

Here we have evidently quite a complicated situation; the
net corresponding to log (1—2z) is distorted by the super-
imposed net due (0 —m cot wz.

The points z = —n (n = 0) are simple poles of residue
—1 for v (z). Let N, be a small neighborhood of z = —n.
Any R-curve in N, will pass through z = —n where it will
have a vertical tangent. If ¢ is sufficiently large positive
(negative) the curve R = ¢ will be closed in N, and located
to the left (right) of the verlical tangent; further it will be
almost circular in shape. Any /[-curve in N, will pass
through z = —n and be tangent to the x-axis. If y is
sufficiently large numerically, the curve I = y will be closed
in N, and almost circular; it will be above or below the

x-axis according as y is positive or negative. The curves
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of the two nets have a perfectly definite order in N,. Thus,
for example, if we describe the upper half of the curve
R = — M (M large positive) in N, starting from z = —n -+ 4¢
(d real positive) and ending at z = —n, then v = I(x, y)
will be steadily growing along the curve from the initial
value 0 to the final limit 4 o, every intermediate value
being taken on once and only once. Similarly with the
R-curves. '

Any curve R = ¢ will consist of an infinity of separate
branches, beginning and ending at z = —n, one branch
for each pole. Any curve [ = y will consist of an infinity
of branches, which, however, may and as a rule do have
end-poinls in common. Such a branch will join a pole
either with itself or with another pole or with the point
at infinity.

Through the points z, where ¥/ (z) = 0 will pass two
and only two branches of each system. If we set

(78) Y (zn) = W = Un+10n,

it is two branches of the curve R = u, and ltwo branches
of I = v, which pass through z,. These curves are of
fundamental importance for the whole discussion and will
be considered at length in §§ 14 and 15. No other curve
of either system can intersect itself or have a non-singular
point in common with any other curve belonging to the
same systemn.

We have discussed the curve R = 0 in some detail in
& 3. This curve was found to consist of infinitely many
separate ovals R, one for each pole z = —n, n >0, all
being outside each other in accordance with the inequali-
ties (30) and (31). Indeed, these inequalities prove the

existence in every slrip —n—1 << & < —n (n = 0) of a sub-
3*
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strip where R (x, y) > 0. Further, formulas (25) and (35)
prove that the oval R, contracts indefinitely to zero when
n— 4o, and we have shown at the end of § 3 that this
contraction process is monotone in a perfectly definite sense.

Let us now turn to a curve R = ¢ < 0. This curve
clearly consists of separate ovals R, (c), namely, one and
only one oval inside each oval R,(n = 0,1, 2, ...). Thus
the ovals Rn(c) are outside of each other when ¢ < 0.
They will contract indefinitely when n— -0 and the
process can be shown to be steady or monotone in the
sense above mentioned. The same conclusions will hold
for sufficiently small positive values of ¢, but will cease to
hold when ¢ is large. Let R,(c) still denote that branch
of R = ¢ which goes through = —n. If ¢ is large we
can no longer affirm that the R, (¢) are all outside of each
other, but they will have this property for sufficiently large
values of n, i.e., if we disregard a finite number of the
branches the remaining ones will be outside of each other
and of the disregarded branches®. Qur pi’evious conclusions
are valid for the residual infinite set.

13. Differential properties of the nef. Now we turn our

attention to questions of increase and direction. We have
0 0
r > =-—R > = & I(: » »
@w) =g Ry =5 1)

. ) 9
J(x, ) = ‘—E R(x,y) = %I(x, ).

In a region where r(x,y) >0, R(x,y) increases with x
and I (x, y) increases with y. In a region where j(a, y) > 0,

} In order that the Rn(c) be outside of each other for n = m it is
necessary and sufficient that ¢ < mm. This follows from the results stated
at the end of § 14.
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R (x,y) decreases when y increases and I(x, y) increases
with y. At a point z = z; = x,+ iy, where r(x, y) and
J(x, y) have the same (opposite) sign, the slope of R (x,y)
= ¢ is positive (negative) and the slope of I(x,y) = y is
the negative reciprocal of the slope of the R-curve. Let us
define as positive direction of the tangent of R(x, 1)
= ¢ at z, that direction in which I(x, 5) increases,
with a similar definition for the I-curve. This direction is
uniquely defined unless z, happens to be a zero or a pole
of ¢ (z). Let ¢, (z,) be the angle which the positive direc-
tion of the taﬂgent of RNy (2)] = Ry (z,)] at z = z, makes
with the positive direction of the real axis, the angle being
measured from the axis to the tangent; and let ¢,(z,) be
the corresponding angle for the I-curve J [y (z)] = I [ (zp)].
Then we have :
T

(79) 1 (z) = 35— arg ¥’ (z)) (mod. 27),

(80) 9 (z0) = —arg ¢ (zo) (mod. 27).

Fig. 2 suffices to give us a general notion of the mode
of variation of arg ' (z). This figure, it will be remem-
bered, is based upon the discussion of ¥’ (z) in §§ 5—8. It
will perhaps be useful to collect at this point some of the
consequences of this discussion.

It has been noticed that j(x, y) is negative in all the
cells Co, and in the first quadrant and positive in the
symmetric regions below the wx-axis. This implies that
R(x,y) grows with |y| in these regions when x is kept
fixed. In particular, this will be the case on the boundary

of any one of the cells, hence’

! In order to obtain the lower limits in (§1) and (82) use formula (29).
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(81) R(—n,y) > pn+1),

‘ 1 3 (n=10,1,2,..)
(82) R —n—gLy > n+§ .

In that part of Csr which lies above r,, we have

7t << gy (z9) < 5’21 and g—< ¢s (z) < 7c; below rn we have
b3 T
9 < 1 (o) < 7 and 0 < ¢, (zy) < 5

The R-curves have verlical tangents on j,, horizontal
ones on r, and r,*. For the I-curves the situation is of
course reversed. Finally, we notice that any vertical line
which does not intersect any of the curves j,, will either
intersect an arbitrary curve R = ¢ in two points symme-
tric to the x-axis or not at all.

14, Qualitative description of the net. We shall now take
up the properties of the net in the gross. We aim at a
qualitative description of the net which will tell us how
the separate branches of the different curves go, what
singular points they join, how they separale the plane into
regions, and so on. We shall see that the solution of this
problem depends essentially upon a special case of the
same problem, namely how the critical curves through the
zeros of ' (z) behave in this or that respect.

We begin by considering the I-curves. Let us inspect
the branches of the I-curves which radiate from z = —n
(n > 1). One of these curves is the real axis. Now give y
a small positive value. We conclude by reasons of con-
tinuity that there is a branch of the curve I = y which
joins z=—n with z=—n+1 and which lies entirely
within a rectangle —n<ax < —n-+1, 0 <y < d() where

! We denote the arc of r = 0 which lies in the first quadrant by

rg and let rn mean the curve symmetric to rm in the lower half-plane
(n=10,1,2,...).
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0(y) — 0 with ;. There is also a branch of the same curve
which joins z = —n with z = —n—1, but we disregard
this arc for the present. Let ;, be the largest value of y
such that for y < yn the curve I = y has a branch I (y)
joining z = —n with z = —n+1 without passing through
any other singular point. I claim that I, (y.) goes through
a zero of ¢’ (z); to be more specific, I assert that I (y4)
goes through z = z, i. e. yn = vn. Suppose this were not
so and consider that arc of the curve I = yn -0 (J small
positive) which starts at z= —n and on which x +n is
small positive when y is small positive. Since ' (z) # 0
on I (yn), this arc will be uniformly near to In{(ya), i. e,
we can find an ¢ = £(d) which tends to zero with d, such
that the distance between the two curves nowhere exceeds
&L Bul then this branch of [ = y,-- 0 must end at z =
—n+ 1, which is contrary to the definition of 7n

Thus I,(y,) goes through a zero of ' (z). Suppose
that this zero were not z,. Then I, (y,) which joins z =
—n with z = —n -+ 1, must intersect either the line x = —n
or the line * = —n-+1 in two distinct points with posi-
tive ordinates. This, however, is impossible since I{—m, y)
is steadily decreasing when y increases, m being a positive
integer or 0, in accordance with (56). Hence I.(yn) passes

! That this is actually the case follows from the following considera-
tion. Leaving out two small arcs at the end-points of In{yn) we can
cover the residual arc by a finite number of circles such that: (1) every
point on the arc is interior to at least ome of the circles, and (ii) the
interior of any one of the circles is mapped conformally and without
overlapping upon a region in the w-plane by the transformation w = v (z).
The image of the set of points which belong to at least one of these
circles is simply-connected and contains a segment of the line v = yn,
hence also a segment of v = yn-I-d if 4 is sufficiently small. This
proves the assertion except near the end-points of In{yn). But these do

not cause any difficulties since the curves under consideration are tan-
gent to each other at these points. This completes the proof.
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through z, and does not go through any other zero of
' (z). Further, yn = v, Incidentally we notice that I, (vy)
does not intersect the lines * = —n or * = —n+1 except
al the end-points.

Now let z- 1 trace the arc I, (v,) from —nto—n-+1.
Then z traces an arc In from —n—1 to —n. On this latter
arc I(x, y) > vn except al the end-points where equality
holds, as we see from formula (10). Let Dj; be the region
bhounded by I; and the real axis between —n-—1 and
—n. The point z,4+1 may be located (i) within Dy, or
(i) on I;, or (iii) outside of Dj. Whichever be the actual
case, we shall prove that v, < vp41.

Suppose case (i) be realized, and consider the four
arcs of the curve I = v,.1 which starl at z = z, 1. We
know that two of these ares form the branch Inii(vn+1)
with end-points at z = —n—1 and —n. The other two
arcs cannot lie completely within D7. If they did, we should
have two distinct arcs I = v, 1 the ends of which would
belong to a small sector |z+n| < d, 0 << arg (z-+n) < &;
this is clearly impossible in view of the order relations
between the I-curves in the neighborhood of a pole. Hence
these two ares must intersect I; at a point where I(x.y)
> py, and thus vpi1 2> vn. In cases (ii) and (iii) we see
almost directly that the same conclusion is valid.

Let us now study the I-curves which emanate from
z = 0 and of which the initial arcs belong to the first
quadrant. Such a branch of the curve I = y will be de-
signated by I, (). Aslongas 0 <y g%, I, () will remain
in the first quadrant and go from z = 0 to z = co, having
the line arg z ==y as its asymptote. That I,(y) cannot

intersect the positive imaginary axis follows from formulas
(16) and (56), which imply that
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83) I(—n, y)>%when y>0, n=0,1,2, ...
When y >g the arc I,(y) intersects the imaginary axis

and proceeds lo the point at infinity as long as y—% is

sufficiently small. There exists a largest value, I, say, such
that I, (y) ends at infinity for every y =< I',. Just as above
we prove that the curve I, (I;) must pass through a zero
of 1’ (z), and this zero must be z,. Suppose contrariwise
that it would be z, instead. Then I'j = v, and there exists
an arc of an I-curve joining z = 0 with z = —1 on which
I = v,. This arc together with the segment of the real
axis from 0 to —1 bounds a region D; which evidently
contains the point z; in its interior. Moreover, the four
arcs of the curve I = p; which meet at z = z, must be
enclosed in D;. But this is impossible since vy > vy; indeed,
if Ty = vy > v, then I,(v,) goes from z= 0 to z = % en-
tirely outside of D, in view of the definition of I,. But
there are only two arcs of I = vy which begin or end at
z =0 and only two such arcs which begin or end at
z = —1; if one of the former arcs is outside of D,, then
there is at least one of the four arcs of I = v, starting at
z, which does not end in the interior of D;. We are thus
led to a contradiction by assuming that I'y = v,; in exactly
the same manner we disprove the assumption that I'y = vn,
n #= 1.

Hence T, = v,. We can now account for all the I-cur-
ves which emanate from z = 0. As long as y < vy, I)(y)
goes from z = 0 to z = %; when y > v, [;(y) is a closed
curve beginning and ending at the origin. The two types

of curves are separated by arcs of I = v, namely, I, (),
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which goes from z =0 over z; to «, plus I, (v,) which
goes from z = —1 over z; to 0.

We now pass to the second pole at z = -—1. We de-
signate by I; () that arc of the curve I = y which starts
at z = —1 and on which arg (z+ 1) is small positive when
|z+1] is small. As long as 0 < y << v,, I, () goes from —1
to 0. Thus if we return for a moment to z = 0 we see
that the I-curves in a small neighborhood of the origin,
|z| < 0, y =0, are ecither of the type I,(y), 0 <y, or of
the type I (y), 0 <y < ;. The former curves begin at
z = (0, the latter ones end at this point according to our
present convention, which is in agreement with our previous
way of orienting the curves with the aid of the positive
direction of the tangent.

When 0 <y—uwv <eg I(y) joins z = —1 with z = o,
There exists a largest value, Iy say, such that I, (y) has
this property for every y, v, <<y < TI,. As above we show
that Iy = v,. Thus the branches I, (y) join z = —1 with
z = o when »; <<y < p,, and when y > v, they are closed
curves beginning and ending at z = —1. The remaining
I-curves which belong to the upper half of an ¢-neighbor-
hood of z = —1 are curves of the type I,(y) with
0 =< y <, which start at z = —2andend at z = —1. In
this manner we can proceed step by step. The situation in
the lower half-plane is symmetric to the situation just
described.

We notice that

(84) - %< STy )] <3| <

: . T . .
Here the lower limit 3 could be raised somewhat; v, is

certainly greater than 2, — on the other hand
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(85) <Mamr<—l ) = Max |Zth g+ —8 | <% 4

LS Mas T Y 2 T T e
and in general

Un < MaxI(—n—{—é, y)

(86) n7
7T 1
= Max|< th S | .
l Max 5 759—0-491“_:_1/ Cn—12+ ¢

These limits are unfortunately not well suited for numeri-
cal estimates. That m is the true upper limit in (84) fol-
lows from the following consideration. Let ¢ be arbitrarily
small positive and let w—e < v < 7. There is a unique
J-curve which admits of the line arg z = v as its asymp-
tote, this curve is a branch of I = ». We know that any
such branch when traced in the negative sense will ulti-
mately lead us to a pole. Suppose that our branch leads to
7z — —m. Then we are dealing with I, (v) according to the
nomenclature adopted above. But if Ix(y) joins z = —m
with z = o then vy < y < vm+1. Hence the same inequa-
lity has to be satisfied by v, i.¢. vm41 > —e

We now proceed to discuss the fate of the R-curves
which emanate from the differenl poles, and start with
z = 0. The corresponding arcs of the R-system have been
designated by R,(c) in § 12. As long as ¢ << —C, Ry(c)
remains in the right half-plane and intersects the positive
real axis between 0 and -+ 1. There exists a largest value
of ¢, ¢, say, such that all the ovals Ry(c) intersect the
positive real axis as long as ¢ = ¢;. As above, we prove
that R,(c;) passes through a zero of v/ (z), and owing to
symmetry it will have to pass through two conjugate
imaginary zeros. The zero in the upper half-plane must be

zy, i. e. ¢; = u,. Indeed, if Ry(c,) passed through any other
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. . . 1
zero but z;, it would have to infersect the line a = 3

twice; this is impossible since R (x, y) increases steadily
with |y | along this line.

Let the point of intersection of R, (z;) with the positive
real axis be denoted by P;. We can (ind a point z = p,
on the interval (—1,0) where % (z) = uy. Through the
latter point passes a branch of R = u;. There is also a
branch of the same curve which goes through z = —1.
These branches must pass through z = z;. In order to see
that this is really true, we notice that there are four arcs
of the curve R = n; which meet at z = z;. Two of these
have already been accounted for; one joins z;, with Py, the
other joins z, with the origin. Let us follow the remaining
two arcs away from z << z;. None of these arcs can inter-
secl the imaginary axis as there is already one arc of the
curve R = u; which does so and R (0, y) increases steadily
with |g]|. Further, none of the arcs in question can wan-
der off to infinity or end at the origin. We are thus sure

that one of these arcs will inlersect the real axis between
—~é and 0 and the other will intersect the line = = —é,
y > 0. As R(x, y) is monotone on both lines there cannot
be more than one intersection on each. The arc which
intersects the real axis clearly joins z = z; with z = p,. It

follows that

87) w = v ) >w(—y) = (3] =0

The arc which intersects x = —% remains. This arc
will pass through z = —1 if we can prove that it cannot
intersect the line & = —1 at a point of ordinate different
from 0. It clearly cannol intersect the real axis between

1 . s .
—1 and —3 In view of (81) it is sufficient for our pur-
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pose to prove that
(88) a; < P (2).

Let us consider the reclangle whose vertices are 4 = 0,
B=iy, C= —%—Fia], D= —é, where 7 (> 0) is to be
suitably chosen. It is clear that the curve R = u, intersects
the polygonal line ABCD at least once. Hence u; < Max
R{x, y) on ABCD. Now R(x,y) is monotone increasing on
AB and on DC. Hence u; < Max R(x,y) on CB. The latter
maximum can be estimated with the aid of the methods

which we have used in the latter half of § 3. In view of
(11) and (34) we have

Rx,q) <Max R(Q1—ux, )+ —5— h27ro;

when z lies on CB. Hence

T

sh27q’

(89) u1<R<2,77>+

no matter how 5 be chosen > 0. Now it will be proved

in § 15 that it is always possible to find an # such that

(90) R(n—k%,q) <R(n+1,0) =ywmr+1).

sh & 27r

Hence (88) is actually truel.

We can now account for all the arcs R,(c). \thn
¢ < uy, Ry(c) intersects the positive real axis between 0
and P, where g< P, < 2. When ¢ > uy, Ry(c) intlersects
the negative real axis between p; and 0 where —§> Dy

The two different types of curves are separated and en-
closed by lobes of R, (wy).

' It follows from Table II in § 16 and the corresponding Fig. 4 that
11 lies between 0.1 and 0.2. :
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At z= —1 we have a similar situation. As long as
¢ < uy, Ry(c) intersects the negative real axis between — 1
and p; and all these curves are enclosed by a lobe of
Ry(ny) = R, (n;). When ¢ is somewhat larger than o,
R; (¢) intersects the positive real axis beyond P;. There is
a largest value of ¢, ¢, say, for which this is the case, and
we prove in the same manner as above that ¢; = u,. Thus
all the curves Ry (¢) with u; <C ¢ < u, intersect the positive
real axis between P; and P, where ¥ (P,) = u,, When
¢ > uy, R;(c) intersects the negalive real axis to the lefl

Q

of z = —1, namely, between p, and —1 where p, > —%
and 9 (py) = u,.

Finally, in the general case the curves R,(c) fall
into three classes: (i) Curves corresponding to
c<un; these curvesintersect the negativereal axis
to the right of z=-—n between —n and Pn, Where
_n+%<pn <—n+1and where ¥ (pn) = a. (i) Cur-
ves corresponding to w, < ¢ < uyyi: these curves
‘intersect the positivereal axis between Pnand Pniy
where 11+%< P, <n+1 and where  (Pn) = un. (iii)
Curves co;responding to ¢ > un41; these curves
intersect the negative real axis to the left of z =
—n, between p,+1 and —n. The three different types
of curves are separated by lobes of the critical
curves R, (u,) and Ry (u,.1).

15. Inequalities for the eritical values. We have thus
completed the qualitative description of the R, I-net. It
remains to prove formula (90). For this purpose we resort
to formula (22), which has not been used in the earlier
part of the paper, namely,
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) N DR R(R—1) ... (h—n)
Pt =y () = 2 n+1 z(z+1) ... (+tn’

n=0

Consequently, if z = x is real and positive

|w<x+h>—w<x>—§|

lh] N7t (=D A1+ . (h+n)
= xZn—l—l (x+1)(x+2) ... (x+n)

(o] N URIHD (Bl _ [k (A] 4D
20 £ (@+1) ... (x+n) 2a(x—|h|—1)

n=

=

provided a > |h|+ 1. Hence

(91) W@t ) — @) = Z 1+ o(m )],

where

92) oG )| < 2’(%

.when = > |h|+1.

We now choose x > (|A|+1) (2| h|+ 1) and set h = k+ il
Then '

1

|g(:x:,h)|\4|h|

and

(93) R(x-+k [)—R(x, 0) — ’;‘ - P(x, h) where | P(x, h)| < 417

In (93) we put x=n-t+1, k= ———%, ! = 5 and obtain
(94) R(n+1 0)—R<n 4_;1, 7{> -~ .
’ 2’ 4(n+1)

provided n = 2 (772 + 1) +3 !/rrf -+ 1 and, a forliori, if

4 4’
2

/

icol

(&1}

n> > when 4 = It is possible to replace (94) by

|
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7T

sh 27wy

1
R(n-1, O)~R<11+~i, a;) >
as long as
7T 1

shomy 4D

Suppose that we choose n and 5 subject to the following
double inequality

@) sprrg)<a<

then (94) implies that (90) is fulfilled for such values of
n and 5. It is now obvious that when we give ourselves
an n > 5, we can find an ¢ satisfying (95). Thus to every
n > 5 there exists an 7 for which (90) holds. We can
verify by numerical calculation that (90) holds for = 1
when n =1, 2, 3 and 4. We obtain from Table I that

n 1 2 3 4
R <n +%, 1) 0.3480 0.8096 1.1544 1.4386
w(n-+1) 0.4228 0.9228  1.2561 1.5061
Since L 0.0117 we have verified our statement.
sh 2

‘We can obtain an asymptolic expression for w, = ¢ (z)
for large values of n with the aid of (19) and (70). The
result is rather complicated and will not be given here; it
permits us to conclude, however, that

o2
@U(Pn)*w<n+%> = O<]O%I—l>

n

whence
1 flog®n
(96) Py—n 5 = O (inﬁ) ,
and similarly
(97) . + n—1 =0 log™n
_ Pr 2 n
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The inequalities obtained for the critical values w, can
be summarized as follows:

Theorem: Let z, and z, (n=1,2,3, ...) denote
the zeros of ¥ (z) where —n—}—fl)< Rz <—n+1
and set wp = W (zn) = Un+1ivn. Then

(98) w<n—}—é> <ap < ywh+1),
(99) %< Dn < Dp 1 < 57,
where n=1,2,3, ... Further,

(100) y = w<n+%>+0<10§ H),
(101) ‘ Un ZTE—OCOIfg;n).

16. Numerical computation of i (z). We can also attack
the question of how the values of 1 (z) are distributed
with the aid of numerical calculation. Such computations
are fairly easy to carry out on the imaginary axis; with
the aid of the formulas in & 2 we can afterwards obtain
values of the function on other vertical lines.

Formulas (17) and (18), namely,

thzy,

ol S

o I TR Y (R S
I(O,g)——Qcothny\2y, 1(9,y>—

&

enable us to calculate the imaginary part of w(z) on the
1
lines R (z) = 0 and g The values on the lines N (z) = n

and n %% are then obtainable with the aid of (10). It does

4

not seem to be possible to get the values of I(x,y) on
any other vertical lines with the aid of the formulas in § 2
without the use of (19).

Vidensk. Selsk, Math.-fys. Medd. V111, 1. 4
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The situation with regard to R (x, y) is rather different.
‘We have

9 — 2 L
(102) R(0, ) C+y n; YR

This series is not well suited for numerical work, nor
does its sum seem to be expressible in terms of elementary
functions. To obtain more rapidly convergent series we
use transformations of Kummer's type. Wriling

o0

. § 1
bp - ﬁ (P é 2)
n=1
we easily see that
RO, p) = —C+y*S;—y*S;+ ...

0

(103) (DR 2R Sy g (= 1) g2l y_l__‘

‘ ! 2k+17T g 71';_1’ 112"“(112—{—;]2)'
If |y] =<1 and k equals 4 or 5, this expression is quite
suited for computations. When |g| > 1 we can still apply
the same method if we let the transformations apply to
the remainder after a suitably chosen term of the original

series. For certain values of y the series

oo

W=
Sm(y) = DR
s n(n*—y)

n=

has a known value. Thus
1 1 .
S1<3> =8log2—4, S,(1) = 1 S, (2) = = ete.

For such values of y we can obtain a rapidly convergent

series in fewer steps, e. g.,
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1 . 1 1
.R(O, ~> =—C+2log2—1—=8;— 22 S,
[eal

9048 y <n __>

16

The remainder after the first term of the infinite series
1

,—|. Th
2> ¢

sums Sp which are needed for the computations can be
taken from Stieltjes’ table in Acta Mathematica, vol. 10.

Formula (103) becomes unmanageable when |y | is larger

contributes less than 10—7 to the value of R(O

than about 3. For such values we have to resort to for-
mula (19), which is very convenient for numerical work.
Using formulas (20) and (21) with m = 5 and substituting
the values of the Bernoullian numbers we obtain

1 1
(104) R(Oa.l]) 103|J|+12 2 ’ 120J4+2 2 +940lI8T13gl]10+Rlls
64
(104 a) I Ry | < 2079 yl()

Using one or the other of these series we have com-

puted the following values

R(O, l) = —0.505907, R(O, %) = —0.455210,7 R (O, é) = —(.328886,

4
R (O, §> = —0.1863bH2, R-(O, 3) = —0.113901, R(0, 1) = 0.094650,
R(O, %’) = 0.444698, R(0,2) = 0.714592, R (0, -2) = 0.827758,

R(0,8) = 1.108907, R (0, 4) = 1.391537.

The error in these values, barring unfortunate accidents,
amounts to less than one unit in the last decimal place.
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Knowing R(0,y) and R(0,2y) we can compute
R <%, y> with the aid of (9) and (13). If we know R (0, 3y)

gy) with the aid of (9),
(11) and (13). Finally, if we know R(0,y), R(0,2y) and

in addition, we can obtain R

R(0,4y) we can get R g,y)with the aid of the same
formulas which supply the necessary number of equations.

In the adjoining Table I we have listed the values of
W (x+iy) for some values of @ and y. The sign » in any
place -of the table indicales that the corresponding value
has not been calculated; thus the imaginary part is given
for only half of the entries. A last digit sel in heavier type
indicates that the decimal in question has been raised.
The values listed above permit extending the table consider:
ably. In Table Il we have listed the real part of ¥ (x+iy)
at 40 different points in the square —1 <2 <0, 0 < y<1.
This table illustrates the run of R(x, y) in the neighbor-
hood of the critical point z = z;. The adjoining Figure 4
is based upon this table; it shows the interpolated curves
R=cfor ¢ = —05, —04, ..., 0.5 and 0.6. In order to
avoid crowding the figure we have left out most of the
arcs of these curves in the lower half of the diagram. The
dots in the figure mark the points where the values of
R(x,y) have been calculated. The table and the figure

together would seem to suggest that z, is near to the point

1 2 .
z = —-3-—4—?1 and that u, is about 0.16.

19. The Riemann surface of w = y(z). We can now
form a fairly good idea of the structure of the Riemann
surface corresponding to w = ¥ (z) and its inverse. The
singularities of the inverse function z = Y (w) are w = oo,
which is a transcendental critical poinlt, together

with all the points w = w, and w, The latter points are



Table 1.
Values of v (x4 iy).

x\y 0 0.25 0.50 0.75 1

) % 0.9276 + 4.6859 7 0.9417 - 3.2305§ 0.9644 - 2.7903 i 0.9947 4 27767 i
—175 | —23028 — 042734+ 05709 4+  » 0.8099 4+ » 0.8940 + »
—1.50 0.7032 0.7106 - 1.9720 1 0.7319 - 2.6406 i 0.7667 -+ 2.7362 i 0.8096 - 2.6025 1
125 37142 18340 » 0.8802 4+  » 070524 » 07181+ »

-1 w0 0.4353 - 4.6244 i 04711 431128 0.5261 |- 2.6259 i 0.5047 - 2.5767 i
o075 | 28042 09873 4 » 0.0426 4+ » 03272+ » 046331+ »
— 050 0.0365 0.0619 4 1.8365 ¢ 0.1319 - 2,406 i 0.2324 - 24605 i 0.3480 - 2.3649 i
—0.25 2.9142 10647 - » 01905 - » 01169+ » 02303+ »

0 o 05050 - 438017 | —0.3289 -271284 | —0.1139 + 2.26501 0.0947 -} 2.0767 §
0.95 42975 948734 » 088034+ » — 033054 » —0.0167 - »
0.50 —1.9635 15381 1103657 | - 0.8681-- 144067 | —0.3830 - 154247 | — 0.0520 - 1.5649 i
0.75 —1.0858 — 09384+ 060954 » — 028314+ » —0.0050

1 05772 05059 0.38917 | —0.3289 071281 | —0.1139 | 093261 0.0947 - 1.0767 i
125 —0.2275 01873 - » — 00803 » 0.0605 4+ » 0.2186 + »
1.50 0.0365 0.0619 - 0.2365 i 0.1319 - 0.4406 i 0.9324 4 0.6193 i 0.3480 - 0.7649 1
175 0.2475 0.2647 -  » 0.3136 4+ » 0.3836 4 » 0.4750 +  »

P 0.4228 0.4353 - 0.1538 1 04711 4 0.3128 i 0.5261 - 0.4526 { 0.5947 - 0.5767 i

‘uorjoun, BWUWEY) 91} JO SOATIRALIS(] JIWILIBSOT] 2y} UQ
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Table I1.
Values of R (x, y).
IEIEIEIEIEIEIE
1 0.5947 | 0.4633 | 0.4234 | 0.3480| 0.2720 | 0.2303 | 0.0947
g 0.5261 Q.3272 0.2895 | 0.2324 | 0.1686 | 0.1169 | — 0.1139
;3; 0.5060 » 0.2265 » 0.1578 » —0.1864
% 04711 | 0.0426 | 0.0311 | 0.1319| 0.2192 | 0.1905 | — 0.3289
% , 0.4448 » —0.3727 | 0.0808 | 0.5160 » — 0.4552
}1 0.4353 | — 0.9873 » 0.0619| » 1.0647 | —0.5059
0 0 | —2.8942 | —1.0548 | 0.0365 | 1.2590 | 2.9142 w0

algebraic branch-points in the neighborhood of which
two determinations of z are interchanged.

In order to build up the Riemann surface we consider
the map of the z-plane corresponding to the transformation
w = P (z). It is clear that this map will cover itself infini-
tely often. Thus we have to cut up the z-plane into regions
such that each region has a smooth non-overlapping image
and then we must piece these different images together. It
then becomes a question of how these regions should be
chosen. Our previbus study of the R, I-net shows that the
critical curves through the points z, and z, give a natural
division of the plane into suitable regions. We can choose
either the curves R, (un) or the curves In (vy) for this pur-
pose; we select the former curves. We then imagine the
plane cut up along those arcs of Ry (u,) which join z, and
zn with —n and —n-+1. We do not, however, cut the

plane along the remaining arcs of R, (un) which join z,
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with z, over pp, and Pp, respectively. The region outside
of all the cuts we denote by D,;. The region inside of the
cuts from z = —n over z,, —n-+1 and z, back to —n
will be denoted by D, (a = 1,2, 3, .. .).

0.6 0.5 0.4 0.3 0.2 ._)‘

0 0. 0.2

Fig. 4.

We begin by considering D,. This is a simply-con-
nected region, if we leave out the points z = —n (n>1),
in the interior of which v (z) is holomorphic and ¢’ () = 0.
We shall prove that the image of D, by the transforma-
tion w = ¢ (2) is a full plane slit up along the lines

u=un, v>vp and u =1y, v<—v, (n=1,2,3, ...).
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In order to see this we shall consider the equation
W(z) = u+tiv.

It is not difficult to see that this equation has one and
only one solution in the interior of Dy if u+4iv is not on
the slits just mentioned, and if z+4iv is located on one
of the slits there are two solutions on the boundary of
'DO. In fact, suppose that u, < u < an+1.2 We can then
locate Ry (u) in Dy; this curve goes from z = —m back
to this point, intersecting the posilive real axis between
Py and P 1. It lies entirely in D, and it is the only
branch of the curve R = u in D;, all the other branches
are in the excluded regions. If we lrace Ry (u) once from
—m back to this point going in the positive sense, I (x, y)
increases steadily from —o to + . Thus there is one
and only one point on the curve where I(x,y) = v and
this point gives the desired solution, which is obviously
unique. The case in which u = u,, is easily disposed and
will not be considered here. We designate the image of
D, by If,.

In the interior of Dy, v (z) takes on every value once
and only once with the exception of the values u = u,,
vr>p and u = n;, v £—vp; which are not taken on at
all in the interior but twice on the boundary instead.
Thus we find that D, is mapped upon a full plane slit
along the lines u=u;, v>v; and a=u, v=<—p,.
Let this slit plane be denoted by #7;; I, and II; are
evidently connected along the common cuts. In generai,
the region Dn (n > 1) is mapped upon a full plane 7,

slit along the lines u = uy, v = vy and u = uy, v <~ vy,

' We set g = — .
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and this plane is connected with #f, along the common
cuts. There is obviously no direct connection between I,
and 7, if mn # 0. The totality of these sheets I, con-
stitules the Riemann surface of v (2).

18. Generalizations. In concluding we shall raise the
question of the extent to which the results obtained in the
present paper may be considered typical for the class of
functions defined as principal solutions of equations of
the form

(105) AF(z) = ¢(2).

Without pretending to answer this question we shall call
attention to a few facts which have an obvious bearing
on the situation.

There are many details in the preceeding discussion
which are of a highly special nature and which cannot
be carried over lo a more general case. But the funda-
mental results of the investigation have been derived
either directly from the defining difference equation
(2) or from the complementary theorem (3), the
multiplication theorem (4) and the asymptotic
formula (19). The latter three theorems are all immediate
consequences of the difference equation and are not
dependent upon the special analytic form of the solution.
Now the principal solution of (105) does satisfy a com-
plementary theorem, a multiplication theorem and an
asymptotic relation all of a fairly simple nature under
very general assumptions on ¢(z). Further, if ¢(z) is
single-valued the nature and distribution of the singulari-

ties of F(z) shows considerable resemblance to the corre-
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sponding situation for w (z). There is consequently some
ground for expecting that also the finer structure of the
distribution of the wvalues taken on by the several func-
tions shall show striking resemblances in the special case
here treated and the general case mentioned above.

Ferdig fra Trykkeriet den 15. August 1927,





