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Synopsis

We consider series expansions of univariate frequency functions defined on the real axis and with th e
property that the function and its derivatives or differences disappear at the end of its range . The A series
is a linear combination of a continuous frequency function and its derivatives, the B series a linear com-
bination of a discontinuous frequency function and its differences, and the C series expresses the log-
arithm of a continuous density as a polynomial of even degree . In particular we discuss the series with
the normal and the Poisson distributions as leading terms, the normal A series and the Poisson B series .
The series are derived (1) as distributions of the sum of a known or an unknown number of random vari -
ables with finite moments and (2) as an expansion of a given frequency function in terms of an auxiliar y
frequency function . In the latter case the main problems are the choice of the leading term of the series
and the determination of the coefficients by the method of moments or the method of least squares . Th e
paper gives the historical development of these series in nearly chronological order under the headings :
The Danish, German, British, and Swedish schools . The interaction between the development of expan -
sions of arbitrary frequency functions and sampling distributions is discussed. It is shown how the same
results independently are obtained by several authors using different methods of proof . Several prob-
lems of priority are resolved .
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1 THE A, B, AND C SERIES : DEFINITIONS ,

NOTATIONS, AND PREHISTORY, 1811-1887

We shall discuss the history of series expansions of the for m

i fi (x), co = 1, -co < x < 0o ,
j= 0

where g(x) is a given frequency function and f (x) = fo(x) is another frequency
function chosen as a first approximation to g(x) . The series is called the A series ,
when the f's are continuous, and the B series when discontinuous . The terms A
and B series were introduced by Charlier (1905b), who (1928) also introduced a
C series in which log g(x) is represented by a polynomial of even degree. We shal l
mostly discuss the normal A series, also called the Gram-Charlier series, whic h
is a linear combination of the normal density and its derivatives, and the Poisso n
B series, which is a linear combination of the Poisson frequency function an d
its differences ; when it is clear from the context we leave out the qualification s
normal and Poisson . The coefficients in all the series will be denoted by ci , which
thus takes on different values depending on the context .

It is supposed that g(x) is uniquely determined by its moments p,,, = E[(x -
b)''], r = 0,1, . . . ,b being an arbitrary number, whose value usually is chosen as
zero or E(x) . The support of g(x) may be an interval on the real line or a se t
of consecutive integers . It is assumed that g(x) and its derivatives or differences
tend to zero for 'xi - eo .

The moments of f (x) are v,. = E[ (x-b)" I . Similarly we define the "moments "
v of fj (x) as voo = 1, vo j = 0 for j ? 1, and

	

_ /°°

	

r=1,2, . . .
J (x - b)rfj (x) dx ,

	

cc

	

j=0,1, . . . .

For the discontinuous case the integral is replaced by a sum . Other kinds of
symmetric functions such as factorial moments, binomial moments and cumulants
will later be introduced according to the usual definitions . In the following we
usually leave out the limits of integration and summation when the whole range
of x is involved .

In the proofs we are going to discuss, the authors tacitly assume that al l
moments are finite and that the moment generating function M(t) = E(e' )
exists .

We distinguish between expansions of sampling distributions and frequenc y
functions .

The basic theory of the A series as an expansion of an arbitrary frequenc y
function is due to Laplace (1811, art . V), a fact that has been overlooked until
pointed out by Molina (1930) . In his discussion of a diffusion problem, see Hald
(1998, §17.8), Laplace writes the arbitrary initial density of the position of the
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particle in question, in standardized measure, in the form

g(x ) =

	

exp(-x~)

	

(x + as)~ exp(-s 2 ) ds ,

j=0

which is obtained from the general solution for t = O .
To simplify the notation we introduce the standardized normal distribution i n

the classical form

d(x) =

	

exp(-x2 ) , - oo < x < oo ,

and the corresponding Hermite polynomials Hr (x) defined a s

49 (r) (x) = (-1) rd (x)H; (x ) , r = 0,1, . . . ,

where

r( 2 7 )
	 ~	 (2x)r-2i

	

r(r

	

1) . . . (r - k + 1) ,

	

(1 .1 )
.? ~

and

J H;(x)Hs (x)d9(x) dx = 0 fors + r , and = 2''rl for s = r .

Expanding (x+is) 1 by the binomial theorem and carrying out the integration
it follows that

f(x +

	

exp( -s 2 ) ds = 2 -j H; (x) ,

which leads to
8.8

g(x) =19(x)

	

2-jcj H~ (x) .

	

(1 .2 )

3 = 0

Using integration by parts Laplace proves the orthogonality of the Hermite poly-
nomials, and using this property he finds the coefficient s

1
c . = ,

	

H~ (x)g(x) dx = , E[H~ (x)] , j = 0, 1 . . . ,

	

(1 .3 )

by which the expansion is fully determined .
The A series as an expansion of a sampling distribution goes back to th e

extension of the central limit theorem proved by Laplace, Poisson and Bienaymé ,
see Hald (2000a) . In a remarkable paper by Bienaymé (1852) he first introduces
the characteristic function 'O(t) = E(eztx ) as the generating function for th e
moments /ir = E(xr), whereafter he changes to the exponential form exp[ln i,l)(t) ]
because this is more convenient for carrying out the integrations involved by

[r/2]

(-1
j=0
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using the inversion formula . Expanding 1n '0(0 in a power series he finds th e
coefficients of the first four powers of (it) a s

N1 ; N2 - I-ti 7 Ns - 3µ2N1 + 2Ni , N4 - 4N3N1 - 3N2 + 12N 2 N4 - 6Ni
. .

The following coefficients are more complicated and he does not give a formul a
for the general case . Since ln (t) is the cumulant generating function Bienaymé' s
coefficients equal the first four cumulants k 1 , . . . , K,4 . With this notation we shal l
rewrite the Poisson-Bienaymé extended central limit theorem for the univariat e
case .

Let sn = x i + . . . + xn be the sum of n independent random variables wit h
cumulants t .r (x 2 ) , i = 1, . . . ,n, so that

n

~;= 1

Introducing the standardized variabl e

t = (sn - nk i)(2nk2 ) 2

and the standardized cumulants

'}'::

	

J,,+2/(2TÇ2)(T 2 /2

	

r = 1 , 2, . . ,

the density of sn may be written as the A serie s

Kr ( sn) rs,(xi)=nk, .,

	

r=1,2, . . . .

P(sn) _ (2n~c2)-Z z9(t) + y3Hi~2)
+ ry2 4n(t)+

* *( )

	

* 2y5 H3 ~t
+

6

(71 + 10yn ~H6(t)+ . . . ~

Actually, Bienaymé discusses the multivariate version of the extended cen-
tral limit theorem so his result is a multivariate A series . He works out the
coefficients but does not give the final form of the polynomials . However, th e
univariate expansion follows easily from Bienaymé's result, as shown by Meye r
(1874, Appendix II) .

Laplace and his followers derived the asymptotic expansion above to get a n
approximation to the sampling distribution of the arithmetic mean and the (re-
gression) coefficients in the linear model, that is, sn is a statistic calculated from
a known number of observations . However, the series took on a new significanc e
when Hagen (1837) and Bessel (1838) formulated the hypothesis of elementar y
errors, saying that an observation may be considered as the sum of a large num-
ber of independent elementary errors stemming from different sources and wit h
different unknown distributions . Hence, sn is interpreted as an observation and
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p(sn) as the corresponding frequency function . A difficulty with this interpreta-
tion is that we do not know the measuring process (or other processes considered )
in such detail that we can specify the number of elementary errors making u p
an observation, so it is only the form of p(sn ) that is known. Hagen and Besse l

therefore used the expansion only as an argument for considering the norma l
distribution as a good approximation to empirical error distributions .

Let sn = s, say, be an observation and let us introduce the cumulants of s as
parameters in the expansion of p(s) . It is easy to see that p(s) becomes equal
to (1 .4) for n = 1 . Hence, the expansion of the sampling distribution is a series
with coefficients tending to zero for n - oo, whereas the terms of the expansio n
of the frequency function all are finite .

An alternative proof of (1 .4) is due to Chebyshev (1887) . Part of the proof
is based on his (1859) approximation to a square-integrable function F(x) by a
linear combination of orthogonal polynomials Ecj hj (x) . Choosing the normal
distribution as weight function ,

79 k (x) = (k/70 1/2 exp(-kx 2 ) , h j (x) = k2/2 1-1 ;'(x \/k) , k > 0 ,

and minimizing the expected value of the squared residuals he get s

F(x)

	

ki/2cj Hj (x'A) ,

	

(1 .5 )
j=0

and

	

cj = J F(x)H;(x~),iyk(x) dx/(2jkj/2j!)

	

( 1 .6 )

His (1887) proof is based on a new method, the method of moments . He begins
by quoting an auxiliary theorem, proved in a previous paper : If the first 2m
moments of an integrable non-negative function p(y) equal the first 2m moments
of'19 k (x) then

	

f
v

p(y ) d y f
ti

ok(y) dy < E ('m , v ) ,

	

(1 .7 )
oc

where s(m, v) for any value of v tends to zero for m tending to infinity. Hence ,
if the infinitely many moments of p(y) equal the moments of 'dk (y) then p(y) =
` 9 k ( y ) •

We shall sketch Chebyshev's proof of the central limit theorem. A detailed
discussion of the proof with amendments due to MVIarkov is given by Uspensky
(1937, Appendix II) ; see also Maistrov (1974, pp . 202-208) for some comments .

Chebyshev derives the distribution of y = (x 1 + . . . + xn )n-1/2 , E(xi) = 0 ,
under the assumption that the moment generating functions for the indepen-
dent x's exist . The moment generating function Nily (t) equals the product of
the moment generating functions for x in-r/2 , i = 1, . . . , n . Taking logarithms
Chebyshev obtains the relation

~

	

Do

ln My (t)

	

krtr/r! =
` frtr/ [r! n( 'r /2)-l ,

	

(1 .8 )
r=2

	

r=2
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where k,, is the rth cumulant for y and kr the average of the n cumulants o f
order r for the x's . For n -> oo it follows from (1 .8) tha t

.
1 +

	

FLr t r /r! = exp(R 2 t2 /2 ) .
r= 2

The right side is the moment generating function for a normally distribute d
variable with zero mean and variance 1c2 . Hence, for n -t oo the moments of y

equal the moments of a normal distribution, and it then follows from (1 .7) that
the limit distribution of y is normal .

At the end of Chebyshev 's paper he briefly states that the above result gives
the main term of a series expansion that may be obtained by means of the metho d
given in his 1859 paper . Without proof he states a theorem that implies (1 .4) .
Following his hints we shall construct a proof .

To simplify the notation we standardize the x's by setting the variances equal
to 1/2 so that the density of y for n

	

oo equals 'd(y) . From (1 .8) we then ge t

My (t) = exp(t 2 /4) exp [rt r /[r!n 2)_u 1j

	

(1 .9 )
r-3

Since

exp(t2 /4) _ f eytd ( y ) dy

it is natural to write p(y) as a product l(y)F(y), and using (1 .5) for k = 1 w e

get
oc

p ( y ) = 19-(y) cj HI(y)
j=o

which is of the same form as (1 .4) for y = snn-1/2 and i2 = 1/2. To prove that
the coefficients are the same we derive the moment generating function of th e
right side of (1 .10) using that

f e yt '6' (j) (y ) dy = (-t )3 exp ( t2/4 )

which may be proved by integration by parts . We then get

oo
My (t) = exp(t 2 /4)

7 =0

Comparing with (1 .9) it follows that co = 1, c l = c2 = 0, and

00

(1 .10 )

7. + L03 = exp
j=3

	

j=3

7/oIn(j/ 2 ) -1 ) ,
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which is the generating function for the c's in terms of the cumulants . It is easy
to calculate c 3 , . . . , c6 and to check that (1 .10) equals (1 .4) . However, Chebyshev
does not do so, nor does he refer to Poisson and Bienaymé, so perhaps for these
reasons this part of his paper was overlooked .

Gnedenko and Kolmogorov's (1954, pp . 191-196) exposition of Chebyshev' s
proof is misleading . They use characteristic functions and the inversion theore m
to prove (1 .4) but this method of proof is due to Poisson and Bienaymé, not t o
Chebyshev. Moreover, they write that "it is natural to collect terms of the same
order in n . This then leads to Chebyshev's expansion", but Chebyshev did no t
do so, this result is due to Edgeworth (1905) .

Until about 1870 the applications of statistical theory were mainly based on
the binomial and normal distributions . However, the increasing wealth of dat a
in many fields made it clear that the two classical distributions did not suffice for
describing the variations encountered . From about 1870 to 1930 many attempt s
were made to construct systems of distributions that better fitted the variation s
of observations taken under the same essential conditions and thus considered a s
homogeneous .

The first of these systems modifies the normal, binomial and Poisson distribu-
tions by taking each of these as the main term of a series expansion, an idea tha t
occurred indepently to several "statisticians ." The many authors who worked on
this problem naturally used different notations and methods of proof . We shall
in some degree rewrite their contributions in a uniform notation .

In the discussion of the series Eckfi (x) there are three problems involved :
(1) the choice of fo(x), (2) the relation of fi (x), j 1, to fo(x), and (3) th e
determination of ci .

The c's may be expressed in terms of the moments by solving the linear equa-
tions

[~r

	

rj,

	

r=1,2, . .
;_o

This fundamental formula is valid for both continuous and discontinuous distri-
butions . The solution is commonly simplified by choosing the f's such that the
matrix {Uri } is lower triangular, which means that ci becomes a linear combina-
tion of i 1 , . . . , ui .

Another approach consists in choosing the f's as orthogonal with respect to
the weight function 1/fa(n) and using the method of least squares, which gives

ci
= f [ .fi(x)/fo(x)]g(x) dx/ [g(x)/fo(x)] dx .

	

(1 .13 )

If fi (x) = fo(x)Pi (x), where Pi (x) is a polynomial of degree j, then ci becomes
proportional to E[Pi (x)], which is a linear combination of the first j moment s
of g(x) . Hence, this special case leads to the same result as the special case of
(1 .12) .

(1 .12)



MfM 49

	

On the History of Series Expansions of Frequency Functions

	

1 3

For an appropriate choice of the f's the first few terms of the series will often
give a good approximation to g(x) . However, the partial sum

m

g-	 (x) _

	

ifJ(x)> m=1 , 2 ,-•• >

j=o

will not necessarily be a frequency function, gm (x) may for example take o n
negative values .

Authors beginning their investigations of frequency functions by deriving th e
normal A series naturally remark that the extension of the central limit theore m
follows by interpreting the variable in question as a sum of n independent rando m
variables .

The French and German authors express the normal density in the form V(x) ,
whereas the Danish, British and Swedish authors after Thiele (1889, p . 26) and
Pearson (1894) use

Ø(x) _ (270 -'1 exp(-x2 2)

and define the corresponding Hermite polynomials Hr (x) a s

Ø( r ) (x) = (- 1)rØ(x)Hr(x) , r = 0, 1, . . . ,

where

(1 .14 )

and

f Hr(x)H5 (x)Ø(x) dx = 0 for s r , and = rl for s = r .

Turning to the statistical applications of the series it is clear that only a finit e
number of terms is necessary for describing an empirical distribution consisting
of m relative frequencies . We assume that a sample of n observations from the
population with frequency function g(x) is distributed on the values x i , . . . , xn„ ,

m < n, where the x's are consecutive integers in the discontinuous case and
midpoints of class-intervals of unit length in the continuous case . The relativ e
frequency of xi is denoted by gi , i = 1, . . . ,m, Eg. = 1, and the empirical
moments by mr , r = 0,1	 In the continuous case mr is a consistent estimat e
of the corresponding moment of the grouped theoretical distribution, so to obtain
an estimate of fir a correction for grouping is needed . Sheppard (1898) derived
the main term of the correction as a function of the length of the class-interval ,
and independently Bruns (1906a, pp . 174-190) gave the complete solution takin g
both the position and the length of the class-interval into account, see Hald
(2001) . The estimate of c i is obtained by replacing ?ur by the corrected value o f
mr . However, many authors only remarked that small class-intervals should b e
used .

r( 2 j )
Hr(x) =

	

.	 xr 2
,~

23j!
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In the following we shall sketch the historical development in chronologica l
order under the headings : The Danish ; German, British and Swedish schools .
We limit the exposition to the univariate case since no new principles are involve d
in the extension to multivariate distributions .

We shall not discuss the convergence and asymptotic properties of the series ;
this has been done by many authors, see Cramér (1928, 1937) and Boas (1949a ,
1949b) for results and further references .

The present paper is a continuation, with some overlapping and amendments ,
of Hald (2000a) .

2 THE DANISH SCHOO L

Oppermann and Thiele on the normal A series, 1873 .

The geodesist G . K . C . Zachariae (1835-1907) gave in his textbook on th e
method of least squares (1871, pp . 71-92) an account of Bessel's hypothesis o f
elementary errors and Bessel's proof of (1 .4) for symmetric distributions of the
elementary errors .

L . H. F . Oppermann (1817--1883), Professor of German and besides working
as an actuary, suggested to multiply the normal density function by a powe r
series to obtain a system of skew distributions, see Gram (1879, p . 94) .

T. N. Thiele (1838-1910), at the time working as an actuary, later becomin g
Professor of astronomy, followed this suggestion by presenting (1873) the firs t
(after Laplace) version of the A series

g(x) = /. cjDj [exp(-7rx 2 )] , D = d /dx ,
j=a

0o

where

= exp(-'Trx 2 c.?T (x )

Tj (x) _ (-1) '/2 .H
; (xv/77 ) .

Gram's orthogonalization of the linear model, 1879, 1883 .

J. P . Gram (1850-1916), an actuary working together with Thiele, considere d
the A series as a special case of the linear model . Beginning with a model with m
independent variables he writes the adjusted value of y = (y l , . . . , yn )' in three
ways

(ml

	

b.rr, l xi + . . . + bmm x ,n

+ (0) - 9 (1 )) + . . . + w(m) - -(m-1) )

	

(2 .2 )

=c l h1+ . . . + cmhm

where (x i , . . . , xm) are linearly independent n-dimensional vectors, ru n, the
b's are the least squares regression coefficients, and (h 1 , . . . , hm) are orthogonal
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n-dimensional vectors, hr being a linear combination of x i , . . . , xr . He uses th e
orthogonality to prove that

cj = h~ y /h, 'j hj , j= 1, 2, . . . ,

so ci does not depend on the number of terms in the model in contradistinctio n
to

Sinc e

cmhm = ~(m)

	

(rri-1) = dm,r x l + . . . + d mm x% m , m =1,2, . . .,n ,

say, the problem is to prove the orthogonality of the successive differences an d
to determine the coefficients of the linear combination .

Gram's algebraic proof is discussed by Hald (1998, §25 .4) . Setting h 1 = x i he
finds

h,r = ~ Aes) xs =
s=1 ar -1,1

	

• •

	

a r-l ,r
x i

	

xr

r = 2, 3, . . .

	

(2 .3 )

where ars = x'rx s and A

s
) denotes the cofactor of ars in the determinant A (m) =

fars of the normal equations . The residual sum of squares equal s

m

Rm = ( y - ~(m) )~( 1J y(m)) = y'y

	

Cr hrh r .
r=

To explain the orthogonality in geometrical terms we note that Y (m) is the
projection of y on the space spanned by (x i ,	 x,,) so that the residual y - y (m )

is perpendicular to each of these vectors, that is ,

xr(y-(n-`)) =0, r=1, . . .,m .

y (m)
y (rn

-1) = ( y - y(m -1) ) - ( y - y(m) )

it follows that

xr(y(m)

	

=0, r=1, . . . ,m ,

from which the orthogonality of the successive differences follows as each diffe -
rence before the last one is a linear combination of x i , . . . , xr for r < m.

Gram's decomposition of y' (' ) expresses the fact that the explanatory variabl e
x i leads to the adjusted value Y (1) , the two explanatory variables (x 1 , x 2 ) lead to
Y(2) so the reet effect of taking x2 into account is Y (2) - y (1) , which is orthogonal
to Y (1) , and so on .

Since
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Gram assumes that var (yi) = (x 2 /wi, where w i, > 0 is a known number . This
means that the sums of squares and products in the formulas above should b e
read as, for example, Exriyiwi instead of Exriÿi •

Gram considers the special case of (2 .2) in which the components of the vectors
involved are functions of an independent variable, t say, so that the true value of
y(t) is represented by a linear combination of x i (t), . . . , x	 (t) . Generalizing thi s
set-up he seeks a representation of a given square-integrable function y(t) as a n
infinite series ~

	

oo

y(t)

	

b rx r (t) _

	

cr hr(t ) ,
r=1

	

r= 1

where the x(t)'s are linearly independent known functions and the coefficient s
are to be determined by the method of least squares using the known function
w(t) > 0 as weight . The function h r (t) is determined from (2 .3) with

a rs = f xr(t)xs(t)w(t)dt ,

so that

f hr (t)hs (t)w(t) dt = 0 for r # s ,

cr = J h r (t)y(t)w(t) dt/ f hr(t)w(t) dt ,

and the residual sum of squares after m terms equal s

Rr = J y Z (t)w (t) dt - ~ cr J h2r (t)w(t) dt .
r= 1

Gram's orthogonal A series, 1879, 1883 .

Gram applies the method above to get an expansion of a continuous frequenc y
function by setting x j = f(x)x3 so that

g(x) = f ( x )	 bå x3 = f (x)

	

c~Pi (x) ,

	

(2 .4)
j=0

	

j=0

where {Pi (x)} are orthogonal polynomials determined from (2 .3) by means o f

ars = J x r+3f 2 (x)w(x)dx , (r, s) = 0,1, . . . .

In particular, Gram studies this series for w(x) = 1 and w(x) = 1/ f (x) .
In the following we shall only discuss the latter case for whic h

a rs =
J

xr+sf ( x) dx = vr+s
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so that Po(x) = 1,

vo

	

v1 .

	

vj
v1

	

v2 . . . vj+ l

Pj (x) =

	

j = 1,2, . . .,

	

(2 .5 )

1
vj
x

V2j -1

x3

/Pr(X)Ps(X)f(x)dxO for r

and

cj = J Pj (x)g(x) dx/ J Pj'(x)f (x) dx , j = 0, 1, . . . .

	

(2 .7 )

This is Gram's fundamental result for a series for which fj (x) = f (x)Pj (x) and
w(x) = 1/ f (x) . Since Pj (x) is a polynomial of degree j it follows that cj is a
linear combination of the moments of g(x) of order 1 to j . Hence, the method of
least squares with 1/ f (x) as weight leads to the method of moments .

As special cases Gram (1879) chooses f (x) as the uniform distribution over a
finite interval (pp . 45-48), the gamma distribution (pp . 60-66), and the normal
distribution (pp . 67-72), the corresponding polynomials being related to the
Legendre, Laguerre, and Hermite polynomials . His main results are reproduce d
in the German version (1883) of his paper . From the moments of the three
distributions Gram calculates Pl (x) , P2(x) , P3 (x) by (2 .5) and by inductio n
he finds the general formulas. In each case he checks the orthogonality usin g
integration by parts .

The series based on the uniform distribution has been discussed by Hald (1998 ,
pp . 544-545) . Here we relate Gram's results with the normal and the gamm a
distributions as leading terms .

Gram sets f (x) =VW and proves that

which leads to the A series

19.(x)Pj(x) = D'79(x) = 'd(x)(-1)3HI (x)

g ( x ) =19(x) j H;(x)

	

(2 .8 )
j= o

ci = (- 1 ) ' 2j~~ E[H~ ( x ) ]

1 [.7/ 2]

	

4(2k )

= (-1)' i ~(-1) 22kki l~.7 zk

	

(2 .9 )

~' k= o

so

with
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according to (2 .7) and (1 .1) .
For the gamma distribution

f (x ) = xa-le-ßxßn
/F(a ) , a > 0 , ß > 0 , x > 0 ,

	

(2 .10 )

Gram proves that

f (x ) Pj(x) = D1 [f(x ) x3 l

and carrying out the differentiation by means of Leibniz's formula he obtain s

P; (x) _ (- 1 ) k (j)u+ a - 1)(j-k)(ßx)k , ~ = 0,1, . . .
k=0

(2 .11 )

After having proved the orthogonality of these polynomials he get s

g(x ) = f (x)( )J P.;
J=o

where

1
c, _

!(~ +a - 1)o)E[Pi(x)
]

ß k

(1)k

	

k! ( j

	

k)!(a + k

	

1)(k) P,k'

	

j = 0,1 . . . .

	

(2 .12 )

Gram remarks that it is often useful to replace x in the series (2 .4) by a(x+ )3) ,
for example in the normal A series (2 .8) . It is then possible to choose a and ß
such that two of the coefficients in the series disappear . It is easy to see that
c i = c2 = 0 if a and ß are chosen such that the first two moments of f and g are
equal .

In accordance with his general principle Gram maintains that by fitting a
partial sum of the series to an empirical distribution the method of least squares
should be used to determine a and ß . This leads, however, to complication s
because the model no longer is linear in the parameters (unless f is a constant )
so the solution has to be obtained by iteration . As a first approximation a and
ß are estimated by means of the first two sample moments, and these estimates
may be improved by taking the third moments into regard . Gram recommends
to use the first or second approximation as if they were the true values of a an d
ß and then proceed accordingly to estimate the c's .

As an example (1879, pp. 105-107) Gram fits a gamma distribution to th e
distribution of the marriage age for hitherto unmarried men during the observa-
tion period 1855-1869 . Taking the origin at 17.5 years of age he estimates th e
parameters in the gamma distribution (2 .10) by means of the first two sampl e
moments about the origin, m l and m,2 say, by solving the equations

a = ßm1_ and a + 1 = ßm, 2 /m l .

k=0
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He observes that the fit is not quite satisfactory but does not go on to find th e
following terms of the series .

This example seems to be the first formulation and application of the gamma
distribution .

It is clear that an orthogonal B series, analogous to the A series, may be
constructed by Gram's method, using sums instead of integrals . However, Gram
discusses only the case for f (x) constant for which he develops an arbitrary func-
tion g(x), defined on a finite number of equidistant points, in terms of orthogona l
polynomials . He points out that a considerable simplification is obtained by usin g
factorials instead of powers of x .

As an example he first considers the orthogonal A series for an arbitrary con-
tinuus function defined on a finite interval which he normalizes to [0, 1] . For
f (x) = 1 he gets g(x) =

	

where

P? (x) _

k=0

(1)k
(j) (j

~
k
)xk , 0 <_ < 1 .

For the discrete case he assumes that x = 0, 1, . . . ; n-l and obtains the expansion
of g(x) by replacing x k in Pi ( .x) by x (k)/(n 1) (k) , see Hald (1998, pp . 544-
547) for the proof . He uses this result as a polynomial regression, not as a
representation of a frequency function .

Thiele's representation of the A series by means of the cumulants ,
1889, 1899, 1903 .

Thiele (1889, pp . 26-28) improves Gram's proof by introducing 0(x) instead o f
d(x), by using the orthogonality directly instead of the method of least square s
for finding c 3 , and by introducing the cumulants instead of the moments . He
writes the series as

g ( x ) =

	

(-1) 11 ciD.7 0(x )
å=o

	

3

= 0( x ) L 17 ciHi (x) .

d=o 3 '

Multiplying by Hr (x), integrating, and using the orthogonality of the H's h e
finds Cr = E[Hr (x)], which gives Cr in terms of the moments by replacing xr-2j

by µr_22 in (1 .14) . By means of his formula for the moments in terms of the
cumulants he finds e 1 , . . . , cs as functions of the cumulants, and using the recur-
sion formula for the Hermite polynomials he derives a recursion formula for the
c's . Replacing x by the standardized variable u = (x - 15, 1 ) 2 2 the final form of
the series becomes

9(x ) = K 2 Ø(u )[ 1 + ry1 H3(u)/3! +'Y2H4(u)/4! +

`y3H5 (u)/5 ! + (`y4 + 10y4)H6 (u) /6! + . . . ],

	

(2 .13)
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where
(r+2)/ 2

'Yr = 6r+2/1Ç2

	

r = 1, 2, . . . ,

see (1889, p . 28 ; 1903, p . 35) .
Ten years later Thiele (1899 ; 1903, p. 24) defined the relation between th e

cumulants and the moments by equating the cumulant generating function t o
the logarithm of the moment generating function, that is ,

/
EK j ti /j! = In J e °;tg(x)

dx = ln 1 +
j=1

	

`

	

j=1

~
(2 .14 )

from which he (1899), without giving the proof, find s

Pi j? 1, (2 .15 )

where 3 = aer +bß+ . . .+dô and r =a+b+ . . .+d, and

/i
al

° 1

	

!~ß b

	

1
(

/~,
ôl

d

a!/ b! 0 ! }

	

d! 1 b ! /

He (1899) also derives the symbolic form of the A series a s

g(x) = exp (-r 3D 3 /3! + a 4D 4 /4! - . . . )f (x) , D = d/dx ,

	

(2 .17 )

where f (x) denotes a density with mean i 1 and variance K2 i see Hald (2000a) .
To evaluate the right side of (2 .14) Thiele (1903, p . 34), using integration by

parts, finds

x - ,u \ dx _

	

x

	

dx

o-Q

	

~ - (-t)3

	

ext,
Y
{,

	

Q
/

= (-t)j exp (pt + o-2t2 /2) .

Inserting the series for g(x) and carrying out the integrations he obtains

,P /j! = µt +Q 2 t 2 /2 + In

	

t3 /j! .

~-0

Setting p = n1 and a 2 = h, 2 the generating function for the coefficients in the
series becomes

1 +

	

c j ti / j! = exp ~ ~~ r~ . t j /j! ~ .

	

(2 .18 )
j-3

	

j=3

(-1)r-1 (r -1) j >= 1 . (2 .16 )

f e .Lt

7=i
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Independently, Thiele has thus proved Chebyshev's formula (1 .11) for n = 1 .
Expanding the right side in a power series and equating coefficients the c ' s are
found. Thiele derives the coefficients up to c 8 and points out that (2 .18) is of the
same form as (2 .14) so that the relation between the c's and the n's is analogou s
to the one between the p's and the n's, but he does not present the explici t
solution . However, this is readily found from (2 .15), which shows that

(Kål d
. . .To l 61 /,

	

3 , (2 .19 )
r=

°

al )3
i

where j = a,a + bß + . . . + dS and r = a+ b+ . . . +d. Hence, cj is a homogeneous
function of the subscripts . As an example we have

C 10 _ 1 ( K3 )2 ~4 K3 n7 K4 K6

	

1 C5) 2
10!

	

2! \ 3!

	

4! + 3! 7! + 4! 6! + 2!

	

!

	

+ 10 !

Thiele considered the condensation of the information in a sample by mean s
of a few symmetric functions as one of the main problems in statistics, bu t
which kind of symmetric function should one choose? He discarded the moment s
compared with the cumulants and looked for an interpretation of these . For a
continuous distribution he found this in the A series for which he points ou t
that Al characterizes the skewness and A 2 the peakedness of the distribution .
He (1903, pp. 49-50) concludes that the coefficients of the A series are to b e
preferred to the cumulants .

In applications he recommends to use the partial sum of the A series with only
the first five cumulants as parameters because of the large sanpling error of the
following cumulants . He (1889, pp . 62-64) derives the variance of the first fou r
sample cumulants and an approximation for the followings and uses this resul t
to find the corresponding confidence limits .

He remarks that the length of the class-interval should be at most one-fourt h
of the standard deviation to reduce the effect of grouping .

Hence, the theory and application of the A series are fully discussed in th e
works of Thiele and Gram .

Thiele's orthogonal B series based on the symmetric binomial, 1889 .

Thiele (1889, pp . 9-13; 1903, p . 21) also introduced a B series based on the
symmetric binomial and its differences . His exposition implies that the function s{fj (x)} are orthogonal with respect to the weight function 1/fo(x) so

0 fors+ rf fr(x)fs(x)f0 1(x)
dx = pT. for s= r .

The method of least squares with 1 / fo (x) as weight gives

cj = pj 1E [fi(x)/fo(x)] ,
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which is a generalization of Gram's formula (2 .7) .
To describe an unnormed frequency function g(x), x = 0, 1, . . . ,m, Eg(x) = n

Thiele uses the binomial coefficien t

/3,n (x) = (m) , x = 0,1, . . . , rn , and /3,(x) = 0 otherwise ,x

as leading term and writes the series as

g ( x ) = coßm(x) + c i V,3m- 1 (x) + . . . + en,V mßo(x) , m = 1, 2, . . . ,

	

(2 .20 )

where Vß,,,, (x) = 0,,,, (x) - ß.,,,, (x 1) and Eg(x) = 2 m co . By not norming g(x) to
unity Thiele obtains that the functions involved take on integer values only .
Thiele indicates that the functions

0,1, . . .
73 07n-j(x) =

	

xi :

	

,
fj (x ) , O,l, . . . ,m

m

,

are orthogonal with respect to 1/fo(x), but leaves the proof to the reader . He
tabulates the matrices {fj (x)} for m = 1, . . . , 16 to make the calculations o f
the coefficients and g(x) easy, the orthogonality of the tabular values is obvious .
More details and a proof of the orthogonality are given by Hald (2000b) .

Thiele's C series, 1897, 1903.

As a third possibility for representing a frequency function by a series Thiele
(1897, pp. 14-15 ; 1903, p . 16) proposes to use polynomial interpolation on th e
logarithm of the density, which leads to the C series

2 m

1ng(x)=
,

cj .3 , c2m<0, m=1,2, . . ., -oc <x<co .

	

(2 .21 )
j=o

Thiele's three examples, 1889, 1897, 1903 .

Regarding applications of the three series Thiele (1889, p . 9) writes: "The
exact representation of an empirical frequency function with m, different result s
will of course require a series with rn terms, but for an approximate representatio n
it is important that the series has been chosen and ordered in such a way that th e
coefficient of each term can be calculated separately, and that the first terms of
the series immediately give the essential characteristics of the function, wherea s
the later terms more and more lose importance and at last only regard trifles with
importance only for a completely detailed representation of the given empirica l
distribution. "

To demonstrate the applications he fits the three series to the same data, viz .
500 observations from a game of patience, and obtains nearly the same goodnes s
of fit, see Table 1 . He judges the goodness of fit by looking at the difference s
between the observed and calculated frequencies . He does not comment on the
fact that the A series leads to negative frequencies for x = 5 and 6 .
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Table 1 . Thiele's fitting of the A, B, and C series to an observed distributio n

No . o f

points Observed A series

Calculate d

B series C serie s

4 0 0 . 0

5 0 -0 . 1

6 0 -0 . 3

7 3 1 .6 1 0 .3

8 7 12 .3 11 7 . 1

9 35 39 .6 40 39 . 2

10 101 78 .2 82 85 . 9

11 89 104 .1 103 105,4

12 94 97 .7 92 93 . 4

13 70 69 .4 70 70 . 5

14 46 42 .8 48 48 . 5

15 30 26 .7 26 29 . 8

16 15 16 .0 13 14 . 5

17 4 8 .0 8 4 . 6

18 5 3 .0 4 0 . 7

19 1 0 .8 1 0 . 0

20 0 0 . 2

21 0 0 . 0

Total 500 500 .0 499 499 .9

Sources:

Observed: Thiele (1889, p . 12 ; 1897, p . 12 ; 1903, p . 13 )
A series: Thiele (1903, pp . 50-51) . u = (x 11 .86)/2.0408 .

g5 (x ) = 2ô4ôs {I + 0.09233113 (u) + 0 .009356114 (u) - 0 .006344H5 (u) } .
B series : Thiele (1889, p . 12) . fo(x) = /3 12 (x) .

g5(x) = 0 .1221fo(x)+0 .278f1(x)+0 .600f2 (x)+0.216f3 (x)+0 .278f4 (x)-0 .318f5 (x) ,
x = 0,1, . . . ,12 . No. of points = x + 7 .

C series : Thiele (1897, p . 12 ; 1903, pp . 13-14) .
log g4 (x) = 2 .0228 + 0 .0030(x 11) - 0 .06885(x - 11) 2

+0.01515(x - 11) 3 - 0.001678(x - 11) 4 .

Thiele introduced the B series to describe discontinuous distributions and th e
A and C series for the continuous case . Nevertheless he used all three serie s
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for analysing the same sample from a discrete population . He did not make
a direct comparison of the three series as we have done in Table 1, which w e
have included to illustrate the following problem : If an empirical distribution i s
described equally well by several different models, which model should be chose n
as the "best" ?

In his discussion of this problem for continuous distributions Thiele (1903 ,
p . 22) writes: "[ . . .] that we certainly possess good instruments by means o f
which we can even in more than one form find general series adapted for th e
representation of laws of errors .[ . . .] If anything, we have too many forms and to o
few means of estimating their value correctly .[ . . .] We ask in vain for a fixed rule ,
by which we can select the most important and trustworthy forms with limited
numbers of constants, to be used in predictions . "

Thiele states explicitly that among the many possible forms he prefers th e
four- or five-parameter A series, presumably because of its flexibility, its mathe-
matical and computational simplicity, and the simple interpretation of the fou r
parameters for describing the frequency curve . With their actuarial backgroun d
Thiele and Gram looked at the problem as one of graduation, and they abstaine d
from speculations about the genesis of the model .

3 THE GERMAN SCHOO L

Fechner's Kollektivmasslehre, and the Fechner distribution, 1897 .

The background for the German school is the posthumously published Kollek-
tivmasslehre (1897) by G. T . Fechner (1801-1887), physicist and psychologist ,
co-author of the Weber-Fechner law and founder of the discipline psychophysic s
(experimental psychology), see Stigler (1986, pp . 242-254) on Fechner's multifac-
tor experiments on the stimulus-sensation relation and their statistical analysi s
by the method of quantal response, and Heidelberger (1987) on Fechner's inde-
terminism and the Kollektivmasslehre .

After Fechner's death the incomplete manuscript to his book was edited an d
completed by G . F . Lipps (1865-1931), philosopher, psychologist and mathemati-
cian. Many of Fechner's propositions are based on empirical investigations, for
example by means of random numbers from Saxon lotteries, and Lipps provide s
the corresponding mathematical proofs and also supplementary empirical dat a
and analyses . Lipps's contributions are so essential that he ought to have figure d
as co-author of the book .

Fechner (1897, p . 3) defines a collective as "an object consisting of an inde-
finite number of randomly varying specimens that belong to the same specie s
or genus ." A collective is described by means of a frequency function so that
"Kollektivmasslehre" in modern terminology becomes the theory of frequency
functions . Fechner observes that most frequency functions encountered outside
the physical sciences are asymmetric and he aims at supplementing the classica l
error theory taking this fact into account . He discusses only continuous distribu-
tions . His book contains a large number of empirical distributions from lotteries ,
astronomy, anthropology, botany, meteorology and dimensions of paintings, and
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it became a challenge for him and his followers to find corresponding theoretica l
distributions . Comparing the empirical and calculated frequencies he measured
the goodness of fit by the sum of the absolute deviations . He (1897, pp . 4-5)
states his program as follows: "Does there exist a general law or at least a la w
applicable for most collectives for the relation between the numbers and the size s
of the specimens? Actually it is possible to obtain such a law and it is the main
task in the following to establish it . "

Fechner solves this problem in two steps . First (1897, pp . 69-70, 295-299) h e
generalizes the normal distribution to the "two-sided normal", which is a com-
position of two normal distributions with different standard deviations and com-
mon mode, see Hald (1998, pp. 378-380) . He recommends this distribution for
describing moderately skew data . Second (1897, pp . 339-351) for more extreme
skewness he uses the logarithm of the variable as two-sided normal . For variable s
taking on only positive values he considers the logarithmic form as fundamen -
tal, the arithmetic form being a useful approximation if the relative variation i s
small . He fits a normal and a two-sided normal distribution to his moderately
skew empirical distributions to demonstrate the improvement in the goodness o f
fit, and for distributions of greater skewness he compares the fits obtained b y
using the arithmetic and the logarithmic forms of the two-sided normal .

Lipps (1897) gives a summary of the Kollektivmasslehre and indicates tha t
Fechner's solution is insufficient . He says that there are two essentially different
methods of solution: (1) the direct method, to seek a (more flexible) formul a
for the distribution, which has recently been done by Bruns (1897), (2) th e
indirect method, to transform the random variable such that the correspondin g
distribution has a specified form .

From about 1897 a lively discussion of the new systems of frequency function s
took place among natural scientists in the German speaking countries, see for ex -
ample Ludwig (1898), Duncker (1899), and Ranke and Greiner (1904) . We shall
in turn discuss the mathematical contributions in the form of series expansion s
due to Bruns, Lipps and Hausdorff .

Bruns's derivations of the A series, 1897, 1898, 1906a .

H. Bruns (1848-1919) was Professor of astronomy at the University of Leipzig .
His main work in statistics is Wahrscheinlichkeitsrechnung und Kollektivmassleh-
re (1906a), which he characterizes as the first textbook on Kollektivmasslehre i n
general . For priority reasons, and perhaps also as an excuse for the lack o f
references to recent literature, he refers in the preface to his previous paper s
on series expansions of distribution functions and states that the manuscript o f
the book was ready for printing in the beginning of 1900, but publication wa s
delayed because he at the time contemplated to give a more extensive expositio n
of applications of the theory .

Bruns states that the application of probability theory presupposes that ob-
jects exist that at least approximately realize the concepts of random events and
theoretical frequency distributions . That this is so is for the first time demon-
strated by Fechner in his Kollektivmasslehre . However, Fechner's mathematics
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is rather primitive and it cannot be expected that an arbitrary frequency func-
tion can. be approximated by the two-sided normal distribution containing only
three parameters . Instead Bruns (1898) proposes to use an expansion of the for m
g(x) = Eckf (j) (x) and, for simplicity, to choose f (x) as normal . He consider s
this series as the general solution of Fechner's problem .

Bruns (1897, 1898, 1906a) gives three derivations of the A series . Except fo r
sone changes of terminology and notation we shall first relate the proof given i n
1898 and 1906 and later comment on the first proof .

Let G(x) be the distribution function corresponding to the continuous density
g(x) so that

2G(x) - 1 =

	

g(t) dt , -co < x < oo .
-x

.

Bruns expresses this function as a linear combination of the Gaussian error func-
tion

fI0(x) = Texp (-t 2 ) d t

and its derivatives . Both functions increase from -1 to 1 when x increases from
-oo to oo. Introducing a scale parameter in 0(x) and letting this parameter ten d
to zero Bruns gets the degenerate error functio n

1 for x > 0
sgn x = 0 for x = 0

-1 for x < 0 .

It follows that

E[sgn (y - x)] = J y g(x) dx - J g(x) d x
-co y

=2G(y)-1, -co <y<oo .

	

(3 .1 )

The problem is thus to find a series expansion for sgn (y - x) .
Noting that

0'(x) = 2n z exp ( -x2) ,
and using the characteristic function for the normal distribution Bruns get s

0 ' (x) =
2

	

exp (2ixt - t 2 ) dt .
n 00

Integrating with respect to x he obtain s

0(x) = 1

	

exp (2itx - t2) di ,

	

(3 .2 )
7r

	

i t

and
1 /°°

	

dt
sgn x = - l exp (2ixt)

7r , co

	

it
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Hence,

sgn (y x)
= -

	

exp (2iyt t 2 ) exp (-2ixt + t2)
d

.

	

(3 .3)
7r -00

	

i t

To evaluate the second exponential factor in the integrand Bruns uses the relation

6 ' (x + t) = Ø' (x) exp (-2xt t 2 )
cc

where the power series is found by multiplying the series for exp(-2xt) and
exp(-t2), which shows that Rj (x) is a polynomial of degree j . It follows that

oo

exp (-2ixt + t 2 ) =

	

Rj (x) (2it) 3 ,

	

(3 .5 )
j=0

which inserted in (3 .3) gives

sgn(y - x) =

	

Rj (x) J

	

exp(2iyt t 2 ) (2it)3
dt

7=o

	

°°

	

i t

Differentiating (3 .2) j times it will be seen that the integral in the series abov e
equals 7rB (j) (y) so that

oo

sgn(y - x) _

	

Rj (x)0(j) ( y ) .

	

(3 .6 )
j= o

2G ( y ) - 1

	

E[Rj(x)]8(j) (y),

	

(3 .7)
j=

which he (1906a, p . 115) calls "the fundamental formula for the interpolatory
representation of an arbitrary distribution function [Kollektivreihe] . "
Differentiation gives the A series

E[Rj(x)]B(j+1)(y)

	

(3 .8 )
3 = 0

Differentiating (3 .4) with respect to t and setting t = 0 Bruns find s

8(J+ 1 ) (x) = 2 j j!9 ' (x)Rj (x ) ,

s o

Hence,

9(y ) = 2- 8' ( y ) !E[Rj (x)]Rj (y) .

	

(3 .9 )
oo

j=0
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He (1898, p . 351 ; 1906a, p . 43) derives the first five polynomials and notes tha t
the rule of formation from then on is obvious . He finds the differential equation
and the recursion formula for the R's, but does not mention the orthogonality .
To facilitate the applications of the series he (1898) tabulates Ø (ß) (x)/23-1 for j =
1, . . . , 6 to four decimal places for x = 0 .00(0 .01)4 .00 . This table is reproduced
together with a table of 9(x) at the end of his book (1906a) .

Since Rj (x) is a polynomial of degree j the coefficient E[Ri ( x)] is a linear
combination of the first j moments of x . Bruns introduces the linear transfor-
mations

u=h(x-c) and v=h(y-c), h>0, -co <c<oo ,

and remarks that by settin g

c = E(x) and h-2 = 2E[(x - 0 2 ] ,

the series takes on its "Normalform" in which E[RI (u)] = E[R2 (u)] = 0 .
Bruns stresses that the series for G(x) may be used also for a discontinuou s

distribution if only the cumulative probabilities are referred to the midpoints o f
the consecutive values of the argument .

Using characteristic functions Bruns (1906a, pp . 134-137) proves that the
successive coefficients in the standardized A series for a sum of random variables
are of the order of n-(.i-2)/2, > 2, if the variances of the components ar e
finite and of the same order of magnitude . He remarks that the main terms o f
this series is due to Laplace and that further terms have been derived by Bessel
(1838) .

Turning to the fitting of a partial sum of the series to an observed distribution ,
Bruns estimates the coefficients by means of the corresponding empirical values ,
corrected for grouping in the continuous case . The number of terms included
in the series depends on the goodness of fit . In his book he presents detailed
schemes for carrying out the calculations and one worked example . He refers to
a paper by his student F . Werner (1900), who has calculated the first six term s
of the series for 18 observed distributions, among them some of Fechner's, and
compared the observed and calculated frequencies numerically and graphically ,
an enormous amount of work . In 16 of the 18 cases Werner considers the fit as
satisfactory, only for Fechner's two distributions of dimensions of paintings mor e
than six terms are required . He mentions that the method is unsatisfactory fo r
non-homogeneous data .

Bruns's series is the same as that previously found by Gram and Thiele sinc e

Rj (x) = (-1)3H;(x)/22 j . .

It is odd that he does not refer to Gram's paper (1883) published in a Germa n
mathematical journal .

	

_
Bruns's proof is artificial and cumbersome compared with Thiele's which use s

only the orthogonality of the series . One naturally asks the question : Why does
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Bruns not mention and use the orthogonality? It seems that the explanation i s
to be found in the first part of his 1897 paper where he discusses a more genera l
series . Briefly told, he introduces a distribution function defined by replacing t 2

in (3 .2) by a power series in t2 , assuming that

exp[- 2i 1
j= 0

has the same properties as exp(-t 2 ) for It -~ co . As a result t2 in (3 .3) is replace d
by the power series, and the evaluation of the second factor in the integrand leads
to a series of the same form as (3 .5) but with a more complicated definition o f
the polynomials {R j (x) } which in the general case are non-orthogonal .

In the second part of the paper he specializes to the normal distribution an d
proves the usual properties of Rj (x), among them the orthogonality, and con-
cludes that "if a convergent series of the form

g(x) = >:d cjO(j+1) (x )

j=o

exists, then the coefficients can be found in the same way as by the trigonometri c
series ." Bruns's fine proof of the result for the general series is thus superfluou s
for the special case, but he nevertheless reproduces it in his two later expositions .

The originality of Bruns's general proof rests upon the relations (3 .1) and
(3 .3) . His method of proof is influenced by the classical proofs of the centra l
limit theorem, see Hald (1998, p . 319) on Poisson's proof.

Lipps's derivations of the A and B series, 1897, 1901, 1902 .

Lipps considered Bruns's proof of the A series as too complicated and pre-
sented two simpler proofs (1897, 1901) . He (1901) showed that the A and B
series may be derived from a common formula . He determined the coefficient s
by the method of moments without using the orthogonality.

Lipps's first derivation of the A series, 1897 .

In his first proof (1897) of the A series he considers the given frequency func-
tion g(x) as defined by the equidistant arguments x i , . . . , xm with frequencie s
gi, . . . ,gm, Egi = 1, that is, a discontinuous or a grouped continuous distri-
bution. He remarks that it is simpler to use a degenerate normal density wit h
infinitely large precision instead of Bruns's sgn x and he therefore introduces the
approximation

((x) = x 2
h

	

gj exp[-h2 (x - xj ) 2 ]
j= 1

and the corresponding probability

L : zdx =
xp

gj {O[h(xg - xj ) - O[h(xa - xj )]} , x
j=1
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Developing this function around an arbitrary value xo, say, and introducing the
standardized variables u = h(x - xo) and uj = h(xj - xo) he get s

00

E(-1)k(k!)-l[9(k)(uß) - 9(k) ( ua) ]
k=0

	

7= 7

Differentiating with respect to xa and x9 and letting the arguments tend to x
Lipps obtains

00

	

m

k
j gj '

((x ) = 2 ( 1)k
(ki)-18(k)(u)

j= 1k= 1

which shows that ((x) is a linear combination of the derivatives of 8(x) with the
moments of the given distribution as coefficients . Using the properties of the
coefficients in Bruns's series (3 .9), among them the orthogonality, Lipps prove s
that the two series are identical .

For h - oo the moments of g(x) and ((x) are identical . Lipps remarks that
the approximation may be satisfactory also for finite values of h, and he evaluates
the differences between the exact and approximate moments up to the fifth orde r
to judge the goodness of the approximation .

Lipps's derivation of the B series, 1901 .

Lipps's general theory of the A and B series is to be found in the 215-page s
long paper Die Theorie der Collektivgegensthnde (1901) in the section entitle d
"A method for representing arbitrary given functions" (p . 166) . The paper wa s
published as a book the following year .

Lipps represents the given discontinuous frequency function g(x) by the serie s

f(x + ß) )> ßl < ß2 < . . . <

	

n = 1,2, . . . ,

	

(3 .10 )
j=1

where the ß's are suitably chosen integers. He determines the coefficients by th e
method of moments .

Noting that

xrf(x + ß.7 ) =

	

(-1)k (r)ßkV
r -k >

k= 0

multiplying (3 .10) by xr , and summing over x, he get s

vr
x

Cjvrj = (-1)k
(r)

vr

k;= 0

T1.

Pr _
j=1

n

k
j=1

From this system of equations Ec / , E/3jcj , . . . may be found successively as func-
tions of the /I's and v's, and by solving the resulting linear equations the c's are
found .
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For a continuous g(x) the ß's are real numbers and the sums are replaced b y
integrals but otherwise the procedure is the same .

Let A f (x) = f (x + 1) - f (x) and v f(x) = f (x) - f (x - 1) and set

f(x + =

	

(ß)f(x) .

j=o

Generalizing (3 .10) Lipps writes the general B series in the for m

0.9

g ( x) =cof(x)+*.A3 f(x)+f(x), x = 0, ±1, ±2, . . . .
j=1

	

j= 1

In the following he assumes that g(x) = 0 for x < 0 and limits the discussion t o
the series ~

g ( x)_rd c.i V3 f(x), x=0,1, . . . .

	

(3 .11 )
j=o

Lipps chooses A x /x! as f (x) and finds that all the c's contain the factor
exp(-)) . We shall therefore use the Poisson frequency function as f (x), which
only requires a trivial change of Lipps's formulas and makes comparisons with
later developments easier .

For
f (x) = e-aA x /x! , a > 0 ,

Lipps finds

o' .f(x) = f ( x)Pj ( x ) ; j = 0,1, . . . ,

where

Pi(x) _

	

(-1)k (3) À-k x (k) ,

	

(3 .12 )
k= o

x (k) = x(x - 1) - . • (x k + 1) , k ? . 1, and x (° ) = 1 .
Instead of the ordinary moments he introduces the binomial moments, which

we shall denote by ce and ß, respectively. Multiplying (3.11) by (r) and summing
over x, he gets

(x,. _

	

,

	

r = 0, 1, . . . ,
j=0

where

ßr = E ` r) .f ( x ) _ Ar17~! ,
x \

ßrj =	 (r)Vi f (x )
.T

(3 .13 )

and

=(-1)3Ar-~ /(r- j)!> .7=0,1, . . .,r .

	

(3 .14)
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To prove this formula Lipps uses that

(r) o 'f (x) _ (r J f (x)Pi (x )

=
r!

f (x - r)Pj (x) ,

and

P1 (x) = (x - 1)

	

P~_ 1 (x - 1) ,

which by iteration gives

(3 .15 )

(3 .16 )

P~(x = P~(
-r) (1) jP'-

( 2 )
(- r) ~

(r)2
À2P~_ 2 (x - r)

	

. . .

This is a finite series that breaks off when the binomial coefficient or the factoria l
coefficient become zero . It follows that

Using that

.f(x - r)PJ(x)

	

( 1)v
(r) j'

f(x -r) .

E f (x r)=~f(x)=1 ,
x

	

x

E D jf(x - r) =o'f(x) = 0, j=1,2, . . . ,
x

	

x

(3 .14) follows . Hence, the matrix of coefficients in (3 .13) is lower triangular, and
solving for Cr Lipps (p . 505) get s

and

(- 1 ) j [(r - 1A-1A' (3 .17 )

Lipps shows how ar may be calculated by repeated summations of g(x) . He
also expresses µr in terms of oo, . . . , ar , but does not go on to express c r in
terms of p,o,	 which is easily done but the resulting formulas are clums y
compared with (3 .17) .

Lipps presents two empirical distributions with positive frequencies for x 3
and x 7, respectively. Fitting finite series with 5 and 8 terms, respectively, he
naturally obtains a good fit . He uses conveniently chosen values of A and remark s
that A = a l /ao gives c l = O .

It seems that Lipps is the first to develop a B series that is useful for approx-
imating skew discontinuous distributions, it is simpler and more natural for thi s
purpose than Thiele's B series .
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We shall now comment on Lipps's proof from the Thiele-Gram point of view .
Like Gram's series (2 .4), Lipps's series may be written a s

g (x ) = f( ) Pj (x) .
i=0

It is therefore natural to ask whether the P's are orthogonal with respect to the
weight function f (x) . To prove that this is so we first observe that 0r3 = 0 for
j > r which follows by repeated summation by parts . From (3 .12) and (3.14) we
then get for r s

EPs(x )Pr(x)f(x ) =

	

Ps(x)vr f(x )
x

(-1 ) ks(k) À_kßkr

s

= (-WA'

	

(-1)ks(k) /(k - r) !
k=t

= A-r s (r) (1 - 1)s r

which proves the orthogonality and shows tha t

E P,2(x)f(x) = r ! A .

It seems that Ch . Jordan (1926) is the first to note and prove the orthogonality.
Using the orthogonality it follows that

cr = ar[r!]-'

	

Pr(x ) g ( x) ,
x

which by means of (3 .12) immediately gives (3 .17) .

Lipps's second derivation of the A series, 1901 .

Lipps (1901, p . 171) derives the A series analogously to the B series . Let .g(x )
and f (x) be continuous frequency functions and se t

g (x ) =

	

f(x+ßi) ,
i= o

where the ß's are suitably chosen real numbers . Using Taylor's series,

f(x +ß) _

	

/3''f(a)(x)lj! ,
.i= o

x
s

Y,
k=0



34

	

Anders Hal d

( h2j+1 c2j+1) / [2
2r-2 j (r - j)!]

	

Mf1VI 4 9

Lipps obtains the A series in the form

f(j) (x) .
j= o

He mentions that a suitable choice of f (x) is the normal distribution and notes
that the corresponding series has been derived by Bruns (1897, 1898) in another
way, and he refers to Werner (1900) and his own 1897 paper .

Setting
f (x) = h19(t) , t = h(x - b) ,

Lipps obtains

g(x) =

	

(hjcj)h,9(j)(t) .

j=o

The method of moments gives

f[h( x hr /rr =

	

- b)] rg(x) dx

(h 2 c j )vrj ,

	

r = 0,1, . . . ,

	

(3.18 )

j=o

where

v., . j = f t r 19 (j) (t) dt

_ (1)jr(j)7/,r- j

vr =
J t7 29(t) dt ,

which takes on the value s

v2r = (2r)!/(22rr!) and ver+1 = 0, r = 0,1, . . . .

Hence,

zr

h2' µ2r =

	

(- 1) 3 (2r) (3 )v2r-j(h3 ej )
j=o

r
= (2r ) !

	

( h2jc2j)/ [
22r-2 3 (r - .7) ! ]

=0

and

	

her+1i 2r+1 = -(2r + 1)!

=0,1, . . .,r ,

and

j=0
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The matrix of coefficients in this system of linear equations is lower triangular .
Lipps (p . 510) solves the equations with respect to h, rc,. with the result that

c2r =

	

(-1)3N,2r-23,/ ]h2j (2r - 2j)!22j

	

r - 0, 1, . . . ,

	

(3 .19 )
~- o

and

r

C2r+l =

	

(-1)j+1112r+ 1-27I
Eh 2 j (2r + 1 - 2j)!2 2 j j!] , r = 0,1, . . . .

	

(3 .20 )

His solution is simple and his formula directly applicable . He does not in-
troduce the Hermite polynomials, which give the formally more elegant solutio n
(2 .9) . Lipps does not give an example of the application of the A series, presum-
ably because a wealth of examples had been provided by Werner (1900) .

Lipps's criticism of other systems of distributions, 1901 .

Lipps (1901, pp . 152-166) critizises the ideas and systems of distributions
proposed by Gauss, Hagen, Fechner, and Pearson . He distinguishes between
frequency functions based on hypotheses of a probabilistic nature and "empirical "
graduation formulas .

The Gaussian distribution is based on the hypothesis of the arithmetic mean ,
which was generalized by Fechner to a hypothesis about the mode . Hagen derived
the normal distribution from the hypothesis of elementary errors and the sym -
metric binomial . This was generalized by Pearson, who first derived the gamm a
distribution by means of the skew binomial and afterwards his four-parameter
system of distributions from the hypergeometric . Lipps remarks that Pearson' s
criterion to find out whether a distribution has a finite or an infinite range is il-
lusionary, because the empirical distribution has finite support so supplementar y
a priori knowledge is required to reach a decision .

He (p . 163) points out the shortcoming of the probabilistic hypotheses, becaus e
"every distribution can be produced by an unlimited number of different systems
of elementary causes . The often occurring inclination to draw conclusions about
the nature of the elementary causes from the form of the empirical distribution o r
from the estimates of its characteristics has no justification and leads to untenabl e
suppositions without scientific value . "

As an example he demonstrates that a certain discrete distribution cannot b e
generated by independent but by dependent causes . He remarks that elementary
causes generally are dependent .

Fechner and Bruns believed that a single formula would be sufficient for de -
scribing any regular frequency function, but Lipps showed that a multitude o f
series expansions exist for this purpose, and he determined the coefficients in the
two most important cases . However, he (p . 176) remarks that the coefficient s
depend not only on the moments of g(x) but also on the choice of the leading
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term fo(x) of the series and therefore "an arbitrary and unnatural element i s
introduced in the characterization of the distribution . "

Instead of the series he prefers the symmetric functions, in particular the
means, which he defines as E r = (p,r ) 1/r , that is ,

m

pi(xi- b ) r ,

	

r=0,1, . . . ,
i= 1

and the corresponding empirical means, . says. By algebraic methods he first
derives inequalities between the a's for positive values of x - b, and next he
discusses the general case, summarizing his results on pp . 499-503 .

He (pp . 538-564) analyses five examples from psychology, anthropology, bo-
tany and meteorology by calculating the first six means and finding confidence
limits for the theoretical values by means of the asymptotic variance

var ( E r) = Ar - E r r)/n

where n is the number of observations . He (p . 551) says that "These values are
the basis for characterizing the properties of the distribution and for comparisons
with other distributions of a similar kind . "

Summarizing the history so far it will be seen that the contributions of Thiele ,
Gram, Bruns, and Lipps give a complete solution of the approximation proble m
by determining the coefficients in the A and B series and by giving the asymptoti c
distribution of the coefficients in the partial sums .

Hausdorff's derivation of the normal A series, 1901 .

F . Hausdorff (1868-1942) vas Lecturer at the Business School in Leipzig whe n
he wrote his paper (1901), in 1910 he became Professor of mathematics at th e
University of Bonn . His many contributions to probability theory, some of them
unpublished, and their importance for later developments have been discusse d
by Girlich (1996) .

There are no new results in Hausdorff's paper, but his method of proof i s
simpler than previous ones . Independently of Thiele (1899), he introduces the
cumulants, which he calls "canonical parameters", by the equation (2 .14) . He
refers to Laplace, Bessel, and Bruns for previous derivations of the A series and
uses the classical method of characteristic functions and the inversion formula
combined with the definition of the cumulants .

Let (t) = E[exp(itx)] be the characteristic function of g(x)so tha t

O (t) = exp((it) 3 ir /j! )

~-1

Using the inversion formula Hausdorff gets

1

	

co

g(x) = 2J
exp-zxt +

~-

	

(zt?' ,~~ lj!] dt ,

	

(3 .21 )
j=1
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which for M,1 = 0 and K2 =

/

1/2 becomes

g ( x ) = 21r J exp[-ixt - t2/4] exp[(it, )3n j1 .7 1 ]

	

(3 .22 )
2 =

To carry out the integration Hausdorff remarks tha t

/(it)'' exp[-ixt - t2 /4] dt = (-1)j Dq J exp[-ixt - t2 /4] dt

= (-1)3 2779 (j) (x )

= 27ri9(x)H;(x) , j = 0,1, . . .

	

(3 .23 )

Espanding the second factor of the integrand in (3 .22) in a power series of (it )
and using (3 .23) he finds the first six terms of the A series in the form (2 .13) .

Using the orthogonality he gets the series in the form (2 .8) and (2 .9) .
Finally, he assumes that x is the sum of n random variables with finite cu-

mulants so that the rth cumulant of the standardized variable (n nhi)(nT2)
_

is of the order of nl-(/2) . Inserting this result in the A series he gets (1 .4) .
Hence, his method of proof is a streamlined version of the classical proofs of the
extended central limit theorem .

Bruns's A series for discontinuous distribution functions and his deri -
vation of the B series, 19O6b .

Bruns (1906b) characterizes his paper as a supplement and extension of hi s
book (1906a) . He discusses four topics :
(1) A slight simplification of his derivation of the A series .
(2) A series expansion for discontinuous distribution functions by means of th e
A series .
(3) A derivation of a general form of the B series and in particular the series wit h
the binomial and Poisson distributions as leading terms .
(4) A numerical example of the Poisson B series .

Let g(x k ), k = 1, . . . , m, be a frequency function, Eg(xk ) = 1, x i < x 2 <
< xm, with the distribution function

G ( xi) = g ( x i) + 9(x2) + . . . + 9(x i ) •

Bruns's series expansion is based on the function E[sgn(y x)], see (3 .1), whic h
in the present case equals

E sgn(y - xk)g ( xk) •

k= 1

For y = x i he get s
n
E sgn(xti - x k) g ( xk) = [g ( x i) + . . . + 9(x i -1)] - [9(x i-1-1) + . . . + g(xm) ]
k=1

(3 .24 )

= G(x i_ 1 ) + G(x i) - 1 .
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The resulting series is thus an expansion of the functio n

G* (xi) = 2 [G(xi-1) + G(xi)] ,

	

(3 .25 )

corresponding to the midpoints of the vertical parts of the stepfunction G(x .;, ) .
Inserting the A series expansion (3 .6) for sgn(y - x) in (3.24) Bruns find s

2G* (y) - 1 = E[sgn(y - x) ]
co m

Rj(xk)9(xk) 8(7) (J )
=0 k=1
00

_ >2.,E[Ri(x)]e(j) () ,

	

Y, . . . , x„v ,

	

(3 .26 )

j=o

where
m

E [Rj(x)] _

	

Rå(xk)9(xk),

	

(3.27 )

k=1

which has the same form as the continuous version (3 .7) .
The corresponding Edgeworth series for a lattice distribution with span h has

been discussed by Feller (1966, pp . 512-515), who uses the auxiliary variable
x i + s i , where Ei is uniformly distributed on (-h/2, h/2) .

To find the frequency function Bruns notes tha t

vG* (x i) =
2

[9(xi) + 9(x,-1)] ,

and

o2G* (xi) = [.9(xi) - 9(x %-2) ]

so that

o2 G* (x l) =
2-g(xi) o2G* (x3) = 2

1
[9(x3) - g (x l)] > . . . ,

which leads t o

9(x21+1) = O2 [2G* (x2k+1) - 1] , i = 0,1, . - - , [(m - 1)/2] .

k= 0

An analogous formula holds for g(x2i) .
The same result may be obtained by solving (3.25) for G(x i ), which gives

i, - 1
G(x i ) (-1)kG*(xi-k)

k=0
[i / 2 ]

= 2

	

oG* (x i-2k )
k=0
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and
[ i/ 2]

g (x i) = 2

	

o 2G* (xi-2k) •
k= 0

Bruns refers to the derivations of the B series by Lipps (1902) and Char -
lier (1905b, 1905e) and remarks that he will derive the series from fundamental
principles . His method of proof is analogous to that of the A series with th e
modification that characteristic functions are replaced by generating functions
and sgn(y - x) is replaced by the function e(x, y) which equals zero for y 4 x
and unity for y = x . He limits the investigation to expansions of the same form
as (3 .3), that is,

e(x, y ) _

	

(x ) bj ( y ) ,

	

(x , y ) = 0,1, . . . ,

j= o

which means that the discontinuous distribution can be written as

g (y ) =

	

e (x k, y)g(x k )
k= 0
~

j bj (y) , cj =

	

(xk)g(x k) .
j=0

	

k=0

Bruns proves that aj (x) is a polynomial in x of degree j so that c j is a linea r
combination of the first j moments of g(y) . Requiring that bo(y) be a frequency
function he gets bj (y) = a j bo (y) so the B series become s

g(y ) =

	

(x )] vib o (y ) ,

j=

which is analogous to (3 .8) .
Using the Poisson distribution for bo (y) he obtains the same results as Lipp s

and Charlier . He applies this series to Bortkewitsch's example of the number o f
deaths by horsekicks of soldiers in an army corps .

He introduces the standardized variable and proves that the Poisson B series
tends to the normal A series for the Poisson parameter tending to infinity.

As another example he sets bo(y) equal to the binomial (n, p) and proves tha t

( -1),,a3(x) _

	

(_1)k(j x ~
(
n + ~ -

1)k .

	

(3 .28 )
JJ

However, he does not evaluate V bo (y) .

00
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R. von Mises's discussion of the A and B series, 1912, 1931 .

In his widely read textbook E . Czuber (1908, vol . 1, pp . 356-372) reproduces
Bruns's (1906a) proof of the A series and his example ; he adds two examples an d
reprints Bruns's table of the derivatives of î9(x) . He refers to Hausdorff (1901 )
and Lipps (1902) but does not indicate their methods and results .

R. von Mises (1883-1953) was Associate Professor of applied mathematic s
at Strasbourg from 1909, Professor at Berlin from 1920 to 1933, and at Har-
vard from 1939 . He (1912) points out that the A series is a special case of the
Sturm-Liouville orthogonal expansion of solutions to a second order differentia l
equation, which is satisfied by î9(x) and its derivatives . Using the orthogonal-
ity and referring to the Hermite polynomials he gives a simple derivation of the
coefficients in Bruns's series . His method is thus the same as Thiele's with th e
exception that he does not introduce the cumulants .

In his textbook von Mises (1931) gives a complete account of the A and B
series, which he calls "Die Brunssche Reihe" (pp. 250-265) and "Die Charliersch e
Entwicklung" (pp. 265-269), respectively. He does not refer to Hausdorff and
Lipps .

The A series for a continuous density may be written a s

g(x) = î9(x) +

	

å+00+1) (x) .

j= 0

By integration we get the A series for a continuous distribution functio n

x

G ( x) = F( x ) +

	

ci+ 174 (3 ) (x) , F(x) =

f_
7(x) dx ,

	

(3 .29 )

where

	 (-l)j+'	c.2 +1 = 2;+ 1 (.j + 1)! fH;+1(x)g(x) dx

	

(3 .30 )

(-4j

r
	 iJ H~ (x) [G(x) - F(x)] dx , j = 0,1 . . . .

	

(3 .31 )

Formulas (3 .29) and (3 .31) are von Mises's reformulations of Bruns's results .
Considering the discrete case von Mises assumes that G(x) is a stepfunction

with steps of size g(xk ) at x = x k , k = 1, 2, . . . ,m, Eg(x k ) = 1. He evaluates
(3.31) by splitting up the integral into its m + 1 components corresponding t o
the intervals (-oo, x i ), (x i , x 2 ), . . . , (x .,,, , co) . Using the fact that

x k +1

	

1

	

.T•k +l

f k H' (x)
dx

2 ( .1 + 1 ) f k

DxH;+1 (x) dx

=	 1	 [H (x

	

xk)] ,2(j + 1) 3 +1 k + 1 ) -H~+1 (

j=0
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he gets
_ (_ 1 )5+ 1c

	

(3 .32 )i+1

	

2j+I ( j + 1)!

	

;+1(xk)9(xk )

that is, the discrete analogue to (3 .30) . Von Mises believes that this result is
new but it had previously been derived by Bruns (1906b) by another method o f
proof, see (3 .27) .

Von Mises uses the series (3 .29) with the coefficients (3 .32) for representing a
given stepfunction G(x), whether this is a discontinuous distribution function o r
a grouped continuous distribution. This is, however, unsatisfactory because the
series takes on the value G* (x) at any point of increase . It is peculiar that he
does not use Bruns's correction for grouping in the continuous case .

4 THE BRITISH SCHOO L

F . Y . Edgeworth (1845-1926) was Lecturer in logic at the University of Londo n
from 1880, Professor from 1888, and from 1891 Professor of political economy
at Oxford University. His contributions to mathematical statistics have bee n
discussed by Rowley (1928), who also gives an annotated bibliography of Edge-
worth's 74 statistical papers, see also Stigler (1978, 1986) on modern aspects o f
Edgeworth's work and his importance for the emergence of the British School of
statistics . Here we shall mainly discuss his (1905) derivation of "the generalised
law of error," today known as the Edgeworth series .

Edgeworth knew the proofs of the central limit theorem by Laplace and Pois -
son from Todhunter (1865) and Czuber (1891 .), to whom he repeatedly refers ,
but he was ignorant of the works of Bienaymé, Chebyshev, Thiele, Bruns, Lipps ,
and Hausdorff.

As discussed by Stigler (1986, pp . 338-341) Edgeworth and Pearson compete d
on developing and first presenting a generalized system of frequency functions .
After a preliminary paper on "Poisson's asymmetrical frequency function, " i .e . ,
the first two terms of (1 .4), Edgeworth read a paper on the generalized law of
error to the Royal Society, which however rejected it for publication . Only an
abstract was published in which Edgeworth (1894) presented Poisson's resul t
and added that it could be obtained independently from "a general form fo r
the asymmetrical probability curve ." Edgeworth (1895) points out that his 189 4
paper is "preserved in the archives of the [Royal] Society," which implies that it i s
available for other interested statisticians . Pearson thus won the first round of th e
competition ; his four-parameter system of continuous distributions was publishe d
in 1895 and successfully applied to many sets of data . However, Edgeworth cam e
back ; first, he (1900, pp . 75-77) presented the third term of his series, discusse d
its importance and applied it to one of Pearson's examples ; next, at his instigatio n
Bowley (1902) discussed the three terms of the series, supplied some auxiliar y
tables and gave many examples of applications to British wage statistics ; and
finally Edgeworth derived the complete series and gave some applications in
three papers (1905, 1906, 1907) .

rn.
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Edgeworth's generalized law of error, 1905 .

Edgeworth's 1905 paper is the decisive contribution to the development of th e
extended central limit theorem begun by the French School . He derives the ge-
neral term of the A series and rearranges the terms according to magnitude . He
gives two proof, one by the method of moments and one by Laplace's method o f
characteristic functions . Except for the reordering of terms Edgeworth's result s
are closely related to Thiele's (1899) . However, Edgeworth's paper is important
for the historical development because Thiele's paper was overlooked . Edge-
worth's paper is somewhat difficult to read ; we have numbered and reordered his
arguments slightly.
(1) Order of magnitude .

Edgeworth considers the sum s-rL = xi + . . . + x,, of n independently dis-
tributed "elements" (he avoids the term error except for the name of his law )
with zero expectations and moments pr and µri, respectively. Assuming that the
n distributions have finite support and that µ2 = E1c2i is finite it follows that
µ2i = O (

n_1 ),
µri = O(n-r/2 ) and µr = O(nl '/2 ), r = 2, 3, . . . .

Edgeworth introduces the cumulants by developing the logarithm of the mo-
ment generating function in a power series which shows tha t

FÇ 2i

	

x

	

z
= µ2i

	

3i = µ3i

	

K 4i = µ4i _ 2 X (2!)2 µz i

He stops at the fourth order but remarks that t5ri "is a homogeneous function "
of µ2i, . . . , pr ; wherefore 15 ri = O(n-' /2 ) . The general formula for tSri in term s
of the ri ' s is given by Thiele, see (2 .16), from which Edgeworth's result follow s
by replacing µa by n- " / 2 etc .

From the independence of the x's it follows tha t

ln Ms, (t) =

	

ln M., (t )

which implies that nr = Ercri so that x,r = O(n l-r/2) Edgeworth denotes the
cumulants by k r , r = 0,1, . . . , corresponding to our s r+2 .
(2) The moments in terms of the cumulants and the grouping of terms in orde r
of magnitude .

Developing the right side of the relatio n

1 + î2 t 2 /2! + p,3 t3 /3! + . . . = exp(n 2 t 2 /2! + n3 t 3 /3! + . . .)

	

(4 .1 )

into a power series Edgeworth finds

1+

	

1 \
n
2t2+ 3 t3 + . . .

1 r

r!

	

2!

	

3!

	

J

l

\
.	

2lr ( 3
1+ L E	

r o ! r ! . . . ( 2! ) o
_

	

3 !r=1

4 !

oo

r=1

t 2 ro+3rt+ . . .

	

r0 + r1 + . . . =r,
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where the inner summation is over all partitions of r into non-negative integers
ro, r i , . . . . Introducing the notatio n

(	 lr1 1

	

K

	

r 2We)

	

1 ! 3! / r2 ! ( 4! ) . . . ,

we have

r* = r1,r2, . . .

rl. +r2+ . . . =r - ro ,

00

1 +

	

2 ro t2roQ(r*)t3rj+4r2 + . . . .

	

(4.3 )
~ ro! (2! )

Identifying the coefficients of tj in (4 .1) and (4 .3) Edgeworth get s

r= 1

r K2 ro

	

>

	

ro + r1 + . . . = r

	

(4 .4 )
j ! ! (2!) Q(r

)' ~ -2' 2ro+3r1 + . . . =j .

He also writes this result in the same form as Thiele, see (2 .15) .
However, for Edgeworth's purpose (4 .4) is the more practical form becaus e

the first term is found by setting ro as large as possible whereafter ternis o f
lower order are obtained by gradually diminishing ro and increasing r 1 , r2i . . . as
demonstrated by Edgeworth in the following two cases :

(2j ) ! (lc21J

	

(2j)! 0 2 )j-2 64	 	 ( 2 j) ! 	 (K2)3- 3

	

(K3 2
(12j = j!

	

2! J + ( j - 2)! 2!

	

4! + (j - 3)! 2!

	

2! 3! )

	 (2 .7)!

	

K2 7 3 K G
+(j-3)!2!)

	

4-+ . . . , j=1,2, . . .,

	

(4 .5 )

and

(2j+1)! n2) ß-1 Iç3

	

(2j+1) ! ( K2 ) ß-2 65
P,23+1(j-1)!

	

2!J

	

3! + (j-2)!

	

2!/

	

5! +
. . .

	

j=1 2 ; .

(4 .6 )
For f1 2j the first term is of order unity, the next two constitute a group o f

order n 1 , the last term is the first in a group of order n -2 , and so on . For p2j+ 1
the first term is of order n- , the next is the first in a group of order n-3/2 , and
so on .
(3) Each group of terms in the moments corresponds to a linear combination o f
the normal density and its derivatives .

Edgeworth notes that the first term of N2.i in (4 .5) equals the (2j)th moment
of the normal distribution with zero mean and variance n 2 . Denoting the normal
density by f (x) he proves that the series

2
g(x) = f(x ) - 3~ D3f(x) +

3~
D4 +

2! (
3i ) D G f (x) + . . .

	

(4 .7 )

has the same moments as s i,, and that the terms are ordered according to mag-
nitude in the same way as in (4 .5) and (4 .6) .



44

	

Anders Hald MflV1 4 9

To evaluate f x'g(x) dx he uses the formul a

f x a (-D)j-2sf(x ) dx =

	

( 2 ) S

	

2s j ,

	

(4 .8 )
s!

	

2 !

which is proved by integration by parts and from which the result follows .
The first term of (4 .7) is of order unity, the next of order n- 'i:, the followin g

two terms constitute the third term of the Edgeworth series and are of order n-1 ,
and so on. The series is thus an asymptotic expansion of the density in question .
(4) A symbolic representation of the series .

The proof given above is unsatisfactory because it stops at terms of order n-l .
To give a general proof Edgeworth writes the series in the form

g ( x ) = exp(n3 (-D)3 /3! + k4(-D) 4 /4! + . . . )f (x) .

	

(4 .9 )

Developing the operator in powers of D by the same method as in (4 .1) he obtains

co

1+ E E Q(s*)(-D)3si+4s2 + . . .
~

s=1

S l + s2 + . . . = s

S* = ( 8 1, S 2 ; . . . ) .
(4 .10 )

The problem is to prove that the moments of g(x) are the same as those given
by (4 .4) . The moment of order 2j equal s

I

	

(1 + E E Q(s
*
) (-D)3s1-F4s2 + . . .x

	

) f(x) dx .
s= 1

Setting 3s 1 + 4s 2 + . . . = 2j - 2ro 0 we get by means of (4 .8) that

E
(20

KZ ro

	

*

	

s l + SZ + . . . = S

s=1

	

ro! (
)

Q(s
)'

	

2ro + 3s 1 + . . . = 2j
,

which is identical to (4 .4) . A similar proof holds for R2j+1 .
The symbolic form of the series had been derived by Thiele (1899) by another

method of proof, see Hald (2000a) .
To find the general expression for the series ordered according to magnitud e

Edgeworth introduces the generating function

exp(K3(-D)3z/3! + /c4(-D) 4z2 /4! + . . . ) ,

	

(4 .11 )

remarking that the successive groups of terms in the series are obtained as th e
coefficients of the successive powers of z in the expansion of this function . The
expansion follows immediately from (4 .10), which shows that the coefficient of
zn , m s i + 2s2 + . . . + ms0 , equals

m
D)~+zs

f(x )

	

Q( s * ) , m = 1, 2, . . . ,

	

(4 .12 )

P, 23 =

s=1
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since 3s1+4s2+ . . . = m+2s . The order of Q(s*), s = 1, . . . ,m, is independent
of s and equals n -"m

/
2 , which follows from the facts tha t

Q(s* ) a 4i42 . ,

and 'r = O(nl-r/2), r = 2, 3, . . . , so that the exponent of n in the order of Q(s* )
becomes

3

	

4

	

1

	

1
(1--)s1+(1-2)s2+ . . . =s1 +s2 + . . . -2(3sl+4s2+ . . .)=-2m .

Hence, (4 .12) is the compact expression for the (m + 1)st group of terms, all o f
order n-m/2 , of the series . It is easy to check that the first three groups are give n
by (4 .7) ; the next group i s

-

[s!

	

+D+ ( N3) 3 D~ f (x) ,3! 4!

	

3! \ 3 !

as given by Edgeworth (1905, p . 61) .
(5) Edgeworth's completion of Laplace's proof .

Edgeworth remarks that the same series may be found by an extension of the
method of Laplace and Poisson . We shall sketch Edgeworth's proof using moder n
notation and setting u = sn/,/n 2 •

By the same procedure as used by Bienaymé and Hausdorff, see (3 .21)-(3 .23) ,
Edgeworth obtain s

p ( sn) =
27r

f exp (-iut - t2 /2) exp ((at)jkjlj!) dt .
j= 3

He remarks that an expansion of the second factor of the integrand may be found
by replacing (-D) by (it) in the expansion (4 .10) of the operator . Hence ,

/
exp(-iut - t2 /2) (1 +

~
E E Q(s * ) ( it)3s1+4sz + . .

.) dt .
2

p(sn ) = ~ J s= 1

Setting
3s 1 +4s2 + . . . =j, j>= 3 ,

and using (3 .23) with 0(x) instead of d9(x), it follows that

[j/ 3]
(_ I) jØcj) ( u) E E Q(s*) ,

=3

	

s=1

(4 .13 )\/ / 2P( 3 n) = ~(u) +
a

which is the completion of the extended central limit theorem in the form of an
A series . Edgeworth also writes the last factor in the form (2 .19) .



46

	

Anders Hald MfM 49

To bring (4 .13) in a form analogous to (1.4) we introduc e

nr+2
/12rß-2)/2 _ +2/1

n2T+2)/2n,/2 ] = ryr/
n,/2 , r = 1, 2, . . ,

and

Q (s*)
= 1 (711

s1 1

	

'y2 s 2

7

	

sl!

	

3!)

	

82' (4! )

so that

Q(s*) = Q,(s*)/,nj/2-S

	

s = 1, . . . , [j/3]

Hence, (4 .13) becomes

[j l3 ]
(-1)300) (u)ni-jl 2 ~ ns 1

~ Q7(s ) .

	

(4 .14 )
s= 1

V nK2 p ( sn) = 0(96) +
j=3

For j

	

6 the last sum consists of at least two terms of various orders, which
explains why the series is not ordered according to increasing powers of n-1/2

Transcribing (4 .12) in the saine manner we get Edgeworth's version as

0o

	

m
()mn-m /2 E 0 (m.+2s)

(
rn=7

	

s= 1
1/n1ti2 p(sn) = d~(u) + Q, y ( s* ) .

	

(4 .15 ))

Edgeworth does not summarize his results by presenting the two general ex -
pressions (4 .14) and (4 .15) but the formulas are clearly implied by his presenta-
tion of the first terms of the series .

It is clear that Edgeworth's result holds whether the support of the distri-
butions is finite or infinite if only the moments of the components of sn are of
the order indicated in (1) . Likewise, the law holds for a linear combination o f
components instead of a sum . Generalizations to non-linear functions and t o
correlated components are discussed by Edgeworth (1906), who concludes tha t
the law holds for these cases if the standardized cumulants are small and decreas -
ing, although not necessarily as n-1/2 , n-1 , . . . . However, he does not reach a
general result for these cases .

Applications and discussions of the Edgeworth series compared wit h
other systems .

In the 1906 paper the first three terms of the series are fitted to three sets of
data, not very abnormal, the analysis being carried out by Rowley . The goodness
of fit is comparable to that obtained by fitting a four-parameter Pearson curve .
Edgeworth also presents some diagrams showing the effects of varying 7 1 and ',,/2 .

After having discovered the works of Thiele, Bruns and Charlier, Edgeworth
(1907) points out that his series represents the distribution of aggregated rando m
variables, whereas the other authors aim at approximating a given frequenc y
function by a suitably chosen series . Moreover, the "Bruns-Charlier" series differ s
from his series in the third and following terms .
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From 1895 and for the rest of his life Edgeworth carried on a polemical dis-
cussion on the advantages and disadvantages of his system of distributions (the
generalized law and the method of translation) compared with Pearson ' s system ,
for a summary see Edgeworth (1917, pp . 411-437) . He repeatedly underlined
that the generalized law of error is based on the physical hypothesis that ob -
served quantities in many fields depend nearly linearly on the effects of man y
independent causes and therefore has the status of a law of nature, whereas
other systems of distributions are merely empirical . However, he added that the
generalized law describes only moderately abnormal distributions, so that th e
more flexible empirical systems are important practical supplements .

In the applications of the series as a frequency function Edgeworth uses at mos t
three terms . He notes that this may lead to negative frequencies in the tails o f
the distribution . He (1924) summarizes the results of a lifelong work with fitting
this formula to 19 empirical distributions by listing the values of the skewness
m,3 m,2 3/2 ' which varies from 0.063 to 0 .29, and the kurtosis m 4m2 2 - 3, varying
from -0.051 to 0 .327, for slightly and moderately abnormal cases . If the two
coefficients are calculated from a sample of N observations their standard error s
are of order N-1/2 and N-1 , respectively, whereas the coefficients themselves
are of order n-1/2 and n-1 , where n is the unknown number of components .

K. Pearson (1857-1936), from 1884 Professor of applied mathematics an d
mechanics at University College, London, based his model (1895) on the hyper -
geometric distribution, that is, Pearson's sn is the sum of n negatively correlate d
binary variables . Edgeworth points out that this model is too special as th e
basis for a general theory of distributions for sums of interdependent variables .
It seems that Pearson reached the same conclusion because he (1905b) write s
that "all discussion of asymmetrical frequency must turn in one form or another
on the proper form to be given to F(x) in the equatio n

1dy

	

x

y dx = uôF(x)

Setting F(x) = ap+a lx+0,2x 2 + . . . and disregarding terms of higher order Pear-
son obtains his system of frequency curves, y = y(x), without reference to urn
models and underlying causes . In the same paper Pearson criticizes Edgeworth' s
method of translation .

Yule (1906) used the opportunity at the discussion of Edgeworth's (1906 )
paper to defend Pearson's original idea . He argues that Edgeworth has not
reached the bottom of the problem because the distributions of the component s
are unspecified, and he asks the question : How did these distributions arise ?
He answers that "he would regard every distribution as being built up from a
series of such elements, each capable of taking only one of two values . That wa s
the general process, of which the special processes adopted by Quetelet, Pearson,
and others were particular instances ." Moreover, Edgeworth's "process of analysi s
into elements was purely mental ; you could classify the elements out of which
any variable was built up in an indefinite number of ways . " Edgeworth answered
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that "The fact that sporadic variation was widely prevalent might legitimatel y
be used as the foundation of a theory, though the ultimate causes underlyin g
that fact were imperfectly apprehended . "

Pearson read widely and in some cases superficially to judge from the follow -
ing two examples . In a Note at the end of his 1895 paper Pearson remarks tha t
he has procured and read Thiele's (1889) Danish textbook . He notes correctly
that Thiele has introduced the cumulants and measures of skewness and kurto-
sis similar to his own but he overlooks Thiele's discussion of the A series . He
remarks that Thiele does not use the cumulants for estimating the parameters
in frequency functions although Thiele calculates the first six cumulants for his
example from which the coefficients of the A series may be calculated, see Tabl e
1 . Pearson's mistake is presumably due to the fact that Thiele did not calcu-
late the corresponding frequencies . On the other hand Pearson correctly relate s
Thiele's discussion and application of the B series and shows that a somewha t
better fit than the one recorded in our Table 1 may be obtained by his four -
parameter Type I distribution . Pearson (1905a) criticizes Thiele and Lipps . He
suggests that their purpose is "to reproduce the complete frequency" by inclu-
ding as many terms of the series as there are classes minus one . He warns against
this procedure, partly because the problem is graduation, not interpolation and
partly because of the large sampling errors of the higher moments . However, this
is exactly the arguments of Thiele and Lipps ; in their applications they do not
use moments of higher order than six . Pearson does not in this context mentio n
the applications of the four-parameter Edgeworth series due to Edgeworth an d
Rowley.

Among British statisticians only Rowley used the Edgeworth series as a fre-
quency distribution; in his textbook (1926) he gave a simplified version of Edge -
worth's proofs and used the first two terms of the series as a skew distribution .

A compact summary of the results of Thiele and Edgeworth, without referenc e
to these authors, is given by Cornish and Fisher (1937) together with two ne w
applications of the series . They derive unbiased estimates of the cumulants and
give an expansion of the percentiles of g(x) in terms of the standardized norma l
percentiles by inverting the relation between the distribution function of x and th e
corresponding Edgeworth series . A supplementary paper by Fisher and Cornish
(1960) gives further formulas and tables .

Barton and Dennis (1952) determine the region in the (A j , .N 2 )-plane within
which the four-parameter series is unimodal and positive, see also the improved
version by Draper and Tierney (1972) .

5 THE SWEDISH SCHOO L

It was rather late in his career that C . V. L. Charlier (1862-1934), Profes-
sor of astronomy at the University of Lund, became interested in mathematica l
statistics . His main ideas and results on the A and B series are contained i n
five papers published between 1905 and 1908 . It seems that he was ignorant o f
most of the literature on these topics when he wrote the first two papers . In the
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third paper (1905c) "On the representation of arbitrary functions" he refers t o
Gram and Thiele and remarks that he in November 1904 visited Bruns in Leipzig
and that he considers his own paper as a generalization of Bruns's work. It is ,
however, better characterized as a modification of Lipps's paper (1901), whic h
he surprisingly did not know .

We shall sketch the contents of the five papers and also make some remarks
on the special cases and examples discussed in the following papers . In a survey
paper Charlier (1914) lists 19 papers as his "Contributions to the mathematica l
theory of statistics" so far ; many of these papers contain improved versions o f
the original proofs and are mostly didactic .

(1) Charlier's probabilistic derivation of the normal A series, 1905a .

Referring to Hagen's hypothesis of elementary errors Charlier derives (1 .4) by
means of the characteristic function for a sum and the inversion formula . His
proof is essentially the same as Poisson's (1824), which he presumably knew fro m
Todhunter (1865) . His proof contains two errors that neutralize each other; he
points out the error in his 1914 paper . There is nothing new in this paper, both
the method of proof and the results were well known .

(2) Charlier's probabilistic derivation of the B series, 1905b, 1908 .

Let x a , j = 1, 2, . . . , be independent random variables taking on the values 0
and 1 with probabilities qj and pi , respectively, pi + q j = 1 . Laplace (1812, II ,
98) shows that the characteristic function for s = x i + . . . + x,,, equals

n

2/i ( t ) =
i
II] ( gj + p ie) ,

	

(5 .1 )

and by means of the inversion theorem he proves that s is asymptotically normal
with mean Epp and variance Epj qj . The same result is obtained by Poisso n
(1837, §109) .

It is well known that Poisson (1837, §81) derived the distributio n

fa(x ) = e -a
Ax

/x! , x = 0,1, . . . ,

from the binomial for np = A, 0 < A < oo, and n -~ oo . The characteristic
function for the Poisson distribution is

~
e -a E Axeixt/x! = exp(-A + Ae Zt ) .

x= o

Charlier considers the limiting distribution for the model with varying proba-
bilities, often called Poisson trials .

Setting E(s) = Epp = A,0 < A < oo, so that pi = 0(n-1 ) and using (5 .1 )
Charlier gets

[l qn j + ln(1 + (pj /qj )e St ) ]

[ -p i + ( pilg,)
etit +

	

1

= -A + ~e 2t + . . . .

ln V) (t)
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Hence,Charlier finds that s is asymptotically Poisson distributed with paramete r
A . By means of the inversion formula he writes the limit distribution in the form

pa (s) =
]. f27r

, exp(-A + Ae zt - ist) dt

1

f
exp[-A + A cos t + i(A sin t - st)] d t

cos( .~ sin t - st) dt ,

	

s = 0, 1, . . . .

	

(5 .2 )

In his enthusiasm for this result Charlier writes : "This is the function which i n
the present case plays a similar rôle as the Gaussian distribution in the usua l
theory of errors . "

Next, he extends the definition of pa (s) from non-negative integers to "arbi-
trary real or imaginary values of the argument ." To study the properties of thi s
function he notes that

po(s) = 1 1 cos(st) dt = sin gs

.o 7r s

and developing pa(s) in Maclaurin's series he obtain s

1

	

//
~

-e-A
J

e x cos t
~

f e x cos t

p a (s ) = O0 (-1)3 1A3\73po( s )
j=o

A3 po(s -
j= j !

Using that
sin Irs

R(s - j )
po(s-i)=(-1

he gets the expansion

cc
pa(s)=e

~Sl~TB(-1)jÎ!(sl

	

A 3 , -0o < s <o0 .
.

j=0
(5 .3 )

It follows that
0

	

for s = -1, -2, . .
s

	

( 5 .4 )paO =
e- ~ A s/s! for s = 0, 1, . . . .

The function pa(s) may thus be called a continuous version of the Poisson dis-
tribution .

Charlier does not discuss the properties of pa (s) further . However, the function
may be considered as an interpolation formula based on the values given by (5 .4),
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which shows that pa(s) for s < 0 alternates between positive and negative value s
in successive intervals of unit length . Hence, pa(s) is no frequency function, th e
connection with the original model is lost and the function has no probabilisti c
interpretation .

Charlier was not the first to invent a continuous version of a discrete distri-
bution. Thiele (1903, p . 21) proposes to write the binomial coefficient in th e
form

/nl -

	

r(n + 1 )

r(s + l)r(n - s + l )

sin7rs

	

r(n +1)
?rs (n - s) . . . (1 - s) '

-oc <s<oo, s+1,2, . . .,n .

He remarks, however, that the corresponding continuous version of the binomia l
is inadmissable as a frequency function because it alternates between negative
and positive values periodically for s < 0 and s > n .

Finally, Charlier remarks that the complete expansion of In 7P(t) i s

n

lnz/>(t) =

	

[ingj + (pj /gj )e~ t ]

00 1

	

n
~\

me•i>_,(p.i/gj)m ,
m=

	

j=1

which for n -> co shows that

1n = a + ae zt + a linear combination of eitn' , m = 0,1, . . .

the first two coefficients being of order n-1 and the following of order
Since

1
exp(-A + Aei' - ist)e itmdt = pa(s - m) ,

27r

the complete expression for p(s) has the for m

p(s ) =

	

ampa(s - m)
m=0

00

ßm Vmpa(s ) ,

	

(5 .5 )
m=0

which is Charlier's first derivation of the B series . He does not discuss how the
coefficients depend on A .

In 1908 Charlier realized that his enthusiasm for the function pa(s) as a means
for describing distributions with positive frequencies for s < 0 was unfounded .
He explains that this is due to the fact that the elementary errors are assumed to
be non-negative and he therefore generalizes his previous model by considerin g
a trinomial error distribution instead of the binomial . Let xi take on the values
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-1, 0, 1 with probabilities ply, qi , p2j , respectively, pli + q~ + P2j = 1, assuming
that p l y and P23 are of the order n-1 and p2.i >= p ly, say. Charlier states that the
same method of proof as above leads to the "auxiliary function "

p A ,(s) = 1e-
A
J é À OOSt cos(tcsint st) dt, -co < s < oo .

	

(5 .6 )
7r

	

o

He remarks that pa ,r, (s) > 0 for s = -1, -2, . . . , and indicates that he on a later
occasion will return to a more detailed study of this function . However, he never
did so, it seems that the mathematical and numerical problems were too difficult .
We shall return to this matter under (6) .

To see how the parameters depend on the error distribution we shall derive
(5 .6) under the assumption that the error distribution is the same for all th e
components; the proof in the general case is the same .

Setting np2 - npl = p, and np2 + np l = A we get E(s) = fLt and

var(s) = np2 + npi - n(p2 -1) 1 ) 2 = A - p,2 /n

It is easy to prove that ic2r _ 1 (s) -~ p and rc 2 ,.(s) -> A, r = 1, 2, . . . , for n -> co .

From the characteristic function

'0( t) = (p l e-zt + q + p 2
eit )n

we get

ln y:)(t) = n 1n g + n 1n [1 + ( pl /q)e-it + (p 2
/g)e

2t 1

_ -1 + nple-it + np2e ~.t + . . .

	

1

_ -a + ~ A(ezt + e_Zt) + 2p(e2t - e-2t) + . . .

= -a+ A cost+ip,sint + . . .

from which (5 .6) immediately follows by means of the inversion formula . Hence ,
i is the mean and A the variance of s , s = 0, +1, ±2, . . . , for n -~ co .

For p = A we have pa , ,,, (s) = pa(s), which for s = 0,1, . . . equals the Poisson
distribution. Like Jørgensen (1916), we shall therefore call pA,N, (s) the Poisson-
Charlier distribution .

(3) Charlier's representation of an arbitrary function by the A series ,
1905c, 1906 .

Charlier (1905c) writes the A series as g(x) = Eckf (3) (x) and determines the
coefficients by the method of moments using (1 .12) with

.

	

>

	

> . . .

	

UT~
= 1

	

x.r f(j)
(x) dx ,

	

7

	

r .

	

r=0,1 . . .
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Integration by parts gives the recursion formula vr7

	

which leads t o

Ur 7 = ( - 1 ) 2 -3,o - (-1)ivr-J ,

where
1 f

=-
J

	

x r f(x)dx, r=0,1, . . . .
r !

:Moreover, Ur7 = 0 for j > r .

Hence, (1 .12) leads t o

P, r

	

( -1)7vr-7C.7 ,r=0, 1 , . .
j=0

which shows that the c's are determined successively as linear combinations o f
the /t ' s with coefficients that are independent of g(x) . Charlier therefore writes

Cr = f Sr(x)g(x)dx ,

	

(5 .7 )

00

where

Sr(x ) = 8r0 + Srix/1! + Sr2x 2 /2! + . . . + Srrx r /r! .

Inserting the series for g(x) into (5 .7) Charlier obtains

.

=

	

IJ

~
Cr ~Cj

J

	

Sr (x)f('') (x) dx ,

so that

JSr(x)f(x)cLx=

0 forj< r

1 for j = r,

	

(5 .8 )

which leads to the equations

0 forj=0,1, . . .,r- 1
Vk-jsrk = 1 for j = r ,

for the determination of {s rk} . These equations may be written in matrix for m
as

k= 0

0
vo

, v o

vl
0 \
0

1 Srr \
s,. ,,.- i

x

\ I/r Ur 1

	

vo I

	

SrO

	

/

	

\ 0

Charlier uses determinantal expressions instead of the matrix form above . He
works out the explicit expressions for Sr. (x) for r = 1, . . . , 4 and gives the recur-
sion formula

Srk = S r-l,k-1 ,

	

k = 1, . . . , r . (5 .10)
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in agreement with Pearson . He remarks that the following terms of the B series
give a "correction" to Pearson's result but he does not determine these terms .

He (1905e, 1906) then turns to his main result : The Poisson B series . After
having found vrj as function of A he determines the first four coefficients fro m
the general formula with the result that c l = A - µl ;

2!c2 = A2-(2a+1)µl+µ2 ,
3!c3 = A3 - (3A 2 + 3a + 2)µ 1 + 3(A + 1 )µ2 - ,

4!c4 = A4 - ( 4A3 + 6A 2 + 8A + 6 )µ1 + (6A 2 + 12A + 11)µ 2 - ( 4A + 6)µ3 + ,
(5 .14 )

where

xrg ( x)

	

r = 1,2, . . . .

He derives the simpler formulas obtained by setting A =

	

and introducing th e
central moments .

Finally, he introduces two more parameters, a and b say, by replacing g(x) by
g(ax + b) . He derives the first four terms of the series for the following specia l
cases : (1) Setting a = 1, he chooses b and A such that cl = c2 = 0. (2) He
chooses a, b, A such that c l = c2 = c3 = 0. (3) He chooses a and A such that
cl = c 2 = O. He fits a B series to three sets of data.

To facilitate the use of the B series he (1906) reproduces Bortkewitsch's (1898 )
table of the Poisson frequency function .

Regarding the Poisson B series Charlier was preceded by Lipps (1901) wh o
gave the elegant formula (3 .17) for the coefficients . Charlier's achievement lies in
the derivation of the polynomials Tr(x) for the general B series and the orthogo-
nality relation (5 .12) .

(5) Charlier's applications of the series to the Bernoulli, Poisson, and
Lexis models, 1909, 1911 .

Charlier (1909) derives the first six cumulants of the binomial distributio n
and the usual A series approximation may thus be found, see (2 .13) . However ,
Charlier wanted to improve this result and developed a slightly different series .

Setting

b ( x , y ) =
n x

P,'qy , x+y=n, x =0,1, . . .,n ,

and introducing the auxiliary function

,o(t) = pelt + qe -it

he observes that n
O''.(t) =

	

b(x, y)e it(x-Y )

x= 0

µr =



MfM 49

	

On the History of Series Expansions of Frequency Functions

	

5 7

so that

b(x, y) = 2 f exp{nK(t) - it(x - y)} dt,

	

(5 .15 )

where t(t) = In CO, Kl = p - q, K2 = 4pq .
Setting v = x - rip and a- 2 = npq, he finds

nK(t) - it(x - y) _ -2a 2 t 2 - 2vit + n

	

(it) j /j! .

j=3

The main term of the expansion becomes

,f (v)

	

27r J-
exp(-

2

o' 2 t 2 - ivt) dt

_
~2~r

	

exp( 2Q 2 t 2 ) cos(vt) dt,

	

(5 .16 ),

which for a- 2 -* co tends to normality. The improved series is

b ( x , y ) = f(v ) +~ i f (j) (v)

	

v= x- np ,
j=3

where the coefficients are the same as for the normal A series . He calls this th e
"strict" form and recommends it when a 2 is small . It seems that nobody ha s
used it .

To obtain the B series he sets rip = ) and finds that

(5 .17 )

nK(t,) it(x - y) -A(1 - e2 it ) - 2itx -
~~ (1

	

e 2~i,t)j (5 .18 )

Using (5 .15) the main term becomes pa(x) and the series becomes the ordinary
Poisson B series (5 .5), but in the present case he is able to find the coefficients
because of the simple form of (5 .18) . He does not use (5 .14), presumably becaus e
c 5 and c 6 are rather complicated .

Charlier finds the first six coefficients in the usual way by identifying th e
coefficients of t in two power series . We shall show how the general formula may
be derived from Lipps's formula (3 .17) . Noting that

aj = n(j)pj/f !

=WA») ) (-1
- knkDk

Dkj = Dk0(-j)/k! c Doj = 0 ,
k=0



58

	

Anders Hald MfM 4 9

we get

OA' (-llj-kAj-kpkD
j-

k .
/

	

jr! c, _
k=0

r-k

( 1 )r-kxr-kpk

	

(-1)j

	

r

	

-)/J Dr k 7,r- j
r jj=0

r-k- 1

because the last sum equals zero for k < [r/2] . Since the D's are tabulated the
c's are easily found . For example, for r = 6 we ge t

D36-6D25+151) 14 = 225-6x50+15x6=15 ,

D26-6D 15 =274-6x24=130, D16 =120 ,

so
6!c 6 = -15A 3p3 + 130)2 p 4 - 1204p 5 ,

in agreement with Charlier .
It follows from (5 .19) that cr for r > 3 consists of several terms of differen t

orders of magnitude since p is of the order n -1 . Charlier extends Edgeworth' s
discussion of the order of magnitude to the B series .

Referring to Edgeworth, Charlier notes that the series may be written in a
symbolic form analogous to that for the A series, namely

g(x) = exp -n
(122133)]

Pa(x).

In the following paper (1911) Charlier employs the results for the Bernoull i
model to the models of Poisson and Lexis, which so far had been discussed onl y
in terms of the mean and the variance . He derives the third and fourth moment s
for use in the improved A series and the B series .

(6) Jørgensen's analysis and implementation of the Poisson-Charlie r
distribution, 1916.

The Danish actuary N. R . Jørgensen (1879-1967) took up the challenge in
Charlier's 1905b and 1908 papers by providing a complete theory for the tw o
new distributions and the corresponding series . His contributions are contained
in a theoretical paper (1915) and his thesis "Investigations of frequency surface s
and correlation" (1916, 208 pp .) The title of the thesis is incomplete because the
first 51 pages contain an exposition of the univariate theory and the last 72 page s
contain a comprehensive set of tables for the calculation of the A and B serie s

k= 0

k =[r/2]

1) r kAr-kpk

	

(-1 ) J

	

j Dr- k -j, r-j )1

	

-
j=0

(5 .19)
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and the corresponding distribution functions . We shall sketch his main result s
for the univariate case .

Noting that
sin 7rx

Poo( x) _ 7rx

and using the derivatives of e 3pa,(x) with respect to A and pt he derives the
Maclaurin serie s

pa,µ (x ) =

c,o
a sin 7rx	 (~1)j

	

(j) (A+4)

	

(\

/ A-{cJ`k	
j	

+2k
1

-oo < x < co ,7 j o

	

k_o
k

	

2

	

2

	

.x -

	

'
(5 .20 )

0 < Et <_ A, which for integral values of x becomes

r+ j)I (A+2

	 p ) r+ j (A± )
j! (pa,µ(±r ) = e

=e-a
(A )

2 j! ( r +j) ! (

	

4

,x2 42 ) j1
r=0,1, .

(5 .21-)

~

3 =

This is a new discrete distribution which Jørgensen calls the Poisson-Charlier
distribution. It is positive for all values of r, tends to zero for r -o oo, its mean
is p and its variance A, for p = A it is the Poisson distribution, for p = 0 it is
symmetric and otherwise skew, and for large values of p and A it tends to th e
normal distribution .

Introducing the Bessel function of the first kind, Jr, Jørgensen writes (5 .21 )
as

pa ,µ(r) = e- 'x (A + i,t ) rFr( t) , t = (A2 - A2 ) 1/2 , r = 0, f1, . . . ,

	

(5 .22 )

where
Fr (t) = Jr(it)/(Zt) r .

He tabulates log Fr (t) to seven decimal places for r = 0, 1, . . . , 11 and t =
0 .0(0 .1)6 .0, so that the values of pa ,4 (r) are easily calculated .

Similarly he writes (5 .20) as

P),,µ(x) = e m x
7r (- 1) 7 (

a
+

p,)j
+ (~ - p)J	 1

Fä( t ).x - j

	

x +j )
J =o

-oo<x<oo .

(5 .23 )
Finally he expresses the relation between (5 .23) and (5 .22) as

Pa,µ ( x) =
r= -oo

sin7r(x - r )
7(X, - r) PÀ :i.,( r )
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which shows that p), ,µ (x) is a weighted average or the expectation of poo(x - r )
with pa ,µ, (r) as weight . Hence, for large absolute values of the standardized
variable (x - p,)/,p),,4(x) takes on (small) positive and negative values pe-
riodically. He remarks that the continuous version may be considered as an
interpolation formula based on the discrete version .

He tabulates the functions

sin rrx

	

` sin xrx
and	 	 dx

rrx

	

fo rrx

to seven decimal places for x = 0 .00(0 .01)10 .00 .
JØrgensen's main tool in the following analysis is Thiele's cumulant generatin g

function . He finds

(
Mp (t) =

J~~
extpa ,µ, (x) dx

.

= exp [(et + e' - 2) + - µ( et - e-t)] ,

so

,p(t) = A(t 2 /2! + t4 /4! + . . .) + µ,(t/1! + t 3 /3! + . . . ) ,

which shows that Mp (0) = 1 and that the cumulants of even and uneven order
equal A and respectively .

The B series is

It is easy to prove that

j=

f

	

o
g(x) _

	

(-1
1

9 i cj v3pa,µ(x ) •
~ •

e xt
7 3 pa

,µ (x) dx = (1 - et ) iMp (t) ,
.

so that the moment generating function for g(x) become s

Hence ,

which leads to

Mg(t) = Mp (t )

kg(t) - 1£p (t) =

(-1)3-(I(1 - et )3cj .

~~(1 - et)jcj ,n (-1
.7 _

(Kl - E .t)t + (1L2 - A)t2 /2! + (!L3 - µ)t 3 /3! + (K,4 - A)t4 /4! + . . .

= c l t + (c i + c2 - cl)t 2 /2! + (c~ + 3c2 + c 3 - 3ci - 3c1 c2 + 2ci)t 3 /3! + . ,
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from which the c's are found in terms of p,,A and the cumulants of g(x) .
Setting p, = K l and A = K2 Jørgensen gets c l = c2 = 0 and C3 = K3 - K 1 .

Continuing we get C4 = K4 - K2 - 6 (K3 - Kl) . Jørgensen points out that c4 become s
K 4 - K2 if central differences are used in the expansion instead of backwar d
differences .

Referring to the hypothesis of elementary errors Jørgensen points out that for
the series with p, = K1i c 2 is of order n , c3 and c4 of order n-2 , c5 and c6 of
order n-3 , in accordance with Charlier's result for the binomial, see (5 .19) .

Jørgensen maintains that applications of the B series by means of his table s
are just as easy as applications of the A series . He demonstrates this by analysin g
three sets of data, previously analysed by Pearson, Charlier and others, compar-
ing the graduated values by his method by those obtained by a type A series an d
a Pearson distribution . In the applications the origin of x should be chosen suc h
that 0 5 p _< A for the formulas to be directly applicable .

He finds the existing tables for calculating the A series unsatisfactory and h e
therefore tabulates the normal density çb(x), its integral and its first six deriva-
tives to seven decimal places for x = 0 .00(0 .01)4 .00 . Moreover, he tabulates th e
Hermite polynomials of order 2 to 6 for the same arguments .

Jørgensen ends by saying that there are two unsolved mathematical problems
in his thesis : The convergence of the series and the justification of the operations
leading to the cumulants . However, in statistical applications only a finite numbe r
of terms is used and the usefulness of the series should be judged from th e
goodness of fit .

Another Danish actuary, J . F . Steffensen (1873-1961), from 1919 Professor
of Actuarial Mathematics at the University of Copenhagen, proved (1916) that
ltlp (t) diverges so not even the first moment of pa ,1 ,, (x) exists . Jørgensen's formal
operations leading to the cumulants are thus invalid. This seemed to be a serious
blow to the applications of Jørgensen's results for how could one estimate th e
coefficients by the method of moments when the theoretical moments do no t
exist? We have not found any reply from Jørgensen, but the answer is simple .
The "defect" refers only to the continuous version of the distribution, for the
discrete version the moments exist . Jorgensen's successful fittings of pa ,µ ( .x) to
data depend on the fact that for a grouped continuous distribution the areas ar e
replaced by ordinates so he really fits the discrete version to the data even if he
afterwards interprets the result as a continuous distribution .

We conclude that Charlier's derivation of pa ,µ (x) from the hypothesis of ele-
mentary errors led to a new discrete distribution but that his extension to the
continuous version was a failure . The reason for this is not that the moments do
not exist but the fact that the continuous version is not a frequency function an d
therefore should not be used as a first approximation to an arbitrary frequency
function .

(7) Charlier's C series, 1928 .

Charlier (1928) remarks that the A series has the defects that its partial sum s
sometimes give negative frequencies and that the successive terms of the series
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do not decrease regularly. However, by developing the logarithm of the densit y
in a series instead of the density itself these defects are remedied . He defines the
C series as

ing(x) =

	

(u) , u = (x - µ)/o-,

	

(5 .24 )
j=o

and compares this series with the A series in standard form

g ( x ) = a 1 Ø(u ) [1 +

	

aj Hj ( u )] ,
j=3

from which he gets

=Hi (u) .

(5 .25 )
Expanding the last term in powers of Hi and expressing these powers as linear
combinations of the H's he gets (5 .25) written as a linear combination of H's ,
which compared with (5 .24) gives the c's as functions of the a's . In this way he
derives the first nine c's, and since the order of magnitude of the a's is known ,
he can find the order of the c's, which are co = c2 = 0(1), c l = O(n-3/2 ) and
cj = O(n1-j/2), j = 3, 4, . . . , 9 . He conjectures that the last relation holds fo r
allj>_3 .

Using the orthogonality of the Hermite polynomials he find s

1
cj =

	

Hj (u) ln g(x) du .
j .

He gives two examples of fitting a C series to large data sets .
Charlier's conjecture about the order of magnitude of the c's was proved by

Aitken and Oppenheim (1930) . They remark that estimates of the c's will be
much influenced by the large negative values of the empirical 1n g(x), which may
occur at extreme values of x, because the corresponding relative frequencies ar e
small and unreliable .

(8) Cramér's completion of the theory for the normal A series and th e
Edgeworth series, 1926a, 1928 .

The analysis of the normal A series and the Edgeworth series for a continuou s
distribution function culminated with the works of H . Cramér (1893-1985), Pro-
fessor of Actuarial Mathematics and Mathematical Statistics at the Universit y
of Stockholm, the results are summarized in his textbook (1946, pp . 221-231) .
After a preliminary paper (1926a), he published the important 1928 paper, which
contains four main results : (1) the determination of the coefficients of the two
series, (2) conditions for the convergence of the series, (3) conditions for the re-
mainder term of the Edgeworth series to be of the same order as the first term

lng (x) = -1n a - Ho In 'V 2 7r - -2-1 Ho - -2-1 H 2 + ln (1 +

j=3
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neglected, and (4) fitting of the two four-parameter partial sums of the series t o
five large data sets . The proofs under (2) and (3) are mathematically difficul t
and Cramér's paper induced other probabilists to look for simpler proofs .

We shall sketch Cramér's elegant derivation of the normal A series and th e
Edgeworth series for the case of equal components . Let the cumulants of xj
E(xj ) be

	

and let 0 1 (t) be the characteristic function for xj - i1 s o
that the characteristic function for the standardized su m

sn - n/~l
u	 _

3nR 2

equals

ii)(t) = Oi ( t /A/n 2 )

Cramér remarks that the A series is obtained by expanding O(t) in powers o f
t whereas the Edgeworth series is obtained by expanding the same function in
powers of n-1/ 2

Setting .j = gj (K2 ) - j/2 , so that Al = 0, and A2 = 1 ; he obtains the two
expansions

~
lnCt) = - t 2 /2 +n (aj/j!) (itNTLY

	

(5 .26)
j=3

and

lni/i(t) = -t2 /2 + (it) -j/2Aj+2(Zt)'2/0 + 2 ) ! - (5 .27 )
i = 1

Noting that the logarithm of the characteristic function for the normal A series
equals

~
-t2 /2 + ln(1 +

	

cj(-it)3 /j!) ,
j=3

and comparing with (5 .26) he gets the generating function for the c's in terms
of the cumulants, that is, he rediscovers Thiele's formula (2 .18) . He does not as
Edgeworth go on to find the explicit formula for the c's, see (2 .19) and (4 .13) .

To find the coefficient of n,-j/ 2 in the expansion of I/>(t) Cramér uses (5 .27) to
get

~(t) = exp(-t 2 /2)

which shows that the coefficient of n-j/2 exp(-t2 /2) is of the form

bj,j+2k ( 2t) j+2k .
k= 1

k=0

(it) 2 k

k!
a _
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Using the formula

CO

(-tit)' exp(-t 2 /2) = f exp(itu) (j
~

) (u) du ,

he obtains the inversion

Writing t" for (-1)rç(r)(u) Cramér observes that the coefficient of n -j/2 is a
polynomial in t, Pj (t) say, with the generating function

\/n f-Ç2 p(sn) = Ø(u) +

	

(- 1)
j=1 k=1

(5 .28 )

2 tj+2 /(j + 2)! .

	

(5 .29 )

It will be seen that Cramer's (5 .28) is the same as Edgeworth's (4 .12) and
(4.15), and that (5 .29) is the same as (4 .11) for -D = t .

Although Cramér with respect to the derivation of the two series did not
produce new results or a new method of proof his paper had a great influenc e
because of its straightforward mathematics and clear formulations compared wit h
Edgeworth's somewhat obscure exposition .

In contradistinction to Lipps (1901), Cramér (1928, p . 156) (rashly) writes : "In
some cases, the agreement between the observed values and the theoretical curve s
[the Edgeworth series] is even so striking that it strongly suggests the conjectur e
that the fundamental hypothesis may contain something which resembles the
actual truth . "

(9) Wicksell's derivation of the B series, 1935.

S. D . Wicksell (1890-1939), Professor of Statistics at the University of Lund ,
simplified the theory for the general B series by introducing factorial moment s
and cumulants . Let g(x) and f (x), x = 0, 1, . . . , be frequency functions and se t
g(x) = f (x) = 0 for x = -1, -2, . . . . Wicksell (1935) introduces the probability
generating functions G(t) = txg(x) and F(t) = Etx f (x) and the generatin g
function for V i f (x) which equals (1- t) jF(t) . By means of Maclaurin's formula
he get s

G(1-t)/F(1 -t)

	

tj /j!, cj =Dj[G(1 -t)/F(1 - t)]t=o,

	

(5 .30 )
~= o

so that

G(t)

	

tF(t)/j! ,
j=o
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which implies that

g ( x ) =

	

Va f(x)/j! .
j=o

Having thus found the B series for g(x) in terms of f(x) he derives variou s
conditions for the convergence of the series .

To find a more manageable expression for cj than (5 .30) he uses the Maclaurin
expansion

1/F(1 t) = ~ a j tj /j! , a j = Di [ 1/F(1 - t)]t=o ,
=o

which inserted into (5.30) gives

G(1 t) ~aj t j/j ! =

	

j t j/j!,

	

(5 .31 )
j=o

	

j=0

so that c 7 equals the jth derivative of the left side for t = O .
However, G(1 - t) is the generating function for the descending factorial mo-

ments,

G(1- t - t)'g(x) = ( -1)kt-t(k)tk/k! ,(
r

	

k= 0
so

Dk G(1 - t) It-o = (- 1)kf.t(k) .

Using Leibniz's formula for differentiating (5 .31) Wicksell obtains

cj =
k=0

-1 ) k (~)l-t(k)aj -k , j = 1, 2, .

which shows that cj is a linear combination of the factorial moments of g(x) with
coefficients depending on the factorial moments of f (x) . Wicksell does not find
the a's, but differentiating the relation

Do

F(1-t)~aj tj /j!=1 ,
j= o

we get

E(-1)k
(i)

v(k) aj-k = 0 , j = 1, 2, . . . ,

	

(5 .33 )
k= 0

which gives a recursion formula for the determination of aj in terms of the fac-
torial moments 7/ (1) , . . . ;Vu) of f(x) .

(5 .32)
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Although Wicksell's formula for cj in terms of factorial moments is consider -
ably simpler than Charlier's (5.11) in terms of power moments, it is still rather
complicated for j >_ 4. Wicksell therefore looks for a recursion formula, which h e
finds by introducing factorial cumulants defined by the equation

1n G(1 - t)

	

(j) tj /.1 ! >
j=1

so that the relation between the factorial cumulants and the factorial moments
becomes

oo

	

co

exp

	

n(j)tj/j! = >_,(-1)3p,(j)tj/.? !

	

(5 .34)
j=1

	

j=0

analogous to the relation between ordinary cumulants and moments . Denoting
the factorial cumulants of f (x) by À (j) , j = 1, 2, . . . , it follows that

G(1 - t)/F(1 -t) = exp ( (j) - A ( j )) tj li ! j t j /j! .
j=1

co

j=0

Since Thiele's recursion formula for the cumulants ,

j- 1

k= 0

obviously holds also for the factorial cumulants, Wicksell gets the recursion for-
mula

J-1

	

1\
cj =

	

k J (K(k+1) - A(k+1))c.j-1-k > j = 1, 2, . . .

	

(5 .35 )
k= O

which corresponds to the recursion formula for the coefficients in the A serie s
derived by Thiele (1889), see Hald (2000a) .

This result may be used to write the B series in a form analogous to the A
series by setting

lj = 6(j+ 2 ) - ~(j'+2) > 7 = 0, 1 ; . . .

see (2 .13) .
Wicksell illustrates his method by several examples . Considering the expan-

sion of g(x) in terms of the Poisson distribution he finds 1/F(1 - t) = exp(At )
and thus aj = Ai so that (5 .32) gives

cj =

	

(_ 1)k ()h(k1k, j = 1, 2, . . . ,

	

(5 .36 )
k=o

-k 6k+1 ;

	

.? = 1, 2, .

	

,hj -
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which is a considerable simplification of Charlier's result (5 .14) . Wicksell believes
that his formula is new, it is however due to Lipps, see (3 .17), and it had als o
been derived by Ch . Jordan (1927, p . 39) . As a special case he finds the B serie s
for the binomial (n, p) using that ,a (k) = n(k)p k and a = np, a result also found
by Jordan (1927, pp . 39, 99) . Wicksell also derives the recursion formula

j-1
- 1) (k)pk

k= 1

Finally, Wicksell gives a comprehensive discussion of expansions with f (x )
equal to the binomial (n, p) using that

a j =(n+j-1) (j)pj

	

j=1,2 ; . . . .

' He discusses the Bernoulli, Poisson and Lexis models and moreover the hyperge -
ometric and Pascal distributions. In each case he gives the explicit formula for
cj .

(10) Andersson's derivation of the A and B series, 1944, and his appli-
cations of the Gram series, 1941, 1942 .

The final refinement of the derivation of Charlier's two series is due to the
Swedish actuary W. Andersson (1903-1984) . Using a modified version of Wick-
sell's method, Andersson (1944) shows, like Charlier, how both series can b e
derived by the same method, the simplification is obtained by using momen t
generating functions and cumulants instead of ordinary moments .

For a continuous distribution we hav e

M9(t ) = ~[rjtj/j! = exp(~~7tJ~.i!) ,
J=o

	

j=1
co

	

00

Mf (t) = 1 , vjtj/j ! = expÀj tj /j ! )
j=o

	

j=1

so that the Maclaurin expansion of the ratio gives

M9( t ) = Mf(t )

	

cjtj/j!, cj = D3[Mg(t)/Mf(t)]t=o .

	

(5 .37 )
j=o

Replacing t by it and using the inversion formula Andersson finds the A series

g(x) =

	

( cj/j! ) 2 7r J e-tixtM
f(it )( it) j dt

j=o

/j!)(-1)jD~2~
1

J e-ixtMf~(it) dt

( -1)3(cj/j!)f(j) (x) .

c j = -np -1 k, C l = 0, j = 2,3, . .

j= o
~

j=o



68 MfM 49Anders Hal d

The new expression for ca compared with Charlier's formula (5 .7) implies that

Sj (x) =
Dj [ext/Mf (t)]t=0 .

	

(5 .38 )

Setting

1/Mf(t) _~ jtj / j! , ai = D' [ 1/M f (t )]t=o ,
j=o

and using Leibniz's formula Andersson find s

Sj (x) =

	

(I )x k a
k=0

k =
k=0

so that

s jk =j(k)ai-k, k =0,1,	 i ,
where aj is found recursively from the formul a

E (kj )vkaj = 0 ,

k= 0

which corresponds to (5 .33) .
Introducing the cumulants into (5 .37) we have

~

exp

	

aj )t5 / .j!

	

t3 /j! ,
j=0

and setting t = - D Andersson obtains the symbolic expression for the A serie s

g(x) = exp

	

l ( - 1 ) 3 (- A j)Dj

which previously had been derived by Thiele (1899) by another method .
From the recursion formula for the cumulants Andersson get s

. -1

(j
- 1)

k

	

(kk+1
-,\k+1)cj-k-1

	

1 , 2 , .

For a discontinuous distribution Andersson sets M(t) = E[(1 + t)x ] so that

.

j=1

0o

f(x ) ;

cj = (5 .39 )
k= 0

Ms(t) =

	

,a(j)t'
/
j! = exp

j=0
'ç(j)t ;/ .i '

j=

~

Mf(t) = v(j)t'/j! =eXp A(j)t'/j!

.

j=o
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M0 ( t ) = Mf ( t ) > cjt'' / j! , cj = D'

j=o

Noting that

[ Mg ( t ) lMf( t )]t=o . (5 .40 )

E tx v i f(x) = (-1)3 (t- 1)jMf (t- 1) ,
x

it follows that
oo

Mg(t -1 1)'Mf (t - 1)/. j! ,
j= o

which implies that
oo

g (x ) _ j ( x)l.7 ! ,
j=o

which is Charlier's general B series .
By the same reasoning as for the A series Andersson proves tha t

Tj ( x ) = D' [( l + t ) x /Mf (t)]t=o ,

which leads to the relation

tjk =j(k)a(j-k) ,

	

k = 0, 1, . . . ,

where a, (j) is found recursively from the formul a

k=O

	

,

()vaj_k) 0 .

Introducing the factorial cumulants into (5 .40) and setting t = -o Andersson
obtains the symbolic expression for the B serie s

g(x) = exp
1

(- 1)'
3

i(~(~) -A (.t))

	

f(x) ,
j= 1

which had been indicated by Charlier (1909) for the special case of the Poisso n
B series for the binomial .

Finally, Andersson derives the recursion formulas for the c's in the same for m
as (5 .39) but with factorial cumulants instead of ordinary cumulants .

He generalizes the formulas for the B series to forward and central difference s
instead of backward differences .

Andersson (1941) gives a clear account of Gram's (1879) orthogonal serie s
expansion, g(x) = f (x)Ecj P7 (x), which he proposes to call the Gram series . He
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points out that the two main examples are the series with the normal and th e
Poisson distributions as leading terms and supplements these by setting f (x) =
b(x), the binomial with parameters (n, p) .

We remark that this series had been treated by Bruns (1906b) and Wicksel l
(1935) but only in the form g(x) = Ec3 V3b(x), which is unsuitable for applica-
tions because tables of b(x) were lacking .

Andersson succeeds in finding the orthogonal polynomials with b(x) as weight
function . He introduces P~ (x) by the equatio n

k= 0

Repeated applications of the relation

qb(x + k) (x + k) = (n x - k + 1)pb(x + k 1 )

give
q k b(x + k)(x + k) (k) = (n - x)(k)pkb(x) ,

(1)k (i)pkq_k(n - x)(k)x(j-k )

k=0

(-1)'
(j)

(n - j + k)(k)pkx( .7 -k) .

Using summation by parts he proves the orthogonality and get s

n

LP.I(x)b(x) = jin(j) .piqj .
x=0

The c's are then easily found from (2 .7) .
As a further application of the Gram series Andersson (1942) derives the A

series with the Pearson curves as leading terms ; this is a generalization of Gram' s
two A series and of Romanovsky's (1924, 1928) series, which will be discussed i n
the next section .

Pearson's frequency functions are defined as solutions to the differential equa-
tion

f ' ( x)/ f(x) = (a + x)/(bo + bix + b2 x2 ) ,

where the four parameters have to satisfy certain conditions for the solution t o
be a frequency function with finite moments . Andersson set s

b(x)Pj (x) = (-1)3 q-' A3 [b(x)x(3) ]

J

1) k ( jk) b(x + k)(x + k) (j) .

	

(5 .41 )

so that

Pi (x) =

f (x)Pi (x)

	

D' [f(x) (bo + b l x + b 2 x 2 ) j ]

	

(5 .42)
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and proves the orthogonality using integration by parts . Choosing the coefficient
of x .7 as unity he finds the norming constant and a recurrence formula for the
coefficients of P1 (x), from which he obtains the first four rather complicated
polynomials .

It will be seen that (5 .41) and (5 .42) are generalizations of Gram's results fo r
the gamma distribution .

He derives a recurrence formula for Pj (x), expressing Pj+ 2 in terms of Pj+ 1
and and a second order differential equation for Pj (x), and points out that th e
Jacobi, Hermite, Laguerre and Legendre polynomials are special cases of Pj (x) .
These results are also proved by Jackson (1941, pp . 161-165) .

Andersson's three papers are the end of the story . They contain the simplest
possible derivation of the A and B series and generalize Gram's results .

6 THE CONTRIBUTIONS OF ROMANOVSKY, JORDAN, AND STEFFENSEN

(1) Romanovsky's generalization of Pearson's frequency functions by
means of the A series, 1924, 1928 .

V. I . Romanovsky (1879-1954), Professor of statistics at the University o f
Tashkent, uses (1924) some of Pearson's frequency functions as leading terms o f
the A series, which he writes in the same form as Gram, whose work he did not
know .

His main example is the beta distributio n

f ( x ) = ( a+xr (b-x)0/ka+b)'+ß+1B(cti+l,ß+1)], -a <- x b, cx > -1, ß > -1 .

Setting

f(x)P1(x) _ D3 [f (x)(a + x) j (b - x) .7j, j = 0,1, . . . ,

denoting the ascending factorial by

(ß+h)k=(ß+h)(ß+h+1) . . .(ß+k), k>_h, and (ß+h)h-1=1 ,

and using Leibniz's formula for the differentiation he get s

k=0
-1)k (

k
3) (a+le +l)~(ß +j-]c +1) .(a+x)k(b-x)j - kPi ( x )

He proves the orthogonality of the P's by integration by parts and find s

b
P.32 (x) f (x) dx = B (a ,ß)å ! (a+ß+j + 1 )2j(a+b) a-0+2j+1 (a )

(ß)J /(a+N)2j+ 1
a

The coefficient ci is then found from (2 .7) and becomes a linear combination o f
the first j moments of g(x) .
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k=0
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Romanovsky proves that if the method of moments is used for determinin g
the four parameters of f (x) then c l = . . . = cn = 0, so the A series become s

g(x) = f (x) [1 + c5 P5 (x) + C6P6 (x) + . . . ]

Pearson's Type II distributio n

f(x) = (a2 x 2 ) IX /[(2a)2rx+1B(a + 1, a + 1)]

	

-a x a , a > -1 ,

is a special case of the Type I (beta) distribution and requires no further com-
ments .

The Type III (gamma) distribution is

f(x ) = (a + x)ae-ßxß'+1 /[F(a + 1)e°' ß ] , x -a, a > -1 , ß > 0 ,

and leads to

Pi ( ) _

which for a = 0 equals Gram's result (2 .11) .
Romanovsky remarks that the A series based on the normal distribution, Typ e

VII, is well known .
He notes that the application of series involving moments of order five or more

"is not always desirable" because of the large sampling error of these moments .
He points out that the gamma distribution with one correction term depends o n
four moments only.

In a supplementary paper (1928) he derives analogous results for the remainin g
Pearson frequency functions and notes the least squares property of the expan-
sions, see also Romanovsky (1927) . As noted in the previous section Andersson' s
(1942) proof covers all Romanovsky's results .

Pearson (1924) comments that an alternative generalization of his system may
be obtained by adding terms of the third and higher powers of x in•the denomi-
nator of his differential equation . [It is, however to be expected that this syste m
will be more complicated than the A series .] He maintains that for practical
applications one should not use moments of higher order than four .

(2) Ch. Jordan's orthogonal expansions of frequency functions, 1926 ,
1927 .

Ch. Jordan (1871-1959), Professor at the University of Technical and Eco-
nomical Sciences of Budapest, gives a clear and comprehensive exposition o f
orthogonal expansions of frequency functions in his textbook (1927) on mathe-
matical statistics, preceded by a paper (1926) with applications to the binomia l
distribution. Nearly the same material may he found in his books on the calcu-
lus of finite differences (1947) and on the history of probability theory (1972),
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whose Hungarian editions were published in 1939 and 1956, respectively . Like
his contemporaries Jordan did not know the works of Gram and Lipps, so his
results on the B series were considered as new .

The 1927 book begins with a discussion of the mathematical properties of th e
four systems of orthogonal polynomials due to Chebyshev, Legendre, Hermite ,
and Lipps . Referring to Chebyshev and Charlier and using the orthogonality
Jordan derives the expressions for the coefficients of the normal A series and th e
Poisson B series previously found by Gram and Lipps, respectively .

Let f (x, A) denote the Poisson frequency function with parameter A, f (x, A) =
0 for x < 0, let D denote differentiation with respect to A and .A differencing
with respect to x . Hence,

Df(x,A)_-Of(x-1, A) .

Jordan (1926 ; 1927, p . 36) defines the polynomial Gj (x, A) by the relation

D3 f (x , A ) = f ( x , A )Gj (x, A ) = (-1) 303 f (x - .7, A ) .

If we, like Lipps and Charlier, introduce backward differences the right sid e
becomes

(-1 ) 'o3 f(x , A ) = (- 1 )3 f(x , a ) Pj ( x , A ) ,

see (3 .12), so that

Gj (x,A) = (-1)2 Pj (x,A) .

Jordan is the first to prove the orthogonality of the G's with respect to th e
weight function f . We shall give his proof in terms of the P's and V . Using
summation by parts,

E 26x V4Jx = [ U,,r7Ix]r -	 vx-l
Vu.r,

x=1

	

x= 1

he gets

É (x)
Ps (x) .f (x) = Ê (x)Vsf

r

	

( x )
x=0

	

x= 0

oo

x=r

which by iteration gives

1)
7' 1 f (x - 1) , (r, s) = 1, 2 ,

(-1)r for s = rs rf(x - r) _
0

	

for s > r .
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Since PT ( .x,) is a linear combination of (k) , k = 0, 1, . . . ,r, it follows that

EPr(x)Pa(x)f(x) = 0 for s
x=o

Combining the relation

00
(-1 ) T E 1 )Pr (x)f(x) = 1 , r= 0,1, . . . ,

x=~ \ /

with the fact that

Cri
_ (-1)T (AT /r!)Pr.(x) + a linear combination of Pk (x) , k < r ,

Jordan gets

(_1)2T(Ar/r!) ~
P~(x)f ( x) - 1 ,

x= o

so that

E P2(x)f ( x ) =
r!A -T

•

x= o

The coefficient cr then follows from (2 .7), which leads to the same result as
Lipps's (3 .17) . Jordan points out that Cr may be written in symbolic form a s
(A - /1) T /r!, where p lc has to be replaced by the factorial moment µ (k) .

We shall now indicate some of Jordan's other ideas from the 1927 book . He
(pp. 235-236) is the first to give a serious discussion of the properties of the three -
and four-parameter A series considered as frequency functions . Let g3 (x) be the
three-parameter A series . By investigating the roots of the equation g 3 (x) = 0
he finds the conditions for g3 (x) to be non-negative expressed in terms of µ,2 and

/13 . He also finds the conditions for unimodality . He indicates that similar result s
hold for g4 (x) and concludes that the applicability of these formulas as frequenc y
functions is severely restricted, as later confirmed by Barton and Dennis (1952 )
who did not know Jordan's work .

He (p . 93) remarks that the binomial cannot be expressed rigorously by means
of the A series, instead one should use the B series (p . 99) .

He (pp. 237-239) mentions that the goodness of fit may be measured by th e
residual sum of squares, using either the relative frequencies or the cumulativ e
relative frequencies, but he does not discuss the distribution of these statistics .
Independently the latter measure was studied in more detail by Cramér (1926b ,
pp . 111-112 ; 1928, pp . 144-156) and by von Mises (1931, pp . 316-335), who
named it the w 2 test .

Jordan (p. 275) suggests that log g(x) may be represented by a polynomial ,
which he writes as a linear combination of Chebyshev polynomials ; g(x) is thus a

r .
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C series in the terminology of Charlier (1928) . Jordan determines the coefficient s
by the method of least squares .

Besides the method of moments Jordan discusses the method of least square s
without weights . This leads him (p . 277) to introduce the modified Hermite
polynomials

'Or (u) = Hr ( u ) "3Ø(u) , u = [x E(x)[ l~ , r =

which he uses for an orthogonal expansion with coefficients determined by th e
method of least squares . The coefficients are thus linear combinations of

f ur-V O(u ) 9(x) du , r = 0, 1, . . . .

He (p. 279) claims that this series is better than the usual A series because i t
is based on the method of least squares and the influence of large deviations i s
modified by the factor /Ø(u) . He (p. 280) makes an analogous modification o f
the B series .

In two notes at the end of his book he proves that the method of moments an d
unweighted least squares give the same expansion for Chebyshev and Legendre
polynomials . Apart from a remark on the A series (p . 238) he does not realize that
the method of moments and weighted least squares lead to the same expansio n
for the normal A series and the Poisson B series .

Uspensky (1931) characterizes Jordan's (1926) B series as "a remarkable serie s
capable of representing a given infinite sequence of numbers under rather genera l
conditions ." He proves that the coefficients and the series converge if the conver-
gence radius for the generating function Eg(x)t x is larger than 2 . He writes th e
distribution function a s

E g(x) = (co/ml) J

	

a) , m = 0, 1
x=o

	

j-1

He applies this formula to the binomial (n, p) and finds the rapidity of the con -
vergence by determining an upper limit for le i .

Referring to Jordan (1926), Aitken (1931-32) derives the properties of th e
Lipps polynomials and points out that they satisfy a recurrence relatio n

Pj+1(x) = P1(x)Pj (x- 1) +(jlA)Pj_ 1(x-1) > Pi(x ) = 1-(x/A) ; j = 1, 2, .

which is analogous to that for the Hermite polynomials . He studies the corre-
sponding C series, that is, the expansion of l.ogg(x) in terms of {Pj (x)}, and
concludes that it is unsatisfactory because of the large influence of the logarith m
of the small probabilities .
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(3) Steffensen's unified derivation of the finite A and B series as prob-
ability distributions, 1924, 1930 .

Steffensen looks at the problem of series expansion of frequency function s
from a purely statistical point of view . He (1930) writes : "We are therefore o f
opinion that the labour that has been expended by several authors in examinin g
the conditions under which the A-series is ultimately convergent, interesting a s
it is from the point of view of mathematical analysis, has no bearing on the
question of the statistical applications ." The statistical problem is, he says, t o
fit a frequency function, gm(x) say, containing m, parameters to a sample of n
observations, m < n, and therefore the series has to be finite . Moreover, gm (x )( .x• )
should be a probability distribution, that is, it should be non-negative and it s
sum or integral over the whole domain should be unity . He therefore writes the
series as

nx

9m(x )
- >_d

j=0

if(x

	

m

= 1,

	

(6 .1 )
J=o

where f (x) is a probability distribution, w an arbitrary real number, and th e
constants {ai l, without being necessarily all positive, are chosen such that gm (x )
is non-negative .

The basic ideas and the solution of the problem for w = 1 are given in the 192 4
paper; in 1930 he derives both the A and B series as special cases of a genera l
formula .

Steffensen introduces the moments (in our notation )

x 3

gm(x) ,

	

xr f ( x ) > i'r =

x

r

where ryr is defined in analogy with µ r and yr although { ai l is not a probabilit y
distribution. The corresponding cumulants are denoted by 4, ter, and K ra . For
the continuous case the sums are replaced by integrals .

Steffensen derives a relation between the three moments by insertin g

( x - .7 W )s (iw)r-s ,

into

which leads to

( x - jw) ,

r- s
pr =E rs (?W) vs

.i

	

s

(r) r-s
W

	

v.s
,
yr s •

Ss=o
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The corresponding relation between the cumulants is obtained by multiplying
the two cumulant generating functions

J t ~ /7! = ~ Uj t3 /i ! ;

~

j=0

exp

and

exp

	

?; ( wt) j/i ! = ~j(wt)~/j! ,
j=1

	

j-0

and identifying the coefficients of t r , which on the left side equal s

+ wr4 )/r ! ;

and on the right side
Uj it 7	 r j - f_.

j=0 j!
(r- j)!

	

r !

according to (6 .2) . Comparing with the expansio n

exp

it follows that
Kr =

	

+ w r Ka .

	

(6 .3 )

Steffensen develops 9m(x) as a linear combination of difference quotients of
f (x) setting

oWf ( x ) = [f (x ) f (x - w)l/w
1 -E-W

-

	

w

	

f(x ) •

Hence,

f (x - jw) = E-i''f (x )

= (1- w0u,)if(x )

(-1)s (s) ws ~wf(x) ;

which inserted into (6 .1) gives

s

	

m

s!

	

sOcøf(x )

	

aj
j=o

1 5
csVW f (x) , where cs

	

ws ry(s) ,

	

(6 .4 )
s !

s= 0

s= o

m

s=o
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7( s ) denoting the factorial moment . This is Steffensen's finite generalized B series
from which the ordinary B series is obtained for co = 1 and the A series for w -~ 0
since lim vwf (x) = f (' ) (x) . The first term of the series is f (x) since

co = 7(o) = =1 .

To find c s , s = 1, . . . ,m, suppose that the theoretical or empirical value of rs

is known and that n has been calculated from f (x) . From (6 .3) we get

= ( n -K,f)/ws,

	

(6 .5 )

whereafter 7s and 7(s) are found by the usual formulas connecting the moment s
and the cumulants . However, for the normal A series and the Poisson B series
simple expressions for cs in terms of the moments are known .

From the formula

7'(s )

it follows that
m-7

a.7 = (1/.7 !) ' (-1)s`Yo+s)/s !
s= 0

but the a's are of secondary importance compared with the c ' s .
If f (x) contains k < m parameters, determined by the first k moments, then
= nS , s = 1, . . . , k, so, according to (6 .5), the corresponding values of rca = 0 ,

which leads to 7(s) = 0 and thus c (s) = 0 for s = 1	 k .
Steffensen (1930) concludes : "There are, however, considerable drawbacks .

We cannot, as with Pearson's types, be sure beforehand that negative value s
will not occur; as a matter of fact they often do occur, and this can only b e
ascertained at the end of the calculation . We have not even very good reason
to expect that by adding another term such negative values may be made t o
disappear . ( . . .) It may finally be observed that the frequency function (28) [ou r
(6 .4)] often presents several maxima and minima. This may be an advantage i f
the experience also do so ; but then, such an experience is often of little value, a s
the presence of maxima and minima is, perhaps, due to the fact that the materia l
is not homogeneous, or too small . We are therefore inclined to think that th e
apparent generality of (28) is rather a disadvantage than . otherwise, and that
Pearson's types are as a rule preferable . "

7 CONCLUDING REMARK S

Series expansions of frequency functions, which blossomed at the beginning of
the century, disappeared from common statistical practice in the late 1920s .

The many authors who developed the normal A series believed that the partial
sum based on the first four moments could be used as an approximation to uni-

modal skew distributions having contact with the axis at both ends of the range .
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The justification of this belief was amply demonstrated by the many successfu l
fittings of partial sums to empirical distributions by Werner, Bowley, Charlier ,
Edgeworth, and Cramér. However, the four-parameter normal A series had to
compete with other systems of distributions, in particular the four-paramete r
Pearson system . Edgeworth (1917) remarks that his series covers only moderate -
ly nonnormal distributions and therefore has to be supplemented by the metho d
of translation to cover nearly the same field as the Pearson system .

Pearson carried out a feud with all other systems . Not being satisfied with
Edgeworth's admission of the limitation of series expansions he, in 1922, planned
what he considered as the definitive blow against the normal A series . Noting
that the three-parameter gamma distribution and the four-parameter beta distri-
bution had been fitted satisfactorily to many empirical distributions he propose d
to investigate whether the two theoretical distributions could be adequately re -
presented by the normal A series . If not, he took this as a sign that the A serie s
could not represent the empirical distributions either . He left the demonstration
of this proposal to J . Henderson (1922-1923) .

Henderson carried out his investigation in terms of Pearson's tetrachoric func-
tions defined as

Tj () _ (- 1)3-1(d/dx)310(x)/a

= Hj-1(x)Ø(x)/a, j = 0,1, . . . ,

Te(n) being the normal probability integral . As noted by Henderson, an expan-
sion in tetrachoric functions is the same as a normal A series when the normin g
factor 1/ A/T is taken into account .

By a suitable change of origin and scale the two densities may be written a s

x0-1 e-x/F(a) and x0-1 (1 - x)0-1
/B (a , ß)

We shall discuss Henderson's series expansion of the gamma distribution .
Introducing the standardized variable u = (x - a)// Henderson writes the

expansion as

xa-le-x/r(a) =

	

c.l "\/(j + 1 ) !Tj+1(u ) .

	

(7 .1 )
j=0

Multiplying by exp(ut) and integrating he gets the relation between the momen t
generating function s

a-2 exp(-ta i )(1 - ta-i ) -0 = exp(t 2/2)(7.2)

j= o

Expanding the functions of t into power series it is easy to see that co = a - 1 ,
c l = c2 = 0, so that the equation becomes

exp

	

a-0 -2)/ 2 t.7/jI~ _
j=3 j=3
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from which the c ' s may be determined . It follows immediately that

c 3 = 1/3a , c 4 = 1/4a3/2 , c5 = 1/5a2 .

To determine the following c's Henderson uses recursion . Logarithmic differenti-
ation of (7 .2) leads to the equatio n

E c .tj+2 =
(ai

-

j= o

which gives the recursion formul a

cj+1 = ( j cj+ cj-2)/[( .7+ 1 )a2 l , ,1=3,4, . . . .

By means of this formula Henderson calculates chi . . . , c 12 . It will be seen that
c . is a linear combination of

Q,T- (j+1)/2

	

r = 1, . . . , [j/ 31

	

>_ 3 .

If Henderson (and Pearson) had read Edgeworth (1905) more carefully the y
would have found that the general solution of their problem is given by (2 .19 )
for

j = (~

	

1)!a-U-2)/2,
? = 2, 3, . . . .

Note that (7.3) is a special case of (2 .18) .
Integrating (7 .1) Henderson gets the A series for the distribution function ,

which he uses in his numerical investigations . He calculates the first 31 partia l
sums for a = 49 and u = (x - 49)/7 = -2 .8, -1, 0, corresponding to the pro-
bability integrals 0 .0005850, 0 .1577387, 0 .5189993, respectively. The deviation
of the partial sums from the exact value vary about zero in a wavelike fashio n
and "we have as good an approximation at the 5th or 6th terms as at the 15th ,
say, and better than at the 30th ." Furthermore, Henderson remarks that th e
practical value of the expansion "depends on the convergency of the series and
our experience has shown us that in the most common cases the convergenc y
is so slight or non-existent as to render the expansion idle ." He concludes that
it is impossible to know where to stop to get a good approximation and that
the series is of no practical utility as a representation of the gamma probabilit y
integral. He reaches a similar conclusion for the beta distribution. He does no t
discuss under which conditions the series converges or diverges .

It seems that Henderson is looking at the results from the point of view of nu-
merical analysis, that is, as if the problem is to obtain an approximation formul a
for tabulating the incomplete gamma and beta functions to four significant figu-
res, say, and in this respect the series fails . However, from a statistical point o f
view the relative error of the partial sum should be compared with the standard
error of the relative frequencies of the empirical distribution in question . For the
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four-parameter A series the relative error in per cent for the three cases discusse d
is -10.4, -0.983, and -0 .000385, respectively, so Henderson's argument against
the A series is not so strong as he believed .

We have not found any references to Henderson's paper so whether it con-
tributed to the decline of the statistical applications of the A series is uncertain .
It is, however, certain that the Pearsonian system won the battle because of its
simplicity of generation from a single formula, its coverage of distributions o f
widely different shapes, its easy classification of these distributions by means o f
the first four moments, and the goodness of fit obtained in many cases .

In due time also the Pearson system got out of fashion, instead distributions
were derived from specific assumptions on the random variation in question . Thi s
development was foreshadowed, in a much more limited context, by Ranke and
Greiner (1904) in their criticism of the Pearson system and its applicability i n
anthropology. The main problem is, they say, the analysis and comparison of
several series of observations of the same phenomenon from different populations .
To make that feasible we need a probabilistic model containing a small number
of parameters which are simple to calculate . They underline that the parame-
ters should have a biological interpretation, which is not the case for Pearson' s
frequency functions and they therefore characterize his system as purely descrip-
tive and empirical . They remark that the interpretation of the parameters o f
the hypergeometric distribution, which is Pearson's starting point, is lost in th e
differential equation defining his system . Their own solution for anthropological
data is to use the lognormal distribution, which is generated by a multiplicativ e
combination of elementary errors. If the coefficient of variation is small, the n
the normal distribution may be used as an approximation . In case the lognorma l
distribution does not fit the data, they suspect inhomogeneity and recommen d
breaking up the sample into rational subgroups for which the lognormal holds .
Their conclusion (p . 330) is as follows : "The mean and standard deviation [o f
log y] give an exhaustive description of the sample, and since the probable erro r
of these quantities is known an exact comparison of the samples is possible, and
our problem is thus completely solved, if we have a reliable criterion for distin-
guishing between essential and inessential deviations between the empirical an d
theoretical distributions . This has been provided by Pearson [the x2 test] ." They
add that Pearson's system has proved very useful outside anthropology . They
remark that the shape of organs is determined on the one hand by hereditary
factors and main conditions of living, characterized by the mean, and on th e
other hand by an infinite number of elementary causes each with an infinitely
small effect leading to the variation, characterized by the standard deviation .

In his reply Pearson (1905b) takes up the whole question of graduation of
frequency functions by his own system and by other systems as well . By many
examples he demonstrates "The need for Generalized Frequency Curves, eve n
in Anthropological Science ." He points out that Ranke and Greiner have over-
looked the facts that many anthropological distributions are symmetrical without
being normal, and that the lognormal distribution covers only a small part of
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asymmetrical distributions . He asks for a definition of "homogeneity" and notes
that "for long series in economics, sociology, zoology, botany and anthropology
the Gaussian curve over and over again fails . If in all these cases Ranke and
Greiner assert that the material is heterogeneous they are arguing in a circle .
The distributions are as continuous and smooth as those which occur in the cas e
of the Gaussian curve, and they occur for characters in the same group of indi-
viduals which present for other characters the normal distribution ." He admit s
that his own system is empirical, and thus, by implication, that the parameter s
do not have a biological interpretation . Thiele (1903, p . 50) referring to Pearson
(1895) notes that "Here he [Pearson] makes very interesting efforts to develo p
the refractory binomial functions into a basis for the treatment of skew laws o f
error . But there are evidently no natural links between these functions and th e
biological problems, and the above formulae (31) [the normal A series] will prov e
to be easier and more powerful instruments . "

Examples of fitting partial sums of the Poisson B series to empirical distribu-
tions are rather few, see Charlier (1906), Bruns (1906b), Jorgensen (1916), A .
Fisher (1922), and Aroian (1938) .

Applications of the C series are given by Thiele (1903) and Charlier (1928) .
Series expansions proved to be a useful tool for developing approximations t o

theoretical distributions with known moments . Simple examples are the approx-
imations to the binomial by the Edgeworth series and by the Poisson B series .

The asymptotic properties of the Edgeworth series, its inversion (the Cornish -
Fisher series), and its generalization are discussed by Wallace (1958), Felle r
(1966), Hill and Davis (1968), and subsequently by many others .

The sampling distribution of test statistics under normality, derived by R . A .
Fisher in the 1920s, led in many cases to Pearson frequency functions . Several
authors studied the robustness of these statistics under sampling from the norma l
A series, and the Romanovsky-Andersson formulas for series expansions prove d
useful . For surveys of this topic we refer to Wallace (1958) and Särndal (1972) .

A brief history of the Gram-Charlier series is due to Davis (1983), and the his -
torical development of approximations to distributions is discussed by Bowma n
and Shenton (1982) .
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