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1 . Introduction. The difference calculus has led to the

introduction into analysis of new classes of function s

defined as solutions of equations of the typ e

1 F(z) = TO)

or of difference equations of higher order. Among the

simplest and most important of the functions defined i n

this manner is 2p (z), the logarithmic derivative of th e

gamma function .

The central role played by p (z) in the difference cal-

culus, as well as its importance for analysis in general ,

would seem to justify a detailed study of the properties o f

this function. Most of these have been known a long time ,

but there are still some problems outstanding . In the pre-

sent paper we undertake an investigation of the distribu-

tion of the values taken on by ip (z) and of the corre-

sponding conformal mapping . This problem requires a

detailed study of the properties of (z) and in particular

of the zeros of this function. In Part I of the paper w e

are chiefly concerned with a determination of regions in

the plane where the real part of yr (z) is positive. The

study of zp'(z) follows in Part II ; the main problem i s

attacked in Part III . i

' The present investigation was undertaken at the suggestion o f

Professor N . E . Nörlund . I should like to use this opportunity to expres s

my gratitude to Professor Nörlund and to all the Copenhagen mathema-

ticians for their friendly interest and for the cordial reception whic h

they have given nie .

1*
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Part I .

A Preliminary Study of 7p (z) .

2 . Formal properties of zp (z) . The function y)(z) i s
defined as that principal solution of the equatio n

d F (z.) = -z

which assumes the value -C for z = +1, where C =
0 .5772156649 . . . is Ruler's constant . We have

(1) 7/) (z) = - C+
n= o

Of the many relations satisfied by 'tp (z) we notice th e
following

(2) tp (z -f 1) =

	

(z) + -I-

'tp (1 z) = zp (z) + TC cot Trz,

ni -4
(4)

	

in 7Ji (mz)
_~

zp (z + m) + m log m ,

(5) hin Lip (z) - log z] = 0 .
e->- F

Here m is a positive integer and log z denotes the principa l
determination of the logarithm ; o is the least distance o f
z from the negative real axis . Let us writ e

(6) ip (x + ig) = R (x, y) + i I(x, y) ,

where

1

	

1
~i + 1

	

rz -I-~ z

(3)

(7)

	

R (x, y) _ -C -I-
,.-,
n = 0

1

	

n -'r x
n+ l (n+ x) 2 + y 2_



On the Logarithmic Derivatives of the Gamma Function .

	

5

(8)

In .view of formulas (2)-(4) these functions satisfy th e

following relations :

B (x -i- 1, y) = R (x , y ) + x-2
+ J

s ,

(10) I (x =, 1, y) = (x, y) x2 +1 y2 ,

R(1 -x, - y) = R(1 -x, y) _
(11) J coth 2 7cy- 1

= R(x, y) + yr cot rc x ~
cot J 7Tx -rcoth2 7CLJ '

I(1-x, -y) - I(1 -x,y) _

Cot ' TCx+ 1
= I(x, y)-Tc coth7cy

cot22 ,
,cx~-coth rc y '

(13) ni R (mx, nly)

	

R (x -i n , y ) -I- m log m ,
in

~

	

7 1
(14) m I (mx, my) =

	

I .x ;- , y ,
nl

(15)

	

lim [R (x, y) - log z u = 0 ,
P-

	

(16)

	

lim [ I (x, y) - arg zj = 0 .
CO

For particular values of x we can express I (x, y) in

terms of elementary functions . Thus

(17)

	

I(0, y) = 2 cothTr, y+ 2t ,1

(9)

(18)

	

1(2, y) - 2 th 7c y.
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The former relation is obtainable from (10) and (12) by
1

letting x- 0, the latter from (12) by putting x
= 2 '

For purposes of numerical calculation we shall use th e

following relation 2

(19) zp (z) = logz- 2 z

Here B 25 , B4 , . . . are the Bernoullian numbers ; B9111 (1) i s

that periodic function of period unity which on the inter -

val (0, 1) coincides with B911, (t), the Bernoullian polynomial

of order 2m. We shall use this formula for purely imagi-

nary values of z. Setting z = i g we get

(20) R (O, g) = log ~ 9 ~ +

	

IB s v
+R

00' B2(t) dt

2 v~2v

	

(t+ 0 21n +1 '

o

where the absolute value of the remainder is less tha n

	

dt

	

2 . 4 . 6 . . . (2m-2) ~ B211j(21) Max ~ 82111(t) I

	

2 :11+1 -

	

iv

	

1 . 3 -5 . . .(2m-1)

	

p 27I1It,

	

~

Finally we shall have some use for the following fac-

torial series

0'(22)
tp(z

+h) -(z) -
Y

7 (
	 1) 11 h (h 1) . . . (h -n)

,

	

+1 z(z + 1) . . .(z~--n) ,
11= 0

which converges when R (z) >0 and (z + h) > 0 . 3

1 I am indebted to Professor N. E . Nörlund for formula (18) whic h

will be found useful below.

See N . E . Nörlund : Vorlesungen fiber Differenzenrechnung, Berlin ,
J . Springer, 1924, p . 106 . All the fundamental formulas for ip(z) whic h

we use in the present paper are to be found in this book, chiefly in
Chapter Five .

See Nörlund, I . c . p . 251 .

v

40,

o
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3 . Properties of R(x, y) and I(x, J) . It follows from (7 )

tha t

(23)

Hence all the zeros oflp(z) are real. As

for all real values of x, we conclude that p(z) vanishe s

once and only once on each of the intervals (-n-1, - n) ,

n = 0, 1, 2, . u. . and in addition once on the positive real

axis . The positive zero xo lies between, 1 and 2 ; it was

computed by Gauss and Legendre who found xo = 1 .46163 . . .

Substituting z = - n - in (3) we find tha t

\
(24) y~ (- n - ~ I = (n T ~ > 0 for n = 0, 1, 2, . . .

It follows that the zero x,t of p (z) on the interval (- n ,

-n + 1) lies on the left half of this interval . With the ai d

of (3) in conjunction with (5) we conclude that

1x,i cv -n+
log n

All these facts are of course well known. We shall

now take up a detailed discussion of R(x, J). It follows

from (7) that

(26) R (x, q 1) > R (x, y 2) when x > 0 and Ji > 1 J2

Hence in particula r

(27) R(x, J) > 0 when x > xo, z � xa.

Using formula (9) we conclude that

I (x, y) ~ 0 according as y ~ O .

(25)
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(28)

	

R (x, y) > R (x +1, y) according as x > O .

Further, formula (11) implies that

> R(1 -x,y) when n+2<x<n+1 ,
1

(29) R (x, y) = R (1 - x, y) when x = n + 2 or n ; 1 ,

<R(1 -x,y) when n<x<n - .~ ~

Here n is an arbitrary integer including zero . Suppose that
n <-2, then (29) together with (27) implies tha t

(30) R (x, y) > 0 when - n - --
1
< x < -n, n = 1, 2, 3, . . .

If we set n = -1 in (29) we merely get that R (x, y) > 0

when - 1 <x<1-x0 .

The result stated in formula (30) can be improved
upon ; in fact we have

(31) R(x,y)>0 when xn+ 1 <x<-n, n=1,2,3, . . . ,

where, as above, x,1+1 denotes the zero of ip (z) on the
interval (- n -1, - n). It is evidently sufficient to prov e

that R(x, y) is positive for xn ~_ 1 < x < - n I , as the

remainder of the interval is already taken care of. But
this follows from formula (11) . We have

R(x, y) = R(1 -x, y) -7r cots,

	

coth 2 Try-

2coth 7r y d- cot 7C x

Let x be fixed on the interval j -n-1, -n--
2

. The

first term on the right hand side is always positive an d
increases with y ~ . The second term is also positive, bu t
decreases when j y increases . Consequently
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(32) { R(x, y i) > R (x , y 2) when - n -1 < x < -n - 2
t

	

and
I yl > I y 2

If we set y2 = 0 in (32) and assume x,,+ 1 <x <-n-
2

,

then the right hand side is positive ; this suffices to
prove (31) .

Next we proceed to prove that

(33) R(x, y) > 0 when x

	

4, ~ y => -2 .

For this purpose we again use formula (11) . Let us giv e
y a fixed positive value and vary x, the n

coth2 7r y- 1 Tc
(34) 	 < Tc cot 7x 	 < 	

sh2Try

	

coth 2 zy-~-cot 2 7cxsh2n y

by at most h sr
= 0.2704. But if x < - 3 and y > 1

sTC

	

- 4

	

2

R (1 - x, y) > R
(4

, 2~ In fact, the least value of R(1-x, y)

in the region in question must be reached on the boundary .
In view of (26) the least value on the vertical boundary
is to be found at the lowest point. The horizontal boundary

remains . Consider . formula (7) with x
> 4

and y = -2 .

All the terms

If ~ y ~ > , (34) implies that R(x, y) differs from R(1 -x, y )

n ; x

n + y)2
1

(

	

- + 4

(n = 0, 1, 2, . . . )

will then be decreasing functions of
1
x when x increases .

Hence the least value of R 1-x, ~
1

for x< -
3 will be

reached at x = -
3

. It is difficult to estimate the size of

R 1 4 , 9\ ) without computation so we use the computed
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value 0 .3136 (> 0.2704), to be found in Table I on p . 53 .

Hence (33) is true. The same type of argument can b e

used in order to show that R (x, y) > 0 when x <0,

y I > 1. There is some doubt whether or not R (x, y) wil l

take on negative values on the line segment from - 4 4--

to -2+2 •
Now let us assume that x <-n+ 1

where n is an

integer > 3, and that
I J I

> yo > 0. In view of (11) and

(34) we have that

> Tlli, i
l

R(x, y)

	

R + 73- `

	

Jo

	

s ]t 2 2 tl o
~

	

> R n+ 9, 0

	

sr.

	

/

	

shrr2Tr,yo

	

1

	

7r
--C-2 log 2+2I1 + 3 ~- . .

	

1

	

sh 27ry a

:r
> C -log2~--log n+ ~ - sh27r y o

Thus, in order that R (x, y) be positive when x <-n--
2

y > 90, it is sufficient that

- 1
s h 27r yo > 7r [log

(n + 2) - C - log 2
Hence, a fortiori,

	

L

R (x, y) > 0 when

(35) x<-n-
2

and I y I > - log (n+21-C-log2 -
1.

o

Formula (35) gives a better estimate than (34) whe n

n > 9 . Thus we see that the region in the neighborhoo d

f z = -n where R (x, y) < 0, contracts indefinitely whe n

n

	

oo . Its maximum diameter is
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The arcs on which R = 0 contract steadily to zero in

the following sense. Consider the arc of R = 0 on which

- n _<_ x x15 (n > 1) which arc we denote by Rn . Let us

imagine that Rn be moved parallel to the real axis a

distance of one unit to the left . The transferred curve wil l

then completely enclose Rn+i, the two curves having onl y

the point z = - n -1 in common. This follows from (9) .

In fact, if z+ l is on Rn then R (x+ 1, y) _

	

R (x ,y) =

	

x2

	

2 >0 ,
J

i. e . the point z lies outside of R,,+ 1 provided z ~, -y-1 .

Part II .

Investigation of 717G) .

4. Formal properties of (z) . In order to continue th e

discussion profitably we shall need to investigate th e

derivative of 7p (z) in some detail and especially th e

location of the points where 2U ' (z) = 0, i. e . the non-

singular points where the mapping ceases to be conformal .

We have

0 and

(36)

	

V ' (z) =
1

(z
+ JZ) 2

The most important relations satisfied by

	

(z) are the

following :

(37)

	

'(z+1)-'(z) = -

2

(38)

	

'cß ' (z) + 7p ' (1- z) = 9sin Tc z

(39) lim

	

(z) -
e>

= O .
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in-1

	

(40)

	

m 2 ip ' (tn z) = > ? 1/~ (z +
n ~ .
m/

= 0
We set

~ ( z ) = r (x , y)+ zj(x > y) ,
with

(41)

	

r(x,
y) =

	

(x f n) 2
-y

2

n=u [(x + n ) 2 +y2 J
2 '

(42)

	

j(x, y ) = -2y
[(x+ll)2

+

y2]

2 .
n

Of the relations satisfied by r (x, g) and j (x, y) which are

a consequence of (37)-(40) we notice the following :

_

	

x9 ij 2

(43)

	

r (x + 1, g) - r (x , y) ~xz +
g2)2

,

	

(44)

	

.j (x + 1, y) _ .j (x, y ) +
2 xg

(x2 + ya)2 ,

2 5111 9 txCh 9TCy-cos z 77,xsÎ2 2 2 y

(45) l ' (x ' y) =

	

r(1 x, 9) +
T

[sin 9 nx + sh 9 Tc y

TC9 sin 2 7cx sh 2
(40 j(x, y) _ -j(1 -x, y)-

-2
-	
[sin 9 rz x+ 11 9 7r, y] 9 '

m-1

	

\

	

(47)

	

m 2 r (mx, my) _ ~ i. ~x + ~1

, y J ,
rn

n= o

ni -1
72

x +--, y .
M

For certain special purposes we shall need the factoria l

series

(48)

	

1n 9 ,j (rnx, mg) =
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which converges when i (z) > 0. This series is easily

obtainable from the corresponding series for (z h) - (z)

in formula (22) by dividing by h and then letting h tend

to zero . '

It is trivial to notice but useful to remember tha t

	

(50)

	

(x, y) = ô x R (x, y) = a
y I

(x , y )

	

( 71 )

	

.i (x, y) --å R (x, y)

	

~ I (x, y) •

5. j ' (z) in the right half-plane. It is obvious that

(52) sgn j (x, y) = - sgn y when x � 0 .

It is further clear that q ' (x) is real positive when x i s

real. From these two observations we conclude that

th ' (z) � 0 when I (z) > 0. In the expressio n

we set z = iy . The result can be written in the form

71 2

	

1 2 )
1 n2 _ 11 2

sh 2 7cy

	

y2

	

~-
o

(n 2 +
y2) 2

Hence we hav e

(53) r(0, y) =

	

2 y 2 2 sh 2 ~ y < O .

Thus w = zJi ' (z) maps the line x = 0 in the z-plan e

upon a curve d in the w-plane

u = r (0 , y),

	

o = j (0 , y ) ,

1 See also Nörlund, 1 . c . p . 243 .

Tf,.2
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which curve lies entirely in the half-plane u < 0 except fo r

the point (0, 0), where J is tangent to the a-axis . J does

not intersect itself for r (0, y) increases steadily with y I ;

it consists of two branches symmetric with respect to the

negative u-axis, which is the asymptote of both . Let the

region outside of J be denoted by J . It will be proved i n

§ 11 that /" (z) 0 in zi+ J. Thus w = zb ' (z) maps the

half-plane 9i (z) > 0 conformally upon J. Thus every value

in J is taken on once and only once by rp ' (z) in the right

half-plane . A simple calculation shows tha t

<
V 3

lui16

	

= 1 .069

on J; hence the values not taken on in R (z) > 0 hav e

negative real part and a numerically small imaginary part . '

In the half-plane 91 (z) > 1, r (x, y) > 0 . To see this w e

notice first that
a

r (1, y) = r (0, y) + 2 = 2 y 2 - 2 sh' n y > 0

in view of formulas (43) and (53) . Thus the curve r (x, y) = 0

does not intersect the line x = + 1 . On the other hand ,

there are two branches of this curve in the right half-

plane which pass through the origin, where they have th e

slopes + 1 and -1 respectively, and which admit of th e

imaginary axis as their asymptote . Hence the branches of

r (x, y) = 0 which lie in the right half-plane must he en-

closed in the strip 0 < x < + 1 . It follows from formula

(39) that there are no other branches of the curve

r (x, y) = 0 in the right half-plane. Hence r (x, y) > 0

when x > + 1 .

To obtain the estimate given for v j we replace each term in the
series (42) by its maximum value for x = 0 and sum these maximu m
values . The estimate is rather crude ; 1 v I probably does not exceed O .S .
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6. p ' (z) in the left half-plane. We now turn our atten-

tion to the left half-plane . Let k be a positive integer ; then

n2 - y 2

	

1

	

~ n 2 -
	 y

2

(54) r(-k, y) =~ (n 2 + y2) 2 y 2
+ n =1+

(]1 2 + y 2) 2 '

or
	 k

2

	

2

	

,
(55) r (- k, y) =

	

~

712
-

u2 2 ~ 1 (0 u) '
1

	

(l2

	

{

In view of (53) we can conclude that r (- k, y) < 0 when

y > k. When I y I< k we have

r (- k, g)

= 2 + 2 l' (0, y)

	

Sl2 2 7G y
Hence
(56) r (- k, y) < 0,

	

k = 0, 1, 2, . .

for all values of y . Further

7

	

n	
(5 7)

	

J(- k , y) = - 2 y

	

2

	

~(n + 1_1 2, )
tt =k - r

n 2 y 2
2+y2)2 +r(0, y )

1

/

	

i

	

\
- k- 2 , y)

_-
2y

/---~

	

1n=k +1 [(

n+ 2

n+ 1
2

n
2Consequently .0 ' (z) � 0 on all the lines s

(n = 0, 1, 2, . . .) and

sgn at [II ' (-n +iEl) ] = -1 ,

(59)

	

sgn ti [ I - 2 -I--I y

	

- sgn y .
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7 . Introduction of the cells. The lines x = - 2 (n = 0,

1, 2,

	

.) and y = 0 divide the left half-plane into a n

infinite number of cell s

n

	

n- 1
C ,, : 2 <x< 2 g>0 ,

Cn : -~ < x <-~
l
~

	

y <0.

Theorem : Each of the cells C21_1 and C2k - 1

contains one and only one complex zero of 2p ' (z) .

The cells C2k and C2k do not contain any zero s

(k=1,2,3, . . .) .

In order to prove this theorem we trace the image o f

the boundary of a cell C r, by the transformation w = 21i ' (z )

avoiding the vertices of the cell at the singular points in

the usual manner. For the following discussion consul t

Fig. 1 which gives a schematic representation of the situa-

tion. The line drawn in full corresponds to the case whe n

n is odd and the dotted line to the case when n is even .

Let the image of the line segment x = - , 0 < y b e

denoted by Jr, . In view of (57) and (58) the curve J2 k

lies entirely in the third quadrant of the w-plane ; it is

asymptotic to the negative real axis and tangent to the v -

axis at the origin . According to (59) J2k-1 lies in th e

lower half-plane ; starting from a point on the positive rea l

axis, it ends in the third quadrant at the origin and tan -

gent to the v-axis . J2k-2 and J21,_1 intersect at least onc e

in the third quadrant forming a loop together ; it is prob-

able that J2k-1 and J2k do not intersect each other, als o

that the curves Jr, do not intersect themselves, but this i s

immaterial for our present purpose.

and
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The lower boundary of the cell is mapped upon a seg-

ment of the positive real axis which is in parts covered

twice when n is odd . Finally a small circular arc z + k + 1

= ee ie , 0 < 0 < , is mapped upon a large contour in th e

Fig . 1 .

lower half-plane, and an arc 1 z + k = n e`e, 1 < 0 < n, is

mapped upon a contour in the upper half-plane . Keepin g

these facts in mind or consulting the figure the reader wil l

see that the argument of (z) remains unchanged whe n

we trace the boundary of C27 but increases by 2m along

the boundary of C2e_1, a result which suffices to prov e

our theorem .

	

V idensk . Selsk . Math.-fys . Medd . VIII, 1 .

	

2
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We shall prove in § 11 that 1p " (z) 0 in C2k for al l

values of k. It follows that gi" (z) maps the interior of

C21 conformally upon a region in the lower half of th e

w-plane a region which, however, may partly overlap itself .

The map of C2k_i is neither conformal in the interior no r

on the boundary . Since 1p" (-k-1-- r) < 0, ep" -k- 2 < 0 ,

tp" (-k- r) > 0 and ,i)' " (x) > 0, where k is a positive in-

teger or zero, r > 0 and x is real, we conclude that 2p " (z )

vanishes once and only once in the interval (-k- 1, -k)

and, in fact, on the right half of this interval . We have

also noticed that the curves J2k_ 1 and J2k-2 intersect

in the third quadrant where they form a loop . This indi-

cates that 'lU " (z) vanishes at least once in the interior of

C2k-1 . Thus we have at least 3 zeros of y " (z) in the strip

-k- - < x < -k for every integral k > O. We shall see

later that there are exactly 3 zeros of 'p " (z) in this strip .

8. The curves r = 0 and j = O . In order to gain

additional information regarding the map corresponding t o

iv = " p ' (z) we consider the curves r (x, y) = 0 and j (x, y)

= 0. The points z = - R (n > 0) are double poles of i'J (z) ;

hence they are double points of the curves r = 0 and j = 0 .

The r-curves have the slopes + 1 and -1 al z = - n, the

j-curves have the slopes 0 and o at this point .

One of the j-curves through z = - n is the real axis .

Let the other j-curve through this point be denoted by j, .

We have already seen that j (x, y) < 0 in C2n and > 0 in

C2n (n = 1, 2, 3, . . .) . This follows also directly from formula

(46) which shows that j (x, q)

	

1

q > O. Consequently fit lies entirely in C2n-1 -I- C2n 1 . It i S

a closed curve which intersects the real axis at z = - n + 1
and at the point where 'p" (x) = 0 . The curve jn grows
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steadily with in in the following sense . Let us imagine tha t

jn be moved parallel to the real axis a distance of on e

unit to the left . It will then have a contact with jn + 1 at

z = -n ; with the exception of this point, the transferre d

curve lies entirely within jn + 1 . This follows from formul a

(44) ; indeed, if z+ 1 lies on jn then j (x + 1, y) = 0 and

2x y
j (x, y) = (x2 -F y2)2 >

0,

	

(y > 0)

i . e ., the point z lies inside of jn + 1 .
It is possible to find upper limits for I y I on jn with

the aid of formulas (44), (46) and (48) . If y is fixed positive

7r 2 sin 27cx sh 27cg

	

z ch Tr y
< :r	

2 (sin rex + she 7e y)

	

sh3 It y

The latter expression is less than 0 .075 when y > 1 . On

the other hand, we can show by a simple but tediou s

calculation that j (3 .5, 1) < - 0 .075 . Further ,

0X 2y 3 (x + n)"- y 2
l 3

~(x i l2 ) 2 +
~~2

n

This expression is certainly positive when 0 < y < V3 x .

Hence j (x, 1) increases with x when x >
1

	

Thu s
- V 3

j (x, 1) j (3 .5, 1) when 1 < x < 3 .5 . We conclude, with

the aid of (46), that

j(x,1)<j(3.5,1)+72 eh
sh3

7c
7r_

< 0

when - 2 .5 < x < 0, and we can obviously draw the same

conclusion for the larger interval -3 < x < 0 . Hence ,

1y I < 1 on j1 , j2 and j3 . We now use (48) with m = 2, viz .

14j(2x,2y) =j (x, y)+ j x +2, y .

2'
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and set -3<æ<0 and y = 1 . It follows that ~ y < 2

on j4 , j5 and js . Repeating the argument we conclude suc-

cessively that ~ y ~ < 4 on j,-j12 , y < 8 on j13 -j24, and

so on. These limits for y I on jn are probably not very

good for large values of n ; they could be improved upon ,

but the' task is rather laborious .

We now turn our attention to the curves r = O. We

have already discussed in `3 5 the branches of this curve

in the right half-plane . Two arcs of r = 0 start at z = - n

in the interior of jr, . These arcs cannot remain inside o f

jn ; if they did so, they would have to intersect on the rea l

axis forming a closed curve which, however, is impossible

since 2/ti ' (z) does not have any real zeros . Hence these tw o

arcs have to intersect jn and obviously at z = zit and zn where

«p' (z) = 0 . These two arcs must pass through z = -n - 1

since there is no other place where they can intersect the

line x = -n-1, in view of (56), and they cannot wander

off to the point at infinity .

We refer the reader to Fig. 2, which gives a schemati c

representation of the curves r = 0 (drawn in full lines )

and j = 0 (drawn in dotted lines) .

It is possible to find limits for the curves r = 0 whic h

are somewhat more satisfactory than those found for th e

j-curves. Let r,i denote that arc of r = 0 on which

-n < x < -n+ 1 (n > 1) and y > O. We notice first that

r, t expands with n just as jn does . If z-I- 1 lies on rn, then

r (x -I- 1, y) = 0 and

x 2

	

2

I' (x , y) = (x2
+ J2)2

> 0

provided y, < - x . That this proviso is verified follow s

from formulas (62) below . Hence, we are justified in con-
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eluding that the point z lies inside of rn -1 , if z does not

coincide with one of the poles .

It follows from (41) that r (x, g) > 0 if all the following

inequalities are simultaneously fulfilled :

(60)

Fig. 2 .

These inequalities determine a sector of opening - in th e

right half-plane, and, in addition, a set of squares in th e

left half-plane each square having a line segment (-n-1 ,

-n) as one of its diagonals . Thus r,, lies above the polygo-

nal line joining z = -n, -n+ 2+ 2 and -n+1 .
A partial limitation of r,i from above can be foun d

with the aid of (45) . If x < 0, r (1-x, q) > 0. Hence,
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r (x, y) will be negative when x < 0 and sin e Tr x eh 2 Tu y-

cos' Trx she Try < 0, or

(61) r (x, y) < 0 when x 0 and tant Trx <

	

Try .

This inequality implies that rn lies below the correspondin g

arcs of the curv e

tang Tux = the Try or y = 2 log tan Tr 4 -I- x

This curve consists of infinitely many arcs, passing in pair s

through the points z = -n where they have slopes equal

to + 1, and having the lines x = -n+
4

as asymptotes .

This method of course does not give any upper bound fo r
1

rn in the interval - n - < x < n +
3

4

	

4
In order to fill this gap we use the same method a s

above for jn . We have

- Tr' < 77.2 sine Tux ch 2 Tu y- cos' Tux sh e T y < Tu 2

sh e Try =

	

[sin'Tr,x+sh2 Try]2

	

= ch2 Try '

when y is fixed . Let us set y = + 1 and vary x on the

interval (-k, -1) where k is a positive integer which wil l

be chosen below. Then
,)T. 2

r(.x, 1) < -minr(1 -x, 1) ,-
ch 2 Tr,

We have

ar

	

2

	

3y 2 -(x-I-11) 2
=	 	 < 0a x

	

) (x - rz)
~y2 (x + rr)2]

3
n = 0

if 0 < ]/3 y < x . Thus r (1-x, 1) > r (1 -I- k, 1) when

-k<x<-1 . Now

(1 k, 1) = 1- Tuz
- 3 -

8 k 2 - 1r

	

2 2 sh 2 Tu 25

	

100

	

(k2 -r 1) 2 '
whence
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.

	

Z 2

	

21.2

	

3

	

8 .

	

k 2 -1 _ 1
r

(x'
1)<

2 sh 2 IT T ch 2 ic + 25 ~ 100+	 ~-(It2-} 1)2- 2 '

The expression on the right hand side is negative for

k<12. Thus

(62 a)

	

r (x, 1) < 0 for -12 < x < 0.

Using (47) with m = 2 we conclude that

(62 b) r (x, 2) < 0

	

for - 24 < x < -12 ,

(62 c) r (x, 4) < 0

	

for - 48

	

< - 24

and so on . These estimates are probably rather crude, but

they seem to justify the conclusion that the maximum

ordinate on rn grows considerably slower with n than the

maximum ordinate on j».

The curves r = 0' and j = 0 _divide the z-plane into a n

infinity of regions . Four of these are infinite in extent, all

the others are finite. All the finite regions and the infinit e

ones in the right half-plane are mapped conformally an d

without overlapping upon a complete quadrant of the w -

plane by the transformation w (z) . The numbers plot-

ted in the different regions of the figure indicate which

quadrant corresponds to the region in question . The othe r

infinite regions are mapped, the upper one upon the third

and the lower one upon the second quadrant, but the map

is not conformal and overlaps itself infinitely often sinc e

the regions under consideration contain all the comple x

zeros of i/i " (z) .

In order to build up the corresponding Riemann surface

we can proceed as in § 17 below. To carry through th e

discussion properly would, however, require rather elabo-

rate considerations so we restrict ourselves to thes e

indications .
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9 . Lower limitation of the zeros of y/ (z) . We shall no w
proceed to a further delimitation of the zeros of '1i ' (z) .

The inequalities obtained for r (x, y) and j (x, y) in the
preceding paragraph give upper limits for yn, the ordinat e
of the zero zn of V' (z) in the cell C . In particular, for -
mulas (62) imply tha t

n- 1
12 + 1, n = 1, 2, 3, .

where as usual [u] denotes the largest integer less than o r
equal to u. This estimate is of course rather unsatisfactor y
for large values of n, but shows nevertheless that !hi grows
rather slowly .

A lower limit for y„ can be obtained with the aid o f
formulas (38) and (49). It follows from (49) that, whe n
R(z)>1 ,

(63) yn <

n I

	

_Tr, J

(n + 1) I z+ 1 ~ . . . 1z+ n

	

0+1)2

	

6 ,Izy ' (z)l <

or

(64)

	

1(1-z) y1 (1-z)~ <

	

when N (z) < 0 .
Similarly

(1
1

	

3
- 2

-zI < 11-zl I2 --zl '

Jr L

(65 )

In virtue of (38) we have that y/ (z)

	

0 if

S

siû Tc I> 11P'(1 -z) I ,

and, using (64), we see that this is a fortiori the case whe n

Tm J

	

>	 7r L
Isin' zz~ --611-zI '

or
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(66) 1 sin' TC z I< 6 11- z I .

Thus the two branches of the curve C

(67) sin' 7cx+sh 2 Iry = 6j/(x-1) 2 +q 2

for x < 0, together with a connecting segment on th e
imaginary axis, bound a simply-connected region R suc h
that î ' (z)

	

0 on R+ C. A fairly simple reckoning shows

that dx < 0 on the upper half of C, i . e., y decrease s

when x increases .
We can now obtain a lower limit for yn as follows .

Evidently yn exceeds the ordinate of the point on C whos e
abscissa is -n + 1 ; this ordinate is determined as the
real positive root of the equation

sh7ry = 1/ 61/n 2 +y 2 .

This equation implies that

sh7rg> V6 n ,
or

y> 1 log [V/6ii+V/6n+1] >hog 2V6n .7v

	

)7-

Hence

(68)
1

yn> - log 2 V 6 n .

In particular, y i > 0.5. For small values of n, formulas
(63) and (68) give comparatively narrow limits for ya .

10. The asymptotic distribution of the zeros of g' (z) . We

shall now take up the asymptotic distribution of the zeros .
We introduce the functio n

(69)

	

(z) =

	

7-r'
-

sin2 7cz

	

1z '

and proceed to prove the following



+ O (
loge n

)
+ log2 a i/n ; 2

	

/1 1
l47ce(n-I ~
/
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Theorem : CD (z) has exactly one zero in each o f

the cells C2n-1 and C2n-1 and no zeros in the cell s

C 2 n and C2n . If we denote the zero in C2n-1 b y

and set . Sn =

	

bin , then -n+2 < <-n+ , and

Let bn be .the center of a circle l'n of radius
n+ l

Then each circle F,, with n > 11 contains one an d

only one zero of j ' (z) .

We postpone the proof of formula (70) until the rest o f

the theorem has been proved . We readily verify tha t

n < arg Ø(-n+iy).< 32 ,

5mI- n -2--kiyl < 0,

2 9 f

~t[sine 7c(x =, iy)~ = ~(1-cos2TCxch2TCy)< ~

when y > 0 and n = 0, 1, 2, . . . Further 0(x) > 0 for x

real and negative. These relations are exactly the same a s

those satisfied by p ' (z) on the lines in question ; they

permit us to repeat the proof given in . § 7 with ip ' (z)

replaced by O (z) ; this suffices to prove the statement

about the cells .
1

	

3
To verify that - n ± 2 < Çn < - n+-

4
we notice that

3
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if cos 2arx > 0, i . e., if -ii+ < x <-n+ 4 . On the

other hand,

ai [7c 2 (1 _01 = 7r," (1- x) >

when x < 0. Hence 511 must be limited in the way just

mentioned .

Let _ 5 -I- hi (5. < 0, 'r > 0) be an arbitrary zero of

(z) . We shall study GO G + w) = a W G) when I w I = r ,

a fixed number. We have

qsi11 2 z- sin2 Tr (; + co) i

	

w
~ (~ -I- w) = nJ

-sin' 1-c sin 2 Tr G ',- w)

	

(1- (1 - )

sin Tr co sin .Tr (2+w)

	

1

w sin" g G +w) 1 -~- w

We now assume r < 4 . Then

w

1- ';

I0(s+(o)I

	

w
I1-~

	

2 j/ 2
shr(2~- i)

	

1

	

ch2 Tr(~ -r)

	

1 -~I - r

The fraction involving the hyperbolic functions increase s

steadily with N when r is fixed, and decreases when r

increases if N is fixed > 2 . Thus the fraction will be mad e

as small as possible if we give ' its least value and tak e
1

4
In order to obtain a suitable lower limit for the bracke t

we set _ X11 with n > 11 . This implies I 1- 1-r > 11,

and, since Nn > 1 log 2g Vn ,
7r

>> 1 log2Trl/11>0.96 . 1

In order to obtain this estimate, use the same type of argumen t

as in the proof of formula (68) .
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With these restrictions upon and co we find that

(71) I Ø (S + co) ~ > I Klw~ l where K > 0 .445 . 1

In view of formulas (38) and (65) we have

27; 2

(72) j ' (z) = (z) + P (z) where ~ P (z) I < (1- z) (2 - z) '

when i (z) < O. With each of the points n > 11, a s

center we lay a circle T,, of radius rn . We shall determin e

l'n in such a manner tha t

(73) l Q) (z) > I P ( z )

	

on Tn ,

and impose in advance the condition rn < 4 . Setting

z = + wn (j (on i = l'n) on T'n we have from (65) an d

(71)

3
-- 2

I(1 - bn - wn) (2 - bn - wn) •

Thus (73) will be fulfilled if

~ P („ + con) <

~ Ø (bn + w tt) l >

~c -

- 23

	

I1 -sn~

	

1
l'n < --

K

	

I1 - n i-l'n 2 -- ;n l -l'n

We now use the assumptions n > 11, rn < 4 together with

the fact that K > 0.445. These premises imply that
~1-~nl>11 .25, I2-5il-r',,>n+ 1, and

1 By imposing more severe restrictions upon Ç and co we can get K
as near to 27c as we please .
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Consequently (73) will hold for n > 11 when rn = .
n+ 1

But then it follows from the theorem of Rouché that eac h
circle Tn contains one and only one zero of ip ' (z) .

It remains to prove formula (70) . We begin by deter -
mining a set of numbers satisfying the followin g
conditions

sinT(,rn+],n = 7Tl/1-n,

	

n - -n+ 2 ,
(74)

n < L l~rn, n) < - n + 1 , .~ Gm, n) > O.

Here m, n = 1, 2, 3, . . . and J/1-z means that determina-
tion of the square root which equals to +1 when z = 0 .
We have

n

	

1

	

i _

	

[Tl- 1/12 + 1

	

1
]

f

(75)

log2 7r 1/n+ 2
- -n++	 +

2

	

2 ( n + )

7r 2
3

-2
I1- ~'tl

	

< 2 .97 < 3 .
K

	

1- ~nl - rn

+
~ /lo

liø.
g z nl

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We easily verify tha t

sin 2 (bn- Snr,n) = -
7-r 1 , 11 - -11Z -1 Id

2 cos (cn + rn, n) [V l 5a + li 1-Snr-l, n ]

For ni = 2 we have
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n l < Cl log n, cos

	

n) > C 2 ~72 ,

VI- ~n~~1- ~l >

where the c's are positive constants independent of R .

Hence
7c

	

-

	

~

	

c l

	

log n
sin - (~n- 2,n) <

2

	

2 C2 C 3

	

Ii

~

	

~< Cl
log n

'52,n
I l

Repeating the argument with m = 3 we see that

< c2 log n
1 ~n - ~3, n l

	

I72

.

Combining formulas (75) and (76) we get formula (70) .

11 . The zeros of ifs" (z) . In § 5 and 7 we made certain

statements regarding the zeros of l " (z) . We shall now

prove the following

Theorem : yi" (z) has exactly three zeros in eac h

of the strips -n 1 <x <-n+1 (n = 1, 2, 3, . . .) o f
2 -

which one and only one is real . There are n o

other zeros .

We begin by proving that

(77)

	

sgn [7p" (- n + i1)]

	

- sgn y

for n = 0, 1, 2, . . . We have from (53) and (55 )

r2p"(- n-I-iJ)~
°-ô r (-n ,lJ)

31I1 2 -ZJ2

	

1 - - 3 Ch7cIJ
(m 2+~37c

sh 3 7r,IJ '
ni= 1

and

(7 6)
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where the finite sum is to be suppressed when n = O . This

expression clearly has opposite sign to that of g whe n

Igl>nVO. If 1ui <a 1 3we have

2

	

J

2

~ ~ [2~J " (-R+ ZJ)~ < 2

	

(m + L]2)3
y

m = 1

27r3 ch TC~
< O .

p sh 3 7r i1

This completes the proof .

We shall now prove that the variation of the argumen t

of 2D" (z) is zero when z describes the perimeter of a larg e

square with vertices at the points n (± 1 ± i) avoiding the

point z n by a small semi-circle to 'the right of this

point. This contour contains n triple poles of 1p" (z), fur-

ther at least 3n zeros, namely, at least three in each of the

strips -
m 2-

< x < m + 1, m = 1, 2, 3, . . . , n, as we

have seen in § 7 . If we can prove the statement about the

variation of the argument then the theorem follow s

immediately .

In the neighborhood of z =

	

in the sector arg z <

2r-6' we have

if" (z)

	

- + 0 z s

Now let us start with z at + n and describe the contour

in the positive sense. Then w = 1p " (z) starts with a small

negative value, and its argument decreases from 7r to ap-

proximately - J when z goes from + n to n (-1 + i) .

When z goes from n (-1 + i) to - 11 + e i , w remains in

the lower half-plane in view of (77), and when z = -n + i e

w is large and arg w is nearly - - since

1

	

chTr y ]
3 7c

sh 3YTry
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(z) -

	

z+ 0 3 + T (Z + 71 ) .

When z describes the circular arc z+n = e, 0 C arg

(z + n) < 2 , w remains large and arg w increases from

- - to + ,7 . Consequently arg w is back to its initial value

after we have described the upper half of the contour, an d
by reasons of symmetry, arg w will return to the initia l
value after we have described the lower half of the con -
tour. This completes the proof of the theorem .

Part III .

The conformal correspondence w = (z).

12. The R, I-net . We shall now return to the psi-func-
tion itself, and consider the question of how its values ar e
distributed in the plane . We shall attack this problem fro m
two different angles . First, we have obtained in Parts I
and II of the present paper a variety of results which
permit us to give a rather detailed discussion of the curve s

91 [II) (z)~ = tonst ., and

	

[ gip (z)] = const .

We shall give this discussion in §§ 12-15 . Secondly, w e
try to complete the information so obtained by numerica l
computation of the psi-function for some values of z .
Finally, in § 17 we discuss the Riemann surface corre-
sponding to w = V (z) in the light of the results obtaine d
in §§ 12	 16 .

For the whole discussion the reader should consul t
Fig. 3, which gives a representation of the curves in question .
In the upper half-plane the curves
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R (x, y) = c, with c = - 2, -1 .5, -1, . . . , +1.5 and + 2 ,

are traced ; in the lower half-plane we have marked the curve s

I (x, y) = y with y = - 4, -3.5, - 3, . . , -0 .5 and 0 .

In addition we have plotted in dotted lines the curves of

the two systems which pass through the four zeros of f ' (z)

Vidensis . Selsk . Math-fys .Medd . VIII, I .

	

3
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which are nearest to the origin . The diagram is based
upon the results of §§ 12-16, and is believed to give a
fairly accurate picture of the situation, but, naturally, i t
must not be trusted too far .

In the sector 1 arg z

	

Tr-s we have

(z) = log z + 0 \1 \

It follows that within this sector and sufficiently fa r
from the origin, the curves R = c correspond to large posi-
tive values of c and each curve lies between two circle s

I z I = e c - d and z = ec + d. The curves I = y on the
other hand, correspond to values of y between - + an d
or, - e and are asymptotic to the lines arg z = y .

In the remaining sector we hav e

(z) = log (1-z)- ;r, cot srz+0 1) .

Here we have evidently quite a complicated situation ; the
net corresponding to log (1 -z) is distorted by the super-
imposed net due to -7r cot nz .

The points z = - n (n > 0) are simple poles of residu e
-1 for ii (z). Let Ne be a small neighborhood of z = - n.

Any R-curve in Ne will pass through z = n where it will
have a vertical tangent . If c is sufficiently large positiv e
(negative) the curve R = c will be closed in Nf and locate d
to the left (right) of the vertical tangent ; further it will b e
almost circular in shape . Any I-curve in N, will pass
through z = -n and be tangent to the x-axis . If y i s
sufficiently large numerically, the curve I = y will be closed
in Ne and almost circular ; it will be above or below th e
x-axis according as y is positive or negative. The curves
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of the two nets have a perfectly definite order in NE. Thus,

for example, if we describe the upper half of the curv e

R = M (M large positive) in N5 starting from z = - n+ à

(a real positive) and ending at z = - n, then v = I (x, y)

will be steadily growing along the curve from the initia l

value 0 to the final limit '± 00, every intermediate valu e

being taken on once and only once. Similarly with the

R-curves .

Any curve R = c will consist of an infinity of separat e

branches, beginning and ending at z = - n, one branc h

for each pole. Any curve I = r will consist of an infinity

of branches, which, however, may and as a rule do have

end-points in common . Such a branch will join a pol e

either with itself or with another pole or with the point

at infinity .

Through the points zn where 9 ' (z) = 0 will pass two

and only two branches of each system. If we se t

(78)

	

2p (zn) = ZUn = un + i vn ,

it is two branches of the curve R = un and two branches

of I= vn which pass through zn . These curves are o f

fundamental importance for the whole discussion and will

be considered at length in §§ 14 and 15. No other curve

of either system can intersect itself or have a non-singular

point in common with any other curve belonging to th e

same system .

We have discussed the curve R = 0 in some detail i n

§ 3 . This curve was found to consist of infinitely man y

separate ovals Rn, one for each pole z = -n, n > 0, all

being outside each other in accordance with the inequali-

ties (30) and (31) . Indeed, these inequalities prove the

existence in every strip -n -1 < x < -- n (n % 0) of a sub -

3*
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strip where R (x, y) > O . Further, formulas (25) and (35)

prove that the oval Rn contracts indefinitely to zero whe n

n - + co, and we have shown at the end of § 3 that thi s

contraction process is monotone in a perfectly definite sense .

Let us now turn to a curve R = c < O. This curve

clearly consists of separate ovals Rn (c), namely, one an d

only one oval inside each oval Rn (n = 0, 1, 2, . . . ) . Thus

the ovals Rn (c) are outside of each other when c < O .

They will contract indefinitely when n -} -~ co and the

process can be shown to be steady or monotone in the

sense above mentioned . The same conclusions will hol d

for sufficiently small positive values of c, but will cease t o

hold when c is large . Let Rn (c) still denote that branc h

of R = c which goes through = - n . If c is large we

can no longer affirm that the Rn (c) are all outside of each

other, but they will have this property for sufficiently larg e

values of n, i, e ., if we disregard a finite number of the

branches the remaining ones will be outside of each other

and of the disregarded branches x . Our previous conclusion s

are valid for the residual infinite set .

13 . Differential properties of the net. Now we turn our

attention to questions of increase and direction. We have

r (x, y ) = ,o R (x, y) =	 a I (x, y ) ,ox

	

0' y

J (x , y) _ - ~~ R (x , y ) = 8x I(x, Y) .

In a region where r (x, y) > 0, R (x, y) increases with x
and I (x, y) increases with y . In a region where j (x, y) > 0 ,

1 In order that the Rn (c) be outside of each other for n m it i s
necessary and sufficient that c < um. This follows from the results state d
at the end of § 14 .
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R (x, g) decreases when u increases and I(x, g) increases

with g. At a point z = zo = xo + 0 0 where r (x, g) and

j (x, y) have the same (opposite) sign, the slope of R (x, y)

= c is positive (negative) and the slope of I(x, y) = y i s

the negative reciprocal of the slope of the R-curve . Let us

define as positive direction of the tangent of R(x, y)

= c at zo that direction in which I(x, g) increases ,

with a similar definition for the I-curve . This direction i s

uniquely defined unless zo happens to be a zero or a pol e

of op' (z) . Let T, (zo) be the angle which the positive direc-

tion of the tangent of IR [y) (z)] = li [p (zo)] at z = zo makes

with the positive direction of the real axis, the angle bein g

measured from the axis to the tangent ; and let pz (zo) b e

the corresponding angle for the I-curve S [ip (z)] = S [ep (zo)] .

Then we hav e

(79 ) (zo) =
Jr
- arg ?p i (zo) (mod . 27r) ,

(89) (z o)

	

- arg "U (zo) (mod . 270 .

Fig. 2 suffices to give us a general notion of the mod e

of variation of arg op ' (z) . This figure, it will be remem-

bered, is based upon the discussion of ip ' (z) in §§ 5-8 . I t

will perhaps be useful to collect at this point some of the

consequences of this discussion .

It has been noticed that j (x, y) is negative in all th e

cells C2n and in the first quadrant and positive in th e

symmetric regions below the x-axis. This implies tha t

R (x, y) grows with I g I in these regions when x is kept

fixed. In particular, this will be the case on the boundar y

of any one of the cells, hence '

In order to obtain the lower limits in (81) and (82) use formula (29) .



38 Nr . 1 . EINAR HILLE :

(81)

	

R(- n,

	

> ~(n-♦ -1) ,

(82)

	

R
/

	

1
\-n -~ , t

(n=0,1,2, .

In that part of C2n which lies above rn, we have

7c < cp i (zo) <
32

and 2 < ßy2, (zo) < re ; below rn we have

2 < (zo) < a and 0 < 9), (zo) < 2 .
The R-curves have vertical tangents on jn , horizontal

ones on r11 and rn ' . For the I-curves the situation is of

course reversed . Finally, we notice that any vertical lin e

which does not intersect any of the curves jn, will either

intersect an arbitrary curve R = c in two points symme-

tric to the x-axis or not at all .

14. Qualitative description of the net . We shall now tak e

up the properties of the net in the gross . We aim at a

qualitative description of the net which will tell us ho w

the separate branches of the different curves go, wha t

singular points they join, how they separate the plane int o

regions, and so on . We shall see that the solution of thi s

problem depends essentially upon a special case of the

same problem, namely bow the critical curves through the

zeros of p ' (z) behave in this or that respect .

We begin by considering the I-curves . Let us inspec t

the branches of the I-curves which radiate from z = - n

(n > 1). One of these curves is the real axis . Now give y

a small positive value . We conclude by reasons of con-

tinuity that there is a branch of the curve I = whic h

joins z = - n with z = - n ± 1 and which lies entirely

within a rectangle -n < x < - n ± 1, 0 < g < (Y (y) where

We denote the arc of r = 0 which lies in the first quadrant by

ro and let 1 .n mean the curve symmetric to rn in the lower half-plan e
(n = 0, 1, 2, . . . ).
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å(y) -} 0 with y . There is also a branch of the same curv e

which joins z = -n with z = - n - 1, but we disregard

this arc for the present. Let yn be the largest value of y

such that for y < yn the curve I = y has a branch In (y)

joining z = -n with z = -n-I-1 without passing throug h

any other singular point . I claim that 1,-,(y,,) goes through

a zero of lp ' (z) ; to be more specific, I assert that I,1 (y, l)

goes through z = zn, i . e . yn = vn . Suppose this were no t

so and consider that arc of the curve I = y„ ä (à small

positive) which starts at z = -n and on which x + n i s

small positive when y is small positive. Since It/ (z) � 0

on In (yn), this arc will be uniformly near to In (yn), i . e : ,

we can find an e = e (à) which tends to zero with 6, such

that the distance between the two curves nowhere exceeds

a 1. But then this branch of I = y,l -I- à must end at z =

-n + 1, which is contrary to the definition of y n .

Thus I,1 (yn) goes through a zero of -tp' (z) . Suppos e

that this zero were not zn . Then In (y,,) which joins z =

- n with z = -n + 1, must intersect either the line x = - n

or the line x = -n+ 1 in two distinct points with posi-

tive ordinates . This, however, is impossible since I(-1n, y)

is steadily decreasing when y increases, m being a positive

integer or 0, in accordance with (56). Hence In (yn) passes

1 That this is actually the case follows from the following considera-

tion . Leaving out two small arcs at the end-points of In(yn) we can

cover the residual arc by a finite number of circles such that : (i) every

point on the arc is interior to at least one of the circles, and (ii) the

interior of any one of the circles is mapped conformally and withou t

overlapping upon a region in the w-plane by the transformation w = Ji (z) .

The image of the set of points which belong to at least one of thes e

circles is simply-connected and contains a segment of the line o = yn ,
hence also a segment of o = yn + d if d is sufficiently small . Thi s

proves the assertion except near the end-points of In(yn) . But these d o

not cause any difficulties since the curves under consideration are tan -

gent to each other at these points . This completes the proof.
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through zn and does not go through any other zero of

W. Further, yn = vn . Incidentally we notice that g (vn)

does not intersect the lines x = -n or x = -n -I- 1 except

at the end-points .

Now let z --1 -trace the arc In (en) from - n to - n + 1 .

Then z traces an arc g from -n-1 to -n. On this latter

arc I (x, g) > vn except at the end-points where equalit y

holds, as we see from formula (10) . Let Al be the region

bounded by g and the real axis between -n-1 and

-n . The point zn+1 may be located (i) within Dn, or

(ii) on 17,, or (iii) outside of D . Whichever be the actua l

case, we shall prove that v„ < vn _ 1 .

Suppose case (i) be realized, and consider the four

arcs of the curve I = vn+1 which start at z = z,+1 . We

know that two of these arcs form the branch In+i (vn+i)

with end-points at z = - n -1 and - n . The other two

arcs cannot lie completely within D r'; . If they did, we should

have two distinct arcs I = v,l + 1 the ends of which woul d

belong to a small sector I z + n l < d, 0 < arg (z -I- n) < s ;

this is clearly impossible in view of the order relations

between the I-curves in the neighborhood of a pole . Hence

these two arcs must intersect g at a point where I (x, y)

> vn , and thus vn+1 > vn . In cases (ii) and (iii) we see

almost directly that the same conclusion is valid .

Let us now study the I-curves which emanate from

z = 0 and of which the initial arcs belong to the firs t

quadrant. Such a branch of the curve I = y will he de -

signated by y I0 (y) . As long as 0 < y < "2 , Ia (y) will remain

in the first quadrant and go from z = 0 to z = 00, having

the line arg z = y as itS asymptote. That lo (y) cannot

intersect the positive imaginary axis follows from formulas

(16) and (56), which imply that
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(83)

	

I (-n, J) > 2 when q > 0, n = 0, 1, 2, . .

When y > 2 the arc lo (y) intersects the imaginary axis

and proceeds fo the point at infinity as long as y- 2 is

sufficiently small . There exists a largest value, To say, suc h

that lo (y) ends at infinity for every y < To . Just as above

we prove that the curve lo (.To) must pass through a zer o

of iJ/ (z), and this zero must be z 1 . Suppose contrariwis e

that it would be z.1 instead. Then To = v2 and there exist s

an are of an I-curve joining z = 0 with z = - i on which

I = v2. This arc together with the segment of the rea l

axis from 0 to -1 bounds a region D1 which evidently

contains the point z i in its interior . Moreover, the four

arcs of the curve I = v i which meet at z = z1 must b e

enclosed in D i. But this is impossible since v2 > v i ; ,indeed ,

if To = v 2 > vi then lo (v 1 ) goes from z = 0 to z = w en-

tirely outside of D 1 in view of the definition of To . But

there are only two arcs of I = v i which begin or end a t

z = 0 and only two such arcs which begin or end at

= -1 ; if one of the former arcs is outside of D 1 , then

there is at least one of the four arcs of I = v i starting a t

z1 which does not end in the interior of D1. We are thus

led to a contradiction by assuming that To = v2 ; in exactly

the same manner we disprove the assumption that To = vn ,

n � 1 .

Hence To = v i . We can now account for all the I-cur-

ves which emanate from z = 0 . As long as y < v i , Io (y)

goes from z = 0 to z = ; when y > v i , Io (y) is a closed

curve beginning and ending at the origin . The two types

of curves are separated by arcs of I = v 1 , namely, lo (vi),
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which goes from z = 0 over z1 to ao , plus Ii (v 1 ) which

goes from z = -1 over z1 to 0 .

We now pass to the second pole at z = -1 . We de-

signate by 11 (y) that arc of the curve I = y which start s

at z = -1 and on which arg (z + 1) is small positive when

z±1 is small . As long as0<y<v1 , I1 (y)goes from - 1

to 0. Thus if we return for a moment to z = 0 we se e

that the I-curves in a small neighborhood of the origin ,

I z < ô, g > 0, are either of the type Ia (y), 0 < y, or o f
the type I1 (y), 0 < y < v 1 . The former curves begin a t

z = 0, the latter ones end at this point according to ou r

present convention, which is in agreement with our previou s

way of orienting the curves with the aid of the positive
direction of the tangent .

When 0 < y- v1 < e, I1 (y) joins z = -1 with z = co .

There exists a largest value, I'1 say, such that I1 (y) has

this property for every y, v1 < y < h. As above we show

that T1 = v 2 . Thus the branches I1 (y) join z = - I. with

z = oc when v 1 < y < v 2 , and when y > v2 they are closed

curves beginning and ending at z = -1 . The remaining

I-curves which belong to the upper half of an s-neighbor-

hood of z = -1 are curves of the type I2 (y) with

0 < y < v2 which start at z = -2 and end at z = -1 . In

this manner we can proceed step by step . The situation in

the lower half-plane is symmetric to the situation just

described .

We notice that

(84)

	

2 < i [7p(zn.)] < Zs' L~ (zn +1)J < Tr.

Here the lower limit
2 could be raised somewhat ; v1 i s

certainly greater than 2, - on the other hand
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(85)v1 <MaxIl-2,y =Max
L
l2th7r y

	

4
4J21

< 9
+1

,
/

and in general

(86)

These limits are unfortunately not well suited for numeri-
cal estimates. That Tr is the true upper limit in (84) fol -
lows from the following consideration. Lets be arbitrarily
small positive and let 7r- e < v < 7r . There is a unique
I-curve which admits of the line arg z = v as its asymp-
tote, this curve is a branch of I = v . We know that an y
such branch when traced in the negative sense will ulti-
mately lead us to a pole . Suppose that our branch leads to

z - in . Then we are dealing with Inn (v) according to the
nomenclature adopted above . But if I„ 1 (y) joins z = - in

with z = w ;then x111 < y < un1+1 . Hence the same inequa-
lity has to be satisfied by v, i . e . v,n+1 > 7r-e .

We now proceed to discuss the fate of the R-curve s
which emanate from the different poles, and start wit h

z = 0. The corresponding arcs of the R-system have been

designated by Ra (c) in § 12 . As long as c < - C, Ro (c)
remains in the right half-plane and intersects the positiv e
real axis between 0 and + 1 . There exists a largest valu e

of c, c1 say, such that all the ovals Ro (c) intersect the
positive real axis as long as c < c 1 . As above, we prove

that Ro (c1) passes through a zero of ii ' (z), and owing t o
symmetry it will have to pass through two conjugat e
imaginary zeros . The zero in the upper half-plane must b e

z 1 , i . e . c1 = u1 . Indeed, if Bo (e l) passed through any other

vn <Maxl(- Ii - 2 , )

n

- th 7cy+4y

	

7	 1 2 2

	

(2m-1) +g 2
nl = 1

=Max
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zero but z1 , it would have to intersect the line x = - -
2

twice ; this is impossible since R (x, y) increases steadil y

with 1 y ~ along this line .

Let the point of intersection of Ro (u 1 ) with the positiv e

real axis be denoted by P1: We can find a point z = p 1
on the interval (- 1, 0) where (z) = u 1 . Through the

latter point passes a branch of R = u 1. There is also a

branch of the same curve which goes through z = -1 .

These branches must pass through z = z 1 . In order to see

that this is really true, we notice that there are four arcs

of the curve R = u 1 which meet at z = z1 . Two of thes e

have already been accounted for ; one joins z1 with P1 , the

other joins zy with the origin . Let us follow the remainin g

two arcs away from z < z 1 . None of these arcs can inter -

sect the imaginary axis as there is already one arc of th e

curve R = u1 which does so and R (0, y) increases steadily

with ~ y I . Further, none of the arcs in question can wan-

der off to infinity or end at the origin . We are thus sure

that one of these arcs will intersect the real axis between

--1~ and 0 and the other will intersect the line x = -2
y > O. As R (x, y) is monotone on both lines there canno t

be more than one intersection on each . The arc whic h

intersects the real axis clearly joins z = z1 with z = p 1. I t

follows that

(87)

	

u 1 = 2lß (pi.) > (-) =
?Ii 2 I > 0 .

The are which intersects x = -2 remains. This arc

will pass through z = -1 if we can prove that it cannot

intersect the line x = -1 at a point of ordinate different

from 0 . It clearly cannot intersect the real axis betwee n

-1 and - 2 . In view of (81) it is sufficient for our pur-
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pose to prove that

(88) ui < ip (2) .

Let us consider the rectangle whose vertices are A = 0 ,

B = i~, C = - 2 + i D = - 9 , where •71 (> 0) is to be

suitably chosen. It is clear that the curve R = a l intersect s

the polygonal line ABCD at least once. Hence ui Max

R (x, q) on ABCD . Now R (x, g) is monotone increasing o n

AB and on DC . Hence ut < Max R (x, g) on CB . The latter

maximum can be estimated with the aid of the method s

which we have used in the latter half of § 3 . In view of

(11) and (34) we have

Tc,
R(x, <Max R(1-x,!)+

sh2TCli ,

when z lies on CB. Hence

	 ;c
(89) u i

	

R

	

' I? + sh 21C qi

no matter how li be chosen > 0. Now it will be proved

in § 15 that it is always possible to find an 2 such that

(90) R

\

I

n + 2 '

	

I sh 2 Tcii
< R (n -I- 1, 0)

= 'I"
(n - ;- 1) .

i

Hence (88) is actually true' .

We can now account for all the arcs Ro (c) . When

c < u1 , Ro (c) intersects the positive real axis between 0

and Pi where 3 < Pi < 2. When c > u 1 , Ro (c) intersect s

the negative real axis between p i and 0 where

	

>2

	

p i .
The two different types of curves are separated and en -

closed by lobes of Bo (u 1) .

It follows from Table II in § 16 and the corresponding Fig . 4 that

u1 lies between 0 .1 and 0 .2 .
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At z = -1 we have a similar situation . As long a s

c < u 1 , R1 (c) intersects the negative real axis between - 1

and p1 and all these curves are enclosed by a lobe of

Ra (u1 )	 R1 (u 1) . When c is somewhat larger than u 1 ,

R1 (c) intersects the positive real axis beyond P1 . There is

a largest value of c, c 2 say, for which this is the case, an d

we prove in the same manner as above that c2 = u 2 . Thus

all the curves R1 (c) with u1 < c < u2 intersect the positive

real axis between P1 and P2 where üi (P2) = u 2 . When

c > u 2 , R 1 (c) intersects the negative real axis to the lef t

of z = -1, namely, between p 2 and -1 where p 2 > - -23

and 'tP (Pa) = u 2 .

Finally, in the general case the curves Rn(c) fal l

into three classes : (i) Curves corresponding t o

c<un ; these curves intersect the negative real axi s

to the right of z = -n between -n and pn, wher e

-n+ <pn <-n+1 and where /(pn) = un . (ü) Cur-

ves corresponding to un < c < un+1 ; these curve s

intersect the positive real axis between Pn and Pn+ i

where n + < P,t <n+1 and where z(i(PO = un (iii)

Curves corresponding to c > un+ 1 ; these curve s

intersect the negative real axis to the left of z =
-n, between pn + 1 and -n. The three different type s

of curves are separated by lobes of the critica l

curves Rn(un ) and Rn(un+I) .

15. Inequalities for the critical values . We have thu s

completed the qualitative description of the R, I-net . It

remains to prove formula (90) . For this purpose we resort

to formula (22), which has not been used in the earlie r

part of the paper, namely,
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(z -F- h) - (z) =
- '(-1)11 h(h -1) . . . (hn)

n+1 z(z+ 1) . . . (z + n) .

Consequently, if z = x is real and positive

11 (x+h)- (x)- x2 l

<ihl\1	 1 - (Ihi+1)(Ihi+2) . . . (Ihl+n)
x

	

n+1

	

(x+1) (x+2) . . . (x+ n)=

< Ih I

-2x
(IhI+1) . . . (Ihl +n) 	 lhI(Ihl+l)

(x+1) . . . (x+n)

	

2x(x- I h I - 1 )
12 =

provided x > I h I + 1. Hence

(91) 2U (x h) - (x) _
x

~1

+ (x, h)] ,

where

(92) Ie(x,h)I<
2

	 (xhI,1I1	 1) . when x >IhI + 1 .

We now choose x>(IhI+1)(2IhI+1)andseth=k ; il.
Then

(93) R(x+k,l)-R(x,0) = +P(x,h) where I P(x , h)I < 	
4 x .

In (93) we put x = n 1, k = - , I = rf and obtain

~
(94) R(n +1,0)-R n+2, > 4(n 111

)

and
1

Io (x h)I < l
4Ih I

provided n > 2 (71
2 +

	

4 , and, a fortiori, i f

n > 5 ,1 2 + -) when > X23 . It is possible to replace (94) by
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1
R(n -I- 1,0) R (n 2

IT
> -

sh 2TC7r

as long as
Jr

	

1

sh 2TcN < 4(n+1)

Suppose that we choose n and r subject to the followin g
double inequalit y

(95)

	

5 (ryi- -2 4
)

< n < 4
7t

sh 2 TC N -1, N
>V2 ;

then (94) implies that (90) is fulfilled for such values of
n and N. It is now obvious that when we give ourselve s
an n > 5, we can find an 7 satisfying (95) . Thus to every
n > 5 there exists an v1 for which (90) holds . We can
verify by numerical calculation that (90) holds for rj = 1

when n = 1, 2, 3 and 4. We obtain from Table I that

n

	

1

	

2

	

3

	

4

R ~n -I 1 , 1) )

	

0 .3480

	

0 .8096

	

1 .1544

	

1 .438 6
\ /

lp (n -I--1)

	

0 .4228

	

0 .9228

	

1 .2561

	

1 .506 1

Since h72n~ = 0 .0117 we have verified our statement .

We can obtain an asymptotic expression for w, , = w (z1I)

for large values of n with the aid of (19) and (70) . The
result is rather complicated and will not be given here ; it
permits us to conclude, however, tha t

~(Pn)

	

(n+ 2 =
O(1o

1
2 12

) ;

(1og 2 1r\
PIi - 12 -

2

= OI	 n)

~ ~
pII + 12 -- = O

(log'n) .
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The inequalities obtained for the critical values LUn can

be summarized as follows :
Theorem : Let zn and -z-ii (n = 1,2,3, . . .) denot e

the zeros of vi(z) where -n+,11 < JL(zn) <-n+ l

and set w11 = yi(zn) = un +ivn . The n

(98)

	

1jJ n -} 2 -J < an. < y) (n + 1) ,

(99)

	

-
< U 71 < Un+1 <

where n = 1, 2, 3, . . Further,

	 g2	 It
)
	 1(100)

	

un = 2~iln+2+0(
IO Li	

,

(log
Un = TC - 0 ~ n

16 . Numerical computation of p (z) . We can also attac k
the question of how the values of p (z) are distributed
with the aid of numerical calculation . Such computation s
are fairly easy to carry out on the imaginary axis ; with
the aid of the formulas in § 2 we can afterwards obtain
values of the function on other vertical lines .

Formulas (17) and (18), namely ,

(101)

I(0, y) = 2
coth ay + 2~, 1

	

\
I (

2
-- , y

IT
_ 2- th r-c 1j ,

enable us to calculate the imaginary part of ip (z) on th e
1

lines i. (z) = 0 and 2- . The values on the lines i (z) = n

and n + - are then obtainable with the aid of (10) . It does

not seem to be possible to get the values of I (x, y) on
any other vertical lines with the aid of the formulas in § 2
without the use of (19) .

Vidensk . Selsk . Math .-Pys. Medd . Vlli, .
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The situation with regard to R (x, y) is rather different.

We have

(102)

	

R (0, y) = - CH- y'

This series is not well suited for numerical work, no r

does its sum seem to be expressible in terms of elementar y

functions . To obtain more rapidly convergent series w e

use transformations of Kummer's type. Writing

Sp
=

(p > 2)

we easily see tha t

R (0, y) = -C+ LI'''S3 - L]45,+ . . .

(103) ~

	

\

	

1
I (- 1)k-1t]2rS2k+1+(-1)k 1121, +2 >

/r .J 72 21c+102+ I]2) .

n= 1

If ~ y 1 1 and k equals 4 or 5, this expression is quit e

suited for computations . When I y 1 > 1 we can still apply

the same method if we let the transformations apply t o

the remainder after a suitably chosen lerm of the original

series. For certain values of y the series

~

Sm (y) _
has a known value . Thus

S1
(-i)

= 8 log 2- 4, S2 (1) = 4 1

	

1 1
, S3 (2)

	

96 etc .

For such values of y we can obtain a rapidly convergent

series in fewer steps, e . g.,
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.R ( O, 2) = -C+21og
2-1-8S5

256 S 9
	 so

1

	

1	
2048 ~ /

	

9

	

4

	

1

	

'
ri = I

	

n

	

16~

The remainder after the first term of the infinite
`

series

contributes less than 10- ' to the value of R (0 2
1

. The

sums Sp which are needed for the computations can be
taken from Stieltjes' table in Acta Mathematica, vol . 10 .

Formula (103) becomes unmanageable when y ~ is larger
than about 3. For such values we have to resort to for-
mula (19), which is very convenient for numerical work . ,
Using formulas (20) and (21) with rn = 5 and substituting
the values of the Bernoullian numbers we obtai n

(104) R(0, y)= log ~ J ~ + 12 y2 ' 120 y4 + 252 y s + 240 ys T 1321y1° + R 11 '

(104a)

	

I Rtt I
64

2079 y 1 °

Using one or the other of these series we have com-
puted the following value s

R 10, 4 I = - 0.505907, R 10, 3 I = - 0.455210, R (0, 2 ) = - 0.328886 ,

R (o' 3) = - 0.186352, R. I 0, -) = - 0 .113901, R (0, 1) = 0.094650 ,

R 10, 3 J = 0.444698, R (0, 2) = 0.714592, R \0, - I =

	

0 .827758 ,

/

	

R (0, 3) = 1 .108907, R (0, 4) = 1 .391537 .

The error in these values, barring unfortunate accidents ,
amounts to less than one unit in the last decimal place .

4*
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Knowing R (0, g) and R (0, 2 g) we can compute

R ,u) with the aid of (9) and (13) . If we know R (0, 3y)

in addition, we can obtain R 3 , g
/

with the aid of (9) ,

(11) and (13). Finally, if
f

we
`
know R (0, q), R (0, 2 g) and

R (0, 4 g) we can get R 14 , g I with the aid of the sam e

formulas which supply the necessary number of equations .
In the adjoining Table 1 we have listed the values o f

lp(x + ig) for some values of x and g . The sign » in any
place of the table indicates that the corresponding valu e
has not been calculated ; thus the imaginary part is given
for only half of the entries . A last digit set in heavier typ e
indicates that the decimal in question has been raised .
The values listed above permit extending the table consider -
ably. In Table II we have listed the real part of p (x ± i y)
at 40 different points in the square -1 < x < 0, 0 < g < 1 .
This table illustrates the run of R (x, g) in the neighbor -
hood of the critical point z = z1 . The adjoining Figure 4
is based upon this table ; it shows the interpolated curve s
R = c for c = -0.5, -0.4, ., 0.5 and 0.6. In order to
avoid crowding the figure we have left out most of th e
arcs of these curves in the lower half of the diagram . The
dots in the figure mark the points where the values o f
R (x, g) have been calculated. The table and the figur e
together would seem to suggest that z, is near to the poin t

z = --I- -I- i and that u 1 is about 0 .1 .6 .3
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17 . The Riemann surface of w = z/j (z) . We can now

form a fairly good idea of the structure of the Riemann

surface corresponding to w = (z) and its inverse . The
singularities of the inverse function z = (w) are w = co ,

which is a transcendental critical point, together
with all the points w = ru„ and w,, . The latter points are



Table I .

Values of ip (x + i g) .

0 0 .25 0 .50 0 .75 1

- 2 cc 0 .9276 + 4 .6859 i 0 .9417 + 3.2305 ï 0 .9644 + 2 .7903 i 0.9947 + 2.7767 i
- 1,75 - 2 .3028 - 0.4273 +

	

» 0 .5709 +

	

» 0 .8099 +

	

» 0 .8940 +

	

»

- 1 .50 0 .7032 0 .7106 + 1 .9720 i 0 .7319 + 2.6406 i 0 .7667 + 2 .7362 i 0.8096 + 2 .6025 i
1 .25 3.7142 1 .8340 +

	

» 0 .8802 +

	

» 0 .7052 +

	

» 0 .7181 +

	

»

- 1 ~ 0 .4353 d- 4 .6244 i 0 .4711 + 3.1128 i 0 .5261 + 2 .6259 i 0 .5947 + 2.5767 1

- 0.75 -- 2 .8942 0 .9873 +

	

» 0.0426 + -

	

» 0 .3272 -;

	

» 0 .4633 +

	

»

- 0.50 0.0365 0 .0619 + 1.8365 i 0 .1319 + 2.4406 i 0 .2324 + 2 .4(595 i 0 .3480 + 2.3649 i
- 0 .25 2 .9142 1 .0647 +

	

» 0 .1905 +

	

» 0 .1169 +

	

» 0 .2303 +

	

»

0 ~ - 0.5059 + 4 .3891 i -- 0.3289 + 2 .7128 i - 0 .1139 + 2 .2659 i 0 .0947 + 2 .0767 i
0.25 - 4.2275 - 2 .1873 +

	

» 0.8803 +

	

» - 0.3395 +

	

» - 0.0167 +

	

»

0.50 - 1 .9635 - 1.5381 + 1 .0365 i - 0.8681 + 1 .4406 i - 0 .3830 + 1 .5424 i - 0 .0520 -Ha1 .5649 i
0 .75 -1.0858 - 0.9353 +

	

» - 0.6095 +

	

» - 0.2831 +

	

» - 0 .0050 +

	

»

1 - 0 .5772 - 0 .5059 + 0 .3891 i - 0.3289 + 0 .7128 i - 0 .1139 + 0.93261 0 .0947 + 1 .0767 i
1 .25 - 0 .2275 - 0.1873 +

	

» - 0.0803 +

	

» 0.0605 +

	

» 0 .2186 +

	

»

1 .50 0 .0365 0 .0619 + 0 .2365 i 0 .1319 + 0 .4406 i 0.2324 + 0 .6193 i 0 .3480 + 0 .7649 i
1 .75 0 .2475 0.2647 -{-

	

» 0 .3136 +

	

» 0.3836 +

	

» 0 .4750 +

	

»

2 0 .4228 0.4353 + 0.1538 i 0 .4711 + 0 .3128 i 0.5261 + 0 .4526 i 0 .5947 + 0 .5767 i
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Table IL
Values of R (x, y) .

1 x -1 - 3 1

	

- 1 - 1 0
Y\ 4 ; 3 2

	

3 4

1 0 .5947 0.4633 0 .4234 0 .3480 0 .2720 0.2303 0 .0947

9
0 .5261 0.3272 0 .2895 0 .2324 0 .1686 0.1169 - 0.113 9

2
J

0 .5060 » 0 .2265 » 0 .1578 » - 0.1864

0 .4711 0 .0426 0 .0311 0 .1319 0 .2192 0.1905 - 0.32892

0.4448 » -0.3727 0 .0808 0 .5160 » - 0.455 23

4
0.4353 -0.9873 » 0 .0619 » 1 .0647 - 0.505 9

0 00 - 2.8942 -1.0548 0.0365 1 .2590 2.9142 00

algebraic branch-points in the neighborhood of which

two determinations of z are interchanged .

b1 order to build up the Riemann surface we consider

the map of the z-plane corresponding to the transformatio n

iv = zp (z) . It is clear that this map will cover itself infini -

tely often. Thus .we have to cut up the z-plane into region s

such that each region has a smooth non-overlapping imag e

and then we must piece these different images together. It

then becomes a question of how these regions should b e

chosen. Our previous study of the R, I-net shows that th e

critical curves through the points zn and z, t give a natural

division of the plane into suitable regions . We can choose
either the curves Rn (un) or the curves I,, (un) for this pur-

pose; we select the former curves . We then imagine the

plane cut up along those arcs of Rn (un) which join zit and

zn with -n and -n+ 1. We do not, however, cut th e

plane along the remaining arcs of Rn (un) which join zn
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with zn over pit and Pn, respectively . The region outsid e

of all the cuts we denote by Do . The region inside of th e

.cuts from z = - n over z,,, -n + 1 and zn back to - n

will be denoted by Dn (n = 1, 2, 3, . . .) .

Fig . 4 .

We begin by considering Do . This is a simply-con-

nected region, if we leave out the points z - n (n> 1) ,

in the interior of which 'p (z) is holomorphic and tb ' (z) ~ O .

We shall prove that the image of Do by the transforma-

tion w = It) (z) is a full plane slit up along the line s

u = un, v > vi, and u = un, v < - on (n = 1, 2, 3, . . . ) .
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In order to sec this we shall consider the equatio n

~ (z) = u 4- iv.

It is not difficult to see that this equation has one an d

only one solution in the interior of Do if u i v is not on

the slits just mentioned, and if a+iv is located on one

of the slits there are two solutions on the boundary o f

Do. In fact, suppose that um < u < u„,+1 . 1 We can then

locate Rn,(u) in Do ; this curve goes from z = -m back

to this point, intersecting the positive real axis betwee n

Pm and P,,,+ i . It lies entirely in Do and it is the only

branch of the curve R = u in D0 , all the other branche s

are in the excluded regions . If we trace R,,, (u) once from

-m back to this point going in the positive sense, I (x, y)

increases steadily from - to + cc . Thus there is on e

and only one point on the curve where I (x, y) = v and

this point gives the desired solution, which is obviousl y

unique. The case in which u = u,,, is easily disposed an d

will not be considered here . We designate the image o f

Do by Ho .

In the interior of D 1 , eb (z) takes on every value once

and only once with the exception of the values u = u1 ,

v > vl and u = u1 , v - v1 which are not taken on a t

all in the interior but twice on the boundary instead .

Thus we find that D1 is mapped upon a full plane slit

along the lines u = u 1 , v > vi and a = u 1 , v < - u 1 .

Let this slit plane be denoted by I71 ; II, and 171 are

evidently connected along the common cuts . In general ,

the region D„ (n > 1) is mapped upon a full plane lin

slit along the lines u = un, v > vn and u = un, v < - vn ,

1 We set ,ip = -
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and this plane is connected with 110 along the common

cuts. There is obviously no direct connection between H.

and 17,1 if m n � 0. The totality of these sheets con-

stitutes the Hiemann surface of 2p (z) .

18 . Generalizations . In concluding we shall raise the

question of the extent to which the results obtained in th e

present paper may be considered typical for the class o f

functions defined as principal solutions of equations o f

the form

(105)

	

zI F (z) = p (z) .

Without pretending to answer this question we shall cal l

attention to a few facts which have an obvious bearin g

on the situation .

There are many details in the preceeding discussio n

which are of a highly special nature and which canno t

be carried over to a more general case. But the funda-

mental results of the investigation have been derive d

either directly from the defining difference e q u a t i o n

(2) or from the complementary theorem (3), the

multiplication theorem (4) and the asymptoti c

formula (19). The latter three theorems are all immediat e

consequences of the difference equation and are no t

dependent upon the special analytic form of the solution .

Now the principal solution of (105) does satisfy a com-

plementary theorem, a multiplication theorem and a n

asymptotic relation all of a fairly simple nature unde r

very general assumptions on p (z) . Further, if p (z) i s

single-valued the nature and distribution of the singulari-

ties of F(z) shows considerable resemblance to the corre-
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sponding situation for p (z) . There is consequently som e

ground for expecting that also the finer structure of th e

distribution of the values taken on by the several func-

tions shall show striking resemblances in the special cas e

here treated and the general case mentioned above .

Færdig fra Trykkeriet den 15 . August 1937 .




